├── .gitignore ├── LICENSE ├── README.md ├── config ├── coco.data ├── create_custom_model.sh ├── custom.data ├── yolov3-tiny.cfg └── yolov3.cfg ├── data ├── coco.names ├── custom │ ├── classes.names │ ├── images │ │ └── train.jpg │ ├── labels │ │ └── train.txt │ ├── train.txt │ └── valid.txt ├── get_coco_dataset.sh └── samples │ ├── dog.jpg │ ├── eagle.jpg │ ├── field.jpg │ ├── giraffe.jpg │ ├── herd_of_horses.jpg │ ├── messi.jpg │ ├── person.jpg │ ├── room.jpg │ └── street.jpg ├── image ├── 09979.jpg ├── 09981.jpg ├── 09982.jpg ├── 09983.jpg ├── 10966.jpg ├── 10969.jpg ├── 10971.jpg ├── 10976.jpg ├── anchor.jpg ├── mouse1.jpg ├── mouse2.jpg ├── mouse3.jpg ├── mouse4.jpg ├── performance.jpg └── yolo-struct.jpg ├── models.py ├── predict.py ├── test.py ├── train.py └── utils ├── __init__.py ├── augmentations.py ├── datasets.py ├── logger.py ├── parse_config.py └── utils.py /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2020 yangbisheng2009 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # industry-mouse-detect 2 | ![Python 3.7](https://img.shields.io/badge/python-3.7-green.svg?style=plastic) 3 | ![Pytorch 1.0.0](https://img.shields.io/badge/pytorch-1.0.0-green.svg?style=plastic) 4 | ![cuDNN 7.3.1](https://img.shields.io/badge/cudnn-7.3.1-green.svg?style=plastic) 5 | ![License CC BY-NC](https://img.shields.io/badge/license-CC_BY--NC-green.svg?style=plastic) 6 | 7 | ## 背景介绍 8 | 本工程着重识别工业环境中的老鼠,以便能够得到及时、有效的处理。本工程的难度如下(如果有条件,养只大猫咪,可能效果更佳....): 9 | - 老鼠与背景色难以区分 10 | - 老鼠经常出没在晚上,增加了识别难度 11 | - 老鼠体型较小,传统的图像处理方法和神经网络方法难以识别 12 | - 工业环境要求较高的处理速度,一般的神经网络方法难以满足 13 | ## 实现方法简介 14 | 鉴于本项目天然的难度,采用单一手段无法处理,现使用复合方法: 15 | 1. 采用YOLOV3-darknet为backbone的主干神经网络结构,以残差方减小梯度消失(YOLOV3拥有20+的FPS,能够满足高性能的工业需求) 16 | 2. 采用双帧差分监测帧与帧之间像素级别变化,并改动网络结构做重点监督训练(解决夜晚识别效果差问题、解决老鼠天然保护色问题) 17 | 3. 修改主干网络先验框尺寸,方便小物体能得到充分的学习(解决小物体检测问题) 18 | 19 | **主干网络的选择依据:** 20 | 1. 相比较 [Focal Loss for Dense Object Detection](https://arxiv.org/abs/1708.02002) 和 [Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks](https://arxiv.org/pdf/1506.01497.pdf),YOLOV3算法能够在基本满足识别效果的同时,保持高速的运算速度 21 | 2. 相比较[SSD: Single Shot MultiBox Detector](https://arxiv.org/abs/1512.02325)算法,二者处理速度相差较小,但是YOLOV3算法对小物体的识别效果更好(能够灵活改动先验anchor) 22 | 23 | **主干网络结构如下:** 24 |
25 | 26 |
27 | 28 | **自主调整先验框大小(anchor):** 29 |
30 | 31 |
32 | 33 | **backbone的性能横向对比:** 34 |
35 | 36 |
37 | 38 | ## 如何使用本项目 39 | ```shell 40 | #train 41 | python train.py --backbone darknet --epochs 90 --batch-size 16 --checkpoint ./checkpoint --data-dir ./data 42 | 43 | #test 44 | python test.py 45 | 46 | #predict 47 | python predict.py --model darknet --checkpoint ./checkpoint/x 48 | ``` 49 | ## 模型线上效果展示 50 |

51 | 52 |

53 |

54 | 55 | 56 |

57 |   58 |   59 | 60 | **以下为工业环境实际应用,目标较小:** 61 |

62 | 63 | 64 |

65 |

66 | 67 | 68 |

69 |

70 | 71 | 72 |

73 |

74 | 75 | 76 |

77 | 78 | ## 参考 79 | [1][YOLOv3: An Incremental Improvement](https://pjreddie.com/media/files/papers/YOLOv3.pdf) 80 | [2][Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks, 2015](https://arxiv.org/pdf/1506.01497.pdf) 81 | [3][Inception-v4, Inception-ResNet and the Impact of Residual Connections on Learning, 2016](https://arxiv.org/pdf/1602.07261.pdf) 82 | [4][YOLOv3官方原始工程](https://pjreddie.com/darknet/yolo/) 83 | [5][darknet原始主干网络](https://github.com/pjreddie/darknet) 84 | -------------------------------------------------------------------------------- /config/coco.data: -------------------------------------------------------------------------------- 1 | classes= 80 2 | train=data/coco/trainvalno5k.txt 3 | valid=data/coco/5k.txt 4 | names=data/coco.names 5 | backup=backup/ 6 | eval=coco 7 | -------------------------------------------------------------------------------- /config/create_custom_model.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | NUM_CLASSES=$1 4 | 5 | echo " 6 | [net] 7 | # Testing 8 | #batch=1 9 | #subdivisions=1 10 | # Training 11 | batch=16 12 | subdivisions=1 13 | width=416 14 | height=416 15 | channels=3 16 | momentum=0.9 17 | decay=0.0005 18 | angle=0 19 | saturation = 1.5 20 | exposure = 1.5 21 | hue=.1 22 | 23 | learning_rate=0.001 24 | burn_in=1000 25 | max_batches = 500200 26 | policy=steps 27 | steps=400000,450000 28 | scales=.1,.1 29 | 30 | [convolutional] 31 | batch_normalize=1 32 | filters=32 33 | size=3 34 | stride=1 35 | pad=1 36 | activation=leaky 37 | 38 | # Downsample 39 | 40 | [convolutional] 41 | batch_normalize=1 42 | filters=64 43 | size=3 44 | stride=2 45 | pad=1 46 | activation=leaky 47 | 48 | [convolutional] 49 | batch_normalize=1 50 | filters=32 51 | size=1 52 | stride=1 53 | pad=1 54 | activation=leaky 55 | 56 | [convolutional] 57 | batch_normalize=1 58 | filters=64 59 | size=3 60 | stride=1 61 | pad=1 62 | activation=leaky 63 | 64 | [shortcut] 65 | from=-3 66 | activation=linear 67 | 68 | # Downsample 69 | 70 | [convolutional] 71 | batch_normalize=1 72 | filters=128 73 | size=3 74 | stride=2 75 | pad=1 76 | activation=leaky 77 | 78 | [convolutional] 79 | batch_normalize=1 80 | filters=64 81 | size=1 82 | stride=1 83 | pad=1 84 | activation=leaky 85 | 86 | [convolutional] 87 | batch_normalize=1 88 | filters=128 89 | size=3 90 | stride=1 91 | pad=1 92 | activation=leaky 93 | 94 | [shortcut] 95 | from=-3 96 | activation=linear 97 | 98 | [convolutional] 99 | batch_normalize=1 100 | filters=64 101 | size=1 102 | stride=1 103 | pad=1 104 | activation=leaky 105 | 106 | [convolutional] 107 | batch_normalize=1 108 | filters=128 109 | size=3 110 | stride=1 111 | pad=1 112 | activation=leaky 113 | 114 | [shortcut] 115 | from=-3 116 | activation=linear 117 | 118 | # Downsample 119 | 120 | [convolutional] 121 | batch_normalize=1 122 | filters=256 123 | size=3 124 | stride=2 125 | pad=1 126 | activation=leaky 127 | 128 | [convolutional] 129 | batch_normalize=1 130 | filters=128 131 | size=1 132 | stride=1 133 | pad=1 134 | activation=leaky 135 | 136 | [convolutional] 137 | batch_normalize=1 138 | filters=256 139 | size=3 140 | stride=1 141 | pad=1 142 | activation=leaky 143 | 144 | [shortcut] 145 | from=-3 146 | activation=linear 147 | 148 | [convolutional] 149 | batch_normalize=1 150 | filters=128 151 | size=1 152 | stride=1 153 | pad=1 154 | activation=leaky 155 | 156 | [convolutional] 157 | batch_normalize=1 158 | filters=256 159 | size=3 160 | stride=1 161 | pad=1 162 | activation=leaky 163 | 164 | [shortcut] 165 | from=-3 166 | activation=linear 167 | 168 | [convolutional] 169 | batch_normalize=1 170 | filters=128 171 | size=1 172 | stride=1 173 | pad=1 174 | activation=leaky 175 | 176 | [convolutional] 177 | batch_normalize=1 178 | filters=256 179 | size=3 180 | stride=1 181 | pad=1 182 | activation=leaky 183 | 184 | [shortcut] 185 | from=-3 186 | activation=linear 187 | 188 | [convolutional] 189 | batch_normalize=1 190 | filters=128 191 | size=1 192 | stride=1 193 | pad=1 194 | activation=leaky 195 | 196 | [convolutional] 197 | batch_normalize=1 198 | filters=256 199 | size=3 200 | stride=1 201 | pad=1 202 | activation=leaky 203 | 204 | [shortcut] 205 | from=-3 206 | activation=linear 207 | 208 | 209 | [convolutional] 210 | batch_normalize=1 211 | filters=128 212 | size=1 213 | stride=1 214 | pad=1 215 | activation=leaky 216 | 217 | [convolutional] 218 | batch_normalize=1 219 | filters=256 220 | size=3 221 | stride=1 222 | pad=1 223 | activation=leaky 224 | 225 | [shortcut] 226 | from=-3 227 | activation=linear 228 | 229 | [convolutional] 230 | batch_normalize=1 231 | filters=128 232 | size=1 233 | stride=1 234 | pad=1 235 | activation=leaky 236 | 237 | [convolutional] 238 | batch_normalize=1 239 | filters=256 240 | size=3 241 | stride=1 242 | pad=1 243 | activation=leaky 244 | 245 | [shortcut] 246 | from=-3 247 | activation=linear 248 | 249 | [convolutional] 250 | batch_normalize=1 251 | filters=128 252 | size=1 253 | stride=1 254 | pad=1 255 | activation=leaky 256 | 257 | [convolutional] 258 | batch_normalize=1 259 | filters=256 260 | size=3 261 | stride=1 262 | pad=1 263 | activation=leaky 264 | 265 | [shortcut] 266 | from=-3 267 | activation=linear 268 | 269 | [convolutional] 270 | batch_normalize=1 271 | filters=128 272 | size=1 273 | stride=1 274 | pad=1 275 | activation=leaky 276 | 277 | [convolutional] 278 | batch_normalize=1 279 | filters=256 280 | size=3 281 | stride=1 282 | pad=1 283 | activation=leaky 284 | 285 | [shortcut] 286 | from=-3 287 | activation=linear 288 | 289 | # Downsample 290 | 291 | [convolutional] 292 | batch_normalize=1 293 | filters=512 294 | size=3 295 | stride=2 296 | pad=1 297 | activation=leaky 298 | 299 | [convolutional] 300 | batch_normalize=1 301 | filters=256 302 | size=1 303 | stride=1 304 | pad=1 305 | activation=leaky 306 | 307 | [convolutional] 308 | batch_normalize=1 309 | filters=512 310 | size=3 311 | stride=1 312 | pad=1 313 | activation=leaky 314 | 315 | [shortcut] 316 | from=-3 317 | activation=linear 318 | 319 | 320 | [convolutional] 321 | batch_normalize=1 322 | filters=256 323 | size=1 324 | stride=1 325 | pad=1 326 | activation=leaky 327 | 328 | [convolutional] 329 | batch_normalize=1 330 | filters=512 331 | size=3 332 | stride=1 333 | pad=1 334 | activation=leaky 335 | 336 | [shortcut] 337 | from=-3 338 | activation=linear 339 | 340 | 341 | [convolutional] 342 | batch_normalize=1 343 | filters=256 344 | size=1 345 | stride=1 346 | pad=1 347 | activation=leaky 348 | 349 | [convolutional] 350 | batch_normalize=1 351 | filters=512 352 | size=3 353 | stride=1 354 | pad=1 355 | activation=leaky 356 | 357 | [shortcut] 358 | from=-3 359 | activation=linear 360 | 361 | 362 | [convolutional] 363 | batch_normalize=1 364 | filters=256 365 | size=1 366 | stride=1 367 | pad=1 368 | activation=leaky 369 | 370 | [convolutional] 371 | batch_normalize=1 372 | filters=512 373 | size=3 374 | stride=1 375 | pad=1 376 | activation=leaky 377 | 378 | [shortcut] 379 | from=-3 380 | activation=linear 381 | 382 | [convolutional] 383 | batch_normalize=1 384 | filters=256 385 | size=1 386 | stride=1 387 | pad=1 388 | activation=leaky 389 | 390 | [convolutional] 391 | batch_normalize=1 392 | filters=512 393 | size=3 394 | stride=1 395 | pad=1 396 | activation=leaky 397 | 398 | [shortcut] 399 | from=-3 400 | activation=linear 401 | 402 | 403 | [convolutional] 404 | batch_normalize=1 405 | filters=256 406 | size=1 407 | stride=1 408 | pad=1 409 | activation=leaky 410 | 411 | [convolutional] 412 | batch_normalize=1 413 | filters=512 414 | size=3 415 | stride=1 416 | pad=1 417 | activation=leaky 418 | 419 | [shortcut] 420 | from=-3 421 | activation=linear 422 | 423 | 424 | [convolutional] 425 | batch_normalize=1 426 | filters=256 427 | size=1 428 | stride=1 429 | pad=1 430 | activation=leaky 431 | 432 | [convolutional] 433 | batch_normalize=1 434 | filters=512 435 | size=3 436 | stride=1 437 | pad=1 438 | activation=leaky 439 | 440 | [shortcut] 441 | from=-3 442 | activation=linear 443 | 444 | [convolutional] 445 | batch_normalize=1 446 | filters=256 447 | size=1 448 | stride=1 449 | pad=1 450 | activation=leaky 451 | 452 | [convolutional] 453 | batch_normalize=1 454 | filters=512 455 | size=3 456 | stride=1 457 | pad=1 458 | activation=leaky 459 | 460 | [shortcut] 461 | from=-3 462 | activation=linear 463 | 464 | # Downsample 465 | 466 | [convolutional] 467 | batch_normalize=1 468 | filters=1024 469 | size=3 470 | stride=2 471 | pad=1 472 | activation=leaky 473 | 474 | [convolutional] 475 | batch_normalize=1 476 | filters=512 477 | size=1 478 | stride=1 479 | pad=1 480 | activation=leaky 481 | 482 | [convolutional] 483 | batch_normalize=1 484 | filters=1024 485 | size=3 486 | stride=1 487 | pad=1 488 | activation=leaky 489 | 490 | [shortcut] 491 | from=-3 492 | activation=linear 493 | 494 | [convolutional] 495 | batch_normalize=1 496 | filters=512 497 | size=1 498 | stride=1 499 | pad=1 500 | activation=leaky 501 | 502 | [convolutional] 503 | batch_normalize=1 504 | filters=1024 505 | size=3 506 | stride=1 507 | pad=1 508 | activation=leaky 509 | 510 | [shortcut] 511 | from=-3 512 | activation=linear 513 | 514 | [convolutional] 515 | batch_normalize=1 516 | filters=512 517 | size=1 518 | stride=1 519 | pad=1 520 | activation=leaky 521 | 522 | [convolutional] 523 | batch_normalize=1 524 | filters=1024 525 | size=3 526 | stride=1 527 | pad=1 528 | activation=leaky 529 | 530 | [shortcut] 531 | from=-3 532 | activation=linear 533 | 534 | [convolutional] 535 | batch_normalize=1 536 | filters=512 537 | size=1 538 | stride=1 539 | pad=1 540 | activation=leaky 541 | 542 | [convolutional] 543 | batch_normalize=1 544 | filters=1024 545 | size=3 546 | stride=1 547 | pad=1 548 | activation=leaky 549 | 550 | [shortcut] 551 | from=-3 552 | activation=linear 553 | 554 | ###################### 555 | 556 | [convolutional] 557 | batch_normalize=1 558 | filters=512 559 | size=1 560 | stride=1 561 | pad=1 562 | activation=leaky 563 | 564 | [convolutional] 565 | batch_normalize=1 566 | size=3 567 | stride=1 568 | pad=1 569 | filters=1024 570 | activation=leaky 571 | 572 | [convolutional] 573 | batch_normalize=1 574 | filters=512 575 | size=1 576 | stride=1 577 | pad=1 578 | activation=leaky 579 | 580 | [convolutional] 581 | batch_normalize=1 582 | size=3 583 | stride=1 584 | pad=1 585 | filters=1024 586 | activation=leaky 587 | 588 | [convolutional] 589 | batch_normalize=1 590 | filters=512 591 | size=1 592 | stride=1 593 | pad=1 594 | activation=leaky 595 | 596 | [convolutional] 597 | batch_normalize=1 598 | size=3 599 | stride=1 600 | pad=1 601 | filters=1024 602 | activation=leaky 603 | 604 | [convolutional] 605 | size=1 606 | stride=1 607 | pad=1 608 | filters=$(expr 3 \* $(expr $NUM_CLASSES \+ 5)) 609 | activation=linear 610 | 611 | 612 | [yolo] 613 | mask = 6,7,8 614 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 615 | classes=$NUM_CLASSES 616 | num=9 617 | jitter=.3 618 | ignore_thresh = .7 619 | truth_thresh = 1 620 | random=1 621 | 622 | 623 | [route] 624 | layers = -4 625 | 626 | [convolutional] 627 | batch_normalize=1 628 | filters=256 629 | size=1 630 | stride=1 631 | pad=1 632 | activation=leaky 633 | 634 | [upsample] 635 | stride=2 636 | 637 | [route] 638 | layers = -1, 61 639 | 640 | 641 | 642 | [convolutional] 643 | batch_normalize=1 644 | filters=256 645 | size=1 646 | stride=1 647 | pad=1 648 | activation=leaky 649 | 650 | [convolutional] 651 | batch_normalize=1 652 | size=3 653 | stride=1 654 | pad=1 655 | filters=512 656 | activation=leaky 657 | 658 | [convolutional] 659 | batch_normalize=1 660 | filters=256 661 | size=1 662 | stride=1 663 | pad=1 664 | activation=leaky 665 | 666 | [convolutional] 667 | batch_normalize=1 668 | size=3 669 | stride=1 670 | pad=1 671 | filters=512 672 | activation=leaky 673 | 674 | [convolutional] 675 | batch_normalize=1 676 | filters=256 677 | size=1 678 | stride=1 679 | pad=1 680 | activation=leaky 681 | 682 | [convolutional] 683 | batch_normalize=1 684 | size=3 685 | stride=1 686 | pad=1 687 | filters=512 688 | activation=leaky 689 | 690 | [convolutional] 691 | size=1 692 | stride=1 693 | pad=1 694 | filters=$(expr 3 \* $(expr $NUM_CLASSES \+ 5)) 695 | activation=linear 696 | 697 | 698 | [yolo] 699 | mask = 3,4,5 700 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 701 | classes=$NUM_CLASSES 702 | num=9 703 | jitter=.3 704 | ignore_thresh = .7 705 | truth_thresh = 1 706 | random=1 707 | 708 | 709 | 710 | [route] 711 | layers = -4 712 | 713 | [convolutional] 714 | batch_normalize=1 715 | filters=128 716 | size=1 717 | stride=1 718 | pad=1 719 | activation=leaky 720 | 721 | [upsample] 722 | stride=2 723 | 724 | [route] 725 | layers = -1, 36 726 | 727 | 728 | 729 | [convolutional] 730 | batch_normalize=1 731 | filters=128 732 | size=1 733 | stride=1 734 | pad=1 735 | activation=leaky 736 | 737 | [convolutional] 738 | batch_normalize=1 739 | size=3 740 | stride=1 741 | pad=1 742 | filters=256 743 | activation=leaky 744 | 745 | [convolutional] 746 | batch_normalize=1 747 | filters=128 748 | size=1 749 | stride=1 750 | pad=1 751 | activation=leaky 752 | 753 | [convolutional] 754 | batch_normalize=1 755 | size=3 756 | stride=1 757 | pad=1 758 | filters=256 759 | activation=leaky 760 | 761 | [convolutional] 762 | batch_normalize=1 763 | filters=128 764 | size=1 765 | stride=1 766 | pad=1 767 | activation=leaky 768 | 769 | [convolutional] 770 | batch_normalize=1 771 | size=3 772 | stride=1 773 | pad=1 774 | filters=256 775 | activation=leaky 776 | 777 | [convolutional] 778 | size=1 779 | stride=1 780 | pad=1 781 | filters=$(expr 3 \* $(expr $NUM_CLASSES \+ 5)) 782 | activation=linear 783 | 784 | 785 | [yolo] 786 | mask = 0,1,2 787 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 788 | classes=$NUM_CLASSES 789 | num=9 790 | jitter=.3 791 | ignore_thresh = .7 792 | truth_thresh = 1 793 | random=1 794 | " >> yolov3-custom.cfg 795 | -------------------------------------------------------------------------------- /config/custom.data: -------------------------------------------------------------------------------- 1 | classes= 1 2 | train=data/custom/train.txt 3 | valid=data/custom/valid.txt 4 | names=data/custom/classes.names 5 | -------------------------------------------------------------------------------- /config/yolov3-tiny.cfg: -------------------------------------------------------------------------------- 1 | [net] 2 | # Testing 3 | batch=1 4 | subdivisions=1 5 | # Training 6 | # batch=64 7 | # subdivisions=2 8 | width=416 9 | height=416 10 | channels=3 11 | momentum=0.9 12 | decay=0.0005 13 | angle=0 14 | saturation = 1.5 15 | exposure = 1.5 16 | hue=.1 17 | 18 | learning_rate=0.001 19 | burn_in=1000 20 | max_batches = 500200 21 | policy=steps 22 | steps=400000,450000 23 | scales=.1,.1 24 | 25 | # 0 26 | [convolutional] 27 | batch_normalize=1 28 | filters=16 29 | size=3 30 | stride=1 31 | pad=1 32 | activation=leaky 33 | 34 | # 1 35 | [maxpool] 36 | size=2 37 | stride=2 38 | 39 | # 2 40 | [convolutional] 41 | batch_normalize=1 42 | filters=32 43 | size=3 44 | stride=1 45 | pad=1 46 | activation=leaky 47 | 48 | # 3 49 | [maxpool] 50 | size=2 51 | stride=2 52 | 53 | # 4 54 | [convolutional] 55 | batch_normalize=1 56 | filters=64 57 | size=3 58 | stride=1 59 | pad=1 60 | activation=leaky 61 | 62 | # 5 63 | [maxpool] 64 | size=2 65 | stride=2 66 | 67 | # 6 68 | [convolutional] 69 | batch_normalize=1 70 | filters=128 71 | size=3 72 | stride=1 73 | pad=1 74 | activation=leaky 75 | 76 | # 7 77 | [maxpool] 78 | size=2 79 | stride=2 80 | 81 | # 8 82 | [convolutional] 83 | batch_normalize=1 84 | filters=256 85 | size=3 86 | stride=1 87 | pad=1 88 | activation=leaky 89 | 90 | # 9 91 | [maxpool] 92 | size=2 93 | stride=2 94 | 95 | # 10 96 | [convolutional] 97 | batch_normalize=1 98 | filters=512 99 | size=3 100 | stride=1 101 | pad=1 102 | activation=leaky 103 | 104 | # 11 105 | [maxpool] 106 | size=2 107 | stride=1 108 | 109 | # 12 110 | [convolutional] 111 | batch_normalize=1 112 | filters=1024 113 | size=3 114 | stride=1 115 | pad=1 116 | activation=leaky 117 | 118 | ########### 119 | 120 | # 13 121 | [convolutional] 122 | batch_normalize=1 123 | filters=256 124 | size=1 125 | stride=1 126 | pad=1 127 | activation=leaky 128 | 129 | # 14 130 | [convolutional] 131 | batch_normalize=1 132 | filters=512 133 | size=3 134 | stride=1 135 | pad=1 136 | activation=leaky 137 | 138 | # 15 139 | [convolutional] 140 | size=1 141 | stride=1 142 | pad=1 143 | filters=255 144 | activation=linear 145 | 146 | 147 | 148 | # 16 149 | [yolo] 150 | mask = 3,4,5 151 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 152 | classes=80 153 | num=6 154 | jitter=.3 155 | ignore_thresh = .7 156 | truth_thresh = 1 157 | random=1 158 | 159 | # 17 160 | [route] 161 | layers = -4 162 | 163 | # 18 164 | [convolutional] 165 | batch_normalize=1 166 | filters=128 167 | size=1 168 | stride=1 169 | pad=1 170 | activation=leaky 171 | 172 | # 19 173 | [upsample] 174 | stride=2 175 | 176 | # 20 177 | [route] 178 | layers = -1, 8 179 | 180 | # 21 181 | [convolutional] 182 | batch_normalize=1 183 | filters=256 184 | size=3 185 | stride=1 186 | pad=1 187 | activation=leaky 188 | 189 | # 22 190 | [convolutional] 191 | size=1 192 | stride=1 193 | pad=1 194 | filters=255 195 | activation=linear 196 | 197 | # 23 198 | [yolo] 199 | mask = 1,2,3 200 | anchors = 10,14, 23,27, 37,58, 81,82, 135,169, 344,319 201 | classes=80 202 | num=6 203 | jitter=.3 204 | ignore_thresh = .7 205 | truth_thresh = 1 206 | random=1 207 | -------------------------------------------------------------------------------- /config/yolov3.cfg: -------------------------------------------------------------------------------- 1 | [net] 2 | # Testing 3 | #batch=1 4 | #subdivisions=1 5 | # Training 6 | batch=16 7 | subdivisions=1 8 | width=416 9 | height=416 10 | channels=3 11 | momentum=0.9 12 | decay=0.0005 13 | angle=0 14 | saturation = 1.5 15 | exposure = 1.5 16 | hue=.1 17 | 18 | learning_rate=0.001 19 | burn_in=1000 20 | max_batches = 500200 21 | policy=steps 22 | steps=400000,450000 23 | scales=.1,.1 24 | 25 | [convolutional] 26 | batch_normalize=1 27 | filters=32 28 | size=3 29 | stride=1 30 | pad=1 31 | activation=leaky 32 | 33 | # Downsample 34 | 35 | [convolutional] 36 | batch_normalize=1 37 | filters=64 38 | size=3 39 | stride=2 40 | pad=1 41 | activation=leaky 42 | 43 | [convolutional] 44 | batch_normalize=1 45 | filters=32 46 | size=1 47 | stride=1 48 | pad=1 49 | activation=leaky 50 | 51 | [convolutional] 52 | batch_normalize=1 53 | filters=64 54 | size=3 55 | stride=1 56 | pad=1 57 | activation=leaky 58 | 59 | [shortcut] 60 | from=-3 61 | activation=linear 62 | 63 | # Downsample 64 | 65 | [convolutional] 66 | batch_normalize=1 67 | filters=128 68 | size=3 69 | stride=2 70 | pad=1 71 | activation=leaky 72 | 73 | [convolutional] 74 | batch_normalize=1 75 | filters=64 76 | size=1 77 | stride=1 78 | pad=1 79 | activation=leaky 80 | 81 | [convolutional] 82 | batch_normalize=1 83 | filters=128 84 | size=3 85 | stride=1 86 | pad=1 87 | activation=leaky 88 | 89 | [shortcut] 90 | from=-3 91 | activation=linear 92 | 93 | [convolutional] 94 | batch_normalize=1 95 | filters=64 96 | size=1 97 | stride=1 98 | pad=1 99 | activation=leaky 100 | 101 | [convolutional] 102 | batch_normalize=1 103 | filters=128 104 | size=3 105 | stride=1 106 | pad=1 107 | activation=leaky 108 | 109 | [shortcut] 110 | from=-3 111 | activation=linear 112 | 113 | # Downsample 114 | 115 | [convolutional] 116 | batch_normalize=1 117 | filters=256 118 | size=3 119 | stride=2 120 | pad=1 121 | activation=leaky 122 | 123 | [convolutional] 124 | batch_normalize=1 125 | filters=128 