├── validation ├── __init__.py ├── requirements.txt ├── data_utils.py ├── README.md └── compare_models.py ├── data_preparation ├── __init__.py ├── requirements.txt ├── model_utils.py ├── README.md ├── image_utils.py ├── export_to_hub.py ├── generate_dataset.py └── instructions.txt ├── Makefile ├── requirements.txt ├── LICENSE ├── README.md ├── train_instruct_pix2pix.py └── finetune_instruct_pix2pix.py /validation/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /data_preparation/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /data_preparation/requirements.txt: -------------------------------------------------------------------------------- 1 | tensorflow 2 | tensorflow_datasets==4.6.0 3 | datasets 4 | huggingface_hub 5 | numpy 6 | Pillow 7 | opencv-python 8 | protobuf==3.20.* -------------------------------------------------------------------------------- /Makefile: -------------------------------------------------------------------------------- 1 | check_dirs := . 2 | 3 | quality: 4 | black --check $(check_dirs) 5 | ruff $(check_dirs) 6 | 7 | style: 8 | black $(check_dirs) 9 | ruff $(check_dirs) --fix -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | torchvision 2 | accelerate 3 | diffusers 4 | transformers 5 | numpy 6 | datasets 7 | wandb 8 | black~=23.1 9 | isort>=5.5.4 10 | ruff>=0.0.241,<=0.0.259 -------------------------------------------------------------------------------- /validation/requirements.txt: -------------------------------------------------------------------------------- 1 | tensorflow 2 | tensorflow_datasets==4.6.0 3 | datasets 4 | huggingface_hub 5 | numpy 6 | Pillow 7 | opencv-python 8 | torch==1.13.1 9 | torchvision==0.14.1 -------------------------------------------------------------------------------- /validation/data_utils.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | import tensorflow as tf 18 | import tensorflow_datasets as tfds 19 | 20 | tf.keras.utils.set_random_seed(0) 21 | 22 | 23 | def load_dataset(dataset_id: str, max_num_samples: int) -> tf.data.Dataset: 24 | dataset = tfds.load(dataset_id, split="validation") 25 | dataset = dataset.shuffle(max_num_samples if max_num_samples is not None else 128) 26 | if max_num_samples is not None: 27 | print(f"Dataset will be restricted to {max_num_samples} samples.") 28 | dataset = dataset.take(max_num_samples) 29 | return dataset 30 | -------------------------------------------------------------------------------- /data_preparation/model_utils.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | import os 18 | import sys 19 | 20 | SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 21 | sys.path.append(os.path.dirname(SCRIPT_DIR)) 22 | 23 | from typing import Callable 24 | 25 | import numpy as np 26 | import tensorflow as tf 27 | from huggingface_hub import snapshot_download 28 | from PIL import Image 29 | 30 | import image_utils 31 | 32 | 33 | def load_model(model_id="sayakpaul/whitebox-cartoonizer"): 34 | model_path = snapshot_download(model_id) 35 | loaded_model = tf.saved_model.load(model_path) 36 | concrete_func = loaded_model.signatures["serving_default"] 37 | return concrete_func 38 | 39 | 40 | def perform_inference(concrete_fn: Callable) -> Callable: 41 | def fn(image: np.ndarray) -> Image.Image: 42 | preprocessed_image = image_utils.preprocess_image(image) 43 | result = concrete_fn(preprocessed_image)["final_output:0"] 44 | output_image = image_utils.postprocess_image(result) 45 | return output_image 46 | 47 | return fn 48 | -------------------------------------------------------------------------------- /data_preparation/README.md: -------------------------------------------------------------------------------- 1 | This directory provides utilities to create a Cartoonizer dataset for [InstructPix2Pix](https://arxiv.org/abs/2211.09800) like training. 2 | 3 | ## Steps 4 | 5 | We used 5000 randomly sampled images as the original images from the `train` set of [ImageNette](https://www.tensorflow.org/datasets/catalog/imagenette). To derive their 6 | cartoonized renditions, we used the [Whitebox Cartoonizer model](https://huggingface.co/sayakpaul/whitebox-cartoonizer). For deriving the `instructions.txt` file, we used [ChatGPT](https://chat.openai.com/). In particular, we used the following prompt: 7 | 8 | > Provide al teast 50 synonymous sentences for the following instruction: "Cartoonize the following image." 9 | 10 | Dataset preparation is divided into three steps: 11 | 12 | ### Step 0: Install dependencies 13 | 14 | ```bash 15 | pip install -q requirements.txt 16 | ``` 17 | 18 | ### Step 1: Obtain the image-cartoon pairs 19 | 20 | ```bash 21 | python generate_dataset.py 22 | ``` 23 | 24 | If you want to use more than 5000 samples, specify the `--max_num_samples` option. One the image-cartoon pairs are generated, you should see a directory called `cartoonizer-dataset` directory (unless you specified a different one via `--data_root`): 25 | 26 |

27 | 28 |

29 | 30 | ### Step 2: Export the dataset to 🤗 Hub 31 | 32 | For this step, you need to be authorized to access your Hugging Face account. Run the following command to do so: 33 | 34 | ```bash 35 | huggingface-cli login 36 | ``` 37 | 38 | Then run: 39 | 40 | ```python 41 | python export_to_hub.py 42 | ``` 43 | 44 | > [!WARNING] 45 | > Please ensure that an empty [`DS_NAME` dataset](https://github.com/huggingface/instruction-tuned-sd/blob/0193a90d6932a2eac7a231ef5760fb427e44274d/data_preparation/export_to_hub.py#L26) was created on the Hub first. Instructions on how to do that are [here](https://huggingface.co/docs/datasets/upload_dataset#upload-with-the-hub-ui). 46 | 47 | You can find a mini dataset [here](https://huggingface.co/datasets/instruction-tuning-vision/cartoonizer-dataset): 48 | 49 |

50 | 51 |

52 | -------------------------------------------------------------------------------- /data_preparation/image_utils.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | import cv2 18 | import numpy as np 19 | import requests 20 | import tensorflow as tf 21 | from PIL import Image 22 | 23 | 24 | # Taken from 25 | # https://github.com/SystemErrorWang/White-box-Cartoonization/blob/master/test_code/cartoonize.py#L11 26 | def resize_crop(image: np.ndarray) -> np.ndarray: 27 | h, w, c = np.shape(image) 28 | if min(h, w) > 720: 29 | if h > w: 30 | h, w = int(720 * h / w), 720 31 | else: 32 | h, w = 720, int(720 * w / h) 33 | image = cv2.resize(image, (w, h), interpolation=cv2.INTER_AREA) 34 | h, w = (h // 8) * 8, (w // 8) * 8 35 | image = image[:h, :w, :] 36 | return image 37 | 38 | 39 | def download_image(url: str) -> np.ndarray: 40 | image = Image.open(requests.get(url, stream=True).raw) 41 | image = image.convert("RGB") 42 | image = np.array(image) 43 | return image 44 | 45 | 46 | def preprocess_image(image: np.ndarray) -> tf.Tensor: 47 | image = cv2.cvtColor(image, cv2.COLOR_RGB2BGR) 48 | image = resize_crop(image) 49 | image = image.astype(np.float32) / 127.5 - 1 50 | image = np.expand_dims(image, axis=0) 51 | image = tf.constant(image) 52 | return image 53 | 54 | 55 | def postprocess_image(image: tf.Tensor) -> Image.Image: 56 | output = (image[0].numpy() + 1.0) * 127.5 57 | output = np.clip(output, 0, 255).astype(np.uint8) 58 | output = cv2.cvtColor(output, cv2.COLOR_BGR2RGB) 59 | output_image = Image.fromarray(output) 60 | return output_image 61 | -------------------------------------------------------------------------------- /data_preparation/export_to_hub.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | import argparse 18 | import os 19 | from typing import List 20 | 21 | import numpy as np 22 | from datasets import Dataset, Features 23 | from datasets import Image as ImageFeature 24 | from datasets import Value 25 | 26 | DS_NAME = "cartoonizer-dataset" 27 | 28 | 29 | def parse_args(): 30 | parser = argparse.ArgumentParser() 31 | parser.add_argument("--data_root", type=str, default="cartoonizer-dataset") 32 | parser.add_argument("--instructions_path", type=str, default="instructions.txt") 33 | args = parser.parse_args() 34 | return args 35 | 36 | 37 | def load_instructions(instructions_path: str) -> List[str]: 38 | with open(instructions_path, "r") as f: 39 | instructions = f.readlines() 40 | instructions = [i.strip() for i in instructions] 41 | return instructions 42 | 43 | 44 | def generate_examples(data_paths: List[str], instructions: List[str]): 45 | def fn(): 46 | for data_path in data_paths: 47 | yield { 48 | "original_image": {"path": data_path[0]}, 49 | "edit_prompt": np.random.choice(instructions), 50 | "cartoonized_image": {"path": data_path[1]}, 51 | } 52 | 53 | return fn 54 | 55 | 56 | def main(args): 57 | instructions = load_instructions(args.instructions_path) 58 | 59 | data_paths = os.listdir(args.data_root) 60 | data_paths = [os.path.join(args.data_root, d) for d in data_paths] 61 | new_data_paths = [] 62 | for data_path in data_paths: 63 | original_image = os.path.join(data_path, "original_image.png") 64 | cartoonized_image = os.path.join(data_path, "cartoonized_image.png") 65 | new_data_paths.append((original_image, cartoonized_image)) 66 | 67 | generation_fn = generate_examples(new_data_paths, instructions) 68 | print("Creating dataset...") 69 | ds = Dataset.from_generator( 70 | generation_fn, 71 | features=Features( 72 | original_image=ImageFeature(), 73 | edit_prompt=Value("string"), 74 | cartoonized_image=ImageFeature(), 75 | ), 76 | ) 77 | 78 | print("Pushing to the Hub...") 79 | ds.push_to_hub(DS_NAME) 80 | 81 | 82 | if __name__ == "__main__": 83 | args = parse_args() 84 | main(args) 85 | -------------------------------------------------------------------------------- /data_preparation/generate_dataset.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | import argparse 18 | import hashlib 19 | import os 20 | 21 | import model_utils 22 | import tensorflow as tf 23 | import tensorflow_datasets as tfds 24 | from PIL import Image 25 | from tqdm import tqdm 26 | 27 | 28 | def parse_args(): 29 | parser = argparse.ArgumentParser( 30 | description="Prepare a dataset for InstructPix2Pix style training." 31 | ) 32 | parser.add_argument( 33 | "--model_id", type=str, default="sayakpaul/whitebox-cartoonizer" 34 | ) 35 | parser.add_argument("--dataset_id", type=str, default="imagenette") 36 | parser.add_argument("--max_num_samples", type=int, default=5000) 37 | parser.add_argument("--data_root", type=str, default="cartoonizer-dataset") 38 | args = parser.parse_args() 39 | return args 40 | 41 | 42 | def load_dataset(dataset_id: str, max_num_samples: int) -> tf.data.Dataset: 43 | dataset = tfds.load(dataset_id, split="train") 44 | dataset = dataset.shuffle(max_num_samples if max_num_samples is not None else 128) 45 | if max_num_samples is not None: 46 | print(f"Dataset will be restricted to {max_num_samples} samples.") 47 | dataset = dataset.take(max_num_samples) 48 | return dataset 49 | 50 | 51 | def main(args): 52 | print("Loading initial dataset and the Cartoonizer model...") 53 | dataset = load_dataset(args.dataset_id, args.max_num_samples) 54 | concrete_fn = model_utils.load_model(args.model_id) 55 | inference_fn = model_utils.perform_inference(concrete_fn) 56 | 57 | print("Preparing the image pairs...") 58 | os.makedirs(args.data_root, exist_ok=True) 59 | for sample in tqdm(dataset.as_numpy_iterator()): 60 | original_image = sample["image"] 61 | cartoonized_image = inference_fn(original_image) 62 | 63 | hash_image = hashlib.sha1(original_image.tobytes()).hexdigest() 64 | sample_dir = os.path.join(args.data_root, hash_image) 65 | os.makedirs(sample_dir) 66 | 67 | original_image = Image.fromarray(original_image).convert("RGB") 68 | original_image.save(os.path.join(sample_dir, "original_image.png")) 69 | cartoonized_image.save(os.path.join(sample_dir, "cartoonized_image.png")) 70 | 71 | print(f"Total generated image-pairs: {len(os.listdir(args.data_root))}.") 72 | 73 | 74 | if __name__ == "__main__": 75 | args = parse_args() 76 | main(args) 77 | -------------------------------------------------------------------------------- /data_preparation/instructions.txt: -------------------------------------------------------------------------------- 1 | Transform the natural image into a cartoon. 2 | Create a cartoon-style image from the natural image. 3 | Apply a cartoon filter to the natural image. 4 | Turn the natural image into a cartoon-style drawing. 5 | Give the natural image a cartoon effect. 6 | Convert the natural image to a cartoon-like illustration. 7 | Make the natural image look like a cartoon. 8 | Render the natural image in a cartoon style. 9 | Generate a cartoonized version of the natural image. 10 | Apply a cartoon-like effect to the natural image. 11 | Produce a cartoon version of the natural image. 12 | Turn the natural image into a cartoon-style picture. 13 | Use a cartoon filter to create a cartoon-like effect on the natural image. 