├── onnx
├── models
│ ├── 转换后的模型onnx文件夹放到这里.txt
│ └── 转换后的模型json放在这里,不要放到文件夹内
├── Bert
│ ├── deberta-v3-large
│ │ ├── model.onnx文件放到这里.txt
│ │ ├── tokenizer_config.json
│ │ ├── spm.model
│ │ ├── generator_config.json
│ │ ├── config.json
│ │ ├── .gitattributes
│ │ └── README.md
│ ├── deberta-v2-large-japanese
│ │ ├── model.onnx文件放到这里.txt
│ │ ├── special_tokens_map.json
│ │ ├── tokenizer_config.json
│ │ ├── config.json
│ │ └── README.md
│ └── chinese-roberta-wwm-ext-large
│ │ ├── model.onnx文件放到这里.txt
│ │ ├── added_tokens.json
│ │ ├── tokenizer_config.json
│ │ ├── special_tokens_map.json
│ │ ├── config.json
│ │ └── README.md
└── Text
│ ├── cmudict_cache.pickle
│ └── opencpop-strict.txt
├── icon.ico
├── image.png
├── image-1.png
├── image-2.png
├── image-3.png
├── image-4.png
├── image-5.png
├── image-6.png
├── image-7.png
├── image-8.png
├── speakers_map.json
├── requirements.txt
├── .editorconfig
├── config.json
├── log.py
├── api
├── utils.py
├── api.py
├── ui.py
├── split.py
└── tts.py
├── config.py
├── README.md
├── launch.py
├── onnx_infer
├── text
│ ├── tokenizer.py
│ ├── cleaner.py
│ ├── symbols.py
│ ├── chinese.py
│ ├── english.py
│ ├── japanese.py
│ └── chinese_tone_sandhi.py
├── onnx_bert.py
└── onnx_infer.py
├── .gitignore
└── LICENSE
/onnx/models/转换后的模型onnx文件夹放到这里.txt:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/onnx/models/转换后的模型json放在这里,不要放到文件夹内:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/model.onnx文件放到这里.txt:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v2-large-japanese/model.onnx文件放到这里.txt:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/onnx/Bert/chinese-roberta-wwm-ext-large/model.onnx文件放到这里.txt:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/onnx/Bert/chinese-roberta-wwm-ext-large/added_tokens.json:
--------------------------------------------------------------------------------
1 | {}
2 |
--------------------------------------------------------------------------------
/icon.ico:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/icon.ico
--------------------------------------------------------------------------------
/image.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image.png
--------------------------------------------------------------------------------
/image-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-1.png
--------------------------------------------------------------------------------
/image-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-2.png
--------------------------------------------------------------------------------
/image-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-3.png
--------------------------------------------------------------------------------
/image-4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-4.png
--------------------------------------------------------------------------------
/image-5.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-5.png
--------------------------------------------------------------------------------
/image-6.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-6.png
--------------------------------------------------------------------------------
/image-7.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-7.png
--------------------------------------------------------------------------------
/image-8.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/image-8.png
--------------------------------------------------------------------------------
/onnx/Bert/chinese-roberta-wwm-ext-large/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {"init_inputs": []}
2 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "do_lower_case": false,
3 | "vocab_type": "spm"
4 | }
5 |
--------------------------------------------------------------------------------
/speakers_map.json:
--------------------------------------------------------------------------------
1 | {
2 | "刻晴": {
3 | "JP": "刻晴(原神-日语)",
4 | "EN": "Keqing(原神-英语)"
5 | }
6 | }
--------------------------------------------------------------------------------
/onnx/Text/cmudict_cache.pickle:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/huahuahuage/Bert-VITS2-Speech/HEAD/onnx/Text/cmudict_cache.pickle
--------------------------------------------------------------------------------
/onnx/Bert/chinese-roberta-wwm-ext-large/special_tokens_map.json:
--------------------------------------------------------------------------------
1 | {"unk_token": "[UNK]", "sep_token": "[SEP]", "pad_token": "[PAD]", "cls_token": "[CLS]", "mask_token": "[MASK]"}
2 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/spm.model:
--------------------------------------------------------------------------------
1 | version https://git-lfs.github.com/spec/v1
2 | oid sha256:c679fbf93643d19aab7ee10c0b99e460bdbc02fedf34b92b05af343b4af586fd
3 | size 2464616
4 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v2-large-japanese/special_tokens_map.json:
--------------------------------------------------------------------------------
1 | {
2 | "bos_token": "[CLS]",
3 | "cls_token": "[CLS]",
4 | "eos_token": "[SEP]",
5 | "mask_token": "[MASK]",
6 | "pad_token": "[PAD]",
7 | "sep_token": "[SEP]",
8 | "unk_token": "[UNK]"
9 | }
10 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy
2 | scipy
3 | transformers
4 | cn2an
5 | jieba
6 | g2p_en
7 | num2words
8 | jaconv
9 | pypinyin
10 | colorlog
11 | chardet
12 | gradio
13 | fastapi
14 | uvicorn
15 | onnxruntime
16 | openjtalk
17 | sentencepiece
18 | pyperclip
--------------------------------------------------------------------------------
/.editorconfig:
--------------------------------------------------------------------------------
1 | # EditorConfig is awesome: https://EditorConfig.org
2 |
3 | # top-most EditorConfig file
4 | root = true
5 |
6 | [*]
7 | indent_style = space
8 | indent_size = 4
9 | end_of_line = crlf
10 | charset = utf-8
11 | trim_trailing_whitespace = false
12 | insert_final_newline = false
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v2-large-japanese/tokenizer_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "bos_token": "[CLS]",
3 | "cls_token": "[CLS]",
4 | "do_lower_case": false,
5 | "eos_token": "[SEP]",
6 | "keep_accents": true,
7 | "mask_token": "[MASK]",
8 | "pad_token": "[PAD]",
9 | "sep_token": "[SEP]",
10 | "sp_model_kwargs": {},
11 | "special_tokens_map_file": null,
12 | "split_by_punct": false,
13 | "tokenizer_class": "DebertaV2Tokenizer",
14 | "unk_token": "[UNK]"
15 | }
16 |
--------------------------------------------------------------------------------
/config.json:
--------------------------------------------------------------------------------
1 | {
2 | "server_host": "127.0.0.1",
3 | "server_port": 7880,
4 | "webui_enable": true,
5 | "onnx_providers": "CPUExecutionProvider",
6 | "onnx_tts_models": "onnx/models/Genshin/",
7 | "onnx_tts_models_chinese_mark": "中文",
8 | "bert_enable": true,
9 | "bert_chinese": "onnx/Bert/chinese-roberta-wwm-ext-large/",
10 | "bert_japanese": "onnx/Bert/deberta-v2-large-japanese/",
11 | "bert_english": "onnx/Bert/deberta-v3-large/"
12 | }
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/generator_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "model_type": "deberta-v2",
3 | "attention_probs_dropout_prob": 0.1,
4 | "hidden_act": "gelu",
5 | "hidden_dropout_prob": 0.1,
6 | "hidden_size": 1024,
7 | "initializer_range": 0.02,
8 | "intermediate_size": 4096,
9 | "max_position_embeddings": 512,
10 | "relative_attention": true,
11 | "position_buckets": 256,
12 | "norm_rel_ebd": "layer_norm",
13 | "share_att_key": true,
14 | "pos_att_type": "p2c|c2p",
15 | "layer_norm_eps": 1e-7,
16 | "max_relative_positions": -1,
17 | "position_biased_input": false,
18 | "num_attention_heads": 16,
19 | "num_hidden_layers": 12,
20 | "type_vocab_size": 0,
21 | "vocab_size": 128100
22 | }
23 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/config.json:
--------------------------------------------------------------------------------
1 | {
2 | "model_type": "deberta-v2",
3 | "attention_probs_dropout_prob": 0.1,
4 | "hidden_act": "gelu",
5 | "hidden_dropout_prob": 0.1,
6 | "hidden_size": 1024,
7 | "initializer_range": 0.02,
8 | "intermediate_size": 4096,
9 | "max_position_embeddings": 512,
10 | "relative_attention": true,
11 | "position_buckets": 256,
12 | "norm_rel_ebd": "layer_norm",
13 | "share_att_key": true,
14 | "pos_att_type": "p2c|c2p",
15 | "layer_norm_eps": 1e-7,
16 | "max_relative_positions": -1,
17 | "position_biased_input": false,
18 | "num_attention_heads": 16,
19 | "num_hidden_layers": 24,
20 | "type_vocab_size": 0,
21 | "vocab_size": 128100
22 | }
23 |
--------------------------------------------------------------------------------
/onnx/Bert/chinese-roberta-wwm-ext-large/config.json:
--------------------------------------------------------------------------------
1 | {
2 | "architectures": [
3 | "BertForMaskedLM"
4 | ],
5 | "attention_probs_dropout_prob": 0.1,
6 | "bos_token_id": 0,
7 | "directionality": "bidi",
8 | "eos_token_id": 2,
9 | "hidden_act": "gelu",
10 | "hidden_dropout_prob": 0.1,
11 | "hidden_size": 1024,
12 | "initializer_range": 0.02,
13 | "intermediate_size": 4096,
14 | "layer_norm_eps": 1e-12,
15 | "max_position_embeddings": 512,
16 | "model_type": "bert",
17 | "num_attention_heads": 16,
18 | "num_hidden_layers": 24,
19 | "output_past": true,
20 | "pad_token_id": 0,
21 | "pooler_fc_size": 768,
22 | "pooler_num_attention_heads": 12,
23 | "pooler_num_fc_layers": 3,
24 | "pooler_size_per_head": 128,
25 | "pooler_type": "first_token_transform",
26 | "type_vocab_size": 2,
27 | "vocab_size": 21128
28 | }
29 |
--------------------------------------------------------------------------------
/log.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import colorlog
3 | import jieba
4 |
5 | # 调整jieba日志输出级别
6 | jieba.setLogLevel(jieba.logging.ERROR)
7 |
8 |
9 | # 禁止某些模块日志输出
10 | DISABLED_LOGGER = ["gradio.processing_utils", "gradio", "httpx"]
11 |
12 | for logger_name in DISABLED_LOGGER:
13 | logger_object = logging.getLogger(logger_name)
14 | logger_object.setLevel(logging.ERROR)
15 |
16 | # 创建新的logger
17 | log_instance = logging.getLogger()
18 | log_instance.setLevel(logging.INFO)
19 |
20 | console_handler = logging.StreamHandler()
21 | console_formatter = colorlog.ColoredFormatter(
22 | fmt="[%(levelname)s] - %(message)s",
23 | datefmt="%Y-%m-%d %H:%M:%S",
24 | log_colors={
25 | "DEBUG": "white",
26 | "INFO": "green",
27 | "WARNING": "yellow",
28 | "ERROR": "red",
29 | "CRITICAL": "bold_red",
30 | },
31 | )
32 | console_handler.setFormatter(console_formatter)
33 |
34 | if not log_instance.handlers:
35 | log_instance.addHandler(console_handler)
36 |
--------------------------------------------------------------------------------
/api/utils.py:
--------------------------------------------------------------------------------
1 | import os
2 | import platform
3 | import shutil
4 | import pyperclip
5 | from log import log_instance
6 |
7 |
8 | def rebuild_temp_dir(dir_path: str, tips: str = "正在清空API接口语音缓存..."):
9 | """
10 | 清空重建缓存文件夹
11 | """
12 | # 删除缓存
13 | try:
14 | shutil.rmtree(dir_path)
15 | log_instance.info(tips)
16 | except OSError as e:
17 | pass
18 | # 重新建立缓存文件夹
19 | os.makedirs(dir_path, exist_ok=True)
20 |
21 |
22 | def copy_to_clipboard(text: str):
23 | """
24 | 复制字符串到剪切板
25 | """
26 | pyperclip.copy(text)
27 |
28 |
29 | class OSType:
30 | def __init__(self) -> None:
31 | self.type = self.check_os()
32 |
33 | def check_os():
34 | """
35 | 检查操作系统类型
36 | """
37 | system = platform.system()
38 | if system == "Windows":
39 | return "Windows"
40 | elif system == "Linux":
41 | return "Linux"
42 | else:
43 | return "MacOS"
44 |
45 |
46 | os_type_instance = OSType()
--------------------------------------------------------------------------------
/config.py:
--------------------------------------------------------------------------------
1 | import json
2 | import chardet
3 | import logging
4 |
5 | CONFIG_PATH = "config.json"
6 |
7 |
8 | def read_config(config_path:str) -> dict:
9 | """
10 | 取读配置文件
11 | """
12 | f = open(config_path, "rb")
13 | try:
14 | raw_data:str = f.read()
15 | # 检测配置文件编码
16 | char_type = chardet.detect(raw_data)['encoding']
17 | # 解码
18 | data = raw_data.decode(char_type)
19 | config_data = json.loads(data)
20 | except:
21 | config_data = {}
22 | logging.error(f"配置文件 {config_path} 不存在或者格式错误。")
23 |
24 | f.close()
25 |
26 | return config_data
27 |
28 |
29 | class ONNX_CONFIG:
30 | """
31 | 配置文件
32 | """
33 |
34 | def __init__(self) -> None:
35 | logging.info(f"正在加载配置文件...")
36 | self.config_data = read_config(CONFIG_PATH)
37 |
38 | def get(self, key, default=None):
39 | """
40 | 获取配置信息
41 | """
42 | return self.config_data.get(key, default)
43 |
44 | config_instance = ONNX_CONFIG()
45 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v2-large-japanese/config.json:
--------------------------------------------------------------------------------
1 | {
2 | "_name_or_path": "configs/deberta_v2_large.json",
3 | "architectures": [
4 | "DebertaV2ForMaskedLM"
5 | ],
6 | "attention_head_size": 64,
7 | "attention_probs_dropout_prob": 0.1,
8 | "conv_act": "gelu",
9 | "conv_kernel_size": 3,
10 | "hidden_act": "gelu",
11 | "hidden_dropout_prob": 0.1,
12 | "hidden_size": 1024,
13 | "initializer_range": 0.02,
14 | "intermediate_size": 4096,
15 | "layer_norm_eps": 1e-07,
16 | "max_position_embeddings": 512,
17 | "max_relative_positions": -1,
18 | "model_type": "deberta-v2",
19 | "norm_rel_ebd": "layer_norm",
20 | "num_attention_heads": 16,
21 | "num_hidden_layers": 24,
22 | "pad_token_id": 0,
23 | "pooler_dropout": 0,
24 | "pooler_hidden_act": "gelu",
25 | "pooler_hidden_size": 1024,
26 | "pos_att_type": [
27 | "p2c",
28 | "c2p"
29 | ],
30 | "position_biased_input": false,
31 | "position_buckets": 256,
32 | "relative_attention": true,
33 | "share_att_key": true,
34 | "torch_dtype": "float32",
35 | "transformers_version": "4.23.1",
36 | "type_vocab_size": 0,
37 | "vocab_size": 32000
38 | }
39 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/.gitattributes:
--------------------------------------------------------------------------------
1 | *.7z filter=lfs diff=lfs merge=lfs -text
2 | *.arrow filter=lfs diff=lfs merge=lfs -text
3 | *.bin filter=lfs diff=lfs merge=lfs -text
4 | *.bin.* filter=lfs diff=lfs merge=lfs -text
5 | *.bz2 filter=lfs diff=lfs merge=lfs -text
6 | *.ftz filter=lfs diff=lfs merge=lfs -text
7 | *.gz filter=lfs diff=lfs merge=lfs -text
8 | *.h5 filter=lfs diff=lfs merge=lfs -text
9 | *.joblib filter=lfs diff=lfs merge=lfs -text
10 | *.lfs.* filter=lfs diff=lfs merge=lfs -text
11 | *.model filter=lfs diff=lfs merge=lfs -text
12 | *.msgpack filter=lfs diff=lfs merge=lfs -text
13 | *.onnx filter=lfs diff=lfs merge=lfs -text
14 | *.ot filter=lfs diff=lfs merge=lfs -text
15 | *.parquet filter=lfs diff=lfs merge=lfs -text
16 | *.pb filter=lfs diff=lfs merge=lfs -text
17 | *.pt filter=lfs diff=lfs merge=lfs -text
18 | *.pth filter=lfs diff=lfs merge=lfs -text
19 | *.rar filter=lfs diff=lfs merge=lfs -text
20 | saved_model/**/* filter=lfs diff=lfs merge=lfs -text
21 | *.tar.* filter=lfs diff=lfs merge=lfs -text
22 | *.tflite filter=lfs diff=lfs merge=lfs -text
23 | *.tgz filter=lfs diff=lfs merge=lfs -text
24 | *.xz filter=lfs diff=lfs merge=lfs -text
25 | *.zip filter=lfs diff=lfs merge=lfs -text
26 | *.zstandard filter=lfs diff=lfs merge=lfs -text
27 | *tfevents* filter=lfs diff=lfs merge=lfs -text
28 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Bert-VITS2 Speech
2 |
3 | ## 声明
4 | + 严禁将此项目用于一切违反《中华人民共和国宪法》,《中华人民共和国刑法》,《中华人民共和国治安管理处罚法》和《中华人民共和国民法典》之用途。
5 | + 严禁用于任何政治相关用途。
6 |
7 | ## 项目说明
8 | + 基于开源项目[fishaudio/Bert-VITS2 2.1](https://github.com/fishaudio/Bert-VITS2/tree/2.1) 实现
9 | + 去除所有训练相关代码,仅保留onnx模型推理能力,重写调用推理代码
10 | + 重写WEBUI页面,剔除切分生成功能,生成时自动切分,支持多语言多段落混合输入
11 | + WEBUI支持一键获取TTS API地址
12 |
13 | ## 运行环境
14 | + python == 3.10
15 |
16 | ## 安装说明
17 |
18 | `pip install -r requirements.txt`
19 |
20 | ## 使用说明
21 |
22 | 下载中/日/英bert对应onnx模型,放入项目 onnx/Bert目录对应文件夹内 [下载链接](https://openi.pcl.ac.cn/Shirakana/Bert/modelmanage/show_model)
23 |
24 | 
25 |
26 | 转换[fishaudio/Bert-VITS2 2.1](https://github.com/fishaudio/Bert-VITS2/tree/2.1)版本(仅适用2.1版本)训练后的模型pth文件为onnx,然后将onnx模型文件夹连同json文件放到onnx/models文件夹下。模型转换方法看下方。
27 |
28 | 
29 |
30 | 修改配置文件 config.json,修改 onnx_tts_models_chinese_mark 字段为模型内角色名称的中文标志字符
31 |
32 | 如 角色名称:刻晴(原神-中文), 中文标志字符:"中文"、角色名称:刻晴_ZH, 中文标志字符:"ZH"
33 |
34 | 
35 |
36 | 修改角色多语言映射文件 speakers_map.json,如果不指定,则在进行多语言输出时,仅使用中文角色进行推理
37 |
38 | 
39 |
40 | 可选择是否开启bert推理(默认启用),修改 config.json 文件 bert-enable配置项即可
41 |
42 | ## 训练模型转ONNX说明
43 |
44 | (仅适用2.1版本)
45 |
46 | 运行 [fishaudio/Bert-VITS2 2.1](https://github.com/fishaudio/Bert-VITS2/tree/2.1) 项目根目录下的 export_onnx.py 进行导出。
47 |
48 | ## 界面截图
49 |
50 | 
51 |
52 | 
53 |
54 | 
55 |
56 | 
57 |
58 | 
59 |
60 | ## References
61 | + [fishaudio/Bert-VITS2 2.1](https://github.com/fishaudio/Bert-VITS2/tree/2.1)
62 |
63 | ### 最后,感谢Bert-VITS2项目组的努力与群里大佬们的答疑
--------------------------------------------------------------------------------
/launch.py:
--------------------------------------------------------------------------------
1 | from api.utils import os_type_instance
2 |
3 | if os_type_instance.type == "Windows":
4 | import ctypes
5 |
6 | ctypes.windll.kernel32.SetConsoleTitleW("花花 Bert-VITS2 原神/星铁语音合成API助手")
7 |
8 | # 全文忽略警告信息
9 | import warnings
10 |
11 | warnings.filterwarnings("ignore")
12 | import sys
13 | import imp
14 |
15 | imp.reload(sys)
16 |
17 | print(
18 | "【程序声明】基于开源项目 Bert-VITS2.1 (https://github.com/fishaudio/Bert-VITS2)。"
19 | )
20 | print(
21 | "【模型来源】红血球AE3803@bilibili/纳鲁塞缪希娜卡纳@bilibili/原神4.2/星穹铁道1.5/chinese-roberta-wwm-ext-large/deberta-v2-large-japanese/deberta-v3-large。"
22 | )
23 |
24 | print("【程序制作】花花花花花歌@bilibili。")
25 |
26 | print(
27 | "【郑重声明】严禁将此软件用于一切违反《中华人民共和国宪法》,《中华人民共和国刑法》,《中华人民共和国治安管理处罚法》和《中华人民共和国民法典》的用途,严禁将此软件用于任何政治相关用途。\n"
28 | )
29 |
30 | from log import log_instance
31 |
32 | import gradio
33 | import uvicorn
34 |
35 | # 重载uvicorn日志输出格式
36 | log_config = uvicorn.config.LOGGING_CONFIG
37 | log_config["formatters"]["access"]["fmt"] = "[%(levelname)s] - %(message)s"
38 | log_config["formatters"]["default"]["fmt"] = "[%(levelname)s] - %(message)s"
39 |
40 | # 取读配置文件
41 | from config import config_instance
42 |
43 | HOST = config_instance.get("server_host", "127.0.0.1")
44 | PORT = config_instance.get("server_port", 7880)
45 | WEBUI_ENABLE = config_instance.get("webui_enable", True)
46 |
47 | log_instance.info("欢迎使用 花花 Bert-VITS2 原神/星铁语音合成API助手。")
48 | log_instance.info(f"程序资源正在载入中,请稍候...")
49 |
50 |
51 | from api.api import app as api_app
52 |
53 | if WEBUI_ENABLE:
54 | from api.ui import app as webui_app
55 |
56 | app = gradio.mount_gradio_app(app=api_app, blocks=webui_app, path="/gradio")
57 | else:
58 | app = api_app
59 |
60 |
61 | if __name__ == "__main__":
62 | try:
63 | uvicorn.run(app=app, host=HOST, port=PORT, log_level="critical")
64 | except Exception as e:
65 | log_instance.error("程序启动失败:", e)
66 | # 用户输入任意键来退出
67 | log_instance.info("按下任意键退出程序...")