126 | size=1 127 | stride=1 128 | pad=1 129 | activation=leaky 130 | 131 | [convolutional] 132 | batch_normalize=1 133 | filters=256 134 | size=3 135 | stride=1 136 | pad=1 137 | activation=leaky 138 | 139 | [shortcut] 140 | from=-3 141 | activation=linear 142 | 143 | [convolutional] 144 | batch_normalize=1 145 | filters=128 146 | size=1 147 | stride=1 148 | pad=1 149 | activation=leaky 150 | 151 | [convolutional] 152 | batch_normalize=1 153 | filters=256 154 | size=3 155 | stride=1 156 | pad=1 157 | activation=leaky 158 | 159 | [shortcut] 160 | from=-3 161 | activation=linear 162 | 163 | [convolutional] 164 | batch_normalize=1 165 | filters=128 166 | size=1 167 | stride=1 168 | pad=1 169 | activation=leaky 170 | 171 | [convolutional] 172 | batch_normalize=1 173 | filters=256 174 | size=3 175 | stride=1 176 | pad=1 177 | activation=leaky 178 | 179 | [shortcut] 180 | from=-3 181 | activation=linear 182 | 183 | [convolutional] 184 | batch_normalize=1 185 | filters=128 186 | size=1 187 | stride=1 188 | pad=1 189 | activation=leaky 190 | 191 | [convolutional] 192 | batch_normalize=1 193 | filters=256 194 | size=3 195 | stride=1 196 | pad=1 197 | activation=leaky 198 | 199 | [shortcut] 200 | from=-3 201 | activation=linear 202 | 203 | 204 | [convolutional] 205 | batch_normalize=1 206 | filters=128 207 | size=1 208 | stride=1 209 | pad=1 210 | activation=leaky 211 | 212 | [convolutional] 213 | batch_normalize=1 214 | filters=256 215 | size=3 216 | stride=1 217 | pad=1 218 | activation=leaky 219 | 220 | [shortcut] 221 | from=-3 222 | activation=linear 223 | 224 | [convolutional] 225 | batch_normalize=1 226 | filters=128 227 | size=1 228 | stride=1 229 | pad=1 230 | activation=leaky 231 | 232 | [convolutional] 233 | batch_normalize=1 234 | filters=256 235 | size=3 236 | stride=1 237 | pad=1 238 | activation=leaky 239 | 240 | [shortcut] 241 | from=-3 242 | activation=linear 243 | 244 | [convolutional] 245 | batch_normalize=1 246 | filters=128 247 | size=1 248 | stride=1 249 | pad=1 250 | activation=leaky 251 | 252 | [convolutional] 253 | batch_normalize=1 254 | filters=256 255 | size=3 256 | stride=1 257 | pad=1 258 | activation=leaky 259 | 260 | [shortcut] 261 | from=-3 262 | activation=linear 263 | 264 | [convolutional] 265 | batch_normalize=1 266 | filters=128 267 | size=1 268 | stride=1 269 | pad=1 270 | activation=leaky 271 | 272 | [convolutional] 273 | batch_normalize=1 274 | filters=256 275 | size=3 276 | stride=1 277 | pad=1 278 | activation=leaky 279 | 280 | [shortcut] 281 | from=-3 282 | activation=linear 283 | 284 | # Downsample 285 | 286 | [convolutional] 287 | batch_normalize=1 288 | filters=512 289 | size=3 290 | stride=2 291 | pad=1 292 | activation=leaky 293 | 294 | [convolutional] 295 | batch_normalize=1 296 | filters=256 297 | size=1 298 | stride=1 299 | pad=1 300 | activation=leaky 301 | 302 | [convolutional] 303 | batch_normalize=1 304 | filters=512 305 | size=3 306 | stride=1 307 | pad=1 308 | activation=leaky 309 | 310 | [shortcut] 311 | from=-3 312 | activation=linear 313 | 314 | 315 | [convolutional] 316 | batch_normalize=1 317 | filters=256 318 | size=1 319 | stride=1 320 | pad=1 321 | activation=leaky 322 | 323 | [convolutional] 324 | batch_normalize=1 325 | filters=512 326 | size=3 327 | stride=1 328 | pad=1 329 | activation=leaky 330 | 331 | [shortcut] 332 | from=-3 333 | activation=linear 334 | 335 | 336 | [convolutional] 337 | batch_normalize=1 338 | filters=256 339 | size=1 340 | stride=1 341 | pad=1 342 | activation=leaky 343 | 344 | [convolutional] 345 | batch_normalize=1 346 | filters=512 347 | size=3 348 | stride=1 349 | pad=1 350 | activation=leaky 351 | 352 | [shortcut] 353 | from=-3 354 | activation=linear 355 | 356 | 357 | [convolutional] 358 | batch_normalize=1 359 | filters=256 360 | size=1 361 | stride=1 362 | pad=1 363 | activation=leaky 364 | 365 | [convolutional] 366 | batch_normalize=1 367 | filters=512 368 | size=3 369 | stride=1 370 | pad=1 371 | activation=leaky 372 | 373 | [shortcut] 374 | from=-3 375 | activation=linear 376 | 377 | [convolutional] 378 | batch_normalize=1 379 | filters=256 380 | size=1 381 | stride=1 382 | pad=1 383 | activation=leaky 384 | 385 | [convolutional] 386 | batch_normalize=1 387 | filters=512 388 | size=3 389 | stride=1 390 | pad=1 391 | activation=leaky 392 | 393 | [shortcut] 394 | from=-3 395 | activation=linear 396 | 397 | 398 | [convolutional] 399 | batch_normalize=1 400 | filters=256 401 | size=1 402 | stride=1 403 | pad=1 404 | activation=leaky 405 | 406 | [convolutional] 407 | batch_normalize=1 408 | filters=512 409 | size=3 410 | stride=1 411 | pad=1 412 | activation=leaky 413 | 414 | [shortcut] 415 | from=-3 416 | activation=linear 417 | 418 | 419 | [convolutional] 420 | batch_normalize=1 421 | filters=256 422 | size=1 423 | stride=1 424 | pad=1 425 | activation=leaky 426 | 427 | [convolutional] 428 | batch_normalize=1 429 | filters=512 430 | size=3 431 | stride=1 432 | pad=1 433 | activation=leaky 434 | 435 | [shortcut] 436 | from=-3 437 | activation=linear 438 | 439 | [convolutional] 440 | batch_normalize=1 441 | filters=256 442 | size=1 443 | stride=1 444 | pad=1 445 | activation=leaky 446 | 447 | [convolutional] 448 | batch_normalize=1 449 | filters=512 450 | size=3 451 | stride=1 452 | pad=1 453 | activation=leaky 454 | 455 | [shortcut] 456 | from=-3 457 | activation=linear 458 | 459 | # Downsample 460 | 461 | [convolutional] 462 | batch_normalize=1 463 | filters=1024 464 | size=3 465 | stride=2 466 | pad=1 467 | activation=leaky 468 | 469 | [convolutional] 470 | batch_normalize=1 471 | filters=512 472 | size=1 473 | stride=1 474 | pad=1 475 | activation=leaky 476 | 477 | [convolutional] 478 | batch_normalize=1 479 | filters=1024 480 | size=3 481 | stride=1 482 | pad=1 483 | activation=leaky 484 | 485 | [shortcut] 486 | from=-3 487 | activation=linear 488 | 489 | [convolutional] 490 | batch_normalize=1 491 | filters=512 492 | size=1 493 | stride=1 494 | pad=1 495 | activation=leaky 496 | 497 | [convolutional] 498 | batch_normalize=1 499 | filters=1024 500 | size=3 501 | stride=1 502 | pad=1 503 | activation=leaky 504 | 505 | [shortcut] 506 | from=-3 507 | activation=linear 508 | 509 | [convolutional] 510 | batch_normalize=1 511 | filters=512 512 | size=1 513 | stride=1 514 | pad=1 515 | activation=leaky 516 | 517 | [convolutional] 518 | batch_normalize=1 519 | filters=1024 520 | size=3 521 | stride=1 522 | pad=1 523 | activation=leaky 524 | 525 | [shortcut] 526 | from=-3 527 | activation=linear 528 | 529 | [convolutional] 530 | batch_normalize=1 531 | filters=512 532 | size=1 533 | stride=1 534 | pad=1 535 | activation=leaky 536 | 537 | [convolutional] 538 | batch_normalize=1 539 | filters=1024 540 | size=3 541 | stride=1 542 | pad=1 543 | activation=leaky 544 | 545 | [shortcut] 546 | from=-3 547 | activation=linear 548 | 549 | ###################### 550 | 551 | [convolutional] 552 | batch_normalize=1 553 | filters=512 554 | size=1 555 | stride=1 556 | pad=1 557 | activation=leaky 558 | 559 | [convolutional] 560 | batch_normalize=1 561 | size=3 562 | stride=1 563 | pad=1 564 | filters=1024 565 | activation=leaky 566 | 567 | [convolutional] 568 | batch_normalize=1 569 | filters=512 570 | size=1 571 | stride=1 572 | pad=1 573 | activation=leaky 574 | 575 | [convolutional] 576 | batch_normalize=1 577 | size=3 578 | stride=1 579 | pad=1 580 | filters=1024 581 | activation=leaky 582 | 583 | [convolutional] 584 | batch_normalize=1 585 | filters=512 586 | size=1 587 | stride=1 588 | pad=1 589 | activation=leaky 590 | 591 | [convolutional] 592 | batch_normalize=1 593 | size=3 594 | stride=1 595 | pad=1 596 | filters=1024 597 | activation=leaky 598 | 599 | [convolutional] 600 | size=1 601 | stride=1 602 | pad=1 603 | filters=255 604 | activation=linear 605 | 606 | 607 | [yolo] 608 | mask = 6,7,8 609 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 610 | classes=80 611 | num=9 612 | jitter=.3 613 | ignore_thresh = .7 614 | truth_thresh = 1 615 | random=1 616 | 617 | 618 | [route] 619 | layers = -4 620 | 621 | [convolutional] 622 | batch_normalize=1 623 | filters=256 624 | size=1 625 | stride=1 626 | pad=1 627 | activation=leaky 628 | 629 | [upsample] 630 | stride=2 631 | 632 | [route] 633 | layers = -1, 61 634 | 635 | 636 | 637 | [convolutional] 638 | batch_normalize=1 639 | filters=256 640 | size=1 641 | stride=1 642 | pad=1 643 | activation=leaky 644 | 645 | [convolutional] 646 | batch_normalize=1 647 | size=3 648 | stride=1 649 | pad=1 650 | filters=512 651 | activation=leaky 652 | 653 | [convolutional] 654 | batch_normalize=1 655 | filters=256 656 | size=1 657 | stride=1 658 | pad=1 659 | activation=leaky 660 | 661 | [convolutional] 662 | batch_normalize=1 663 | size=3 664 | stride=1 665 | pad=1 666 | filters=512 667 | activation=leaky 668 | 669 | [convolutional] 670 | batch_normalize=1 671 | filters=256 672 | size=1 673 | stride=1 674 | pad=1 675 | activation=leaky 676 | 677 | [convolutional] 678 | batch_normalize=1 679 | size=3 680 | stride=1 681 | pad=1 682 | filters=512 683 | activation=leaky 684 | 685 | [convolutional] 686 | size=1 687 | stride=1 688 | pad=1 689 | filters=255 690 | activation=linear 691 | 692 | 693 | [yolo] 694 | mask = 3,4,5 695 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 696 | classes=80 697 | num=9 698 | jitter=.3 699 | ignore_thresh = .7 700 | truth_thresh = 1 701 | random=1 702 | 703 | 704 | 705 | [route] 706 | layers = -4 707 | 708 | [convolutional] 709 | batch_normalize=1 710 | filters=128 711 | size=1 712 | stride=1 713 | pad=1 714 | activation=leaky 715 | 716 | [upsample] 717 | stride=2 718 | 719 | [route] 720 | layers = -1, 36 721 | 722 | 723 | 724 | [convolutional] 725 | batch_normalize=1 726 | filters=128 727 | size=1 728 | stride=1 729 | pad=1 730 | activation=leaky 731 | 732 | [convolutional] 733 | batch_normalize=1 734 | size=3 735 | stride=1 736 | pad=1 737 | filters=256 738 | activation=leaky 739 | 740 | [convolutional] 741 | batch_normalize=1 742 | filters=128 743 | size=1 744 | stride=1 745 | pad=1 746 | activation=leaky 747 | 748 | [convolutional] 749 | batch_normalize=1 750 | size=3 751 | stride=1 752 | pad=1 753 | filters=256 754 | activation=leaky 755 | 756 | [convolutional] 757 | batch_normalize=1 758 | filters=128 759 | size=1 760 | stride=1 761 | pad=1 762 | activation=leaky 763 | 764 | [convolutional] 765 | batch_normalize=1 766 | size=3 767 | stride=1 768 | pad=1 769 | filters=256 770 | activation=leaky 771 | 772 | [convolutional] 773 | size=1 774 | stride=1 775 | pad=1 776 | filters=255 777 | activation=linear 778 | 779 | 780 | [yolo] 781 | mask = 0,1,2 782 | anchors = 10,13, 16,30, 33,23, 30,61, 62,45, 59,119, 116,90, 156,198, 373,326 783 | classes=80 784 | num=9 785 | jitter=.3 786 | ignore_thresh = .7 787 | truth_thresh = 1 788 | random=1 789 | -------------------------------------------------------------------------------- /data/coco.names: -------------------------------------------------------------------------------- 1 | person 2 | bicycle 3 | car 4 | motorbike 5 | aeroplane 6 | bus 7 | train 8 | truck 9 | boat 10 | traffic light 11 | fire hydrant 12 | stop sign 13 | parking meter 14 | bench 15 | bird 16 | cat 17 | dog 18 | horse 19 | sheep 20 | cow 21 | elephant 22 | bear 23 | zebra 24 | giraffe 25 | backpack 26 | umbrella 27 | handbag 28 | tie 29 | suitcase 30 | frisbee 31 | skis 32 | snowboard 33 | sports ball 34 | kite 35 | baseball bat 36 | baseball glove 37 | skateboard 38 | surfboard 39 | tennis racket 40 | bottle 41 | wine glass 42 | cup 43 | fork 44 | knife 45 | spoon 46 | bowl 47 | banana 48 | apple 49 | sandwich 50 | orange 51 | broccoli 52 | carrot 53 | hot dog 54 | pizza 55 | donut 56 | cake 57 | chair 58 | sofa 59 | pottedplant 60 | bed 61 | diningtable 62 | toilet 63 | tvmonitor 64 | laptop 65 | mouse 66 | remote 67 | keyboard 68 | cell phone 69 | microwave 70 | oven 71 | toaster 72 | sink 73 | refrigerator 74 | book 75 | clock 76 | vase 77 | scissors 78 | teddy bear 79 | hair drier 80 | toothbrush 81 | -------------------------------------------------------------------------------- /data/custom/classes.names: -------------------------------------------------------------------------------- 1 | train 2 | -------------------------------------------------------------------------------- /data/custom/images/train.