14 | Transform the natural image into a cartoonish version. 15 | Apply a cartoon effect to the natural image to create a cartoonized version. 16 | Give the natural image a cartoonish look. 17 | Use a cartoon conversion software to turn the natural image into a cartoon. 18 | Use a cartoon-making app to cartoonize the natural image. 19 | Use a digital drawing software to create a cartoon version of the natural image. 20 | Edit the natural image to make it look like a cartoon. 21 | Apply a cartooning effect to the natural image. 22 | Create a cartoon-style illustration from the natural image. 23 | Turn the natural image into a cartoonish drawing. 24 | Use a cartoon filter to give the natural image a cartoon-like appearance. 25 | Use a software to convert the natural image to a cartoon. 26 | Change the natural image to a cartoon-style image. 27 | Use a graphic design software to create a cartoonized version of the natural image. 28 | Use a cartoonizing tool to transform the natural image into a cartoon. 29 | Alter the natural image to give it a cartoonish effect. 30 | Give the natural image a comic book-style look. 31 | Cartoonify the natural image. 32 | Use an image editing tool to turn the natural image into a cartoon. 33 | Use a digital art program to create a cartoonized version of the natural image. 34 | Create a cartoon-style graphic from the natural image. 35 | Give the natural image a hand-drawn, cartoon-like appearance. 36 | Transform the natural image into a sketch-like cartoon. 37 | Change the natural image to a hand-drawn cartoon. 38 | Edit the natural image to give it a toon-like effect. 39 | Use an art software to create a cartoonized version of the natural image. 40 | Apply a cartoon-like filter to the natural image to give it a toon-like appearance. 41 | Apply a filter to the natural image to create a comic book-style effect. 42 | Use a cartoonization program to create a cartoon version of the natural image. 43 | Give the natural image a graphic novel-style look. 44 | Transform the natural image into a caricature. 45 | Use a photo editing software to create a cartoonized version of the natural image. 46 | Turn the natural image into a cartoon character. 47 | Use a cartoon effect to create a cartoon-style illustration of the natural image. 48 | Give the natural image a hand-drawn, animated look. 49 | Use a tool to create a cartoonized version of the natural image. 50 | Change the natural image to a cartoon-like graphic. 51 | -------------------------------------------------------------------------------- /validation/README.md: -------------------------------------------------------------------------------- 1 | This directory provides utilities to visually compare the results of different models: 2 | 3 | * [sayakpaul/whitebox-cartoonizer](https://hf.co/sayakpaul/whitebox-cartoonizer) (TensorFlow) 4 | * [instruction-tuning-vision/instruction-tuned-cartoonizer](https://hf.co/sayakpaul/instruction-tuning-vision/instruction-tuned-cartoonizer) (Diffusers) 5 | * [timbrooks/instruct-pix2pix](https://hf.co/sayakpaul/timbrooks/instruct-pix2pix) (Diffusers) 6 | 7 | We use the `validation` split of ImageNette for the validation purpose. Launch the following script to cartoonize 10 different samples with a specific model: 8 | 9 | ```bash 10 | python compare_models.py --model_id sayakpaul/whitebox-cartoonizer --max_num_samples 10 11 | ``` 12 | 13 | For the Diffusers' compatible models, you can additionally specify the following options: 14 | 15 | * prompt 16 | * num_inference_steps 17 | * image_guidance_scale 18 | * guidance_scale 19 | 20 | After the samples have been generated, they should be serialized in the following structure: 21 | 22 | ```bash 23 | ├── comparison-sayakpaul 24 | │ └── whitebox-cartoonizer 25 | │ ├── 0 -- class label 26 | │ │ └── 55f8f5846192691faa2f603b0c92f27fd8599fc7 -- original image hash 27 | │ │ └── tf_image.png -- cartoonized image 28 | │ ├── 1 29 | │ │ ├── b8bfb2ec1a9af348ade8f467ac99e0af0fa0e937 30 | │ │ │ └── tf_image.png 31 | │ │ └── d23da1e9d9c39b17dacb66ddb52f290049a774a5 32 | │ │ └── tf_image.png 33 | │ ├── 2 34 | │ │ └── 7e25076bd693e10ad04e3c41aa29a3258e3d0ecd 35 | │ │ └── tf_image.png 36 | │ ├── 3 37 | │ │ ├── 1c43c5c5f7350b59d0c0607fd9357ed9e1b55e46 38 | │ │ │ └── tf_image.png 39 | │ │ └── cd4ca63c3d7913b1473937618c157c1919465930 40 | │ │ └── tf_image.png 41 | │ ├── 6 42 | │ │ ├── 220b6c136d47e81b186d337e0bdd064c67532e4e 43 | │ │ │ └── tf_image.png 44 | │ │ └── f80589219ae2b913677ea9417962d4ab75f08c2f 45 | │ │ └── tf_image.png 46 | │ └── 7 47 | │ ├── 4f33183189589bb171ba9489b898e5edbac25dfe 48 | │ │ └── tf_image.png 49 | │ └── 519863ade478d26b467e08dc5fb4353a6316833c 50 | │ └── tf_image.png 51 | ``` 52 | 53 | For you use a Diffusers' compatible model then it would look like so: 54 | 55 | ```bash 56 | ├── comparison-instruction-tuning-vision 57 | │ └── instruction-tuned-cartoonizer 58 | │ ├── 0 59 | │ │ └── 55f8f5846192691faa2f603b0c92f27fd8599fc7 60 | │ │ └── steps@20-igs@1.5-gs@7.0.png 61 | │ ├── 1 62 | │ │ ├── b8bfb2ec1a9af348ade8f467ac99e0af0fa0e937 63 | │ │ │ └── steps@20-igs@1.5-gs@7.0.png 64 | │ │ └── d23da1e9d9c39b17dacb66ddb52f290049a774a5 65 | │ │ └── steps@20-igs@1.5-gs@7.0.png 66 | │ ├── 2 67 | │ │ └── 7e25076bd693e10ad04e3c41aa29a3258e3d0ecd 68 | │ │ └── steps@20-igs@1.5-gs@7.0.png 69 | │ ├── 3 70 | │ │ ├── 1c43c5c5f7350b59d0c0607fd9357ed9e1b55e46 71 | │ │ │ └── steps@20-igs@1.5-gs@7.0.png 72 | │ │ └── cd4ca63c3d7913b1473937618c157c1919465930 73 | │ │ └── steps@20-igs@1.5-gs@7.0.png 74 | │ ├── 6 75 | │ │ ├── 220b6c136d47e81b186d337e0bdd064c67532e4e 76 | │ │ │ └── steps@20-igs@1.5-gs@7.0.png 77 | │ │ └── f80589219ae2b913677ea9417962d4ab75f08c2f 78 | │ │ └── steps@20-igs@1.5-gs@7.0.png 79 | │ └── 7 80 | │ ├── 4f33183189589bb171ba9489b898e5edbac25dfe 81 | │ │ └── steps@20-igs@1.5-gs@7.0.png 82 | │ └── 519863ade478d26b467e08dc5fb4353a6316833c 83 | │ └── steps@20-igs@1.5-gs@7.0.png 84 | ``` 85 | -------------------------------------------------------------------------------- /validation/compare_models.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | import os 18 | import sys 19 | 20 | SCRIPT_DIR = os.path.dirname(os.path.abspath(__file__)) 21 | sys.path.append(os.path.dirname(SCRIPT_DIR)) 22 | 23 | import argparse 24 | import hashlib 25 | import os 26 | 27 | import data_utils 28 | import torch 29 | from diffusers import StableDiffusionInstructPix2PixPipeline 30 | from PIL import Image 31 | 32 | from data_preparation import model_utils 33 | 34 | GEN = torch.manual_seed(0) 35 | 36 | 37 | def parse_args(): 38 | parser = argparse.ArgumentParser() 39 | parser.add_argument( 40 | "--model_id", 41 | type=str, 42 | default="sayakpaul/whitebox-cartoonizer", 43 | choices=[ 44 | "sayakpaul/whitebox-cartoonizer", 45 | "instruction-tuning-vision/instruction-tuned-cartoonizer", 46 | "timbrooks/instruct-pix2pix", 47 | ], 48 | ) 49 | parser.add_argument("--dataset_id", type=str, default="imagenette") 50 | parser.add_argument("--max_num_samples", type=int, default=10) 51 | parser.add_argument( 52 | "--prompt", type=str, default="Generate a cartoonized version of the image" 53 | ) 54 | parser.add_argument("--num_inference_steps", type=int, default=20) 55 | parser.add_argument("--image_guidance_scale", type=float, default=1.5) 56 | parser.add_argument("--guidance_scale", type=float, default=7.0) 57 | args = parser.parse_args() 58 | return args 59 | 60 | 61 | def load_pipeline(model_id: str): 62 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 63 | model_id, torch_dtype=torch.float16, use_auth_token=True 64 | ).to("cuda") 65 | pipeline.enable_xformers_memory_efficient_attention() 66 | pipeline.set_progress_bar_config(disable=True) 67 | return pipeline 68 | 69 | 70 | def main(args): 71 | data_root = os.path.join(f"comparison-{args.model_id}") 72 | 73 | print("Loading validation dataset and inference model...") 74 | dataset = data_utils.load_dataset(args.dataset_id, args.max_num_samples) 75 | using_tf = False 76 | if "sayakpaul" in args.model_id: 77 | inference = model_utils.load_model(args.model_id) 78 | using_tf = True 79 | print( 80 | "TensorFlow model detected for inference, Diffusion-specifc parameters won't be used." 81 | ) 82 | else: 83 | inference = load_pipeline(args.model_id) 84 | 85 | num_samples_to_generate = ( 86 | args.max_num_samples 87 | if args.max_num_samples is not None 88 | else dataset.cardinality() 89 | ) 90 | print(f"Generating {num_samples_to_generate} images...") 91 | for sample in dataset.as_numpy_iterator(): 92 | # Result dir creation. 93 | concept_path = os.path.join(data_root, str(sample["label"])) 94 | hash_image = hashlib.sha1(sample["image"].tobytes()).hexdigest() 95 | image_path = os.path.join(concept_path, hash_image) 96 | os.makedirs(image_path, exist_ok=True) 97 | 98 | # Perform inference and serialize the result. 99 | if using_tf: 100 | image = model_utils.perform_inference(inference)(sample["image"]) 101 | Image.fromarray(sample["image"]).save(os.path.join(image_path, "original.png")) 102 | image.save(os.path.join(image_path, "tf_image.png")) 103 | else: 104 | image = inference( 105 | args.prompt, 106 | image=Image.fromarray(sample["image"]).convert("RGB"), 107 | num_inference_steps=args.num_inference_steps, 108 | image_guidance_scale=args.image_guidance_scale, 109 | guidance_scale=args.guidance_scale, 110 | generator=GEN, 111 | ).images[0] 112 | image_prefix = f"steps@{args.num_inference_steps}-igs@{args.image_guidance_scale}-gs@{args.guidance_scale}" 113 | Image.fromarray(sample["image"]).save(os.path.join(image_path, "original.png")) 114 | image.save(os.path.join(image_path, f"{image_prefix}.png")) 115 | 116 | 117 | if __name__ == "__main__": 118 | args = parse_args() 119 | main(args) 120 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Copyright 2023- The HuggingFace Inc. team and The InstructPix2Pix Authors. All rights reserved. 2 | 3 | Apache License 4 | Version 2.0, January 2004 5 | http://www.apache.org/licenses/ 6 | 7 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 8 | 9 | 1. Definitions. 10 | 11 | "License" shall mean the terms and conditions for use, reproduction, 12 | and distribution as defined by Sections 1 through 9 of this document. 13 | 14 | "Licensor" shall mean the copyright owner or entity authorized by 15 | the copyright owner that is granting the License. 16 | 17 | "Legal Entity" shall mean the union of the acting entity and all 18 | other entities that control, are controlled by, or are under common 19 | control with that entity. For the purposes of this definition, 20 | "control" means (i) the power, direct or indirect, to cause the 21 | direction or management of such entity, whether by contract or 22 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 23 | outstanding shares, or (iii) beneficial ownership of such entity. 24 | 25 | "You" (or "Your") shall mean an individual or Legal Entity 26 | exercising permissions granted by this License. 27 | 28 | "Source" form shall mean the preferred form for making modifications, 29 | including but not limited to software source code, documentation 30 | source, and configuration files. 31 | 32 | "Object" form shall mean any form resulting from mechanical 33 | transformation or translation of a Source form, including but 34 | not limited to compiled object code, generated documentation, 35 | and conversions to other media types. 36 | 37 | "Work" shall mean the work of authorship, whether in Source or 38 | Object form, made available under the License, as indicated by a 39 | copyright notice that is included in or attached to the work 40 | (an example is provided in the Appendix below). 41 | 42 | "Derivative Works" shall mean any work, whether in Source or Object 43 | form, that is based on (or derived from) the Work and for which the 44 | editorial revisions, annotations, elaborations, or other modifications 45 | represent, as a whole, an original work of authorship. For the purposes 46 | of this License, Derivative Works shall not include works that remain 47 | separable from, or merely link (or bind by name) to the interfaces of, 48 | the Work and Derivative Works thereof. 49 | 50 | "Contribution" shall mean any work of authorship, including 51 | the original version of the Work and any modifications or additions 52 | to that Work or Derivative Works thereof, that is intentionally 53 | submitted to Licensor for inclusion in the Work by the copyright owner 54 | or by an individual or Legal Entity authorized to submit on behalf of 55 | the copyright owner. For the purposes of this definition, "submitted" 56 | means any form of electronic, verbal, or written communication sent 57 | to the Licensor or its representatives, including but not limited to 58 | communication on electronic mailing lists, source code control systems, 59 | and issue tracking systems that are managed by, or on behalf of, the 60 | Licensor for the purpose of discussing and improving the Work, but 61 | excluding communication that is conspicuously marked or otherwise 62 | designated in writing by the copyright owner as "Not a Contribution." 