├── README.md ├── YES24API.ipynb ├── aeiou.wav ├── audio_processing.ipynb ├── classification.ipynb ├── clustering.ipynb ├── dimensionality_reduction(PCA).ipynb ├── function.ipynb ├── goodpants.wav ├── import.ipynb ├── numpy_matplotlib.ipynb ├── pandas.ipynb ├── regression.ipynb ├── requests_gradio(공동주택가격).ipynb ├── string.ipynb ├── syntax.ipynb ├── variables.ipynb ├── yesterday.wav └── 교보API.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # class2022Fall 영어음성학 (고려대학교 영어영문학과) 2 | ## [github repository](https://github.com/hsnam95/class2022Fall) 3 | ## [NAMZ channel](https://www.youtube.com/channel/UCKHB0ZiTVk8qUdqhVtnCUrA) 4 | ## [lecture note](https://koreaoffice-my.sharepoint.com/:p:/g/personal/hnam_korea_ac_kr/EYNpUXN9in9Gs3wn43mii7cB0mSq06bCuIGYrJIeZlbE0g?e=DbqzP7) 5 | -------------------------------------------------------------------------------- /YES24API.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "authorship_tag": "ABX9TyO3k41zi4htcpCGg5M4ueUk", 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "markdown", 21 | "metadata": { 22 | "id": "view-in-github", 23 | "colab_type": "text" 24 | }, 25 | "source": [ 26 | "\"Open" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "source": [ 32 | "import pandas as pd\n", 33 | "import json\n", 34 | "import requests\n", 35 | "from bs4 import BeautifulSoup\n", 36 | "import re\n", 37 | "import numpy as np\n" 38 | ], 39 | "metadata": { 40 | "id": "nhZj-Bi8Atg2" 41 | }, 42 | "execution_count": null, 43 | "outputs": [] 44 | }, 45 | { 46 | "cell_type": "code", 47 | "source": [ 48 | "bookID = '176787'" 49 | ], 50 | "metadata": { 51 | "id": "j4Cj1FNgAyDU" 52 | }, 53 | "execution_count": null, 54 | "outputs": [] 55 | }, 56 | { 57 | "cell_type": "code", 58 | "source": [ 59 | "url = f'http://www.yes24.com/Product/communityModules/GoodsReviewList/{bookID}?Sort=1&PageNumber=1&Type=ALL'\n", 60 | "response = requests.get(url)\n", 61 | "soup = BeautifulSoup(response.content, 'html.parser')\n", 62 | "tmp = soup.find(string=re.compile('reviewCountText'))\n", 63 | "tmp = str(tmp)\n", 64 | "cnt = re.findall('(?<= reviewCountText = \\')\\d*(?=\\')', tmp)\n", 65 | "cnt = int(cnt[0])\n", 66 | "\n", 67 | "nPage = int(np.ceil(cnt/5))" 68 | ], 69 | "metadata": { 70 | "id": "q9xZlnJzSP5i" 71 | }, 72 | "execution_count": null, 73 | "outputs": [] 74 | }, 75 | { 76 | "cell_type": "code", 77 | "source": [ 78 | "data = {'title': [],\n", 79 | " 'ID': [],\n", 80 | " 'date': [],\n", 81 | " 'contRating': [],\n", 82 | " 'designRating': [],\n", 83 | " 'text': []}\n", 84 | "df = pd.DataFrame(data)" 85 | ], 86 | "metadata": { 87 | "id": "MkNNj561QaZh" 88 | }, 89 | "execution_count": null, 90 | "outputs": [] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "source": [ 95 | "i = 0\n", 96 | "for n in range(nPage):\n", 97 | " PageNumber = n + 1\n", 98 | " url = f'http://www.yes24.com/Product/communityModules/GoodsReviewList/{bookID}?Sort=1&PageNumber={PageNumber}&Type=ALL'\n", 99 | " response = requests.get(url)\n", 100 | " \n", 101 | " soup = BeautifulSoup(response.content, 'html.parser')\n", 102 | " title = soup.select('span.txt')\n", 103 | " ID = soup.select('a.lnk_id')\n", 104 | " date = soup.select('em.txt_date')\n", 105 | " rating = soup.select('span.review_rating > span.rating');\n", 106 | " contRating = rating[0:9:2]; designRating = rating[1:10:2]\n", 107 | " text = soup.select('div.reviewInfoBot.origin > div.review_cont')\n", 108 | "\n", 109 | " for r in zip(title, ID, date, contRating, designRating, text):\n", 110 | " title, ID, date, contRating, designRating, text = [r[0].get_text(), r[1].get_text(), r[2].get_text(), r[3].get_text(), r[4].get_text(), r[5].get_text()] \n", 111 | " row = [title, ID, date, contRating, designRating, text]\n", 112 | " df.loc[i, :] = row\n", 113 | " i +=1" 114 | ], 115 | "metadata": { 116 | "id": "YJ6D1OVA4MLk" 117 | }, 118 | "execution_count": null, 119 | "outputs": [] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "source": [ 124 | "import xlwt\n", 125 | "df.to_excel('review.xls')" 126 | ], 127 | "metadata": { 128 | "id": "Mgr-AdFGYVIj" 129 | }, 130 | "execution_count": null, 131 | "outputs": [] 132 | } 133 | ] 134 | } -------------------------------------------------------------------------------- /aeiou.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/hsnam95/class2022Fall/b6d8b0cd9bd9d2ab443fe58ab1d1813f70db9e45/aeiou.wav -------------------------------------------------------------------------------- /classification.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "authorship_tag": "ABX9TyOxHGzEIPa4OH8P5u4fYMbP", 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "markdown", 21 | "metadata": { 22 | "id": "view-in-github", 23 | "colab_type": "text" 24 | }, 25 | "source": [ 26 | "\"Open" 27 | ] 28 | }, 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "jXx1hl8Haz_B" 33 | }, 34 | "source": [ 35 | "## Loading a dataset" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "source": [ 41 | "import pandas as pd" 42 | ], 43 | "metadata": { 44 | "id": "Og5Gu9lAvOAW" 45 | }, 46 | "execution_count": 1, 47 | "outputs": [] 48 | }, 49 | { 50 | "cell_type": "markdown", 51 | "source": [ 52 | "### iris dataset" 53 | ], 54 | "metadata": { 55 | "id": "U-C2V43QvWU7" 56 | } 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": null, 61 | "metadata": { 62 | "id": "-1qGv4bFaz_C" 63 | }, 64 | "outputs": [], 65 | "source": [ 66 | "from sklearn.preprocessing import LabelEncoder\n", 67 | "le = LabelEncoder()\n", 68 | "iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'label'])\n", 69 | "iris['label'] = le.fit_transform(iris['label'])\n", 70 | "iris.head()" 71 | ] 72 | }, 73 | { 74 | "cell_type": "code", 75 | "source": [ 76 | "iris" 77 | ], 78 | "metadata": { 79 | "colab": { 80 | "base_uri": "https://localhost:8080/", 81 | "height": 424 82 | }, 83 | "id": "5QicxfMH8zDf", 84 | "outputId": "32aa129e-3b4d-4153-acad-1b8988c915f2" 85 | }, 86 | "execution_count": 30, 87 | "outputs": [ 88 | { 89 | "output_type": "execute_result", 90 | "data": { 91 | "text/plain": [ 92 | " sepal_length sepal_width petal_length petal_width label\n", 93 | "0 5.1 3.5 1.4 0.2 0\n", 94 | "1 4.9 3.0 1.4 0.2 0\n", 95 | "2 4.7 3.2 1.3 0.2 0\n", 96 | "3 4.6 3.1 1.5 0.2 0\n", 97 | "4 5.0 3.6 1.4 0.2 0\n", 98 | ".. ... ... ... ... ...\n", 99 | "145 6.7 3.0 5.2 2.3 2\n", 100 | "146 6.3 2.5 5.0 1.9 2\n", 101 | "147 6.5 3.0 5.2 2.0 2\n", 102 | "148 6.2 3.4 5.4 2.3 2\n", 103 | "149 5.9 3.0 5.1 1.8 2\n", 104 | "\n", 105 | "[150 rows x 5 columns]" 106 | ], 107 | "text/html": [ 108 | "\n", 109 | "
\n", 110 | "
\n", 111 | "
\n", 112 | "\n", 125 | "\n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | "
sepal_lengthsepal_widthpetal_lengthpetal_widthlabel
05.13.51.40.20
14.93.01.40.20
24.73.21.30.20
34.63.11.50.20
45.03.61.40.20
..................
1456.73.05.22.32
1466.32.55.01.92
1476.53.05.22.02
1486.23.45.42.32
1495.93.05.11.82
\n", 227 | "

150 rows × 5 columns

\n", 228 | "
\n", 229 | " \n", 239 | " \n", 240 | " \n", 277 | "\n", 278 | " \n", 302 | "
\n", 303 | "
\n", 304 | " " 305 | ] 306 | }, 307 | "metadata": {}, 308 | "execution_count": 30 309 | } 310 | ] 311 | }, 312 | { 313 | "cell_type": "markdown", 314 | "source": [ 315 | "### breast cancer dataset" 316 | ], 317 | "metadata": { 318 | "id": "BAmzSNjVvfwD" 319 | } 320 | }, 321 | { 322 | "cell_type": "code", 323 | "execution_count": 13, 324 | "metadata": { 325 | "id": "TUAfbcbTaz_D", 326 | "colab": { 327 | "base_uri": "https://localhost:8080/", 328 | "height": 206 329 | }, 330 | "outputId": "c7e6fdc2-e392-4f3f-cb32-0496e7235274" 331 | }, 332 | "outputs": [ 333 | { 334 | "output_type": "execute_result", 335 | "data": { 336 | "text/plain": [ 337 | " clump_thickness uniformity_of_cell_size uniformity_of_cell_shape \\\n", 338 | "0 5 1 1 \n", 339 | "1 5 4 4 \n", 340 | "2 3 1 1 \n", 341 | "3 6 8 8 \n", 342 | "4 4 1 1 \n", 343 | "\n", 344 | " marginal_adhesion single_epithelial_cell_size bare_nuclei \\\n", 345 | "0 1 2 1 \n", 346 | "1 5 7 10 \n", 347 | "2 1 2 2 \n", 348 | "3 1 3 4 \n", 349 | "4 3 2 1 \n", 350 | "\n", 351 | " bland_chromatin normal_nucleoli mitoses label \n", 352 | "0 3 1 1 0 \n", 353 | "1 3 2 1 0 \n", 354 | "2 3 1 1 0 \n", 355 | "3 3 7 1 0 \n", 356 | "4 3 1 1 0 " 357 | ], 358 | "text/html": [ 359 | "\n", 360 | "
\n", 361 | "
\n", 362 | "
\n", 363 | "\n", 376 | "\n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | "
clump_thicknessuniformity_of_cell_sizeuniformity_of_cell_shapemarginal_adhesionsingle_epithelial_cell_sizebare_nucleibland_chromatinnormal_nucleolimitoseslabel
05111213110
154457103210
23111223110
36881343710
44113213110
\n", 460 | "
\n", 461 | " \n", 471 | " \n", 472 | " \n", 509 | "\n", 510 | " \n", 534 | "
\n", 535 | "
\n", 536 | " " 537 | ] 538 | }, 539 | "metadata": {}, 540 | "execution_count": 13 541 | } 542 | ], 543 | "source": [ 544 | "breast_cancer = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/breast-cancer-wisconsin/breast-cancer-wisconsin.data', names=['id', 'clump_thickness', 'uniformity_of_cell_size', 'uniformity_of_cell_shape', 'marginal_adhesion', 'single_epithelial_cell_size', 'bare_nuclei', 'bland_chromatin', 'normal_nucleoli', 'mitoses', 'label'])\n", 545 | "breast_cancer.drop(['id'], axis=1, inplace=True)\n", 546 | "breast_cancer['label'].replace([2, 4], [0, 1], inplace=True)\n", 547 | "breast_cancer.replace('?', -999999, inplace=True) # replace missing value with outliers\n", 548 | "breast_cancer.head()" 549 | ] 550 | }, 551 | { 552 | "cell_type": "markdown", 553 | "source": [ 554 | "### wine dataset" 555 | ], 556 | "metadata": { 557 | "id": "ssWdyrqavsbT" 558 | } 559 | }, 560 | { 561 | "cell_type": "code", 562 | "execution_count": 14, 563 | "metadata": { 564 | "id": "YQcjVDY0az_E", 565 | "colab": { 566 | "base_uri": "https://localhost:8080/", 567 | "height": 261 568 | }, 569 | "outputId": "a95f03bb-e5f6-463e-95c4-4323b438ac9b" 570 | }, 571 | "outputs": [ 572 | { 573 | "output_type": "stream", 574 | "name": "stderr", 575 | "text": [ 576 | "/usr/local/lib/python3.7/dist-packages/pandas/util/_decorators.py:311: ParserWarning: Length of header or names does not match length of data. This leads to a loss of data with index_col=False.\n", 577 | " return func(*args, **kwargs)\n" 578 | ] 579 | }, 580 | { 581 | "output_type": "execute_result", 582 | "data": { 583 | "text/plain": [ 584 | " label malic_acid ash alcalinity_of_ash magnesium total_phenols \\\n", 585 | "0 1 14.23 1.71 2.43 15.6 127 \n", 586 | "1 1 13.20 1.78 2.14 11.2 100 \n", 587 | "2 1 13.16 2.36 2.67 18.6 101 \n", 588 | "3 1 14.37 1.95 2.50 16.8 113 \n", 589 | "4 1 13.24 2.59 2.87 21.0 118 \n", 590 | "\n", 591 | " flavanoids nonflavanoid_phenols proanthocyanins color_intensity hue \\\n", 592 | "0 2.80 3.06 0.28 2.29 5.64 \n", 593 | "1 2.65 2.76 0.26 1.28 4.38 \n", 594 | "2 2.80 3.24 0.30 2.81 5.68 \n", 595 | "3 3.85 3.49 0.24 2.18 7.80 \n", 596 | "4 2.80 2.69 0.39 1.82 4.32 \n", 597 | "\n", 598 | " OD280/OD315_of_diluted_wines proline \n", 599 | "0 1.04 3.92 \n", 600 | "1 1.05 3.40 \n", 601 | "2 1.03 3.17 \n", 602 | "3 0.86 3.45 \n", 603 | "4 1.04 2.93 " 604 | ], 605 | "text/html": [ 606 | "\n", 607 | "
\n", 608 | "
\n", 609 | "
\n", 610 | "\n", 623 | "\n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | "
labelmalic_acidashalcalinity_of_ashmagnesiumtotal_phenolsflavanoidsnonflavanoid_phenolsproanthocyaninscolor_intensityhueOD280/OD315_of_diluted_winesproline
0114.231.712.4315.61272.803.060.282.295.641.043.92
1113.201.782.1411.21002.652.760.261.284.381.053.40
2113.162.362.6718.61012.803.240.302.815.681.033.17
3114.371.952.5016.81133.853.490.242.187.800.863.45
4113.242.592.8721.01182.802.690.391.824.321.042.93
\n", 725 | "
\n", 726 | " \n", 736 | " \n", 737 | " \n", 774 | "\n", 775 | " \n", 799 | "
\n", 800 | "
\n", 801 | " " 802 | ] 803 | }, 804 | "metadata": {}, 805 | "execution_count": 14 806 | } 807 | ], 808 | "source": [ 809 | "wine = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/wine/wine.data', names=['label', 'malic_acid', 'ash', 'alcalinity_of_ash', 'magnesium', 'total_phenols','flavanoids', 'nonflavanoid_phenols' ,'proanthocyanins', 'color_intensity', 'hue', 'OD280/OD315_of_diluted_wines', 'proline'], delimiter=\",\", index_col=False)\n", 810 | "wine.head()" 811 | ] 812 | }, 813 | { 814 | "cell_type": "markdown", 815 | "metadata": { 816 | "id": "kKgDxumOaz_J" 817 | }, 818 | "source": [ 819 | "## Comparing 6 classification algorithms" 820 | ] 821 | }, 822 | { 823 | "cell_type": "code", 824 | "execution_count": 20, 825 | "metadata": { 826 | "id": "eWToHFv_az_J" 827 | }, 828 | "outputs": [], 829 | "source": [ 830 | "from sklearn.linear_model import LogisticRegression\n", 831 | "from sklearn.naive_bayes import GaussianNB\n", 832 | "from sklearn.svm import SVC\n", 833 | "from sklearn.neighbors import KNeighborsClassifier\n", 834 | "from sklearn.tree import DecisionTreeClassifier\n", 835 | "from sklearn.neural_network import MLPClassifier\n", 836 | "\n", 837 | "models = [\n", 838 | " ('LR', LogisticRegression()),\n", 839 | " ('NB', GaussianNB()),\n", 840 | " ('SVM', SVC()),\n", 841 | " ('KNN', KNeighborsClassifier()),\n", 842 | " ('DT', DecisionTreeClassifier()),\n", 843 | " ('NN', MLPClassifier()),\n", 844 | "]" 845 | ] 846 | }, 847 | { 848 | "cell_type": "markdown", 849 | "source": [ 850 | "### test a single model (e.g. Logistic Regression)" 851 | ], 852 | "metadata": { 853 | "id": "LA6iBoHr6HhB" 854 | } 855 | }, 856 | { 857 | "cell_type": "code", 858 | "source": [ 859 | "from sklearn.model_selection import train_test_split\n", 860 | "import numpy as np\n", 861 | "\n", 862 | "dataset_name = 'iris'\n", 863 | "dataset = iris\n", 864 | "\n", 865 | "X = np.array(dataset.drop(['label'], axis=1))\n", 866 | "y = np.array(dataset['label'])\n", 867 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", 868 | "\n", 869 | "name = 'LR'\n", 870 | "model = LogisticRegression()\n", 871 | "model.fit(X_train, y_train)\n", 872 | "accuracy = model.score(X_test, y_test)\n", 873 | "print(dataset_name, name, accuracy)" 874 | ], 875 | "metadata": { 876 | "colab": { 877 | "base_uri": "https://localhost:8080/" 878 | }, 879 | "id": "fMWlaFbr4Qkm", 880 | "outputId": "de0f50b5-763d-475f-b3e0-ad2be066a393" 881 | }, 882 | "execution_count": 23, 883 | "outputs": [ 884 | { 885 | "output_type": "stream", 886 | "name": "stdout", 887 | "text": [ 888 | "iris LR 1.0\n" 889 | ] 890 | } 891 | ] 892 | }, 893 | { 894 | "cell_type": "code", 895 | "source": [ 896 | "model.predict(np.array([6, 3, 5, 2]).reshape(1,4))" 897 | ], 898 | "metadata": { 899 | "colab": { 900 | "base_uri": "https://localhost:8080/" 901 | }, 902 | "id": "Ibi29aDq8Epg", 903 | "outputId": "967edd5e-d8d2-48f2-feb5-96f4f5905e82" 904 | }, 905 | "execution_count": 31, 906 | "outputs": [ 907 | { 908 | "output_type": "execute_result", 909 | "data": { 910 | "text/plain": [ 911 | "array([2])" 912 | ] 913 | }, 914 | "metadata": {}, 915 | "execution_count": 31 916 | } 917 | ] 918 | }, 919 | { 920 | "cell_type": "markdown", 921 | "source": [ 922 | "### Evaluate all the models" 923 | ], 924 | "metadata": { 925 | "id": "WMYLrQOd6obk" 926 | } 927 | }, 928 | { 929 | "cell_type": "code", 930 | "execution_count": null, 931 | "metadata": { 932 | "id": "ZoFEHsC2az_J" 933 | }, 934 | "outputs": [], 935 | "source": [ 936 | "for dataset_name, dataset in [('iris', iris), ('breast_cancer', breast_cancer), ('wine', wine)]:\n", 937 | " X = np.array(dataset.drop(['label'], axis=1))\n", 938 | " y = np.array(dataset['label'])\n", 939 | " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", 940 | "\n", 941 | " for name, model in models:\n", 942 | " model.fit(X_train, y_train)\n", 943 | " accuracy = model.score(X_test, y_test)\n", 944 | " print(dataset_name, name, accuracy)" 945 | ] 946 | } 947 | ] 948 | } -------------------------------------------------------------------------------- /clustering.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "authorship_tag": "ABX9TyNmMDnsPkQYGI7dd+58lVtu", 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "markdown", 21 | "metadata": { 22 | "id": "view-in-github", 23 | "colab_type": "text" 24 | }, 25 | "source": [ 26 | "\"Open" 27 | ] 28 | }, 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "u8M1FUzv4HVg" 33 | }, 34 | "source": [ 35 | "## Loading a dataset" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "execution_count": 25, 41 | "metadata": { 42 | "id": "9JmnJiue4HVv", 43 | "outputId": "edc0efe4-b0f2-469a-ae4a-906e5414f63c", 44 | "colab": { 45 | "base_uri": "https://localhost:8080/", 46 | "height": 424 47 | } 48 | }, 49 | "outputs": [ 50 | { 51 | "output_type": "execute_result", 52 | "data": { 53 | "text/plain": [ 54 | " sepal_length sepal_width petal_length petal_width label\n", 55 | "0 5.1 3.5 1.4 0.2 Iris-setosa\n", 56 | "1 4.9 3.0 1.4 0.2 Iris-setosa\n", 57 | "2 4.7 3.2 1.3 0.2 Iris-setosa\n", 58 | "3 4.6 3.1 1.5 0.2 Iris-setosa\n", 59 | "4 5.0 3.6 1.4 0.2 Iris-setosa\n", 60 | ".. ... ... ... ... ...\n", 61 | "145 6.7 3.0 5.2 2.3 Iris-virginica\n", 62 | "146 6.3 2.5 5.0 1.9 Iris-virginica\n", 63 | "147 6.5 3.0 5.2 2.0 Iris-virginica\n", 64 | "148 6.2 3.4 5.4 2.3 Iris-virginica\n", 65 | "149 5.9 3.0 5.1 1.8 Iris-virginica\n", 66 | "\n", 67 | "[150 rows x 5 columns]" 68 | ], 69 | "text/html": [ 70 | "\n", 71 | "
\n", 72 | "
\n", 73 | "
\n", 74 | "\n", 87 | "\n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | "
sepal_lengthsepal_widthpetal_lengthpetal_widthlabel
05.13.51.40.2Iris-setosa
14.93.01.40.2Iris-setosa
24.73.21.30.2Iris-setosa
34.63.11.50.2Iris-setosa
45.03.61.40.2Iris-setosa
..................