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/custom/images/train.jpg -------------------------------------------------------------------------------- /data/custom/labels/train.txt: -------------------------------------------------------------------------------- 1 | 0 0.515 0.5 0.21694873 0.18286777 2 | -------------------------------------------------------------------------------- /data/custom/train.txt: -------------------------------------------------------------------------------- 1 | data/custom/images/train.jpg 2 | -------------------------------------------------------------------------------- /data/custom/valid.txt: -------------------------------------------------------------------------------- 1 | data/custom/images/train.jpg 2 | -------------------------------------------------------------------------------- /data/get_coco_dataset.sh: -------------------------------------------------------------------------------- 1 | #!/bin/bash 2 | 3 | # CREDIT: https://github.com/pjreddie/darknet/tree/master/scripts/get_coco_dataset.sh 4 | 5 | # Clone COCO API 6 | git clone https://github.com/pdollar/coco 7 | cd coco 8 | 9 | mkdir images 10 | cd images 11 | 12 | # Download Images 13 | wget -c https://pjreddie.com/media/files/train2014.zip 14 | wget -c https://pjreddie.com/media/files/val2014.zip 15 | 16 | # Unzip 17 | unzip -q train2014.zip 18 | unzip -q val2014.zip 19 | 20 | cd .. 21 | 22 | # Download COCO Metadata 23 | wget -c https://pjreddie.com/media/files/instances_train-val2014.zip 24 | wget -c https://pjreddie.com/media/files/coco/5k.part 25 | wget -c https://pjreddie.com/media/files/coco/trainvalno5k.part 26 | wget -c https://pjreddie.com/media/files/coco/labels.tgz 27 | tar xzf labels.tgz 28 | unzip -q instances_train-val2014.zip 29 | 30 | # Set Up Image Lists 31 | paste <(awk "{print \"$PWD\"}" <5k.part) 5k.part | tr -d '\t' > 5k.txt 32 | paste <(awk "{print \"$PWD\"}" trainvalno5k.txt 33 | -------------------------------------------------------------------------------- /data/samples/dog.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/dog.jpg -------------------------------------------------------------------------------- /data/samples/eagle.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/eagle.jpg -------------------------------------------------------------------------------- /data/samples/field.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/field.jpg -------------------------------------------------------------------------------- /data/samples/giraffe.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/giraffe.jpg -------------------------------------------------------------------------------- /data/samples/herd_of_horses.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/herd_of_horses.jpg -------------------------------------------------------------------------------- /data/samples/messi.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/messi.jpg -------------------------------------------------------------------------------- /data/samples/person.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/person.jpg -------------------------------------------------------------------------------- /data/samples/room.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/room.jpg -------------------------------------------------------------------------------- /data/samples/street.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/data/samples/street.jpg -------------------------------------------------------------------------------- /image/09979.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/09979.jpg -------------------------------------------------------------------------------- /image/09981.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/09981.jpg -------------------------------------------------------------------------------- /image/09982.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/09982.jpg -------------------------------------------------------------------------------- /image/09983.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/09983.jpg -------------------------------------------------------------------------------- /image/10966.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/10966.jpg -------------------------------------------------------------------------------- /image/10969.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/10969.jpg -------------------------------------------------------------------------------- /image/10971.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/10971.jpg -------------------------------------------------------------------------------- /image/10976.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/10976.jpg -------------------------------------------------------------------------------- /image/anchor.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/anchor.jpg -------------------------------------------------------------------------------- /image/mouse1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/mouse1.jpg -------------------------------------------------------------------------------- /image/mouse2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/mouse2.jpg -------------------------------------------------------------------------------- /image/mouse3.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/mouse3.jpg -------------------------------------------------------------------------------- /image/mouse4.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/mouse4.jpg -------------------------------------------------------------------------------- /image/performance.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/performance.jpg -------------------------------------------------------------------------------- /image/yolo-struct.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/image/yolo-struct.jpg -------------------------------------------------------------------------------- /models.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | 3 | import torch 4 | import torch.nn as nn 5 | import torch.nn.functional as F 6 | from torch.autograd import Variable 7 | import numpy as np 8 | 9 | from utils.parse_config import * 10 | from utils.utils import build_targets, to_cpu, non_max_suppression 11 | 12 | import matplotlib.pyplot as plt 13 | import matplotlib.patches as patches 14 | 15 | 16 | def create_modules(module_defs): 17 | """ 18 | Constructs module list of layer blocks from module configuration in module_defs 19 | """ 20 | hyperparams = module_defs.pop(0) 21 | output_filters = [int(hyperparams["channels"])] 22 | module_list = nn.ModuleList() 23 | for module_i, module_def in enumerate(module_defs): 24 | modules = nn.Sequential() 25 | 26 | if module_def["type"] == "convolutional": 27 | bn = int(module_def["batch_normalize"]) 28 | filters = int(module_def["filters"]) 29 | kernel_size = int(module_def["size"]) 30 | pad = (kernel_size - 1) // 2 31 | modules.add_module( 32 | f"conv_{module_i}", 33 | nn.Conv2d( 34 | in_channels=output_filters[-1], 35 | out_channels=filters, 36 | kernel_size=kernel_size, 37 | stride=int(module_def["stride"]), 38 | padding=pad, 39 | bias=not bn, 40 | ), 41 | ) 42 | if bn: 43 | modules.add_module(f"batch_norm_{module_i}", nn.BatchNorm2d(filters, momentum=0.9, eps=1e-5)) 44 | if module_def["activation"] == "leaky": 45 | modules.add_module(f"leaky_{module_i}", nn.LeakyReLU(0.1)) 46 | 47 | elif module_def["type"] == "maxpool": 48 | kernel_size = int(module_def["size"]) 49 | stride = int(module_def["stride"]) 50 | if kernel_size == 2 and stride == 1: 51 | modules.add_module(f"_debug_padding_{module_i}", nn.ZeroPad2d((0, 1, 0, 1))) 52 | maxpool = nn.MaxPool2d(kernel_size=kernel_size, stride=stride, padding=int((kernel_size - 1) // 2)) 53 | modules.add_module(f"maxpool_{module_i}", maxpool) 54 | 55 | elif module_def["type"] == "upsample": 56 | upsample = Upsample(scale_factor=int(module_def["stride"]), mode="nearest") 57 | modules.add_module(f"upsample_{module_i}", upsample) 58 | 59 | elif module_def["type"] == "route": 60 | layers = [int(x) for x in module_def["layers"].split(",")] 61 | filters = sum([output_filters[1:][i] for i in layers]) 62 | modules.add_module(f"route_{module_i}", EmptyLayer()) 63 | 64 | elif module_def["type"] == "shortcut": 65 | filters = output_filters[1:][int(module_def["from"])] 66 | modules.add_module(f"shortcut_{module_i}", EmptyLayer()) 67 | 68 | elif module_def["type"] == "yolo": 69 | anchor_idxs = [int(x) for x in module_def["mask"].split(",")] 70 | # Extract anchors 71 | anchors = [int(x) for x in module_def["anchors"].split(",")] 72 | anchors = [(anchors[i], anchors[i + 1]) for i in range(0, len(anchors), 2)] 73 | anchors = [anchors[i] for i in anchor_idxs] 74 | num_classes = int(module_def["classes"]) 75 | img_size = int(hyperparams["height"]) 76 | # Define detection layer 77 | yolo_layer = YOLOLayer(anchors, num_classes, img_size) 78 | modules.add_module(f"yolo_{module_i}", yolo_layer) 79 | # Register module list and number of output filters 80 | module_list.append(modules) 81 | output_filters.append(filters) 82 | 83 | return hyperparams, module_list 84 | 85 | 86 | class Upsample(nn.Module): 87 | """ nn.Upsample is deprecated """ 88 | 89 | def __init__(self, scale_factor, mode="nearest"): 90 | super(Upsample, self).__init__() 91 | self.scale_factor = scale_factor 92 | self.mode = mode 93 | 94 | def forward(self, x): 95 | x = F.interpolate(x, scale_factor=self.scale_factor, mode=self.mode) 96 | return x 97 | 98 | 99 | class EmptyLayer(nn.Module): 100 | """Placeholder for 'route' and 'shortcut' layers""" 101 | 102 | def __init__(self): 103 | super(EmptyLayer, self).__init__() 104 | 105 | 106 | class YOLOLayer(nn.Module): 107 | """Detection layer""" 108 | 109 | def __init__(self, anchors, num_classes, img_dim=416): 110 | super(YOLOLayer, self).