68 | input()
69 |
--------------------------------------------------------------------------------
/onnx_infer/text/tokenizer.py:
--------------------------------------------------------------------------------
1 | """
2 | 这里实现Bert Tokenizer的加载
3 | """
4 |
5 | from log import log_instance
6 | from dataclasses import dataclass
7 | from transformers import BertTokenizer, DebertaV2TokenizerFast
8 | from config import config_instance
9 |
10 | from api.utils import os_type_instance
11 |
12 |
13 | CHINESE_ONNX_LOCAL_DIR = config_instance.get("bert_chinese", "")
14 | JAPANESE_ONNX_LOCAL_DIR = config_instance.get("bert_japanese", "")
15 | ENGLISH_ONNX_LOCAL_DIR = config_instance.get("bert_english", "")
16 |
17 | if os_type_instance.type == "Windows":
18 |
19 | @dataclass
20 | class BertTokenizerDict:
21 | """
22 | ONNX分析器对象字典 for windows
23 | """
24 |
25 | ZH: BertTokenizer = (
26 | BertTokenizer.from_pretrained(CHINESE_ONNX_LOCAL_DIR)
27 | if CHINESE_ONNX_LOCAL_DIR
28 | else None
29 | )
30 | JP: DebertaV2TokenizerFast = (
31 | DebertaV2TokenizerFast.from_pretrained(JAPANESE_ONNX_LOCAL_DIR)
32 | if JAPANESE_ONNX_LOCAL_DIR
33 | else None
34 | )
35 | EN: DebertaV2TokenizerFast = (
36 | DebertaV2TokenizerFast.from_pretrained(ENGLISH_ONNX_LOCAL_DIR)
37 | if ENGLISH_ONNX_LOCAL_DIR
38 | else None
39 | )
40 |
41 | else:
42 |
43 | @dataclass
44 | class BertTokenizerDict:
45 | """
46 | ONNX分析器对象字典 for linux
47 | """
48 |
49 | ZH: BertTokenizer = (
50 | BertTokenizer.from_pretrained(CHINESE_ONNX_LOCAL_DIR)
51 | if CHINESE_ONNX_LOCAL_DIR
52 | else None
53 | )
54 | JP: BertTokenizer = (
55 | BertTokenizer.from_pretrained(JAPANESE_ONNX_LOCAL_DIR)
56 | if JAPANESE_ONNX_LOCAL_DIR
57 | else None
58 | )
59 | EN: DebertaV2TokenizerFast = (
60 | DebertaV2TokenizerFast.from_pretrained(ENGLISH_ONNX_LOCAL_DIR)
61 | if ENGLISH_ONNX_LOCAL_DIR
62 | else None
63 | )
64 |
65 |
66 | log_instance.info("正在加载BERT分析器...")
67 | tokenizer_instance = BertTokenizerDict()
68 |
--------------------------------------------------------------------------------
/onnx/Bert/chinese-roberta-wwm-ext-large/README.md:
--------------------------------------------------------------------------------
1 | ---
2 | language:
3 | - zh
4 | tags:
5 | - bert
6 | license: "apache-2.0"
7 | ---
8 |
9 | # Please use 'Bert' related functions to load this model!
10 |
11 | ## Chinese BERT with Whole Word Masking
12 | For further accelerating Chinese natural language processing, we provide **Chinese pre-trained BERT with Whole Word Masking**.
13 |
14 | **[Pre-Training with Whole Word Masking for Chinese BERT](https://arxiv.org/abs/1906.08101)**
15 | Yiming Cui, Wanxiang Che, Ting Liu, Bing Qin, Ziqing Yang, Shijin Wang, Guoping Hu
16 |
17 | This repository is developed based on:https://github.com/google-research/bert
18 |
19 | You may also interested in,
20 | - Chinese BERT series: https://github.com/ymcui/Chinese-BERT-wwm
21 | - Chinese MacBERT: https://github.com/ymcui/MacBERT
22 | - Chinese ELECTRA: https://github.com/ymcui/Chinese-ELECTRA
23 | - Chinese XLNet: https://github.com/ymcui/Chinese-XLNet
24 | - Knowledge Distillation Toolkit - TextBrewer: https://github.com/airaria/TextBrewer
25 |
26 | More resources by HFL: https://github.com/ymcui/HFL-Anthology
27 |
28 | ## Citation
29 | If you find the technical report or resource is useful, please cite the following technical report in your paper.
30 | - Primary: https://arxiv.org/abs/2004.13922
31 | ```
32 | @inproceedings{cui-etal-2020-revisiting,
33 | title = "Revisiting Pre-Trained Models for {C}hinese Natural Language Processing",
34 | author = "Cui, Yiming and
35 | Che, Wanxiang and
36 | Liu, Ting and
37 | Qin, Bing and
38 | Wang, Shijin and
39 | Hu, Guoping",
40 | booktitle = "Proceedings of the 2020 Conference on Empirical Methods in Natural Language Processing: Findings",
41 | month = nov,
42 | year = "2020",
43 | address = "Online",
44 | publisher = "Association for Computational Linguistics",
45 | url = "https://www.aclweb.org/anthology/2020.findings-emnlp.58",
46 | pages = "657--668",
47 | }
48 | ```
49 | - Secondary: https://arxiv.org/abs/1906.08101
50 | ```
51 | @article{chinese-bert-wwm,
52 | title={Pre-Training with Whole Word Masking for Chinese BERT},
53 | author={Cui, Yiming and Che, Wanxiang and Liu, Ting and Qin, Bing and Yang, Ziqing and Wang, Shijin and Hu, Guoping},
54 | journal={arXiv preprint arXiv:1906.08101},
55 | year={2019}
56 | }
57 | ```
58 |
--------------------------------------------------------------------------------
/onnx_infer/text/cleaner.py:
--------------------------------------------------------------------------------
1 | from .symbols import symbol_to_id, language_tone_start_map, language_id_map
2 |
3 | from typing import Callable
4 | from dataclasses import dataclass
5 |
6 | from .chinese import text_normalize as zh_text_normalize
7 | from .japanese import text_normalize as jp_text_normalize
8 | from .english import text_normalize as en_text_normalize
9 |
10 | from .chinese import g2p as zh_g2p
11 | from .japanese import g2p as jp_g2p
12 | from .english import g2p as en_g2p
13 |
14 |
15 | # from text import cleaned_text_to_sequence
16 | @dataclass
17 | class TextNormalizeDict:
18 | """
19 | 文本序列化 替换所有阿拉伯数字为对应语言,同时将符号替换为指定列表内的英文符号
20 | """
21 |
22 | ZH: Callable = zh_text_normalize
23 | JP: Callable = jp_text_normalize
24 | EN: Callable = en_text_normalize
25 |
26 |
27 | @dataclass
28 | class G2PDict:
29 | """
30 | 文本序列化
31 | """
32 |
33 | ZH: Callable = zh_g2p
34 | JP: Callable = jp_g2p
35 | EN: Callable = en_g2p
36 |
37 |
38 | text_normalize_instance = TextNormalizeDict()
39 | g2p_instance = G2PDict()
40 |
41 |
42 | def clean_text(text: str, language: str):
43 | """
44 | 处理标点符号,并将文本转化成对应语言音标?
45 |
46 | norm_text:处理标点后的文本
47 |
48 | phones:所有文本的音标列表
49 |
50 | tones:所有文本的音调
51 |
52 | word2ph:单个字的音标个数
53 |
54 | """
55 | try:
56 | language_text_normalize = getattr(text_normalize_instance, language)
57 | except AttributeError:
58 | raise TypeError(f"语言类型输入错误:{language}。")
59 | # 替换所有阿拉伯数字为对应语言,同时将符号替换为指定列表内的英文符号
60 | norm_text = language_text_normalize(text)
61 | phones, tones, word2ph = getattr(g2p_instance, language)(norm_text)
62 | return norm_text, phones, tones, word2ph
63 |
64 |
65 | def cleaned_text_to_sequence(cleaned_text, tones, language):
66 | """Converts a string of text to a sequence of IDs corresponding to the symbols in the text.
67 | Args:
68 | text: string to convert to a sequence
69 | Returns:
70 | List of integers corresponding to the symbols in the text
71 | """
72 | phones = [symbol_to_id[symbol] for symbol in cleaned_text]
73 | tone_start = language_tone_start_map[language]
74 | tones = [i + tone_start for i in tones]
75 | lang_ids = [language_id_map[language]] * len(phones)
76 | return phones, tones, lang_ids
--------------------------------------------------------------------------------
/onnx_infer/text/symbols.py:
--------------------------------------------------------------------------------
1 | punctuation = ["!", "?", "…", ",", ".", "'", "-"]
2 | pu_symbols = punctuation + ["SP", "UNK"]
3 | pad = "_"
4 |
5 | # chinese
6 | zh_symbols = [
7 | "E",
8 | "En",
9 | "a",
10 | "ai",
11 | "an",
12 | "ang",
13 | "ao",
14 | "b",
15 | "c",
16 | "ch",
17 | "d",
18 | "e",
19 | "ei",
20 | "en",
21 | "eng",
22 | "er",
23 | "f",
24 | "g",
25 | "h",
26 | "i",
27 | "i0",
28 | "ia",
29 | "ian",
30 | "iang",
31 | "iao",
32 | "ie",
33 | "in",
34 | "ing",
35 | "iong",
36 | "ir",
37 | "iu",
38 | "j",
39 | "k",
40 | "l",
41 | "m",
42 | "n",
43 | "o",
44 | "ong",
45 | "ou",
46 | "p",
47 | "q",
48 | "r",
49 | "s",
50 | "sh",
51 | "t",
52 | "u",
53 | "ua",
54 | "uai",
55 | "uan",
56 | "uang",
57 | "ui",
58 | "un",
59 | "uo",
60 | "v",
61 | "van",
62 | "ve",
63 | "vn",
64 | "w",
65 | "x",
66 | "y",
67 | "z",
68 | "zh",
69 | "AA",
70 | "EE",
71 | "OO",
72 | ]
73 | num_zh_tones = 6
74 |
75 | # japanese
76 | ja_symbols = [
77 | "N",
78 | "a",
79 | "a:",
80 | "b",
81 | "by",
82 | "ch",
83 | "d",
84 | "dy",
85 | "e",
86 | "e:",
87 | "f",
88 | "g",
89 | "gy",
90 | "h",
91 | "hy",
92 | "i",
93 | "i:",
94 | "j",
95 | "k",
96 | "ky",
97 | "m",
98 | "my",
99 | "n",
100 | "ny",
101 | "o",
102 | "o:",
103 | "p",
104 | "py",
105 | "q",
106 | "r",
107 | "ry",
108 | "s",
109 | "sh",
110 | "t",
111 | "ts",
112 | "ty",
113 | "u",
114 | "u:",
115 | "w",
116 | "y",
117 | "z",
118 | "zy",
119 | ]
120 | num_ja_tones = 2
121 |
122 | # English
123 | en_symbols = [
124 | "aa",
125 | "ae",
126 | "ah",
127 | "ao",
128 | "aw",
129 | "ay",
130 | "b",
131 | "ch",
132 | "d",
133 | "dh",
134 | "eh",
135 | "er",
136 | "ey",
137 | "f",
138 | "g",
139 | "hh",
140 | "ih",
141 | "iy",
142 | "jh",
143 | "k",
144 | "l",
145 | "m",
146 | "n",
147 | "ng",
148 | "ow",
149 | "oy",
150 | "p",
151 | "r",
152 | "s",
153 | "sh",
154 | "t",
155 | "th",
156 | "uh",
157 | "uw",
158 | "V",
159 | "w",
160 | "y",
161 | "z",
162 | "zh",
163 | ]
164 | num_en_tones = 4
165 |
166 | # combine all symbols
167 | normal_symbols = sorted(set(zh_symbols + ja_symbols + en_symbols))
168 | symbols = [pad] + normal_symbols + pu_symbols
169 | sil_phonemes_ids = [symbols.index(i) for i in pu_symbols]
170 |
171 | # combine all tones
172 | num_tones = num_zh_tones + num_ja_tones + num_en_tones
173 |
174 | # language maps
175 | language_id_map = {"ZH": 0, "JP": 1, "EN": 2}
176 | num_languages = len(language_id_map.keys())
177 |
178 | language_tone_start_map = {
179 | "ZH": 0,
180 | "JP": num_zh_tones,
181 | "EN": num_zh_tones + num_ja_tones,
182 | }
183 |
184 | symbol_to_id = {s: i for i, s in enumerate(symbols)}
185 |
--------------------------------------------------------------------------------
/api/api.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | time_for_launch_start = time.time()
4 |
5 | import os
6 | from typing import Optional
7 | from fastapi import FastAPI
8 | from fastapi.responses import FileResponse
9 | from contextlib import asynccontextmanager
10 |
11 | from .tts import tts_instance
12 |
13 | # 取读配置文件
14 | from log import log_instance
15 | from config import config_instance
16 |
17 | HOST = config_instance.get("server_host", "127.0.0.1")
18 | PORT = config_instance.get("server_port", 7880)
19 | WEBUI_ENABLE = config_instance.get("webui_enable", True)
20 |
21 |
22 | def handle_startup_event():
23 | # 后台线程启动webui
24 | time_for_launch_end = time.time()
25 | log_instance.info(
26 | f"程序资源载入已完成,耗时:{str(time_for_launch_end - time_for_launch_start)}\n"
27 | )
28 | api_string_zh = (
29 | f"http://{HOST}:{PORT}/api/tts?speaker=珊瑚宫心海&text="
30 | + "{text}"
31 | + "&format=wav&language=auto&length=1&sdp=0.4&noise=0.6&noisew=0.8&emotion=7&seed=114514"
32 | )
33 |
34 | if WEBUI_ENABLE:
35 | log_instance.info(f"网页控制台 -> http://{HOST}:{PORT}/gradio\n")
36 |
37 | @asynccontextmanager
38 | async def lifespan(app: FastAPI):
39 | """
40 | fastapi生命周期函数
41 | """
42 | # 启动事件
43 | handle_startup_event()
44 | yield
45 | # 结束事件
46 |
47 |
48 | app = FastAPI(lifespan=lifespan)
49 |
50 |
51 | @app.get("/api/tts")
52 | def get_data(
53 | text: str,
54 | speaker: str,
55 | language: Optional[str] = "ZH",
56 | sdp: Optional[float] = 0.2,
57 | noise: Optional[float] = 0.6,
58 | noisew: Optional[float] = 0.8,
59 | length: Optional[float] = 1,
60 | emotion: Optional[int] = 7,
61 | seed: Optional[int] = 114514,
62 | ):
63 | log_string = f"收到文本转语音请求:{speaker} -> {text}"
64 | log_error_string = f"文本转语音推理失败:{speaker} -> {text}"
65 |
66 | try:
67 | start = time.time()
68 | file_path = tts_instance.gen_tts(
69 | text=text,
70 | speaker_name=speaker,
71 | language=language,
72 | sdp_ratio=sdp,
73 | noise_scale=noise,
74 | noise_scale_w=noisew,
75 | length_scale=length,
76 | emotion=emotion,
77 | seed=seed,
78 | )
79 | stop = time.time()
80 | log_instance.info(f"{log_string} 耗时:{str(stop - start)}")
81 | except Exception as e:
82 | log_instance.error(f"{log_error_string} {str(e)}")
83 | return {"code": -1, "data": f"{str(e)}。"}
84 |
85 | if not file_path:
86 | log_instance.error(f"{log_error_string} 请检查请求参数是否正确。")
87 | return {"code": -1, "data": "语音生成失败,请检查请求参数是否正确。"}
88 |
89 | try:
90 | file_size = os.path.getsize(file_path)
91 | except FileNotFoundError:
92 | log_instance.error(f"{log_error_string} 语音文件读取失败。")
93 | return {"code": -2, "data": "数据读取失败,请重试。"}
94 | except:
95 | log_instance.error(f"{log_error_string} 请检查请求参数是否正确。")
96 | return {"code": -1, "data": "语音生成失败,请检查请求参数是否正确。"}
97 |
98 | return FileResponse(
99 | file_path,
100 | headers={"Accept-Ranges": "bytes", "Content-Length": str(file_size)},
101 | media_type="audio/basic",
102 | filename=os.path.basename(file_path),
103 | )
104 |
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v3-large/README.md:
--------------------------------------------------------------------------------
1 | ---
2 | language: en
3 | tags:
4 | - deberta
5 | - deberta-v3
6 | - fill-mask
7 | thumbnail: https://huggingface.co/front/thumbnails/microsoft.png
8 | license: mit
9 | ---
10 |
11 | ## DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing
12 |
13 | [DeBERTa](https://arxiv.org/abs/2006.03654) improves the BERT and RoBERTa models using disentangled attention and enhanced mask decoder. With those two improvements, DeBERTa out perform RoBERTa on a majority of NLU tasks with 80GB training data.
14 |
15 | In [DeBERTa V3](https://arxiv.org/abs/2111.09543), we further improved the efficiency of DeBERTa using ELECTRA-Style pre-training with Gradient Disentangled Embedding Sharing. Compared to DeBERTa, our V3 version significantly improves the model performance on downstream tasks. You can find more technique details about the new model from our [paper](https://arxiv.org/abs/2111.09543).
16 |
17 | Please check the [official repository](https://github.com/microsoft/DeBERTa) for more implementation details and updates.
18 |
19 | The DeBERTa V3 large model comes with 24 layers and a hidden size of 1024. It has 304M backbone parameters with a vocabulary containing 128K tokens which introduces 131M parameters in the Embedding layer. This model was trained using the 160GB data as DeBERTa V2.
20 |
21 |
22 | #### Fine-tuning on NLU tasks
23 |
24 | We present the dev results on SQuAD 2.0 and MNLI tasks.
25 |
26 | | Model |Vocabulary(K)|Backbone #Params(M)| SQuAD 2.0(F1/EM) | MNLI-m/mm(ACC)|
27 | |-------------------|----------|-------------------|-----------|----------|
28 | | RoBERTa-large |50 |304 | 89.4/86.5 | 90.2 |
29 | | XLNet-large |32 |- | 90.6/87.9 | 90.8 |
30 | | DeBERTa-large |50 |- | 90.7/88.0 | 91.3 |
31 | | **DeBERTa-v3-large**|128|304 | **91.5/89.0**| **91.8/91.9**|
32 |
33 |
34 | #### Fine-tuning with HF transformers
35 |
36 | ```bash
37 | #!/bin/bash
38 |
39 | cd transformers/examples/pytorch/text-classification/
40 |
41 | pip install datasets
42 | export TASK_NAME=mnli
43 |
44 | output_dir="ds_results"
45 |
46 | num_gpus=8
47 |
48 | batch_size=8
49 |
50 | python -m torch.distributed.launch --nproc_per_node=${num_gpus} \
51 | run_glue.py \
52 | --model_name_or_path microsoft/deberta-v3-large \
53 | --task_name $TASK_NAME \
54 | --do_train \
55 | --do_eval \
56 | --evaluation_strategy steps \
57 | --max_seq_length 256 \
58 | --warmup_steps 50 \
59 | --per_device_train_batch_size ${batch_size} \
60 | --learning_rate 6e-6 \
61 | --num_train_epochs 2 \
62 | --output_dir $output_dir \
63 | --overwrite_output_dir \
64 | --logging_steps 1000 \
65 | --logging_dir $output_dir
66 |
67 | ```
68 |
69 | ### Citation
70 |
71 | If you find DeBERTa useful for your work, please cite the following papers:
72 |
73 | ``` latex
74 | @misc{he2021debertav3,
75 | title={DeBERTaV3: Improving DeBERTa using ELECTRA-Style Pre-Training with Gradient-Disentangled Embedding Sharing},
76 | author={Pengcheng He and Jianfeng Gao and Weizhu Chen},
77 | year={2021},
78 | eprint={2111.09543},
79 | archivePrefix={arXiv},
80 | primaryClass={cs.CL}
81 | }
82 | ```
83 |
84 | ``` latex
85 | @inproceedings{
86 | he2021deberta,
87 | title={DEBERTA: DECODING-ENHANCED BERT WITH DISENTANGLED ATTENTION},
88 | author={Pengcheng He and Xiaodong Liu and Jianfeng Gao and Weizhu Chen},
89 | booktitle={International Conference on Learning Representations},
90 | year={2021},
91 | url={https://openreview.net/forum?id=XPZIaotutsD}
92 | }
93 | ```
94 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # poetry
98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
102 | #poetry.lock
103 |
104 | # pdm
105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
106 | #pdm.lock
107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
108 | # in version control.
109 | # https://pdm.fming.dev/#use-with-ide
110 | .pdm.toml
111 |
112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
113 | __pypackages__/
114 |
115 | # Celery stuff
116 | celerybeat-schedule
117 | celerybeat.pid
118 |
119 | # SageMath parsed files
120 | *.sage.py
121 |
122 | # Environments
123 | .env
124 | .venv
125 | env/
126 | venv/
127 | ENV/
128 | env.bak/
129 | venv.bak/
130 |
131 | # Spyder project settings
132 | .spyderproject
133 | .spyproject
134 |
135 | # Rope project settings
136 | .ropeproject
137 |
138 | # mkdocs documentation
139 | /site
140 |
141 | # mypy
142 | .mypy_cache/
143 | .dmypy.json
144 | dmypy.json
145 |
146 | # Pyre type checker
147 | .pyre/
148 |
149 | # pytype static type analyzer
150 | .pytype/
151 |
152 | # Cython debug symbols
153 | cython_debug/
154 |
155 | # PyCharm
156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
158 | # and can be added to the global gitignore or merged into this file. For a more nuclear
159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
160 | #.idea/
161 |
162 | upx-4.0.2-win64/
163 | temp/
164 | onnx/Bert/chinese-roberta-wwm-ext-large/model.onnx
165 | onnx/Bert/deberta-v2-large-japanese/model.onnx
166 | onnx/Bert/deberta-v3-large/model.onnx
167 | onnx/models/Genshin/
168 | onnx/models/Genshin.json
169 | build.txt
170 | test.py
--------------------------------------------------------------------------------
/onnx/Bert/deberta-v2-large-japanese/README.md:
--------------------------------------------------------------------------------
1 | ---
2 | language: ja
3 | license: cc-by-sa-4.0
4 | library_name: transformers
5 | tags:
6 | - deberta
7 | - deberta-v2
8 | - fill-mask
9 | datasets:
10 | - wikipedia
11 | - cc100
12 | - oscar
13 | metrics:
14 | - accuracy
15 | mask_token: "[MASK]"
16 | widget:
17 | - text: "京都 大学 で 自然 言語 処理 を [MASK] する 。"
18 | ---
19 |
20 | # Model Card for Japanese DeBERTa V2 large
21 |
22 | ## Model description
23 |
24 | This is a Japanese DeBERTa V2 large model pre-trained on Japanese Wikipedia, the Japanese portion of CC-100, and the
25 | Japanese portion of OSCAR.
26 |
27 | ## How to use
28 |
29 | You can use this model for masked language modeling as follows:
30 |
31 | ```python
32 | from transformers import AutoTokenizer, AutoModelForMaskedLM
33 |
34 | tokenizer = AutoTokenizer.from_pretrained('ku-nlp/deberta-v2-large-japanese')
35 | model = AutoModelForMaskedLM.from_pretrained('ku-nlp/deberta-v2-large-japanese')
36 |
37 | sentence = '京都 大学 で 自然 言語 処理 を [MASK] する 。' # input should be segmented into words by Juman++ in advance
38 | encoding = tokenizer(sentence, return_tensors='pt')
39 | ...