63 | 64 | "Contributor" shall mean Licensor and any individual or Legal Entity 65 | on behalf of whom a Contribution has been received by Licensor and 66 | subsequently incorporated within the Work. 67 | 68 | 2. Grant of Copyright License. Subject to the terms and conditions of 69 | this License, each Contributor hereby grants to You a perpetual, 70 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 71 | copyright license to reproduce, prepare Derivative Works of, 72 | publicly display, publicly perform, sublicense, and distribute the 73 | Work and such Derivative Works in Source or Object form. 74 | 75 | 3. Grant of Patent License. Subject to the terms and conditions of 76 | this License, each Contributor hereby grants to You a perpetual, 77 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 78 | (except as stated in this section) patent license to make, have made, 79 | use, offer to sell, sell, import, and otherwise transfer the Work, 80 | where such license applies only to those patent claims licensable 81 | by such Contributor that are necessarily infringed by their 82 | Contribution(s) alone or by combination of their Contribution(s) 83 | with the Work to which such Contribution(s) was submitted. If You 84 | institute patent litigation against any entity (including a 85 | cross-claim or counterclaim in a lawsuit) alleging that the Work 86 | or a Contribution incorporated within the Work constitutes direct 87 | or contributory patent infringement, then any patent licenses 88 | granted to You under this License for that Work shall terminate 89 | as of the date such litigation is filed. 90 | 91 | 4. Redistribution. You may reproduce and distribute copies of the 92 | Work or Derivative Works thereof in any medium, with or without 93 | modifications, and in Source or Object form, provided that You 94 | meet the following conditions: 95 | 96 | (a) You must give any other recipients of the Work or 97 | Derivative Works a copy of this License; and 98 | 99 | (b) You must cause any modified files to carry prominent notices 100 | stating that You changed the files; and 101 | 102 | (c) You must retain, in the Source form of any Derivative Works 103 | that You distribute, all copyright, patent, trademark, and 104 | attribution notices from the Source form of the Work, 105 | excluding those notices that do not pertain to any part of 106 | the Derivative Works; and 107 | 108 | (d) If the Work includes a "NOTICE" text file as part of its 109 | distribution, then any Derivative Works that You distribute must 110 | include a readable copy of the attribution notices contained 111 | within such NOTICE file, excluding those notices that do not 112 | pertain to any part of the Derivative Works, in at least one 113 | of the following places: within a NOTICE text file distributed 114 | as part of the Derivative Works; within the Source form or 115 | documentation, if provided along with the Derivative Works; or, 116 | within a display generated by the Derivative Works, if and 117 | wherever such third-party notices normally appear. The contents 118 | of the NOTICE file are for informational purposes only and 119 | do not modify the License. You may add Your own attribution 120 | notices within Derivative Works that You distribute, alongside 121 | or as an addendum to the NOTICE text from the Work, provided 122 | that such additional attribution notices cannot be construed 123 | as modifying the License. 124 | 125 | You may add Your own copyright statement to Your modifications and 126 | may provide additional or different license terms and conditions 127 | for use, reproduction, or distribution of Your modifications, or 128 | for any such Derivative Works as a whole, provided Your use, 129 | reproduction, and distribution of the Work otherwise complies with 130 | the conditions stated in this License. 131 | 132 | 5. Submission of Contributions. Unless You explicitly state otherwise, 133 | any Contribution intentionally submitted for inclusion in the Work 134 | by You to the Licensor shall be under the terms and conditions of 135 | this License, without any additional terms or conditions. 136 | Notwithstanding the above, nothing herein shall supersede or modify 137 | the terms of any separate license agreement you may have executed 138 | with Licensor regarding such Contributions. 139 | 140 | 6. Trademarks. This License does not grant permission to use the trade 141 | names, trademarks, service marks, or product names of the Licensor, 142 | except as required for reasonable and customary use in describing the 143 | origin of the Work and reproducing the content of the NOTICE file. 144 | 145 | 7. Disclaimer of Warranty. Unless required by applicable law or 146 | agreed to in writing, Licensor provides the Work (and each 147 | Contributor provides its Contributions) on an "AS IS" BASIS, 148 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 149 | implied, including, without limitation, any warranties or conditions 150 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 151 | PARTICULAR PURPOSE. You are solely responsible for determining the 152 | appropriateness of using or redistributing the Work and assume any 153 | risks associated with Your exercise of permissions under this License. 154 | 155 | 8. Limitation of Liability. In no event and under no legal theory, 156 | whether in tort (including negligence), contract, or otherwise, 157 | unless required by applicable law (such as deliberate and grossly 158 | negligent acts) or agreed to in writing, shall any Contributor be 159 | liable to You for damages, including any direct, indirect, special, 160 | incidental, or consequential damages of any character arising as a 161 | result of this License or out of the use or inability to use the 162 | Work (including but not limited to damages for loss of goodwill, 163 | work stoppage, computer failure or malfunction, or any and all 164 | other commercial damages or losses), even if such Contributor 165 | has been advised of the possibility of such damages. 166 | 167 | 9. Accepting Warranty or Additional Liability. While redistributing 168 | the Work or Derivative Works thereof, You may choose to offer, 169 | and charge a fee for, acceptance of support, warranty, indemnity, 170 | or other liability obligations and/or rights consistent with this 171 | License. However, in accepting such obligations, You may act only 172 | on Your own behalf and on Your sole responsibility, not on behalf 173 | of any other Contributor, and only if You agree to indemnify, 174 | defend, and hold each Contributor harmless for any liability 175 | incurred by, or claims asserted against, such Contributor by reason 176 | of your accepting any such warranty or additional liability. 177 | 178 | END OF TERMS AND CONDITIONS 179 | 180 | APPENDIX: How to apply the Apache License to your work. 181 | 182 | To apply the Apache License to your work, attach the following 183 | boilerplate notice, with the fields enclosed by brackets "[]" 184 | replaced with your own identifying information. (Don't include 185 | the brackets!) The text should be enclosed in the appropriate 186 | comment syntax for the file format. We also recommend that a 187 | file or class name and description of purpose be included on the 188 | same "printed page" as the copyright notice for easier 189 | identification within third-party archives. 190 | 191 | Copyright [yyyy] [name of copyright owner] 192 | 193 | Licensed under the Apache License, Version 2.0 (the "License"); 194 | you may not use this file except in compliance with the License. 195 | You may obtain a copy of the License at 196 | 197 | http://www.apache.org/licenses/LICENSE-2.0 198 | 199 | Unless required by applicable law or agreed to in writing, software 200 | distributed under the License is distributed on an "AS IS" BASIS, 201 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 202 | See the License for the specific language governing permissions and 203 | limitations under the License. 204 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Instruction-tuning Stable Diffusion 2 | 3 | **TL;DR**: Motivated partly by [FLAN](https://arxiv.org/abs/2109.01652) and partly by [InstructPix2Pix](https://arxiv.org/abs/2211.09800), we explore a way to instruction-tune [Stable Diffusion](https://stability.ai/blog/stable-diffusion-public-release). This allows us to prompt our model using an input image and an “instruction”, such as - *Apply a cartoon filter to the natural image*. 4 | 5 | You can read [our blog post](https://hf.co/blog/instruction-tuning-sd) to know more details. 6 | 7 | ## Table of contents 8 | 9 | 🐶 [Motivation](#motivation)
10 | 📷 [Data preparation](#data-preparation)
11 | 💺 [Training](#training)
12 | 🎛 [Models, datasets, demo](#models-datasets-demo)
13 | ⭐️ [Inference](#inference)
14 | 🧭 [Results](#results)
15 | 🤝 [Acknowledgements](#acknowledgements)
16 | 17 | ## Motivation 18 | 19 | Instruction-tuning is a supervised way of teaching language models to follow instructions to solve a task. It was introduced in [Fine-tuned Language Models Are Zero-Shot Learners](https://arxiv.org/abs/2109.01652) (FLAN) by Google. From recent times, you might recall works like [Alpaca](https://crfm.stanford.edu/2023/03/13/alpaca.html) and [FLAN V2](https://arxiv.org/abs/2210.11416), which are good examples of how beneficial instruction-tuning can be for various tasks. 20 | 21 | On the other hand, the idea of teaching Stable Diffusion to follow user instructions to perform edits on input images was introduced in [InstructPix2Pix: Learning to Follow Image Editing Instructions](https://arxiv.org/abs/2211.09800). 22 | 23 | Our motivation behind this work comes partly from the FLAN line of works and partly from InstructPix2Pix. We wanted to explore if it’s possible to prompt Stable Diffusion with specific instructions and input images to process them as per our needs. 24 | 25 |

26 | 27 |

28 | 29 | Our main idea is to first create an instruction prompted dataset (as described in [our blog](https://hf.co/blog/instruction-tuning-sd) and then conduct InstructPix2Pix style training. The end objective is to make Stable Diffusion better at following specific instructions that entail image transformation related operations. 30 | 31 | 32 | ## Data preparation 33 | 34 | Our data preparation process is inspired by FLAN. Refer to the sections below for more details. 35 | 36 | * **Cartoonization**: Refer to the `data_preparation` directory. 37 | * **Low-level image processing**: Refer to the [dataset card](https://huggingface.co/datasets/instruction-tuning-sd/low-level-image-proc). 38 | 39 | ## Training 40 | 41 | > [!TIP] 42 | > In case of using custom datasets, one needs to configure the dataset as per their choice as long as you maintain the format presented here. You might have to configure your dataloader and dataset class in case you don't want to make use of the `datasets` library. If you do so, you might have to adjust the training scripts accordingly. 43 | 44 | ### Dev env setup 45 | 46 | We recommend using a Python virtual environment for this. Feel free to use your favorite one here. 47 | 48 | We conducted our experiments with PyTorch 1.13.1 (CUDA 11.6) and a single A100 GPU. Since PyTorch installation can be hardware-dependent, we refer you to the [official docs](https://pytorch.org/) for installing PyTorch. 49 | 50 | Once PyTorch is installed, we can install the rest of the dependencies: 51 | 52 | ```bash 53 | pip install -r requirements.txt 54 | ``` 55 | 56 | Additionally, we recommend installing [xformers](https://github.com/facebookresearch/xformers) as well for enabling memory-efficient training. 57 | 58 | > 💡 **Note**: If you're using PyTorch 2.0 then you don't need to additionally install xformers. This is because we default to a memory-efficient attention processor in Diffusers when PyTorch 2.0 is being used. 59 | 60 | ### Launching training 61 | 62 | Our training code leverages [🧨 diffusers](https://github.com/huggingface/diffusers), [🤗 accelerate](https://github.com/huggingface/accelerate), and [🤗 transformers](https://github.com/huggingface/transformers). In particular, we extend [this training example](https://github.com/huggingface/diffusers/blob/main/examples/instruct_pix2pix/train_instruct_pix2pix.py) to fit our needs. 