__init__() 111 | self.anchors = anchors 112 | self.num_anchors = len(anchors) 113 | self.num_classes = num_classes 114 | self.ignore_thres = 0.5 115 | self.mse_loss = nn.MSELoss() 116 | self.bce_loss = nn.BCELoss() 117 | self.obj_scale = 1 118 | self.noobj_scale = 100 119 | self.metrics = {} 120 | self.img_dim = img_dim 121 | self.grid_size = 0 # grid size 122 | 123 | def compute_grid_offsets(self, grid_size, cuda=True): 124 | self.grid_size = grid_size 125 | g = self.grid_size 126 | FloatTensor = torch.cuda.FloatTensor if cuda else torch.FloatTensor 127 | self.stride = self.img_dim / self.grid_size 128 | # Calculate offsets for each grid 129 | self.grid_x = torch.arange(g).repeat(g, 1).view([1, 1, g, g]).type(FloatTensor) 130 | self.grid_y = torch.arange(g).repeat(g, 1).t().view([1, 1, g, g]).type(FloatTensor) 131 | self.scaled_anchors = FloatTensor([(a_w / self.stride, a_h / self.stride) for a_w, a_h in self.anchors]) 132 | self.anchor_w = self.scaled_anchors[:, 0:1].view((1, self.num_anchors, 1, 1)) 133 | self.anchor_h = self.scaled_anchors[:, 1:2].view((1, self.num_anchors, 1, 1)) 134 | 135 | def forward(self, x, targets=None, img_dim=None): 136 | 137 | # Tensors for cuda support 138 | FloatTensor = torch.cuda.FloatTensor if x.is_cuda else torch.FloatTensor 139 | LongTensor = torch.cuda.LongTensor if x.is_cuda else torch.LongTensor 140 | ByteTensor = torch.cuda.ByteTensor if x.is_cuda else torch.ByteTensor 141 | 142 | self.img_dim = img_dim 143 | num_samples = x.size(0) 144 | grid_size = x.size(2) 145 | 146 | prediction = ( 147 | x.view(num_samples, self.num_anchors, self.num_classes + 5, grid_size, grid_size) 148 | .permute(0, 1, 3, 4, 2) 149 | .contiguous() 150 | ) 151 | 152 | # Get outputs 153 | x = torch.sigmoid(prediction[..., 0]) # Center x 154 | y = torch.sigmoid(prediction[..., 1]) # Center y 155 | w = prediction[..., 2] # Width 156 | h = prediction[..., 3] # Height 157 | pred_conf = torch.sigmoid(prediction[..., 4]) # Conf 158 | pred_cls = torch.sigmoid(prediction[..., 5:]) # Cls pred. 159 | 160 | # If grid size does not match current we compute new offsets 161 | if grid_size != self.grid_size: 162 | self.compute_grid_offsets(grid_size, cuda=x.is_cuda) 163 | 164 | # Add offset and scale with anchors 165 | pred_boxes = FloatTensor(prediction[..., :4].shape) 166 | pred_boxes[..., 0] = x.data + self.grid_x 167 | pred_boxes[..., 1] = y.data + self.grid_y 168 | pred_boxes[..., 2] = torch.exp(w.data) * self.anchor_w 169 | pred_boxes[..., 3] = torch.exp(h.data) * self.anchor_h 170 | 171 | output = torch.cat( 172 | ( 173 | pred_boxes.view(num_samples, -1, 4) * self.stride, 174 | pred_conf.view(num_samples, -1, 1), 175 | pred_cls.view(num_samples, -1, self.num_classes), 176 | ), 177 | -1, 178 | ) 179 | 180 | if targets is None: 181 | return output, 0 182 | else: 183 | iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf = build_targets( 184 | pred_boxes=pred_boxes, 185 | pred_cls=pred_cls, 186 | target=targets, 187 | anchors=self.scaled_anchors, 188 | ignore_thres=self.ignore_thres, 189 | ) 190 | 191 | # Loss : Mask outputs to ignore non-existing objects (except with conf. loss) 192 | loss_x = self.mse_loss(x[obj_mask], tx[obj_mask]) 193 | loss_y = self.mse_loss(y[obj_mask], ty[obj_mask]) 194 | loss_w = self.mse_loss(w[obj_mask], tw[obj_mask]) 195 | loss_h = self.mse_loss(h[obj_mask], th[obj_mask]) 196 | loss_conf_obj = self.bce_loss(pred_conf[obj_mask], tconf[obj_mask]) 197 | loss_conf_noobj = self.bce_loss(pred_conf[noobj_mask], tconf[noobj_mask]) 198 | loss_conf = self.obj_scale * loss_conf_obj + self.noobj_scale * loss_conf_noobj 199 | loss_cls = self.bce_loss(pred_cls[obj_mask], tcls[obj_mask]) 200 | total_loss = loss_x + loss_y + loss_w + loss_h + loss_conf + loss_cls 201 | 202 | # Metrics 203 | cls_acc = 100 * class_mask[obj_mask].mean() 204 | conf_obj = pred_conf[obj_mask].mean() 205 | conf_noobj = pred_conf[noobj_mask].mean() 206 | conf50 = (pred_conf > 0.5).float() 207 | iou50 = (iou_scores > 0.5).float() 208 | iou75 = (iou_scores > 0.75).float() 209 | detected_mask = conf50 * class_mask * tconf 210 | precision = torch.sum(iou50 * detected_mask) / (conf50.sum() + 1e-16) 211 | recall50 = torch.sum(iou50 * detected_mask) / (obj_mask.sum() + 1e-16) 212 | recall75 = torch.sum(iou75 * detected_mask) / (obj_mask.sum() + 1e-16) 213 | 214 | self.metrics = { 215 | "loss": to_cpu(total_loss).item(), 216 | "x": to_cpu(loss_x).item(), 217 | "y": to_cpu(loss_y).item(), 218 | "w": to_cpu(loss_w).item(), 219 | "h": to_cpu(loss_h).item(), 220 | "conf": to_cpu(loss_conf).item(), 221 | "cls": to_cpu(loss_cls).item(), 222 | "cls_acc": to_cpu(cls_acc).item(), 223 | "recall50": to_cpu(recall50).item(), 224 | "recall75": to_cpu(recall75).item(), 225 | "precision": to_cpu(precision).item(), 226 | "conf_obj": to_cpu(conf_obj).item(), 227 | "conf_noobj": to_cpu(conf_noobj).item(), 228 | "grid_size": grid_size, 229 | } 230 | 231 | return output, total_loss 232 | 233 | 234 | class Darknet(nn.Module): 235 | """YOLOv3 object detection model""" 236 | 237 | def __init__(self, config_path, img_size=416): 238 | super(Darknet, self).__init__() 239 | self.module_defs = parse_model_config(config_path) 240 | self.hyperparams, self.module_list = create_modules(self.module_defs) 241 | self.yolo_layers = [layer[0] for layer in self.module_list if hasattr(layer[0], "metrics")] 242 | self.img_size = img_size 243 | self.seen = 0 244 | self.header_info = np.array([0, 0, 0, self.seen, 0], dtype=np.int32) 245 | 246 | def forward(self, x, targets=None): 247 | img_dim = x.shape[2] 248 | loss = 0 249 | layer_outputs, yolo_outputs = [], [] 250 | for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)): 251 | if module_def["type"] in ["convolutional", "upsample", "maxpool"]: 252 | x = module(x) 253 | elif module_def["type"] == "route": 254 | x = torch.cat([layer_outputs[int(layer_i)] for layer_i in module_def["layers"].split(",")], 1) 255 | elif module_def["type"] == "shortcut": 256 | layer_i = int(module_def["from"]) 257 | x = layer_outputs[-1] + layer_outputs[layer_i] 258 | elif module_def["type"] == "yolo": 259 | x, layer_loss = module[0](x, targets, img_dim) 260 | loss += layer_loss 261 | yolo_outputs.append(x) 262 | layer_outputs.append(x) 263 | yolo_outputs = to_cpu(torch.cat(yolo_outputs, 1)) 264 | return yolo_outputs if targets is None else (loss, yolo_outputs) 265 | 266 | def load_darknet_weights(self, weights_path): 267 | """Parses and loads the weights stored in 'weights_path'""" 268 | 269 | # Open the weights file 270 | with open(weights_path, "rb") as f: 271 | header = np.fromfile(f, dtype=np.int32, count=5) # First five are header values 272 | self.header_info = header # Needed to write header when saving weights 273 | self.seen = header[3] # number of images seen during training 274 | weights = np.fromfile(f, dtype=np.float32) # The rest are weights 275 | 276 | # Establish cutoff for loading backbone weights 277 | cutoff = None 278 | if "darknet53.conv.74" in weights_path: 279 | cutoff = 75 280 | 281 | ptr = 0 282 | for i, (module_def, module) in enumerate(zip(self.module_defs, self.module_list)): 283 | if i == cutoff: 284 | break 285 | if module_def["type"] == "convolutional": 286 | conv_layer = module[0] 287 | if module_def["batch_normalize"]: 288 | # Load BN bias, weights, running mean and running variance 289 | bn_layer = module[1] 290 | num_b = bn_layer.bias.numel() # Number of biases 291 | # Bias 292 | bn_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.bias) 293 | bn_layer.bias.data.copy_(bn_b) 294 | ptr += num_b 295 | # Weight 296 | bn_w = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.weight) 297 | bn_layer.weight.data.copy_(bn_w) 298 | ptr += num_b 299 | # Running Mean 300 | bn_rm = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_mean) 301 | bn_layer.running_mean.data.copy_(bn_rm) 302 | ptr += num_b 303 | # Running Var 304 | bn_rv = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(bn_layer.running_var) 305 | bn_layer.running_var.data.copy_(bn_rv) 306 | ptr += num_b 307 | else: 308 | # Load conv. bias 309 | num_b = conv_layer.bias.numel() 310 | conv_b = torch.from_numpy(weights[ptr : ptr + num_b]).view_as(conv_layer.bias) 311 | conv_layer.bias.data.copy_(conv_b) 312 | ptr += num_b 313 | # Load conv. weights 314 | num_w = conv_layer.weight.numel() 315 | conv_w = torch.from_numpy(weights[ptr : ptr + num_w]).view_as(conv_layer.weight) 316 | conv_layer.weight.data.copy_(conv_w) 317 | ptr += num_w 318 | 319 | def save_darknet_weights(self, path, cutoff=-1): 320 | """ 321 | @:param path - path of the new weights file 322 | @:param cutoff - save layers between 0 and cutoff (cutoff = -1 -> all are saved) 323 | """ 324 | fp = open(path, "wb") 325 | self.header_info[3] = self.seen 326 | self.header_info.tofile(fp) 327 | 328 | # Iterate through layers 329 | for i, (module_def, module) in enumerate(zip(self.module_defs[:cutoff], self.module_list[:cutoff])): 330 | if module_def["type"] == "convolutional": 331 | conv_layer = module[0] 332 | # If batch norm, load bn first 333 | if module_def["batch_normalize"]: 334 | bn_layer = module[1] 335 | bn_layer.bias.data.cpu().numpy().tofile(fp) 336 | bn_layer.weight.data.cpu().numpy().tofile(fp) 337 | bn_layer.running_mean.data.cpu().numpy().tofile(fp) 338 | bn_layer.running_var.data.cpu().numpy().tofile(fp) 339 | # Load conv bias 340 | else: 341 | conv_layer.bias.data.cpu().numpy().tofile(fp) 342 | # Load conv weights 343 | conv_layer.weight.data.cpu().numpy().tofile(fp) 344 | 345 | fp.close() 346 | -------------------------------------------------------------------------------- /predict.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | 3 | from models import * 4 | from utils.utils import * 5 | from utils.datasets import * 6 | 7 | import os 8 | import sys 9 | import time 10 | import datetime 11 | import argparse 12 | 13 | from PIL import Image 14 | 15 | import torch 16 | from torch.utils.data import DataLoader 17 | from torchvision import datasets 18 | from torch.autograd import Variable 19 | 20 | import matplotlib.pyplot as plt 21 | import matplotlib.patches as patches 22 | from matplotlib.ticker import NullLocator 23 | 24 | if __name__ == "__main__": 25 | parser = argparse.ArgumentParser() 26 | parser.add_argument("--image_folder", type=str, default="data/samples", help="path to dataset") 27 | parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") 28 | parser.add_argument("--weights_path", type=str, default="weights/yolov3.weights", help="path to weights file") 29 | parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file") 30 | parser.add_argument("--conf_thres", type=float, default=0.8, help="object confidence threshold") 31 | parser.add_argument("--nms_thres", type=float, default=0.4, help="iou thresshold for non-maximum suppression") 32 | parser.add_argument("--batch_size", type=int, default=1, help="size of the batches") 33 | parser.add_argument("--n_cpu", type=int, default=0, help="number of cpu threads to use during batch generation") 34 | parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") 35 | parser.add_argument("--checkpoint_model", type=str, help="path to checkpoint model") 36 | opt = parser.parse_args() 37 | print(opt) 38 | 39 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 40 | 41 | os.makedirs("output", exist_ok=True) 42 | 43 | # Set up model 44 | model = Darknet(opt.model_def, img_size=opt.img_size).to(device) 45 | 46 | if opt.weights_path.endswith(".weights"): 47 | # Load darknet weights 48 | model.load_darknet_weights(opt.weights_path) 49 | else: 50 | # Load checkpoint