40 | ```
41 |
42 | You can also fine-tune this model on downstream tasks.
43 |
44 | ## Tokenization
45 |
46 | The input text should be segmented into words by [Juman++](https://github.com/ku-nlp/jumanpp) in
47 | advance. [Juman++ 2.0.0-rc3](https://github.com/ku-nlp/jumanpp/releases/tag/v2.0.0-rc3) was used for pre-training. Each
48 | word is tokenized into subwords by [sentencepiece](https://github.com/google/sentencepiece).
49 |
50 | ## Training data
51 |
52 | We used the following corpora for pre-training:
53 |
54 | - Japanese Wikipedia (as of 20221020, 3.2GB, 27M sentences, 1.3M documents)
55 | - Japanese portion of CC-100 (85GB, 619M sentences, 66M documents)
56 | - Japanese portion of OSCAR (54GB, 326M sentences, 25M documents)
57 |
58 | Note that we filtered out documents annotated with "header", "footer", or "noisy" tags in OSCAR.
59 | Also note that Japanese Wikipedia was duplicated 10 times to make the total size of the corpus comparable to that of
60 | CC-100 and OSCAR. As a result, the total size of the training data is 171GB.
61 |
62 | ## Training procedure
63 |
64 | We first segmented texts in the corpora into words using [Juman++](https://github.com/ku-nlp/jumanpp).
65 | Then, we built a sentencepiece model with 32000 tokens including words ([JumanDIC](https://github.com/ku-nlp/JumanDIC))
66 | and subwords induced by the unigram language model of [sentencepiece](https://github.com/google/sentencepiece).
67 |
68 | We tokenized the segmented corpora into subwords using the sentencepiece model and trained the Japanese DeBERTa model
69 | using [transformers](https://github.com/huggingface/transformers) library.
70 | The training took 36 days using 8 NVIDIA A100-SXM4-40GB GPUs.
71 |
72 | The following hyperparameters were used during pre-training:
73 |
74 | - learning_rate: 1e-4
75 | - per_device_train_batch_size: 18
76 | - distributed_type: multi-GPU
77 | - num_devices: 8
78 | - gradient_accumulation_steps: 16
79 | - total_train_batch_size: 2,304
80 | - max_seq_length: 512
81 | - optimizer: Adam with betas=(0.9,0.999) and epsilon=1e-06
82 | - lr_scheduler_type: linear schedule with warmup
83 | - training_steps: 300,000
84 | - warmup_steps: 10,000
85 |
86 | The accuracy of the trained model on the masked language modeling task was 0.799.
87 | The evaluation set consists of 5,000 randomly sampled documents from each of the training corpora.
88 |
89 | ## Fine-tuning on NLU tasks
90 |
91 | We fine-tuned the following models and evaluated them on the dev set of JGLUE.
92 | We tuned learning rate and training epochs for each model and task
93 | following [the JGLUE paper](https://www.jstage.jst.go.jp/article/jnlp/30/1/30_63/_pdf/-char/ja).
94 |
95 | | Model | MARC-ja/acc | JSTS/pearson | JSTS/spearman | JNLI/acc | JSQuAD/EM | JSQuAD/F1 | JComQA/acc |
96 | |-------------------------------|-------------|--------------|---------------|----------|-----------|-----------|------------|
97 | | Waseda RoBERTa base | 0.965 | 0.913 | 0.876 | 0.905 | 0.853 | 0.916 | 0.853 |
98 | | Waseda RoBERTa large (seq512) | 0.969 | 0.925 | 0.890 | 0.928 | 0.910 | 0.955 | 0.900 |
99 | | LUKE Japanese base* | 0.965 | 0.916 | 0.877 | 0.912 | - | - | 0.842 |
100 | | LUKE Japanese large* | 0.965 | 0.932 | 0.902 | 0.927 | - | - | 0.893 |
101 | | DeBERTaV2 base | 0.970 | 0.922 | 0.886 | 0.922 | 0.899 | 0.951 | 0.873 |
102 | | DeBERTaV2 large | 0.968 | 0.925 | 0.892 | 0.924 | 0.912 | 0.959 | 0.890 |
103 |
104 | *The scores of LUKE are from [the official repository](https://github.com/studio-ousia/luke).
105 |
106 | ## Acknowledgments
107 |
108 | This work was supported by Joint Usage/Research Center for Interdisciplinary Large-scale Information Infrastructures (
109 | JHPCN) through General Collaboration Project no. jh221004, "Developing a Platform for Constructing and Sharing of
110 | Large-Scale Japanese Language Models".
111 | For training models, we used the mdx: a platform for the data-driven future.
112 |
--------------------------------------------------------------------------------
/onnx/Text/opencpop-strict.txt:
--------------------------------------------------------------------------------
1 | a AA a
2 | ai AA ai
3 | an AA an
4 | ang AA ang
5 | ao AA ao
6 | ba b a
7 | bai b ai
8 | ban b an
9 | bang b ang
10 | bao b ao
11 | bei b ei
12 | ben b en
13 | beng b eng
14 | bi b i
15 | bian b ian
16 | biao b iao
17 | bie b ie
18 | bin b in
19 | bing b ing
20 | bo b o
21 | bu b u
22 | ca c a
23 | cai c ai
24 | can c an
25 | cang c ang
26 | cao c ao
27 | ce c e
28 | cei c ei
29 | cen c en
30 | ceng c eng
31 | cha ch a
32 | chai ch ai
33 | chan ch an
34 | chang ch ang
35 | chao ch ao
36 | che ch e
37 | chen ch en
38 | cheng ch eng
39 | chi ch ir
40 | chong ch ong
41 | chou ch ou
42 | chu ch u
43 | chua ch ua
44 | chuai ch uai
45 | chuan ch uan
46 | chuang ch uang
47 | chui ch ui
48 | chun ch un
49 | chuo ch uo
50 | ci c i0
51 | cong c ong
52 | cou c ou
53 | cu c u
54 | cuan c uan
55 | cui c ui
56 | cun c un
57 | cuo c uo
58 | da d a
59 | dai d ai
60 | dan d an
61 | dang d ang
62 | dao d ao
63 | de d e
64 | dei d ei
65 | den d en
66 | deng d eng
67 | di d i
68 | dia d ia
69 | dian d ian
70 | diao d iao
71 | die d ie
72 | ding d ing
73 | diu d iu
74 | dong d ong
75 | dou d ou
76 | du d u
77 | duan d uan
78 | dui d ui
79 | dun d un
80 | duo d uo
81 | e EE e
82 | ei EE ei
83 | en EE en
84 | eng EE eng
85 | er EE er
86 | fa f a
87 | fan f an
88 | fang f ang
89 | fei f ei
90 | fen f en
91 | feng f eng
92 | fo f o
93 | fou f ou
94 | fu f u
95 | ga g a
96 | gai g ai
97 | gan g an
98 | gang g ang
99 | gao g ao
100 | ge g e
101 | gei g ei
102 | gen g en
103 | geng g eng
104 | gong g ong
105 | gou g ou
106 | gu g u
107 | gua g ua
108 | guai g uai
109 | guan g uan
110 | guang g uang
111 | gui g ui
112 | gun g un
113 | guo g uo
114 | ha h a
115 | hai h ai
116 | han h an
117 | hang h ang
118 | hao h ao
119 | he h e
120 | hei h ei
121 | hen h en
122 | heng h eng
123 | hong h ong
124 | hou h ou
125 | hu h u
126 | hua h ua
127 | huai h uai
128 | huan h uan
129 | huang h uang
130 | hui h ui
131 | hun h un
132 | huo h uo
133 | ji j i
134 | jia j ia
135 | jian j ian
136 | jiang j iang
137 | jiao j iao
138 | jie j ie
139 | jin j in
140 | jing j ing
141 | jiong j iong
142 | jiu j iu
143 | ju j v
144 | jv j v
145 | juan j van
146 | jvan j van
147 | jue j ve
148 | jve j ve
149 | jun j vn
150 | jvn j vn
151 | ka k a
152 | kai k ai
153 | kan k an
154 | kang k ang
155 | kao k ao
156 | ke k e
157 | kei k ei
158 | ken k en
159 | keng k eng
160 | kong k ong
161 | kou k ou
162 | ku k u
163 | kua k ua
164 | kuai k uai
165 | kuan k uan
166 | kuang k uang
167 | kui k ui
168 | kun k un
169 | kuo k uo
170 | la l a
171 | lai l ai
172 | lan l an
173 | lang l ang
174 | lao l ao
175 | le l e
176 | lei l ei
177 | leng l eng
178 | li l i
179 | lia l ia
180 | lian l ian
181 | liang l iang
182 | liao l iao
183 | lie l ie
184 | lin l in
185 | ling l ing
186 | liu l iu
187 | lo l o
188 | long l ong
189 | lou l ou
190 | lu l u
191 | luan l uan
192 | lun l un
193 | luo l uo
194 | lv l v
195 | lve l ve
196 | ma m a
197 | mai m ai
198 | man m an
199 | mang m ang
200 | mao m ao
201 | me m e
202 | mei m ei
203 | men m en
204 | meng m eng
205 | mi m i
206 | mian m ian
207 | miao m iao
208 | mie m ie
209 | min m in
210 | ming m ing
211 | miu m iu
212 | mo m o
213 | mou m ou
214 | mu m u
215 | na n a
216 | nai n ai
217 | nan n an
218 | nang n ang
219 | nao n ao
220 | ne n e
221 | nei n ei
222 | nen n en
223 | neng n eng
224 | ni n i
225 | nian n ian
226 | niang n iang
227 | niao n iao
228 | nie n ie
229 | nin n in
230 | ning n ing
231 | niu n iu
232 | nong n ong
233 | nou n ou
234 | nu n u
235 | nuan n uan
236 | nun n un
237 | nuo n uo
238 | nv n v
239 | nve n ve
240 | o OO o
241 | ou OO ou
242 | pa p a
243 | pai p ai
244 | pan p an
245 | pang p ang
246 | pao p ao
247 | pei p ei
248 | pen p en
249 | peng p eng
250 | pi p i
251 | pian p ian
252 | piao p iao
253 | pie p ie
254 | pin p in
255 | ping p ing
256 | po p o
257 | pou p ou
258 | pu p u
259 | qi q i
260 | qia q ia
261 | qian q ian
262 | qiang q iang
263 | qiao q iao
264 | qie q ie
265 | qin q in
266 | qing q ing
267 | qiong q iong
268 | qiu q iu
269 | qu q v
270 | qv q v
271 | quan q van
272 | qvan q van
273 | que q ve
274 | qve q ve
275 | qun q vn
276 | qvn q vn
277 | ran r an
278 | rang r ang
279 | rao r ao
280 | re r e
281 | ren r en
282 | reng r eng
283 | ri r ir
284 | rong r ong
285 | rou r ou
286 | ru r u
287 | rua r ua
288 | ruan r uan
289 | rui r ui
290 | run r un
291 | ruo r uo
292 | sa s a
293 | sai s ai
294 | san s an
295 | sang s ang
296 | sao s ao
297 | se s e
298 | sen s en
299 | seng s eng
300 | sha sh a
301 | shai sh ai
302 | shan sh an
303 | shang sh ang
304 | shao sh ao
305 | she sh e
306 | shei sh ei
307 | shen sh en
308 | sheng sh eng
309 | shi sh ir
310 | shou sh ou
311 | shu sh u
312 | shua sh ua
313 | shuai sh uai
314 | shuan sh uan
315 | shuang sh uang
316 | shui sh ui
317 | shun sh un
318 | shuo sh uo
319 | si s i0
320 | song s ong
321 | sou s ou
322 | su s u
323 | suan s uan
324 | sui s ui
325 | sun s un
326 | suo s uo
327 | ta t a
328 | tai t ai
329 | tan t an
330 | tang t ang
331 | tao t ao
332 | te t e
333 | tei t ei
334 | teng t eng
335 | ti t i
336 | tian t ian
337 | tiao t iao
338 | tie t ie
339 | ting t ing
340 | tong t ong
341 | tou t ou
342 | tu t u
343 | tuan t uan
344 | tui t ui
345 | tun t un
346 | tuo t uo
347 | wa w a
348 | wai w ai
349 | wan w an
350 | wang w ang
351 | wei w ei
352 | wen w en
353 | weng w eng
354 | wo w o
355 | wu w u
356 | xi x i
357 | xia x ia
358 | xian x ian
359 | xiang x iang
360 | xiao x iao
361 | xie x ie
362 | xin x in
363 | xing x ing
364 | xiong x iong
365 | xiu x iu
366 | xu x v
367 | xv x v
368 | xuan x van
369 | xvan x van
370 | xue x ve
371 | xve x ve
372 | xun x vn
373 | xvn x vn
374 | ya y a
375 | yan y En
376 | yang y ang
377 | yao y ao
378 | ye y E
379 | yi y i
380 | yin y in
381 | ying y ing
382 | yo y o
383 | yong y ong
384 | you y ou
385 | yu y v
386 | yv y v
387 | yuan y van
388 | yvan y van
389 | yue y ve
390 | yve y ve
391 | yun y vn
392 | yvn y vn
393 | za z a
394 | zai z ai
395 | zan z an
396 | zang z ang
397 | zao z ao
398 | ze z e
399 | zei z ei
400 | zen z en
401 | zeng z eng
402 | zha zh a
403 | zhai zh ai
404 | zhan zh an
405 | zhang zh ang
406 | zhao zh ao
407 | zhe zh e
408 | zhei zh ei
409 | zhen zh en
410 | zheng zh eng
411 | zhi zh ir
412 | zhong zh ong
413 | zhou zh ou
414 | zhu zh u
415 | zhua zh ua
416 | zhuai zh uai
417 | zhuan zh uan
418 | zhuang zh uang
419 | zhui zh ui
420 | zhun zh un
421 | zhuo zh uo
422 | zi z i0
423 | zong z ong
424 | zou z ou
425 | zu z u
426 | zuan z uan
427 | zui z ui
428 | zun z un
429 | zuo z uo
430 |
--------------------------------------------------------------------------------
/onnx_infer/onnx_bert.py:
--------------------------------------------------------------------------------
1 | import os
2 | from log import log_instance
3 | import numpy as np
4 | import onnxruntime as ort
5 | from dataclasses import dataclass
6 |
7 | from config import config_instance
8 |
9 | from .text.japanese import text2sep_kata as japanese_text2sep_kata
10 | from .text.tokenizer import tokenizer_instance
11 |
12 | ONNX_PROVIDERS = [config_instance.get("onnx_providers", "CPUExecutionProvider")]
13 | CHINESE_ONNX_LOCAL_DIR = config_instance.get("bert_chinese", "")
14 | JAPANESE_ONNX_LOCAL_DIR = config_instance.get("bert_japanese", "")
15 | ENGLISH_ONNX_LOCAL_DIR = config_instance.get("bert_english", "")
16 |
17 |
18 | @dataclass
19 | class BertModelsDict:
20 | """
21 | ONNX模型对象字典
22 | """
23 |
24 | ZH: ort.InferenceSession = (
25 | ort.InferenceSession(
26 | os.path.join(CHINESE_ONNX_LOCAL_DIR, "model.onnx"),
27 | providers=ONNX_PROVIDERS,
28 | )
29 | if CHINESE_ONNX_LOCAL_DIR
30 | else None
31 | )
32 | JP: ort.InferenceSession = (
33 | ort.InferenceSession(
34 | os.path.join(JAPANESE_ONNX_LOCAL_DIR, "model.onnx"),
35 | providers=ONNX_PROVIDERS,
36 | )
37 | if JAPANESE_ONNX_LOCAL_DIR
38 | else None
39 | )
40 | EN: ort.InferenceSession = (
41 | ort.InferenceSession(
42 | os.path.join(ENGLISH_ONNX_LOCAL_DIR, "model.onnx"),
43 | providers=ONNX_PROVIDERS,
44 | )
45 | if ENGLISH_ONNX_LOCAL_DIR
46 | else None
47 | )
48 |
49 |
50 | class BertOnnx:
51 | def __init__(self) -> None:
52 | log_instance.info("正在加载BERT分析器...")
53 | self.tokenizer_instance = tokenizer_instance
54 |
55 | log_instance.info("正在加载BERT语言模型...")
56 | self.models_dict: BertModelsDict = BertModelsDict()
57 |
58 | def __get_model_path(self, dir_path: str):
59 | """
60 | 获取模型的完整路径
61 | """
62 | return os.path.join(dir_path, "model.onnx")
63 |
64 | def __check_language(self, language_str: str):
65 | """
66 | 检查语言类型参数是否合法
67 | """
68 | if hasattr(self.models_dict, language_str):
69 | return language_str
70 | return False
71 |
72 | @staticmethod
73 | def __check_params_inputs(text: str, word2ph: list, language_str: str = "ZH"):
74 | # 检查输入参数的合法性
75 | log_instance.debug(f"{language_str}, {str(len(word2ph))} {str(len(text) + 2)}")
76 | if language_str in ["ZH"] and len(word2ph) != len(text) + 2:
77 | raise ValueError("输入参数错误,len(word2ph) != len(text) + 2。")
78 | else:
79 | pass
80 |
81 | @staticmethod
82 | def __check_onnx_outputs(res: np.float32, word2ph: list, language_str: str = "ZH"):
83 | """
84 | 检查输出结果的合法性
85 | """
86 | # 检查输出结果的合法性
87 | if language_str == "EN" and len(word2ph) != res.shape[0]:
88 | raise ValueError(
89 | f"Bert输出参数错误,len(word2ph) != res.shape[0] (len(word2ph):{len(word2ph)} res.shape[0]:{res.shape[0]})。 "
90 | )
91 | else:
92 | pass
93 | # pass
94 |
95 | @staticmethod
96 | def __handle_text(text: str, language_str: str = "ZH"):
97 | """
98 | 针对不同的语言,对文本进行处理
99 | """
100 | log_instance.debug(f"文本处理 {language_str} {text}")
101 | if language_str == "JP":
102 | return "".join(japanese_text2sep_kata(text)[0])
103 | return text
104 |
105 | def __structure_onnx_inputs(self, text: str, language_str: str = "ZH"):
106 | """
107 | 构造分析器转换文本参数
108 | """
109 | # 加载分析器转换文本参数
110 | tokenizer = getattr(self.tokenizer_instance, language_str)
111 |
112 | if not tokenizer:
113 | raise KeyError(f"BERT_{language_str}分析器尚未载入。")
114 |
115 | tokenized_tokens = tokenizer(text)
116 |
117 | # 构造模型 输入参数
118 | input_feed = {
119 | "input_ids": np.array([tokenized_tokens["input_ids"]], dtype=np.int64),
120 | "attention_mask": np.array(
121 | [tokenized_tokens["attention_mask"]], dtype=np.int64
122 | ),
123 | }
124 | # 目前只有ZH的bert模型需要 token_type_ids 参数
125 | if language_str == "ZH":
126 | input_feed["token_type_ids"] = np.array(
127 | [tokenized_tokens["token_type_ids"]], dtype=np.int64
128 | )
129 |
130 | return input_feed
131 |
132 | def __get_phone_level_feature(self, res: np.float32, word2ph: list) -> np.float32:
133 | """
134 | 获取最终bert结果 ???具体作用不清楚
135 | """
136 | phone_level_feature = []
137 | for i in range(len(word2ph)):
138 | if i >= res.shape[0]:
139 | repeat_feature = np.repeat([np.empty(res.shape[1])], word2ph[i], axis=0)
140 | else:
141 | repeat_feature = np.repeat([res[i]], word2ph[i], axis=0)
142 | phone_level_feature.append(repeat_feature)
143 | res = np.concatenate(phone_level_feature, axis=0)
144 | # 强制转化为float32
145 | res = res.astype(np.float32)
146 | return res
147 |
148 | def __run_onnx(self, inputs: dict, language_str: str = "ZH") -> np.float32:
149 | """
150 | 输入并获取bert最后一层隐藏数据
151 | """
152 | onnx_model: ort.InferenceSession = getattr(self.models_dict, language_str)
153 |
154 | if not onnx_model:
155 | raise KeyError(f"BERT_{language_str}模型尚未载入。")
156 | res = onnx_model.run(
157 | output_names=["last_hidden_state"],
158 | input_feed=inputs,
159 | )[0]
160 | onnx_model.disable_fallback()
161 | res = np.array(res, dtype=np.float32)
162 | return res
163 |
164 | def run(self, norm_text: str, word2ph: list, language_str: str) -> np.float32:
165 | """
166 | 运行推理
167 | """
168 |
169 | # 检查语言类型参数是否合法
170 | if not self.__check_language(language_str):
171 | raise TypeError(f"语言类型输入错误:{language_str}。")
172 |
173 | # 针对不同的语言,对文本进行处理
174 | norm_text = self.__handle_text(text=norm_text, language_str=language_str)
175 | log_instance.debug(f"结果处理 {language_str} {norm_text}")
176 | # 检查输入参数
177 | self.__check_params_inputs(
178 | text=norm_text, word2ph=word2ph, language_str=language_str
179 | )
180 |
181 | # 构造模型输入参数
182 | input_feed = self.__structure_onnx_inputs(
183 | text=norm_text, language_str=language_str
184 | )
185 |
186 | # 推理获取输出
187 | res = self.__run_onnx(inputs=input_feed, language_str=language_str)
188 | log_instance.debug(f"原始onnx输出 {language_str} {str(res.shape)}")
189 | # 检查输出结果的合法性
190 | self.__check_onnx_outputs(res=res, word2ph=word2ph, language_str=language_str)
191 |
192 | # 获取最终bert结果 ???具体作用不清楚
193 | phone_level_feature = self.__get_phone_level_feature(res=res, word2ph=word2ph)
194 | log_instance.debug(f"最终bert结果 {language_str} {str(phone_level_feature.dtype)}")
195 | return phone_level_feature
196 |
197 | bert_onnx_instance = BertOnnx()
198 |
199 |
200 | def get_bert(norm_text: str, word2ph: list, language: np.int64):
201 | """
202 | bert模型推理
203 | """
204 | return bert_onnx_instance.run(norm_text, word2ph, language)
205 |
--------------------------------------------------------------------------------
/onnx_infer/text/chinese.py:
--------------------------------------------------------------------------------
1 | import os
2 | import re
3 |
4 | import cn2an
5 | import jieba.posseg as psg
6 | from typing import List, Dict
7 | from pypinyin import lazy_pinyin, Style
8 |
9 | from .symbols import punctuation
10 | from .chinese_tone_sandhi import ToneSandhi
11 |
12 | from log import log_instance
13 |
14 | REP_MAP = {
15 | ":": ",",
16 | ";": ",",
17 | ",": ",",
18 | "。": ".",
19 | "!": "!",
20 | "?": "?",
21 | "\n": ".",
22 | "·": ",",
23 | "、": ",",
24 | "...": "…",
25 | "$": ".",
26 | "“": "'",
27 | "”": "'",
28 | '"': "'",
29 | "‘": "'",
30 | "’": "'",
31 | "(": "'",
32 | ")": "'",
33 | "(": "'",
34 | ")": "'",
35 | "《": "'",
36 | "》": "'",
37 | "【": "'",
38 | "】": "'",
39 | "[": "'",
40 | "]": "'",
41 | "—": "-",
42 | "~": "-",
43 | "~": "-",
44 | "「": "'",
45 | "」": "'",
46 | }
47 |
48 |
49 | class ChineseG2P:
50 | def __init__(self) -> None:
51 | self.tone_modifier = ToneSandhi()
52 | self.pinyin_to_symbol_map: Dict[str, str] = {}
53 | self.__read_opencpop_symbol_map()
54 |
55 | def __read_opencpop_symbol_map(self):
56 | """
57 | 取读opencpop数据
58 | """
59 | f = open("onnx/Text/opencpop-strict.txt", "r")
60 | for line in f.readlines():
61 | self.pinyin_to_symbol_map[line.split("\t")[0]] = line.strip().split("\t")[1]
62 | f.close()
63 |
64 | @staticmethod
65 | def __get_initials_finals(word):
66 | initials = []
67 | finals = []
68 | orig_initials = lazy_pinyin(
69 | word, neutral_tone_with_five=True, style=Style.INITIALS
70 | )
71 | orig_finals = lazy_pinyin(
72 | word, neutral_tone_with_five=True, style=Style.FINALS_TONE3
73 | )
74 | for c, v in zip(orig_initials, orig_finals):
75 | initials.append(c)
76 | finals.append(v)
77 | return initials, finals
78 |
79 | def g2p(self, segments_list: List[str]):
80 | phones_list = []
81 | tones_list = []
82 | word2ph = []
83 | for seg in segments_list:
84 | seg_cut = psg.lcut(seg)
85 | initials = []
86 | finals = []
87 | seg_cut = self.tone_modifier.pre_merge_for_modify(seg_cut)
88 | for word, pos in seg_cut:
89 | if pos == "eng":
90 | continue
91 | sub_initials, sub_finals = self.__get_initials_finals(word)
92 | sub_finals = self.tone_modifier.modified_tone(word, pos, sub_finals)
93 | initials.append(sub_initials)
94 | finals.append(sub_finals)
95 |
96 | # assert len(sub_initials) == len(sub_finals) == len(word)
97 | initials = sum(initials, [])
98 | finals = sum(finals, [])
99 | #
100 | for c, v in zip(initials, finals):
101 | raw_pinyin = c + v
102 | # NOTE: post process for pypinyin outputs
103 | # we discriminate i, ii and iii
104 | if c == v:
105 | assert c in punctuation
106 | phone = [c]
107 | tone = "0"
108 | word2ph.append(1)
109 | else:
110 | v_without_tone = v[:-1]
111 | tone = v[-1]
112 |
113 | pinyin = c + v_without_tone
114 | assert tone in "12345"
115 |
116 | if c:
117 | # 多音节
118 | v_rep_map = {
119 | "uei": "ui",
120 | "iou": "iu",
121 | "uen": "un",
122 | }
123 | if v_without_tone in v_rep_map.keys():
124 | pinyin = c + v_rep_map[v_without_tone]
125 | else:
126 | # 单音节
127 | pinyin_rep_map = {
128 | "ing": "ying",
129 | "i": "yi",
130 | "in": "yin",
131 | "u": "wu",
132 | }
133 | if pinyin in pinyin_rep_map.keys():
134 | pinyin = pinyin_rep_map[pinyin]
135 | else:
136 | single_rep_map = {
137 | "v": "yu",
138 | "e": "e",
139 | "i": "y",
140 | "u": "w",
141 | }
142 | if pinyin[0] in single_rep_map.keys():
143 | pinyin = single_rep_map[pinyin[0]] + pinyin[1:]
144 |
145 | assert pinyin in self.pinyin_to_symbol_map.keys(), (
146 | pinyin,
147 | seg,
148 | raw_pinyin,
149 | )
150 | phone = self.pinyin_to_symbol_map[pinyin].split(" ")
151 | word2ph.append(len(phone))
152 |
153 | phones_list += phone
154 | tones_list += [int(tone)] * len(phone)
155 | return phones_list, tones_list, word2ph
156 |
157 |
158 | chinese_g2p_instance = ChineseG2P()
159 |
160 |
161 | def g2p(text: str):
162 | """
163 | 将文本转换成音节
164 | """
165 | # 将文本按照标点符号切分成列表
166 | pattern = r"(?<=[{0}])\s*".format("".join(punctuation))
167 | sentences = [i for i in re.split(pattern, text) if i.strip() != ""]
168 | # 根据切分后的列表,返回文本对应发音列表
169 | # phone:拼音的声母、韵母
170 | # tone:声调 1 2 3 4 5
171 | # word2ph:如果只有韵母,返回1,如果有声母韵母,返回2
172 | phones_list, tones_list, word2ph_list = chinese_g2p_instance.g2p(sentences)
173 | if sum(word2ph_list) != len(phones_list):
174 | raise ValueError("中文转拼音失败:音节总数(sum(word2ph_list))与音节的个数(len(phones_list))不匹配。")
175 | if len(word2ph_list) != len(text): # Sometimes it will crash,you can add a try-catch.
