├── README.md
├── YES24API.ipynb
├── aeiou.wav
├── audio_processing.ipynb
├── classification.ipynb
├── clustering.ipynb
├── dimensionality_reduction(PCA).ipynb
├── function.ipynb
├── goodpants.wav
├── import.ipynb
├── numpy_matplotlib.ipynb
├── pandas.ipynb
├── regression.ipynb
├── requests_gradio(공동주택가격).ipynb
├── string.ipynb
├── syntax.ipynb
├── variables.ipynb
├── yesterday.wav
└── 교보API.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # class2022Fall 영어음성학 (고려대학교 영어영문학과)
2 | ## [github repository](https://github.com/hsnam95/class2022Fall)
3 | ## [NAMZ channel](https://www.youtube.com/channel/UCKHB0ZiTVk8qUdqhVtnCUrA)
4 | ## [lecture note](https://koreaoffice-my.sharepoint.com/:p:/g/personal/hnam_korea_ac_kr/EYNpUXN9in9Gs3wn43mii7cB0mSq06bCuIGYrJIeZlbE0g?e=DbqzP7)
5 |
--------------------------------------------------------------------------------
/YES24API.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "provenance": [],
7 | "authorship_tag": "ABX9TyO3k41zi4htcpCGg5M4ueUk",
8 | "include_colab_link": true
9 | },
10 | "kernelspec": {
11 | "name": "python3",
12 | "display_name": "Python 3"
13 | },
14 | "language_info": {
15 | "name": "python"
16 | }
17 | },
18 | "cells": [
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {
22 | "id": "view-in-github",
23 | "colab_type": "text"
24 | },
25 | "source": [
26 | ""
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "source": [
32 | "import pandas as pd\n",
33 | "import json\n",
34 | "import requests\n",
35 | "from bs4 import BeautifulSoup\n",
36 | "import re\n",
37 | "import numpy as np\n"
38 | ],
39 | "metadata": {
40 | "id": "nhZj-Bi8Atg2"
41 | },
42 | "execution_count": null,
43 | "outputs": []
44 | },
45 | {
46 | "cell_type": "code",
47 | "source": [
48 | "bookID = '176787'"
49 | ],
50 | "metadata": {
51 | "id": "j4Cj1FNgAyDU"
52 | },
53 | "execution_count": null,
54 | "outputs": []
55 | },
56 | {
57 | "cell_type": "code",
58 | "source": [
59 | "url = f'http://www.yes24.com/Product/communityModules/GoodsReviewList/{bookID}?Sort=1&PageNumber=1&Type=ALL'\n",
60 | "response = requests.get(url)\n",
61 | "soup = BeautifulSoup(response.content, 'html.parser')\n",
62 | "tmp = soup.find(string=re.compile('reviewCountText'))\n",
63 | "tmp = str(tmp)\n",
64 | "cnt = re.findall('(?<= reviewCountText = \\')\\d*(?=\\')', tmp)\n",
65 | "cnt = int(cnt[0])\n",
66 | "\n",
67 | "nPage = int(np.ceil(cnt/5))"
68 | ],
69 | "metadata": {
70 | "id": "q9xZlnJzSP5i"
71 | },
72 | "execution_count": null,
73 | "outputs": []
74 | },
75 | {
76 | "cell_type": "code",
77 | "source": [
78 | "data = {'title': [],\n",
79 | " 'ID': [],\n",
80 | " 'date': [],\n",
81 | " 'contRating': [],\n",
82 | " 'designRating': [],\n",
83 | " 'text': []}\n",
84 | "df = pd.DataFrame(data)"
85 | ],
86 | "metadata": {
87 | "id": "MkNNj561QaZh"
88 | },
89 | "execution_count": null,
90 | "outputs": []
91 | },
92 | {
93 | "cell_type": "code",
94 | "source": [
95 | "i = 0\n",
96 | "for n in range(nPage):\n",
97 | " PageNumber = n + 1\n",