1456.73.05.22.3Iris-virginica
1466.32.55.01.9Iris-virginica
1476.53.05.22.0Iris-virginica
1486.23.45.42.3Iris-virginica
1495.93.05.11.8Iris-virginica
\n", 189 | "

150 rows × 5 columns

\n", 190 | "
\n", 191 | " \n", 201 | " \n", 202 | " \n", 239 | "\n", 240 | " \n", 264 | "
\n", 265 | "
\n", 266 | " " 267 | ] 268 | }, 269 | "metadata": {}, 270 | "execution_count": 25 271 | } 272 | ], 273 | "source": [ 274 | "import pandas as pd\n", 275 | "iris = pd.read_csv('https://archive.ics.uci.edu/ml/machine-learning-databases/iris/iris.data', names=['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'label'])\n", 276 | "iris" 277 | ] 278 | }, 279 | { 280 | "cell_type": "code", 281 | "source": [ 282 | "X = iris.drop(['label'], axis=1)\n", 283 | "X" 284 | ], 285 | "metadata": { 286 | "id": "_pEBhIzlYojp", 287 | "outputId": "dc46b10a-eb3f-420e-88c3-e4bbe05e0752", 288 | "colab": { 289 | "base_uri": "https://localhost:8080/", 290 | "height": 424 291 | } 292 | }, 293 | "execution_count": 26, 294 | "outputs": [ 295 | { 296 | "output_type": "execute_result", 297 | "data": { 298 | "text/plain": [ 299 | " sepal_length sepal_width petal_length petal_width\n", 300 | "0 5.1 3.5 1.4 0.2\n", 301 | "1 4.9 3.0 1.4 0.2\n", 302 | "2 4.7 3.2 1.3 0.2\n", 303 | "3 4.6 3.1 1.5 0.2\n", 304 | "4 5.0 3.6 1.4 0.2\n", 305 | ".. ... ... ... ...\n", 306 | "145 6.7 3.0 5.2 2.3\n", 307 | "146 6.3 2.5 5.0 1.9\n", 308 | "147 6.5 3.0 5.2 2.0\n", 309 | "148 6.2 3.4 5.4 2.3\n", 310 | "149 5.9 3.0 5.1 1.8\n", 311 | "\n", 312 | "[150 rows x 4 columns]" 313 | ], 314 | "text/html": [ 315 | "\n", 316 | "
\n", 317 | "
\n", 318 | "
\n", 319 | "\n", 332 | "\n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | "
sepal_lengthsepal_widthpetal_lengthpetal_width
05.13.51.40.2
14.93.01.40.2
24.73.21.30.2
34.63.11.50.2
45.03.61.40.2
...............
1456.73.05.22.3
1466.32.55.01.9
1476.53.05.22.0
1486.23.45.42.3
1495.93.05.11.8
\n", 422 | "

150 rows × 4 columns

\n", 423 | "
\n", 424 | " \n", 434 | " \n", 435 | " \n", 472 | "\n", 473 | " \n", 497 | "
\n", 498 | "
\n", 499 | " " 500 | ] 501 | }, 502 | "metadata": {}, 503 | "execution_count": 26 504 | } 505 | ] 506 | }, 507 | { 508 | "cell_type": "markdown", 509 | "metadata": { 510 | "id": "om3V-ZFw4HVu" 511 | }, 512 | "source": [ 513 | "## Comparing Algorithms" 514 | ] 515 | }, 516 | { 517 | "cell_type": "markdown", 518 | "source": [ 519 | "### K-Means" 520 | ], 521 | "metadata": { 522 | "id": "ydWddMsnUqx4" 523 | } 524 | }, 525 | { 526 | "cell_type": "code", 527 | "source": [ 528 | "from sklearn.cluster import KMeans\n", 529 | "model = KMeans(n_clusters=3)\n", 530 | "model.fit_predict(X)" 531 | ], 532 | "metadata": { 533 | "id": "Spo5ISoBUp02", 534 | "outputId": "40412121-810e-4ead-f5e6-8a2ef41b38fa", 535 | "colab": { 536 | "base_uri": "https://localhost:8080/" 537 | } 538 | }, 539 | "execution_count": 41, 540 | "outputs": [ 541 | { 542 | "output_type": "execute_result", 543 | "data": { 544 | "text/plain": [ 545 | "array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 546 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 547 | " 1, 1, 1, 1, 1, 1, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 548 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 549 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2,\n", 550 | " 2, 2, 2, 0, 0, 2, 2, 2, 2, 0, 2, 0, 2, 0, 2, 2, 0, 0, 2, 2, 2, 2,\n", 551 | " 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 2, 0, 2, 2, 0], dtype=int32)" 552 | ] 553 | }, 554 | "metadata": {}, 555 | "execution_count": 41 556 | } 557 | ] 558 | }, 559 | { 560 | "cell_type": "markdown", 561 | "source": [ 562 | "###Gaussian Mixture Model(GMM)" 563 | ], 564 | "metadata": { 565 | "id": "e35GqbOOXzWq" 566 | } 567 | }, 568 | { 569 | "cell_type": "code", 570 | "execution_count": 29, 571 | "metadata": { 572 | "id": "cRY2FK1H4HVx", 573 | "outputId": "5d49abb9-cfaf-42bc-eae5-01e318dda612", 574 | "colab": { 575 | "base_uri": "https://localhost:8080/" 576 | } 577 | }, 578 | "outputs": [ 579 | { 580 | "output_type": "execute_result", 581 | "data": { 582 | "text/plain": [ 583 | "array([1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 584 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n", 585 | " 1, 1, 1, 1, 1, 1, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2,\n", 586 | " 2, 2, 0, 2, 0, 2, 0, 2, 2, 2, 2, 0, 2, 2, 2, 2, 2, 0, 2, 2, 2, 2,\n", 587 | " 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 588 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n", 589 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])" 590 | ] 591 | }, 592 | "metadata": {}, 593 | "execution_count": 29 594 | } 595 | ], 596 | "source": [ 597 | "from sklearn.mixture import GaussianMixture\n", 598 | "model = GaussianMixture(n_components=3)\n", 599 | "model.fit_predict(X)" 600 | ] 601 | }, 602 | { 603 | "cell_type": "markdown", 604 | "metadata": { 605 | "id": "iincSgPb4HVx" 606 | }, 607 | "source": [ 608 | "![](https://firebasestorage.googleapis.com/v0/b/programmingwithgilbert.appspot.com/o/Videos%2FScikit%20Learn%20Tutorials%2FScikit%20Learn%20Tutorial%20%237%20-%20Clustering%20Algorithms%2FAlgorithm%20Comparison.png?alt=media&token=c71334ff-e81f-465d-8009-655fe0132017)" 609 | ] 610 | } 611 | ] 612 | } -------------------------------------------------------------------------------- /function.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "function.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyNIN+fAOH3niQgAxlxuusQz", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "metadata": { 20 | "id": "view-in-github", 21 | "colab_type": "text" 22 | }, 23 | "source": [ 24 | "\"Open" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "metadata": { 30 | "id": "hpc_mhgAye2S" 31 | }, 32 | "source": [ 33 | "def add(a,b):\n", 34 | " return a+b\n", 35 | "\n", 36 | "def subtract(a,b):\n", 37 | " return a-b\n", 38 | "\n", 39 | "def multiply(a,b):\n", 40 | " return a*b\n", 41 | "\n", 42 | "def divide(a,b):\n", 43 | " return a/b" 44 | ], 45 | "execution_count": null, 46 | "outputs": [] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "metadata": { 51 | "colab": { 52 | "base_uri": "https://localhost:8080/" 53 | }, 54 | "id": "8Y4oa05Eykn4", 55 | "outputId": "7e186590-61dc-49a9-e22f-0bcb617fd3b7" 56 | }, 57 | "source": [ 58 | "c = add(1,2); print(c)\n", 59 | "c = subtract(1,2); print(c)\n", 60 | "c = multiply(1,2); print(c)\n", 61 | "c = divide(1,2); print(c)" 62 | ], 63 | "execution_count": null, 64 | "outputs": [ 65 | { 66 | "output_type": "stream", 67 | "text": [ 68 | "3\n", 69 | "-1\n", 70 | "2\n", 71 | "0.5\n" 72 | ], 73 | "name": "stdout" 74 | } 75 | ] 76 | } 77 | ] 78 | } -------------------------------------------------------------------------------- /goodpants.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/hsnam95/class2022Fall/b6d8b0cd9bd9d2ab443fe58ab1d1813f70db9e45/goodpants.wav -------------------------------------------------------------------------------- /import.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "import.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyMFMvQMVl0NnE6plZo3NTbg", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "metadata": { 33 | "id": "JXicrkYOzPRo" 34 | }, 35 | "source": [ 36 | "import numpy as np\n", 37 | "n = np.random.randn(100)" 38 | ], 39 | "execution_count": null, 40 | "outputs": [] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "metadata": { 45 | "id": "oKT4vn4MwyLA", 46 | "colab": { 47 | "base_uri": "https://localhost:8080/", 48 | "height": 350 49 | }, 50 | "outputId": "2b0aeb6e-b426-450b-964c-4374a09dfeb0" 51 | }, 52 | "source": [ 53 | "import matplotlib\n", 54 | "matplotlib.pyplot.hist(n)" 55 | ], 56 | "execution_count": null, 57 | "outputs": [ 58 | { 59 | "output_type": "execute_result", 60 | "data": { 61 | "text/plain": [ 62 | "(array([ 3., 4., 9., 11., 26., 19., 16., 10., 1., 1.]),\n", 63 | " array([-2.51307585, -1.99199295, -1.47091005, -0.94982715, -0.42874425,\n", 64 | " 0.09233865, 0.61342155, 1.13450445, 1.65558734, 2.17667024,\n", 65 | " 2.69775314]),\n", 66 | " )" 67 | ] 68 | }, 69 | "metadata": {}, 70 | "execution_count": 8 71 | }, 72 | { 73 | "output_type": "display_data", 74 | "data": { 75 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAALCklEQVR4nO3dT4gehR3G8eepsZcqNJIlDTZ2i4gQShvLklosxVZboilVCy3NQVIqrAcFBaGkeqjHlFa9tFgiCeaQWgQVhdhqGoQgtNKNBE3cWkVWGonJigdTeijRp4dM6nbdzfvu+2/y2/1+YNn3nXfend+L5stkdmbiJAIA1POptgcAAPSGgANAUQQcAIoi4ABQFAEHgKJWjXJja9asyfj4+Cg3CQDlHTp06L0kY/OXjzTg4+PjmpqaGuUmAaA8228vtJxDKABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFDUSK/EBDoZ376vle3O7NjSynaBfrAHDgBFEXAAKIqAA0BRBBwAiuoYcNvrbb9g+zXbR23f1Sy/3/Y7tg83XzcOf1wAwFndnIVyWtI9SV62fbGkQ7b3N689lOTXwxsPALCYjgFPclzS8ebxKdvTki4d9mAAgHNb0jFw2+OSrpL0UrPoTtuv2N5te/Ui75m0PWV7anZ2tq9hAQAf6zrgti+S9ISku5N8IOlhSZdL2qgze+gPLPS+JDuTTCSZGBv7xD/pBgDoUVcBt32hzsR7b5InJSnJiSQfJvlI0iOSNg1vTADAfN2chWJJuyRNJ3lwzvJ1c1a7RdKRwY8HAFhMN2ehXCPpVkmv2j7cLLtX0lbbGyVF0oyk24cyIQBgQd2chfKiJC/w0rODHwcA0C2uxASAogg4ABRFwAGgKAIOAEURcAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFEdA257ve0XbL9m+6jtu5rll9jeb/uN5vvq4Y8LADirmz3w05LuSbJB0tWS7rC9QdJ2SQeSXCHpQPMcADAiHQOe5HiSl5vHpyRNS7pU0k2S9jSr7ZF087CGBAB80pKOgdsel3SVpJckrU1yvHnpXUlrBzoZAOCcug647YskPSHp7iQfzH0tSSRlkfdN2p6yPTU7O9vXsACAj3UVcNsX6ky89yZ5sll8wva65vV1kk4u9N4kO5NMJJkYGxsbxMwAAHV3Fool7ZI0neTBOS89I2lb83ibpKcHPx4AYDGruljnGkm3SnrV9uFm2b2Sdkh63PZtkt6W9KPhjAgAWEjHgCd5UZIXefm6wY4DAOgWV2ICQFEEHACK6uYYOLDsjW/f19q2Z3ZsaW3bqI09cAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgqFVtDwCsdOPb97Wy3ZkdW1rZLgaHPXAAKIqAA0BRBBwAiiLgAFBUx4Db3m37pO0jc5bdb/sd24ebrxuHOyYAYL5u9sAflbR5geUPJdnYfD072LEAAJ10DHiSg5LeH8EsAIAl6OcY+J22X2kOsaxebCXbk7anbE/Nzs72sTkAwFy9BvxhSZdL2ijpuKQHFlsxyc4kE0kmxsbGetwcAGC+ngKe5ESSD5N8JOkRSZsGOxYAoJOeAm573Zynt0g6sti6AIDh6HgvFNuPSbpW0hrbxyT9QtK1tjdKiqQZSbcPcUYAwAI6BjzJ1gUW7xrCLACAJeBKTAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFGr2h4A55/x7fvaHgFAF9gDB4CiCDgAFEXAAaAoAg4ARXUMuO3dtk/aPjJn2SW299t+o/m+erhjAgDm62YP/FFJm+ct2y7pQJIrJB1ongMARqhjwJMclPT+vMU3SdrTPN4j6eYBzwUA6KDX88DXJjnePH5X0trFVrQ9KWlSki677LIeNwdg0No8339mx5bWtr2c9P1LzCSRlHO8vjPJRJKJsbGxfjcHAGj0GvATttdJUvP95OBGAgB0o9eAPyNpW/N4m6SnBzMOAKBb3ZxG+Jikv0i60vYx27dJ2iHpO7bfkHR98xwAMEIdf4mZZOsiL1034FkAAEvAlZgAUBQBB4CiuB/4eYz7cgM4F/bAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUav6ebPtGUmnJH0o6XSSiUEMBQDorK+AN76V5L0B/BwAwBJwCAUAiuo34JH0vO1DticXWsH2pO0p21Ozs7N9bg4AcFa/Af9Gkq9KukHSHba/OX+FJDuTTCSZGBsb63NzAICz+gp4knea7yclPSVp0yCGAgB01nPAbX/G9sVnH0v6rqQjgxoMAHBu/ZyFslbSU7bP/pzfJ/nTQKYCAHTUc8CTvCXpKwOcBQCwBJxGCABFEXAAKGoQV2Iue+Pb97U9AgB8AnvgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFFlzgPnXGwA+H/sgQNAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEWVuR84gOVjJd7ff2bHloH/TPbAAaAoAg4ARRFwACiKgANAUX0F3PZm26/bftP29kENBQDorOeA275A0m8l3SBpg6SttjcMajAAwLn1swe+SdKbSd5K8h9Jf5B002DGAgB00s954JdK+uec58ckfW3+SrYnJU02T/9l+/U+ttmGNZLea3uIEVkpn5XPufyc95/Vv+zr7V9YaOHQL+RJslPSzmFvZ1hsTyWZaHuOUVgpn5XPufyspM86Vz+HUN6RtH7O8883ywAAI9BPwP8m6QrbX7T9aUk/lvTMYMYCAHTS8yGUJKdt3ynpOUkXSNqd5OjAJjt/lD3804OV8ln5nMvPSvqs/+Mkbc8AAOgBV2ICQFEEHACKIuBdsP0r23+3/Yrtp2x/tu2ZhsH2D20ftf2R7WV3StZKufWD7d22T9o+0vYsw2R7ve0XbL/W/H97V9szjRoB785+SV9K8mVJ/5D085bnGZYjkn4g6WDbgwzaCrv1w6OSNrc9xAiclnRPkg2SrpZ0xzL+b7ogAt6FJM8nOd08/avOnPO+7CSZTlLtStlurZhbPyQ5KOn9tucYtiTHk7zcPD4laVpnrhBfMQj40v1U0h/bHgJLttCtH1bUH/blzPa4pKskvdTuJKPFv4nZsP1nSZ9b4KX7kjzdrHOfzvy1be8oZxukbj4nUIntiyQ9IenuJB+0Pc8oEfBGkuvP9brtn0j6nqTrUvjk+U6fcxnj1g/LkO0LdSbee5M82fY8o8YhlC7Y3izpZ5K+n+Tfbc+DnnDrh2XGtiXtkjSd5MG252kDAe/ObyRdLGm/7cO2f9f2QMNg+xbbxyR9XdI+28+1PdOgNL+EPnvrh2lJjy/TWz/I9mOS/iLpStvHbN/W9kxDco2kWyV9u/lzedj2jW0PNUpcSg8ARbEHDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABT1XxqfU77eOAeTAAAAAElFTkSuQmCC\n", 76 | "text/plain": [ 77 | "
" 78 | ] 79 | }, 80 | "metadata": { 81 | "needs_background": "light" 82 | } 83 | } 84 | ] 85 | }, 86 | { 87 | "cell_type": "code", 88 | "metadata": { 89 | "colab": { 90 | "base_uri": "https://localhost:8080/", 91 | "height": 350 92 | }, 93 | "id": "zQJ4LnbA-Hvz", 94 | "outputId": "bec7eeff-8cae-4c3d-f090-eaf78cdb5fa9" 95 | }, 96 | "source": [ 97 | "import matplotlib.pyplot\n", 98 | "matplotlib.pyplot.hist(n)" 99 | ], 100 | "execution_count": null, 101 | "outputs": [ 102 | { 103 | "output_type": "execute_result", 104 | "data": { 105 | "text/plain": [ 106 | "(array([ 4., 4., 4., 8., 19., 21., 16., 13., 6., 5.]),\n", 107 | " array([-2.54804234, -2.0585933 , -1.56914426, -1.07969522, -0.59024618,\n", 108 | " -0.10079714, 0.3886519 , 0.87810094, 1.36754998, 1.85699902,\n", 109 | " 2.34644806]),\n", 110 | " )" 111 | ] 112 | }, 113 | "metadata": {}, 114 | "execution_count": 4 115 | }, 116 | { 117 | "output_type": "display_data", 118 | "data": { 119 