176 | raise ValueError("中文转拼音失败:拼音结果个数(len(word2ph_list))与文本长度(len(text))不匹配。")
177 |
178 | phones_list = ["_"] + phones_list + ["_"]
179 | log_instance.debug(f"phones {str(phones_list)}")
180 | tones_list = [0] + tones_list + [0]
181 | log_instance.debug(f"tones {str(tones_list)}")
182 | word2ph_list = [1] + word2ph_list + [1]
183 | log_instance.debug(f"word2ph {str(word2ph_list)}")
184 | return phones_list, tones_list, word2ph_list
185 |
186 |
187 | def replace_punctuation(text: str):
188 | """
189 | 替换所有中文标点符号为指定的英文符号: ["!", "?", "…", ",", ".", "'", "-"]
190 | """
191 | # 替换某些同音字
192 | text = text.replace("嗯", "恩").replace("呣", "母")
193 | # 将所有标点符号替换成指定英文符号
194 | pattern = re.compile("|".join(re.escape(p) for p in REP_MAP.keys()))
195 | replaced_text = pattern.sub(lambda x: REP_MAP[x.group()], text)
196 | # 剔除非指定英文符号和中文的所有字符
197 | replaced_text = re.sub(
198 | r"[^\u4e00-\u9fa5" + "".join(punctuation) + r"]+", "", replaced_text
199 | )
200 | return replaced_text
201 |
202 |
203 | def text_normalize(text: str):
204 | """
205 | 替换所有阿拉伯数字为中文,同时将中文符号替换为英文符号
206 | """
207 | # 提取文本中所有的阿拉伯数字
208 | numbers = re.findall(r"\d+(?:\.?\d+)?", text)
209 | for number in numbers:
210 | # 将阿拉伯数字转中文小写数字一百二十三
211 | text = text.replace(number, cn2an.an2cn(number), 1)
212 | # 替换所有中文标点符号为指定的英文符号: ["!", "?", "…", ",", ".", "'", "-"]
213 | text = replace_punctuation(text)
214 | return text
215 |
--------------------------------------------------------------------------------
/api/ui.py:
--------------------------------------------------------------------------------
1 | import os
2 | import time
3 | from log import log_instance
4 | import gradio as gr
5 |
6 | from .tts import tts_instance
7 | from .utils import rebuild_temp_dir, copy_to_clipboard
8 | from .utils import os_type_instance
9 |
10 | from config import config_instance
11 |
12 | HOST = config_instance.get("server_host", "127.0.0.1")
13 | PORT = config_instance.get("server_port", 7880)
14 |
15 | SPEAKERS_LIST = tts_instance.get_speakers_list()
16 | LANGUAGES_LIST = ["自动识别", "仅中文", "仅英文", "仅日文"]
17 | LANGUAGES_DICT = {"自动识别": "auto", "仅中文": "ZH", "仅英文": "EN", "仅日文": "JP"}
18 |
19 |
20 | def __handle_speaker_name(speaker_name):
21 | """
22 | 处理成接口可识别的发音人名字
23 | 该方法根据模型角色名不同,自行自定义
24 | """
25 | split_mark = "["
26 | if split_mark in speaker_name:
27 | return "".join(speaker_name.split(split_mark)[:-1])
28 | return speaker_name
29 |
30 |
31 | def __copy_url(
32 | speaker: str,
33 | language: str = "ZH",
34 | sdp: float = 0.2,
35 | noise: float = 0.6,
36 | noisew: float = 0.8,
37 | length: float = 1,
38 | emotion: int = 7,
39 | seed: int = 114514,
40 | ):
41 | """
42 | # 将接口地址发送到剪切板
43 | """
44 | language = LANGUAGES_DICT[language]
45 | # 重命名角色名
46 | speaker = __handle_speaker_name(speaker)
47 |
48 | url = (
49 | f"http://{HOST}:{PORT}/api/tts?speaker={speaker}&text="
50 | + "{text}"
51 | + f"&format=wav&language={language}&length={str(length)}&sdp={str(sdp)}&noise={str(noise)}&noisew={str(noisew)}&emotion={str(emotion)}&seed={str(seed)}"
52 | )
53 |
54 | copy_to_clipboard(url)
55 |
56 | gr.Info(f"接口地址已复制到剪切板。")
57 | gr.Info(f"文件类型:wav")
58 | gr.Info(f"请求方式:GET")
59 | gr.Info(f"接口地址:{url}")
60 |
61 |
62 | def __tts(
63 | text: str,
64 | speaker: str,
65 | language: str = "ZH",
66 | sdp: float = 0.2,
67 | noise: float = 0.6,
68 | noisew: float = 0.8,
69 | length: float = 1,
70 | emotion: int = 7,
71 | seed: int = 114514,
72 | within_interval:float = 0.5,
73 | sentence_interval: float = 1.0,
74 | paragraph_interval: float = 2.0,
75 | ):
76 | log_string = f"收到文本转语音请求:{speaker} -> {text}"
77 | log_error_string = f"文本转语音推理失败:{speaker} -> {text}"
78 |
79 | language = LANGUAGES_DICT[language]
80 | # 重命名角色名
81 | speaker = __handle_speaker_name(speaker)
82 |
83 | # try:
84 | start = time.time()
85 | file_path = tts_instance.gen_tts(
86 | text=text,
87 | speaker_name=speaker,
88 | language=language,
89 | sdp_ratio=sdp,
90 | noise_scale=noise,
91 | noise_scale_w=noisew,
92 | length_scale=length,
93 | emotion=emotion,
94 | seed=seed,
95 | within_interval=within_interval,
96 | sentence_interval=sentence_interval,
97 | paragraph_interval=paragraph_interval,
98 | )
99 | stop = time.time()
100 | log_instance.info(f"{log_string} 耗时:{str(stop - start)}")
101 | # except Exception as e:
102 | # log_instance.error(f"{log_error_string} {str(e)}")
103 | # gr.Error(f"{log_error_string} {str(e)}")
104 | # return f"文本转换语音失败,{str(e)}", None
105 | return "文本转换语音成功", file_path
106 |
107 |
108 | def webui():
109 | """
110 | webui界面
111 | """
112 | with gr.Blocks() as app:
113 | with gr.Row():
114 | with gr.Column():
115 | gr.Markdown("欢迎使用 花花 Bert-VITS2 原神/星铁语音合成API助手")
116 | input_text = gr.TextArea(label="文本内容", placeholder="请输入需要转换语音的文本内容。")
117 | with gr.Row():
118 | select_speaker = gr.Dropdown(choices=SPEAKERS_LIST, value=0, label="发音人")
119 | select_language = gr.Dropdown(choices=LANGUAGES_LIST, value=0, label="语言")
120 | with gr.Column():
121 | button_generate = gr.Button(value="生成", variant="primary")
122 | button_api = gr.Button(value="获取API地址", variant="primary")
123 | # 输出
124 | output_status = gr.Textbox(label="状态信息")
125 | output_audio = gr.Audio(label="输出音频")
126 |
127 | # 其他参数
128 | with gr.Accordion(label="更多参数配置", open=False):
129 | slider_emotion = gr.Slider(
130 | minimum=0,
131 | maximum=9,
132 | value=7,
133 | step=1,
134 | interactive=True,
135 | label="情感数值 Emotion",
136 | )
137 | slider_sdp_ratio = gr.Slider(
138 | minimum=0.1,
139 | maximum=1,
140 | value=0.2,
141 | step=0.1,
142 | interactive=True,
143 | label="语音语调 SDP Ratio",
144 | )
145 | slider_noise_scale_w = gr.Slider(
146 | minimum=0.1,
147 | maximum=2,
148 | value=0.8,
149 | step=0.1,
150 | interactive=True,
151 | label="语音速度 Noise_W",
152 | )
153 | slider_noise_scale = gr.Slider(
154 | minimum=0.1,
155 | maximum=2,
156 | value=0.6,
157 | step=0.1,
158 | interactive=True,
159 | label="感情变化 Noise",
160 | )
161 | slider_length_scale = gr.Slider(
162 | minimum=0.1,
163 | maximum=2,
164 | value=1.0,
165 | step=0.1,
166 | interactive=True,
167 | label="音节长度 Length",
168 | )
169 | slider_seed = gr.Slider(
170 | minimum=0,
171 | maximum=1000000,
172 | value=114514,
173 | step=1000,
174 | interactive=True,
175 | randomize=True,
176 | label="随机种子 Seed",
177 | )
178 | within_interval = gr.Slider(
179 | minimum=0,
180 | maximum=10.0,
181 | value=0.5,
182 | step=0.1,
183 | label="句内停顿(秒) ",
184 | )
185 | sentence_interval = gr.Slider(
186 | minimum=0,
187 | maximum=10.0,
188 | value=1.0,
189 | step=0.1,
190 | label="句间停顿(秒) ",
191 | )
192 | paragraph_interval = gr.Slider(
193 | minimum=0,
194 | maximum=10.0,
195 | value=2.0,
196 | step=0.1,
197 | label="段间停顿(秒) ",
198 | )
199 |
200 | # 生成按钮事件
201 | button_generate.click(
202 | __tts,
203 | inputs=[
204 | input_text,
205 | select_speaker,
206 | select_language,
207 | slider_sdp_ratio,
208 | slider_noise_scale,
209 | slider_noise_scale_w,
210 | slider_length_scale,
211 | slider_emotion,
212 | slider_seed,
213 | within_interval,
214 | sentence_interval,
215 | paragraph_interval,
216 | ],
217 | outputs=[output_status, output_audio],
218 | )
219 | # API按钮事件
220 | button_api.click(
221 | __copy_url,
222 | inputs=[
223 | select_speaker,
224 | select_language,
225 | slider_sdp_ratio,
226 | slider_noise_scale,
227 | slider_noise_scale_w,
228 | slider_length_scale,
229 | slider_emotion,
230 | slider_seed,
231 | ],
232 | )
233 |
234 | # 重新建立缓存文件夹(for windows)
235 | if os_type_instance.type == "Windows":
236 | temp_path = os.path.join(os.path.dirname(os.getenv("APPDATA")), "Temp/gradio/")
237 | rebuild_temp_dir(temp_path, tips="正在清空Gradio组件语音缓存...")
238 |
239 | return app
240 |
241 |
242 | app = webui()
243 |
--------------------------------------------------------------------------------
/api/split.py:
--------------------------------------------------------------------------------
1 | import re
2 | from typing import Tuple,List
3 |
4 |
5 | def __split_jp_text(text: str):
6 | """
7 | 提取日语
8 | 文心一言说过:
9 | 在日语中,连续出现的中文字符的数量通常是受限于句子的长度和语境。在正常的日语表达中,连续出现的中文字符一般不会超过两个。
10 | 这是因为日语中的汉字通常只用于表示具有特定含义的词,而平假名和片假名则用于表示日语中的音节。因此,连续出现三个或更多的中文字符在日语中并不常见,也不是日语的常规用法。
11 | 当然,在一些特定的语境下,比如使用汉字表示某种特殊的含义或者是因为某种特定的文化背景,可能会出现连续出现三个或更多的中文字符的情况。但这种情况并不常见,也不是日语的常规用法。
12 |
13 | 所以这里匹配连续5个中文字符
14 | """
15 | jp_segments = []
16 | # 仅提取最多5个连续字符的中文字符
17 | zh_pattern = re.compile(r"[\u4e00-\u9fff]+")
18 | zh_char_dict = {}
19 | for match in zh_pattern.finditer(text):
20 | match_text = match.group().strip()
21 | if not match_text:
22 | continue
23 | # 仅提取最多5个连续字符
24 | if len(match_text) > 5:
25 | continue
26 | zh_char_dict[str(match.end())] = match_text
27 |
28 | # print(zh_char_dict)
29 |
30 | # 提取日文
31 | jp_pattern = re.compile(
32 | r"[\u3040-\u309F\u30A0-\u30FF\uFF65-\uFF9F々0-9\s]+"
33 | ) # 日文字符的Unicode范围
34 |
35 | jp_chars_list = []
36 | for match in jp_pattern.finditer(text):
37 | match_text = match.group().strip()
38 | if not match_text:
39 | continue
40 | if match_text.isdigit():
41 | continue
42 | char_start = match.start()
43 | char_end = match.end()
44 | # 是否有相邻中文字符,如果有,标记为日语
45 | zh_char = zh_char_dict.get(str(char_start), None)
46 | if zh_char:
47 | char_start = char_start - len(zh_char)
48 | match_text = zh_char + match_text
49 | jp_chars_list.append((char_start, char_end, match_text))
50 |
51 | if len(jp_chars_list) == 0:
52 | return []
53 |
54 | # 获取最后一个日语字符后面的中文
55 | last_jp_char_end = jp_chars_list[-1][1]
56 | for zh_char_end in zh_char_dict:
57 | zh_char_length = len(zh_char_dict[zh_char_end])
58 | if last_jp_char_end != int(zh_char_end) - len(zh_char_dict[zh_char_end]):
59 | continue
60 | jp_chars_list.append(
61 | (
62 | last_jp_char_end,
63 | last_jp_char_end + zh_char_length,
64 | zh_char_dict[zh_char_end],
65 | )
66 | )
67 |
68 | jp_segments = []
69 | font_jp_chars_tuple = jp_chars_list[0]
70 | font_start = font_jp_chars_tuple[0]
71 | font_end = font_jp_chars_tuple[1]
72 | font_text = font_jp_chars_tuple[2]
73 |
74 | for index, jp_chars_tuple in enumerate(jp_chars_list):
75 | if index == 0:
76 | continue
77 | start, end, text = jp_chars_tuple
78 |
79 | if start == font_end:
80 | # 如果当前元素的起始位置与前一个元素的结束位置相同,则将文本拼接到前一个元素的文本后面
81 | font_end = end
82 | font_text = font_text + text
83 | else:
84 | # 将前一个加入列表
85 | jp_segments.append((font_start, font_end, font_text, "JP"))
86 | # 否则,将当前元素加入前一个
87 | font_start = start
88 | font_end = end
89 | font_text = text
90 |
91 | # 将最后一个加入列表
92 | jp_segments.append((font_start, font_end, font_text, "JP"))
93 |
94 | # 判断是否为纯数字
95 | if len(jp_segments) != 1:
96 | return jp_segments
97 |
98 | match_text: str = jp_segments[0][2]
99 | if match_text.isdigit():
100 | return []
101 | else:
102 | return jp_segments
103 |
104 |
105 | def __split_en_text(text: str):
106 | """
107 | 提取英语
108 | """
109 | en_segments = []
110 | en_pattern = re.compile(r"[a-zA-Z0-9\s]+")
111 | # 提取包含连续英文数字空格的字符串
112 | en_pattern = re.compile(r"[a-zA-Z0-9\s]+")
113 | for match in en_pattern.finditer(text):
114 | match_text = match.group().strip()
115 | if not match_text:
116 | continue
117 | en_segments.append((match.start(), match.end(), match_text, "EN"))
118 |
119 | # 如果非全数字,直接返回
120 | for segment in en_segments:
121 | match_text: str = segment[2]
122 | if not match_text.isdigit():
123 | return en_segments
124 |
125 | # 如果是全数据,返回空
126 | return []
127 |
128 |
129 | def __split_jp_en_text(text: str):
130 | """
131 | 切割混合语言文本(日、英)
132 | """
133 | en_segments = __split_en_text(text)
134 | # 提取日语
135 | jp_segments = __split_jp_text(text)
136 | segments = en_segments + jp_segments
137 |
138 | return segments
139 |
140 |
141 | def __extract_chinese(text: str):
142 | """
143 | 提取中文词和数字
144 | """
145 | # 提取中文词
146 | pattern = re.compile(r"[\u4e00-\u9fff0-9]+")
147 | chinese_chars = re.findall(pattern, text)
148 | if len(chinese_chars) == 0:
149 | return None
150 | return ",".join(chinese_chars)
151 |
152 |
153 | def __divide_text(text: str, intervals: list):
154 | """
155 | 三语言混合
156 | """
157 | # 对输入的区间列表按照起始索引进行排序
158 | intervals.sort(key=lambda x: x[0])
159 | # 判断输入的索引是否合法
160 | parts = []
161 | if len(intervals) > 0:
162 | if intervals[0][0] < 0 or intervals[-1][1] > len(text):
163 | return []
164 |
165 | # 划分出第一个区间前面的部分,并将其添加到列表头部
166 | first_start = intervals[0][0]
167 |
168 | if first_start > 0:
169 | first_part_text = __extract_chinese(text[:first_start])
170 | if first_part_text:
171 | first_part_info = (0, first_start, first_part_text, "ZH")
172 | parts.insert(0, first_part_info)
173 |
174 | # 划分出各个区间之间的部分,并存储到列表中
175 | for i in range(len(intervals) - 1):
176 | parts.append(intervals[i])
177 | start, end = intervals[i][1], intervals[i + 1][0]
178 | part_text = __extract_chinese(text[start:end])
179 | if not part_text:
180 | continue
181 | part_info = (intervals[i][1], intervals[i + 1][0], part_text, "ZH")
182 | parts.append(part_info)
183 |
184 | # 划分出最后一个区间后面的部分,并将其添加到列表末尾
185 | parts.append(intervals[-1])
186 | last_end = intervals[-1][1]
187 | # 如果text不是以最后的区间结尾
188 | if last_end < len(text) - 1:
189 | # 继续提取中文
190 | last_part_text = __extract_chinese(text[last_end:])
191 | if last_part_text:
192 | last_part_info = (last_end, len(text) - 1, last_part_text, "ZH")
193 | parts.append(last_part_info)
194 | else:
195 | zh_text = __extract_chinese(text)
196 | if zh_text:
197 | parts = [(0, len(zh_text), zh_text, "ZH")]
198 |
199 | # 返回划分后的结果
200 | return parts
201 |
202 |
203 | def __correct_digst_to_zh(text_segments:List[Tuple[int,int,str,str]]):
204 | """
205 | 修正混合句子中的数字为中文
206 | """
207 | # 判断句子中是否存在中文混合
208 | is_zh_mix = False
209 | for segment in text_segments:
210 | if segment[3] != 'ZH':
211 | continue
212 | is_zh_mix = True
213 | break
214 |
215 | if not is_zh_mix:
216 | return text_segments
217 |
218 | # 修正混合句子中的数字为中文
219 | new_text_segments = []
220 | for segment in iter(text_segments):
221 | if not segment[2].isdigit():
222 | new_text_segments.append(segment)
223 | continue
224 | new_text_segments.append((segment[0],segment[1],segment[2],"ZH"))
225 |
226 | return new_text_segments
227 |
228 | def split_text(text: str) -> Tuple[list, list]:
229 | """
230 | 自动切割混合文本
231 | """
232 | print(text)
233 | other_text_segments = __split_jp_en_text(text)
234 | print(other_text_segments)
235 | # print(other_text_segments)
236 | text_segments = __divide_text(text, other_text_segments)
237 | print(text_segments)
238 | text_segments = __correct_digst_to_zh(text_segments)
239 | print(text_segments)
240 |
241 | if not text_segments:
242 | return None
243 |
244 | text_list = []
245 | language_list = []
246 | for text_segment in text_segments:
247 | text_list.append(text_segment[2])
248 | language_list.append(text_segment[3])
249 | print(text_list, language_list)
250 | return text_list, language_list
251 |
252 |
253 | def __split_by_paragraph(text: str):
254 | """
255 | 将长文本按段落划分。
256 | """
257 | text_list = text.split("\n")
258 | # 排除包含多个空格在内的空字符串
259 | text_list = [text.strip() for text in text_list if re.search(r"\S", text)]
260 | return text_list
261 |
262 |
263 | def __split_by_sentence(text: str):
264 | """
265 | 将单段落文本按句子划分。
266 | """
267 | text_list = re.split(r"[。\.\?\?\!\!]+", text)
268 | # 排除包含多个空格在内的空字符串
269 | text_list = [text.strip() for text in text_list if re.search(r"\S", text)]
270 | return text_list
271 |
272 |
273 | def __split_by_within_sentence(text: str):
274 | """
275 | 句子内停顿
276 | """
277 | text_list = re.split(r"[\;\;\、\,\,]+", text)
278 | text_list = [text.strip() for text in text_list if re.search(r"\S", text)]
279 | return text_list
280 |
281 |
282 | def text_split_to_sentence(text: str) -> list:
283 | """
284 | 将长文本按段落、句子、句内分别划分,生成三级列表
285 | """
286 | # 首先按段落划分
287 | text_paragraph_list = __split_by_paragraph(text=text)
288 | # print(text_paragraph_list)
289 | if len(text_paragraph_list) == 0:
290 | return []
291 | third_list = []
292 | for text_paragraph in text_paragraph_list:
293 | # 按句子划分
294 | secondary_list = []