98 | " url = f'http://www.yes24.com/Product/communityModules/GoodsReviewList/{bookID}?Sort=1&PageNumber={PageNumber}&Type=ALL'\n",
99 | " response = requests.get(url)\n",
100 | " \n",
101 | " soup = BeautifulSoup(response.content, 'html.parser')\n",
102 | " title = soup.select('span.txt')\n",
103 | " ID = soup.select('a.lnk_id')\n",
104 | " date = soup.select('em.txt_date')\n",
105 | " rating = soup.select('span.review_rating > span.rating');\n",
106 | " contRating = rating[0:9:2]; designRating = rating[1:10:2]\n",
107 | " text = soup.select('div.reviewInfoBot.origin > div.review_cont')\n",
108 | "\n",
109 | " for r in zip(title, ID, date, contRating, designRating, text):\n",
110 | " title, ID, date, contRating, designRating, text = [r[0].get_text(), r[1].get_text(), r[2].get_text(), r[3].get_text(), r[4].get_text(), r[5].get_text()] \n",
111 | " row = [title, ID, date, contRating, designRating, text]\n",
112 | " df.loc[i, :] = row\n",
113 | " i +=1"
114 | ],
115 | "metadata": {
116 | "id": "YJ6D1OVA4MLk"
117 | },
118 | "execution_count": null,
119 | "outputs": []
120 | },
121 | {
122 | "cell_type": "code",
123 | "source": [
124 | "import xlwt\n",
125 | "df.to_excel('review.xls')"
126 | ],
127 | "metadata": {
128 | "id": "Mgr-AdFGYVIj"
129 | },
130 | "execution_count": null,
131 | "outputs": []
132 | }
133 | ]
134 | }
--------------------------------------------------------------------------------
/aeiou.wav:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hsnam95/class2022Fall/b6d8b0cd9bd9d2ab443fe58ab1d1813f70db9e45/aeiou.wav
--------------------------------------------------------------------------------
/classification.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "provenance": [],
7 | "authorship_tag": "ABX9TyOxHGzEIPa4OH8P5u4fYMbP",
8 | "include_colab_link": true
9 | },
10 | "kernelspec": {
11 | "name": "python3",
12 | "display_name": "Python 3"
13 | },
14 | "language_info": {
15 | "name": "python"
16 | }
17 | },
18 | "cells": [
19 | {
20 | "cell_type": "markdown",
21 | "metadata": {
22 | "id": "view-in-github",
23 | "colab_type": "text"
24 | },
25 | "source": [
26 | "
"
27 | ]
28 | },
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {
32 | "id": "jXx1hl8Haz_B"
33 | },
34 | "source": [
35 | "## Loading a dataset"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "source": [
41 | "import pandas as pd"
42 | ],
43 | "metadata": {
44 | "id": "Og5Gu9lAvOAW"
45 | },
46 | "execution_count": 1,
47 | "outputs": []
48 | },
49 | {
50 | "cell_type": "markdown",
51 | "source": [
52 | "### iris dataset"
53 | ],
54 | "metadata": {
55 | "id": "U-C2V43QvWU7"
56 | }
57 | },
58 | {
59 | "cell_type": "code",
60 | "execution_count": null,
61 | "metadata": {
62 | "id": "-1qGv4bFaz_C"
63 | },
64 | "outputs": [],
65 | "source": [
66 | "from sklearn.preprocessing import LabelEncoder\n",
67 | "le = LabelEncoder()\n",
68 | "iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'label'])\n",
69 | "iris['label'] = le.fit_transform(iris['label'])\n",