63 | 64 | ### Cartoonization 65 | 66 | #### Training from scratch using the InstructPix2Pix methodology 67 | 68 | ```bash 69 | export MODEL_ID="runwayml/stable-diffusion-v1-5" 70 | export DATASET_ID="instruction-tuning-sd/cartoonization" 71 | export OUTPUT_DIR="cartoonization-scratch" 72 | 73 | accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ 74 | --pretrained_model_name_or_path=$MODEL_ID \ 75 | --dataset_name=$DATASET_ID \ 76 | --use_ema \ 77 | --enable_xformers_memory_efficient_attention \ 78 | --resolution=256 --random_flip \ 79 | --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ 80 | --max_train_steps=15000 \ 81 | --checkpointing_steps=5000 --checkpoints_total_limit=1 \ 82 | --learning_rate=5e-05 --lr_warmup_steps=0 \ 83 | --mixed_precision=fp16 \ 84 | --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ 85 | --validation_prompt="Generate a cartoonized version of the natural image" \ 86 | --seed=42 \ 87 | --output_dir=$OUTPUT_DIR \ 88 | --report_to=wandb \ 89 | --push_to_hub 90 | ``` 91 | 92 | > 💡 **Note**: Following InstructPix2Pix, we train on the 256x256 resolution and that doesn't seem to affect the end quality too much when we perform inference with the 512x512 resolution. 93 | 94 | Once the training successfully launched, the logs will be automatically tracked using Weights and Biases. Depending on how you specified the `checkpointing_steps` and the `max_train_steps`, there will be intermediate checkpoints too. At the end of training, you can expect a directory (namely `OUTPUT_DIR`) that contains the intermediate checkpoints and the final pipeline artifacts. 95 | 96 | If `--push_to_hub` is specified, the contents of `OUTPUT_DIR` will be pushed to a repository on the Hugging Face Hub. 97 | 98 | [Here](https://wandb.ai/sayakpaul/instruction-tuning-sd/runs/wszjpb1b) is an example run page on Weights and Biases. [Here](https://huggingface.co/instruction-tuning-sd/scratch-cartoonizer) is an example of how the pipeline repository would look like on the Hugging Face Hub. 99 | 100 | #### Fine-tuning from InstructPix2Pix 101 | 102 | ```bash 103 | export MODEL_ID="timbrooks/instruct-pix2pix" 104 | export DATASET_ID="instruction-tuning-sd/cartoonization" 105 | export OUTPUT_DIR="cartoonization-finetuned" 106 | 107 | accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ 108 | --pretrained_model_name_or_path=$MODEL_ID \ 109 | --dataset_name=$DATASET_ID \ 110 | --use_ema \ 111 | --enable_xformers_memory_efficient_attention \ 112 | --resolution=256 --random_flip \ 113 | --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ 114 | --max_train_steps=15000 \ 115 | --checkpointing_steps=5000 --checkpoints_total_limit=1 \ 116 | --learning_rate=5e-05 --lr_warmup_steps=0 \ 117 | --mixed_precision=fp16 \ 118 | --val_image_url="https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" \ 119 | --validation_prompt="Generate a cartoonized version of the natural image" \ 120 | --seed=42 \ 121 | --output_dir=$OUTPUT_DIR \ 122 | --report_to=wandb \ 123 | --push_to_hub 124 | ``` 125 | 126 | ### Low-level image processing 127 | 128 | #### Training from scratch using the InstructPix2Pix methodology 129 | 130 | ```bash 131 | export MODEL_ID="runwayml/stable-diffusion-v1-5" 132 | export DATASET_ID="instruction-tuning-sd/low-level-image-proc" 133 | export OUTPUT_DIR="low-level-img-proc-scratch" 134 | 135 | accelerate launch --mixed_precision="fp16" train_instruct_pix2pix.py \ 136 | --pretrained_model_name_or_path=$MODEL_ID \ 137 | --dataset_name=$DATASET_ID \ 138 | --original_image_column="input_image" \ 139 | --edit_prompt_column="instruction" \ 140 | --edited_image_column="ground_truth_image" \ 141 | --use_ema \ 142 | --enable_xformers_memory_efficient_attention \ 143 | --resolution=256 --random_flip \ 144 | --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ 145 | --max_train_steps=15000 \ 146 | --checkpointing_steps=5000 --checkpoints_total_limit=1 \ 147 | --learning_rate=5e-05 --lr_warmup_steps=0 \ 148 | --mixed_precision=fp16 \ 149 | --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ 150 | --validation_prompt="Derain the image" \ 151 | --seed=42 \ 152 | --output_dir=$OUTPUT_DIR \ 153 | --report_to=wandb \ 154 | --push_to_hub 155 | ``` 156 | 157 | #### Fine-tuning from InstructPix2Pix 158 | 159 | ```bash 160 | export MODEL_ID="timbrooks/instruct-pix2pix" 161 | export DATASET_ID="instruction-tuning-sd/low-level-image-proc" 162 | export OUTPUT_DIR="low-level-img-proc-finetuned" 163 | 164 | accelerate launch --mixed_precision="fp16" finetune_instruct_pix2pix.py \ 165 | --pretrained_model_name_or_path=$MODEL_ID \ 166 | --dataset_name=$DATASET_ID \ 167 | --original_image_column="input_image" \ 168 | --edit_prompt_column="instruction" \ 169 | --edited_image_column="ground_truth_image" \ 170 | --use_ema \ 171 | --enable_xformers_memory_efficient_attention \ 172 | --resolution=256 --random_flip \ 173 | --train_batch_size=2 --gradient_accumulation_steps=4 --gradient_checkpointing \ 174 | --max_train_steps=15000 \ 175 | --checkpointing_steps=5000 --checkpoints_total_limit=1 \ 176 | --learning_rate=5e-05 --lr_warmup_steps=0 \ 177 | --mixed_precision=fp16 \ 178 | --val_image_url="https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain_the_image_1.png" \ 179 | --validation_prompt="Derain the image" \ 180 | --seed=42 \ 181 | --output_dir=$OUTPUT_DIR \ 182 | --report_to=wandb \ 183 | --push_to_hub 184 | ``` 185 | 186 | ## Models, datasets, demo 187 | 188 | ### **Models**: 189 | * [instruction-tuning-sd/scratch-low-level-img-proc](https://huggingface.co/instruction-tuning-sd/scratch-low-level-img-proc) 190 | * [instruction-tuning-sd/scratch-cartoonizer](https://huggingface.co/instruction-tuning-sd/scratch-cartoonizer) 191 | * [instruction-tuning-sd/cartoonizer](https://huggingface.co/instruction-tuning-sd/cartoonizer) 192 | * [instruction-tuning-sd/low-level-img-proc](https://huggingface.co/instruction-tuning-sd/low-level-img-proc) 193 | 194 | ### **Datasets**: 195 | * [Instruction-prompted cartoonization](https://huggingface.co/datasets/instruction-tuning-sd/cartoonization) 196 | * [Instruction-prompted low-level image processing](https://huggingface.co/datasets/instruction-tuning-sd/low-level-image-proc) 197 | 198 | ### Demo on 🤗 Spaces 199 | 200 | Try out the models interactively WITHOUT any setup: [Demo](https://huggingface.co/spaces/instruction-tuning-sd/instruction-tuned-sd) 201 | 202 | ## Inference 203 | 204 | ### Cartoonization 205 | 206 | ```python 207 | import torch 208 | from diffusers import StableDiffusionInstructPix2PixPipeline 209 | from diffusers.utils import load_image 210 | 211 | model_id = "instruction-tuning-sd/cartoonizer" 212 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 213 | model_id, torch_dtype=torch.float16, use_auth_token=True 214 | ).to("cuda") 215 | 216 | image_path = "https://hf.co/datasets/diffusers/diffusers-images-docs/resolve/main/mountain.png" 217 | image = load_image(image_path) 218 | 219 | image = pipeline("Cartoonize the following image", image=image).images[0] 220 | image.save("image.png") 221 | ``` 222 | 223 | ### Low-level image processing 224 | 225 | ```python 226 | import torch 227 | from diffusers import StableDiffusionInstructPix2PixPipeline 228 | from diffusers.utils import load_image 229 | 230 | model_id = "instruction-tuning-sd/low-level-img-proc" 231 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 232 | model_id, torch_dtype=torch.float16, use_auth_token=True 233 | ).to("cuda") 234 | 235 | image_path = "https://hf.co/datasets/sayakpaul/sample-datasets/resolve/main/derain%20the%20image_1.png" 236 | image = load_image(image_path) 237 | 238 | image = pipeline("derain the image", image=image).images[0] 239 | image.save("image.png") 240 | ``` 241 | 242 | 243 | > 💡 **Note**: Since the above pipelines are essentially of type `StableDiffusionInstructPix2PixPipeline`, you can customize several arguments that 244 | the pipeline exposes. Refer to the [official docs](https://huggingface.co/docs/diffusers/main/en/api/pipelines/stable_diffusion/pix2pix) for more details. 245 | 246 | ## Results 247 | 248 | ### Cartoonization 249 | 250 |

251 | 252 |

253 | 254 | --- 255 | 256 |

257 | 258 |

259 | 260 | ### Low-level image processing 261 | 262 |

263 | 264 |

265 | 266 | --- 267 | 268 |

269 | 270 |

271 | 272 | Refer to our [blog post](https://hf.co/blog/instruction-tuning-sd) for more discussions on results and open questions. 273 | 274 | 275 | ## Acknowledgements 276 | 277 | Thanks to [Alara Dirik](https://www.linkedin.com/in/alaradirik/) and [Zhengzhong Tu](https://www.linkedin.com/in/zhengzhongtu) for the helpful discussions. 278 | 279 | ## Citation 280 | 281 | ```bibtex 282 | @article{ 283 | Paul2023instruction-tuning-sd, 284 | author = {Paul, Sayak}, 285 | title = {Instruction-tuning Stable Diffusion with InstructPix2Pix}, 286 | journal = {Hugging Face Blog}, 287 | year = {2023}, 288 | note = {https://huggingface.co/blog/instruction-tuning-sd}, 289 | } 290 | ``` 291 | 292 | -------------------------------------------------------------------------------- /train_instruct_pix2pix.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | """Script to fine-tune Stable Diffusion for InstructPix2Pix.""" 18 | 19 | import argparse 20 | import logging 21 | import math 22 | import os 23 | from pathlib import Path 24 | from typing import Optional 25 | 26 | import accelerate 27 | import datasets 28 | import numpy as np 29 | import PIL 30 | import requests 31 | import torch 32 | import torch.nn as nn 33 | import torch.nn.functional as F 34 | import torch.utils.checkpoint 35 | import transformers 36 | from accelerate import Accelerator 37 | from accelerate.logging import get_logger 38 | from accelerate.utils import ProjectConfiguration, set_seed 39 | from datasets import load_dataset 40 | from huggingface_hub import HfFolder, Repository, create_repo, whoami 41 | from packaging import version 42 | from torchvision import transforms 43 | from tqdm.auto import tqdm 44 | from transformers import CLIPTextModel, CLIPTokenizer 45 | 46 | import diffusers 47 | from diffusers import AutoencoderKL, DDPMScheduler, StableDiffusionInstructPix2PixPipeline, UNet2DConditionModel 48 | from diffusers.optimization import get_scheduler 49 | from diffusers.training_utils import EMAModel 50 | from diffusers.utils import check_min_version, deprecate, is_wandb_available 51 | from diffusers.utils.import_utils import is_xformers_available 52 | 53 | 54 | # Will error if the minimal version of diffusers is not installed. Remove at your own risks. 55 | check_min_version("0.15.0.dev0") 56 | 57 | logger = get_logger(__name__, log_level="INFO") 58 | 59 | DATASET_NAME_MAPPING = { 60 | "fusing/instructpix2pix-1000-samples": ("input_image", "edit_prompt", "edited_image"), 61 | } 62 | WANDB_TABLE_COL_NAMES = ["original_image", "edited_image", "edit_prompt"] 63 | 64 | 65 | def parse_args(): 66 | parser = argparse.ArgumentParser(description="Simple example of a training script for InstructPix2Pix.") 67 | parser.add_argument( 68 | "--pretrained_model_name_or_path", 69 | type=str, 70 | default=None, 71 | required=True, 72 | help="Path to pretrained model or model identifier from huggingface.co/models.", 73 | ) 74 | parser.add_argument( 75 | "--revision", 76 | type=str, 77 | default=None, 78 | required=False, 79 | help="Revision of pretrained model identifier from huggingface.co/models.", 80 | ) 81 | parser.add_argument( 82 | "--dataset_name", 83 | type=str, 84 | default=None, 85 | help=( 86 | "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," 87 | " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," 88 | " or to a folder containing files that 🤗 Datasets can understand." 89 | ), 90 | ) 91 | parser.add_argument( 92 | "--dataset_config_name", 93 | type=str, 94 | default=None, 95 | help="The config of the Dataset, leave as None if there's only one config.", 96 | ) 97 | parser.add_argument( 98 | "--train_data_dir", 99 | type=str, 100 | default=None, 101 | help=( 102 | "A folder containing the training data. Folder contents must follow the structure described in" 103 | " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" 104 | " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." 105 | ), 106 | ) 107 | parser.add_argument( 108 | "--original_image_column", 109 | type=str, 110 | default="input_image", 111 | help="The column of the dataset containing the original image on which edits where made.", 112 | ) 113 | parser.add_argument( 114 | "--edited_image_column", 115 | type=str, 116 | default="edited_image", 117 | help="The column of the dataset containing the edited image.", 118 | ) 119 | parser.add_argument( 120 | "--edit_prompt_column", 121 | type=str, 122 | default="edit_prompt", 123 | help="The column of the dataset containing the edit instruction.", 124 | ) 125 | parser.add_argument( 126 | "--val_image_url", 127 | type=str, 128 | default=None, 129 | help="URL to the original image that you would like to edit (used during inference for debugging purposes).", 130 | ) 131 | parser.add_argument( 132 | "--validation_prompt", type=str, default=None, help="A prompt that is sampled during training for inference." 