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQEklEQVR4nO3dcaxedX3H8fdngPsDyQC5Q4RizUZI0Aiam6LRGRTEUoiocRvN4nBiqgYTSUxMnYks+g+LUZOJkXXSgAurblOUBBA6ZoIkiFxI0UJBGKmhtdKLdYDTxFS/++OeJtfLc7lPn/Pc+7S/vl/Jk+ec3+/3nN/3pO3nnp77nHNSVUiS2vVHky5AkrS8DHpJapxBL0mNM+glqXEGvSQ17uhJFzDISSedVKtXr550GZJ02HjggQeeqaqpQX2HZNCvXr2amZmZSZchSYeNJD9drM9TN5LUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LhD8spY6VC1euOtE5l35zUXT2RetcEjeklqnEEvSY0z6CWpcQa9JDXOoJekxi0Z9ElWJflekkeSPJzkY137iUm2Jnm8ez9hkc9f3o15PMnl494BSdKLG+aIfj/w8ao6C3gDcGWSs4CNwF1VdQZwV7f+B5KcCFwNnAusAa5e7AeCJGl5LBn0VbWnqh7slp8HdgCnApcCN3bDbgTeNeDj7wC2VtW+qvolsBVYO47CJUnDOahz9ElWA68D7gNOrqo9XdfPgZMHfORU4Kl567u6NknSChk66JO8FPgmcFVVPTe/r6oKqD6FJNmQZCbJzOzsbJ9NSZLmGSrokxzDXMjfVFXf6pqfTnJK138KsHfAR3cDq+atn9a1vUBVbaqq6aqanpoa+CBzSdIIhvnWTYDrgR1V9YV5XbcAB75FcznwnQEfvwO4MMkJ3S9hL+zaJEkrZJgj+jcB7wPelmRb91oHXAO8PcnjwAXdOkmmk3wVoKr2AZ8F7u9en+naJEkrZMm7V1bVPUAW6T5/wPgZ4IPz1jcDm0ctUJLUj1fGSlLjDHpJapxBL0mNM+glqXE+SlCHpUk90k86HHlEL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW7Je90k2QxcAuytqtd0bd8AzuyGHA/8b1WdM+CzO4Hngd8B+6tqekx1S5KGNMxNzW4ArgW+dqChqv76wHKSzwPPvsjn31pVz4xaoCSpn2EeJXh3ktWD+roHh/8V8LbxliVJGpe+5+j/Ani6qh5fpL+AO5M8kGTDi20oyYYkM0lmZmdne5YlSTqgb9CvB7a8SP+bq+r1wEXAlUnestjAqtpUVdNVNT01NdWzLEnSASMHfZKjgfcA31hsTFXt7t73AjcDa0adT5I0mj5H9BcAj1bVrkGdSY5NctyBZeBCYHuP+SRJI1gy6JNsAe4FzkyyK8kVXddlLDhtk+QVSW7rVk8G7knyEPBD4Naq+u74SpckDWOYb92sX6T9/QPafgas65afBM7uWZ8kqSevjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYN8+ARSRO2euOtE5t75zUXT2xujYdH9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxwzxhanOSvUm2z2v7hyS7k2zrXusW+ezaJI8leSLJxnEWLkkazjBH9DcAawe0f7Gqzulety3sTHIU8GXgIuAsYH2Ss/oUK0k6eEsGfVXdDewbYdtrgCeq6smq+i3wdeDSEbYjSeqhzzn6jyb5UXdq54QB/acCT81b39W1DZRkQ5KZJDOzs7M9ypIkzTdq0H8F+DPgHGAP8Pm+hVTVpqqarqrpqampvpuTJHVGCvqqerqqfldVvwf+hbnTNAvtBlbNWz+ta5MkraCRgj7JKfNW3w1sHzDsfuCMJK9K8hLgMuCWUeaTJI1uybtXJtkCnAeclGQXcDVwXpJzgAJ2Ah/qxr4C+GpVrauq/Uk+CtwBHAVsrqqHl2UvJEmLWjLoq2r9gObrFxn7M2DdvPXbgBd89VKStHK8MlaSGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW7J2xRLOrKt3njrRObdec3FE5m3RUse0XcP/96bZPu8ts8lebR7OPjNSY5f5LM7k/w4ybYkM+MsXJI0nGFO3dwArF3QthV4TVW9FvgJ8MkX+fxbq+qcqpoerURJUh9LBn1V3Q3sW9B2Z1Xt71Z/wNyDvyVJh6Bx/DL2A8Dti/QVcGeSB5JsGMNckqSD1OuXsUk+BewHblpkyJuraneSPwW2Jnm0+x/CoG1tADYAnH766X3KkiTNM/IRfZL3A5cAf1NVNWhMVe3u3vcCNwNrFtteVW2qqumqmp6amhq1LEnSAiMFfZK1wCeAd1bVrxcZc2yS4w4sAxcC2weNlSQtn2G+XrkFuBc4M8muJFcA1wLHMXc6ZluS67qxr0hyW/fRk4F7kjwE/BC4taq+uyx7IUla1JLn6Ktq/YDm6xcZ+zNgXbf8JHB2r+okSb15CwRJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOGCvokm5PsTbJ9XtuJSbYmebx7P2GRz17ejXk8yeXjKlySNJxhj+hvANYuaNsI3FVVZwB3det/IMmJwNXAucw9GPzqxX4gSJKWx1BBX1V3A/sWNF8K3Ngt3wi8a8BH3wFsrap9VfVLYCsv/IEhSVpGfc7Rn1xVe7rlnzP3MPCFTgWemre+q2t7gSQbkswkmZmdne1RliRpvrH8MraqCqie29hUVdNVNT01NTWOsiRJ9Av6p5OcAtC97x0wZjewat76aV2bJGmF9An6W4AD36K5HPjOgDF3ABcmOaH7JeyFXZskaYUM+/XKLcC9wJlJdiW5ArgGeHuSx4ELunWSTCf5KkBV7QM+C9zfvT7TtUmSVsjRwwyqqvWLdJ0/YOwM8MF565uBzSNVJ0nqzStjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjhrpNsTTI6o23TroESUPwiF6SGjdy0Cc5M8m2ea/nkly1YMx5SZ6dN+bT/UuWJB2MkU/dVNVjwDkASY5i7qHfNw8Y+v2qumTUeSRJ/Yzr1M35wP9U1U/HtD1J0piMK+gvA7Ys0vfGJA8luT3JqxfbQJINSWaSzMzOzo6pLElS76BP8hLgncB/DOh+EHhlVZ0NfAn49mLbqapNVTVdVdNTU1N9y5IkdcZxRH8R8GBVPb2wo6qeq6pfdcu3AcckOWkMc0qShjSOoF/PIqdtkrw8SbrlNd18vxjDnJKkIfW6YCrJscDbgQ/Na/swQFVdB7wX+EiS/cBvgMuqqvrMKUk6OL2Cvqr+D3jZgrbr5i1fC1zbZw5JUj9eGStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY3zmbGSDkmTfCbxzmsuntjcy8EjeklqnEEvSY0z6CWpcQa9JDXOoJekxo3jmbE7k/w4ybYkMwP6k+SfkjyR5EdJXt93TknS8Mb19cq3VtUzi/RdBJzRvc4FvtK9S5JWwEqcurkU+FrN+QFwfJJTVmBeSRLjOaIv4M4kBfxzVW1a0H8q8NS89V1d2575g5JsADYAnH766WMoS5JGM6mLtZbrQq1xHNG/uapez9wpmiuTvGWUjVTVpqqarqrpqampMZQlSYIxBH1V7e7e9wI3A2sWDNkNrJq3flrXJklaAb2CPsmxSY47sAxcCGxfMOwW4G+7b9+8AXi2qvYgSVoRfc/RnwzcnOTAtv6tqr6b5MMAVXUdcBuwDngC+DXwdz3nlCQdhF5BX1VPAmcPaL9u3nIBV/aZR5I0Oq+MlaTGGfSS1DiDXpIaZ9BLUuOae5TgJB8/JkmHIo/oJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxo0c9ElWJflekkeSPJzkYwPGnJfk2STbuten+5UrSTpYfW5qth/4eFU92D039oEkW6vqkQXjvl9Vl/SYR5LUw8hH9FW1p6oe7JafB3YAp46rMEnSeIzlHH2S1cDrgPsGdL8xyUNJbk/y6hfZxoYkM0lmZmdnx1GWJIkxBH2SlwLfBK6qqucWdD8IvLKqzga+BHx7se1U1aaqmq6q6ampqb5lSZI6vYI+yTHMhfxNVfWthf1V9VxV/apbvg04JslJfeaUJB2cPt+6CXA9sKOqvrDImJd340iyppvvF6POKUk6eH2+dfMm4H3Aj5Ns69r+HjgdoKquA94LfCTJfuA3wGVVVT3mlCQdpJGDvqruAbLEmGuBa0edQ5LUn1fGSlLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIa1/eZsWuTPJbkiSQbB/T/cZJvdP33JVndZz5J0sHr88zYo4AvAxcBZwHrk5y1YNgVwC+r6s+BLwL/OOp8kqTR9DmiXwM8UVVPVtVvga8Dly4YcylwY7f8n8D5Bx4WLklaGX0eDn4q8NS89V3AuYuNqar9SZ4FXgY8s3BjSTYAG7rVXyV5rEdth4KTGLCfRwD3+8hypO43LMO+p985j1cu1tEn6MeqqjYBmyZdx7gkmamq6UnXsdLc7yPLkbrfcHjte59TN7uBVfPWT+vaBo5JcjTwJ8AveswpSTpIfYL+fuCMJK9K8hLgMuCWBWNuAS7vlt8L/HdVVY85JUkHaeRTN905948CdwBHAZur6uEknwFmquoW4HrgX5M8Aexj7ofBkaKZ01AHyf0+shyp+w2H0b7HA2xJaptXxkpS4wx6SWqcQb+MknwuyaNJfpTk5iTHT7qmlZDkL5M8nOT3SQ6Lr5/1sdStQFqUZHOSvUm2T7qWlZRkVZLvJXmk+zv+sUnXNAyDfnltBV5TVa8FfgJ8csL1rJTtwHuAuyddyHIb8lYgLboBWDvpIiZgP/DxqjoLeANw5eHw523QL6OqurOq9nerP2DuWoPmVdWOqjrcr2we1jC3AmlOVd3N3DfpjihVtaeqHuyWnwd2MHcHgEOaQb9yPgDcPukiNHaDbgVyyP/DV3/d3XhfB9w32UqWdsjcAuFwleS/gJcP6PpUVX2nG/Mp5v7Ld9NK1rachtlvqVVJXgp8E7iqqp6bdD1LMeh7qqoLXqw/yfuBS4DzW7oqeKn9PoIMcysQNSTJMcyF/E1V9a1J1zMMT90soyRrgU8A76yqX0+6Hi2LYW4FokZ0t1m/HthRVV+YdD3DMuiX17XAccDWJNuSXDfpglZCkncn2QW8Ebg1yR2Trmm5dL9sP3ArkB3Av1fVw5Otavkl2QLcC5yZZFeSKyZd0wp5E/A+4G3dv+ltSdZNuqileAsESWqcR/SS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXu/wHSPFSX6f82DAAAAABJRU5ErkJggg==\n", 120 | "text/plain": [ 121 | "
" 122 | ] 123 | }, 124 | "metadata": { 125 | "needs_background": "light" 126 | } 127 | } 128 | ] 129 | }, 130 | { 131 | "cell_type": "code", 132 | "metadata": { 133 | "id": "AWU6awi53c07", 134 | "outputId": "9b49fb47-6bac-4887-8815-e5ed130f6c56", 135 | "colab": { 136 | "base_uri": "https://localhost:8080/", 137 | "height": 350 138 | } 139 | }, 140 | "source": [ 141 | "import matplotlib.pyplot as plt\n", 142 | "plt.hist(n)" 143 | ], 144 | "execution_count": null, 145 | "outputs": [ 146 | { 147 | "output_type": "execute_result", 148 | "data": { 149 | "text/plain": [ 150 | "(array([ 4., 4., 4., 8., 19., 21., 16., 13., 6., 5.]),\n", 151 | " array([-2.54804234, -2.0585933 , -1.56914426, -1.07969522, -0.59024618,\n", 152 | " -0.10079714, 0.3886519 , 0.87810094, 1.36754998, 1.85699902,\n", 153 | " 2.34644806]),\n", 154 | " )" 155 | ] 156 | }, 157 | "metadata": {}, 158 | "execution_count": 5 159 | }, 160 | { 161 | "output_type": "display_data", 162 | "data": { 163 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAD4CAYAAADiry33AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAQEklEQVR4nO3dcaxedX3H8fdngPsDyQC5Q4RizUZI0Aiam6LRGRTEUoiocRvN4nBiqgYTSUxMnYks+g+LUZOJkXXSgAurblOUBBA6ZoIkiFxI0UJBGKmhtdKLdYDTxFS/++OeJtfLc7lPn/Pc+7S/vl/Jk+ec3+/3nN/3pO3nnp77nHNSVUiS2vVHky5AkrS8DHpJapxBL0mNM+glqXEGvSQ17uhJFzDISSedVKtXr550GZJ02HjggQeeqaqpQX2HZNCvXr2amZmZSZchSYeNJD9drM9TN5LUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1LhD8spY6VC1euOtE5l35zUXT2RetcEjeklqnEEvSY0z6CWpcQa9JDXOoJekxi0Z9ElWJflekkeSPJzkY137iUm2Jnm8ez9hkc9f3o15PMnl494BSdKLG+aIfj/w8ao6C3gDcGWSs4CNwF1VdQZwV7f+B5KcCFwNnAusAa5e7AeCJGl5LBn0VbWnqh7slp8HdgCnApcCN3bDbgTeNeDj7wC2VtW+qvolsBVYO47CJUnDOahz9ElWA68D7gNOrqo9XdfPgZMHfORU4Kl567u6NknSChk66JO8FPgmcFVVPTe/r6oKqD6FJNmQZCbJzOzsbJ9NSZLmGSrokxzDXMjfVFXf6pqfTnJK138KsHfAR3cDq+atn9a1vUBVbaqq6aqanpoa+CBzSdIIhvnWTYDrgR1V9YV5XbcAB75FcznwnQEfvwO4MMkJ3S9hL+zaJEkrZJgj+jcB7wPelmRb91oHXAO8PcnjwAXdOkmmk3wVoKr2AZ8F7u9en+naJEkrZMm7V1bVPUAW6T5/wPgZ4IPz1jcDm0ctUJLUj1fGSlLjDHpJapxBL0mNM+glqXE+SlCHpUk90k86HHlEL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW7Je90k2QxcAuytqtd0bd8AzuyGHA/8b1WdM+CzO4Hngd8B+6tqekx1S5KGNMxNzW4ArgW+dqChqv76wHKSzwPPvsjn31pVz4xaoCSpn2EeJXh3ktWD+roHh/8V8LbxliVJGpe+5+j/Ani6qh5fpL+AO5M8kGTDi20oyYYkM0lmZmdne5YlSTqgb9CvB7a8SP+bq+r1wEXAlUnestjAqtpUVdNVNT01NdWzLEnSASMHfZKjgfcA31hsTFXt7t73AjcDa0adT5I0mj5H9BcAj1bVrkGdSY5NctyBZeBCYHuP+SRJI1gy6JNsAe4FzkyyK8kVXddlLDhtk+QVSW7rVk8G7knyEPBD4Naq+u74SpckDWOYb92sX6T9/QPafgas65afBM7uWZ8kqSevjJWkxhn0ktQ4g16SGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYN8+ARSRO2euOtE5t75zUXT2xujYdH9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxwzxhanOSvUm2z2v7hyS7k2zrXusW+ezaJI8leSLJxnEWLkkazjBH9DcAawe0f7Gqzulety3sTHIU8GXgIuAsYH2Ss/oUK0k6eEsGfVXdDewbYdtrgCeq6smq+i3wdeDSEbYjSeqhzzn6jyb5UXdq54QB/acCT81b39W1DZRkQ5KZJDOzs7M9ypIkzTdq0H8F+DPgHGAP8Pm+hVTVpqqarqrpqampvpuTJHVGCvqqerqqfldVvwf+hbnTNAvtBlbNWz+ta5MkraCRgj7JKfNW3w1sHzDsfuCMJK9K8hLgMuCWUeaTJI1uybtXJtkCnAeclGQXcDVwXpJzgAJ2Ah/qxr4C+GpVrauq/Uk+CtwBHAVsrqqHl2UvJEmLWjLoq2r9gObrFxn7M2DdvPXbgBd89VKStHK8MlaSGmfQS1LjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNW7J2xRLOrKt3njrRObdec3FE5m3RUse0XcP/96bZPu8ts8lebR7OPjNSY5f5LM7k/w4ybYkM+MsXJI0nGFO3dwArF3QthV4TVW9FvgJ8MkX+fxbq+qcqpoerURJUh9LBn1V3Q3sW9B2Z1Xt71Z/wNyDvyVJh6Bx/DL2A8Dti/QVcGeSB5JsGMNckqSD1OuXsUk+BewHblpkyJuraneSPwW2Jnm0+x/CoG1tADYAnH766X3KkiTNM/IRfZL3A5cAf1NVNWhMVe3u3vcCNwNrFtteVW2qqumqmp6amhq1LEnSAiMFfZK1wCeAd1bVrxcZc2yS4w4sAxcC2weNlSQtn2G+XrkFuBc4M8muJFcA1wLHMXc6ZluS67qxr0hyW/fRk4F7kjwE/BC4taq+uyx7IUla1JLn6Ktq/YDm6xcZ+zNgXbf8JHB2r+okSb15CwRJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuOGCvokm5PsTbJ9XtuJSbYmebx7P2GRz17ejXk8yeXjKlySNJxhj+hvANYuaNsI3FVVZwB3det/IMmJwNXAucw9GPzqxX4gSJKWx1BBX1V3A/sWNF8K3Ngt3wi8a8BH3wFsrap9VfVLYCsv/IEhSVpGfc7Rn1xVe7rlnzP3MPCFTgWemre+q2t7gSQbkswkmZmdne1RliRpvrH8MraqCqie29hUVdNVNT01NTWOsiRJ9Av6p5OcAtC97x0wZjewat76aV2bJGmF9An6W4AD36K5HPjOgDF3ABcmOaH7JeyFXZskaYUM+/XKLcC9wJlJdiW5ArgGeHuSx4ELunWSTCf5KkBV7QM+C9zfvT7TtUmSVsjRwwyqqvWLdJ0/YOwM8MF565uBzSNVJ0nqzStjJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxhn0ktQ4g16SGmfQS1LjhrpNsTTI6o23TroESUPwiF6SGjdy0Cc5M8m2ea/nkly1YMx5SZ6dN+bT/UuWJB2MkU/dVNVjwDkASY5i7qHfNw8Y+v2qumTUeSRJ/Yzr1M35wP9U1U/HtD1J0piMK+gvA7Ys0vfGJA8luT3JqxfbQJINSWaSzMzOzo6pLElS76BP8hLgncB/DOh+EHhlVZ0NfAn49mLbqapNVTVdVdNTU1N9y5IkdcZxRH8R8GBVPb2wo6qeq6pfdcu3AcckOWkMc0qShjSOoF/PIqdtkrw8SbrlNd18vxjDnJKkIfW6YCrJscDbgQ/Na/swQFVdB7wX+EiS/cBvgMuqqvrMKUk6OL2Cvqr+D3jZgrbr5i1fC1zbZw5JUj9eGStJjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY3zmbGSDkmTfCbxzmsuntjcy8EjeklqnEEvSY0z6CWpcQa9JDXOoJekxo3jmbE7k/w4ybYkMwP6k+SfkjyR5EdJXt93TknS8Mb19cq3VtUzi/RdBJzRvc4FvtK9S5JWwEqcurkU+FrN+QFwfJJTVmBeSRLjOaIv4M4kBfxzVW1a0H8q8NS89V1d2575g5JsADYAnH766WMoS5JGM6mLtZbrQq1xHNG/uapez9wpmiuTvGWUjVTVpqqarqrpqampMZQlSYIxBH1V7e7e9wI3A2sWDNkNrJq3flrXJklaAb2CPsmxSY47sAxcCGxfMOwW4G+7b9+8AXi2qvYgSVoRfc/RnwzcnOTAtv6tqr6b5MMAVXUdcBuwDngC+DXwdz3nlCQdhF5BX1VPAmcPaL9u3nIBV/aZR5I0Oq+MlaTGGfSS1DiDXpIaZ9BLUuOae5TgJB8/JkmHIo/oJalxBr0kNc6gl6TGGfSS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXOoJekxo0c9ElWJflekkeSPJzkYwPGnJfk2STbuten+5UrSTpYfW5qth/4eFU92D039oEkW6vqkQXjvl9Vl/SYR5LUw8hH9FW1p6oe7JafB3YAp46rMEnSeIzlHH2S1cDrgPsGdL8xyUNJbk/y6hfZxoYkM0lmZmdnx1GWJIkxBH2SlwLfBK6qqucWdD8IvLKqzga+BHx7se1U1aaqmq6q6ampqb5lSZI6vYI+yTHMhfxNVfWthf1V9VxV/apbvg04JslJfeaUJB2cPt+6CXA9sKOqvrDImJd340iyppvvF6POKUk6eH2+dfMm4H3Aj5Ns69r+HjgdoKquA94LfCTJfuA3wGVVVT3mlCQdpJGDvqruAbLEmGuBa0edQ5LUn1fGSlLjDHpJapxBL0mNM+glqXEGvSQ1zqCXpMYZ9JLUOINekhpn0EtS4wx6SWqcQS9JjTPoJalxBr0kNc6gl6TGGfSS1DiDXpIa1/eZsWuTPJbkiSQbB/T/cZJvdP33JVndZz5J0sHr88zYo4AvAxcBZwHrk5y1YNgVwC+r6s+BLwL/OOp8kqTR9DmiXwM8UVVPVtVvga8Dly4YcylwY7f8n8D5Bx4WLklaGX0eDn4q8NS89V3AuYuNqar9SZ4FXgY8s3BjSTYAG7rVXyV5rEdth4KTGLCfRwD3+8hypO43LMO+p985j1cu1tEn6MeqqjYBmyZdx7gkmamq6UnXsdLc7yPLkbrfcHjte59TN7uBVfPWT+vaBo5JcjTwJ8AveswpSTpIfYL+fuCMJK9K8hLgMuCWBWNuAS7vlt8L/HdVVY85JUkHaeRTN905948CdwBHAZur6uEknwFmquoW4HrgX5M8Aexj7ofBkaKZ01AHyf0+shyp+w2H0b7HA2xJaptXxkpS4wx6SWqcQb+MknwuyaNJfpTk5iTHT7qmlZDkL5M8nOT3SQ6Lr5/1sdStQFqUZHOSvUm2T7qWlZRkVZLvJXmk+zv+sUnXNAyDfnltBV5TVa8FfgJ8csL1rJTtwHuAuyddyHIb8lYgLboBWDvpIiZgP/DxqjoLeANw5eHw523QL6OqurOq9nerP2DuWoPmVdWOqjrcr2we1jC3AmlOVd3N3DfpjihVtaeqHuyWnwd2MHcHgEOaQb9yPgDcPukiNHaDbgVyyP/DV3/d3XhfB9w32UqWdsjcAuFwleS/gJcP6PpUVX2nG/Mp5v7Ld9NK1rachtlvqVVJXgp8E7iqqp6bdD1LMeh7qqoLXqw/yfuBS4DzW7oqeKn9PoIMcysQNSTJMcyF/E1V9a1J1zMMT90soyRrgU8A76yqX0+6Hi2LYW4FokZ0t1m/HthRVV+YdD3DMuiX17XAccDWJNuSXDfpglZCkncn2QW8Ebg1yR2Trmm5dL9sP3ArkB3Av1fVw5Otavkl2QLcC5yZZFeSKyZd0wp5E/A+4G3dv+ltSdZNuqileAsESWqcR/SS1DiDXpIaZ9BLUuMMeklqnEEvSY0z6CWpcQa9JDXu/wHSPFSX6f82DAAAAABJRU5ErkJggg==\n", 164 | "text/plain": [ 165 | "
" 166 | ] 167 | }, 168 | "metadata": { 169 | "needs_background": "light" 170 | } 171 | } 172 | ] 173 | }, 174 | { 175 | "cell_type": "markdown", 176 | "source": [ 177 | "## from import를 쓰면 import as처럼 축약해서 부를 수 있는 효과" 178 | ], 179 | "metadata": { 180 | "id": "v1zA2xRWzpdu" 181 | } 182 | }, 183 | { 184 | "cell_type": "code", 185 | "metadata": { 186 | "colab": { 187 | "base_uri": "https://localhost:8080/", 188 | "height": 350 189 | }, 190 | "id": "moIjn3Kv-Hqy", 191 | "outputId": "4b1e3880-1576-4b63-b4d0-192704221a8d" 192 | }, 193 | "source": [ 194 | "from matplotlib import pyplot\n", 195 | "pyplot.hist(n)" 196 | ], 197 | "execution_count": null, 198 | "outputs": [ 199 | { 200 | "output_type": "execute_result", 201 | "data": { 202 | "text/plain": [ 203 | "(array([ 3., 4., 9., 11., 26., 19., 16., 10., 1., 1.]),\n", 204 | " array([-2.51307585, -1.99199295, -1.47091005, -0.94982715, -0.42874425,\n", 205 | " 0.09233865, 0.61342155, 1.13450445, 1.65558734, 2.17667024,\n", 206 | " 2.69775314]),\n", 207 | " )" 208 | ] 209 | }, 210 | "metadata": {}, 211 | "execution_count": 11 212 | }, 213 | { 214 | "output_type": "display_data", 215 | "data": { 216 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAALCklEQVR4nO3dT4gehR3G8eepsZcqNJIlDTZ2i4gQShvLklosxVZboilVCy3NQVIqrAcFBaGkeqjHlFa9tFgiCeaQWgQVhdhqGoQgtNKNBE3cWkVWGonJigdTeijRp4dM6nbdzfvu+2/y2/1+YNn3nXfend+L5stkdmbiJAIA1POptgcAAPSGgANAUQQcAIoi4ABQFAEHgKJWjXJja9asyfj4+Cg3CQDlHTp06L0kY/OXjzTg4+PjmpqaGuUmAaA8228vtJxDKABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFDUSK/EBDoZ376vle3O7NjSynaBfrAHDgBFEXAAKIqAA0BRBBwAiuoYcNvrbb9g+zXbR23f1Sy/3/Y7tg83XzcOf1wAwFndnIVyWtI9SV62fbGkQ7b3N689lOTXwxsPALCYjgFPclzS8ebxKdvTki4d9mAAgHNb0jFw2+OSrpL0UrPoTtuv2N5te/Ui75m0PWV7anZ2tq9hAQAf6zrgti+S9ISku5N8IOlhSZdL2qgze+gPLPS+JDuTTCSZGBv7xD/pBgDoUVcBt32hzsR7b5InJSnJiSQfJvlI0iOSNg1vTADAfN2chWJJuyRNJ3lwzvJ1c1a7RdKRwY8HAFhMN2ehXCPpVkmv2j7cLLtX0lbbGyVF0oyk24cyIQBgQd2chfKiJC/w0rODHwcA0C2uxASAogg4ABRFwAGgKAIOAEURcAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFEdA257ve0XbL9m+6jtu5rll9jeb/uN5vvq4Y8LADirmz3w05LuSbJB0tWS7rC9QdJ2SQeSXCHpQPMcADAiHQOe5HiSl5vHpyRNS7pU0k2S9jSr7ZF087CGBAB80pKOgdsel3SVpJckrU1yvHnpXUlrBzoZAOCcug647YskPSHp7iQfzH0tSSRlkfdN2p6yPTU7O9vXsACAj3UVcNsX6ky89yZ5sll8wva65vV1kk4u9N4kO5NMJJkYGxsbxMwAAHV3Fool7ZI0neTBOS89I2lb83ibpKcHPx4AYDGruljnGkm3SnrV9uFm2b2Sdkh63PZtkt6W9KPhjAgAWEjHgCd5UZIXefm6wY4DAOgWV2ICQFEEHACK6uYYOLDsjW/f19q2Z3ZsaW3bqI09cAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgqFVtDwCsdOPb97Wy3ZkdW1rZLgaHPXAAKIqAA0BRBBwAiiLgAFBUx4Db3m37pO0jc5bdb/sd24ebrxuHOyYAYL5u9sAflbR5geUPJdnYfD072LEAAJ10DHiSg5LeH8EsAIAl6OcY+J22X2kOsaxebCXbk7anbE/Nzs72sTkAwFy9BvxhSZdL2ijpuKQHFlsxyc4kE0kmxsbGetwcAGC+ngKe5ESSD5N8JOkRSZsGOxYAoJOeAm573Zynt0g6sti6AIDh6HgvFNuPSbpW0hrbxyT9QtK1tjdKiqQZSbcPcUYAwAI6BjzJ1gUW7xrCLACAJeBKTAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFGr2h4A55/x7fvaHgFAF9gDB4CiCDgAFEXAAaAoAg4ARXUMuO3dtk/aPjJn2SW299t+o/m+erhjAgDm62YP/FFJm+ct2y7pQJIrJB1ongMARqhjwJMclPT+vMU3SdrTPN4j6eYBzwUA6KDX88DXJjnePH5X0trFVrQ9KWlSki677LIeNwdg0No8339mx5bWtr2c9P1LzCSRlHO8vjPJRJKJsbGxfjcHAGj0GvATttdJUvP95OBGAgB0o9eAPyNpW/N4m6SnBzMOAKBb3ZxG+Jikv0i60vYx27dJ2iHpO7bfkHR98xwAMEIdf4mZZOsiL1034FkAAEvAlZgAUBQBB4CiuB/4eYz7cgM4F/bAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUav6ebPtGUmnJH0o6XSSiUEMBQDorK+AN76V5L0B/BwAwBJwCAUAiuo34JH0vO1DticXWsH2pO0p21Ozs7N9bg4AcFa/Af9Gkq9KukHSHba/OX+FJDuTTCSZGBsb63NzAICz+gp4knea7yclPSVp0yCGAgB01nPAbX/G9sVnH0v6rqQjgxoMAHBu/ZyFslbSU7bP/pzfJ/nTQKYCAHTUc8CTvCXpKwOcBQCwBJxGCABFEXAAKGoQV2Iue+Pb97U9AgB8AnvgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFFlzgPnXGwA+H/sgQNAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEWVuR84gOVjJd7ff2bHloH/TPbAAaAoAg4ARRFwACiKgANAUX0F3PZm26/bftP29kENBQDorOeA275A0m8l3SBpg6SttjcMajAAwLn1swe+SdKbSd5K8h9Jf5B002DGAgB00s954JdK+uec58ckfW3+SrYnJU02T/9l+/U+ttmGNZLea3uIEVkpn5XPufyc95/Vv+zr7V9YaOHQL+RJslPSzmFvZ1hsTyWZaHuOUVgpn5XPufyspM86Vz+HUN6RtH7O8883ywAAI9BPwP8m6QrbX7T9aUk/lvTMYMYCAHTS8yGUJKdt3ynpOUkXSNqd5OjAJjt/lD3804OV8ln5nMvPSvqs/+Mkbc8AAOgBV2ICQFEEHACKIuBdsP0r23+3/Yrtp2x/tu2ZhsH2D20ftf2R7WV3StZKufWD7d22T9o+0vYsw2R7ve0XbL/W/H97V9szjRoB785+SV9K8mVJ/5D085bnGZYjkn4g6WDbgwzaCrv1w6OSNrc9xAiclnRPkg2SrpZ0xzL+b7ogAt6FJM8nOd08/avOnPO+7CSZTlLtStlurZhbPyQ5KOn9tucYtiTHk7zcPD4laVpnrhBfMQj40v1U0h/bHgJLttCtH1bUH/blzPa4pKskvdTuJKPFv4nZsP1nSZ9b4KX7kjzdrHOfzvy1be8oZxukbj4nUIntiyQ9IenuJB+0Pc8oEfBGkuvP9brtn0j6nqTrUvjk+U6fcxnj1g/LkO0LdSbee5M82fY8o8YhlC7Y3izpZ5K+n+Tfbc+DnnDrh2XGtiXtkjSd5MG252kDAe/ObyRdLGm/7cO2f9f2QMNg+xbbxyR9XdI+28+1PdOgNL+EPnvrh2lJjy/TWz/I9mOS/iLpStvHbN/W9kxDco2kWyV9u/lzedj2jW0PNUpcSg8ARbEHDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABT1XxqfU77eOAeTAAAAAElFTkSuQmCC\n", 217 | "text/plain": [ 218 | "