70 | "iris.head()"
71 | ]
72 | },
73 | {
74 | "cell_type": "code",
75 | "source": [
76 | "iris"
77 | ],
78 | "metadata": {
79 | "colab": {
80 | "base_uri": "https://localhost:8080/",
81 | "height": 424
82 | },
83 | "id": "5QicxfMH8zDf",
84 | "outputId": "32aa129e-3b4d-4153-acad-1b8988c915f2"
85 | },
86 | "execution_count": 30,
87 | "outputs": [
88 | {
89 | "output_type": "execute_result",
90 | "data": {
91 | "text/plain": [
92 | " sepal_length sepal_width petal_length petal_width label\n",
93 | "0 5.1 3.5 1.4 0.2 0\n",
94 | "1 4.9 3.0 1.4 0.2 0\n",
95 | "2 4.7 3.2 1.3 0.2 0\n",
96 | "3 4.6 3.1 1.5 0.2 0\n",
97 | "4 5.0 3.6 1.4 0.2 0\n",
98 | ".. ... ... ... ... ...\n",
99 | "145 6.7 3.0 5.2 2.3 2\n",
100 | "146 6.3 2.5 5.0 1.9 2\n",
101 | "147 6.5 3.0 5.2 2.0 2\n",
102 | "148 6.2 3.4 5.4 2.3 2\n",
103 | "149 5.9 3.0 5.1 1.8 2\n",
104 | "\n",
105 | "[150 rows x 5 columns]"
106 | ],
107 | "text/html": [
108 | "\n",
109 | "
\n", 129 | " | sepal_length | \n", 130 | "sepal_width | \n", 131 | "petal_length | \n", 132 | "petal_width | \n", 133 | "label | \n", 134 | "
---|---|---|---|---|---|
0 | \n", 139 | "5.1 | \n", 140 | "3.5 | \n", 141 | "1.4 | \n", 142 | "0.2 | \n", 143 | "0 | \n", 144 | "
1 | \n", 147 | "4.9 | \n", 148 | "3.0 | \n", 149 | "1.4 | \n", 150 | "0.2 | \n", 151 | "0 | \n", 152 | "
2 | \n", 155 | "4.7 | \n", 156 | "3.2 | \n", 157 | "1.3 | \n", 158 | "0.2 | \n", 159 | "0 | \n", 160 | "
3 | \n", 163 | "4.6 | \n", 164 | "3.1 | \n", 165 | "1.5 | \n", 166 | "0.2 | \n", 167 | "0 | \n", 168 | "
4 | \n", 171 | "5.0 | \n", 172 | "3.6 | \n", 173 | "1.4 | \n", 174 | "0.2 | \n", 175 | "0 | \n", 176 | "
... | \n", 179 | "... | \n", 180 | "... | \n", 181 | "... | \n", 182 | "... | \n", 183 | "... | \n", 184 | "
145 | \n", 187 | "6.7 | \n", 188 | "3.0 | \n", 189 | "5.2 | \n", 190 | "2.3 | \n", 191 | "2 | \n", 192 | "
146 | \n", 195 | "6.3 | \n", 196 | "2.5 | \n", 197 | "5.0 | \n", 198 | "1.9 | \n", 199 | "2 | \n", 200 | "
147 | \n", 203 | "6.5 | \n", 204 | "3.0 | \n", 205 | "5.2 | \n", 206 | "2.0 | \n", 207 | "2 | \n", 208 | "
148 | \n", 211 | "6.2 | \n", 212 | "3.4 | \n", 213 | "5.4 | \n", 214 | "2.3 | \n", 215 | "2 | \n", 216 | "
149 | \n", 219 | "5.9 | \n", 220 | "3.0 | \n", 221 | "5.1 | \n", 222 | "1.8 | \n", 223 | "2 | \n", 224 | "
150 rows × 5 columns
\n", 228 | "\n", 380 | " | clump_thickness | \n", 381 | "uniformity_of_cell_size | \n", 382 | "uniformity_of_cell_shape | \n", 383 | "marginal_adhesion | \n", 384 | "single_epithelial_cell_size | \n", 385 | "bare_nuclei | \n", 386 | "bland_chromatin | \n", 387 | "normal_nucleoli | \n", 388 | "mitoses | \n", 389 | "label | \n", 390 | "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", 395 | "5 | \n", 396 | "1 | \n", 397 | "1 | \n", 398 | "1 | \n", 399 | "2 | \n", 400 | "1 | \n", 401 | "3 | \n", 402 | "1 | \n", 403 | "1 | \n", 404 | "0 | \n", 405 | "
1 | \n", 408 | "5 | \n", 409 | "4 | \n", 410 | "4 | \n", 411 | "5 | \n", 412 | "7 | \n", 413 | "10 | \n", 414 | "3 | \n", 415 | "2 | \n", 416 | "1 | \n", 417 | "0 | \n", 418 | "