133 | ) 134 | parser.add_argument( 135 | "--num_validation_images", 136 | type=int, 137 | default=4, 138 | help="Number of images that should be generated during validation with `validation_prompt`.", 139 | ) 140 | parser.add_argument( 141 | "--validation_epochs", 142 | type=int, 143 | default=1, 144 | help=( 145 | "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" 146 | " `args.validation_prompt` multiple times: `args.num_validation_images`." 147 | ), 148 | ) 149 | parser.add_argument( 150 | "--max_train_samples", 151 | type=int, 152 | default=None, 153 | help=( 154 | "For debugging purposes or quicker training, truncate the number of training examples to this " 155 | "value if set." 156 | ), 157 | ) 158 | parser.add_argument( 159 | "--output_dir", 160 | type=str, 161 | default="instruct-pix2pix-model", 162 | help="The output directory where the model predictions and checkpoints will be written.", 163 | ) 164 | parser.add_argument( 165 | "--cache_dir", 166 | type=str, 167 | default=None, 168 | help="The directory where the downloaded models and datasets will be stored.", 169 | ) 170 | parser.add_argument("--seed", type=int, default=None, help="A seed for reproducible training.") 171 | parser.add_argument( 172 | "--resolution", 173 | type=int, 174 | default=256, 175 | help=( 176 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" 177 | " resolution" 178 | ), 179 | ) 180 | parser.add_argument( 181 | "--center_crop", 182 | default=False, 183 | action="store_true", 184 | help=( 185 | "Whether to center crop the input images to the resolution. If not set, the images will be randomly" 186 | " cropped. The images will be resized to the resolution first before cropping." 187 | ), 188 | ) 189 | parser.add_argument( 190 | "--random_flip", 191 | action="store_true", 192 | help="whether to randomly flip images horizontally", 193 | ) 194 | parser.add_argument( 195 | "--train_batch_size", type=int, default=16, help="Batch size (per device) for the training dataloader." 196 | ) 197 | parser.add_argument("--num_train_epochs", type=int, default=100) 198 | parser.add_argument( 199 | "--max_train_steps", 200 | type=int, 201 | default=None, 202 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", 203 | ) 204 | parser.add_argument( 205 | "--gradient_accumulation_steps", 206 | type=int, 207 | default=1, 208 | help="Number of updates steps to accumulate before performing a backward/update pass.", 209 | ) 210 | parser.add_argument( 211 | "--gradient_checkpointing", 212 | action="store_true", 213 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", 214 | ) 215 | parser.add_argument( 216 | "--learning_rate", 217 | type=float, 218 | default=1e-4, 219 | help="Initial learning rate (after the potential warmup period) to use.", 220 | ) 221 | parser.add_argument( 222 | "--scale_lr", 223 | action="store_true", 224 | default=False, 225 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", 226 | ) 227 | parser.add_argument( 228 | "--lr_scheduler", 229 | type=str, 230 | default="constant", 231 | help=( 232 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' 233 | ' "constant", "constant_with_warmup"]' 234 | ), 235 | ) 236 | parser.add_argument( 237 | "--lr_warmup_steps", type=int, default=500, help="Number of steps for the warmup in the lr scheduler." 238 | ) 239 | parser.add_argument( 240 | "--conditioning_dropout_prob", 241 | type=float, 242 | default=None, 243 | help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", 244 | ) 245 | parser.add_argument( 246 | "--use_8bit_adam", action="store_true", help="Whether or not to use 8-bit Adam from bitsandbytes." 247 | ) 248 | parser.add_argument( 249 | "--allow_tf32", 250 | action="store_true", 251 | help=( 252 | "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" 253 | " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" 254 | ), 255 | ) 256 | parser.add_argument("--use_ema", action="store_true", help="Whether to use EMA model.") 257 | parser.add_argument( 258 | "--non_ema_revision", 259 | type=str, 260 | default=None, 261 | required=False, 262 | help=( 263 | "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" 264 | " remote repository specified with --pretrained_model_name_or_path." 265 | ), 266 | ) 267 | parser.add_argument( 268 | "--dataloader_num_workers", 269 | type=int, 270 | default=0, 271 | help=( 272 | "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." 273 | ), 274 | ) 275 | parser.add_argument("--adam_beta1", type=float, default=0.9, help="The beta1 parameter for the Adam optimizer.") 276 | parser.add_argument("--adam_beta2", type=float, default=0.999, help="The beta2 parameter for the Adam optimizer.") 277 | parser.add_argument("--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use.") 278 | parser.add_argument("--adam_epsilon", type=float, default=1e-08, help="Epsilon value for the Adam optimizer") 279 | parser.add_argument("--max_grad_norm", default=1.0, type=float, help="Max gradient norm.") 280 | parser.add_argument("--push_to_hub", action="store_true", help="Whether or not to push the model to the Hub.") 281 | parser.add_argument("--hub_token", type=str, default=None, help="The token to use to push to the Model Hub.") 282 | parser.add_argument( 283 | "--hub_model_id", 284 | type=str, 285 | default=None, 286 | help="The name of the repository to keep in sync with the local `output_dir`.", 287 | ) 288 | parser.add_argument( 289 | "--logging_dir", 290 | type=str, 291 | default="logs", 292 | help=( 293 | "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" 294 | " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." 295 | ), 296 | ) 297 | parser.add_argument( 298 | "--mixed_precision", 299 | type=str, 300 | default=None, 301 | choices=["no", "fp16", "bf16"], 302 | help=( 303 | "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" 304 | " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" 305 | " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." 306 | ), 307 | ) 308 | parser.add_argument( 309 | "--report_to", 310 | type=str, 311 | default="tensorboard", 312 | help=( 313 | 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' 314 | ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' 315 | ), 316 | ) 317 | parser.add_argument("--local_rank", type=int, default=-1, help="For distributed training: local_rank") 318 | parser.add_argument( 319 | "--checkpointing_steps", 320 | type=int, 321 | default=500, 322 | help=( 323 | "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" 324 | " training using `--resume_from_checkpoint`." 325 | ), 326 | ) 327 | parser.add_argument( 328 | "--checkpoints_total_limit", 329 | type=int, 330 | default=None, 331 | help=( 332 | "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." 333 | " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" 334 | " for more docs" 335 | ), 336 | ) 337 | parser.add_argument( 338 | "--resume_from_checkpoint", 339 | type=str, 340 | default=None, 341 | help=( 342 | "Whether training should be resumed from a previous checkpoint. Use a path saved by" 343 | ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' 344 | ), 345 | ) 346 | parser.add_argument( 347 | "--enable_xformers_memory_efficient_attention", action="store_true", help="Whether or not to use xformers." 348 | ) 349 | 350 | args = parser.parse_args() 351 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) 352 | if env_local_rank != -1 and env_local_rank != args.local_rank: 353 | args.local_rank = env_local_rank 354 | 355 | # Sanity checks 356 | if args.dataset_name is None and args.train_data_dir is None: 357 | raise ValueError("Need either a dataset name or a training folder.") 358 | 359 | # default to using the same revision for the non-ema model if not specified 360 | if args.non_ema_revision is None: 361 | args.non_ema_revision = args.revision 362 | 363 | return args 364 | 365 | 366 | def get_full_repo_name(model_id: str, organization: Optional[str] = None, token: Optional[str] = None): 367 | if token is None: 368 | token = HfFolder.get_token() 369 | if organization is None: 370 | username = whoami(token)["name"] 371 | return f"{username}/{model_id}" 372 | else: 373 | return f"{organization}/{model_id}" 374 | 375 | 376 | def convert_to_np(image, resolution): 377 | image = image.convert("RGB").resize((resolution, resolution)) 378 | return np.array(image).transpose(2, 0, 1) 379 | 380 | 381 | def download_image(url): 382 | image = PIL.Image.open(requests.get(url, stream=True).raw) 383 | image = PIL.ImageOps.exif_transpose(image) 384 | image = image.convert("RGB") 385 | return image 386 | 387 | 388 | def main(): 389 | args = parse_args() 390 | 391 | if args.non_ema_revision is not None: 392 | deprecate( 393 | "non_ema_revision!=None", 394 | "0.15.0", 395 | message=( 396 | "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" 397 | " use `--variant=non_ema` instead." 398 | ), 399 | ) 400 | logging_dir = os.path.join(args.output_dir, args.logging_dir) 401 | accelerator_project_config = ProjectConfiguration( 402 | total_limit=args.checkpoints_total_limit, logging_dir=logging_dir 403 | ) 404 | accelerator = Accelerator( 405 | gradient_accumulation_steps=args.gradient_accumulation_steps, 406 | mixed_precision=args.mixed_precision, 407 | log_with=args.report_to, 408 | project_config=accelerator_project_config, 409 | ) 410 | 411 | generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) 412 | 413 | if args.report_to == "wandb": 414 | if not is_wandb_available(): 415 | raise ImportError("Make sure to install wandb if you want to use it for logging during training.") 416 | import wandb 417 | 418 | # Make one log on every process with the configuration for debugging. 419 | logging.basicConfig( 420 | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", 421 | datefmt="%m/%d/%Y %H:%M:%S", 422 | level=logging.INFO, 423 | ) 424 | logger.info(accelerator.state, main_process_only=False) 425 | if accelerator.is_local_main_process: 426 | datasets.utils.logging.set_verbosity_warning() 427 | transformers.utils.logging.set_verbosity_warning() 428 | diffusers.utils.logging.set_verbosity_info() 429 | else: 430 | datasets.utils.logging.set_verbosity_error() 431 | transformers.utils.logging.set_verbosity_error() 432 | diffusers.utils.logging.set_verbosity_error() 433 | 434 | # If passed along, set the training seed now. 435 | if args.seed is not None: 436 | set_seed(args.seed) 437 | 438 | # Handle the repository creation 439 | if accelerator.is_main_process: 440 | if args.push_to_hub: 441 | if args.hub_model_id is None: 442 | repo_name = get_full_repo_name(Path(args.output_dir).name, token=args.hub_token) 443 | else: 444 | repo_name = args.hub_model_id 445 | create_repo(repo_name, exist_ok=True, token=args.hub_token) 446 | repo = Repository(args.output_dir, clone_from=repo_name, token=args.hub_token) 447 | 448 | with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: 449 | if "step_*" not in gitignore: 450 | gitignore.write("step_*\n") 451 | if "epoch_*" not in gitignore: 452 | gitignore.write("epoch_*\n") 453 | elif args.output_dir is not None: 454 | os.makedirs(args.output_dir, exist_ok=True) 455 | 456 | # Load scheduler, tokenizer and models. 457 | noise_scheduler = DDPMScheduler.from_pretrained(args.pretrained_model_name_or_path, subfolder="scheduler") 458 | tokenizer = CLIPTokenizer.from_pretrained( 459 | args.pretrained_model_name_or_path, subfolder="tokenizer", revision=args.revision 460 | ) 461 | text_encoder = CLIPTextModel.from_pretrained( 462 | args.pretrained_model_name_or_path, subfolder="text_encoder", revision=args.revision 463 | ) 464 | vae = AutoencoderKL.from_pretrained(args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision) 465 | unet = UNet2DConditionModel.from_pretrained( 466 | args.pretrained_model_name_or_path, subfolder="unet", revision=args.non_ema_revision 467 | ) 468 | 469 | # InstructPix2Pix uses an additional image for conditioning. To accommodate that, 470 | # it uses 8 channels (instead of 4) in the first (conv) layer of the UNet. This UNet is 471 | # then fine-tuned on the custom InstructPix2Pix dataset. This modified UNet is initialized 472 | # from the pre-trained checkpoints. For the extra channels added to the first layer, they are 473 | # initialized to zero. 474 | if accelerator.is_main_process: 475 | logger.info("Initializing the InstructPix2Pix UNet from the pretrained UNet.") 476 | in_channels = 8 477 | out_channels = unet.conv_in.out_channels 478 | unet.register_to_config(in_channels=in_channels) 479 | 480 | with torch.no_grad(): 481 | new_conv_in = nn.Conv2d( 482 | in_channels, out_channels, unet.conv_in.kernel_size, unet.conv_in.stride, unet.conv_in.padding 483 | ) 484 | new_conv_in.weight.zero_() 485 | new_conv_in.weight[:, :4, :, :].copy_(unet.conv_in.weight) 486 | unet.conv_in = new_conv_in 487 | 488 | # Freeze vae and text_encoder 489 | vae.requires_grad_(False) 490 | text_encoder.requires_grad_(False) 491 | 492 | # Create EMA for the unet. 493 | if args.use_ema: 494 | ema_unet = EMAModel(unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config) 495 | 496 | if args.enable_xformers_memory_efficient_attention: 497 | if is_xformers_available(): 498 | import xformers 499 | 500 | xformers_version = version.parse(xformers.