295 | text_sentence_list = __split_by_sentence(text_paragraph)
296 | for text_sentence in text_sentence_list:
297 | # print(__split_by_within_sentence(text_sentence))
298 | secondary_list.append(__split_by_within_sentence(text_sentence))
299 | third_list.append(secondary_list)
300 | return third_list
301 |
--------------------------------------------------------------------------------
/api/tts.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from uuid import uuid4
4 | from log import log_instance
5 | from config import config_instance
6 | from scipy.io import wavfile
7 | from typing import Callable, List
8 | from dataclasses import dataclass
9 | from onnx_infer.onnx_infer import infor_onnx_instance
10 |
11 | from .split import split_text, text_split_to_sentence
12 | from .utils import rebuild_temp_dir
13 |
14 | EMOTION = 7
15 | SDP_RATIO = 0.2
16 | NOISE = 0.6
17 | NOISEW = 0.8
18 | LENGTH = 0.8
19 | LANGUAGE = "ZH"
20 | AUDIO_RATE = 44100
21 |
22 | TEMP_PATH = os.path.abspath("./temp")
23 |
24 |
25 | def change_to_wav(
26 | file_path: str, data: np.float32, sample_rate: int = AUDIO_RATE
27 | ) -> str:
28 | """
29 | 将返回的numpy数据转换成音频
30 | """
31 | scaled_data = np.int16(data * 32767)
32 | wavfile.write(file_path, sample_rate, scaled_data)
33 | return file_path
34 |
35 |
36 | def __generate_empty_float32(sample_rate: int = AUDIO_RATE) -> tuple:
37 | """
38 | 生成空音频的numpy数据
39 | """
40 | return tuple(
41 | sample_rate,
42 | np.concatenate([np.zeros(sample_rate // 2)]),
43 | )
44 |
45 |
46 | def __generate_slient_audio(
47 | interval_time: float = 1.5, sample_rate: int = AUDIO_RATE
48 | ) -> np.float32:
49 | """
50 | 生成指定秒数的空音频数据
51 | """
52 | return np.zeros((int)(sample_rate * interval_time), dtype=np.float32).reshape(
53 | 1, 1, int(sample_rate * interval_time)
54 | )
55 |
56 |
57 | def __generate_single_audio(
58 | text: str,
59 | speaker_name: str,
60 | language: str = "ZH",
61 | sdp_ratio: float = SDP_RATIO,
62 | noise_scale: float = NOISE,
63 | noise_scale_w: float = NOISEW,
64 | length_scale: float = LENGTH,
65 | emotion: float = EMOTION,
66 | seed: int = 114514,
67 | ) -> np.float32:
68 | """
69 | 根据text生成单语言音频
70 | """
71 | audio = infor_onnx_instance.infer(
72 | text=text,
73 | speaker_name=speaker_name,
74 | language=language,
75 | sdp_ratio=sdp_ratio,
76 | noise_scale=noise_scale,
77 | noise_scale_w=noise_scale_w,
78 | length_scale=length_scale,
79 | emotion=emotion,
80 | seed=seed,
81 | )
82 | return audio
83 |
84 |
85 | def __generate_multilang_audio(
86 | text: str,
87 | speaker_name: str,
88 | sdp_ratio: float = SDP_RATIO,
89 | noise_scale: float = NOISE,
90 | noise_scale_w: float = NOISEW,
91 | length_scale: float = LENGTH,
92 | emotion: float = EMOTION,
93 | seed: int = 114514,
94 | ) -> np.float32:
95 | """
96 | 根据text自动切分,生成多语言混合音频
97 | """
98 | text_list, language_list = split_text(text)
99 |
100 | if not language_list:
101 | log_instance.warning("文本转语音推理失败:{speaker_name} -> {text} 文本内容不可为空。")
102 | return __generate_empty_float32()
103 |
104 | elif len(language_list) == 1:
105 | audio = infor_onnx_instance.infer(
106 | text=text_list[0],
107 | speaker_name=speaker_name,
108 | language=language_list[0],
109 | sdp_ratio=sdp_ratio,
110 | noise_scale=noise_scale,
111 | noise_scale_w=noise_scale_w,
112 | length_scale=length_scale,
113 | emotion=emotion,
114 | seed=seed,
115 | )
116 | else:
117 | audio = infor_onnx_instance.infer_multilang(
118 | text_list=text_list,
119 | speaker_name=speaker_name,
120 | language_list=language_list,
121 | sdp_ratio=sdp_ratio,
122 | noise_scale=noise_scale,
123 | noise_scale_w=noise_scale_w,
124 | length_scale=length_scale,
125 | emotion=emotion,
126 | seed=seed,
127 | )
128 | return audio
129 |
130 |
131 | def __generate_multi_within(
132 | text_list: List[str],
133 | speaker_name: str,
134 | language: str = "ZH",
135 | sdp_ratio: float = SDP_RATIO,
136 | noise_scale: float = NOISE,
137 | noise_scale_w: float = NOISEW,
138 | length_scale: float = LENGTH,
139 | emotion: float = EMOTION,
140 | seed: int = 114514,
141 | within_interval: float = 0.5,
142 | ) -> np.float32:
143 | """
144 | 根据多个句内文字段生成语音
145 | """
146 | # 获取局部变量
147 | params_dict: dict = locals()
148 | del params_dict["text_list"]
149 | del params_dict["within_interval"]
150 |
151 | within_audio_list = []
152 | list_length = len(text_list)
153 |
154 | for index, text in enumerate(text_list):
155 | params_dict["text"] = text
156 | log_instance.info(
157 | f"正在推理({str(index+1)}/{str(list_length)}):{speaker_name} -> {text}"
158 | )
159 |
160 | # 判断是否需要自动多语言切分
161 | if language.lower() == "auto":
162 | try:
163 | del params_dict["language"]
164 | except KeyError:
165 | pass
166 | audio = __generate_multilang_audio(**params_dict)
167 | else:
168 | params_dict["language"] = language
169 | audio = __generate_single_audio(**params_dict)
170 |
171 | # 将所有语音句子数据存入列表中
172 | within_audio_list.append(audio)
173 | # 插入静音数据
174 | slient_audio = __generate_slient_audio(interval_time=within_interval)
175 | within_audio_list.append(slient_audio)
176 |
177 | # 删除最后一个静音数据
178 | within_audio_list.pop()
179 | # 将列表中的语音数据合成
180 | audio_concat = np.concatenate(within_audio_list, axis=2)
181 |
182 | return audio_concat
183 |
184 |
185 | def __generate_multi_sentence(
186 | text_list: List[str],
187 | speaker_name: str,
188 | language: str = "ZH",
189 | sdp_ratio: float = SDP_RATIO,
190 | noise_scale: float = NOISE,
191 | noise_scale_w: float = NOISEW,
192 | length_scale: float = LENGTH,
193 | emotion: float = EMOTION,
194 | seed: int = 114514,
195 | within_interval: float = 0.5,
196 | sentence_interval: float = 1.0,
197 | ) -> np.float32:
198 | """
199 | 根据多个句子生成语音
200 | """
201 | # 获取局部变量
202 | params_dict: dict = locals()
203 | del params_dict["text_list"]
204 | del params_dict["sentence_interval"]
205 |
206 | sentence_audio_list = []
207 | for whithin_text_list in text_list:
208 | # 句子列表数据合成一个段落音频数据
209 | params_dict["text_list"] = whithin_text_list
210 | sentence_audio = __generate_multi_within(**params_dict)
211 | sentence_audio_list.append(sentence_audio)
212 | # 插入静音数据
213 | slient_audio = __generate_slient_audio(interval_time=sentence_interval)
214 | sentence_audio_list.append(slient_audio)
215 | # 删除最后一个静音数据
216 | sentence_audio_list.pop()
217 | audio_concat = np.concatenate(sentence_audio_list, axis=2)
218 | return audio_concat
219 |
220 |
221 | def generate_tts_auto(
222 | text: str,
223 | speaker_name: str,
224 | language: str = "ZH",
225 | sdp_ratio: float = 0.2,
226 | noise_scale: float = 0.6,
227 | noise_scale_w: float = 0.8,
228 | length_scale: float = 1.0,
229 | emotion: int = 7,
230 | seed: int = 114514,
231 | within_interval: float = 0.5,
232 | sentence_interval: float = 1.0,
233 | paragraph_interval: float = 2.0,
234 | ) -> np.float32:
235 | """
236 | 自动切分,生成语音
237 | """
238 | # 获取局部变量
239 | params_dict: dict = locals()
240 | del params_dict["text"]
241 | del params_dict["paragraph_interval"]
242 |
243 | # 根据文本进行按句子切分成三级列表
244 | paragraph_sentences_text_list = text_split_to_sentence(text=text)
245 | log_instance.debug(f"自动切分结果 {str(paragraph_sentences_text_list)}")
246 | # 检测文本是否为空,为空直接返回空音频
247 | if len(paragraph_sentences_text_list) == 0:
248 | log_instance.warning("文本转语音推理失败:{speaker_name} -> {text} 文本内容不可为空。")
249 | return __generate_empty_float32()
250 |
251 | # 获取每一个段落所有句子的语音数据
252 | paragraph_audio_list = []
253 | for sentences_text_list in paragraph_sentences_text_list:
254 | # 句子列表数据合成一个段落音频数据
255 | params_dict["text_list"] = sentences_text_list
256 | paragraph_audio = __generate_multi_sentence(**params_dict)
257 | paragraph_audio_list.append(paragraph_audio)
258 | # 插入静音数据
259 | slient_audio = __generate_slient_audio(interval_time=paragraph_interval)
260 | paragraph_audio_list.append(slient_audio)
261 | # 删除最后一个静音数据
262 | paragraph_audio_list.pop()
263 | audio_concat = np.concatenate(paragraph_audio_list, axis=2)
264 | return audio_concat
265 |
266 |
267 | @dataclass
268 | class InferHander:
269 | single: Callable = None
270 | auto: Callable = None
271 |
272 |
273 | class GenerateTTS:
274 | def __init__(self) -> None:
275 | # 重建语音缓存文件夹
276 | rebuild_temp_dir(TEMP_PATH)
277 | # 加载onnx推理实例
278 | self.onnx_infer = infor_onnx_instance
279 |
280 | def get_speakers_list(self, chinese_only: bool = True) -> list:
281 | """
282 | 获取处理过后的角色列表
283 | """
284 |
285 | if not chinese_only:
286 | return self.onnx_infer.speakers_list
287 |
288 | speakers_list = []
289 | chinese_mark = config_instance.get("onnx_tts_models_chinese_mark", "中文")
290 |
291 | for speaker_name in self.onnx_infer.speakers_list:
292 | if chinese_mark not in speaker_name:
293 | continue
294 | speakers_list.append(
295 | speaker_name.replace(chinese_mark, "")
296 | .replace("-", "")
297 | .replace("_", "")
298 | .replace("(", "[")
299 | .replace(")", "]")
300 | )
301 | return speakers_list
302 |
303 | def gen_tts(
304 | self,
305 | text: str,
306 | speaker_name: str,
307 | language: str = "ZH",
308 | sdp_ratio: float = 0.2,
309 | noise_scale: float = 0.6,
310 | noise_scale_w: float = 0.8,
311 | length_scale: float = 1.0,
312 | emotion: int = 7,
313 | seed: int = 114514,
314 | within_interval: float = 0.5,
315 | sentence_interval: float = 1.0,
316 | paragraph_interval: float = 2.0,
317 | ):
318 | """
319 | tts生成
320 | """
321 | # 获取传入参数
322 | params_dict: dict = locals()
323 | del params_dict["self"]
324 |
325 | audio = generate_tts_auto(**params_dict)
326 |
327 | file_path = os.path.join(TEMP_PATH, uuid4().hex + ".wav")
328 | file_path = change_to_wav(file_path, audio)
329 | return file_path
330 |
331 |
332 | tts_instance = GenerateTTS()
333 |
--------------------------------------------------------------------------------
/onnx_infer/text/english.py:
--------------------------------------------------------------------------------
1 | import pickle
2 | import os
3 | import re
4 | from g2p_en import G2p
5 |
6 | from .symbols import symbols
7 | from .tokenizer import tokenizer_instance
8 |
9 | CMU_DICT_PATH = "onnx/Text/cmudict.rep"
10 | CACHE_PATH = "onnx/Text/cmudict_cache.pickle"
11 |
12 | tokenizer = tokenizer_instance.EN
13 |
14 | _g2p = G2p()
15 |
16 | arpa = {
17 | "AH0",
18 | "S",
19 | "AH1",
20 | "EY2",
21 | "AE2",
22 | "EH0",
23 | "OW2",
24 | "UH0",
25 | "NG",
26 | "B",
27 | "G",
28 | "AY0",
29 | "M",
30 | "AA0",
31 | "F",
32 | "AO0",
33 | "ER2",
34 | "UH1",
35 | "IY1",
36 | "AH2",
37 | "DH",
38 | "IY0",
39 | "EY1",
40 | "IH0",
41 | "K",
42 | "N",
43 | "W",
44 | "IY2",
45 | "T",
46 | "AA1",
47 | "ER1",
48 | "EH2",
49 | "OY0",
50 | "UH2",
51 | "UW1",
52 | "Z",
53 | "AW2",
54 | "AW1",
55 | "V",
56 | "UW2",
57 | "AA2",
58 | "ER",
59 | "AW0",
60 | "UW0",
61 | "R",
62 | "OW1",
63 | "EH1",
64 | "ZH",
65 | "AE0",
66 | "IH2",
67 | "IH",
68 | "Y",
69 | "JH",
70 | "P",
71 | "AY1",
72 | "EY0",
73 | "OY2",
74 | "TH",
75 | "HH",
76 | "D",
77 | "ER0",
78 | "CH",
79 | "AO1",
80 | "AE1",
81 | "AO2",
82 | "OY1",
83 | "AY2",
84 | "IH1",
85 | "OW0",
86 | "L",
87 | "SH",
88 | }
89 |
90 |
91 | def post_replace_ph(ph):
92 | rep_map = {
93 | ":": ",",
94 | ";": ",",
95 | ",": ",",
96 | "。": ".",
97 | "!": "!",
98 | "?": "?",
99 | "\n": ".",
100 | "·": ",",
101 | "、": ",",
102 | "…": "...",
103 | "···": "...",
104 | "・・・": "...",
105 | "v": "V",
106 | }
107 | if ph in rep_map.keys():
108 | ph = rep_map[ph]
109 | if ph in symbols:
110 | return ph
111 | if ph not in symbols:
112 | ph = "UNK"
113 | return ph
114 |
115 |
116 | rep_map = {
117 | ":": ",",
118 | ";": ",",
119 | ",": ",",
120 | "。": ".",
121 | "!": "!",
122 | "?": "?",
123 | "\n": ".",
124 | ".": ".",
125 | "…": "...",
126 | "···": "...",
127 | "・・・": "...",
128 | "·": ",",
129 | "・": ",",
130 | "、": ",",
131 | "$": ".",
132 | "“": "'",
133 | "”": "'",
134 | '"': "'",
135 | "‘": "'",
136 | "’": "'",
137 | "(": "'",
138 | ")": "'",
139 | "(": "'",
140 | ")": "'",
141 | "《": "'",
142 | "》": "'",
143 | "【": "'",
144 | "】": "'",
145 | "[": "'",
146 | "]": "'",
147 | "—": "-",
148 | "−": "-",
149 | "~": "-",
150 | "~": "-",
151 | "「": "'",
152 | "」": "'",
153 | }
154 |
155 |
156 | def replace_punctuation(text):
157 | pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
158 |
159 | replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
160 |
161 | # replaced_text = re.sub(
162 | # r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
163 | # + "".join(punctuation)
164 | # + r"]+",
165 | # "",
166 | # replaced_text,
167 | # )
168 |
169 | return replaced_text
170 |
171 |
172 | def read_dict():
173 | g2p_dict = {}
174 | start_line = 49
175 | with open(CMU_DICT_PATH) as f:
176 | line = f.readline()
177 | line_index = 1
178 | while line:
179 | if line_index >= start_line:
180 | line = line.strip()
181 | word_split = line.split(" ")
182 | word = word_split[0]
183 |
184 | syllable_split = word_split[1].split(" - ")
185 | g2p_dict[word] = []
186 | for syllable in syllable_split:
187 | phone_split = syllable.split(" ")
188 | g2p_dict[word].append(phone_split)
189 |
190 | line_index = line_index + 1
191 | line = f.readline()
192 |
193 | return g2p_dict
194 |
195 |
196 | def cache_dict(g2p_dict, file_path):
197 | with open(file_path, "wb") as pickle_file:
198 | pickle.dump(g2p_dict, pickle_file)
199 |
200 |
201 | def get_dict():
202 | if os.path.exists(CACHE_PATH):
203 | with open(CACHE_PATH, "rb") as pickle_file:
204 | g2p_dict = pickle.load(pickle_file)
205 | else:
206 | g2p_dict = read_dict()
207 | cache_dict(g2p_dict, CACHE_PATH)
208 |
209 | return g2p_dict
210 |
211 |
212 | eng_dict = get_dict()
213 |
214 |
215 | def refine_ph(phn):
216 | tone = 0
217 | if re.search(r"\d$", phn):
218 | tone = int(phn[-1]) + 1
219 | phn = phn[:-1]
220 | return phn.lower(), tone
221 |
222 |
223 | def refine_syllables(syllables):
224 | tones = []
225 | phonemes = []
226 | for phn_list in syllables:
227 | for i in range(len(phn_list)):
228 | phn = phn_list[i]
229 | phn, tone = refine_ph(phn)
230 | phonemes.append(phn)
231 | tones.append(tone)
232 | return phonemes, tones
233 |
234 |
235 | import re
236 | import inflect
237 |
238 | _inflect = inflect.engine()
239 | _comma_number_re = re.compile(r"([0-9][0-9\,]+[0-9])")
240 | _decimal_number_re = re.compile(r"([0-9]+\.[0-9]+)")
241 | _pounds_re = re.compile(r"£([0-9\,]*[0-9]+)")
242 | _dollars_re = re.compile(r"\$([0-9\.\,]*[0-9]+)")
243 | _ordinal_re = re.compile(r"[0-9]+(st|nd|rd|th)")
244 | _number_re = re.compile(r"[0-9]+")
245 |
246 | # List of (regular expression, replacement) pairs for abbreviations:
247 | _abbreviations = [
248 | (re.compile("\\b%s\\." % x[0], re.IGNORECASE), x[1])
249 | for x in [
250 | ("mrs", "misess"),
251 | ("mr", "mister"),
252 | ("dr", "doctor"),
253 | ("st", "saint"),
254 | ("co", "company"),
255 | ("jr", "junior"),
256 | ("maj", "major"),
257 | ("gen", "general"),
258 | ("drs", "doctors"),
259 | ("rev", "reverend"),
260 | ("lt", "lieutenant"),
261 | ("hon", "honorable"),
262 | ("sgt", "sergeant"),
263 | ("capt", "captain"),
264 | ("esq", "esquire"),
265 | ("ltd", "limited"),
266 | ("col", "colonel"),
267 | ("ft", "fort"),
268 | ]
269 | ]
270 |
271 |
272 | # List of (ipa, lazy ipa) pairs:
273 | _lazy_ipa = [
274 | (re.compile("%s" % x[0]), x[1])
275 | for x in [
276 | ("r", "ɹ"),
277 | ("æ", "e"),
278 | ("ɑ", "a"),
279 | ("ɔ", "o"),
280 | ("ð", "z"),
281 | ("θ", "s"),
282 | ("ɛ", "e"),
283 | ("ɪ", "i"),
284 | ("ʊ", "u"),
285 | ("ʒ", "ʥ"),
286 | ("ʤ", "ʥ"),
287 | ("ˈ", "↓"),
288 | ]
289 | ]
290 |
291 | # List of (ipa, lazy ipa2) pairs:
292 | _lazy_ipa2 = [
293 | (re.compile("%s" % x[0]), x[1])
294 | for x in [
295 | ("r", "ɹ"),
296 | ("ð", "z"),
297 | ("θ", "s"),
298 | ("ʒ", "ʑ"),
299 | ("ʤ", "dʑ"),
300 | ("ˈ", "↓"),
301 | ]
302 | ]
303 |
304 | # List of (ipa, ipa2) pairs
305 | _ipa_to_ipa2 = [
306 | (re.compile("%s" % x[0]), x[1]) for x in [("r", "ɹ"), ("ʤ", "dʒ"), ("ʧ", "tʃ")]
307 | ]
308 |
309 |
310 | def _expand_dollars(m):
311 | match = m.group(1)
312 | parts = match.split(".")