2 | \n", 421 | "3 | \n", 422 | "1 | \n", 423 | "1 | \n", 424 | "1 | \n", 425 | "2 | \n", 426 | "2 | \n", 427 | "3 | \n", 428 | "1 | \n", 429 | "1 | \n", 430 | "0 | \n", 431 | "
3 | \n", 434 | "6 | \n", 435 | "8 | \n", 436 | "8 | \n", 437 | "1 | \n", 438 | "3 | \n", 439 | "4 | \n", 440 | "3 | \n", 441 | "7 | \n", 442 | "1 | \n", 443 | "0 | \n", 444 | "
4 | \n", 447 | "4 | \n", 448 | "1 | \n", 449 | "1 | \n", 450 | "3 | \n", 451 | "2 | \n", 452 | "1 | \n", 453 | "3 | \n", 454 | "1 | \n", 455 | "1 | \n", 456 | "0 | \n", 457 | "
\n", 627 | " | label | \n", 628 | "malic_acid | \n", 629 | "ash | \n", 630 | "alcalinity_of_ash | \n", 631 | "magnesium | \n", 632 | "total_phenols | \n", 633 | "flavanoids | \n", 634 | "nonflavanoid_phenols | \n", 635 | "proanthocyanins | \n", 636 | "color_intensity | \n", 637 | "hue | \n", 638 | "OD280/OD315_of_diluted_wines | \n", 639 | "proline | \n", 640 | "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", 645 | "1 | \n", 646 | "14.23 | \n", 647 | "1.71 | \n", 648 | "2.43 | \n", 649 | "15.6 | \n", 650 | "127 | \n", 651 | "2.80 | \n", 652 | "3.06 | \n", 653 | "0.28 | \n", 654 | "2.29 | \n", 655 | "5.64 | \n", 656 | "1.04 | \n", 657 | "3.92 | \n", 658 | "
1 | \n", 661 | "1 | \n", 662 | "13.20 | \n", 663 | "1.78 | \n", 664 | "2.14 | \n", 665 | "11.2 | \n", 666 | "100 | \n", 667 | "2.65 | \n", 668 | "2.76 | \n", 669 | "0.26 | \n", 670 | "1.28 | \n", 671 | "4.38 | \n", 672 | "1.05 | \n", 673 | "3.40 | \n", 674 | "
2 | \n", 677 | "1 | \n", 678 | "13.16 | \n", 679 | "2.36 | \n", 680 | "2.67 | \n", 681 | "18.6 | \n", 682 | "101 | \n", 683 | "2.80 | \n", 684 | "3.24 | \n", 685 | "0.30 | \n", 686 | "2.81 | \n", 687 | "5.68 | \n", 688 | "1.03 | \n", 689 | "3.17 | \n", 690 | "
3 | \n", 693 | "1 | \n", 694 | "14.37 | \n", 695 | "1.95 | \n", 696 | "2.50 | \n", 697 | "16.8 | \n", 698 | "113 | \n", 699 | "3.85 | \n", 700 | "3.49 | \n", 701 | "0.24 | \n", 702 | "2.18 | \n", 703 | "7.80 | \n", 704 | "0.86 | \n", 705 | "3.45 | \n", 706 | "
4 | \n", 709 | "1 | \n", 710 | "13.24 | \n", 711 | "2.59 | \n", 712 | "2.87 | \n", 713 | "21.0 | \n", 714 | "118 | \n", 715 | "2.80 | \n", 716 | "2.69 | \n", 717 | "0.39 | \n", 718 | "1.82 | \n", 719 | "4.32 | \n", 720 | "1.04 | \n", 721 | "2.93 | \n", 722 | "
\n", 91 | " | sepal_length | \n", 92 | "sepal_width | \n", 93 | "petal_length | \n", 94 | "petal_width | \n", 95 | "label | \n", 96 | "
---|---|---|---|---|---|
0 | \n", 101 | "5.1 | \n", 102 | "3.5 | \n", 103 | "1.4 | \n", 104 | "0.2 | \n", 105 | "Iris-setosa | \n", 106 | "
1 | \n", 109 | "4.9 | \n", 110 | "3.0 | \n", 111 | "1.4 | \n", 112 | "0.2 | \n", 113 | "Iris-setosa | \n", 114 | "
2 | \n", 117 | "4.7 | \n", 118 | "3.2 | \n", 119 | "1.3 | \n", 120 | "0.2 | \n", 121 | "Iris-setosa | \n", 122 | "
3 | \n", 125 | "4.6 | \n", 126 | "3.1 | \n", 127 | "1.5 | \n", 128 | "0.2 | \n", 129 | "Iris-setosa | \n", 130 | "
4 | \n", 133 | "5.0 | \n", 134 | "3.6 | \n", 135 | "1.4 | \n", 136 | "0.2 | \n", 137 | "Iris-setosa | \n", 138 | "