weights 51 | model.load_state_dict(torch.load(opt.weights_path)) 52 | 53 | model.eval() # Set in evaluation mode 54 | 55 | dataloader = DataLoader( 56 | ImageFolder(opt.image_folder, img_size=opt.img_size), 57 | batch_size=opt.batch_size, 58 | shuffle=False, 59 | num_workers=opt.n_cpu, 60 | ) 61 | 62 | classes = load_classes(opt.class_path) # Extracts class labels from file 63 | 64 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor 65 | 66 | imgs = [] # Stores image paths 67 | img_detections = [] # Stores detections for each image index 68 | 69 | print("\nPerforming object detection:") 70 | prev_time = time.time() 71 | for batch_i, (img_paths, input_imgs) in enumerate(dataloader): 72 | # Configure input 73 | input_imgs = Variable(input_imgs.type(Tensor)) 74 | 75 | # Get detections 76 | with torch.no_grad(): 77 | detections = model(input_imgs) 78 | detections = non_max_suppression(detections, opt.conf_thres, opt.nms_thres) 79 | 80 | # Log progress 81 | current_time = time.time() 82 | inference_time = datetime.timedelta(seconds=current_time - prev_time) 83 | prev_time = current_time 84 | print("\t+ Batch %d, Inference Time: %s" % (batch_i, inference_time)) 85 | 86 | # Save image and detections 87 | imgs.extend(img_paths) 88 | img_detections.extend(detections) 89 | 90 | # Bounding-box colors 91 | cmap = plt.get_cmap("tab20b") 92 | colors = [cmap(i) for i in np.linspace(0, 1, 20)] 93 | 94 | print("\nSaving images:") 95 | # Iterate through images and save plot of detections 96 | for img_i, (path, detections) in enumerate(zip(imgs, img_detections)): 97 | 98 | print("(%d) Image: '%s'" % (img_i, path)) 99 | 100 | # Create plot 101 | img = np.array(Image.open(path)) 102 | plt.figure() 103 | fig, ax = plt.subplots(1) 104 | ax.imshow(img) 105 | 106 | # Draw bounding boxes and labels of detections 107 | if detections is not None: 108 | # Rescale boxes to original image 109 | detections = rescale_boxes(detections, opt.img_size, img.shape[:2]) 110 | unique_labels = detections[:, -1].cpu().unique() 111 | n_cls_preds = len(unique_labels) 112 | bbox_colors = random.sample(colors, n_cls_preds) 113 | for x1, y1, x2, y2, conf, cls_conf, cls_pred in detections: 114 | 115 | print("\t+ Label: %s, Conf: %.5f" % (classes[int(cls_pred)], cls_conf.item())) 116 | 117 | box_w = x2 - x1 118 | box_h = y2 - y1 119 | 120 | color = bbox_colors[int(np.where(unique_labels == int(cls_pred))[0])] 121 | # Create a Rectangle patch 122 | bbox = patches.Rectangle((x1, y1), box_w, box_h, linewidth=2, edgecolor=color, facecolor="none") 123 | # Add the bbox to the plot 124 | ax.add_patch(bbox) 125 | # Add label 126 | plt.text( 127 | x1, 128 | y1, 129 | s=classes[int(cls_pred)], 130 | color="white", 131 | verticalalignment="top", 132 | bbox={"color": color, "pad": 0}, 133 | ) 134 | 135 | # Save generated image with detections 136 | plt.axis("off") 137 | plt.gca().xaxis.set_major_locator(NullLocator()) 138 | plt.gca().yaxis.set_major_locator(NullLocator()) 139 | filename = path.split("/")[-1].split(".")[0] 140 | plt.savefig(f"output/{filename}.png", bbox_inches="tight", pad_inches=0.0) 141 | plt.close() 142 | -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | 3 | from models import * 4 | from utils.utils import * 5 | from utils.datasets import * 6 | from utils.parse_config import * 7 | 8 | import os 9 | import sys 10 | import time 11 | import datetime 12 | import argparse 13 | import tqdm 14 | 15 | import torch 16 | from torch.utils.data import DataLoader 17 | from torchvision import datasets 18 | from torchvision import transforms 19 | from torch.autograd import Variable 20 | import torch.optim as optim 21 | 22 | 23 | def evaluate(model, path, iou_thres, conf_thres, nms_thres, img_size, batch_size): 24 | model.eval() 25 | 26 | # Get dataloader 27 | dataset = ListDataset(path, img_size=img_size, augment=False, multiscale=False) 28 | dataloader = torch.utils.data.DataLoader( 29 | dataset, batch_size=batch_size, shuffle=False, num_workers=1, collate_fn=dataset.collate_fn 30 | ) 31 | 32 | Tensor = torch.cuda.FloatTensor if torch.cuda.is_available() else torch.FloatTensor 33 | 34 | labels = [] 35 | sample_metrics = [] # List of tuples (TP, confs, pred) 36 | for batch_i, (_, imgs, targets) in enumerate(tqdm.tqdm(dataloader, desc="Detecting objects")): 37 | 38 | # Extract labels 39 | labels += targets[:, 1].tolist() 40 | # Rescale target 41 | targets[:, 2:] = xywh2xyxy(targets[:, 2:]) 42 | targets[:, 2:] *= img_size 43 | 44 | imgs = Variable(imgs.type(Tensor), requires_grad=False) 45 | 46 | with torch.no_grad(): 47 | outputs = model(imgs) 48 | outputs = non_max_suppression(outputs, conf_thres=conf_thres, nms_thres=nms_thres) 49 | 50 | sample_metrics += get_batch_statistics(outputs, targets, iou_threshold=iou_thres) 51 | 52 | # Concatenate sample statistics 53 | true_positives, pred_scores, pred_labels = [np.concatenate(x, 0) for x in list(zip(*sample_metrics))] 54 | precision, recall, AP, f1, ap_class = ap_per_class(true_positives, pred_scores, pred_labels, labels) 55 | 56 | return precision, recall, AP, f1, ap_class 57 | 58 | 59 | if __name__ == "__main__": 60 | parser = argparse.ArgumentParser() 61 | parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch") 62 | parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") 63 | parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") 64 | parser.add_argument("--weights_path", type=str, default="weights/yolov3.weights", help="path to weights file") 65 | parser.add_argument("--class_path", type=str, default="data/coco.names", help="path to class label file") 66 | parser.add_argument("--iou_thres", type=float, default=0.5, help="iou threshold required to qualify as detected") 67 | parser.add_argument("--conf_thres", type=float, default=0.001, help="object confidence threshold") 68 | parser.add_argument("--nms_thres", type=float, default=0.5, help="iou thresshold for non-maximum suppression") 69 | parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") 70 | parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") 71 | opt = parser.parse_args() 72 | print(opt) 73 | 74 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 75 | 76 | data_config = parse_data_config(opt.data_config) 77 | valid_path = data_config["valid"] 78 | class_names = load_classes(data_config["names"]) 79 | 80 | # Initiate model 81 | model = Darknet(opt.model_def).to(device) 82 | if opt.weights_path.endswith(".weights"): 83 | # Load darknet weights 84 | model.load_darknet_weights(opt.weights_path) 85 | else: 86 | # Load checkpoint weights 87 | model.load_state_dict(torch.load(opt.weights_path)) 88 | 89 | print("Compute mAP...") 90 | 91 | precision, recall, AP, f1, ap_class = evaluate( 92 | model, 93 | path=valid_path, 94 | iou_thres=opt.iou_thres, 95 | conf_thres=opt.conf_thres, 96 | nms_thres=opt.nms_thres, 97 | img_size=opt.img_size, 98 | batch_size=8, 99 | ) 100 | 101 | print("Average Precisions:") 102 | for i, c in enumerate(ap_class): 103 | print(f"+ Class '{c}' ({class_names[c]}) - AP: {AP[i]}") 104 | 105 | print(f"mAP: {AP.mean()}") 106 | -------------------------------------------------------------------------------- /train.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | 3 | from models import * 4 | from utils.logger import * 5 | from utils.utils import * 6 | from utils.datasets import * 7 | from utils.parse_config import * 8 | from test import evaluate 9 | 10 | from terminaltables import AsciiTable 11 | 12 | import os 13 | import sys 14 | import time 15 | import datetime 16 | import argparse 17 | 18 | import torch 19 | from torch.utils.data import DataLoader 20 | from torchvision import datasets 21 | from torchvision import transforms 22 | from torch.autograd import Variable 23 | import torch.optim as optim 24 | 25 | if __name__ == "__main__": 26 | parser = argparse.ArgumentParser() 27 | parser.add_argument("--epochs", type=int, default=100, help="number of epochs") 28 | parser.add_argument("--batch_size", type=int, default=8, help="size of each image batch") 29 | parser.add_argument("--gradient_accumulations", type=int, default=2, help="number of gradient accums before step") 30 | parser.add_argument("--model_def", type=str, default="config/yolov3.cfg", help="path to model definition file") 31 | parser.add_argument("--data_config", type=str, default="config/coco.data", help="path to data config file") 32 | parser.add_argument("--pretrained_weights", type=str, help="if specified starts from checkpoint model") 33 | parser.add_argument("--n_cpu", type=int, default=8, help="number of cpu threads to use during batch generation") 34 | parser.add_argument("--img_size", type=int, default=416, help="size of each image dimension") 35 | parser.add_argument("--checkpoint_interval", type=int, default=1, help="interval between saving model weights") 36 | parser.add_argument("--evaluation_interval", type=int, default=1, help="interval evaluations on validation set") 37 | parser.add_argument("--compute_map", default=False, help="if True computes mAP every tenth batch") 38 | parser.add_argument("--multiscale_training", default=True, help="allow for multi-scale training") 39 | opt = parser.parse_args() 40 | print(opt) 41 | 42 | logger = Logger("logs") 43 | 44 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu") 45 | 46 | os.makedirs("output", exist_ok=True) 47 | os.makedirs("checkpoints", exist_ok=True) 48 | 49 | # Get data configuration 50 | data_config = parse_data_config(opt.data_config) 51 | train_path = data_config["train"] 52 | valid_path = data_config["valid"] 53 | class_names = load_classes(data_config["names"]) 54 | 55 | # Initiate model 56 | model = Darknet(opt.model_def).to(device) 57 | model.apply(weights_init_normal) 58 | 59 | # If specified we start from checkpoint 60 | if opt.pretrained_weights: 61 | if opt.pretrained_weights.endswith(".pth"): 62 | model.load_state_dict(torch.load(opt.pretrained_weights)) 63 | else: 64 | model.load_darknet_weights(opt.pretrained_weights) 65 | 66 | # Get dataloader 67 | dataset = ListDataset(train_path, augment=True, multiscale=opt.multiscale_training) 68 | dataloader = torch.utils.data.DataLoader( 69 | dataset, 70 | batch_size=opt.batch_size, 71 | shuffle=True, 72 | num_workers=opt.n_cpu, 73 | pin_memory=True, 74 | collate_fn=dataset.collate_fn, 75 | ) 76 | 77 | optimizer = torch.optim.Adam(model.parameters()) 78 | 79 | metrics = [ 80 | "grid_size", 81 | "loss", 82 | "x", 83 | "y", 84 | "w", 85 | "h", 86 | "conf", 87 | "cls", 88 | "cls_acc", 89 | "recall50", 90 | "recall75", 91 | "precision", 92 | "conf_obj", 93 | "conf_noobj", 94 | ] 95 | 96 | for epoch in range(opt.epochs): 97 | model.train() 98 | start_time = time.time() 99 | for batch_i, (_, imgs, targets) in enumerate(dataloader): 100 | batches_done = len(dataloader) * epoch + batch_i 101 | 102 | imgs = Variable(imgs.to(device)) 103 | targets = Variable(targets.to(device), requires_grad=False) 104 | 105 | loss, outputs = model(imgs, targets) 106 | loss.backward() 107 | 108 | if batches_done % opt.gradient_accumulations: 109 | # Accumulates gradient before each step 110 | optimizer.step() 111 | optimizer.zero_grad() 112 | 113 | # ---------------- 114 | # Log progress 115 | # ---------------- 116 | 117 | log_str = "\n---- [Epoch %d/%d, Batch %d/%d] ----\n" % (epoch, opt.epochs, batch_i, len(dataloader)) 118 | 119 | metric_table = [["Metrics", *[f"YOLO Layer {i}" for i in range(len(model.yolo_layers))]]] 120 | 121 | # Log metrics at each YOLO layer 122 | for i, metric in enumerate(metrics): 123 | formats = {m: "%.6f" for m in metrics} 124 | formats["grid_size"] = "%2d" 125 | formats["cls_acc"] = "%.2f%%" 126 | row_metrics = [formats[metric] % yolo.metrics.get(metric, 0) for yolo in model.yolo_layers] 127 | metric_table += [[metric, *row_metrics]] 128 | 129 | # Tensorboard logging 130 | tensorboard_log = [] 131 | for j, yolo in enumerate(model.yolo_layers): 132 | for name, metric in yolo.metrics.items(): 133 | if name != "grid_size": 134 | tensorboard_log += [(f"{name}_{j+1}", metric)] 135 | tensorboard_log += [("loss", loss.item())] 136 | logger.list_of_scalars_summary(tensorboard_log, batches_done) 137 | 138 | log_str += AsciiTable(metric_table).table 139 | log_str += f"\nTotal loss {loss.item()}" 140 | 141 | # Determine approximate time left for epoch 142 | epoch_batches_left = len(dataloader) - (batch_i + 1) 143 | time_left = datetime.timedelta(seconds=epoch_batches_left * (time.time() - start_time) / (batch_i + 1)) 144 | log_str += f"\n---- ETA {time_left}" 145 | 146 | print(log_str) 147 | 148 | model.seen += imgs.size(0) 149 | 150 | if epoch % opt.evaluation_interval == 0: 151 | print("\n---- Evaluating Model ----") 152 | # Evaluate the model on the validation set 153 | precision, recall, AP, f1, ap_class = evaluate( 154 | model, 155 | path=valid_path, 156 | iou_thres=0.5, 157 | conf_thres=0.5, 158 | nms_thres=0.5, 159 | img_size=opt.img_size, 160 | batch_size=8, 161 | ) 162 | evaluation_metrics = [ 163 | ("val_precision", precision.mean()), 164 | ("val_recall", recall.mean()), 165 | ("val_mAP", AP.mean()), 166 | ("val_f1", f1.mean()), 167 | ] 168 | logger.list_of_scalars_summary(evaluation_metrics, epoch) 169 | 170 | # Print class APs and mAP 171 | ap_table = [["Index", "Class name", "AP"]] 172 | for i, c in enumerate(ap_class): 173 | ap_table += [[c, class_names[c], "%.5f" % AP[i]]] 174 | print(AsciiTable(ap_table).table) 175 | print(f"---- mAP {AP.mean()}") 176 | 177 | if epoch % opt.checkpoint_interval == 0: 178 | torch.save(model.state_dict(), f"checkpoints/yolov3_ckpt_%d.pth" % epoch) 179 | -------------------------------------------------------------------------------- /utils/__init__.py: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huangwenwenlili/industry-mouse-detect/68de3ab55a7878f61afbfb8693c3503178edac5e/utils/__init__.py -------------------------------------------------------------------------------- /utils/augmentations.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import torch.nn.functional as F 3 | import numpy as np 4 | 5 | 6 | def horisontal_flip(images, targets): 7 | images = torch.flip(images, [-1]) 8 | targets[:, 2] = 1 - targets[:, 2] 9 | return images, targets 10 | -------------------------------------------------------------------------------- /utils/datasets.py: -------------------------------------------------------------------------------- 1 | import glob 2 | import random 3 | import os 4 | import sys 5 | import numpy as np 6 | from PIL import Image 7 | import torch 8 | import torch.nn.functional as F 9 | 10 | from utils.augmentations import horisontal_flip 11 | from torch.utils.data import Dataset 12 | import torchvision.transforms as transforms 13 | 14 | 15 | def pad_to_square(img, pad_value): 16 | c, h, w = img.shape 17 | dim_diff = np.abs(h - w) 18 | # (upper / left) padding and (lower / right) padding 19 | pad1, pad2 = dim_diff // 2, dim_diff - dim_diff // 2 20 | # Determine padding 21 | pad = (0, 0, pad1, pad2) if h <= w else (pad1, pad2, 0, 0) 22 | # Add padding 23 | img = F.pad(img, pad, "constant", value=pad_value) 24 | 25 | return img, pad 26 | 27 | 28 | def resize(image, size): 29 | image = F.interpolate(image.unsqueeze(0), size=size, mode="nearest").squeeze(0) 30 | return image 31 | 32 | 33 | def random_resize(images, min_size=288, max_size=448): 34 | new_size = random.sample(list(range(min_size, max_size + 1, 32)), 1)[0] 35 | images = F.interpolate(images, size=new_size, mode="nearest") 36 | return images 37 | 38 | 39 | class ImageFolder(Dataset): 40 | def __init__(self, folder_path, img_size=416): 41 | self.files = sorted(glob.glob("%s/*.*" % folder_path)) 42 | self.img_size = img_size 43 | 44 | def __getitem__(self, index): 45 | img_path = self.files[index % len(self.files)] 46 | # Extract image as PyTorch tensor 47 | img = transforms.ToTensor()(Image.open(img_path)) 48 | # Pad to square resolution 49 | img, _ = pad_to_square(img, 0) 50 | # Resize 51 | img = resize(img, self.img_size) 52 | 53 | return img_path, img 54 | 55 | def __len__(self): 56 | return len(self.files) 57 | 58 | 59 | class ListDataset(Dataset): 60 | def __init__(self, list_path, img_size=416, augment=True, multiscale=True, normalized_labels=True): 61 | with open(list_path, "r") as file: 62 | self.img_files = file.readlines() 63 | 64 | self.label_files = [ 65 | path.replace("images", "labels").replace(".png", ".txt").replace(".jpg", ".txt") 66 | for path in self.img_files 67 | ] 68 | self.img_size = img_size 69 | self.max_objects = 100 70 | self.augment = augment 71 | self.multiscale = multiscale 72 | self.normalized_labels = normalized_labels 73 | self.min_size = self.img_size - 3 * 32 74 | self.max_size = self.img_size + 3 * 32 75 | self.batch_count = 0 76 | 77 | def __getitem__(self, index): 78 | 79 | # --------- 80 | # Image 81 | # --------- 82 | 83 | img_path = self.img_files[index % len(self.img_files)].rstrip() 84 | 85 | # Extract image as PyTorch tensor 86 | img = transforms.ToTensor()(Image.open(img_path).convert('RGB')) 87 | 88 | # Handle images with less than three channels 89 | if len(img.shape) != 3: 90 | img = img.unsqueeze(0) 91 | img = img.expand((3, img.shape[1:])) 92 | 93 | _, h, w = img.shape 94 | h_factor, w_factor = (h, w) if self.normalized_labels else (1, 1) 95 | # Pad to square resolution 96 | img, pad = pad_to_square(img, 0) 97 | _, padded_h, padded_w = img.shape 98 | 99 | # --------- 100 | # Label 101 | # --------- 102 | 103 | label_path = self.label_files[index % len(self.img_files)].rstrip() 104 | 105 | targets = None 106 | if os.path.exists(label_path): 107 | boxes = torch.from_numpy(np.loadtxt(label_path).reshape(-1, 5)) 108 | # Extract coordinates for unpadded + unscaled image 109 | x1 = w_factor * (boxes[:, 1] - boxes[:, 3] / 2) 110 | y1 = h_factor * (boxes[:, 2] - boxes[:, 4] / 2) 111 | x2 = w_factor * (boxes[:, 1] + boxes[:, 3] / 2) 112 | y2 = h_factor * (boxes[:, 2] + boxes[:, 4] / 2) 113 | # Adjust for added padding 114 | x1 += pad[0] 115 | y1 += pad[2] 116 | x2 += pad[1] 117 | y2 += pad[3] 118 | # Returns (x, y, w, h) 119 | boxes[:, 1] = ((x1 + x2) / 2) / padded_w 120 | boxes[:, 2] = ((y1 + y2) / 2) / padded_h 121 | boxes[:, 3] *= w_factor / padded_w 122 | boxes[:, 4] *= h_factor / padded_h 123 | 124 | targets = torch.zeros((len(boxes), 6)) 125 | targets[:, 1:] = boxes 126 | 127 | # Apply augmentations 128 | if self.augment: 129 | if np.random.random() < 0.5: 130 | img, targets = horisontal_flip(img, targets) 131 | 132 | return img_path, img, targets 133 | 134 | def collate_fn(self, batch): 135 | paths, imgs, targets = list(zip(*batch)) 136 | # Remove empty placeholder targets 137 | targets = [boxes for boxes in targets if boxes is not None] 138 | # Add sample index to targets 139 | for i, boxes in enumerate(targets): 140 | boxes[:, 0] = i 141 | targets = torch.cat(targets, 0) 142 | # Selects new image size every tenth batch 143 | if self.multiscale and self.batch_count % 10 == 0: 144 | self.img_size = random.choice(range(self.min_size, self.max_size + 1, 32)) 145 | # Resize images to input shape 146 | imgs = torch.stack([resize(img, self.img_size) for img in imgs]) 147 | self.batch_count += 1 148 | return paths, imgs, targets 149 | 150 | def __len__(self): 151 | return len(self.img_files) 152 | -------------------------------------------------------------------------------- /utils/logger.py: -------------------------------------------------------------------------------- 1 | import tensorflow as tf 2 | 3 | 4 | class Logger(object): 5 | def __init__(self, log_dir): 6 | """Create a summary writer logging to log_dir.""" 7 | self.writer = tf.summary.FileWriter(log_dir) 8 | 9 | def scalar_summary(self, tag, value, step): 10 | """Log a scalar variable.""" 11 | summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value)]) 12 | self.writer.add_summary(summary, step) 13 | 14 | def list_of_scalars_summary(self, tag_value_pairs, step): 15 | """Log scalar variables.""" 16 | summary = tf.Summary(value=[tf.Summary.Value(tag=tag, simple_value=value) for tag, value in tag_value_pairs]) 17 | self.writer.add_summary(summary, step) 18 | -------------------------------------------------------------------------------- /utils/parse_config.py: -------------------------------------------------------------------------------- 1 | 2 | 3 | def parse_model_config(path): 4 | """Parses the yolo-v3 layer configuration file and returns module definitions""" 5 | file = open(path, 'r') 6 | lines = file.read().split('\n') 7 | lines = [x for x in lines if x and not x.startswith('#')] 8 | lines = [x.rstrip().lstrip() for x in lines] # get rid of fringe whitespaces 9 | module_defs = [] 10 | for line in lines: 11 | if line.startswith('['): # This marks the start of a new block 12 | module_defs.append({}) 13 | module_defs[-1]['type'] = line[1:-1].rstrip() 14 | if module_defs[-1]['type'] == 'convolutional': 15 | module_defs[-1]['batch_normalize'] = 0 16 | else: 17 | key, value = line.split("=") 18 | value = value.strip() 19 | module_defs[-1][key.rstrip()] = value.strip() 20 | 21 | return module_defs 22 | 23 | def parse_data_config(path): 24 | """Parses the data configuration file""" 25 | options = dict() 26 | options['gpus'] = '0,1,2,3' 27 | options['num_workers'] = '10' 28 | with open(path, 'r') as fp: 29 | lines = fp.readlines() 30 | for line in lines: 31 | line = line.strip() 32 | if line == '' or line.startswith('#'): 33 | continue 34 | key, value = line.split('=') 35 | options[key.strip()] = value.strip() 36 | return options 37 | -------------------------------------------------------------------------------- /utils/utils.py: -------------------------------------------------------------------------------- 1 | from __future__ import division 2 | import math 3 | import time 4 | import tqdm 5 | import torch 6 | import torch.nn as nn 7 | import torch.nn.functional as F 8 | from torch.autograd import Variable 9 | import numpy as np 10 | import matplotlib.pyplot as plt 11 | import matplotlib.patches as patches 12 | 13 | 14 | def to_cpu(tensor): 15 | return tensor.detach().cpu() 16 | 17 | 18 | def load_classes(path): 19 | """ 20 | Loads class labels at 'path' 21 | """ 22 | fp = open(path, "r") 23 | names = fp.read().split("\n")[:-1] 24 | return names 25 | 26 | 27 | def weights_init_normal(m): 28 | classname = m.__class__.