313 | if len(parts) > 2:
314 | return match + " dollars" # Unexpected format
315 | dollars = int(parts[0]) if parts[0] else 0
316 | cents = int(parts[1]) if len(parts) > 1 and parts[1] else 0
317 | if dollars and cents:
318 | dollar_unit = "dollar" if dollars == 1 else "dollars"
319 | cent_unit = "cent" if cents == 1 else "cents"
320 | return "%s %s, %s %s" % (dollars, dollar_unit, cents, cent_unit)
321 | elif dollars:
322 | dollar_unit = "dollar" if dollars == 1 else "dollars"
323 | return "%s %s" % (dollars, dollar_unit)
324 | elif cents:
325 | cent_unit = "cent" if cents == 1 else "cents"
326 | return "%s %s" % (cents, cent_unit)
327 | else:
328 | return "zero dollars"
329 |
330 |
331 | def _remove_commas(m):
332 | return m.group(1).replace(",", "")
333 |
334 |
335 | def _expand_ordinal(m):
336 | return _inflect.number_to_words(m.group(0))
337 |
338 |
339 | def _expand_number(m):
340 | num = int(m.group(0))
341 | if num > 1000 and num < 3000:
342 | if num == 2000:
343 | return "two thousand"
344 | elif num > 2000 and num < 2010:
345 | return "two thousand " + _inflect.number_to_words(num % 100)
346 | elif num % 100 == 0:
347 | return _inflect.number_to_words(num // 100) + " hundred"
348 | else:
349 | return _inflect.number_to_words(
350 | num, andword="", zero="oh", group=2
351 | ).replace(", ", " ")
352 | else:
353 | return _inflect.number_to_words(num, andword="")
354 |
355 |
356 | def _expand_decimal_point(m):
357 | return m.group(1).replace(".", " point ")
358 |
359 |
360 | def normalize_numbers(text):
361 | text = re.sub(_comma_number_re, _remove_commas, text)
362 | text = re.sub(_pounds_re, r"\1 pounds", text)
363 | text = re.sub(_dollars_re, _expand_dollars, text)
364 | text = re.sub(_decimal_number_re, _expand_decimal_point, text)
365 | text = re.sub(_ordinal_re, _expand_ordinal, text)
366 | text = re.sub(_number_re, _expand_number, text)
367 | return text
368 |
369 |
370 | def text_normalize(text):
371 | text = normalize_numbers(text)
372 | text = replace_punctuation(text)
373 | text = re.sub(r"([,;.\?\!])([\w])", r"\1 \2", text)
374 | return text
375 |
376 |
377 | def distribute_phone(n_phone, n_word):
378 | phones_per_word = [0] * n_word
379 | for task in range(n_phone):
380 | min_tasks = min(phones_per_word)
381 | min_index = phones_per_word.index(min_tasks)
382 | phones_per_word[min_index] += 1
383 | return phones_per_word
384 |
385 |
386 | def sep_text(text):
387 | words = re.split(r"([,;.\?\!\s+])", text)
388 | words = [word for word in words if word.strip() != ""]
389 | return words
390 |
391 |
392 | def g2p(text):
393 | phones = []
394 | tones = []
395 | # word2ph = []
396 | words = sep_text(text)
397 | # print(words)
398 | # tokens = [f"▁{i}" for i in words]
399 | tokens = [tokenizer.tokenize(i) for i in words]
400 | # print(tokens)
401 | for word in words:
402 | if word.upper() in eng_dict:
403 | phns, tns = refine_syllables(eng_dict[word.upper()])
404 | phones.append([post_replace_ph(i) for i in phns])
405 | tones.append(tns)
406 | # word2ph.append(len(phns))
407 | else:
408 | phone_list = list(filter(lambda p: p != " ", _g2p(word)))
409 | phns = []
410 | tns = []
411 | for ph in phone_list:
412 | if ph in arpa:
413 | ph, tn = refine_ph(ph)
414 | phns.append(ph)
415 | tns.append(tn)
416 | else:
417 | phns.append(ph)
418 | tns.append(0)
419 | phones.append([post_replace_ph(i) for i in phns])
420 | tones.append(tns)
421 | # word2ph.append(len(phns))
422 | # phones = [post_replace_ph(i) for i in phones]
423 |
424 | word2ph = []
425 | for token, phoneme in zip(tokens, phones):
426 | phone_len = len(phoneme)
427 | word_len = len(token)
428 |
429 | aaa = distribute_phone(phone_len, word_len)
430 | word2ph += aaa
431 |
432 | phones = ["_"] + [j for i in phones for j in i] + ["_"]
433 | tones = [0] + [j for i in tones for j in i] + [0]
434 | word2ph = [1] + word2ph + [1]
435 | assert len(phones) == len(tones), text
436 | assert len(phones) == sum(word2ph), text
437 |
438 | return phones, tones, word2ph
--------------------------------------------------------------------------------
/onnx_infer/text/japanese.py:
--------------------------------------------------------------------------------
1 | # Convert Japanese text to phonemes which is
2 | # compatible with Julius https://github.com/julius-speech/segmentation-kit
3 | import re
4 | import unicodedata
5 | import pyopenjtalk
6 | import jaconv
7 |
8 | from num2words import num2words
9 | from .symbols import punctuation, symbols
10 | from .tokenizer import tokenizer_instance
11 |
12 | # 加载分析器
13 | tokenizer = tokenizer_instance.JP
14 |
15 |
16 | def kata2phoneme(text: str) -> str:
17 | """Convert katakana text to phonemes."""
18 | text = text.strip()
19 | if text == "ー":
20 | return ["ー"]
21 | elif text.startswith("ー"):
22 | return ["ー"] + kata2phoneme(text[1:])
23 | res = []
24 | prev = None
25 | while text:
26 | if re.match(_MARKS, text):
27 | res.append(text)
28 | text = text[1:]
29 | continue
30 | if text.startswith("ー"):
31 | if prev:
32 | res.append(prev[-1])
33 | text = text[1:]
34 | continue
35 | res += pyopenjtalk.g2p(text).lower().replace("cl", "q").split(" ")
36 | break
37 | # res = _COLON_RX.sub(":", res)
38 | return res
39 |
40 |
41 | def hira2kata(text: str) -> str:
42 | return jaconv.hira2kata(text)
43 |
44 |
45 | _SYMBOL_TOKENS = set(list("・、。?!"))
46 | _NO_YOMI_TOKENS = set(list("「」『』―()[][]"))
47 | _MARKS = re.compile(
48 | r"[^A-Za-z\d\u3005\u3040-\u30ff\u4e00-\u9fff\uff11-\uff19\uff21-\uff3a\uff41-\uff5a\uff66-\uff9d]"
49 | )
50 |
51 |
52 | def text2kata(text: str) -> str:
53 | parsed = pyopenjtalk.run_frontend(text)
54 |
55 | res = []
56 | for parts in parsed:
57 | word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace(
58 | "’", ""
59 | )
60 | if yomi:
61 | if re.match(_MARKS, yomi):
62 | if len(word) > 1:
63 | word = [replace_punctuation(i) for i in list(word)]
64 | yomi = word
65 | res += yomi
66 | sep += word
67 | continue
68 | elif word not in rep_map.keys() and word not in rep_map.values():
69 | word = ","
70 | yomi = word
71 | res.append(yomi)
72 | else:
73 | if word in _SYMBOL_TOKENS:
74 | res.append(word)
75 | elif word in ("っ", "ッ"):
76 | res.append("ッ")
77 | elif word in _NO_YOMI_TOKENS:
78 | pass
79 | else:
80 | res.append(word)
81 | return hira2kata("".join(res))
82 |
83 |
84 | def text2sep_kata(text: str) -> (list, list):
85 | parsed = pyopenjtalk.run_frontend(text)
86 |
87 | res = []
88 | sep = []
89 | for parts in parsed:
90 | word, yomi = replace_punctuation(parts["string"]), parts["pron"].replace(
91 | "’", ""
92 | )
93 | if yomi:
94 | if re.match(_MARKS, yomi):
95 | if len(word) > 1:
96 | word = [replace_punctuation(i) for i in list(word)]
97 | yomi = word
98 | res += yomi
99 | sep += word
100 | continue
101 | elif word not in rep_map.keys() and word not in rep_map.values():
102 | word = ","
103 | yomi = word
104 | res.append(yomi)
105 | else:
106 | if word in _SYMBOL_TOKENS:
107 | res.append(word)
108 | elif word in ("っ", "ッ"):
109 | res.append("ッ")
110 | elif word in _NO_YOMI_TOKENS:
111 | pass
112 | else:
113 | res.append(word)
114 | sep.append(word)
115 | return sep, [hira2kata(i) for i in res], get_accent(parsed)
116 |
117 |
118 | def get_accent(parsed):
119 | labels = pyopenjtalk.make_label(parsed)
120 |
121 | phonemes = []
122 | accents = []
123 | for n, label in enumerate(labels):
124 | phoneme = re.search(r"\-([^\+]*)\+", label).group(1)
125 | if phoneme not in ["sil", "pau"]:
126 | phonemes.append(phoneme.replace("cl", "q").lower())
127 | else:
128 | continue
129 | a1 = int(re.search(r"/A:(\-?[0-9]+)\+", label).group(1))
130 | a2 = int(re.search(r"\+(\d+)\+", label).group(1))
131 | if re.search(r"\-([^\+]*)\+", labels[n + 1]).group(1) in ["sil", "pau"]:
132 | a2_next = -1
133 | else:
134 | a2_next = int(re.search(r"\+(\d+)\+", labels[n + 1]).group(1))
135 | # Falling
136 | if a1 == 0 and a2_next == a2 + 1:
137 | accents.append(-1)
138 | # Rising
139 | elif a2 == 1 and a2_next == 2:
140 | accents.append(1)
141 | else:
142 | accents.append(0)
143 | return list(zip(phonemes, accents))
144 |
145 |
146 | _ALPHASYMBOL_YOMI = {
147 | "#": "シャープ",
148 | "%": "パーセント",
149 | "&": "アンド",
150 | "+": "プラス",
151 | "-": "マイナス",
152 | ":": "コロン",
153 | ";": "セミコロン",
154 | "<": "小なり",
155 | "=": "イコール",
156 | ">": "大なり",
157 | "@": "アット",
158 | "a": "エー",
159 | "b": "ビー",
160 | "c": "シー",
161 | "d": "ディー",
162 | "e": "イー",
163 | "f": "エフ",
164 | "g": "ジー",
165 | "h": "エイチ",
166 | "i": "アイ",
167 | "j": "ジェー",
168 | "k": "ケー",
169 | "l": "エル",
170 | "m": "エム",
171 | "n": "エヌ",
172 | "o": "オー",
173 | "p": "ピー",
174 | "q": "キュー",
175 | "r": "アール",
176 | "s": "エス",
177 | "t": "ティー",
178 | "u": "ユー",
179 | "v": "ブイ",
180 | "w": "ダブリュー",
181 | "x": "エックス",
182 | "y": "ワイ",
183 | "z": "ゼット",
184 | "α": "アルファ",
185 | "β": "ベータ",
186 | "γ": "ガンマ",
187 | "δ": "デルタ",
188 | "ε": "イプシロン",
189 | "ζ": "ゼータ",
190 | "η": "イータ",
191 | "θ": "シータ",
192 | "ι": "イオタ",
193 | "κ": "カッパ",
194 | "λ": "ラムダ",
195 | "μ": "ミュー",
196 | "ν": "ニュー",
197 | "ξ": "クサイ",
198 | "ο": "オミクロン",
199 | "π": "パイ",
200 | "ρ": "ロー",
201 | "σ": "シグマ",
202 | "τ": "タウ",
203 | "υ": "ウプシロン",
204 | "φ": "ファイ",
205 | "χ": "カイ",
206 | "ψ": "プサイ",
207 | "ω": "オメガ",
208 | }
209 |
210 |
211 | _NUMBER_WITH_SEPARATOR_RX = re.compile("[0-9]{1,3}(,[0-9]{3})+")
212 | _CURRENCY_MAP = {"$": "ドル", "¥": "円", "£": "ポンド", "€": "ユーロ"}
213 | _CURRENCY_RX = re.compile(r"([$¥£€])([0-9.]*[0-9])")
214 | _NUMBER_RX = re.compile(r"[0-9]+(\.[0-9]+)?")
215 |
216 |
217 | def japanese_convert_numbers_to_words(text: str) -> str:
218 | res = _NUMBER_WITH_SEPARATOR_RX.sub(lambda m: m[0].replace(",", ""), text)
219 | res = _CURRENCY_RX.sub(lambda m: m[2] + _CURRENCY_MAP.get(m[1], m[1]), res)
220 | res = _NUMBER_RX.sub(lambda m: num2words(m[0], lang="ja"), res)
221 | return res
222 |
223 |
224 | def japanese_convert_alpha_symbols_to_words(text: str) -> str:
225 | return "".join([_ALPHASYMBOL_YOMI.get(ch, ch) for ch in text.lower()])
226 |
227 |
228 | def japanese_text_to_phonemes(text: str) -> str:
229 | """Convert Japanese text to phonemes."""
230 | res = unicodedata.normalize("NFKC", text)
231 | res = japanese_convert_numbers_to_words(res)
232 | # res = japanese_convert_alpha_symbols_to_words(res)
233 | res = text2kata(res)
234 | res = kata2phoneme(res)
235 | return res
236 |
237 |
238 | def is_japanese_character(char):
239 | # 定义日语文字系统的 Unicode 范围
240 | japanese_ranges = [
241 | (0x3040, 0x309F), # 平假名
242 | (0x30A0, 0x30FF), # 片假名
243 | (0x4E00, 0x9FFF), # 汉字 (CJK Unified Ideographs)
244 | (0x3400, 0x4DBF), # 汉字扩展 A
245 | (0x20000, 0x2A6DF), # 汉字扩展 B
246 | # 可以根据需要添加其他汉字扩展范围
247 | ]
248 |
249 | # 将字符的 Unicode 编码转换为整数
250 | char_code = ord(char)
251 |
252 | # 检查字符是否在任何一个日语范围内
253 | for start, end in japanese_ranges:
254 | if start <= char_code <= end:
255 | return True
256 |
257 | return False
258 |
259 |
260 | rep_map = {
261 | ":": ",",
262 | ";": ",",
263 | ",": ",",
264 | "。": ".",
265 | "!": "!",
266 | "?": "?",
267 | "\n": ".",
268 | ".": ".",
269 | "…": "...",
270 | "···": "...",
271 | "・・・": "...",
272 | "·": ",",
273 | "・": ",",
274 | "、": ",",
275 | "$": ".",
276 | "“": "'",
277 | "”": "'",
278 | '"': "'",
279 | "‘": "'",
280 | "’": "'",
281 | "(": "'",
282 | ")": "'",
283 | "(": "'",
284 | ")": "'",
285 | "《": "'",
286 | "》": "'",
287 | "【": "'",
288 | "】": "'",
289 | "[": "'",
290 | "]": "'",
291 | "—": "-",
292 | "−": "-",
293 | "~": "-",
294 | "~": "-",
295 | "「": "'",
296 | "」": "'",
297 | }
298 |
299 |
300 | def replace_punctuation(text):
301 | pattern = re.compile("|".join(re.escape(p) for p in rep_map.keys()))
302 |
303 | replaced_text = pattern.sub(lambda x: rep_map[x.group()], text)
304 |
305 | replaced_text = re.sub(
306 | r"[^\u3040-\u309F\u30A0-\u30FF\u4E00-\u9FFF\u3400-\u4DBF\u3005"
307 | + "".join(punctuation)
308 | + r"]+",
309 | "",
310 | replaced_text,
311 | )
312 |
313 | return replaced_text
314 |
315 |
316 | def text_normalize(text):
317 | res = unicodedata.normalize("NFKC", text)
318 | res = japanese_convert_numbers_to_words(res)
319 | # res = "".join([i for i in res if is_japanese_character(i)])
320 | res = replace_punctuation(res)
321 | res = res.replace("゙", "")
322 | return res
323 |
324 |
325 | def distribute_phone(n_phone, n_word):
326 | phones_per_word = [0] * n_word
327 | for task in range(n_phone):
328 | min_tasks = min(phones_per_word)
329 | min_index = phones_per_word.index(min_tasks)
330 | phones_per_word[min_index] += 1
331 | return phones_per_word
332 |
333 |
334 | def handle_long(sep_phonemes):
335 | for i in range(len(sep_phonemes)):
336 | if sep_phonemes[i][0] == "ー":
337 | sep_phonemes[i][0] = sep_phonemes[i - 1][-1]
338 | if "ー" in sep_phonemes[i]:
339 | for j in range(len(sep_phonemes[i])):
340 | if sep_phonemes[i][j] == "ー":
341 | sep_phonemes[i][j] = sep_phonemes[i][j - 1][-1]
342 | return sep_phonemes
343 |
344 |
345 | def align_tones(phones, tones):
346 | res = []
347 | for pho in phones:
348 | temp = [0] * len(pho)
349 | for idx, p in enumerate(pho):
350 | if len(tones) == 0:
351 | break
352 | if p == tones[0][0]:
353 | temp[idx] = tones[0][1]
354 | if idx > 0:
355 | temp[idx] += temp[idx - 1]
356 | tones.pop(0)
357 | temp = [0] + temp
358 | temp = temp[:-1]
359 | if -1 in temp:
360 | temp = [i + 1 for i in temp]
361 | res.append(temp)
362 | res = [i for j in res for i in j]
363 | assert not any([i < 0 for i in res]) and not any([i > 1 for i in res])
364 | return res
365 |
366 |
367 | def rearrange_tones(tones, phones):
368 | res = [0] * len(tones)
369 | for i in range(len(tones)):
370 | if i == 0:
371 | if tones[i] not in punctuation:
372 | res[i] = 1
373 | elif tones[i] == prev:
374 | if phones[i] in punctuation:
375 | res[i] = 0
376 | else:
377 | res[i] = 1
378 | elif tones[i] > prev:
379 | res[i] = 2
380 | elif tones[i] < prev:
381 | res[i - 1] = 3
382 | res[i] = 1
383 | prev = tones[i]
384 | return res
385 |
386 |
387 | def g2p(norm_text):
388 | sep_text, sep_kata, acc = text2sep_kata(norm_text)
389 | sep_tokenized = []
390 | for i in sep_text:
391 | if i not in punctuation:
392 | # print('aaaa',tokenizer.tokenize(i))
393 | # sep_tokenized.append([f"▁{i}"])
394 | sep_tokenized.append(tokenizer.tokenize(i))
395 | else:
396 | sep_tokenized.append([i])
397 |
398 | sep_phonemes = handle_long([kata2phoneme(i) for i in sep_kata])
399 | # 异常处理,MeCab不认识的词的话会一路传到这里来,然后炸掉。目前来看只有那些超级稀有的生僻词会出现这种情况
400 | for i in sep_phonemes:
401 | for j in i:
402 | assert j in symbols, (sep_text, sep_kata, sep_phonemes)
403 | tones = align_tones(sep_phonemes, acc)
404 |
405 | word2ph = []
406 | for token, phoneme in zip(sep_tokenized, sep_phonemes):
407 | phone_len = len(phoneme)
408 | word_len = len(token)
409 |
410 | aaa = distribute_phone(phone_len, word_len)
411 | word2ph += aaa
412 | phones = ["_"] + [j for i in sep_phonemes for j in i] + ["_"]
413 | # tones = [0] + rearrange_tones(tones, phones[1:-1]) + [0]
414 | tones = [0] + tones + [0]
415 | word2ph = [1] + word2ph + [1]
416 | assert len(phones) == len(tones)
417 | return phones, tones, word2ph
418 |
--------------------------------------------------------------------------------
/onnx_infer/onnx_infer.py:
--------------------------------------------------------------------------------
1 | import os
2 | import numpy as np
3 | from copy import copy
4 | from typing import List
5 | from dataclasses import dataclass
6 | import onnxruntime as ort
7 |
8 | from log import log_instance
9 | from config import read_config
10 | from config import config_instance
11 | from .text.cleaner import clean_text, cleaned_text_to_sequence
12 |
13 | BERT_ENABLE = config_instance.get("bert_enable", True)
14 |
15 | if BERT_ENABLE:
16 | from .onnx_bert import get_bert
17 |
18 |
19 | # 获取模型中包含的中文角色标记
20 | CHINESE_CHARACTER_MARK = config_instance.get("onnx_tts_models_chinese_mark", "中文")
21 |
22 | ONNX_PROVIDERS = [config_instance.get("onnx_providers", "CPUExecutionProvider")]
23 | MODELS_PATH = os.path.abspath(config_instance.get("onnx_tts_models", "onnx/models"))
24 | MODELS_BASE_NAME = os.path.basename(MODELS_PATH)
25 | MODELS_PARENT_PATH = os.path.dirname(MODELS_PATH)
26 | MODELS_PREFIX = os.path.join(MODELS_PATH, os.path.basename(MODELS_PATH))
27 |
28 | ONNX_MODELS_PATH = {
29 | "config": f"{MODELS_PARENT_PATH}/{MODELS_BASE_NAME}.json",
30 | "enc": f"{MODELS_PREFIX}_enc_p.onnx",
31 | "emb_g": f"{MODELS_PREFIX}_emb.onnx",
32 | "dp": f"{MODELS_PREFIX}_dp.onnx",
33 | "sdp": f"{MODELS_PREFIX}_sdp.onnx",
34 | "flow": f"{MODELS_PREFIX}_flow.onnx",
35 | "dec": f"{MODELS_PREFIX}_dec.onnx",
36 | }
37 |
38 |
39 | class SpeakerMap:
40 | """
41 | 多语言关系表
42 | """
43 |
44 | def __init__(self) -> None:
45 | log_instance.info("正在加载模型发音人多语言关系表...")