" 219 | ] 220 | }, 221 | "metadata": { 222 | "needs_background": "light" 223 | } 224 | } 225 | ] 226 | }, 227 | { 228 | "cell_type": "code", 229 | "metadata": { 230 | "colab": { 231 | "base_uri": "https://localhost:8080/", 232 | "height": 350 233 | }, 234 | "id": "ORo259i7_Uqi", 235 | "outputId": "8faa9ebd-66ff-4f86-e588-f114023e649d" 236 | }, 237 | "source": [ 238 | "from matplotlib.pyplot import hist\n", 239 | "hist(n)" 240 | ], 241 | "execution_count": null, 242 | "outputs": [ 243 | { 244 | "output_type": "execute_result", 245 | "data": { 246 | "text/plain": [ 247 | "(array([ 3., 4., 9., 11., 26., 19., 16., 10., 1., 1.]),\n", 248 | " array([-2.51307585, -1.99199295, -1.47091005, -0.94982715, -0.42874425,\n", 249 | " 0.09233865, 0.61342155, 1.13450445, 1.65558734, 2.17667024,\n", 250 | " 2.69775314]),\n", 251 | " )" 252 | ] 253 | }, 254 | "metadata": {}, 255 | "execution_count": 14 256 | }, 257 | { 258 | "output_type": "display_data", 259 | "data": { 260 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAALCklEQVR4nO3dT4gehR3G8eepsZcqNJIlDTZ2i4gQShvLklosxVZboilVCy3NQVIqrAcFBaGkeqjHlFa9tFgiCeaQWgQVhdhqGoQgtNKNBE3cWkVWGonJigdTeijRp4dM6nbdzfvu+2/y2/1+YNn3nXfend+L5stkdmbiJAIA1POptgcAAPSGgANAUQQcAIoi4ABQFAEHgKJWjXJja9asyfj4+Cg3CQDlHTp06L0kY/OXjzTg4+PjmpqaGuUmAaA8228vtJxDKABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFDUSK/EBDoZ376vle3O7NjSynaBfrAHDgBFEXAAKIqAA0BRBBwAiuoYcNvrbb9g+zXbR23f1Sy/3/Y7tg83XzcOf1wAwFndnIVyWtI9SV62fbGkQ7b3N689lOTXwxsPALCYjgFPclzS8ebxKdvTki4d9mAAgHNb0jFw2+OSrpL0UrPoTtuv2N5te/Ui75m0PWV7anZ2tq9hAQAf6zrgti+S9ISku5N8IOlhSZdL2qgze+gPLPS+JDuTTCSZGBv7xD/pBgDoUVcBt32hzsR7b5InJSnJiSQfJvlI0iOSNg1vTADAfN2chWJJuyRNJ3lwzvJ1c1a7RdKRwY8HAFhMN2ehXCPpVkmv2j7cLLtX0lbbGyVF0oyk24cyIQBgQd2chfKiJC/w0rODHwcA0C2uxASAogg4ABRFwAGgKAIOAEURcAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFEdA257ve0XbL9m+6jtu5rll9jeb/uN5vvq4Y8LADirmz3w05LuSbJB0tWS7rC9QdJ2SQeSXCHpQPMcADAiHQOe5HiSl5vHpyRNS7pU0k2S9jSr7ZF087CGBAB80pKOgdsel3SVpJckrU1yvHnpXUlrBzoZAOCcug647YskPSHp7iQfzH0tSSRlkfdN2p6yPTU7O9vXsACAj3UVcNsX6ky89yZ5sll8wva65vV1kk4u9N4kO5NMJJkYGxsbxMwAAHV3Fool7ZI0neTBOS89I2lb83ibpKcHPx4AYDGruljnGkm3SnrV9uFm2b2Sdkh63PZtkt6W9KPhjAgAWEjHgCd5UZIXefm6wY4DAOgWV2ICQFEEHACK6uYYOLDsjW/f19q2Z3ZsaW3bqI09cAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgqFVtDwCsdOPb97Wy3ZkdW1rZLgaHPXAAKIqAA0BRBBwAiiLgAFBUx4Db3m37pO0jc5bdb/sd24ebrxuHOyYAYL5u9sAflbR5geUPJdnYfD072LEAAJ10DHiSg5LeH8EsAIAl6OcY+J22X2kOsaxebCXbk7anbE/Nzs72sTkAwFy9BvxhSZdL2ijpuKQHFlsxyc4kE0kmxsbGetwcAGC+ngKe5ESSD5N8JOkRSZsGOxYAoJOeAm573Zynt0g6sti6AIDh6HgvFNuPSbpW0hrbxyT9QtK1tjdKiqQZSbcPcUYAwAI6BjzJ1gUW7xrCLACAJeBKTAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFGr2h4A55/x7fvaHgFAF9gDB4CiCDgAFEXAAaAoAg4ARXUMuO3dtk/aPjJn2SW299t+o/m+erhjAgDm62YP/FFJm+ct2y7pQJIrJB1ongMARqhjwJMclPT+vMU3SdrTPN4j6eYBzwUA6KDX88DXJjnePH5X0trFVrQ9KWlSki677LIeNwdg0No8339mx5bWtr2c9P1LzCSRlHO8vjPJRJKJsbGxfjcHAGj0GvATttdJUvP95OBGAgB0o9eAPyNpW/N4m6SnBzMOAKBb3ZxG+Jikv0i60vYx27dJ2iHpO7bfkHR98xwAMEIdf4mZZOsiL1034FkAAEvAlZgAUBQBB4CiuB/4eYz7cgM4F/bAAaAoAg4ARRFwACiKgANAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFEEHACKIuAAUBQBB4CiCDgAFEXAAaAoAg4ARRFwACiKgANAUav6ebPtGUmnJH0o6XSSiUEMBQDorK+AN76V5L0B/BwAwBJwCAUAiuo34JH0vO1DticXWsH2pO0p21Ozs7N9bg4AcFa/Af9Gkq9KukHSHba/OX+FJDuTTCSZGBsb63NzAICz+gp4knea7yclPSVp0yCGAgB01nPAbX/G9sVnH0v6rqQjgxoMAHBu/ZyFslbSU7bP/pzfJ/nTQKYCAHTUc8CTvCXpKwOcBQCwBJxGCABFEXAAKGoQV2Iue+Pb97U9AgB8AnvgAFAUAQeAogg4ABRFwAGgKAIOAEURcAAoioADQFFlzgPnXGwA+H/sgQNAUQQcAIoi4ABQFAEHgKIIOAAURcABoCgCDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABRFwAGgKAIOAEWVuR84gOVjJd7ff2bHloH/TPbAAaAoAg4ARRFwACiKgANAUX0F3PZm26/bftP29kENBQDorOeA275A0m8l3SBpg6SttjcMajAAwLn1swe+SdKbSd5K8h9Jf5B002DGAgB00s954JdK+uec58ckfW3+SrYnJU02T/9l+/U+ttmGNZLea3uIEVkpn5XPufyc95/Vv+zr7V9YaOHQL+RJslPSzmFvZ1hsTyWZaHuOUVgpn5XPufyspM86Vz+HUN6RtH7O8883ywAAI9BPwP8m6QrbX7T9aUk/lvTMYMYCAHTS8yGUJKdt3ynpOUkXSNqd5OjAJjt/lD3804OV8ln5nMvPSvqs/+Mkbc8AAOgBV2ICQFEEHACKIuBdsP0r23+3/Yrtp2x/tu2ZhsH2D20ftf2R7WV3StZKufWD7d22T9o+0vYsw2R7ve0XbL/W/H97V9szjRoB785+SV9K8mVJ/5D085bnGZYjkn4g6WDbgwzaCrv1w6OSNrc9xAiclnRPkg2SrpZ0xzL+b7ogAt6FJM8nOd08/avOnPO+7CSZTlLtStlurZhbPyQ5KOn9tucYtiTHk7zcPD4laVpnrhBfMQj40v1U0h/bHgJLttCtH1bUH/blzPa4pKskvdTuJKPFv4nZsP1nSZ9b4KX7kjzdrHOfzvy1be8oZxukbj4nUIntiyQ9IenuJB+0Pc8oEfBGkuvP9brtn0j6nqTrUvjk+U6fcxnj1g/LkO0LdSbee5M82fY8o8YhlC7Y3izpZ5K+n+Tfbc+DnnDrh2XGtiXtkjSd5MG252kDAe/ObyRdLGm/7cO2f9f2QMNg+xbbxyR9XdI+28+1PdOgNL+EPnvrh2lJjy/TWz/I9mOS/iLpStvHbN/W9kxDco2kWyV9u/lzedj2jW0PNUpcSg8ARbEHDgBFEXAAKIqAA0BRBBwAiiLgAFAUAQeAogg4ABT1XxqfU77eOAeTAAAAAElFTkSuQmCC\n", 261 | "text/plain": [ 262 | "
" 263 | ] 264 | }, 265 | "metadata": { 266 | "needs_background": "light" 267 | } 268 | } 269 | ] 270 | } 271 | ] 272 | } -------------------------------------------------------------------------------- /numpy_matplotlib.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "kernelspec": { 6 | "display_name": "Python 3", 7 | "language": "python", 8 | "name": "python3" 9 | }, 10 | "language_info": { 11 | "codemirror_mode": { 12 | "name": "ipython", 13 | "version": 3 14 | }, 15 | "file_extension": ".py", 16 | "mimetype": "text/x-python", 17 | "name": "python", 18 | "nbconvert_exporter": "python", 19 | "pygments_lexer": "ipython3", 20 | "version": "3.7.1" 21 | }, 22 | "colab": { 23 | "name": "numpy_matplotlib.ipynb", 24 | "provenance": [], 25 | "include_colab_link": true 26 | } 27 | }, 28 | "cells": [ 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "view-in-github", 33 | "colab_type": "text" 34 | }, 35 | "source": [ 36 | "\"Open" 37 | ] 38 | }, 39 | { 40 | "cell_type": "markdown", 41 | "metadata": { 42 | "id": "JcCdLoe_4bY7" 43 | }, 44 | "source": [ 45 | "### create nd arrays (≈matrices)" 46 | ] 47 | }, 48 | { 49 | "cell_type": "code", 50 | "metadata": { 51 | "id": "5ap7xyofShBB" 52 | }, 53 | "source": [ 54 | "import numpy as np" 55 | ], 56 | "execution_count": null, 57 | "outputs": [] 58 | }, 59 | { 60 | "cell_type": "code", 61 | "metadata": { 62 | "id": "2rqpSPZCShBC", 63 | "colab": { 64 | "base_uri": "https://localhost:8080/" 65 | }, 66 | "outputId": "8a4d14a6-b816-432a-caae-902c8c640f33" 67 | }, 68 | "source": [ 69 | "x = np.array([1,2,3])\n", 70 | "print(x)\n", 71 | "print(type(x))\n", 72 | "print(x.shape)" 73 | ], 74 | "execution_count": null, 75 | "outputs": [ 76 | { 77 | "output_type": "stream", 78 | "name": "stdout", 79 | "text": [ 80 | "[1 2 3]\n", 81 | "\n", 82 | "(3,)\n" 83 | ] 84 | } 85 | ] 86 | }, 87 | { 88 | "cell_type": "code", 89 | "metadata": { 90 | "id": "EjC88C75ShBC", 91 | "colab": { 92 | "base_uri": "https://localhost:8080/" 93 | }, 94 | "outputId": "7143e4dd-2864-4b57-855e-56eb92a6bd75" 95 | }, 96 | "source": [ 97 | "x = np.arange(0,10,2)\n", 98 | "print(x)\n", 99 | "print(type(x))\n", 100 | "print(x.shape)" 101 | ], 102 | "execution_count": null, 103 | "outputs": [ 104 | { 105 | "output_type": "stream", 106 | "name": "stdout", 107 | "text": [ 108 | "[0 2 4 6 8]\n", 109 | "\n", 110 | "(5,)\n" 111 | ] 112 | } 113 | ] 114 | }, 115 | { 116 | "cell_type": "code", 117 | "metadata": { 118 | "id": "-MwkCEjTShBC", 119 | "colab": { 120 | "base_uri": "https://localhost:8080/" 121 | }, 122 | "outputId": "11427674-886c-4f82-ca48-a1465f53223e" 123 | }, 124 | "source": [ 125 | "x = np.linspace(0,10,6)\n", 126 | "print(x)\n", 127 | "print(type(x))\n", 128 | "print(x.shape)" 129 | ], 130 | "execution_count": null, 131 | "outputs": [ 132 | { 133 | "output_type": "stream", 134 | "name": "stdout", 135 | "text": [ 136 | "[ 0. 2. 4. 6. 8. 10.]\n", 137 | "\n", 138 | "(6,)\n" 139 | ] 140 | } 141 | ] 142 | }, 143 | { 144 | "cell_type": "code", 145 | "metadata": { 146 | "id": "tjk79SQ27fNv", 147 | "colab": { 148 | "base_uri": "https://localhost:8080/" 149 | }, 150 | "outputId": "3ff3368b-6bb1-4664-933e-8504613780b1" 151 | }, 152 | "source": [ 153 | "x = np.array([[1,2,3], [4,5,6]])\n", 154 | "print(x)\n", 155 | "print(type(x))\n", 156 | "print(x.shape)" 157 | ], 158 | "execution_count": null, 159 | "outputs": [ 160 | { 161 | "output_type": "stream", 162 | "name": "stdout", 163 | "text": [ 164 | "[[1 2 3]\n", 165 | " [4 5 6]]\n", 166 | "\n", 167 | "(2, 3)\n" 168 | ] 169 | } 170 | ] 171 | }, 172 | { 173 | "cell_type": "code", 174 | "metadata": { 175 | "id": "C1ogg6iZ7yir", 176 | "colab": { 177 | "base_uri": "https://localhost:8080/" 178 | }, 179 | "outputId": "baf27f4e-10a7-40bb-82f4-bf470d8de90c" 180 | }, 181 | "source": [ 182 | "x = np.array([[[1,2,3], [4,5,6]], [[7,8,9], [10,11,12]]])\n", 183 | "print(x)\n", 184 | "print(type(x))\n", 185 | "print(x.shape)" 186 | ], 187 | "execution_count": null, 188 | "outputs": [ 189 | { 190 | "output_type": "stream", 191 | "name": "stdout", 192 | "text": [ 193 | "[[[ 1 2 3]\n", 194 | " [ 4 5 6]]\n", 195 | "\n", 196 | " [[ 7 8 9]\n", 197 | " [10 11 12]]]\n", 198 | "\n", 199 | "(2, 2, 3)\n" 200 | ] 201 | } 202 | ] 203 | }, 204 | { 205 | "cell_type": "code", 206 | "metadata": { 207 | "id": "efgeNHtD8ZlT", 208 | "colab": { 209 | "base_uri": "https://localhost:8080/" 210 | }, 211 | "outputId": "047fb9dd-8c90-4dbf-9f12-35123bed1052" 212 | }, 213 | "source": [ 214 | "x = np.ones([2, 2, 3])\n", 215 | "print(x)\n", 216 | "print(type(x))\n", 217 | "print(x.shape)" 218 | ], 219 | "execution_count": null, 220 | "outputs": [ 221 | { 222 | "output_type": "stream", 223 | "name": "stdout", 224 | "text": [ 225 | "[[[1. 1. 1.]\n", 226 | " [1. 1. 1.]]\n", 227 | "\n", 228 | " [[1. 1. 1.]\n", 229 | " [1. 1. 1.]]]\n", 230 | "\n", 231 | "(2, 2, 3)\n" 232 | ] 233 | } 234 | ] 235 | }, 236 | { 237 | "cell_type": "code", 238 | "metadata": { 239 | "id": "b_F-ccY08zzl", 240 | "colab": { 241 | "base_uri": "https://localhost:8080/" 242 | }, 243 | "outputId": "d56dd759-bbd1-48d5-d208-4a2084fe1cec" 244 | }, 245 | "source": [ 246 | "x = np.zeros([2, 2, 3])\n", 247 | "print(x)\n", 248 | "print(type(x))\n", 249 | "print(x.shape)\n", 250 | "x.reshape(3,2,2)" 251 | ], 252 | "execution_count": null, 253 | "outputs": [ 254 | { 255 | "output_type": "stream", 256 | "name": "stdout", 257 | "text": [ 258 | "[[[0. 0. 0.]\n", 259 | " [0. 0. 0.]]\n", 260 | "\n", 261 | " [[0. 0. 0.]\n", 262 | " [0. 0. 0.]]]\n", 263 | "\n", 264 | "(2, 2, 3)\n" 265 | ] 266 | }, 267 | { 268 | "output_type": "execute_result", 269 | "data": { 270 | "text/plain": [ 271 | "array([[[0., 0.],\n", 272 | " [0., 0.]],\n", 273 | "\n", 274 | " [[0., 0.],\n", 275 | " [0., 0.]],\n", 276 | "\n", 277 | " [[0., 0.],\n", 278 | " [0., 0.]]])" 279 | ] 280 | }, 281 | "metadata": {}, 282 | "execution_count": 27 283 | } 284 | ] 285 | }, 286 | { 287 | "cell_type": "markdown", 288 | "metadata": { 289 | "id": "0hQuDJ5g9gpE" 290 | }, 291 | "source": [ 292 | "### create random numbers" 293 | ] 294 | }, 295 | { 296 | "cell_type": "code", 297 | "source": [ 298 | "np.random.normal(0, 1, [2,3,4])" 299 | ], 300 | "metadata": { 301 | "id": "pCVnElBgan70", 302 | "outputId": "b06de733-6380-4b28-870b-61ddb453ad8a", 303 | "colab": { 304 | "base_uri": "https://localhost:8080/" 305 | } 306 | }, 307 | "execution_count": null, 308 | "outputs": [ 309 | { 310 | "output_type": "execute_result", 311 | "data": { 312 | "text/plain": [ 313 | "array([[[ 0.28610219, -0.7264868 , -0.50719279, 1.04473795],\n", 314 | " [-2.6269445 , 0.80373735, -3.94639222, -0.11259909],\n", 315 | " [-0.271832 , -1.03545502, -0.11481238, -0.80041025]],\n", 316 | "\n", 317 | " [[-0.94959226, 1.11390672, -0.47629241, -1.43499953],\n", 318 | " [ 1.01427831, 0.93052177, -0.51619177, 1.99354224],\n", 319 | " [-0.68265827, 0.97492243, -0.33173391, 0.0293543 ]]])" 320 | ] 321 | }, 322 | "metadata": {}, 323 | "execution_count": 5 324 | } 325 | ] 326 | }, 327 | { 328 | "cell_type": "code", 329 | "metadata": { 330 | "id": "QRatmkx79otL" 331 | }, 332 | "source": [ 333 | "import matplotlib.pyplot as plt" 334 | ], 335 | "execution_count": null, 336 | "outputs": [] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "metadata": { 341 | "id": "z1oOAB6dShBD", 342 | "colab": { 343 | "base_uri": "https://localhost:8080/", 344 | "height": 775 345 | }, 346 | "outputId": "db329362-279b-4166-f67a-c2d40d28a0a5" 347 | }, 348 | "source": [ 349 | "x = np.random.normal(0, 1, 100)\n", 350 | "print(x)\n", 351 | "plt.hist(x, bins=10)" 352 | ], 353 | "execution_count": null, 354 | "outputs": [ 355 | { 356 | "output_type": "stream", 357 | "name": "stdout", 358 | "text": [ 359 | "[-1.30410375e+00 2.81304056e-01 -6.68872336e-01 -1.64063589e-01\n", 360 | " -1.22158374e+00 -1.04653440e+00 -1.60460987e-01 7.24631153e-01\n", 361 | " 1.66127871e-01 -7.27988751e-01 1.63277291e-01 5.09236054e-01\n", 362 | " -1.98943416e-01 -1.46600112e+00 3.33479774e-01 1.60454386e-02\n", 363 | " -8.55730740e-02 -5.11190740e-01 -1.08187184e+00 -1.81470665e+00\n", 364 | " 9.02654879e-01 2.61542981e+00 -9.61451307e-01 -3.76245505e-01\n", 365 | " 1.10573440e+00 -2.90233466e-01 9.83471186e-01 -9.17783309e-01\n", 366 | " -6.85692679e-01 6.80350119e-01 3.02418935e-01 -6.67165338e-01\n", 367 | " -1.13758564e+00 5.51581315e-01 4.08377252e-01 2.41734447e-01\n", 368 | " -5.31870253e-01 2.46012558e+00 6.24542625e-02 3.04243491e+00\n", 369 | " 1.75779308e+00 1.52166416e+00 1.23817111e+00 -7.97803951e-01\n", 370 | " 3.90696889e-01 -6.19225451e-01 1.42304945e+00 -1.28138928e+00\n", 371 | " 1.05451851e+00 2.99641058e-01 -7.78909324e-01 2.55184996e-01\n", 372 | " 1.04213387e+00 4.01985262e+00 4.10956638e-02 9.72650554e-01\n", 373 | " 4.38663065e-01 -1.24154905e+00 4.68534855e-01 6.32756145e-01\n", 374 | " 8.42972324e-01 -1.69977165e+00 2.21320141e+00 -9.63472499e-01\n", 375 | " 6.40706441e-01 1.74025374e+00 -1.57992412e-01 -2.12527110e+00\n", 376 | " -3.41463121e-01 -5.23844235e-01 5.30544156e-01 -5.80984627e-01\n", 377 | " 3.95706884e-03 -1.23409175e+00 -6.23110796e-01 8.33769043e-01\n", 378 | " -1.39568461e+00 -2.23386940e-01 5.97831290e-01 -8.15726743e-02\n", 379 | " 1.36391643e-01 -6.62688401e-01 4.45915336e-01 -8.10861118e-01\n", 380 | " -2.91582565e-01 7.36019302e-01 1.59291496e+00 -8.13765805e-01\n", 381 | " -1.15831445e+00 -3.46717461e-01 5.96119975e-01 -1.09709991e+00\n", 382 | " 1.25127130e+00 -1.88386233e-01 1.79404880e+00 3.97428197e-01\n", 383 | " 2.39494165e-01 4.14585331e-01 5.97507814e-01 -3.59018225e-01]\n" 384 | ] 385 | }, 386 | { 387 | "output_type": "execute_result", 388 | "data": { 389 | "text/plain": [ 390 | "(array([ 3., 15., 21., 21., 22., 9., 4., 3., 1., 1.]),\n", 391 | " array([-2.1252711 , -1.51075872, -0.89624635, -0.28173398, 0.33277839,\n", 392 | " 0.94729076, 1.56180314, 2.17631551, 2.79082788, 3.40534025,\n", 393 | " 4.01985262]),\n", 394 | " )" 395 | ] 396 | }, 397 | "metadata": {}, 398 | "execution_count": 33 399 | }, 400 | { 401 | "output_type": "display_data", 402 | "data": { 