__name__ 29 | if classname.find("Conv") != -1: 30 | torch.nn.init.normal_(m.weight.data, 0.0, 0.02) 31 | elif classname.find("BatchNorm2d") != -1: 32 | torch.nn.init.normal_(m.weight.data, 1.0, 0.02) 33 | torch.nn.init.constant_(m.bias.data, 0.0) 34 | 35 | 36 | def rescale_boxes(boxes, current_dim, original_shape): 37 | """ Rescales bounding boxes to the original shape """ 38 | orig_h, orig_w = original_shape 39 | # The amount of padding that was added 40 | pad_x = max(orig_h - orig_w, 0) * (current_dim / max(original_shape)) 41 | pad_y = max(orig_w - orig_h, 0) * (current_dim / max(original_shape)) 42 | # Image height and width after padding is removed 43 | unpad_h = current_dim - pad_y 44 | unpad_w = current_dim - pad_x 45 | # Rescale bounding boxes to dimension of original image 46 | boxes[:, 0] = ((boxes[:, 0] - pad_x // 2) / unpad_w) * orig_w 47 | boxes[:, 1] = ((boxes[:, 1] - pad_y // 2) / unpad_h) * orig_h 48 | boxes[:, 2] = ((boxes[:, 2] - pad_x // 2) / unpad_w) * orig_w 49 | boxes[:, 3] = ((boxes[:, 3] - pad_y // 2) / unpad_h) * orig_h 50 | return boxes 51 | 52 | 53 | def xywh2xyxy(x): 54 | y = x.new(x.shape) 55 | y[..., 0] = x[..., 0] - x[..., 2] / 2 56 | y[..., 1] = x[..., 1] - x[..., 3] / 2 57 | y[..., 2] = x[..., 0] + x[..., 2] / 2 58 | y[..., 3] = x[..., 1] + x[..., 3] / 2 59 | return y 60 | 61 | 62 | def ap_per_class(tp, conf, pred_cls, target_cls): 63 | """ Compute the average precision, given the recall and precision curves. 64 | Source: https://github.com/rafaelpadilla/Object-Detection-Metrics. 65 | # Arguments 66 | tp: True positives (list). 67 | conf: Objectness value from 0-1 (list). 68 | pred_cls: Predicted object classes (list). 69 | target_cls: True object classes (list). 70 | # Returns 71 | The average precision as computed in py-faster-rcnn. 72 | """ 73 | 74 | # Sort by objectness 75 | i = np.argsort(-conf) 76 | tp, conf, pred_cls = tp[i], conf[i], pred_cls[i] 77 | 78 | # Find unique classes 79 | unique_classes = np.unique(target_cls) 80 | 81 | # Create Precision-Recall curve and compute AP for each class 82 | ap, p, r = [], [], [] 83 | for c in tqdm.tqdm(unique_classes, desc="Computing AP"): 84 | i = pred_cls == c 85 | n_gt = (target_cls == c).sum() # Number of ground truth objects 86 | n_p = i.sum() # Number of predicted objects 87 | 88 | if n_p == 0 and n_gt == 0: 89 | continue 90 | elif n_p == 0 or n_gt == 0: 91 | ap.append(0) 92 | r.append(0) 93 | p.append(0) 94 | else: 95 | # Accumulate FPs and TPs 96 | fpc = (1 - tp[i]).cumsum() 97 | tpc = (tp[i]).cumsum() 98 | 99 | # Recall 100 | recall_curve = tpc / (n_gt + 1e-16) 101 | r.append(recall_curve[-1]) 102 | 103 | # Precision 104 | precision_curve = tpc / (tpc + fpc) 105 | p.append(precision_curve[-1]) 106 | 107 | # AP from recall-precision curve 108 | ap.append(compute_ap(recall_curve, precision_curve)) 109 | 110 | # Compute F1 score (harmonic mean of precision and recall) 111 | p, r, ap = np.array(p), np.array(r), np.array(ap) 112 | f1 = 2 * p * r / (p + r + 1e-16) 113 | 114 | return p, r, ap, f1, unique_classes.astype("int32") 115 | 116 | 117 | def compute_ap(recall, precision): 118 | """ Compute the average precision, given the recall and precision curves. 119 | Code originally from https://github.com/rbgirshick/py-faster-rcnn. 120 | 121 | # Arguments 122 | recall: The recall curve (list). 123 | precision: The precision curve (list). 124 | # Returns 125 | The average precision as computed in py-faster-rcnn. 126 | """ 127 | # correct AP calculation 128 | # first append sentinel values at the end 129 | mrec = np.concatenate(([0.0], recall, [1.0])) 130 | mpre = np.concatenate(([0.0], precision, [0.0])) 131 | 132 | # compute the precision envelope 133 | for i in range(mpre.size - 1, 0, -1): 134 | mpre[i - 1] = np.maximum(mpre[i - 1], mpre[i]) 135 | 136 | # to calculate area under PR curve, look for points 137 | # where X axis (recall) changes value 138 | i = np.where(mrec[1:] != mrec[:-1])[0] 139 | 140 | # and sum (\Delta recall) * prec 141 | ap = np.sum((mrec[i + 1] - mrec[i]) * mpre[i + 1]) 142 | return ap 143 | 144 | 145 | def get_batch_statistics(outputs, targets, iou_threshold): 146 | """ Compute true positives, predicted scores and predicted labels per sample """ 147 | batch_metrics = [] 148 | for sample_i in range(len(outputs)): 149 | 150 | if outputs[sample_i] is None: 151 | continue 152 | 153 | output = outputs[sample_i] 154 | pred_boxes = output[:, :4] 155 | pred_scores = output[:, 4] 156 | pred_labels = output[:, -1] 157 | 158 | true_positives = np.zeros(pred_boxes.shape[0]) 159 | 160 | annotations = targets[targets[:, 0] == sample_i][:, 1:] 161 | target_labels = annotations[:, 0] if len(annotations) else [] 162 | if len(annotations): 163 | detected_boxes = [] 164 | target_boxes = annotations[:, 1:] 165 | 166 | for pred_i, (pred_box, pred_label) in enumerate(zip(pred_boxes, pred_labels)): 167 | 168 | # If targets are found break 169 | if len(detected_boxes) == len(annotations): 170 | break 171 | 172 | # Ignore if label is not one of the target labels 173 | if pred_label not in target_labels: 174 | continue 175 | 176 | iou, box_index = bbox_iou(pred_box.unsqueeze(0), target_boxes).max(0) 177 | if iou >= iou_threshold and box_index not in detected_boxes: 178 | true_positives[pred_i] = 1 179 | detected_boxes += [box_index] 180 | batch_metrics.append([true_positives, pred_scores, pred_labels]) 181 | return batch_metrics 182 | 183 | 184 | def bbox_wh_iou(wh1, wh2): 185 | wh2 = wh2.t() 186 | w1, h1 = wh1[0], wh1[1] 187 | w2, h2 = wh2[0], wh2[1] 188 | inter_area = torch.min(w1, w2) * torch.min(h1, h2) 189 | union_area = (w1 * h1 + 1e-16) + w2 * h2 - inter_area 190 | return inter_area / union_area 191 | 192 | 193 | def bbox_iou(box1, box2, x1y1x2y2=True): 194 | """ 195 | Returns the IoU of two bounding boxes 196 | """ 197 | if not x1y1x2y2: 198 | # Transform from center and width to exact coordinates 199 | b1_x1, b1_x2 = box1[:, 0] - box1[:, 2] / 2, box1[:, 0] + box1[:, 2] / 2 200 | b1_y1, b1_y2 = box1[:, 1] - box1[:, 3] / 2, box1[:, 1] + box1[:, 3] / 2 201 | b2_x1, b2_x2 = box2[:, 0] - box2[:, 2] / 2, box2[:, 0] + box2[:, 2] / 2 202 | b2_y1, b2_y2 = box2[:, 1] - box2[:, 3] / 2, box2[:, 1] + box2[:, 3] / 2 203 | else: 204 | # Get the coordinates of bounding boxes 205 | b1_x1, b1_y1, b1_x2, b1_y2 = box1[:, 0], box1[:, 1], box1[:, 2], box1[:, 3] 206 | b2_x1, b2_y1, b2_x2, b2_y2 = box2[:, 0], box2[:, 1], box2[:, 2], box2[:, 3] 207 | 208 | # get the corrdinates of the intersection rectangle 209 | inter_rect_x1 = torch.max(b1_x1, b2_x1) 210 | inter_rect_y1 = torch.max(b1_y1, b2_y1) 211 | inter_rect_x2 = torch.min(b1_x2, b2_x2) 212 | inter_rect_y2 = torch.min(b1_y2, b2_y2) 213 | # Intersection area 214 | inter_area = torch.clamp(inter_rect_x2 - inter_rect_x1 + 1, min=0) * torch.clamp( 215 | inter_rect_y2 - inter_rect_y1 + 1, min=0 216 | ) 217 | # Union Area 218 | b1_area = (b1_x2 - b1_x1 + 1) * (b1_y2 - b1_y1 + 1) 219 | b2_area = (b2_x2 - b2_x1 + 1) * (b2_y2 - b2_y1 + 1) 220 | 221 | iou = inter_area / (b1_area + b2_area - inter_area + 1e-16) 222 | 223 | return iou 224 | 225 | 226 | def non_max_suppression(prediction, conf_thres=0.5, nms_thres=0.4): 227 | """ 228 | Removes detections with lower object confidence score than 'conf_thres' and performs 229 | Non-Maximum Suppression to further filter detections. 230 | Returns detections with shape: 231 | (x1, y1, x2, y2, object_conf, class_score, class_pred) 232 | """ 233 | 234 | # From (center x, center y, width, height) to (x1, y1, x2, y2) 235 | prediction[..., :4] = xywh2xyxy(prediction[..., :4]) 236 | output = [None for _ in range(len(prediction))] 237 | for image_i, image_pred in enumerate(prediction): 238 | # Filter out confidence scores below threshold 239 | image_pred = image_pred[image_pred[:, 4] >= conf_thres] 240 | # If none are remaining => process next image 241 | if not image_pred.size(0): 242 | continue 243 | # Object confidence times class confidence 244 | score = image_pred[:, 4] * image_pred[:, 5:].max(1)[0] 245 | # Sort by it 246 | image_pred = image_pred[(-score).argsort()] 247 | class_confs, class_preds = image_pred[:, 5:].max(1, keepdim=True) 248 | detections = torch.cat((image_pred[:, :5], class_confs.float(), class_preds.float()), 1) 249 | # Perform non-maximum suppression 250 | keep_boxes = [] 251 | while detections.size(0): 252 | large_overlap = bbox_iou(detections[0, :4].unsqueeze(0), detections[:, :4]) > nms_thres 253 | label_match = detections[0, -1] == detections[:, -1] 254 | # Indices of boxes with lower confidence scores, large IOUs and matching labels 255 | invalid = large_overlap & label_match 256 | weights = detections[invalid, 4:5] 257 | # Merge overlapping bboxes by order of confidence 258 | detections[0, :4] = (weights * detections[invalid, :4]).sum(0) / weights.sum() 259 | keep_boxes += [detections[0]] 260 | detections = detections[~invalid] 261 | if keep_boxes: 262 | output[image_i] = torch.stack(keep_boxes) 263 | 264 | return output 265 | 266 | 267 | def build_targets(pred_boxes, pred_cls, target, anchors, ignore_thres): 268 | 269 | ByteTensor = torch.cuda.ByteTensor if pred_boxes.is_cuda else torch.ByteTensor 270 | FloatTensor = torch.cuda.FloatTensor if pred_boxes.is_cuda else torch.FloatTensor 271 | 272 | nB = pred_boxes.size(0) 273 | nA = pred_boxes.size(1) 274 | nC = pred_cls.size(-1) 275 | nG = pred_boxes.size(2) 276 | 277 | # Output tensors 278 | obj_mask = ByteTensor(nB, nA, nG, nG).fill_(0) 279 | noobj_mask = ByteTensor(nB, nA, nG, nG).fill_(1) 280 | class_mask = FloatTensor(nB, nA, nG, nG).fill_(0) 281 | iou_scores = FloatTensor(nB, nA, nG, nG).fill_(0) 282 | tx = FloatTensor(nB, nA, nG, nG).fill_(0) 283 | ty = FloatTensor(nB, nA, nG, nG).fill_(0) 284 | tw = FloatTensor(nB, nA, nG, nG).fill_(0) 285 | th = FloatTensor(nB, nA, nG, nG).fill_(0) 286 | tcls = FloatTensor(nB, nA, nG, nG, nC).fill_(0) 287 | 288 | # Convert to position relative to box 289 | target_boxes = target[:, 2:6] * nG 290 | gxy = target_boxes[:, :2] 291 | gwh = target_boxes[:, 2:] 292 | # Get anchors with best iou 293 | ious = torch.stack([bbox_wh_iou(anchor, gwh) for anchor in anchors]) 294 | best_ious, best_n = ious.max(0) 295 | # Separate target values 296 | b, target_labels = target[:, :2].long().t() 297 | gx, gy = gxy.t() 298 | gw, gh = gwh.t() 299 | gi, gj = gxy.long().t() 300 | # Set masks 301 | obj_mask[b, best_n, gj, gi] = 1 302 | noobj_mask[b, best_n, gj, gi] = 0 303 | 304 | # Set noobj mask to zero where iou exceeds ignore threshold 305 | for i, anchor_ious in enumerate(ious.t()): 306 | noobj_mask[b[i], anchor_ious > ignore_thres, gj[i], gi[i]] = 0 307 | 308 | # Coordinates 309 | tx[b, best_n, gj, gi] = gx - gx.floor() 310 | ty[b, best_n, gj, gi] = gy - gy.floor() 311 | # Width and height 312 | tw[b, best_n, gj, gi] = torch.log(gw / anchors[best_n][:, 0] + 1e-16) 313 | th[b, best_n, gj, gi] = torch.log(gh / anchors[best_n][:, 1] + 1e-16) 314 | # One-hot encoding of label 315 | tcls[b, best_n, gj, gi, target_labels] = 1 316 | # Compute label correctness and iou at best anchor 317 | class_mask[b, best_n, gj, gi] = (pred_cls[b, best_n, gj, gi].argmax(-1) == target_labels).float() 318 | iou_scores[b, best_n, gj, gi] = bbox_iou(pred_boxes[b, best_n, gj, gi], target_boxes, x1y1x2y2=False) 319 | 320 | tconf = obj_mask.float() 321 | return iou_scores, class_mask, obj_mask, noobj_mask, tx, ty, tw, th, tcls, tconf 322 | --------------------------------------------------------------------------------