... | \n", 141 | "... | \n", 142 | "... | \n", 143 | "... | \n", 144 | "... | \n", 145 | "... | \n", 146 | "
145 | \n", 149 | "6.7 | \n", 150 | "3.0 | \n", 151 | "5.2 | \n", 152 | "2.3 | \n", 153 | "Iris-virginica | \n", 154 | "
146 | \n", 157 | "6.3 | \n", 158 | "2.5 | \n", 159 | "5.0 | \n", 160 | "1.9 | \n", 161 | "Iris-virginica | \n", 162 | "
147 | \n", 165 | "6.5 | \n", 166 | "3.0 | \n", 167 | "5.2 | \n", 168 | "2.0 | \n", 169 | "Iris-virginica | \n", 170 | "
148 | \n", 173 | "6.2 | \n", 174 | "3.4 | \n", 175 | "5.4 | \n", 176 | "2.3 | \n", 177 | "Iris-virginica | \n", 178 | "
149 | \n", 181 | "5.9 | \n", 182 | "3.0 | \n", 183 | "5.1 | \n", 184 | "1.8 | \n", 185 | "Iris-virginica | \n", 186 | "
150 rows × 5 columns
\n", 190 | "\n", 336 | " | sepal_length | \n", 337 | "sepal_width | \n", 338 | "petal_length | \n", 339 | "petal_width | \n", 340 | "
---|---|---|---|---|
0 | \n", 345 | "5.1 | \n", 346 | "3.5 | \n", 347 | "1.4 | \n", 348 | "0.2 | \n", 349 | "
1 | \n", 352 | "4.9 | \n", 353 | "3.0 | \n", 354 | "1.4 | \n", 355 | "0.2 | \n", 356 | "
2 | \n", 359 | "4.7 | \n", 360 | "3.2 | \n", 361 | "1.3 | \n", 362 | "0.2 | \n", 363 | "
3 | \n", 366 | "4.6 | \n", 367 | "3.1 | \n", 368 | "1.5 | \n", 369 | "0.2 | \n", 370 | "
4 | \n", 373 | "5.0 | \n", 374 | "3.6 | \n", 375 | "1.4 | \n", 376 | "0.2 | \n", 377 | "
... | \n", 380 | "... | \n", 381 | "... | \n", 382 | "... | \n", 383 | "... | \n", 384 | "
145 | \n", 387 | "6.7 | \n", 388 | "3.0 | \n", 389 | "5.2 | \n", 390 | "2.3 | \n", 391 | "
146 | \n", 394 | "6.3 | \n", 395 | "2.5 | \n", 396 | "5.0 | \n", 397 | "1.9 | \n", 398 | "
147 | \n", 401 | "6.5 | \n", 402 | "3.0 | \n", 403 | "5.2 | \n", 404 | "2.0 | \n", 405 | "
148 | \n", 408 | "6.2 | \n", 409 | "3.4 | \n", 410 | "5.4 | \n", 411 | "2.3 | \n", 412 | "
149 | \n", 415 | "5.9 | \n", 416 | "3.0 | \n", 417 | "5.1 | \n", 418 | "1.8 | \n", 419 | "
150 rows × 4 columns
\n", 423 | "\n", 103 | " | vendor | \n", 104 | "model | \n", 105 | "MYCT | \n", 106 | "MMIN | \n", 107 | "MMAX | \n", 108 | "CACH | \n", 109 | "CHMIN | \n", 110 | "CHMAX | \n", 111 | "PRP | \n", 112 | "label | \n", 113 | "
---|---|---|---|---|---|---|---|---|---|---|
0 | \n", 118 | "0 | \n", 119 | "29 | \n", 120 | "125 | \n", 121 | "256 | \n", 122 | "6000 | \n", 123 | "256 | \n", 124 | "16 | \n", 125 | "128 | \n", 126 | "198 | \n", 127 | "199 | \n", 128 | "
1 | \n", 131 | "1 | \n", 132 | "62 | \n", 133 | "29 | \n", 134 | "8000 | \n", 135 | "32000 | \n", 136 | "32 | \n", 137 | "8 | \n", 138 | "32 | \n", 139 | "269 | \n", 140 | "253 | \n", 141 | "
2 | \n", 144 | "1 | \n", 145 | "63 | \n", 146 | "29 | \n", 147 | "8000 | \n", 148 | "32000 | \n", 149 | "32 | \n", 150 | "8 | \n", 151 | "32 | \n", 152 | "220 | \n", 153 | "253 | \n", 154 | "
3 | \n", 157 | "1 | \n", 158 | "64 | \n", 159 | "29 | \n", 160 | "8000 | \n", 161 | "32000 | \n", 162 | "32 | \n", 163 | "8 | \n", 164 | "32 | \n", 165 | "172 | \n", 166 | "253 | \n", 167 | "