403 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXAAAAD4CAYAAAD1jb0+AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAK9ElEQVR4nO3db6hkh1nH8d9jEqnYiim5xJC2Xl+UQig2lSVGKlL7R9Km9I+gGLBEGlhfpNBCQbb2hYpvImL1haJEGxIwRgptSDFqG9NAEGp1U2NMmtaWkmJC2t1SpCmCkvTxxc7ist3svTsz906eyecDlztz5tw5zyG5X86emTO3ujsAzPMDmx4AgOUIOMBQAg4wlIADDCXgAENdfJgbu+yyy3p3d/cwNwkw3kMPPfSt7t45e/mhBnx3dzfHjx8/zE0CjFdVXz/XcqdQAIYScIChBBxgKAEHGErAAYYScIChBBxgKAEHGErAAYY61CsxYS+7x+7dyHafuOX6jWwXVuEIHGAoAQcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKFcyPMCtqmLWoAZHIEDDCXgAEMJOMBQAg4wlIADDLVnwKvqlVX1QFV9saoeq6oPLJa/vKruq6qvLL5fevDjAnDafo7An03yoe6+Ksm1SW6uqquSHEtyf3e/Osn9i/sAHJI9A97dT3f3Fxa3n0nyeJIrk7wryR2L1e5I8u6DGhKA73dB58CrajfJ65N8Psnl3f304qFvJLl8rZMBcF77DnhVvTTJJ5J8sLu/c+Zj3d1J+nl+7mhVHa+q4ydPnlxpWAD+374CXlWX5FS87+zuTy4Wf7Oqrlg8fkWSE+f62e6+tbuPdPeRnZ2ddcwMQPb3LpRK8rEkj3f3R8946FNJblzcvjHJPesfD4Dns58Ps3pDkvcm+feqenix7DeT3JLk41V1U5KvJ/nlgxkRgHPZM+Dd/Y9J6nkefvN6xwFgv1yJCTCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMtWfAq+q2qjpRVY+esey3q+qpqnp48fX2gx0TgLPt5wj89iTXnWP5H3b31Yuvv13vWADsZc+Ad/eDSb59CLMAcAFWOQf+/qp6ZHGK5dK1TQTAvly85M/9aZLfTdKL73+Q5H3nWrGqjiY5miSvetWrltzcZu0eu3fTIwB8n6WOwLv7m939XHd/L8mfJ7nmPOve2t1HuvvIzs7OsnMCcJalAl5VV5xx9z1JHn2+dQE4GHueQqmqu5K8McllVfVkkt9K8saqujqnTqE8keTXD3BGAM5hz4B39w3nWPyxA5gFgAvgSkyAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhqz4BX1W1VdaKqHj1j2cur6r6q+sri+6UHOyYAZ9vPEfjtSa47a9mxJPd396uT3L+4D8Ah2jPg3f1gkm+ftfhdSe5Y3L4jybvXPBcAe1j2HPjl3f304vY3klz+fCtW1dGqOl5Vx0+ePLnk5gA428ovYnZ3J+nzPH5rdx/p7iM7Ozurbg6AhWUD/s2quiJJFt9PrG8kAPZj2YB/KsmNi9s3JrlnPeMAsF/7eRvhXUk+l+Q1VfVkVd2U5JYkb62qryR5y+I+AIfo4r1W6O4bnuehN695FgAugCsxAYYScIChBBxgqD3PgcOLwe6xeze27SduuX5j22Y2R+AAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFACDjCUgAMMJeAAQwk4wFAXr/LDVfVEkmeSPJfk2e4+so6hANjbSgFf+Pnu/tYangeAC+AUCsBQqwa8k3ymqh6qqqPnWqGqjlbV8ao6fvLkyRU3B8Bpqwb8Z7v7p5K8LcnNVfVzZ6/Q3bd295HuPrKzs7Pi5gA4baWAd/dTi+8nktyd5Jp1DAXA3pYOeFX9cFW97PTtJL+Q5NF1DQbA+a3yLpTLk9xdVaef56+6++/XMhUAe1o64N39tSSvW+MsAFwAbyMEGErAAYYScICh1nEpPbCC3WP3bmS7T9xy/Ua2y/o4AgcYSsABhhJwgKEEHGAoAQcYSsABhhJwgKEEHGAoAQcYasyVmJu6Wg221SZ/p1wFuh6OwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGEnCAoQQcYCgBBxhKwAGGGvMXeYDt8WL8C1sH8VeIHIEDDCXgAEMJOMBQAg4wlIADDCXgAEOtFPCquq6qvlxVX62qY+saCoC9LR3wqrooyZ8keVuSq5LcUFVXrWswAM5vlSPwa5J8tbu/1t3/m+Svk7xrPWMBsJdVrsS8Msl/nnH/ySQ/ffZKVXU0ydHF3e9W1ZdX2Oa5XJbkW2t+zk3Yhv3Yhn1ItmM/tmEfki3aj/q9lfbjx8+18MAvpe/uW5PcelDPX1XHu/vIQT3/YdmG/diGfUi2Yz+2YR8S+7GXVU6hPJXklWfcf8ViGQCHYJWA/0uSV1fVT1TVDyb5lSSfWs9YAOxl6VMo3f1sVb0/yaeTXJTktu5+bG2T7d+BnZ45ZNuwH9uwD8l27Mc27ENiP86ruvsgnheAA+ZKTIChBBxgqK0IeFX9flV9qaoeqaq7q+pHNz3TMqrql6rqsar6XlWNeuvUNnysQlXdVlUnqurRTc+yrKp6ZVU9UFVfXPy/9IFNz7SMqnpJVf1zVf3bYj9+Z9MzLauqLqqqf62qv1n3c29FwJPcl+S13f2TSf4jyYc3PM+yHk3yi0ke3PQgF2KLPlbh9iTXbXqIFT2b5EPdfVWSa5PcPPS/xf8keVN3vy7J1Umuq6prNzzTsj6Q5PGDeOKtCHh3f6a7n13c/aecek/6ON39eHev+0rVw7AVH6vQ3Q8m+fam51hFdz/d3V9Y3H4mp8Jx5WanunB9yncXdy9ZfI17x0VVvSLJ9Un+4iCefysCfpb3Jfm7TQ/xInOuj1UYF41tU1W7SV6f5PObnWQ5i1MPDyc5keS+7p64H3+U5DeSfO8gnnzMX6Wvqn9I8mPneOgj3X3PYp2P5NQ/Ie88zNkuxH72A1ZVVS9N8okkH+zu72x6nmV093NJrl68pnV3Vb22u8e8PlFV70hyorsfqqo3HsQ2xgS8u99yvser6teSvCPJm/sF/Ob2vfZjKB+r8AJSVZfkVLzv7O5PbnqeVXX3f1XVAzn1+sSYgCd5Q5J3VtXbk7wkyY9U1V9296+uawNbcQqlqq7LqX+mvLO7/3vT87wI+ViFF4iqqiQfS/J4d3900/Msq6p2Tr+brKp+KMlbk3xps1NdmO7+cHe/ort3c+p34rPrjHeyJQFP8sdJXpbkvqp6uKr+bNMDLaOq3lNVTyb5mST3VtWnNz3TfixeQD79sQqPJ/n4hj5WYSVVdVeSzyV5TVU9WVU3bXqmJbwhyXuTvGnxu/Dw4ghwmiuSPFBVj+TUAcJ93b32t+FN51J6gKG25Qgc4EVHwAGGEnCAoQQcYCgBBxhKwAGGEnCAof4PVDVUutRsFosAAAAASUVORK5CYII=\n", 404 | "text/plain": [ 405 | "
" 406 | ] 407 | }, 408 | "metadata": { 409 | "needs_background": "light" 410 | } 411 | } 412 | ] 413 | }, 414 | { 415 | "cell_type": "markdown", 416 | "metadata": { 417 | "id": "G0exvwBbShBE" 418 | }, 419 | "source": [ 420 | "### generate a sine curve" 421 | ] 422 | }, 423 | { 424 | "cell_type": "code", 425 | "metadata": { 426 | "id": "HgQmRXzMShBE", 427 | "colab": { 428 | "base_uri": "https://localhost:8080/", 429 | "height": 282 430 | }, 431 | "outputId": "a266cc4f-3373-43c7-d8a8-3290c8bf4248" 432 | }, 433 | "source": [ 434 | "plt.figure()\n", 435 | "\n", 436 | "theta1 = np.linspace(0, 2*np.pi, 100)\n", 437 | "s1 = np.sin(theta1)\n", 438 | "theta2 = np.linspace(0, 2*np.pi, 100) + np.pi/2\n", 439 | "s2 = np.sin(theta2)\n", 440 | "\n", 441 | "plt.subplot(2, 1, 1) # (rows, columns, panel number)\n", 442 | "plt.plot(theta1, s1, '.')\n", 443 | "plt.subplot(2, 1, 2) # (rows, columns, panel number)\n", 444 | "plt.plot(theta2, s2, '.')" 445 | ], 446 | "execution_count": null, 447 | "outputs": [ 448 | { 449 | "output_type": "execute_result", 450 | "data": { 451 | "text/plain": [ 452 | "[]" 453 | ] 454 | }, 455 | "metadata": {}, 456 | "execution_count": 8 457 | }, 458 | { 459 | "output_type": "display_data", 460 | "data": { 461 | "text/plain": [ 462 | "
" 463 | ], 464 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXIAAAD4CAYAAADxeG0DAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAZ1klEQVR4nO3dXYxkdZnH8e9T3TORQVwmMxNhp6enmWCIyoUMnXFcDBERFyIRdWIAXy5MyOwFGlyzMb4k+HLlxcZodidGMqAYR4jLSzAsK2qcjXoxQteIYWDYzewsAw3owNisIiT9Us9edFVzuvpUdZ2qU/U//3N+n4RQXcyc+tcw/eunnv/LMXdHRETiVQs9ABERGYyCXEQkcgpyEZHIKchFRCKnIBcRidx4iBfdunWrT01NhXhpEZFo1ev1l9x9W/vzQYJ8amqKmZmZEC8tIhItMzuV9nwurRUzu8PMTpvZsTyuJyIivcurIv8+8K/AD3K6nmRUPzXHkZNn2LtrC0Cmx5fu3Bxm0CKSi1yC3N1/ZWZTeVxLuksL7M2bNvL1B59gfrHBeM3AjMWl3h5vHK9x67VvZ+7VeQW8SKRG1iM3s/3AfoDJyclRvWwptMK7U2DXzGi403BYWHLAcXp7PL/Q4NYHjtFw7xrwCnWR4rK8zlppVuQPuvvF6/3a6elp12Rnd2nhnQxsa/46Z3mio1Yz3J2xZhgvLTV6emzrXLPhrlAXKQgzq7v7dPvzQVatSLr1wht3ajXDWB3YG7q0R9Z73HqthcXOAZ+s2jeO1zh0016FuUiBKMgDau93f/zgka7h3S2w24M1+fV6jy8675yuAZ8M9YXFBkdOnun62iIyWrkEuZndBbwH2Gpms8BX3P32PK5dVvVTcyvBvXG8xr7dE8wvNtYN726B3a9Ld27uGvDJUN8wXmPzpo2rxq62i0hYea1auTGP61RBqwp//uXXVoJ7YbGBAxvHaythWYRwTAZ8smo/cvLMytjb2y5FGLdI1ai1MgKdVp2Mj9VWetz7dk+wb/dEYdsV7VV764eOeuki4SnIhyzZQkn2vpcazvV7drD93LNWBXcMwXfpzs0cumnvur30e4/OFvYHk0iZKMiHJK2F0t773rd7ItqAS2u7tK+Auac+u7ImXdW5yPAoyIcgWYW3t1DK2ENOC/XnX36Nux55RtW5yAgoyHOUVoV3aqGUVSvU66fmuPforKpzkRFQkOekWxUecwulX8k+uqpzkeFSkA9IVXhnqs5FRkNBPgBV4b1RdS4yXAryPqgKz07VucjwKMgzUhU+GFXnIvlTkPdIVXh+VJ2L5EtB3gNV4cOh6lwkHwryLlSFD5+qc5HBKcg7UBU+Wt2q8yMnz+jPW6QLBXkHyaNaVYWPRlp13jr//MDhE/qzF+lAQd4meeRs8nxwVeGjk3a6YusmFmqziKylIE9ov2tPGQ+4ikWrOj9w+MSqG3BoElRkLQU5ne/aM/fqPDdfcWHo4VXa3l1bVj4ZaRJUJF3lg7zbpGbrZsQSjiZBRdZX+SDXpGbxaRJUpLvKBrkmNeOjSVCRdJUMck1qxkuToCJrVTLIk+0UTWrGSZOgIq+rVJB3aqdoUjM+mgQVeV1lglztlPLpNAm6d9eWlR/a+v8rVVDqIE9+M6udUl7J6rz16Sr5Q1utFim70gZ5WgWudkp5tapzYM1EqFotUnalDfK0CjxZtekbu7ySE6Faby5VULog7zahmazapLy03lyqplRBrglNaem03lxtFimjWugB5KnThKa+caur1WYZM1a1Weqn5kIPTSQ3pajItT5cOlGbRaog+iBXO0XWozaLlF30rRW1U6RXarNIWUVbkaudIlmpzSJlFWWQq50i/dLpiVJGuQS5mV0NfBsYAw66+zfyuG4n2m4vg9LpiVImAwe5mY0BB4CrgFngUTP7ibs/Oei126mdInnR6YkSwrAOc8ujIt8DnHD3kwBmdjdwHZBrkKudInnTLeRklNozLM9PfnkE+Xbg2cTXs8A723+Rme0H9gNMTk5mfhG1U2RYNAkqo9CeYXl+8hvZ8kN3v83dp919etu2bZl/f/vSMbVTJE+X7tzMzVdcyNyr82u+2UT6VT81t7LEdZgZlkdF/hywI/H1RPO5XLWfOa0qSYZBJydKXtJaKcPKsDyC/FHgLWZ2AcsBfgPwsRyuu4ZOL5RhU5tFBtWa0Hz+5dfWfLob1mbFgYPc3RfN7NPAwywvP7zD3Z8YeGQigWhLv/QrWYWP14zxsRpLS8NfXZfLOnJ3fwh4KI9riRSF2iySVXJCc6nhXL9nB9vPPWvof2ei3NkpMgpqs0ivOu1x2bd7YiR/TxTkIl2ozSLrKcIel+hPPxQZBZ2cKJ0U4QRWVeQiPVCbRdoV6cgQBblIj3RyorQUoZ2SpCAXyUgnJ0rRjgxRkItkpJMTq6tI7ZQkBblIH3RyYvUUrZ2SpCAXGYAmQcuv05b70O2UJAW5yIC01ry8Qm25z0pBLpITbekvn1Bb7rNSkIvkRG2W8gi95T4rBblIjrTWPH5FntTsREEuMgRaax6voq0R74WCXGQItNY8PkVdI94LBbnIkGiteTxibKckKchFhkyToMUVwxrxXijIRUag21pzQBOhAcSyRrwXCnKREUpba95+p3WF+XClVeFFXiPeCwW5yAgl2yx7d21Zs0JCE6HD1a0KL+oa8V4oyEVGrNVmadFu0NGJZadmVgpykYA0EToase3UzEpBLhKYdoMOV+xLC3uhIBcpCO0GzVdZlhb2QkEuUhDddoOqOs+mTEsLe6EgFymQtN2gqs57V8alhb1QkIsUkKrz7Mq6tLAXCnKRglJ1vr5WBd6+Jr8KVXiSglyk4FSdr5ZcSphcrnnrtW8v5dLCXijIRSLQS3VexmV17ZLtk5oZDfdVq1GSu2bL+meQRkEuEpFO1fn8QoNbHzhGw72ULZe0SUzcqdUMw1dWo7Tvmq0KBblIZNKqc2urTsvQcklrobRPYlbhU0gvFOQikUrb3l+WlkunFkrVJjF7pSAXiViylXDReees23Ipeqj30kKp0iRmrxTkIiWxXsulqKGuFsrgzN1H/qLT09M+MzMz8tcVqYr2cGwP9RpQq9lIQz255htYE97JFsqYwfV7JtVCaWNmdXefbn9+oIrczD4KfBV4K7DH3ZXOIgWQ1nLpFOrrVerJAO4lUNcL7PGagRmLS6vDWy2U/g3aWjkGfAT4bg5jEZEhGDTU2zfdtEIe6CuwF5YccBzWhLdaKP0ZKMjd/TiAmeUzGhEZqiyhvrDY4D+OvbAy6ZgM+WRIZw3sseavV/87PyOb7DSz/cB+gMnJyVG9rIh0sF6obxivcc3F5/Po039aG/KJkO4nsIHo17kXybpBbma/AM5L+U9fdvcHen0hd78NuA2WJzt7HqGIDF1aqLdCNi3kkyHdb2ArwPOzbpC7+/tGMRARKYb2be6dQh7W9sgV2GFoHbmI9Cwt5NMey2gNtI7czD4M/AuwDXgZeMzd/76H3/cicKrPl90KvNTn7y2K2N+Dxh9e7O8h9vFDmPew0923tT8ZZEPQIMxsJm1BfExifw8af3ixv4fYxw/Feg+10AMQEZHBKMhFRCIXY5DfFnoAOYj9PWj84cX+HmIfPxToPUTXIxcRkdVirMhFRCRBQS4iErmogtzMrjaz/zKzE2b2hdDjycrM7jCz02Z2LPRY+mFmO8zssJk9aWZPmNktoceUhZm9wcweMbPfN8f/tdBj6oeZjZnZ78zswdBj6YeZPW1mj5vZY2YW3dHXZnaumd1jZk+Z2XEze1fwMcXSIzezMeC/gauAWeBR4EZ3fzLowDIws8uBV4AfuPvFoceTlZmdD5zv7kfN7BygDnwolv8HtnxM59nu/oqZbQB+A9zi7kcCDy0TM/scMA28yd2vDT2erMzsaWDa3aPcEGRmdwK/dveDZrYR2OTuL4ccU0wV+R7ghLufdPd54G7gusBjysTdfwX8KfQ4+uXuL7j70ebjvwDHge1hR9U7X/ZK88sNzX/iqGSazGwC+ABwMPRYqsjM/ga4HLgdwN3nQ4c4xBXk24FnE1/PElGIlI2ZTQGXAL8NO5Jsmm2Jx4DTwM/dParxA98CPg80Qg9kAA78zMzqzeOtY3IB8CLwvWZ766CZnR16UDEFuRSEmb0RuBf4rLv/OfR4snD3JXd/BzAB7DGzaFpcZnYtcNrd66HHMqB3u/tu4Brg5mbLMRbjwG7gO+5+CfBXIPh8XUxB/hywI/H1RPM5GaFmb/le4JC73xd6PP1qfhw+DFwdeiwZXAZ8sNljvht4r5n9MOyQsnP355r/Pg3cz3LbNBazwGzik9w9LAd7UDEF+aPAW8zsguYEww3ATwKPqVKak4W3A8fd/Zuhx5OVmW0zs3Obj89ieeL8qbCj6p27f9HdJ9x9iuW//790908EHlYmZnZ2c6KcZkvi/Szf+zcK7v4H4Fkzu6j51JVA8Mn+aM4jd/dFM/s08DAwBtzh7k8EHlYmZnYX8B5gq5nNAl9x99vDjiqTy4BPAo83+8wAX3L3hwKOKYvzgTubK6BqwI/dPcolfBF7M3B/8z6/48CP3P2nYYeU2WeAQ82C8iTwqcDjiWf5oYiIpIuptSIiIikU5CIikVOQi4hELshk59atW31qairES4uIRKter7+Uds/OXILczO4AWpsV1t1gMTU1xcxMdGfliIgEZWapN63Pq7XyfUawsaJ+ao4Dh09QPzU37JcSEcndsDIsl4rc3X/VPHtjaOqn5vj4wSPMLzbYOF7j1mvfztyr8+zdtQWAIyfPrHl86c7NwxySiAiwnE9pGdT+OJlhh27am1tGjaxH3jwcZz/A5ORk5t9/5OQZ5hcbNBzmFxrc+sAxGu6M1wzMWFxqrHrcHvYKdRHJUyu8N2/ayNcffIL5xUbXPNq3e2IlwxYWGxw5eSa+IHf322jerHR6ejrzLqS9u7awcbzGwmIDM6PhvvwHsuSA46x+nAz71k8/ULUuIv1LC+9aD3m0sNjAYSXDNozXVqr0PESzRf/SnZs5dNPeVX+IC4sNxpo/9ZaWVj9eFfaLDe49Ost9R2dTWzMKdRHpZL3wxp1azTC8Yx5taFbk+3ZPDKWYjCbIYTnMW2/+ovPO6dqTSob9hvEaBqmtGYW6iLTLEt4bMs7ZDSNjcjlrJXkYFPBH1jkManp62kex/LB9AuLjB4+sac3UgFrNFOoiFbdeeLeywn1teI8qK8ys7u7Ta54PcWjWqIK8Xfv/qPVCPc9ZZREpruSquKKFd1KnII+qtTKotNZMp1Bv9dU1OSpSXq3i7vmXX1tpvXZrmxQ1ByoV5EnrhfpYzbinPquljCIl02nZ4PhYbWViMrbv90q1VnqR/Al91yPPqOUiUiKdWihjBtfvmWT7uWcVOrzVWulRq1Kvn5rj3qOzarmIlEAvLZR9uyei/X5WkHfQbd16suWi6lyk2JJVeOwtlE4U5F2k9dGTLRdV5yLFlVaFLzWc6/fsKHwLJSsFeY/SWi6qzkWKqVsVHnMLpRMFeUbJlouqc5FiqVIVnqQg74Oqc5HiqVoVnqQgH4Cqc5GwksdwJI+6rkIVnqQgH5Cqc5Ew0m42kzwmtuxVeJKCPCeqzkVGI60PvrDYYO7V+ZXvwap9rynIc6TqXGS4uvXBW+Fdxe8vBfkQdKvO87y9k0jVVLkP3o2CfEjSqvMN4zU2b9rIgcMnKv8XTySL5EFXVe2Dd6MgH7K0rf7DuIu2SFmlTWqWYVt9nhTkI9Cqzg8cPrFqckaToCKddZvUvPmKC0MPr1AU5CO0d9eWlY+FmgQV6Wy9SU1ZTUE+QpoEFemNJjWzUZCPWKdJ0L27tqzapaa/rFJFmtTsj4I8kGR13vqomJzQUatFqkaTmv1TkAeU3LygiVCpKk1qDk5BXhCaCJUq0qRmPhTkBaGJUKkiTWrmQ0FeINoNKlWhSc18KcgLSLtBpcw0qZm/WugBSLpLd27m5isuZO7V+VUTQEdOngk9NJGBJNspyUlNhXj/FOQF15oEHTNWtVnqp+ZCD00kk/qpOQ4cPrHSTmn9ndak5uDUWik4tVmkDNROGS5V5BFQm0Vip3bKcCnII6I2i8RG7ZTRUGslImqzSEzUThkdBXlkdLa5FJ223I+egjxS2tIvRaQt92EoyCOlLf1SRNpyH4aCPGLa0i9FoS33YeUS5GZ2NfBtYAw46O7fyOO60htNgkpImtQMb+Dlh2Y2BhwArgHeBtxoZm8b9LqSjdaaSyhaIx5eHuvI9wAn3P2ku88DdwPX5XBd6YPWmsuoaI14ceTRWtkOPJv4ehZ4Z/svMrP9wH6AycnJHF5W0qjNIqOgdkqxjGxnp7vf5u7T7j69bdu2Ub1sJanNIsOmdkqx5BHkzwE7El9PNJ+TwNRmkbypnVJMebRWHgXeYmYXsBzgNwAfy+G6MiC1WSRPaqcU18AVubsvAp8GHgaOAz929ycGva7kQ20WyYvaKcWVyzpyd38IeCiPa8lwJLf0a9OQZNFps4/aKcWhnZ0VoTaL9EPtlDjoPPIKUZtFslI7JQ4K8grSahbpprUypX5qbs3fFbVTisncfeQvOj097TMzMyN/XXldsu+pNou0tLdSDt20F0Bn3ReEmdXdfbr9efXIK0o3qJCkTjeDOHLyjFopEVCQV5xuUCG6GUT8FOQVpxtUiG4GET8FuegGFRWlm0GUh4JcVmiteXVofXi5aPmhrKK15tWg9eHloiCXVFprXk46vbCc1FqRVGqzlI/aKeWlIJeOOq01b7VZtN48Dp3WiLfaKRI/BbmsK+3kxPbdfwrzYtIa8WpQkMu6km2Wvbu2rJko03rz4tIa8WpQkEtPWm2WFp1tXmxaI14tCnLJTBOhxaZJzepRkEtfdOhW8WhSs7oU5DIQHbpVDJrUrDYFuQxEh24VgyY1q01BLgPToVvhaFJTQEEuOdIk6GhpUlNaFOSSK02CDp8mNaWdglyGQpOgw6FJTUmjIJeh6DYJquo8u7QqXJOa0qIgl6FJmwRVdZ5dtypck5oCCnIZAVXn/VEVLr1SkMtIqDrPRlW4ZKEgl5FSdd6dqnDph4JcRq6X6rxKa6KTm3paa+9VhUsW5u4jf9Hp6WmfmZkZ+etK8SQr0FZ1XgNqNaPhXvqWS7KFUrPl99xwGDO4fs+kqnBZxczq7j7d/rwqcgkqrTq3RKCVseXS+uHVfpMO3KnVDMNVhUsmCnIphLTt/WVquaS1T1rvJ3lGSqzvT8JSkEthJO9CdNF556xpucwvNLj1gWPRtVw6tU9a2+qTt9GL4f1I8SjIpZDK0HJJW4HS3j5pjb2I45d4KMil0GJrufSyAqUoY5XyGGjVipl9FPgq8FZgj7v3tBRFq1akX72ucgFWqvXk47yCMzlh2bp+Mry1AkWGYVirVo4BHwG+O+B1RHrSa8vlvqOzK9UwZqmVO6SH/XqP26vt1vWT4a0VKDJKAwW5ux8HMLN8RiPSo04tlw3jNQxeP6d7yQHHWT1ZmgzgrI9XTVgmrt8e3mqhyKiMrEduZvuB/QCTk5OjelkpsbRVLq3KObljFDOWltoq90QAZ32cDOzk9RXeEsq6PXIz+wVwXsp/+rK7P9D8Nf8J/JN65FIU3XrY7QGf9XF7YLeur/CWYeu7R+7u7xvOkESGp31JX6fKvd/H7YGtAJeQcjlrRRW5iMjwdarIawNe9MNmNgu8C/h3M3t4kOuJiEh2QU4/NLMXgVMjf+HOtgIvhR7EAGIfP8T/HmIfP8T/HmIfP6z/Hna6+7b2J4MEedGY2Uzax5VYxD5+iP89xD5+iP89xD5+6P89DNRaERGR8BTkIiKRU5Avuy30AAYU+/gh/vcQ+/gh/vcQ+/ihz/egHrmISORUkYuIRE5BLiISuUoHuZntMLPDZvakmT1hZreEHlMWZvYGM3vEzH7fHP/XQo+pH2Y2Zma/M7MHQ4+lH2b2tJk9bmaPmVl0W5bN7Fwzu8fMnjKz42b2rtBjysLMLmr+2bf++bOZfTb0uLIws39sfg8fM7O7zOwNmX5/lXvkZnY+cL67HzWzc4A68CF3fzLw0Hpiy+cHn+3ur5jZBuA3wC3ufiTw0DIxs88B08Cb3P3a0OPJysyeBqbdPcrNKGZ2J/Brdz9oZhuBTe7+cuhx9cPMxoDngHe6e5E2HXZkZttZ/t59m7u/ZmY/Bh5y9+/3eo1KV+Tu/oK7H20+/gtwHNgedlS982WvNL/c0Pwnqp/MZjYBfAA4GHosVWRmfwNcDtwO4O7zsYZ405XA/8QS4gnjwFlmNg5sAp7P8psrHeRJZjYFXAL8NuxIsmm2JR4DTgM/d/eoxg98C/g80Ag9kAE48DMzqzfP3Y/JBcCLwPea7a2DZnZ26EEN4AbgrtCDyMLdnwP+GXgGeAH4P3f/WZZrKMgBM3sjcC/wWXf/c+jxZOHuS+7+DmAC2GNmF4ceU6/M7FrgtLvXQ49lQO92993ANcDNZnZ56AFlMA7sBr7j7pcAfwW+EHZI/Wm2hT4I/FvosWRhZpuB61j+ofq3wNlm9oks16h8kDd7y/cCh9z9vtDj6Vfz4/Bh4OrQY8ngMuCDzR7z3cB7zeyHYYeUXbOiwt1PA/cDe8KOKJNZYDbxSe4eloM9RtcAR939j6EHktH7gP919xfdfQG4D/i7LBeodJA3JwtvB467+zdDjycrM9tmZuc2H58FXAU8FXZUvXP3L7r7hLtPsfyR+JfunqkSCc3Mzm5OlNNsSbyf5ZuSR8Hd/wA8a2YXNZ+6Eohisj/FjUTWVml6BthrZpuamXQly/N1PRvZPTsL6jLgk8DjzT4zwJfc/aGAY8rifODO5kx9Dfixu0e5hC9ibwbub96AfBz4kbv/NOyQMvsMcKjZmjgJfCrweDJr/hC9CviH0GPJyt1/a2b3AEeBReB3ZNyqX+nlhyIiZVDp1oqISBkoyEVEIqcgFxGJnIJcRCRyCnIRkcgpyEVEIqcgFxGJ3P8DTBmcjC+j74gAAAAASUVORK5CYII=\n" 465 | }, 466 | "metadata": { 467 | "needs_background": "light" 468 | } 469 | } 470 | ] 471 | }, 472 | { 473 | "cell_type": "code", 474 | "metadata": { 475 | "id": "TuH489v9BvQ7", 476 | "colab": { 477 | "base_uri": "https://localhost:8080/" 478 | }, 479 | "outputId": "80f021a2-50ec-4eb5-aed7-4faf9a306496" 480 | }, 481 | "source": [ 482 | "np.corrcoef(s1,s2)" 483 | ], 484 | "execution_count": null, 485 | "outputs": [ 486 | { 487 | "output_type": "execute_result", 488 | "data": { 489 | "text/plain": [ 490 | "array([[1.00000000e+00, 2.41915449e-17],\n", 491 | " [2.41915449e-17, 1.00000000e+00]])" 492 | ] 493 | }, 494 | "metadata": {}, 495 | "execution_count": 11 496 | } 497 | ] 498 | } 499 | ] 500 | } -------------------------------------------------------------------------------- /pandas.