46 | self.map_data: dict = read_config("speakers_map.json")
47 |
48 | def get_jp_speaker_name(self, speaker_name: str):
49 | """
50 | 获取对应日语发音人名称
51 | """
52 | speaker_name_dict: dict = self.map_data.get(speaker_name, {})
53 | return speaker_name_dict.get("JP", speaker_name)
54 |
55 | def get_en_speaker_name(self, speaker_name: str):
56 | """
57 | 获取对应英语发音人名称
58 | """
59 | speaker_name_dict: dict = self.map_data.get(speaker_name, {})
60 | return speaker_name_dict.get("EN", speaker_name)
61 |
62 |
63 | @dataclass
64 | class ONNX_MODELS:
65 | enc: ort.InferenceSession = ort.InferenceSession(
66 | ONNX_MODELS_PATH["enc"], providers=ONNX_PROVIDERS
67 | )
68 | emb_g: ort.InferenceSession = ort.InferenceSession(
69 | ONNX_MODELS_PATH["emb_g"], providers=ONNX_PROVIDERS
70 | )
71 | dp: ort.InferenceSession = ort.InferenceSession(
72 | ONNX_MODELS_PATH["dp"], providers=ONNX_PROVIDERS
73 | )
74 | sdp: ort.InferenceSession = ort.InferenceSession(
75 | ONNX_MODELS_PATH["sdp"], providers=ONNX_PROVIDERS
76 | )
77 | flow: ort.InferenceSession = ort.InferenceSession(
78 | ONNX_MODELS_PATH["flow"], providers=ONNX_PROVIDERS
79 | )
80 | dec: ort.InferenceSession = ort.InferenceSession(
81 | ONNX_MODELS_PATH["dec"], providers=ONNX_PROVIDERS
82 | )
83 |
84 |
85 | class ONNX_RUNTINE:
86 | def __init__(self):
87 | log_instance.info("正在加载BERT-VITS语音模型...")
88 | self.config = read_config(ONNX_MODELS_PATH["config"])
89 | self.models = ONNX_MODELS()
90 |
91 | def __call__(
92 | self,
93 | seq: np.int64,
94 | tone: np.int64,
95 | language_id: np.int64,
96 | bert_zh: np.float32,
97 | bert_jp: np.float32,
98 | bert_en: np.float32,
99 | speaker_id: int,
100 | seed: int = 114514,
101 | seq_noise_scale: float = 0.8,
102 | sdp_noise_scale: float = 0.6,
103 | length_scale: float = 1.0,
104 | sdp_ratio: float = 0.2,
105 | emotion: int = 0,
106 | ):
107 | speaker_id: np.int64 = np.array([speaker_id], dtype=np.int64)
108 | emotion: np.int64 = np.array([emotion], dtype=np.int64)
109 |
110 | # emb_g模型推理
111 | g = self.models.emb_g.run(None, {"sid": speaker_id})[0]
112 | g = np.expand_dims(g, -1)
113 |
114 | enc_rtn: List[np.float32] = self.models.enc.run(
115 | output_names=None,
116 | input_feed={
117 | "x": seq,
118 | "t": tone,
119 | "language": language_id,
120 | "bert_0": bert_zh,
121 | "bert_1": bert_jp,
122 | "bert_2": bert_en,
123 | "g": g,
124 | "sid": speaker_id,
125 | "vqidx": emotion,
126 | },
127 | )
128 |
129 | x, m_p, logs_p, x_mask = enc_rtn[0], enc_rtn[1], enc_rtn[2], enc_rtn[3]
130 | # 设置随机种子
131 | np.random.seed(seed)
132 | zinput = np.random.randn(x.shape[0], 2, x.shape[2]) * sdp_noise_scale
133 |
134 | logw = self.models.sdp.run(
135 | None, {"x": x, "x_mask": x_mask, "zin": zinput.astype(np.float32), "g": g}
136 | )[0] * (sdp_ratio) + self.models.dp.run(
137 | None, {"x": x, "x_mask": x_mask, "g": g}
138 | )[
139 | 0
140 | ] * (
141 | 1 - sdp_ratio
142 | )
143 |
144 | w = np.exp(logw) * x_mask * length_scale
145 | w_ceil = np.ceil(w)
146 | y_lengths = np.clip(np.sum(w_ceil, (1, 2)), a_min=1.0, a_max=100000).astype(
147 | np.int64
148 | )
149 | y_mask = np.expand_dims(sequence_mask(y_lengths, None), 1)
150 |
151 | attn_mask = np.expand_dims(x_mask, 2) * np.expand_dims(y_mask, -1)
152 | attn = generate_path(w_ceil, attn_mask)
153 |
154 | m_p: np.float32 = np.matmul(attn.squeeze(1), m_p.transpose(0, 2, 1))
155 | m_p = m_p.transpose(0, 2, 1) # [b, t', t], [b, t, d] -> [b, d, t']
156 |
157 | logs_p: np.float32 = np.matmul(attn.squeeze(1), logs_p.transpose(0, 2, 1))
158 | logs_p = logs_p.transpose(0, 2, 1) # [b, t', t], [b, t, d] -> [b, d, t']
159 |
160 | z_p: np.float32 = (
161 | m_p
162 | + np.random.randn(m_p.shape[0], m_p.shape[1], m_p.shape[2])
163 | * np.exp(logs_p)
164 | * seq_noise_scale
165 | )
166 |
167 | log_instance.debug(
168 | f"flow模型输入 {str(z_p.shape)} {str(y_mask.shape)} {str(g.shape)}"
169 | )
170 |
171 | if z_p.shape[2] == 0 or y_mask.shape[2] == 0:
172 | raise MemoryError("flow模型输入参数错误,有可能是临时缓存空间不足。")
173 |
174 | z: np.float32 = self.models.flow.run(
175 | None,
176 | {
177 | "z_p": z_p.astype(np.float32),
178 | "y_mask": y_mask.astype(np.float32),
179 | "g": g,
180 | },
181 | )[0]
182 |
183 | return self.models.dec.run(None, {"z_in": z, "g": g})[0]
184 |
185 | def get_config(self, key: str, default=None):
186 | """
187 | 获取模型配置项
188 | """
189 | return self.config.get(key, default)
190 |
191 |
192 | onnx_runtime_instance = ONNX_RUNTINE()
193 |
194 |
195 | def __add_blank(phone, tone, language, word2ph):
196 | """
197 | ??添加空白间隔
198 | """
199 | for i in range(len(word2ph)):
200 | word2ph[i] = word2ph[i] * 2
201 | word2ph[0] += 1
202 |
203 | return (
204 | intersperse(phone, 0),
205 | intersperse(tone, 0),
206 | intersperse(language, 0),
207 | word2ph,
208 | )
209 |
210 |
211 | def convert_pad_shape(pad_shape):
212 | layer = pad_shape[::-1]
213 | pad_shape = [item for sublist in layer for item in sublist]
214 | return pad_shape
215 |
216 |
217 | def sequence_mask(length, max_length=None):
218 | if max_length is None:
219 | max_length = length.max()
220 | x = np.arange(max_length, dtype=length.dtype)
221 | return np.expand_dims(x, 0) < np.expand_dims(length, 1)
222 |
223 |
224 | def generate_path(duration, mask):
225 | """
226 | duration: [b, 1, t_x]
227 | mask: [b, 1, t_y, t_x]
228 | """
229 |
230 | b, _, t_y, t_x = mask.shape
231 | cum_duration = np.cumsum(duration, -1)
232 |
233 | cum_duration_flat = cum_duration.reshape(b * t_x)
234 | path = sequence_mask(cum_duration_flat, t_y)
235 | path = path.reshape(b, t_x, t_y)
236 | path = path ^ np.pad(path, ((0, 0), (1, 0), (0, 0)))[:, :-1]
237 | path = np.expand_dims(path, 1).transpose(0, 1, 3, 2)
238 | return path
239 |
240 |
241 | def intersperse(lst, item):
242 | """
243 | 在列表的每个元素之间插入一个分隔符元素
244 |
245 | 如: [1, '-', 2, '-', 3, '-', 4]
246 | """
247 | result = [item] * (len(lst) * 2 + 1)
248 | result[1::2] = lst
249 | return result
250 |
251 |
252 | def get_text(text: str, language: str, add_blank: bool = True) -> tuple:
253 | """
254 | 推理前文本预处理
255 | """
256 | language_list = ["ZH", "JP", "EN"]
257 | try:
258 | language: str = language.upper()
259 | language_index = language_list.index(language)
260 | language_str = copy(language)
261 | except ValueError:
262 | raise TypeError(f"语言类型输入错误:{language}。")
263 |
264 | norm_text, phone, tone, word2ph = clean_text(text, language)
265 | # print(norm_text, phone, tone, word2ph)
266 | # 将phone, tone, language转化为对应id表示
267 | phone, tone, language = cleaned_text_to_sequence(phone, tone, language)
268 |
269 | # ??添加空白间隔
270 | if add_blank:
271 | phone, tone, language, word2ph = __add_blank(phone, tone, language, word2ph)
272 | # print(len(phone), sum(word2ph))
273 |
274 | bert_list: list = [np.zeros([len(phone), 1024], dtype=np.float32)] * len(
275 | language_list
276 | )
277 |
278 | if BERT_ENABLE:
279 | bert_ori: np.float32 = get_bert(norm_text, word2ph, language_str)
280 | if bert_ori.shape[0] != len(phone):
281 | raise KeyError("BERT推理结果与预期不符合。")
282 |
283 | bert_list[language_index] = bert_ori
284 |
285 | del word2ph
286 |
287 | res_tuple = tuple(bert_list) + (
288 | np.expand_dims(np.array(phone, dtype=np.int64), 0),
289 | np.expand_dims(np.array(tone, dtype=np.int64), 0),
290 | np.expand_dims(np.array(language, dtype=np.int64), 0),
291 | )
292 | return res_tuple
293 |
294 |
295 | class INFER_ONNX:
296 | """
297 | 语音推理实现
298 | """
299 |
300 | def __init__(self) -> None:
301 | self.onnx_runtime_instance: ONNX_RUNTINE = onnx_runtime_instance
302 | self.speakers_list = self.onnx_runtime_instance.get_config(
303 | "Characters", default=[]
304 | )
305 | self.speaker_map = SpeakerMap()
306 |
307 | def get_speaker_id(self, speaker_name: str, chinese_only: bool = True) -> int:
308 | """
309 | 获取发音人名字对应id,默认仅匹配名字带中文标志的模型,中文标志由 CHINESE_CHARACTER_MARK 决定
310 | """
311 | for index, speaker in enumerate(self.speakers_list):
312 | if speaker_name not in speaker:
313 | continue
314 | if chinese_only and CHINESE_CHARACTER_MARK not in speaker:
315 | continue
316 | else:
317 | return index
318 | return -1
319 |
320 | def get_full_speaker_name(self, speaker_name: str, language_str: str = "ZH"):
321 | """
322 | 获取发音人的完整名称,映射关系由 speakers_map.json 决定
323 | 如果无法找到,则返回原来的名称
324 | """
325 | if language_str == "JP":
326 | return self.speaker_map.get_jp_speaker_name(speaker_name)
327 |
328 | if language_str == "EN":
329 | return self.speaker_map.get_en_speaker_name(speaker_name)
330 |
331 | return speaker_name
332 |
333 | @staticmethod
334 | def __clamp(
335 | value: int | float, min_value: int | float = 0, max_value: int | float = 9
336 | ):
337 | """
338 | 限定数据在范围内,超出仅取边缘值
339 | """
340 | return max(min_value, min(max_value, value))
341 |
342 | @staticmethod
343 | def __skip_start(phones, tones, language_id, zh_bert, jp_bert, en_bert):
344 | """
345 | ?跳过第一个一个元素
346 | """
347 | phones = np.delete(phones, 0, axis=1)
348 | tones = np.delete(tones, 0, axis=1)
349 | language_id = np.delete(language_id, 0, axis=1)
350 | zh_bert = np.delete(zh_bert, 0, axis=0)
351 | jp_bert = np.delete(jp_bert, 0, axis=0)
352 | en_bert = np.delete(en_bert, 0, axis=0)
353 | return phones, tones, language_id, zh_bert, jp_bert, en_bert
354 |
355 | @staticmethod
356 | def __skip_end(phones, tones, language_id, zh_bert, jp_bert, en_bert):
357 | """
358 | ?跳过最后一个元素
359 | """
360 | phones = phones[:, :-1]
361 | tones = tones[:, :-1]
362 | language_id = language_id[:, :-1]
363 | zh_bert = zh_bert[:-1, :]
364 | jp_bert = jp_bert[:-1, :]
365 | en_bert = en_bert[:-1, :]
366 | return phones, tones, language_id, zh_bert, jp_bert, en_bert
367 |
368 | def __params_specification(
369 | self,
370 | sdp_ratio: float,
371 | noise_scale: float,
372 | noise_scale_w: float,
373 | length_scale: float,
374 | emotion: int,
375 | ):
376 | """
377 | 规范化语音调整参数
378 | """
379 | sdp_ratio = self.__clamp(sdp_ratio, min_value=0.0, max_value=1.0)
380 | noise_scale = self.__clamp(noise_scale, min_value=0.0, max_value=2.0)
381 | noise_scale_w = self.__clamp(noise_scale_w, min_value=0.1, max_value=2.0)
382 | length_scale = self.__clamp(length_scale, min_value=0.1, max_value=2.0)
383 | emotion = self.__clamp(emotion)
384 | return (sdp_ratio, noise_scale, noise_scale_w, length_scale, emotion)
385 |
386 | def __text_to_model_inputs(
387 | self,
388 | text: str,
389 | language: str = "ZH",
390 | skip_start: bool = False,
391 | skip_end: bool = False,
392 | add_blank: bool = True,
393 | ):
394 | """
395 | 将文本转化为onnx模型所需numpy数据
396 | """
397 | # 在此处实现当前版本的推理
398 | # 文本预处理
399 | zh_bert, jp_bert, en_bert, phones, tones, language_id = get_text(
400 | text=text, language=language, add_blank=add_blank
401 | )
402 |
403 | if skip_start:
404 | # ?跳过第一个一个元素
405 | phones, tones, language_id, zh_bert, jp_bert, en_bert = self.__skip_start(
406 | phones, tones, language_id, zh_bert, jp_bert, en_bert
407 | )
408 |
409 | if skip_end:
410 | # ?跳过最后一个元素
411 | phones, tones, language_id, zh_bert, jp_bert, en_bert = self.__skip_end(
412 | phones, tones, language_id, zh_bert, jp_bert, en_bert
413 | )
414 |
415 | return phones, tones, language_id, zh_bert, jp_bert, en_bert
416 |
417 | def infer(
418 | self,
419 | text: str,
420 | speaker_name: str,
421 | language: str = "ZH",
422 | sdp_ratio: float = 0.2,
423 | noise_scale: float = 0.8,
424 | noise_scale_w: float = 0.6,
425 | length_scale: float = 1.0,
426 | emotion: int = 7,
427 | seed: int = 114514,
428 | skip_start: bool = False,
429 | skip_end: bool = False,
430 | add_blank: bool = True,
431 | ) -> np.float32:
432 | """
433 | 语音推理
434 | """
435 | # 参数规范化
436 | (
437 | sdp_ratio,
438 | noise_scale,
439 | noise_scale_w,
440 | length_scale,
441 | emotion,
442 | ) = self.__params_specification(
443 | sdp_ratio, noise_scale, noise_scale_w, length_scale, emotion
444 | )
445 | # 到 speakers_map.json 内查找是否存在对应关系,如果有,则返回对应发音人真实名称
446 | full_speaker_name = self.get_full_speaker_name(
447 | speaker_name=speaker_name, language_str=language
448 | )
449 | log_instance.debug(f"获取发音人真实名称 {speaker_name} -> {full_speaker_name}")
450 |
451 | speaker_id = self.get_speaker_id(
452 | full_speaker_name,
453 | True if language == "ZH" else False,
454 | )
455 |
456 | if speaker_id == -1:
457 | raise ValueError(f"无法在模型中找到发音人信息:{speaker_name}。")
458 |
459 | # 文本预处理
460 | # 将文本转化为onnx模型所需numpy数据
461 | (
462 | phones,
463 | tones,
464 | language_id,
465 | zh_bert,
466 | jp_bert,
467 | en_bert,
468 | ) = self.__text_to_model_inputs(
469 | text=text,
470 | language=language,
471 | skip_start=skip_start,
472 | skip_end=skip_end,
473 | add_blank=add_blank,
474 | )
475 | log_instance.debug(f"推理 {full_speaker_name} -> {text}")
476 | np_audio = self.onnx_runtime_instance(
477 | seq=phones,
478 | tone=tones,
479 | language_id=language_id,
480 | bert_zh=zh_bert,
481 | bert_jp=jp_bert,
482 | bert_en=en_bert,
483 | speaker_id=speaker_id,
484 | seed=seed,
485 | seq_noise_scale=noise_scale,
486 | sdp_noise_scale=noise_scale_w,
487 | length_scale=length_scale,
488 | sdp_ratio=sdp_ratio,
489 | emotion=emotion,
490 | )
491 |
492 | del (
493 | phones,
494 | tones,
495 | language_id,
496 | zh_bert,
497 | jp_bert,
498 | en_bert,
499 | noise_scale,
500 | noise_scale_w,
501 | length_scale,
502 | sdp_ratio,
503 | emotion,
504 | )
505 |
506 | return np_audio
507 |
508 | def infer_multilang(
509 | self,
510 | text_list: list,
511 | speaker_name: str,
512 | language_list: list = ["ZH"],
513 | sdp_ratio: float = 0.2,
514 | noise_scale: float = 0.8,
515 | noise_scale_w: float = 0.6,
516 | length_scale: float = 1.0,
517 | emotion: int = 7,
518 | seed: int = 114514,
519 | skip_start: bool = False,
520 | skip_end: bool = False,
521 | add_blank: bool = True,
522 | ) -> np.float32:
523 | """
524 | 语音混合推理
525 | """
526 | # (
527 | # zh_bert_list,
528 | # jp_bert_list,
529 | # en_bert_list,
530 | # phones_list,
531 | # tones_list,
532 | # language_id_list,
533 | # ) = ([], [], [], [], [], [])
534 |
535 | # # 将所有数据合成到列表中
536 | # for idx, (text, language) in enumerate(zip(text_list, language_list)):
537 | # # 计算skip_start、skip_end参数值
538 | # skip_start = (idx != 0) or (skip_start and idx == 0)
539 | # skip_end = (idx != len(text_list) - 1) or (
540 | # skip_end and idx == len(text_list) - 1
541 | # )
542 |
543 | # # 预处理
544 | # (
545 | # temp_phones,
546 | # temp_tones,
547 | # temp_language_id,
548 | # temp_zh_bert,
549 | # temp_jp_bert,
550 | # temp_en_bert,
551 | # ) = self.__text_to_model_inputs(
552 | # text=text, language=language, add_blank=add_blank
553 | # )
554 |
555 | # zh_bert_list.append(temp_zh_bert)
556 | # jp_bert_list.append(temp_jp_bert)
557 | # en_bert_list.append(temp_en_bert)
558 | # phones_list.append(temp_phones)
559 | # tones_list.append(temp_tones)
560 | # language_id_list.append(temp_language_id)
561 |
562 | # zh_bert = np.concatenate(zh_bert_list, axis=0)
563 | # jp_bert = np.concatenate(jp_bert_list, axis=0)
564 | # en_bert = np.concatenate(en_bert_list, axis=0)
565 | # phones = np.concatenate(phones_list, axis=1)
566 | # tones = np.concatenate(tones_list, axis=1)
567 | # language_id = np.concatenate(language_id_list, axis=1)
568 |
569 | # # 参数规范化
570 | # (
571 | # sdp_ratio,
572 | # noise_scale,
573 | # noise_scale_w,
574 | # length_scale,
575 | # emotion,
576 | # ) = self.__params_specification(
577 | # sdp_ratio, noise_scale, noise_scale_w, length_scale, emotion
578 | # )
579 |
580 | # full_speaker_name = self.get_full_speaker_name(
581 | # speaker_name=speaker_name, language_str=language, default=speaker_name
582 | # )
583 | # log_instance.info(f"获取发音人真实名称 {speaker_name} -> {full_speaker_name}")
584 |
585 | # speaker_id = self.get_speaker_id(
586 | # full_speaker_name,
587 | # True if language == "ZH" else False,
588 | # )
589 | # speaker_id = self.get_speaker_id(speaker_name=speaker_name)
590 |
591 | # np_audio = self.onnx_runtime_instance(
592 | # seq=phones,
593 | # tone=tones,
594 | # language_id=language_id,
595 | # bert_zh=zh_bert,
596 | # bert_jp=jp_bert,
597 | # bert_en=en_bert,
598 | # speaker_id=speaker_id,
599 | # seed=seed,
600 | # seq_noise_scale=noise_scale,
601 | # sdp_noise_scale=noise_scale_w,
602 | # length_scale=length_scale,
603 | # sdp_ratio=sdp_ratio,
604 | # emotion=emotion,
605 | # )
606 |
607 | # del (
608 | # phones,
609 | # tones,
610 | # language_id,
611 | # zh_bert,
612 | # jp_bert,
613 | # en_bert,
614 | # noise_scale,
615 | # noise_scale_w,
616 | # length_scale,
617 | # sdp_ratio,
618 | # emotion,
619 | # )
620 |
621 | audil_list = []
622 |
623 | for idx, (text, language) in enumerate(zip(text_list, language_list)):
624 | # 计算skip_start、skip_end参数值
625 | skip_start = (idx != 0) or (skip_start and idx == 0)
626 | skip_end = (idx != len(text_list) - 1) or (
627 | skip_end and idx == len(text_list) - 1
628 | )
629 |
630 | audio = self.infer(
631 | text=text,
632 | speaker_name=speaker_name,
633 | language=language,
634 | sdp_ratio=sdp_ratio,
635 | noise_scale=noise_scale,
636 | noise_scale_w=noise_scale_w,
637 | length_scale=length_scale,
638 | emotion=emotion,
639 | seed=seed,
640 | skip_start=skip_start,
641 | skip_end=skip_end,
642 | add_blank=add_blank,
643 | )
644 | audil_list.append(audio)
645 |
646 | np_audio = np.concatenate(audil_list, axis=2)
647 | return np_audio
648 |
649 |
650 | infor_onnx_instance = INFER_ONNX()
651 |
--------------------------------------------------------------------------------
/onnx_infer/text/chinese_tone_sandhi.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) 2021 PaddlePaddle Authors. All Rights Reserved.