__version__) 501 | if xformers_version == version.parse("0.0.16"): 502 | logger.warn( 503 | "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." 504 | ) 505 | unet.enable_xformers_memory_efficient_attention() 506 | else: 507 | raise ValueError("xformers is not available. Make sure it is installed correctly") 508 | 509 | # `accelerate` 0.16.0 will have better support for customized saving 510 | if version.parse(accelerate.__version__) >= version.parse("0.16.0"): 511 | # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format 512 | def save_model_hook(models, weights, output_dir): 513 | if args.use_ema: 514 | ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) 515 | 516 | for i, model in enumerate(models): 517 | model.save_pretrained(os.path.join(output_dir, "unet")) 518 | 519 | # make sure to pop weight so that corresponding model is not saved again 520 | weights.pop() 521 | 522 | def load_model_hook(models, input_dir): 523 | if args.use_ema: 524 | load_model = EMAModel.from_pretrained(os.path.join(input_dir, "unet_ema"), UNet2DConditionModel) 525 | ema_unet.load_state_dict(load_model.state_dict()) 526 | ema_unet.to(accelerator.device) 527 | del load_model 528 | 529 | for i in range(len(models)): 530 | # pop models so that they are not loaded again 531 | model = models.pop() 532 | 533 | # load diffusers style into model 534 | load_model = UNet2DConditionModel.from_pretrained(input_dir, subfolder="unet") 535 | model.register_to_config(**load_model.config) 536 | 537 | model.load_state_dict(load_model.state_dict()) 538 | del load_model 539 | 540 | accelerator.register_save_state_pre_hook(save_model_hook) 541 | accelerator.register_load_state_pre_hook(load_model_hook) 542 | 543 | if args.gradient_checkpointing: 544 | unet.enable_gradient_checkpointing() 545 | 546 | # Enable TF32 for faster training on Ampere GPUs, 547 | # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices 548 | if args.allow_tf32: 549 | torch.backends.cuda.matmul.allow_tf32 = True 550 | 551 | if args.scale_lr: 552 | args.learning_rate = ( 553 | args.learning_rate * args.gradient_accumulation_steps * args.train_batch_size * accelerator.num_processes 554 | ) 555 | 556 | # Initialize the optimizer 557 | if args.use_8bit_adam: 558 | try: 559 | import bitsandbytes as bnb 560 | except ImportError: 561 | raise ImportError( 562 | "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" 563 | ) 564 | 565 | optimizer_cls = bnb.optim.AdamW8bit 566 | else: 567 | optimizer_cls = torch.optim.AdamW 568 | 569 | optimizer = optimizer_cls( 570 | unet.parameters(), 571 | lr=args.learning_rate, 572 | betas=(args.adam_beta1, args.adam_beta2), 573 | weight_decay=args.adam_weight_decay, 574 | eps=args.adam_epsilon, 575 | ) 576 | 577 | # Get the datasets: you can either provide your own training and evaluation files (see below) 578 | # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). 579 | 580 | # In distributed training, the load_dataset function guarantees that only one local process can concurrently 581 | # download the dataset. 582 | if args.dataset_name is not None: 583 | # Downloading and loading a dataset from the hub. 584 | dataset = load_dataset( 585 | args.dataset_name, 586 | args.dataset_config_name, 587 | cache_dir=args.cache_dir, 588 | ) 589 | else: 590 | data_files = {} 591 | if args.train_data_dir is not None: 592 | data_files["train"] = os.path.join(args.train_data_dir, "**") 593 | dataset = load_dataset( 594 | "imagefolder", 595 | data_files=data_files, 596 | cache_dir=args.cache_dir, 597 | ) 598 | # See more about loading custom images at 599 | # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder 600 | 601 | # Preprocessing the datasets. 602 | # We need to tokenize inputs and targets. 603 | column_names = dataset["train"].column_names 604 | 605 | # 6. Get the column names for input/target. 606 | dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) 607 | if args.original_image_column is None: 608 | original_image_column = dataset_columns[0] if dataset_columns is not None else column_names[0] 609 | else: 610 | original_image_column = args.original_image_column 611 | if original_image_column not in column_names: 612 | raise ValueError( 613 | f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" 614 | ) 615 | if args.edit_prompt_column is None: 616 | edit_prompt_column = dataset_columns[1] if dataset_columns is not None else column_names[1] 617 | else: 618 | edit_prompt_column = args.edit_prompt_column 619 | if edit_prompt_column not in column_names: 620 | raise ValueError( 621 | f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" 622 | ) 623 | if args.edited_image_column is None: 624 | edited_image_column = dataset_columns[2] if dataset_columns is not None else column_names[2] 625 | else: 626 | edited_image_column = args.edited_image_column 627 | if edited_image_column not in column_names: 628 | raise ValueError( 629 | f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" 630 | ) 631 | 632 | # Preprocessing the datasets. 633 | # We need to tokenize input captions and transform the images. 634 | def tokenize_captions(captions): 635 | inputs = tokenizer( 636 | captions, max_length=tokenizer.model_max_length, padding="max_length", truncation=True, return_tensors="pt" 637 | ) 638 | return inputs.input_ids 639 | 640 | # Preprocessing the datasets. 641 | train_transforms = transforms.Compose( 642 | [ 643 | transforms.CenterCrop(args.resolution) if args.center_crop else transforms.RandomCrop(args.resolution), 644 | transforms.RandomHorizontalFlip() if args.random_flip else transforms.Lambda(lambda x: x), 645 | ] 646 | ) 647 | 648 | def preprocess_images(examples): 649 | original_images = np.concatenate( 650 | [convert_to_np(image, args.resolution) for image in examples[original_image_column]] 651 | ) 652 | edited_images = np.concatenate( 653 | [convert_to_np(image, args.resolution) for image in examples[edited_image_column]] 654 | ) 655 | # We need to ensure that the original and the edited images undergo the same 656 | # augmentation transforms. 657 | images = np.concatenate([original_images, edited_images]) 658 | images = torch.tensor(images) 659 | images = 2 * (images / 255) - 1 660 | return train_transforms(images) 661 | 662 | def preprocess_train(examples): 663 | # Preprocess images. 664 | preprocessed_images = preprocess_images(examples) 665 | # Since the original and edited images were concatenated before 666 | # applying the transformations, we need to separate them and reshape 667 | # them accordingly. 668 | original_images, edited_images = preprocessed_images.chunk(2) 669 | original_images = original_images.reshape(-1, 3, args.resolution, args.resolution) 670 | edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) 671 | 672 | # Collate the preprocessed images into the `examples`. 673 | examples["original_pixel_values"] = original_images 674 | examples["edited_pixel_values"] = edited_images 675 | 676 | # Preprocess the captions. 677 | captions = [caption for caption in examples[edit_prompt_column]] 678 | examples["input_ids"] = tokenize_captions(captions) 679 | return examples 680 | 681 | with accelerator.main_process_first(): 682 | if args.max_train_samples is not None: 683 | dataset["train"] = dataset["train"].shuffle(seed=args.seed).select(range(args.max_train_samples)) 684 | # Set the training transforms 685 | train_dataset = dataset["train"].with_transform(preprocess_train) 686 | 687 | def collate_fn(examples): 688 | original_pixel_values = torch.stack([example["original_pixel_values"] for example in examples]) 689 | original_pixel_values = original_pixel_values.to(memory_format=torch.contiguous_format).float() 690 | edited_pixel_values = torch.stack([example["edited_pixel_values"] for example in examples]) 691 | edited_pixel_values = edited_pixel_values.to(memory_format=torch.contiguous_format).float() 692 | input_ids = torch.stack([example["input_ids"] for example in examples]) 693 | return { 694 | "original_pixel_values": original_pixel_values, 695 | "edited_pixel_values": edited_pixel_values, 696 | "input_ids": input_ids, 697 | } 698 | 699 | # DataLoaders creation: 700 | train_dataloader = torch.utils.data.DataLoader( 701 | train_dataset, 702 | shuffle=True, 703 | collate_fn=collate_fn, 704 | batch_size=args.train_batch_size, 705 | num_workers=args.dataloader_num_workers, 706 | ) 707 | 708 | # Scheduler and math around the number of training steps. 709 | overrode_max_train_steps = False 710 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) 711 | if args.max_train_steps is None: 712 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch 713 | overrode_max_train_steps = True 714 | 715 | lr_scheduler = get_scheduler( 716 | args.lr_scheduler, 717 | optimizer=optimizer, 718 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, 719 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, 720 | ) 721 | 722 | # Prepare everything with our `accelerator`. 723 | unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( 724 | unet, optimizer, train_dataloader, lr_scheduler 725 | ) 726 | 727 | if args.use_ema: 728 | ema_unet.to(accelerator.device) 729 | 730 | # For mixed precision training we cast the text_encoder and vae weights to half-precision 731 | # as these models are only used for inference, keeping weights in full precision is not required. 732 | weight_dtype = torch.float32 733 | if accelerator.mixed_precision == "fp16": 734 | weight_dtype = torch.float16 735 | elif accelerator.mixed_precision == "bf16": 736 | weight_dtype = torch.bfloat16 737 | 738 | # Move text_encode and vae to gpu and cast to weight_dtype 739 | text_encoder.to(accelerator.device, dtype=weight_dtype) 740 | vae.to(accelerator.device, dtype=weight_dtype) 741 | 742 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. 743 | num_update_steps_per_epoch = math.ceil(len(train_dataloader) / args.gradient_accumulation_steps) 744 | if overrode_max_train_steps: 745 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch 746 | # Afterwards we recalculate our number of training epochs 747 | args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) 748 | 749 | # We need to initialize the trackers we use, and also store our configuration. 750 | # The trackers initializes automatically on the main process. 751 | if accelerator.is_main_process: 752 | accelerator.init_trackers("instruct-pix2pix", config=vars(args)) 753 | 754 | # Train! 755 | total_batch_size = args.train_batch_size * accelerator.num_processes * args.gradient_accumulation_steps 756 | 757 | logger.info("***** Running training *****") 758 | logger.info(f" Num examples = {len(train_dataset)}") 759 | logger.info(f" Num Epochs = {args.num_train_epochs}") 760 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") 761 | logger.info(f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}") 762 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") 763 | logger.info(f" Total optimization steps = {args.max_train_steps}") 764 | global_step = 0 765 | first_epoch = 0 766 | 767 | # Potentially load in the weights and states from a previous save 768 | if args.resume_from_checkpoint: 769 | if args.resume_from_checkpoint != "latest": 770 | path = os.path.basename(args.resume_from_checkpoint) 771 | else: 772 | # Get the most recent checkpoint 773 | dirs = os.listdir(args.output_dir) 774 | dirs = [d for d in dirs if d.startswith("checkpoint")] 775 | dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) 776 | path = dirs[-1] if len(dirs) > 0 else None 777 | 778 | if path is None: 779 | accelerator.print( 780 | f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." 781 | ) 782 | args.resume_from_checkpoint = None 783 | else: 784 | accelerator.print(f"Resuming from checkpoint {path}") 785 | accelerator.load_state(os.path.join(args.output_dir, path)) 786 | global_step = int(path.split("-")[1]) 787 | 788 | resume_global_step = global_step * args.gradient_accumulation_steps 789 | first_epoch = global_step // num_update_steps_per_epoch 790 | resume_step = resume_global_step % (num_update_steps_per_epoch * args.gradient_accumulation_steps) 791 | 792 | # Only show the progress bar once on each machine. 