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "pandas.ipynb", 7 | "provenance": [], 8 | "authorship_tag": "ABX9TyMt4W/bQNRo+t800DtLn3Ib", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "markdown", 32 | "source": [ 33 | "### Importing libraries" 34 | ], 35 | "metadata": { 36 | "id": "t6YRFy8vHw3f" 37 | } 38 | }, 39 | { 40 | "cell_type": "code", 41 | "source": [ 42 | "import pandas as pd " 43 | ], 44 | "metadata": { 45 | "id": "km1FLv12HwfE" 46 | }, 47 | "execution_count": null, 48 | "outputs": [] 49 | }, 50 | { 51 | "cell_type": "markdown", 52 | "source": [ 53 | "### Loading csv file" 54 | ], 55 | "metadata": { 56 | "id": "l9hcO5nhFNBs" 57 | } 58 | }, 59 | { 60 | "cell_type": "code", 61 | "execution_count": null, 62 | "metadata": { 63 | "id": "IlcjthG78XD5" 64 | }, 65 | "outputs": [], 66 | "source": [ 67 | "df = pd.read_csv(\"https://download.mlcc.google.com/mledu-datasets/california_housing_train.csv\", sep=\",\")\n", 68 | "df" 69 | ] 70 | }, 71 | { 72 | "cell_type": "code", 73 | "source": [ 74 | "print(df.size); print(df.ndim); print(df.shape)" 75 | ], 76 | "metadata": { 77 | "id": "TccKwiUEB3S-" 78 | }, 79 | "execution_count": null, 80 | "outputs": [] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "source": [ 85 | "df.describe()" 86 | ], 87 | "metadata": { 88 | "id": "kP3NoboG8iAs" 89 | }, 90 | "execution_count": null, 91 | "outputs": [] 92 | }, 93 | { 94 | "cell_type": "markdown", 95 | "source": [ 96 | "### Saving to CSV" 97 | ], 98 | "metadata": { 99 | "id": "YDgsE5VsG7EK" 100 | } 101 | }, 102 | { 103 | "cell_type": "code", 104 | "source": [ 105 | "df.to_csv('california_housing_train.csv')" 106 | ], 107 | "metadata": { 108 | "id": "p0HH9Mf6G6xp" 109 | }, 110 | "execution_count": null, 111 | "outputs": [] 112 | }, 113 | { 114 | "cell_type": "markdown", 115 | "metadata": { 116 | "id": "NysUV4ad32LJ" 117 | }, 118 | "source": [ 119 | "### Constructing a DataFrame using dict" 120 | ] 121 | }, 122 | { 123 | "cell_type": "code", 124 | "execution_count": null, 125 | "metadata": { 126 | "id": "CI7tYc4Q32LK" 127 | }, 128 | "outputs": [], 129 | "source": [ 130 | "# Some input data - a small sample of the iris dataset\n", 131 | "data = {'sepal_length': [6.9, 6.9, 4.8, 5.4, 4.6],\n", 132 | " 'sepal_width': [3.2, 3.1, 3.4, 3.0, 3.6],\n", 133 | " 'petal_length': [5.7, 5.1, 1.9, 4.5, 1.0],\n", 134 | " 'petal_width': [2.3, 2.3, 0.2, 1.5, 0.2],\n", 135 | " 'species': ['virginica', 'virginica', 'setosa', 'versicolor', 'setosa']}\n", 136 | "\n", 137 | "df = pd.DataFrame(data)\n", 138 | "df " 139 | ] 140 | }, 141 | { 142 | "cell_type": "markdown", 143 | "source": [ 144 | "### Constructing a DataFrame using pd.Series" 145 | ], 146 | "metadata": { 147 | "id": "4xktp6-HLv2W" 148 | } 149 | }, 150 | { 151 | "cell_type": "code", 152 | "source": [ 153 | "sepal_length = pd.Series([6.9, 6.9, 4.8, 5.4, 4.6])\n", 154 | "sepal_width = pd.Series([3.2, 3.1, 3.4, 3.0, 3.6])\n", 155 | "petal_length = pd.Series([5.7, 5.1, 1.9, 4.5, 1.0])\n", 156 | "petal_width = pd.Series([2.3, 2.3, 0.2, 1.5, 0.2])\n", 157 | "species = pd.Series(['virginica', 'virginica', 'setosa', 'versicolor', 'setosa'])\n", 158 | "\n", 159 | "df = pd.DataFrame({'sepal_length': sepal_length, 'sepal_width': sepal_width, 'petal_length': petal_length, 'petal_width': petal_width, 'SPECIES': species})\n", 160 | "df" 161 | ], 162 | "metadata": { 163 | "id": "tOXBW0W4_c3e" 164 | }, 165 | "execution_count": null, 166 | "outputs": [] 167 | }, 168 | { 169 | "cell_type": "markdown", 170 | "metadata": { 171 | "id": "btyJ4nIB32LM" 172 | }, 173 | "source": [ 174 | "### Changing column names" 175 | ] 176 | }, 177 | { 178 | "cell_type": "code", 179 | "execution_count": null, 180 | "metadata": { 181 | "id": "iBsTsL0J32LN" 182 | }, 183 | "outputs": [], 184 | "source": [ 185 | "# Change the columns\n", 186 | "df.columns = ['sepal_length', 'sepal_width', 'petal_length', 'petal_width', 'species']\n", 187 | "df" 188 | ] 189 | }, 190 | { 191 | "cell_type": "markdown", 192 | "metadata": { 193 | "id": "8NRfX2U332LO" 194 | }, 195 | "source": [ 196 | "### Accessing columns" 197 | ] 198 | }, 199 | { 200 | "cell_type": "code", 201 | "execution_count": null, 202 | "metadata": { 203 | "id": "DBAAnC1I32LO" 204 | }, 205 | "outputs": [], 206 | "source": [ 207 | "# Access one column \n", 208 | "df.loc[:, 'sepal_length']" 209 | ] 210 | }, 211 | { 212 | "cell_type": "code", 213 | "execution_count": null, 214 | "metadata": { 215 | "id": "gDBR--u832LO" 216 | }, 217 | "outputs": [], 218 | "source": [ 219 | "# Access one column (short-hand)\n", 220 | "df['sepal_length']" 221 | ] 222 | }, 223 | { 224 | "cell_type": "code", 225 | "source": [ 226 | "# Access one column (shortest-hand)\n", 227 | "df.sepal_length" 228 | ], 229 | "metadata": { 230 | "id": "ix7c1jzFQRTe" 231 | }, 232 | "execution_count": null, 233 | "outputs": [] 234 | }, 235 | { 236 | "cell_type": "code", 237 | "execution_count": null, 238 | "metadata": { 239 | "id": "DaXVg9Gs32LP" 240 | }, 241 | "outputs": [], 242 | "source": [ 243 | "# Access two columns\n", 244 | "df.loc[:, ['sepal_length', 'sepal_width']]" 245 | ] 246 | }, 247 | { 248 | "cell_type": "code", 249 | "execution_count": null, 250 | "metadata": { 251 | "id": "zyXCD9yl32LP" 252 | }, 253 | "outputs": [], 254 | "source": [ 255 | "# Access two columns (short-hand)\n", 256 | "df[['sepal_length', 'sepal_width']]" 257 | ] 258 | }, 259 | { 260 | "cell_type": "markdown", 261 | "metadata": { 262 | "id": "G7IgmghJ32LP" 263 | }, 264 | "source": [ 265 | "### Accessing rows" 266 | ] 267 | }, 268 | { 269 | "cell_type": "code", 270 | "execution_count": null, 271 | "metadata": { 272 | "id": "jS7CLQR532LP" 273 | }, 274 | "outputs": [], 275 | "source": [ 276 | "# Access one row \n", 277 | "df.loc[3, :]" 278 | ] 279 | }, 280 | { 281 | "cell_type": "code", 282 | "execution_count": null, 283 | "metadata": { 284 | "id": "_eZBMb0q32LP" 285 | }, 286 | "outputs": [], 287 | "source": [ 288 | "# Access two rows\n", 289 | "df.loc[[3, 0], :]" 290 | ] 291 | }, 292 | { 293 | "cell_type": "code", 294 | "execution_count": null, 295 | "metadata": { 296 | "id": "DtxCf_Rf32LQ" 297 | }, 298 | "outputs": [], 299 | "source": [ 300 | "# Access a range of rows\n", 301 | "df.loc[2:5, :]" 302 | ] 303 | }, 304 | { 305 | "cell_type": "code", 306 | "execution_count": null, 307 | "metadata": { 308 | "id": "Zm8edm9Z32LQ" 309 | }, 310 | "outputs": [], 311 | "source": [ 312 | "# Filter keeping only rows with `sepal_length` > 5\n", 313 | "df[df.sepal_length > 5]" 314 | ] 315 | }, 316 | { 317 | "cell_type": "markdown", 318 | "source": [ 319 | "### Accessing a cell" 320 | ], 321 | "metadata": { 322 | "id": "lcXgjiuwM4SR" 323 | } 324 | }, 325 | { 326 | "cell_type": "code", 327 | "source": [ 328 | "df.loc[:, 'sepal_length'][4]" 329 | ], 330 | "metadata": { 331 | "id": "an1xbTN4Q1vA", 332 | "outputId": "459d6495-fb29-49fc-9ff3-81b08df472e8", 333 | "colab": { 334 | "base_uri": "https://localhost:8080/" 335 | } 336 | }, 337 | "execution_count": null, 338 | "outputs": [ 339 | { 340 | "output_type": "execute_result", 341 | "data": { 342 | "text/plain": [ 343 | "4.6" 344 | ] 345 | }, 346 | "metadata": {}, 347 | "execution_count": 68 348 | } 349 | ] 350 | }, 351 | { 352 | "cell_type": "code", 353 | "source": [ 354 | "df['sepal_length'][4]" 355 | ], 356 | "metadata": { 357 | "id": "PJw7-zu4M4or", 358 | "outputId": "3d0bb0e1-ff8b-48ff-ab3c-f459b43b7942", 359 | "colab": { 360 | "base_uri": "https://localhost:8080/" 361 | } 362 | }, 363 | "execution_count": null, 364 | "outputs": [ 365 | { 366 | "output_type": "execute_result", 367 | "data": { 368 | "text/plain": [ 369 | "4.6" 370 | ] 371 | }, 372 | "metadata": {}, 373 | "execution_count": 67 374 | } 375 | ] 376 | }, 377 | { 378 | "cell_type": "code", 379 | "source": [ 380 | "df.sepal_length[4]" 381 | ], 382 | "metadata": { 383 | "id": "HkMdk-H-Q1lL", 384 | "outputId": "1fb2ebe4-9d50-4c4a-d123-e0c2dd1d834f", 385 | "colab": { 386 | "base_uri": "https://localhost:8080/" 387 | } 388 | }, 389 | "execution_count": null, 390 | "outputs": [ 391 | { 392 | "output_type": "execute_result", 393 | "data": { 394 | "text/plain": [ 395 | "4.6" 396 | ] 397 | }, 398 | "metadata": {}, 399 | "execution_count": 66 400 | } 401 | ] 402 | }, 403 | { 404 | "cell_type": "markdown", 405 | "metadata": { 406 | "id": "26641I8q32LR" 407 | }, 408 | "source": [ 409 | "### Adding/Removing new columns" 410 | ] 411 | }, 412 | { 413 | "cell_type": "code", 414 | "execution_count": null, 415 | "metadata": { 416 | "id": "-EZ10v9s32LR" 417 | }, 418 | "outputs": [], 419 | "source": [ 420 | "df['new_column'] = 1\n", 421 | "df" 422 | ] 423 | }, 424 | { 425 | "cell_type": "code", 426 | "execution_count": null, 427 | "metadata": { 428 | "id": "O2P8oNUm32LR" 429 | }, 430 | "outputs": [], 431 | "source": [ 432 | "df['new_column'] = [1, 2, 3, 4, 5]\n", 433 | "df" 434 | ] 435 | }, 436 | { 437 | "cell_type": "code", 438 | "source": [ 439 | "df = df.drop('new_column', axis=1) # axis=1: column\n", 440 | "df" 441 | ], 442 | "metadata": { 443 | "id": "WTTZwNEZSS2C" 444 | }, 445 | "execution_count": null, 446 | "outputs": [] 447 | }, 448 | { 449 | "cell_type": "markdown", 450 | "source": [ 451 | "### Adding/Removing new rows" 452 | ], 453 | "metadata": { 454 | "id": "f5sF36S2Tob3" 455 | } 456 | }, 457 | { 458 | "cell_type": "code", 459 | "source": [ 460 | "df.loc[5, :] = ''\n", 461 | "df" 462 | ], 463 | "metadata": { 464 | "id": "BGdOrz-kRbhv" 465 | }, 466 | "execution_count": null, 467 | "outputs": [] 468 | }, 469 | { 470 | "cell_type": "code", 471 | "source": [ 472 | "df = df.drop(5, axis=0) # axis=0: row\n", 473 | "df" 474 | ], 475 | "metadata": { 476 | "id": "0q5Oov0CS_aZ" 477 | }, 478 | "execution_count": null, 479 | "outputs": [] 480 | } 481 | ] 482 | } -------------------------------------------------------------------------------- /regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "authorship_tag": "ABX9TyPDkP9CJ6xeHWvHhhmjzSKZ", 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "markdown", 21 | "metadata": { 22 | "id": "view-in-github", 23 | "colab_type": "text" 24 | }, 25 | "source": [ 26 | "\"Open" 27 | ] 28 | }, 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "EJYv5IDxwcnS" 33 | }, 34 | "source": [ 35 | "## Loading a dataset" 36 | ] 37 | }, 38 | { 39 | "cell_type": "code", 40 | "execution_count": 1, 41 | "metadata": { 42 | "id": "UbhqZ2xOwcnX" 43 | }, 44 | "outputs": [], 45 | "source": [ 46 | "import pandas as pd" 47 | ] 48 | }, 49 | { 50 | "cell_type": "markdown", 51 | "metadata": { 52 | "id": "01oxANUgwcnX" 53 | }, 54 | "source": [ 55 | "### computer hardware dataset" 56 | ] 57 | }, 58 | { 59 | "cell_type": "code", 60 | "execution_count": 2, 61 | "metadata": { 62 | "id": "G6LdpzV9wcnZ", 63 | "outputId": "025a729f-10c9-48d3-fa78-1930e6b797c8", 64 | "colab": { 65 | "base_uri": "https://localhost:8080/", 66 | "height": 206 67 | } 68 | }, 69 | "outputs": [ 70 | { 71 | "output_type": "execute_result", 72 | "data": { 73 | "text/plain": [ 74 | " vendor model MYCT MMIN MMAX CACH CHMIN CHMAX PRP label\n", 75 | "0 0 29 125 256 6000 256 16 128 198 199\n", 76 | "1 1 62 29 8000 32000 32 8 32 269 253\n", 77 | "2 1 63 29 8000 32000 32 8 32 220 253\n", 78 | "3 1 64 29 8000 32000 32 8 32 172 253\n", 79 | "4 1 65 29 8000 16000 32 8 16 132 132" 80 | ], 81 | "text/html": [ 82 | "\n", 83 | "
\n", 84 | "
\n", 85 | "
\n", 86 | "\n", 99 | "\n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | "
vendormodelMYCTMMINMMAXCACHCHMINCHMAXPRPlabel
0029125256600025616128198199
11622980003200032832269253
21632980003200032832220253
31642980003200032832172253
41652980001600032816132132
\n", 183 | "
\n", 184 | " \n", 194 | " \n", 195 | " \n", 232 | "\n", 233 | " \n", 257 | "
\n", 258 | "
\n", 259 | " " 260 | ] 261 | }, 262 | "metadata": {}, 263 | "execution_count": 2 264 | } 265 | ], 266 | "source": [ 267 | "from sklearn.preprocessing import LabelEncoder\n", 268 | "le = LabelEncoder()\n", 269 | "computer_hardware = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/cpu-performance/machine.data', header=None, names=['vendor', 'model', 'MYCT', 'MMIN', 'MMAX', 'CACH', 'CHMIN', 'CHMAX', 'PRP', 'label'])\n", 270 | "computer_hardware['vendor'] = le.fit_transform(computer_hardware['vendor'])\n", 271 | "computer_hardware['model'] = le.fit_transform(computer_hardware['model'])\n", 272 | "computer_hardware.head()" 273 | ] 274 | }, 275 | { 276 | "cell_type": "markdown", 277 | "metadata": { 278 | "id": "V-quACWgzeVa" 279 | }, 280 | "source": [ 281 | "### parkinsons dataset" 282 | ] 283 | }, 284 | { 285 | "cell_type": "code", 286 | "execution_count": 3, 287 | "metadata": { 288 | "id": "LpnoApn2wcna", 289 | "outputId": "0218d7bc-0205-4711-9455-8eb8d09514ea", 290 | "colab": { 291 | "base_uri": "https://localhost:8080/", 292 | "height": 300 293 | } 294 | }, 295 | "outputs": [ 296 | { 297 | "output_type": "execute_result", 298 | "data": { 299 | "text/plain": [ 300 | " subject# age sex test_time label total_UPDRS Jitter(%) Jitter(Abs) \\\n", 301 | "0 1 72 0 5.6431 28.199 34.398 0.00662 0.000034 \n", 302 | "1 1 72 0 12.6660 28.447 34.894 0.00300 0.000017 \n", 303 | "2 1 72 0 19.6810 28.695 35.389 0.00481 0.000025 \n", 304 | "3 1 72 0 25.6470 28.905 35.810 0.00528 0.000027 \n", 305 | "4 1 72 0 33.6420 29.187 36.375 0.00335 0.000020 \n", 306 | "\n", 307 | " Jitter:RAP Jitter:PPQ5 ... Shimmer(dB) Shimmer:APQ3 Shimmer:APQ5 \\\n", 308 | "0 0.00401 0.00317 ... 0.230 0.01438 0.01309 \n", 309 | "1 0.00132 0.00150 ... 0.179 0.00994 0.01072 \n", 310 | "2 0.00205 0.00208 ... 0.181 0.00734 0.00844 \n", 311 | "3 0.00191 0.00264 ... 0.327 0.01106 0.01265 \n", 312 | "4 0.00093 0.00130 ... 0.176 0.00679 0.00929 \n", 313 | "\n", 314 | " Shimmer:APQ11 Shimmer:DDA NHR HNR RPDE DFA PPE \n", 315 | "0 0.01662 0.04314 0.014290 21.640 0.41888 0.54842 0.16006 \n", 316 | "1 0.01689 0.02982 0.011112 27.183 0.43493 0.56477 0.10810 \n", 317 | "2 0.01458 0.02202 0.020220 23.047 0.46222 0.54405 0.21014 \n", 318 | "3 0.01963 0.03317 0.027837 24.445 0.48730 0.57794 0.33277 \n", 319 | "4 0.01819 0.02036 0.011625 26.126 0.47188 0.56122 0.19361 \n", 320 | "\n", 321 | "[5 rows x 22 columns]" 322 | ], 323 | "text/html": [ 324 | "\n", 325 | "
\n", 326 | "
\n", 327 | "
\n", 328 | "\n", 341 | "\n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | "
subject#agesextest_timelabeltotal_UPDRSJitter(%)Jitter(Abs)Jitter:RAPJitter:PPQ5...Shimmer(dB)Shimmer:APQ3Shimmer:APQ5Shimmer:APQ11Shimmer:DDANHRHNRRPDEDFAPPE
017205.643128.19934.3980.006620.0000340.004010.00317...0.2300.014380.013090.016620.043140.01429021.6400.418880.548420.16006
1172012.666028.44734.8940.003000.0000170.001320.00150...0.1790.009940.010720.016890.029820.01111227.1830.434930.564770.10810
2172019.681028.69535.3890.004810.0000250.002050.00208...0.1810.007340.008440.014580.022020.02022023.0470.462220.544050.21014