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | from typing import List
15 | from typing import Tuple
16 |
17 | import jieba
18 | from pypinyin import lazy_pinyin
19 | from pypinyin import Style
20 |
21 | from log import log_instance
22 |
23 |
24 | class ToneSandhi:
25 | def __init__(self):
26 | self.must_neural_tone_words = {
27 | "麻烦",
28 | "麻利",
29 | "鸳鸯",
30 | "高粱",
31 | "骨头",
32 | "骆驼",
33 | "马虎",
34 | "首饰",
35 | "馒头",
36 | "馄饨",
37 | "风筝",
38 | "难为",
39 | "队伍",
40 | "阔气",
41 | "闺女",
42 | "门道",
43 | "锄头",
44 | "铺盖",
45 | "铃铛",
46 | "铁匠",
47 | "钥匙",
48 | "里脊",
49 | "里头",
50 | "部分",
51 | "那么",
52 | "道士",
53 | "造化",
54 | "迷糊",
55 | "连累",
56 | "这么",
57 | "这个",
58 | "运气",
59 | "过去",
60 | "软和",
61 | "转悠",
62 | "踏实",
63 | "跳蚤",
64 | "跟头",
65 | "趔趄",
66 | "财主",
67 | "豆腐",
68 | "讲究",
69 | "记性",
70 | "记号",
71 | "认识",
72 | "规矩",
73 | "见识",
74 | "裁缝",
75 | "补丁",
76 | "衣裳",
77 | "衣服",
78 | "衙门",
79 | "街坊",
80 | "行李",
81 | "行当",
82 | "蛤蟆",
83 | "蘑菇",
84 | "薄荷",
85 | "葫芦",
86 | "葡萄",
87 | "萝卜",
88 | "荸荠",
89 | "苗条",
90 | "苗头",
91 | "苍蝇",
92 | "芝麻",
93 | "舒服",
94 | "舒坦",
95 | "舌头",
96 | "自在",
97 | "膏药",
98 | "脾气",
99 | "脑袋",
100 | "脊梁",
101 | "能耐",
102 | "胳膊",
103 | "胭脂",
104 | "胡萝",
105 | "胡琴",
106 | "胡同",
107 | "聪明",
108 | "耽误",
109 | "耽搁",
110 | "耷拉",
111 | "耳朵",
112 | "老爷",
113 | "老实",
114 | "老婆",
115 | "老头",
116 | "老太",
117 | "翻腾",
118 | "罗嗦",
119 | "罐头",
120 | "编辑",
121 | "结实",
122 | "红火",
123 | "累赘",
124 | "糨糊",
125 | "糊涂",
126 | "精神",
127 | "粮食",
128 | "簸箕",
129 | "篱笆",
130 | "算计",
131 | "算盘",
132 | "答应",
133 | "笤帚",
134 | "笑语",
135 | "笑话",
136 | "窟窿",
137 | "窝囊",
138 | "窗户",
139 | "稳当",
140 | "稀罕",
141 | "称呼",
142 | "秧歌",
143 | "秀气",
144 | "秀才",
145 | "福气",
146 | "祖宗",
147 | "砚台",
148 | "码头",
149 | "石榴",
150 | "石头",
151 | "石匠",
152 | "知识",
153 | "眼睛",
154 | "眯缝",
155 | "眨巴",
156 | "眉毛",
157 | "相声",
158 | "盘算",
159 | "白净",
160 | "痢疾",
161 | "痛快",
162 | "疟疾",
163 | "疙瘩",
164 | "疏忽",
165 | "畜生",
166 | "生意",
167 | "甘蔗",
168 | "琵琶",
169 | "琢磨",
170 | "琉璃",
171 | "玻璃",
172 | "玫瑰",
173 | "玄乎",
174 | "狐狸",
175 | "状元",
176 | "特务",
177 | "牲口",
178 | "牙碜",
179 | "牌楼",
180 | "爽快",
181 | "爱人",
182 | "热闹",
183 | "烧饼",
184 | "烟筒",
185 | "烂糊",
186 | "点心",
187 | "炊帚",
188 | "灯笼",
189 | "火候",
190 | "漂亮",
191 | "滑溜",
192 | "溜达",
193 | "温和",
194 | "清楚",
195 | "消息",
196 | "浪头",
197 | "活泼",
198 | "比方",
199 | "正经",
200 | "欺负",
201 | "模糊",
202 | "槟榔",
203 | "棺材",
204 | "棒槌",
205 | "棉花",
206 | "核桃",
207 | "栅栏",
208 | "柴火",
209 | "架势",
210 | "枕头",
211 | "枇杷",
212 | "机灵",
213 | "本事",
214 | "木头",
215 | "木匠",
216 | "朋友",
217 | "月饼",
218 | "月亮",
219 | "暖和",
220 | "明白",
221 | "时候",
222 | "新鲜",
223 | "故事",
224 | "收拾",
225 | "收成",
226 | "提防",
227 | "挖苦",
228 | "挑剔",
229 | "指甲",
230 | "指头",
231 | "拾掇",
232 | "拳头",
233 | "拨弄",
234 | "招牌",
235 | "招呼",
236 | "抬举",
237 | "护士",
238 | "折腾",
239 | "扫帚",
240 | "打量",
241 | "打算",
242 | "打点",
243 | "打扮",
244 | "打听",
245 | "打发",
246 | "扎实",
247 | "扁担",
248 | "戒指",
249 | "懒得",
250 | "意识",
251 | "意思",
252 | "情形",
253 | "悟性",
254 | "怪物",
255 | "思量",
256 | "怎么",
257 | "念头",
258 | "念叨",
259 | "快活",
260 | "忙活",
261 | "志气",
262 | "心思",
263 | "得罪",
264 | "张罗",
265 | "弟兄",
266 | "开通",
267 | "应酬",
268 | "庄稼",
269 | "干事",
270 | "帮手",
271 | "帐篷",
272 | "希罕",
273 | "师父",
274 | "师傅",
275 | "巴结",
276 | "巴掌",
277 | "差事",
278 | "工夫",
279 | "岁数",
280 | "屁股",
281 | "尾巴",
282 | "少爷",
283 | "小气",
284 | "小伙",
285 | "将就",
286 | "对头",
287 | "对付",
288 | "寡妇",
289 | "家伙",
290 | "客气",
291 | "实在",
292 | "官司",
293 | "学问",
294 | "学生",
295 | "字号",
296 | "嫁妆",
297 | "媳妇",
298 | "媒人",
299 | "婆家",
300 | "娘家",
301 | "委屈",
302 | "姑娘",
303 | "姐夫",
304 | "妯娌",
305 | "妥当",
306 | "妖精",
307 | "奴才",
308 | "女婿",
309 | "头发",
310 | "太阳",
311 | "大爷",
312 | "大方",
313 | "大意",
314 | "大夫",
315 | "多少",
316 | "多么",
317 | "外甥",
318 | "壮实",
319 | "地道",
320 | "地方",
321 | "在乎",
322 | "困难",
323 | "嘴巴",
324 | "嘱咐",
325 | "嘟囔",
326 | "嘀咕",
327 | "喜欢",
328 | "喇嘛",
329 | "喇叭",
330 | "商量",
331 | "唾沫",
332 | "哑巴",
333 | "哈欠",
334 | "哆嗦",
335 | "咳嗽",
336 | "和尚",
337 | "告诉",
338 | "告示",
339 | "含糊",
340 | "吓唬",
341 | "后头",
342 | "名字",
343 | "名堂",
344 | "合同",
345 | "吆喝",
346 | "叫唤",
347 | "口袋",
348 | "厚道",
349 | "厉害",
350 | "千斤",
351 | "包袱",
352 | "包涵",
353 | "匀称",
354 | "勤快",
355 | "动静",
356 | "动弹",
357 | "功夫",
358 | "力气",
359 | "前头",
360 | "刺猬",
361 | "刺激",
362 | "别扭",
363 | "利落",
364 | "利索",
365 | "利害",
366 | "分析",
367 | "出息",
368 | "凑合",
369 | "凉快",
370 | "冷战",
371 | "冤枉",
372 | "冒失",
373 | "养活",
374 | "关系",
375 | "先生",
376 | "兄弟",
377 | "便宜",
378 | "使唤",
379 | "佩服",
380 | "作坊",
381 | "体面",
382 | "位置",
383 | "似的",
384 | "伙计",
385 | "休息",
386 | "什么",
387 | "人家",
388 | "亲戚",
389 | "亲家",
390 | "交情",
391 | "云彩",
392 | "事情",
393 | "买卖",
394 | "主意",
395 | "丫头",
396 | "丧气",
397 | "两口",
398 | "东西",
399 | "东家",
400 | "世故",
401 | "不由",
402 | "不在",
403 | "下水",
404 | "下巴",
405 | "上头",
406 | "上司",
407 | "丈夫",
408 | "丈人",
409 | "一辈",
410 | "那个",
411 | "菩萨",
412 | "父亲",
413 | "母亲",
414 | "咕噜",
415 | "邋遢",
416 | "费用",
417 | "冤家",
418 | "甜头",
419 | "介绍",
420 | "荒唐",
421 | "大人",
422 | "泥鳅",
423 | "幸福",
424 | "熟悉",
425 | "计划",
426 | "扑腾",
427 | "蜡烛",
428 | "姥爷",
429 | "照顾",
430 | "喉咙",
431 | "吉他",
432 | "弄堂",
433 | "蚂蚱",
434 | "凤凰",
435 | "拖沓",
436 | "寒碜",
437 | "糟蹋",
438 | "倒腾",
439 | "报复",
440 | "逻辑",
441 | "盘缠",
442 | "喽啰",
443 | "牢骚",
444 | "咖喱",
445 | "扫把",
446 | "惦记",
447 | }
448 | self.must_not_neural_tone_words = {
449 | "男子",
450 | "女子",
451 | "分子",
452 | "原子",
453 | "量子",
454 | "莲子",
455 | "石子",
456 | "瓜子",
457 | "电子",
458 | "人人",
459 | "虎虎",
460 | }
461 | self.punc = ":,;。?!“”‘’':,;.?!"
462 |
463 | # the meaning of jieba pos tag: https://blog.csdn.net/weixin_44174352/article/details/113731041
464 | # e.g.
465 | # word: "家里"
466 | # pos: "s"
467 | # finals: ['ia1', 'i3']
468 | def _neural_sandhi(self, word: str, pos: str, finals: List[str]) -> List[str]:
469 | # reduplication words for n. and v. e.g. 奶奶, 试试, 旺旺
470 | for j, item in enumerate(word):
471 | if (
472 | j - 1 >= 0
473 | and item == word[j - 1]
474 | and pos[0] in {"n", "v", "a"}
475 | and word not in self.must_not_neural_tone_words
476 | ):
477 | finals[j] = finals[j][:-1] + "5"
478 | ge_idx = word.find("个")
479 | if len(word) >= 1 and word[-1] in "吧呢啊呐噻嘛吖嗨呐哦哒额滴哩哟喽啰耶喔诶":
480 | finals[-1] = finals[-1][:-1] + "5"
481 | elif len(word) >= 1 and word[-1] in "的地得":
482 | finals[-1] = finals[-1][:-1] + "5"
483 | # e.g. 走了, 看着, 去过
484 | # elif len(word) == 1 and word in "了着过" and pos in {"ul", "uz", "ug"}:
485 | # finals[-1] = finals[-1][:-1] + "5"
486 | elif (
487 | len(word) > 1
488 | and word[-1] in "们子"
489 | and pos in {"r", "n"}
490 | and word not in self.must_not_neural_tone_words
491 | ):
492 | finals[-1] = finals[-1][:-1] + "5"
493 | # e.g. 桌上, 地下, 家里
494 | elif len(word) > 1 and word[-1] in "上下里" and pos in {"s", "l", "f"}:
495 | finals[-1] = finals[-1][:-1] + "5"
496 | # e.g. 上来, 下去
497 | elif len(word) > 1 and word[-1] in "来去" and word[-2] in "上下进出回过起开":
498 | finals[-1] = finals[-1][:-1] + "5"
499 | # 个做量词
500 | elif (
501 | ge_idx >= 1
502 | and (word[ge_idx - 1].isnumeric() or word[ge_idx - 1] in "几有两半多各整每做是")
503 | ) or word == "个":
504 | finals[ge_idx] = finals[ge_idx][:-1] + "5"
505 | else:
506 | if (
507 | word in self.must_neural_tone_words
508 | or word[-2:] in self.must_neural_tone_words
509 | ):
510 | finals[-1] = finals[-1][:-1] + "5"
511 |
512 | word_list = self._split_word(word)
513 | finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
514 | for i, word in enumerate(word_list):
515 | # conventional neural in Chinese
516 | if (
517 | word in self.must_neural_tone_words
518 | or word[-2:] in self.must_neural_tone_words
519 | ):
520 | finals_list[i][-1] = finals_list[i][-1][:-1] + "5"
521 | finals = sum(finals_list, [])
522 | return finals
523 |
524 | def _bu_sandhi(self, word: str, finals: List[str]) -> List[str]:
525 | # e.g. 看不懂
526 | if len(word) == 3 and word[1] == "不":
527 | finals[1] = finals[1][:-1] + "5"
528 | else:
529 | for i, char in enumerate(word):
530 | # "不" before tone4 should be bu2, e.g. 不怕
531 | if char == "不" and i + 1 < len(word) and finals[i + 1][-1] == "4":
532 | finals[i] = finals[i][:-1] + "2"
533 | return finals
534 |
535 | def _yi_sandhi(self, word: str, finals: List[str]) -> List[str]:
536 | # "一" in number sequences, e.g. 一零零, 二一零
537 | if word.find("一") != -1 and all(
538 | [item.isnumeric() for item in word if item != "一"]
539 | ):
540 | return finals
541 | # "一" between reduplication words should be yi5, e.g. 看一看
542 | elif len(word) == 3 and word[1] == "一" and word[0] == word[-1]:
543 | finals[1] = finals[1][:-1] + "5"
544 | # when "一" is ordinal word, it should be yi1
545 | elif word.startswith("第一"):
546 | finals[1] = finals[1][:-1] + "1"
547 | else:
548 | for i, char in enumerate(word):
549 | if char == "一" and i + 1 < len(word):
550 | # "一" before tone4 should be yi2, e.g. 一段
551 | if finals[i + 1][-1] == "4":
552 | finals[i] = finals[i][:-1] + "2"
553 | # "一" before non-tone4 should be yi4, e.g. 一天
554 | else:
555 | # "一" 后面如果是标点,还读一声
556 | if word[i + 1] not in self.punc:
557 | finals[i] = finals[i][:-1] + "4"
558 | return finals
559 |
560 | def _split_word(self, word: str) -> List[str]:
561 | word_list = jieba.cut_for_search(word)
562 | word_list = sorted(word_list, key=lambda i: len(i), reverse=False)
563 | first_subword = word_list[0]
564 | first_begin_idx = word.find(first_subword)
565 | if first_begin_idx == 0:
566 | second_subword = word[len(first_subword) :]
567 | new_word_list = [first_subword, second_subword]
568 | else:
569 | second_subword = word[: -len(first_subword)]
570 | new_word_list = [second_subword, first_subword]
571 | return new_word_list
572 |
573 | def _three_sandhi(self, word: str, finals: List[str]) -> List[str]:
574 | if len(word) == 2 and self._all_tone_three(finals):
575 | finals[0] = finals[0][:-1] + "2"
576 | elif len(word) == 3:
577 | word_list = self._split_word(word)
578 | if self._all_tone_three(finals):
579 | # disyllabic + monosyllabic, e.g. 蒙古/包
580 | if len(word_list[0]) == 2:
581 | finals[0] = finals[0][:-1] + "2"
582 | finals[1] = finals[1][:-1] + "2"
583 | # monosyllabic + disyllabic, e.g. 纸/老虎
584 | elif len(word_list[0]) == 1:
585 | finals[1] = finals[1][:-1] + "2"
586 | else:
587 | finals_list = [finals[: len(word_list[0])], finals[len(word_list[0]) :]]
588 | if len(finals_list) == 2:
589 | for i, sub in enumerate(finals_list):
590 | # e.g. 所有/人
591 | if self._all_tone_three(sub) and len(sub) == 2:
592 | finals_list[i][0] = finals_list[i][0][:-1] + "2"
593 | # e.g. 好/喜欢
594 | elif (
595 | i == 1
596 | and not self._all_tone_three(sub)
597 | and finals_list[i][0][-1] == "3"
598 | and finals_list[0][-1][-1] == "3"
599 | ):
600 | finals_list[0][-1] = finals_list[0][-1][:-1] + "2"
601 | finals = sum(finals_list, [])
602 | # split idiom into two words who's length is 2
603 | elif len(word) == 4:
604 | finals_list = [finals[:2], finals[2:]]
605 | finals = []
606 | for sub in finals_list:
607 | if self._all_tone_three(sub):
608 | sub[0] = sub[0][:-1] + "2"
609 | finals += sub
610 |
611 | return finals
612 |
613 | def _all_tone_three(self, finals: List[str]) -> bool:
614 | return all(x[-1] == "3" for x in finals)
615 |
616 | # merge "不" and the word behind it
617 | # if don't merge, "不" sometimes appears alone according to jieba, which may occur sandhi error
618 | def __merge_bu(self, seg_list: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
619 | """
620 | 合并'不'字,在jieba中'不'字单独出现可能会引起错误
621 | """
622 | last_words = ""
623 | new_seg_list = []
624 | # 在分词列表中查找单独出现的'不'字
625 | for words, speech_part in seg_list:
626 | if last_words == "不" and words != "不":
627 | words = last_words + words
628 | if words != "不":
629 | new_seg_list.append((words, speech_part))
630 | last_words = words
631 | if last_words == "不":
632 | new_seg_list.append((last_words, "d"))
633 | return new_seg_list
634 |
635 | # function 1: merge "一" and reduplication words in it's left and right, e.g. "听","一","听" ->"听一听"
636 | # function 2: merge single "一" and the word behind it
637 | # if don't merge, "一" sometimes appears alone according to jieba, which may occur sandhi error
638 | # e.g.
639 | # input seg: [('听', 'v'), ('一', 'm'), ('听', 'v')]
640 | # output seg: [['听一听', 'v']]
641 | def __merge_yi(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
642 | """
643 | 合并'一'字,在jieba中'不'字单独出现可能会引起错误
644 | """
645 | new_seg = []
646 | # function 1
647 | for i, (word, pos) in enumerate(seg):
648 | if (
649 | i - 1 >= 0
650 | and word == "一"
651 | and i + 1 < len(seg)
652 | and seg[i - 1][0] == seg[i + 1][0]
653 | and seg[i - 1][1] == "v"
654 | ):
655 | new_seg[i - 1][0] = new_seg[i - 1][0] + "一" + new_seg[i - 1][0]
656 | else:
657 | if (
658 | i - 2 >= 0
659 | and seg[i - 1][0] == "一"
660 | and seg[i - 2][0] == word
661 | and pos == "v"
662 | ):
663 | continue
664 | else:
665 | new_seg.append([word, pos])
666 | seg = new_seg
667 | new_seg = []
668 | # function 2
669 | for i, (word, pos) in enumerate(seg):
670 | if new_seg and new_seg[-1][0] == "一":
671 | new_seg[-1][0] = new_seg[-1][0] + word
672 | else:
673 | new_seg.append([word, pos])
674 | return new_seg
675 |
676 | # the first and the second words are all_tone_three
677 | def __merge_continuous_three_tones(
678 | self, seg: List[Tuple[str, str]]
679 | ) -> List[Tuple[str, str]]:
680 | new_seg = []
681 | sub_finals_list = [
682 | lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
683 | for (word, pos) in seg
684 | ]
685 | assert len(sub_finals_list) == len(seg)
686 | merge_last = [False] * len(seg)
687 | for i, (word, pos) in enumerate(seg):
688 | if (
689 | i - 1 >= 0
690 | and self._all_tone_three(sub_finals_list[i - 1])
691 | and self._all_tone_three(sub_finals_list[i])
692 | and not merge_last[i - 1]
693 | ):
694 | # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
695 | if (
696 | not self._is_reduplication(seg[i - 1][0])
697 | and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
698 | ):
699 | new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
700 | merge_last[i] = True
701 | else:
702 | new_seg.append([word, pos])
703 | else:
704 | new_seg.append([word, pos])
705 |
706 | return new_seg
707 |
708 | def _is_reduplication(self, word: str) -> bool:
709 | return len(word) == 2 and word[0] == word[1]
710 |
711 | # the last char of first word and the first char of second word is tone_three
712 | def __merge_continuous_three_tones_2(
713 | self, seg: List[Tuple[str, str]]
714 | ) -> List[Tuple[str, str]]:
715 | new_seg = []
716 | sub_finals_list = [
717 | lazy_pinyin(word, neutral_tone_with_five=True, style=Style.FINALS_TONE3)
718 | for (word, pos) in seg
719 | ]
720 | assert len(sub_finals_list) == len(seg)
721 | merge_last = [False] * len(seg)
722 | for i, (word, pos) in enumerate(seg):
723 | if (
724 | i - 1 >= 0
725 | and sub_finals_list[i - 1][-1][-1] == "3"
726 | and sub_finals_list[i][0][-1] == "3"
727 | and not merge_last[i - 1]
728 | ):
729 | # if the last word is reduplication, not merge, because reduplication need to be _neural_sandhi
730 | if (
731 | not self._is_reduplication(seg[i - 1][0])
732 | and len(seg[i - 1][0]) + len(seg[i][0]) <= 3
733 | ):
734 | new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
735 | merge_last[i] = True
736 | else:
737 | new_seg.append([word, pos])
738 | else:
739 | new_seg.append([word, pos])
740 | return new_seg
741 |
742 | def __merge_er(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
743 | """
744 | 合并'儿'话
745 | """
746 | new_seg = []
747 | for i, (word, pos) in enumerate(seg):
748 | if i - 1 >= 0 and word == "儿" and seg[i - 1][0] != "#":
749 | new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
750 | else:
751 | new_seg.append([word, pos])
752 | return new_seg
753 |
754 | def __merge_reduplication(
755 | self, seg: List[Tuple[str, str]]
756 | ) -> List[Tuple[str, str]]:
757 | """
758 | 合并单独的叠词
759 | """
760 | new_seg = []
761 | for i, (word, pos) in enumerate(seg):
762 | if new_seg and word == new_seg[-1][0]:
763 | new_seg[-1][0] = new_seg[-1][0] + seg[i][0]
764 | else:
765 | new_seg.append([word, pos])
766 | return new_seg
767 |
768 | def pre_merge_for_modify(self, seg: List[Tuple[str, str]]) -> List[Tuple[str, str]]:
769 | """
770 | 自定义jieba分词合并处理
771 |
772 | 输入: jieba分词结果列表
773 | """
774 | seg = self.__merge_bu(seg)
775 | try:
776 | seg = self.__merge_yi(seg)
777 | except:
778 | log_instance.warning("jieba中文分词:合并'一'字失败")
779 | # print("jieba中文分词:合并'一'字失败")
780 | log_instance.debug("jieba中文分词:合并相同的字词")
781 | seg = self.__merge_reduplication(seg)
782 | log_instance.debug(seg)
783 | seg = self.__merge_continuous_three_tones(seg)
784 | seg = self.__merge_continuous_three_tones_2(seg)
785 | seg = self.__merge_er(seg)
786 | return seg
787 |
788 | def modified_tone(self, word: str, pos: str, finals: List[str]) -> List[str]:
789 | finals = self._bu_sandhi(word, finals)
790 | finals = self._yi_sandhi(word, finals)
791 | finals = self._neural_sandhi(word, pos, finals)
792 | finals = self._three_sandhi(word, finals)
793 | return finals
794 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------