4 | \n", 170 | "1 | \n", 171 | "65 | \n", 172 | "29 | \n", 173 | "8000 | \n", 174 | "16000 | \n", 175 | "32 | \n", 176 | "8 | \n", 177 | "16 | \n", 178 | "132 | \n", 179 | "132 | \n", 180 | "
\n", 345 | " | subject# | \n", 346 | "age | \n", 347 | "sex | \n", 348 | "test_time | \n", 349 | "label | \n", 350 | "total_UPDRS | \n", 351 | "Jitter(%) | \n", 352 | "Jitter(Abs) | \n", 353 | "Jitter:RAP | \n", 354 | "Jitter:PPQ5 | \n", 355 | "... | \n", 356 | "Shimmer(dB) | \n", 357 | "Shimmer:APQ3 | \n", 358 | "Shimmer:APQ5 | \n", 359 | "Shimmer:APQ11 | \n", 360 | "Shimmer:DDA | \n", 361 | "NHR | \n", 362 | "HNR | \n", 363 | "RPDE | \n", 364 | "DFA | \n", 365 | "PPE | \n", 366 | "
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
0 | \n", 371 | "1 | \n", 372 | "72 | \n", 373 | "0 | \n", 374 | "5.6431 | \n", 375 | "28.199 | \n", 376 | "34.398 | \n", 377 | "0.00662 | \n", 378 | "0.000034 | \n", 379 | "0.00401 | \n", 380 | "0.00317 | \n", 381 | "... | \n", 382 | "0.230 | \n", 383 | "0.01438 | \n", 384 | "0.01309 | \n", 385 | "0.01662 | \n", 386 | "0.04314 | \n", 387 | "0.014290 | \n", 388 | "21.640 | \n", 389 | "0.41888 | \n", 390 | "0.54842 | \n", 391 | "0.16006 | \n", 392 | "
1 | \n", 395 | "1 | \n", 396 | "72 | \n", 397 | "0 | \n", 398 | "12.6660 | \n", 399 | "28.447 | \n", 400 | "34.894 | \n", 401 | "0.00300 | \n", 402 | "0.000017 | \n", 403 | "0.00132 | \n", 404 | "0.00150 | \n", 405 | "... | \n", 406 | "0.179 | \n", 407 | "0.00994 | \n", 408 | "0.01072 | \n", 409 | "0.01689 | \n", 410 | "0.02982 | \n", 411 | "0.011112 | \n", 412 | "27.183 | \n", 413 | "0.43493 | \n", 414 | "0.56477 | \n", 415 | "0.10810 | \n", 416 | "
2 | \n", 419 | "1 | \n", 420 | "72 | \n", 421 | "0 | \n", 422 | "19.6810 | \n", 423 | "28.695 | \n", 424 | "35.389 | \n", 425 | "0.00481 | \n", 426 | "0.000025 | \n", 427 | "0.00205 | \n", 428 | "0.00208 | \n", 429 | "... | \n", 430 | "0.181 | \n", 431 | "0.00734 | \n", 432 | "0.00844 | \n", 433 | "0.01458 | \n", 434 | "0.02202 | \n", 435 | "0.020220 | \n", 436 | "23.047 | \n", 437 | "0.46222 | \n", 438 | "0.54405 | \n", 439 | "0.21014 | \n", 440 | "
3 | \n", 443 | "1 | \n", 444 | "72 | \n", 445 | "0 | \n", 446 | "25.6470 | \n", 447 | "28.905 | \n", 448 | "35.810 | \n", 449 | "0.00528 | \n", 450 | "0.000027 | \n", 451 | "0.00191 | \n", 452 | "0.00264 | \n", 453 | "... | \n", 454 | "0.327 | \n", 455 | "0.01106 | \n", 456 | "0.01265 | \n", 457 | "0.01963 | \n", 458 | "0.03317 | \n", 459 | "0.027837 | \n", 460 | "24.445 | \n", 461 | "0.48730 | \n", 462 | "0.57794 | \n", 463 | "0.33277 | \n", 464 | "
4 | \n", 467 | "1 | \n", 468 | "72 | \n", 469 | "0 | \n", 470 | "33.6420 | \n", 471 | "29.187 | \n", 472 | "36.375 | \n", 473 | "0.00335 | \n", 474 | "0.000020 | \n", 475 | "0.00093 | \n", 476 | "0.00130 | \n", 477 | "... | \n", 478 | "0.176 | \n", 479 | "0.00679 | \n", 480 | "0.00929 | \n", 481 | "0.01819 | \n", 482 | "0.02036 | \n", 483 | "0.011625 | \n", 484 | "26.126 | \n", 485 | "0.47188 | \n", 486 | "0.56122 | \n", 487 | "0.19361 | \n", 488 | "
5 rows × 22 columns
\n", 492 | "