3172025.647028.90535.8100.005280.0000270.001910.00264...0.3270.011060.012650.019630.033170.02783724.4450.487300.577940.33277
4172033.642029.18736.3750.003350.0000200.000930.00130...0.1760.006790.009290.018190.020360.01162526.1260.471880.561220.19361
\n", 491 | "

5 rows × 22 columns

\n", 492 | "
\n", 493 | " \n", 503 | " \n", 504 | " \n", 541 | "\n", 542 | " \n", 566 | "
\n", 567 | "
\n", 568 | " " 569 | ] 570 | }, 571 | "metadata": {}, 572 | "execution_count": 3 573 | } 574 | ], 575 | "source": [ 576 | "parkinsons = pd.read_csv('http://archive.ics.uci.edu/ml/machine-learning-databases/parkinsons/telemonitoring/parkinsons_updrs.data')\n", 577 | "parkinsons.rename(columns={'motor_UPDRS':'label'}, inplace=True)\n", 578 | "parkinsons.head()" 579 | ] 580 | }, 581 | { 582 | "cell_type": "markdown", 583 | "metadata": { 584 | "id": "6KNf3AKIwcnb" 585 | }, 586 | "source": [ 587 | "## Comparing Models" 588 | ] 589 | }, 590 | { 591 | "cell_type": "code", 592 | "execution_count": 4, 593 | "metadata": { 594 | "id": "o1el3KYcwcnf" 595 | }, 596 | "outputs": [], 597 | "source": [ 598 | "from sklearn.linear_model import LinearRegression, Lasso, Ridge\n", 599 | "from sklearn.svm import LinearSVR\n", 600 | "from sklearn.tree import DecisionTreeRegressor\n", 601 | "from sklearn.neural_network import MLPRegressor\n", 602 | "\n", 603 | "models = [\n", 604 | " ('LR', LinearRegression()),\n", 605 | " ('L', Lasso()),\n", 606 | " ('R', Ridge()),\n", 607 | " ('SVR', LinearSVR()),\n", 608 | " ('DT', DecisionTreeRegressor()),\n", 609 | " ('NN', MLPRegressor()),\n", 610 | "]" 611 | ] 612 | }, 613 | { 614 | "cell_type": "markdown", 615 | "source": [ 616 | "### test a single model (e.g. Linear Regression)" 617 | ], 618 | "metadata": { 619 | "id": "5FGF4M9l9Skt" 620 | } 621 | }, 622 | { 623 | "cell_type": "code", 624 | "source": [ 625 | "from sklearn.model_selection import train_test_split\n", 626 | "import numpy as np\n", 627 | "\n", 628 | "dataset_name = 'computer_hardware'\n", 629 | "dataset = computer_hardware\n", 630 | "\n", 631 | "X = np.array(dataset.drop(['label'], axis=1))\n", 632 | "y = np.array(dataset['label'])\n", 633 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", 634 | "\n", 635 | "name ='LR'\n", 636 | "model = LinearRegression()\n", 637 | "model.fit(X_train, y_train)\n", 638 | "accuracy = model.score(X_test, y_test)\n", 639 | "print(dataset_name, name, accuracy)" 640 | ], 641 | "metadata": { 642 | "colab": { 643 | "base_uri": "https://localhost:8080/" 644 | }, 645 | "id": "JJT5EHhp9aRU", 646 | "outputId": "455e902e-632a-4921-81eb-89cc2f982b9d" 647 | }, 648 | "execution_count": 5, 649 | "outputs": [ 650 | { 651 | "output_type": "stream", 652 | "name": "stdout", 653 | "text": [ 654 | "computer_hardware LR 0.9438611618299354\n" 655 | ] 656 | } 657 | ] 658 | }, 659 | { 660 | "cell_type": "code", 661 | "source": [ 662 | "model.predict(np.array([22, 122, 40, 8000, 16000, 32, 8, 16, 214]).reshape(1,9))" 663 | ], 664 | "metadata": { 665 | "colab": { 666 | "base_uri": "https://localhost:8080/" 667 | }, 668 | "id": "MI1VXq7S_W63", 669 | "outputId": "26b27d81-6419-481f-a09d-1ace73d44e5f" 670 | }, 671 | "execution_count": 13, 672 | "outputs": [ 673 | { 674 | "output_type": "execute_result", 675 | "data": { 676 | "text/plain": [ 677 | "array([181.53279469])" 678 | ] 679 | }, 680 | "metadata": {}, 681 | "execution_count": 13 682 | } 683 | ] 684 | }, 685 | { 686 | "cell_type": "markdown", 687 | "source": [ 688 | "### Evaluate all the models" 689 | ], 690 | "metadata": { 691 | "id": "SwAsHS1g9b1m" 692 | } 693 | }, 694 | { 695 | "cell_type": "code", 696 | "execution_count": null, 697 | "metadata": { 698 | "id": "CDKoYk0-wcnf" 699 | }, 700 | "outputs": [], 701 | "source": [ 702 | "for dataset_name, dataset in [('computer_hardware', computer_hardware), ('parkinsons', parkinsons)]:\n", 703 | " X = np.array(dataset.drop(['label'], axis=1))\n", 704 | " y = np.array(dataset['label'])\n", 705 | " X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)\n", 706 | "\n", 707 | " for name, model in models:\n", 708 | " model.fit(X_train, y_train)\n", 709 | " accuracy = model.score(X_test, y_test)\n", 710 | " print(dataset_name, name, accuracy)" 711 | ] 712 | } 713 | ] 714 | } -------------------------------------------------------------------------------- /requests_gradio(공동주택가격).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "name": "requests_gradio.ipynb", 7 | "provenance": [], 8 | "machine_shape": "hm", 9 | "include_colab_link": true 10 | }, 11 | "kernelspec": { 12 | "name": "python3", 13 | "display_name": "Python 3" 14 | }, 15 | "language_info": { 16 | "name": "python" 17 | } 18 | }, 19 | "cells": [ 20 | { 21 | "cell_type": "markdown", 22 | "metadata": { 23 | "id": "view-in-github", 24 | "colab_type": "text" 25 | }, 26 | "source": [ 27 | "\"Open" 28 | ] 29 | }, 30 | { 31 | "cell_type": "markdown", 32 | "source": [ 33 | "## import libraries" 34 | ], 35 | "metadata": { 36 | "id": "n4d_TfR3M4_7" 37 | } 38 | }, 39 | { 40 | "cell_type": "code", 41 | "source": [ 42 | "!pip install gradio\n", 43 | "import gradio as gr\n", 44 | "import requests\n", 45 | "import pandas as pd\n", 46 | "\n", 47 | "!pip install xmltodict\n", 48 | "import json\n", 49 | "import xmltodict" 50 | ], 51 | "metadata": { 52 | "id": "8eZHGJhmqd9a" 53 | }, 54 | "execution_count": null, 55 | "outputs": [] 56 | }, 57 | { 58 | "cell_type": "markdown", 59 | "source": [ 60 | "## test API" 61 | ], 62 | "metadata": { 63 | "id": "LDOeErLXgJUu" 64 | } 65 | }, 66 | { 67 | "cell_type": "code", 68 | "source": [ 69 | "input1 = '11290' # 법정동코드 (e.g. 성북구)\n", 70 | "input2 = '202210' # 조회월\n", 71 | "\n", 72 | "URL = ('http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?LAWD_CD='+input1+'&DEAL_YMD='+input2+'&serviceKey=miH%2BZXg85lQy4%2FkmhffvygXDIFiTwisriSLxtyECSzw6hxTVK7yI8QKIOc7mP7LEqCnhBGuj6iW1gZW65dum7A%3D%3D')\n", 73 | "response = requests.get(URL)" 74 | ], 75 | "metadata": { 76 | "id": "lHHEwqpyJF7r" 77 | }, 78 | "execution_count": 75, 79 | "outputs": [] 80 | }, 81 | { 82 | "cell_type": "markdown", 83 | "source": [ 84 | "https://codebeautify.org/" 85 | ], 86 | "metadata": { 87 | "id": "lpbP7XcMalRT" 88 | } 89 | }, 90 | { 91 | "cell_type": "markdown", 92 | "source": [ 93 | "#### xmltodict: xml text to dict\n", 94 | "#### json.loads: json text to dict\n", 95 | "#### json.dumps: dict to json text\n", 96 | "\n" 97 | ], 98 | "metadata": { 99 | "id": "7EdvyvDpZk58" 100 | } 101 | }, 102 | { 103 | "cell_type": "code", 104 | "source": [ 105 | "dict_data = xmltodict.parse(response.text) \n", 106 | "# json_txt = json.dumps(dict_data, ensure_ascii = False) \n", 107 | "# dict_data = json.loads(json_txt) \n" 108 | ], 109 | "metadata": { 110 | "id": "tV6YoUcsdN8c" 111 | }, 112 | "execution_count": 77, 113 | "outputs": [] 114 | }, 115 | { 116 | "cell_type": "code", 117 | "source": [ 118 | "item = dict_data['response']['body']['items']['item']" 119 | ], 120 | "metadata": { 121 | "id": "AXxaFHiM-vUU" 122 | }, 123 | "execution_count": 78, 124 | "outputs": [] 125 | }, 126 | { 127 | "cell_type": "code", 128 | "source": [ 129 | "df = pd.DataFrame(item)\n", 130 | "df" 131 | ], 132 | "metadata": { 133 | "id": "8ll_27m1x35t" 134 | }, 135 | "execution_count": null, 136 | "outputs": [] 137 | }, 138 | { 139 | "cell_type": "markdown", 140 | "source": [ 141 | "## make a function" 142 | ], 143 | "metadata": { 144 | "id": "7Ij1aHSygY-A" 145 | } 146 | }, 147 | { 148 | "cell_type": "code", 149 | "source": [ 150 | "def test(input1, input2):\n", 151 | " URL = ('http://openapi.molit.go.kr:8081/OpenAPI_ToolInstallPackage/service/rest/RTMSOBJSvc/getRTMSDataSvcAptTrade?LAWD_CD='+input1+'&DEAL_YMD='+input2+'&serviceKey=miH%2BZXg85lQy4%2FkmhffvygXDIFiTwisriSLxtyECSzw6hxTVK7yI8QKIOc7mP7LEqCnhBGuj6iW1gZW65dum7A%3D%3D') \n", 152 | " response = requests.get(URL)\n", 153 | " dict_data = xmltodict.parse(response.content)\n", 154 | " item = dict_data['response']['body']['items']['item']\n", 155 | "\n", 156 | " df = pd.DataFrame(item)\n", 157 | " return df" 158 | ], 159 | "metadata": { 160 | "id": "Wf_JH79cDKc3" 161 | }, 162 | "execution_count": 80, 163 | "outputs": [] 164 | }, 165 | { 166 | "cell_type": "markdown", 167 | "source": [ 168 | "## Build a demo" 169 | ], 170 | "metadata": { 171 | "id": "Ca8G_kDVgp3x" 172 | } 173 | }, 174 | { 175 | "cell_type": "code", 176 | "source": [ 177 | "demo = gr.Interface(fn=test, inputs=[\"text\", \"text\"], outputs=\"dataframe\")\n", 178 | "demo.launch(share=True)" 179 | ], 180 | "metadata": { 181 | "id": "nopFEK52GSuz", 182 | "colab": { 183 | "base_uri": "https://localhost:8080/", 184 | "height": 646 185 | }, 186 | "outputId": "c880cb79-ee9c-4b27-f1a3-14ace03f4b08" 187 | }, 188 | "execution_count": 81, 189 | "outputs": [ 190 | { 191 | "output_type": "stream", 192 | "name": "stdout", 193 | "text": [ 194 | "Colab notebook detected. To show errors in colab notebook, set `debug=True` in `launch()`\n", 195 | "Running on public URL: https://426b5fc078f6a3d9.gradio.app\n", 196 | "\n", 197 | "This share link expires in 72 hours. For free permanent hosting and GPU upgrades (NEW!), check out Spaces: https://huggingface.co/spaces\n" 198 | ] 199 | }, 200 | { 201 | "output_type": "display_data", 202 | "data": { 203 | "text/plain": [ 204 | "" 205 | ], 206 | "text/html": [ 207 | "
" 208 | ] 209 | }, 210 | "metadata": {} 211 | }, 212 | { 213 | "output_type": "execute_result", 214 | "data": { 215 | "text/plain": [ 216 | "(,\n", 217 | " 'http://127.0.0.1:7860/',\n", 218 | " 'https://426b5fc078f6a3d9.gradio.app')" 219 | ] 220 | }, 221 | "metadata": {}, 222 | "execution_count": 81 223 | } 224 | ] 225 | } 226 | ] 227 | } -------------------------------------------------------------------------------- /string.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "kernelspec": { 6 | "display_name": "Python 3", 7 | "language": "python", 8 | "name": "python3" 9 | }, 10 | "language_info": { 11 | "codemirror_mode": { 12 | "name": "ipython", 13 | "version": 3 14 | }, 15 | "file_extension": ".py", 16 | "mimetype": "text/x-python", 17 | "name": "python", 18 | "nbconvert_exporter": "python", 19 | "pygments_lexer": "ipython3", 20 | "version": "3.7.1" 21 | }, 22 | "colab": { 23 | "name": "string.ipynb", 24 | "provenance": [], 25 | "include_colab_link": true 26 | } 27 | }, 28 | "cells": [ 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "view-in-github", 33 | "colab_type": "text" 34 | }, 35 | "source": [ 36 | "\"Open" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "metadata": { 42 | "id": "zwpWU02YmAur", 43 | "outputId": "f181d85d-17a2-4571-e914-3d332031f533" 44 | }, 45 | "source": [ 46 | "s = 'abcdef'\n", 47 | "print(s[0], s[5], s[-1], s[-6])\n", 48 | "print(s[1:3], s[1:], s[:3], s[:])" 49 | ], 50 | "execution_count": null, 51 | "outputs": [ 52 | { 53 | "name": "stdout", 54 | "output_type": "stream", 55 | "text": [ 56 | "\n", 57 | "a f f a\n", 58 | "bc bcdef abc abcdef\n" 59 | ] 60 | } 61 | ] 62 | }, 63 | { 64 | "cell_type": "code", 65 | "metadata": { 66 | "id": "mpkdZBeWmAux", 67 | "outputId": "a5f03d66-f3c7-4ac5-bb23-d4ee9780172d" 68 | }, 69 | "source": [ 70 | "n = [100, 200, 300]\n", 71 | "print(n[0], n[2], n[-1], n[-3])\n", 72 | "print(n[1:2], n[1:], n[:2], n[:])" 73 | ], 74 | "execution_count": null, 75 | "outputs": [ 76 | { 77 | "name": "stdout", 78 | "output_type": "stream", 79 | "text": [ 80 | "100 300 300 100\n", 81 | "[200] [200, 300] [100, 200] [100, 200, 300]\n" 82 | ] 83 | } 84 | ] 85 | }, 86 | { 87 | "cell_type": "code", 88 | "metadata": { 89 | "id": "ulnefmnFmAuy", 90 | "outputId": "013b6af1-433f-4d95-e343-71631a426f84" 91 | }, 92 | "source": [ 93 | "len(s)" 94 | ], 95 | "execution_count": null, 96 | "outputs": [ 97 | { 98 | "data": { 99 | "text/plain": [ 100 | "6" 101 | ] 102 | }, 103 | "execution_count": 4, 104 | "metadata": {}, 105 | "output_type": "execute_result" 106 | } 107 | ] 108 | }, 109 | { 110 | "cell_type": "code", 111 | "metadata": { 112 | "id": "a45rgiNMmAuy", 113 | "outputId": "9b1a4417-a513-4f77-8ae9-64352e6da015" 114 | }, 115 | "source": [ 116 | "s[1]+s[3]+s[4:]*10" 117 | ], 118 | "execution_count": null, 119 | "outputs": [ 120 | { 121 | "data": { 122 | "text/plain": [ 123 | "'bdefefefefefefefefefef'" 124 | ] 125 | }, 126 | "execution_count": 5, 127 | "metadata": {}, 128 | "output_type": "execute_result" 129 | } 130 | ] 131 | }, 132 | { 133 | "cell_type": "code", 134 | "metadata": { 135 | "id": "IevwoMpmmAuz", 136 | "outputId": "69636955-73a9-49f7-ea43-efdb38a982c1" 137 | }, 138 | "source": [ 139 | "s.upper()" 140 | ], 141 | "execution_count": null, 142 | "outputs": [ 143 | { 144 | "data": { 145 | "text/plain": [ 146 | "'ABCDEF'" 147 | ] 148 | }, 149 | "execution_count": 7, 150 | "metadata": {}, 151 | "output_type": "execute_result" 152 | } 153 | ] 154 | }, 155 | { 156 | "cell_type": "code", 157 | "metadata": { 158 | "id": "LRU0Yt1amAuz", 159 | "outputId": "3fdbe8c7-9962-40ba-f624-2ac1aa2c7e44" 160 | }, 161 | "source": [ 162 | "s = ' this is a house built this year.\\n' \t\n", 163 | "s" 164 | ], 165 | "execution_count": null, 166 | "outputs": [ 167 | { 168 | "data": { 169 | "text/plain": [ 170 | "' this is a house built this year.