793 | progress_bar = tqdm(range(global_step, args.max_train_steps), disable=not accelerator.is_local_main_process) 794 | progress_bar.set_description("Steps") 795 | 796 | for epoch in range(first_epoch, args.num_train_epochs): 797 | unet.train() 798 | train_loss = 0.0 799 | for step, batch in enumerate(train_dataloader): 800 | # Skip steps until we reach the resumed step 801 | if args.resume_from_checkpoint and epoch == first_epoch and step < resume_step: 802 | if step % args.gradient_accumulation_steps == 0: 803 | progress_bar.update(1) 804 | continue 805 | 806 | with accelerator.accumulate(unet): 807 | # We want to learn the denoising process w.r.t the edited images which 808 | # are conditioned on the original image (which was edited) and the edit instruction. 809 | # So, first, convert images to latent space. 810 | latents = vae.encode(batch["edited_pixel_values"].to(weight_dtype)).latent_dist.sample() 811 | latents = latents * vae.config.scaling_factor 812 | 813 | # Sample noise that we'll add to the latents 814 | noise = torch.randn_like(latents) 815 | bsz = latents.shape[0] 816 | # Sample a random timestep for each image 817 | timesteps = torch.randint(0, noise_scheduler.num_train_timesteps, (bsz,), device=latents.device) 818 | timesteps = timesteps.long() 819 | 820 | # Add noise to the latents according to the noise magnitude at each timestep 821 | # (this is the forward diffusion process) 822 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) 823 | 824 | # Get the text embedding for conditioning. 825 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] 826 | 827 | # Get the additional image embedding for conditioning. 828 | # Instead of getting a diagonal Gaussian here, we simply take the mode. 829 | original_image_embeds = vae.encode(batch["original_pixel_values"].to(weight_dtype)).latent_dist.mode() 830 | 831 | # Conditioning dropout to support classifier-free guidance during inference. For more details 832 | # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. 833 | if args.conditioning_dropout_prob is not None: 834 | random_p = torch.rand(bsz, device=latents.device, generator=generator) 835 | # Sample masks for the edit prompts. 836 | prompt_mask = random_p < 2 * args.conditioning_dropout_prob 837 | prompt_mask = prompt_mask.reshape(bsz, 1, 1) 838 | # Final text conditioning. 839 | null_conditioning = text_encoder(tokenize_captions([""]).to(accelerator.device))[0] 840 | encoder_hidden_states = torch.where(prompt_mask, null_conditioning, encoder_hidden_states) 841 | 842 | # Sample masks for the original images. 843 | image_mask_dtype = original_image_embeds.dtype 844 | image_mask = 1 - ( 845 | (random_p >= args.conditioning_dropout_prob).to(image_mask_dtype) 846 | * (random_p < 3 * args.conditioning_dropout_prob).to(image_mask_dtype) 847 | ) 848 | image_mask = image_mask.reshape(bsz, 1, 1, 1) 849 | # Final image conditioning. 850 | original_image_embeds = image_mask * original_image_embeds 851 | 852 | # Concatenate the `original_image_embeds` with the `noisy_latents`. 853 | concatenated_noisy_latents = torch.cat([noisy_latents, original_image_embeds], dim=1) 854 | 855 | # Get the target for loss depending on the prediction type 856 | if noise_scheduler.config.prediction_type == "epsilon": 857 | target = noise 858 | elif noise_scheduler.config.prediction_type == "v_prediction": 859 | target = noise_scheduler.get_velocity(latents, noise, timesteps) 860 | else: 861 | raise ValueError(f"Unknown prediction type {noise_scheduler.config.prediction_type}") 862 | 863 | # Predict the noise residual and compute loss 864 | model_pred = unet(concatenated_noisy_latents, timesteps, encoder_hidden_states).sample 865 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") 866 | 867 | # Gather the losses across all processes for logging (if we use distributed training). 868 | avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() 869 | train_loss += avg_loss.item() / args.gradient_accumulation_steps 870 | 871 | # Backpropagate 872 | accelerator.backward(loss) 873 | if accelerator.sync_gradients: 874 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) 875 | optimizer.step() 876 | lr_scheduler.step() 877 | optimizer.zero_grad() 878 | 879 | # Checks if the accelerator has performed an optimization step behind the scenes 880 | if accelerator.sync_gradients: 881 | if args.use_ema: 882 | ema_unet.step(unet.parameters()) 883 | progress_bar.update(1) 884 | global_step += 1 885 | accelerator.log({"train_loss": train_loss}, step=global_step) 886 | train_loss = 0.0 887 | 888 | if global_step % args.checkpointing_steps == 0: 889 | if accelerator.is_main_process: 890 | save_path = os.path.join(args.output_dir, f"checkpoint-{global_step}") 891 | accelerator.save_state(save_path) 892 | logger.info(f"Saved state to {save_path}") 893 | 894 | logs = {"step_loss": loss.detach().item(), "lr": lr_scheduler.get_last_lr()[0]} 895 | progress_bar.set_postfix(**logs) 896 | 897 | if global_step >= args.max_train_steps: 898 | break 899 | 900 | if accelerator.is_main_process: 901 | if ( 902 | (args.val_image_url is not None) 903 | and (args.validation_prompt is not None) 904 | and (epoch % args.validation_epochs == 0) 905 | ): 906 | logger.info( 907 | f"Running validation... \n Generating {args.num_validation_images} images with prompt:" 908 | f" {args.validation_prompt}." 909 | ) 910 | # create pipeline 911 | if args.use_ema: 912 | # Store the UNet parameters temporarily and load the EMA parameters to perform inference. 913 | ema_unet.store(unet.parameters()) 914 | ema_unet.copy_to(unet.parameters()) 915 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 916 | args.pretrained_model_name_or_path, 917 | unet=unet, 918 | revision=args.revision, 919 | torch_dtype=weight_dtype, 920 | ) 921 | pipeline = pipeline.to(accelerator.device) 922 | pipeline.set_progress_bar_config(disable=True) 923 | 924 | # run inference 925 | original_image = download_image(args.val_image_url) 926 | edited_images = [] 927 | with torch.autocast(str(accelerator.device), enabled=accelerator.mixed_precision == "fp16"): 928 | for _ in range(args.num_validation_images): 929 | edited_images.append( 930 | pipeline( 931 | args.validation_prompt, 932 | image=original_image, 933 | num_inference_steps=20, 934 | image_guidance_scale=1.5, 935 | guidance_scale=7, 936 | generator=generator, 937 | ).images[0] 938 | ) 939 | 940 | for tracker in accelerator.trackers: 941 | if tracker.name == "wandb": 942 | wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) 943 | for edited_image in edited_images: 944 | wandb_table.add_data( 945 | wandb.Image(original_image), wandb.Image(edited_image), args.validation_prompt 946 | ) 947 | tracker.log({"validation": wandb_table}) 948 | if args.use_ema: 949 | # Switch back to the original UNet parameters. 950 | ema_unet.restore(unet.parameters()) 951 | 952 | del pipeline 953 | torch.cuda.empty_cache() 954 | 955 | # Create the pipeline using the trained modules and save it. 956 | accelerator.wait_for_everyone() 957 | if accelerator.is_main_process: 958 | unet = accelerator.unwrap_model(unet) 959 | if args.use_ema: 960 | ema_unet.copy_to(unet.parameters()) 961 | 962 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 963 | args.pretrained_model_name_or_path, 964 | text_encoder=accelerator.unwrap_model(text_encoder), 965 | vae=accelerator.unwrap_model(vae), 966 | unet=unet, 967 | revision=args.revision, 968 | ) 969 | pipeline.save_pretrained(args.output_dir) 970 | 971 | if args.push_to_hub: 972 | repo.push_to_hub(commit_message="End of training", blocking=False, auto_lfs_prune=True) 973 | 974 | accelerator.end_training() 975 | 976 | 977 | if __name__ == "__main__": 978 | main() 979 | -------------------------------------------------------------------------------- /finetune_instruct_pix2pix.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python 2 | # coding=utf-8 3 | # Copyright 2023 The HuggingFace Inc. team. All rights reserved. 4 | # 5 | # Licensed under the Apache License, Version 2.0 (the "License"); 6 | # you may not use this file except in compliance with the License. 7 | # You may obtain a copy of the License at 8 | # 9 | # http://www.apache.org/licenses/LICENSE-2.0 10 | # 11 | # Unless required by applicable law or agreed to in writing, software 12 | # distributed under the License is distributed on an "AS IS" BASIS, 13 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 14 | # See the License for the specific language governing permissions and 15 | # limitations under the License. 16 | 17 | """Script to fine-tune InstructPix2Pix.""" 18 | 19 | import argparse 20 | import logging 21 | import math 22 | import os 23 | from pathlib import Path 24 | from typing import Optional 25 | 26 | import accelerate 27 | import datasets 28 | import diffusers 29 | import numpy as np 30 | import PIL 31 | import requests 32 | import torch 33 | import torch.nn.functional as F 34 | import torch.utils.checkpoint 35 | import transformers 36 | from accelerate import Accelerator 37 | from accelerate.logging import get_logger 38 | from accelerate.utils import ProjectConfiguration, set_seed 39 | from datasets import load_dataset 40 | from diffusers import (AutoencoderKL, DDPMScheduler, 41 | StableDiffusionInstructPix2PixPipeline, 42 | UNet2DConditionModel) 43 | from diffusers.optimization import get_scheduler 44 | from diffusers.training_utils import EMAModel 45 | from diffusers.utils import check_min_version, deprecate, is_wandb_available 46 | from diffusers.utils.import_utils import is_xformers_available 47 | from huggingface_hub import HfFolder, Repository, create_repo, whoami 48 | from packaging import version 49 | from torchvision import transforms 50 | from tqdm.auto import tqdm 51 | from transformers import CLIPTextModel, CLIPTokenizer 52 | 53 | # Will error if the minimal version of diffusers is not installed. Remove at your own risks. 54 | check_min_version("0.15.0.dev0") 55 | 56 | logger = get_logger(__name__, log_level="INFO") 57 | 58 | DATASET_NAME_MAPPING = { 59 | "sayakpaul/cartoonizer-dataset": ( 60 | "original_image", 61 | "edit_prompt", 62 | "cartoonized_image", 63 | ), 64 | } 65 | WANDB_TABLE_COL_NAMES = ["original_image", "edited_image", "edit_prompt"] 66 | 67 | 68 | def parse_args(): 69 | parser = argparse.ArgumentParser( 70 | description="Simple example of a training script for InstructPix2Pix." 71 | ) 72 | parser.add_argument( 73 | "--pretrained_model_name_or_path", 74 | type=str, 75 | default=None, 76 | required=True, 77 | help="Path to pretrained model or model identifier from huggingface.co/models.", 78 | ) 79 | parser.add_argument( 80 | "--revision", 81 | type=str, 82 | default=None, 83 | required=False, 84 | help="Revision of pretrained model identifier from huggingface.co/models.", 85 | ) 86 | parser.add_argument( 87 | "--dataset_name", 88 | type=str, 89 | default=None, 90 | help=( 91 | "The name of the Dataset (from the HuggingFace hub) to train on (could be your own, possibly private," 92 | " dataset). It can also be a path pointing to a local copy of a dataset in your filesystem," 93 | " or to a folder containing files that 🤗 Datasets can understand." 94 | ), 95 | ) 96 | parser.add_argument( 97 | "--dataset_config_name", 98 | type=str, 99 | default=None, 100 | help="The config of the Dataset, leave as None if there's only one config.", 101 | ) 102 | parser.add_argument( 103 | "--train_data_dir", 104 | type=str, 105 | default=None, 106 | help=( 107 | "A folder containing the training data. Folder contents must follow the structure described in" 108 | " https://huggingface.co/docs/datasets/image_dataset#imagefolder. In particular, a `metadata.jsonl` file" 109 | " must exist to provide the captions for the images. Ignored if `dataset_name` is specified." 110 | ), 111 | ) 112 | parser.add_argument( 113 | "--original_image_column", 114 | type=str, 115 | default="original_image", 116 | help="The column of the dataset containing the original image on which edits where made.", 117 | ) 118 | parser.add_argument( 119 | "--edited_image_column", 120 | type=str, 121 | default="cartoonized_image", 122 | help="The column of the dataset containing the edited image.", 123 | ) 124 | parser.add_argument( 125 | "--edit_prompt_column", 126 | type=str, 127 | default="edit_prompt", 128 | help="The column of the dataset containing the edit instruction.", 129 | ) 130 | parser.add_argument( 131 | "--val_image_url", 132 | type=str, 133 | default=None, 134 | help="URL to the original image that you would like to edit (used during inference for debugging purposes).", 135 | ) 136 | parser.add_argument( 137 | "--validation_prompt", 138 | type=str, 139 | default=None, 140 | help="A prompt that is sampled during training for inference.", 141 | ) 142 | parser.add_argument( 143 | "--num_validation_images", 144 | type=int, 145 | default=4, 146 | help="Number of images that should be generated during validation with `validation_prompt`.", 147 | ) 148 | parser.add_argument( 149 | "--validation_epochs", 150 | type=int, 151 | default=1, 152 | help=( 153 | "Run fine-tuning validation every X epochs. The validation process consists of running the prompt" 154 | " `args.validation_prompt` multiple times: `args.num_validation_images`." 