\\n'" 171 | ] 172 | }, 173 | "execution_count": 10, 174 | "metadata": {}, 175 | "output_type": "execute_result" 176 | } 177 | ] 178 | }, 179 | { 180 | "cell_type": "code", 181 | "metadata": { 182 | "id": "nMHteyDfmAu0", 183 | "outputId": "2f55caa2-dd53-4fac-e876-05ca87c5d63d" 184 | }, 185 | "source": [ 186 | "result = s.find('house') \t # index of first instance of string t inside s (-1 if not found)\n", 187 | "result" 188 | ], 189 | "execution_count": null, 190 | "outputs": [ 191 | { 192 | "data": { 193 | "text/plain": [ 194 | "11" 195 | ] 196 | }, 197 | "execution_count": 11, 198 | "metadata": {}, 199 | "output_type": "execute_result" 200 | } 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "metadata": { 206 | "id": "gv82JUX7mAu0", 207 | "outputId": "18540837-5eb4-4cea-f087-2f7fd1581afa" 208 | }, 209 | "source": [ 210 | "result = s.find('this')\t # index of first instance of string t inside s (-1 if not found)\n", 211 | "result" 212 | ], 213 | "execution_count": null, 214 | "outputs": [ 215 | { 216 | "data": { 217 | "text/plain": [ 218 | "1" 219 | ] 220 | }, 221 | "execution_count": 12, 222 | "metadata": {}, 223 | "output_type": "execute_result" 224 | } 225 | ] 226 | }, 227 | { 228 | "cell_type": "code", 229 | "metadata": { 230 | "id": "ua3TjwLcmAu2", 231 | "outputId": "ac192f91-46ce-4ff0-a040-f0d63541124e" 232 | }, 233 | "source": [ 234 | "s = s.strip() \t # a copy of s without leading or trailing whitespace\n", 235 | "s" 236 | ], 237 | "execution_count": null, 238 | "outputs": [ 239 | { 240 | "data": { 241 | "text/plain": [ 242 | "'this is a house built this year.'" 243 | ] 244 | }, 245 | "execution_count": 14, 246 | "metadata": {}, 247 | "output_type": "execute_result" 248 | } 249 | ] 250 | }, 251 | { 252 | "cell_type": "code", 253 | "metadata": { 254 | "id": "l37g5DqQmAu2", 255 | "outputId": "c1eefe2c-0edc-4678-c67b-b8306ca13471" 256 | }, 257 | "source": [ 258 | "tokens = s.split(' ')\t # split s into a list wherever a t is found (whitespace by default)\n", 259 | "tokens" 260 | ], 261 | "execution_count": null, 262 | "outputs": [ 263 | { 264 | "data": { 265 | "text/plain": [ 266 | "['this', 'is', 'a', 'house', 'built', 'this', 'year.']" 267 | ] 268 | }, 269 | "execution_count": 15, 270 | "metadata": {}, 271 | "output_type": "execute_result" 272 | } 273 | ] 274 | }, 275 | { 276 | "cell_type": "code", 277 | "metadata": { 278 | "id": "64sewKE8mAu2", 279 | "outputId": "e2e8dc1f-6b83-41ef-b746-7712099f2776" 280 | }, 281 | "source": [ 282 | "s = ' '.join(tokens)\t # combine the words of the text into a string using s as the glue\n", 283 | "s" 284 | ], 285 | "execution_count": null, 286 | "outputs": [ 287 | { 288 | "data": { 289 | "text/plain": [ 290 | "'this is a house built this year.'" 291 | ] 292 | }, 293 | "execution_count": 16, 294 | "metadata": {}, 295 | "output_type": "execute_result" 296 | } 297 | ] 298 | }, 299 | { 300 | "cell_type": "code", 301 | "metadata": { 302 | "id": "jfiqbBiImAu3", 303 | "outputId": "13300aff-f13a-4f48-c6ec-cbc5d01dd55b" 304 | }, 305 | "source": [ 306 | "s = s.replace('this', 'that') # replace instances of t with u inside s\n", 307 | "s" 308 | ], 309 | "execution_count": null, 310 | "outputs": [ 311 | { 312 | "data": { 313 | "text/plain": [ 314 | "'that is a house built that year.'" 315 | ] 316 | }, 317 | "execution_count": 17, 318 | "metadata": {}, 319 | "output_type": "execute_result" 320 | } 321 | ] 322 | } 323 | ] 324 | } -------------------------------------------------------------------------------- /syntax.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "kernelspec": { 6 | "display_name": "Python 3", 7 | "language": "python", 8 | "name": "python3" 9 | }, 10 | "language_info": { 11 | "codemirror_mode": { 12 | "name": "ipython", 13 | "version": 3 14 | }, 15 | "file_extension": ".py", 16 | "mimetype": "text/x-python", 17 | "name": "python", 18 | "nbconvert_exporter": "python", 19 | "pygments_lexer": "ipython3", 20 | "version": "3.7.1" 21 | }, 22 | "colab": { 23 | "name": "syntax.ipynb", 24 | "provenance": [], 25 | "include_colab_link": true 26 | } 27 | }, 28 | "cells": [ 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "view-in-github", 33 | "colab_type": "text" 34 | }, 35 | "source": [ 36 | "\"Open" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "metadata": { 42 | "id": "Fu2mzgrqSLAU", 43 | "outputId": "283876b5-0fc9-4961-d92d-d242b3c222de" 44 | }, 45 | "source": [ 46 | "a = [1, 2, 3, 4]\n", 47 | "for i in a:\n", 48 | " print(i)" 49 | ], 50 | "execution_count": null, 51 | "outputs": [ 52 | { 53 | "output_type": "stream", 54 | "text": [ 55 | "1\n", 56 | "2\n", 57 | "3\n", 58 | "4\n" 59 | ], 60 | "name": "stdout" 61 | } 62 | ] 63 | }, 64 | { 65 | "cell_type": "code", 66 | "metadata": { 67 | "id": "XSJxLJVCSLAW", 68 | "outputId": "921b10b7-3bc8-4345-a6b2-16253a900c95" 69 | }, 70 | "source": [ 71 | "a = [1, 2, 3, 4]\n", 72 | "for i in range(len(a)):\n", 73 | " print(a[i])" 74 | ], 75 | "execution_count": null, 76 | "outputs": [ 77 | { 78 | "output_type": "stream", 79 | "text": [ 80 | "1\n", 81 | "2\n", 82 | "3\n", 83 | "4\n" 84 | ], 85 | "name": "stdout" 86 | } 87 | ] 88 | }, 89 | { 90 | "cell_type": "code", 91 | "metadata": { 92 | "id": "VTfxVRdgSLAW", 93 | "outputId": "7b430ba8-015e-4296-c883-ce2b3f9ed43b" 94 | }, 95 | "source": [ 96 | "a = ['red', 'green', 'blue', 'purple']\n", 97 | "for i in a:\n", 98 | " print(i)" 99 | ], 100 | "execution_count": null, 101 | "outputs": [ 102 | { 103 | "output_type": "stream", 104 | "text": [ 105 | "red\n", 106 | "green\n", 107 | "blue\n", 108 | "purple\n" 109 | ], 110 | "name": "stdout" 111 | } 112 | ] 113 | }, 114 | { 115 | "cell_type": "code", 116 | "metadata": { 117 | "id": "Vc-7pW85SLAW", 118 | "outputId": "9394e177-c8c8-44db-ff28-1e9566072bb3" 119 | }, 120 | "source": [ 121 | "a = ['red', 'green', 'blue', 'purple']\n", 122 | "for i in range(len(a)):\n", 123 | " print(a[i])" 124 | ], 125 | "execution_count": null, 126 | "outputs": [ 127 | { 128 | "output_type": "stream", 129 | "text": [ 130 | "red\n", 131 | "green\n", 132 | "blue\n", 133 | "purple\n" 134 | ], 135 | "name": "stdout" 136 | } 137 | ] 138 | }, 139 | { 140 | "cell_type": "code", 141 | "metadata": { 142 | "id": "dD-ephD3SLAX", 143 | "outputId": "69d729f8-996a-41be-d84b-f1bd2a7c809c" 144 | }, 145 | "source": [ 146 | "a = 0\n", 147 | "if a == 0:\n", 148 | " print(a)\n", 149 | "else:\n", 150 | " print(a+1)" 151 | ], 152 | "execution_count": null, 153 | "outputs": [ 154 | { 155 | "output_type": "stream", 156 | "text": [ 157 | "0\n" 158 | ], 159 | "name": "stdout" 160 | } 161 | ] 162 | }, 163 | { 164 | "cell_type": "code", 165 | "metadata": { 166 | "id": "M0AZaDMvSLAY", 167 | "outputId": "b25a5fe6-defa-4549-85b0-0c146ff7a2a0" 168 | }, 169 | "source": [ 170 | "for i in range(1, 3):\n", 171 | " for j in range(3, 5):\n", 172 | " print(i*j)" 173 | ], 174 | "execution_count": null, 175 | "outputs": [ 176 | { 177 | "output_type": "stream", 178 | "text": [ 179 | "3\n", 180 | "4\n", 181 | "6\n", 182 | "8\n" 183 | ], 184 | "name": "stdout" 185 | } 186 | ] 187 | }, 188 | { 189 | "cell_type": "code", 190 | "metadata": { 191 | "id": "ZPpZmVIHSLAY", 192 | "outputId": "0bbcc529-c1d8-4774-e1ad-9de8b9e065ce" 193 | }, 194 | "source": [ 195 | "for i in range(1, 3):\n", 196 | " for j in range(3, 5):\n", 197 | " if j >=4:\n", 198 | " print(i*j)" 199 | ], 200 | "execution_count": null, 201 | "outputs": [ 202 | { 203 | "output_type": "stream", 204 | "text": [ 205 | "4\n", 206 | "8\n" 207 | ], 208 | "name": "stdout" 209 | } 210 | ] 211 | }, 212 | { 213 | "cell_type": "code", 214 | "metadata": { 215 | "id": "JQXk5vi0SLAY", 216 | "outputId": "cd3306f3-6d6d-446e-dd4a-f7f4e11dd967" 217 | }, 218 | "source": [ 219 | "a = [1, 2, 3, 4]\n", 220 | "b = [i for i in a if i >=2]\n", 221 | "b" 222 | ], 223 | "execution_count": null, 224 | "outputs": [ 225 | { 226 | "output_type": "execute_result", 227 | "data": { 228 | "text/plain": [ 229 | "[2, 3, 4]" 230 | ] 231 | }, 232 | "metadata": { 233 | "tags": [] 234 | }, 235 | "execution_count": 12 236 | } 237 | ] 238 | }, 239 | { 240 | "cell_type": "code", 241 | "metadata": { 242 | "id": "MDmBGZ3LSLAZ", 243 | "outputId": "bd06f885-7334-43d9-d92d-848c615f6771" 244 | }, 245 | "source": [ 246 | "a = ['red', 'green', 'blue', 'purple']\n", 247 | "b = [i for i in a if len(i) >=4]\n", 248 | "b" 249 | ], 250 | "execution_count": null, 251 | "outputs": [ 252 | { 253 | "output_type": "execute_result", 254 | "data": { 255 | "text/plain": [ 256 | "['green', 'blue', 'purple']" 257 | ] 258 | }, 259 | "metadata": { 260 | "tags": [] 261 | }, 262 | "execution_count": 13 263 | } 264 | ] 265 | }, 266 | { 267 | "cell_type": "code", 268 | "source": [ 269 | "a = ['red', 'green', 'blue', 'purple']\n", 270 | "b = [1, 2, 3, 4]\n", 271 | "c = {a[i]:b[i] for i in range(4)}\n", 272 | "c" 273 | ], 274 | "metadata": { 275 | "id": "Z6JMoDOHu48B", 276 | "outputId": "2bf14607-9cf5-40be-d60b-b7cbda48c2a8", 277 | "colab": { 278 | "base_uri": "https://localhost:8080/" 279 | } 280 | }, 281 | "execution_count": null, 282 | "outputs": [ 283 | { 284 | "output_type": "execute_result", 285 | "data": { 286 | "text/plain": [ 287 | "{'blue': 3, 'green': 2, 'purple': 4, 'red': 1}" 288 | ] 289 | }, 290 | "metadata": {}, 291 | "execution_count": 17 292 | } 293 | ] 294 | } 295 | ] 296 | } -------------------------------------------------------------------------------- /variables.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "kernelspec": { 6 | "display_name": "Python 3", 7 | "language": "python", 8 | "name": "python3" 9 | }, 10 | "language_info": { 11 | "codemirror_mode": { 12 | "name": "ipython", 13 | "version": 3 14 | }, 15 | "file_extension": ".py", 16 | "mimetype": "text/x-python", 17 | "name": "python", 18 | "nbconvert_exporter": "python", 19 | "pygments_lexer": "ipython3", 20 | "version": "3.7.1" 21 | }, 22 | "colab": { 23 | "name": "variables.ipynb", 24 | "provenance": [], 25 | "include_colab_link": true 26 | } 27 | }, 28 | "cells": [ 29 | { 30 | "cell_type": "markdown", 31 | "metadata": { 32 | "id": "view-in-github", 33 | "colab_type": "text" 34 | }, 35 | "source": [ 36 | "\"Open" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "metadata": { 42 | "id": "goAyoU7vRheI", 43 | "outputId": "068731d9-7186-453a-9a6b-b437acc64bc5", 44 | "colab": { 45 | "base_uri": "https://localhost:8080/" 46 | } 47 | }, 48 | "source": [ 49 | "a = 1; print(type(a))" 50 | ], 51 | "execution_count": null, 52 | "outputs": [ 53 | { 54 | "output_type": "stream", 55 | "name": "stdout", 56 | "text": [ 57 | "\n" 58 | ] 59 | } 60 | ] 61 | }, 62 | { 63 | "cell_type": "code", 64 | "metadata": { 65 | "id": "txxnoqJuRheJ", 66 | "outputId": "fac1233b-b1e0-41b4-ea3c-94ad0c7104ec", 67 | "colab": { 68 | "base_uri": "https://localhost:8080/" 69 | } 70 | }, 71 | "source": [ 72 | "a = 1.1; print(type(a))" 73 | ], 74 | "execution_count": null, 75 | "outputs": [ 76 | { 77 | "output_type": "stream", 78 | "name": "stdout", 79 | "text": [ 80 | "\n" 81 | ] 82 | } 83 | ] 84 | }, 85 | { 86 | "cell_type": "code", 87 | "metadata": { 88 | "id": "SyP0PB86RheL", 89 | "outputId": "e10d274f-e7fd-4cdd-a822-847fb83560ec" 90 | }, 91 | "source": [ 92 | "a = '123'; print(type(a)); print(a[1])" 93 | ], 94 | "execution_count": null, 95 | "outputs": [ 96 | { 97 | "output_type": "stream", 98 | "text": [ 99 | "\n", 100 | "2\n" 101 | ], 102 | "name": "stdout" 103 | } 104 | ] 105 | }, 106 | { 107 | "cell_type": "code", 108 | "metadata": { 109 | "id": "EKYj0dvIHPo0", 110 | "outputId": "a1237ded-1b0a-4ec6-e393-09846b2194a5", 111 | "colab": { 112 | "base_uri": "https://localhost:8080/" 113 | } 114 | }, 115 | "source": [ 116 | "a = 'hello'; print(type(a)); print(a[1])" 117 | ], 118 | "execution_count": null, 119 | "outputs": [ 120 | { 121 | "output_type": "stream", 122 | "name": "stdout", 123 | "text": [ 124 | "\n", 125 | "e\n" 126 | ] 127 | } 128 | ] 129 | }, 130 | { 131 | "cell_type": "code", 132 | "metadata": { 133 | "id": "Df6PhU-tHXr2", 134 | "outputId": "3e99729c-3214-4756-e692-1522f494a01e", 135 | "colab": { 136 | "base_uri": "https://localhost:8080/" 137 | } 138 | }, 139 | "source": [ 140 | "a = [1, 2, 3, 4]; print(type(a)); print(a[0])" 141 | ], 142 | "execution_count": null, 143 | "outputs": [ 144 | { 145 | "output_type": "stream", 146 | "name": "stdout", 147 | "text": [ 148 | "\n", 149 | "1\n" 150 | ] 151 | } 152 | ] 153 | }, 154 | { 155 | "cell_type": "code", 156 | "metadata": { 157 | "id": "DfS-gknCRheL", 158 | "outputId": "ff76fc0a-73db-43fc-bb86-946381a6cb4d", 159 | "colab": { 160 | "base_uri": "https://localhost:8080/" 161 | } 162 | }, 163 | "source": [ 164 | "a = [1,'a', [3, '4']]; print(type(a)); print(a[0]); print(a[1]); print(a[2]); print(a[2][1])" 165 | ], 166 | "execution_count": null, 167 | "outputs": [ 168 | { 169 | "output_type": "stream", 170 | "name": "stdout", 171 | "text": [ 172 | "\n", 173 | "1\n", 174 | "a\n", 175 | "[3, '4']\n", 176 | "4\n" 177 | ] 178 | } 179 | ] 180 | }, 181 | { 182 | "cell_type": "code", 183 | "metadata": { 184 | "id": "2sivfloGRheM", 185 | "outputId": "5c768bb7-e02b-4c87-a76e-3e992cdb244e" 186 | }, 187 | "source": [ 188 | "a =\t{\"a\": \"apple\", \"b\": \"orange\", \"c\": 2014}\n", 189 | "print(type(a))\n", 190 | "print(a[\"a\"])" 191 | ], 192 | "execution_count": null, 193 | "outputs": [ 194 | { 195 | "output_type": "stream", 196 | "text": [ 197 | "\n", 198 | "apple\n" 199 | ], 200 | "name": "stdout" 201 | } 202 | ] 203 | } 204 | ] 205 | } -------------------------------------------------------------------------------- /yesterday.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/hsnam95/class2022Fall/b6d8b0cd9bd9d2ab443fe58ab1d1813f70db9e45/yesterday.wav -------------------------------------------------------------------------------- /교보API.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [], 7 | "authorship_tag": "ABX9TyMahaEgXMGv5CwHvGDqA5DT", 8 | "include_colab_link": true 9 | }, 10 | "kernelspec": { 11 | "name": "python3", 12 | "display_name": "Python 3" 13 | }, 14 | "language_info": { 15 | "name": "python" 16 | } 17 | }, 18 | "cells": [ 19 | { 20 | "cell_type": "markdown", 21 | "metadata": { 22 | "id": "view-in-github", 23 | "colab_type": "text" 24 | }, 25 | "source": [ 26 | "\"Open" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "source": [ 32 | "import pandas as pd\n", 33 | "import json\n", 34 | "import requests" 35 | ], 36 | "metadata": { 37 | "id": "nhZj-Bi8Atg2" 38 | }, 39 | "execution_count": 28, 40 | "outputs": [] 41 | }, 42 | { 43 | "cell_type": "code", 44 | "source": [ 45 | "bookID = 'S000000620181'\n", 46 | "url='https://product.kyobobook.co.kr/api/review/list?page=1&pageLimit=10000&reviewSort=001&revwPatrCode=000&saleCmdtid='+bookID" 47 | ], 48 | "metadata": { 49 | "id": "j4Cj1FNgAyDU" 50 | }, 51 | "execution_count": 13, 52 | "outputs": [] 53 | }, 54 | { 55 | "cell_type": "code", 56 | "source": [ 57 | "response = requests.get(url)\n", 58 | "response" 59 | ], 60 | "metadata": { 61 | "id": "P2y8pa1teetY" 62 | }, 63 | "execution_count": null, 64 | "outputs": [] 65 | }, 66 | { 67 | "cell_type": "code", 68 | "source": [ 69 | "json_txt = response.text\n", 70 | "dict_data = json.loads(json_txt)" 71 | ], 72 | "metadata": { 73 | "id": "nU26-rUceiyY" 74 | }, 75 | "execution_count": 15, 76 | "outputs": [] 77 | }, 78 | { 79 | "cell_type": "code", 80 | "source": [ 81 | "df = pd.DataFrame(dict_data['data']['reviewList'])" 82 | ], 83 | "metadata": { 84 | "id": "DMlya8yXe5DH" 85 | }, 86 | "execution_count": 31, 87 | "outputs": [] 88 | }, 89 | { 90 | "cell_type": "code", 91 | "source": [ 92 | "df.to_excel('review.xls')" 93 | ], 94 | "metadata": { 95 | "id": "shEXbNuF25m0" 96 | }, 97 | "execution_count": null, 98 | "outputs": [] 99 | }, 100 | { 101 | "cell_type": "code", 102 | "source": [ 103 | "df.to_csv('review.csv')" 104 | ], 105 | "metadata": { 106 | "id": "_DVrUrYXykvL" 107 | }, 108 | "execution_count": null, 109 | "outputs": [] 110 | }, 111 | { 112 | "cell_type": "code", 113 | "source": [ 114 | "df.to_csv('review.csv', encoding='utf-8-sig')" 115 | ], 116 | "metadata": { 117 | "id": "Q46X-kXa2-Ai" 118 | }, 119 | "execution_count": null, 120 | "outputs": [] 121 | } 122 | ] 123 | } --------------------------------------------------------------------------------