155 | ), 156 | ) 157 | parser.add_argument( 158 | "--max_train_samples", 159 | type=int, 160 | default=None, 161 | help=( 162 | "For debugging purposes or quicker training, truncate the number of training examples to this " 163 | "value if set." 164 | ), 165 | ) 166 | parser.add_argument( 167 | "--output_dir", 168 | type=str, 169 | default="instruct-pix2pix-model", 170 | help="The output directory where the model predictions and checkpoints will be written.", 171 | ) 172 | parser.add_argument( 173 | "--cache_dir", 174 | type=str, 175 | default=None, 176 | help="The directory where the downloaded models and datasets will be stored.", 177 | ) 178 | parser.add_argument( 179 | "--seed", type=int, default=None, help="A seed for reproducible training." 180 | ) 181 | parser.add_argument( 182 | "--resolution", 183 | type=int, 184 | default=256, 185 | help=( 186 | "The resolution for input images, all the images in the train/validation dataset will be resized to this" 187 | " resolution" 188 | ), 189 | ) 190 | parser.add_argument( 191 | "--center_crop", 192 | default=False, 193 | action="store_true", 194 | help=( 195 | "Whether to center crop the input images to the resolution. If not set, the images will be randomly" 196 | " cropped. The images will be resized to the resolution first before cropping." 197 | ), 198 | ) 199 | parser.add_argument( 200 | "--random_flip", 201 | action="store_true", 202 | help="whether to randomly flip images horizontally", 203 | ) 204 | parser.add_argument( 205 | "--train_batch_size", 206 | type=int, 207 | default=16, 208 | help="Batch size (per device) for the training dataloader.", 209 | ) 210 | parser.add_argument("--num_train_epochs", type=int, default=100) 211 | parser.add_argument( 212 | "--max_train_steps", 213 | type=int, 214 | default=None, 215 | help="Total number of training steps to perform. If provided, overrides num_train_epochs.", 216 | ) 217 | parser.add_argument( 218 | "--gradient_accumulation_steps", 219 | type=int, 220 | default=1, 221 | help="Number of updates steps to accumulate before performing a backward/update pass.", 222 | ) 223 | parser.add_argument( 224 | "--gradient_checkpointing", 225 | action="store_true", 226 | help="Whether or not to use gradient checkpointing to save memory at the expense of slower backward pass.", 227 | ) 228 | parser.add_argument( 229 | "--learning_rate", 230 | type=float, 231 | default=1e-4, 232 | help="Initial learning rate (after the potential warmup period) to use.", 233 | ) 234 | parser.add_argument( 235 | "--scale_lr", 236 | action="store_true", 237 | default=False, 238 | help="Scale the learning rate by the number of GPUs, gradient accumulation steps, and batch size.", 239 | ) 240 | parser.add_argument( 241 | "--lr_scheduler", 242 | type=str, 243 | default="constant", 244 | help=( 245 | 'The scheduler type to use. Choose between ["linear", "cosine", "cosine_with_restarts", "polynomial",' 246 | ' "constant", "constant_with_warmup"]' 247 | ), 248 | ) 249 | parser.add_argument( 250 | "--lr_warmup_steps", 251 | type=int, 252 | default=500, 253 | help="Number of steps for the warmup in the lr scheduler.", 254 | ) 255 | parser.add_argument( 256 | "--conditioning_dropout_prob", 257 | type=float, 258 | default=None, 259 | help="Conditioning dropout probability. Drops out the conditionings (image and edit prompt) used in training InstructPix2Pix. See section 3.2.1 in the paper: https://arxiv.org/abs/2211.09800.", 260 | ) 261 | parser.add_argument( 262 | "--use_8bit_adam", 263 | action="store_true", 264 | help="Whether or not to use 8-bit Adam from bitsandbytes.", 265 | ) 266 | parser.add_argument( 267 | "--allow_tf32", 268 | action="store_true", 269 | help=( 270 | "Whether or not to allow TF32 on Ampere GPUs. Can be used to speed up training. For more information, see" 271 | " https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices" 272 | ), 273 | ) 274 | parser.add_argument( 275 | "--use_ema", action="store_true", help="Whether to use EMA model." 276 | ) 277 | parser.add_argument( 278 | "--non_ema_revision", 279 | type=str, 280 | default=None, 281 | required=False, 282 | help=( 283 | "Revision of pretrained non-ema model identifier. Must be a branch, tag or git identifier of the local or" 284 | " remote repository specified with --pretrained_model_name_or_path." 285 | ), 286 | ) 287 | parser.add_argument( 288 | "--dataloader_num_workers", 289 | type=int, 290 | default=0, 291 | help=( 292 | "Number of subprocesses to use for data loading. 0 means that the data will be loaded in the main process." 293 | ), 294 | ) 295 | parser.add_argument( 296 | "--adam_beta1", 297 | type=float, 298 | default=0.9, 299 | help="The beta1 parameter for the Adam optimizer.", 300 | ) 301 | parser.add_argument( 302 | "--adam_beta2", 303 | type=float, 304 | default=0.999, 305 | help="The beta2 parameter for the Adam optimizer.", 306 | ) 307 | parser.add_argument( 308 | "--adam_weight_decay", type=float, default=1e-2, help="Weight decay to use." 309 | ) 310 | parser.add_argument( 311 | "--adam_epsilon", 312 | type=float, 313 | default=1e-08, 314 | help="Epsilon value for the Adam optimizer", 315 | ) 316 | parser.add_argument( 317 | "--max_grad_norm", default=1.0, type=float, help="Max gradient norm." 318 | ) 319 | parser.add_argument( 320 | "--push_to_hub", 321 | action="store_true", 322 | help="Whether or not to push the model to the Hub.", 323 | ) 324 | parser.add_argument( 325 | "--hub_token", 326 | type=str, 327 | default=None, 328 | help="The token to use to push to the Model Hub.", 329 | ) 330 | parser.add_argument( 331 | "--hub_model_id", 332 | type=str, 333 | default=None, 334 | help="The name of the repository to keep in sync with the local `output_dir`.", 335 | ) 336 | parser.add_argument( 337 | "--logging_dir", 338 | type=str, 339 | default="logs", 340 | help=( 341 | "[TensorBoard](https://www.tensorflow.org/tensorboard) log directory. Will default to" 342 | " *output_dir/runs/**CURRENT_DATETIME_HOSTNAME***." 343 | ), 344 | ) 345 | parser.add_argument( 346 | "--mixed_precision", 347 | type=str, 348 | default=None, 349 | choices=["no", "fp16", "bf16"], 350 | help=( 351 | "Whether to use mixed precision. Choose between fp16 and bf16 (bfloat16). Bf16 requires PyTorch >=" 352 | " 1.10.and an Nvidia Ampere GPU. Default to the value of accelerate config of the current system or the" 353 | " flag passed with the `accelerate.launch` command. Use this argument to override the accelerate config." 354 | ), 355 | ) 356 | parser.add_argument( 357 | "--report_to", 358 | type=str, 359 | default="tensorboard", 360 | help=( 361 | 'The integration to report the results and logs to. Supported platforms are `"tensorboard"`' 362 | ' (default), `"wandb"` and `"comet_ml"`. Use `"all"` to report to all integrations.' 363 | ), 364 | ) 365 | parser.add_argument( 366 | "--local_rank", 367 | type=int, 368 | default=-1, 369 | help="For distributed training: local_rank", 370 | ) 371 | parser.add_argument( 372 | "--checkpointing_steps", 373 | type=int, 374 | default=500, 375 | help=( 376 | "Save a checkpoint of the training state every X updates. These checkpoints are only suitable for resuming" 377 | " training using `--resume_from_checkpoint`." 378 | ), 379 | ) 380 | parser.add_argument( 381 | "--checkpoints_total_limit", 382 | type=int, 383 | default=None, 384 | help=( 385 | "Max number of checkpoints to store. Passed as `total_limit` to the `Accelerator` `ProjectConfiguration`." 386 | " See Accelerator::save_state https://huggingface.co/docs/accelerate/package_reference/accelerator#accelerate.Accelerator.save_state" 387 | " for more docs" 388 | ), 389 | ) 390 | parser.add_argument( 391 | "--resume_from_checkpoint", 392 | type=str, 393 | default=None, 394 | help=( 395 | "Whether training should be resumed from a previous checkpoint. Use a path saved by" 396 | ' `--checkpointing_steps`, or `"latest"` to automatically select the last available checkpoint.' 397 | ), 398 | ) 399 | parser.add_argument( 400 | "--enable_xformers_memory_efficient_attention", 401 | action="store_true", 402 | help="Whether or not to use xformers.", 403 | ) 404 | 405 | args = parser.parse_args() 406 | env_local_rank = int(os.environ.get("LOCAL_RANK", -1)) 407 | if env_local_rank != -1 and env_local_rank != args.local_rank: 408 | args.local_rank = env_local_rank 409 | 410 | # Sanity checks 411 | if args.dataset_name is None and args.train_data_dir is None: 412 | raise ValueError("Need either a dataset name or a training folder.") 413 | 414 | # default to using the same revision for the non-ema model if not specified 415 | if args.non_ema_revision is None: 416 | args.non_ema_revision = args.revision 417 | 418 | return args 419 | 420 | 421 | def get_full_repo_name( 422 | model_id: str, organization: Optional[str] = None, token: Optional[str] = None 423 | ): 424 | if token is None: 425 | token = HfFolder.get_token() 426 | if organization is None: 427 | username = whoami(token)["name"] 428 | return f"{username}/{model_id}" 429 | else: 430 | return f"{organization}/{model_id}" 431 | 432 | 433 | def convert_to_np(image, resolution): 434 | image = image.convert("RGB").resize((resolution, resolution)) 435 | return np.array(image).transpose(2, 0, 1) 436 | 437 | 438 | def download_image(url): 439 | image = PIL.Image.open(requests.get(url, stream=True).raw) 440 | image = PIL.ImageOps.exif_transpose(image) 441 | image = image.convert("RGB") 442 | return image 443 | 444 | 445 | def main(): 446 | args = parse_args() 447 | 448 | if args.non_ema_revision is not None: 449 | deprecate( 450 | "non_ema_revision!=None", 451 | "0.15.0", 452 | message=( 453 | "Downloading 'non_ema' weights from revision branches of the Hub is deprecated. Please make sure to" 454 | " use `--variant=non_ema` instead." 455 | ), 456 | ) 457 | logging_dir = os.path.join(args.output_dir, args.logging_dir) 458 | accelerator_project_config = ProjectConfiguration( 459 | total_limit=args.checkpoints_total_limit, logging_dir=logging_dir 460 | ) 461 | accelerator = Accelerator( 462 | gradient_accumulation_steps=args.gradient_accumulation_steps, 463 | mixed_precision=args.mixed_precision, 464 | log_with=args.report_to, 465 | project_config=accelerator_project_config, 466 | ) 467 | 468 | generator = torch.Generator(device=accelerator.device).manual_seed(args.seed) 469 | 470 | if args.report_to == "wandb": 471 | if not is_wandb_available(): 472 | raise ImportError( 473 | "Make sure to install wandb if you want to use it for logging during training." 474 | ) 475 | import wandb 476 | 477 | # Make one log on every process with the configuration for debugging. 478 | logging.basicConfig( 479 | format="%(asctime)s - %(levelname)s - %(name)s - %(message)s", 480 | datefmt="%m/%d/%Y %H:%M:%S", 481 | level=logging.INFO, 482 | ) 483 | logger.info(accelerator.state, main_process_only=False) 484 | if accelerator.is_local_main_process: 485 | datasets.utils.logging.set_verbosity_warning() 486 | transformers.utils.logging.set_verbosity_warning() 487 | diffusers.utils.logging.set_verbosity_info() 488 | else: 489 | datasets.utils.logging.set_verbosity_error() 490 | transformers.utils.logging.set_verbosity_error() 491 | diffusers.utils.logging.set_verbosity_error() 492 | 493 | # If passed along, set the training seed now. 494 | if args.seed is not None: 495 | set_seed(args.seed) 496 | 497 | # Handle the repository creation 498 | if accelerator.is_main_process: 499 | if args.push_to_hub: 500 | if args.hub_model_id is None: 501 | repo_name = get_full_repo_name( 502 | Path(args.output_dir).name, token=args.hub_token 503 | ) 504 | else: 505 | repo_name = args.hub_model_id 506 | create_repo(repo_name, exist_ok=True, token=args.hub_token) 507 | repo = Repository( 508 | args.output_dir, clone_from=repo_name, token=args.hub_token 509 | ) 510 | 511 | with open(os.path.join(args.output_dir, ".gitignore"), "w+") as gitignore: 512 | if "step_*" not in gitignore: 513 | gitignore.write("step_*\n") 514 | if "checkpoint-*" not in gitignore: 515 | gitignore.write("checkpoint-*\n") 516 | if "checkpoint-*" not in gitignore: 517 | gitignore.write("checkpoint-*\n") 518 | 519 | elif args.output_dir is not None: 520 | os.makedirs(args.output_dir, exist_ok=True) 521 | 522 | # Load scheduler, tokenizer and models. 523 | noise_scheduler = DDPMScheduler.from_pretrained( 524 | args.pretrained_model_name_or_path, subfolder="scheduler" 525 | ) 526 | tokenizer = CLIPTokenizer.from_pretrained( 527 | args.pretrained_model_name_or_path, 528 | subfolder="tokenizer", 529 | revision=args.revision, 530 | ) 531 | text_encoder = CLIPTextModel.from_pretrained( 532 | args.pretrained_model_name_or_path, 533 | subfolder="text_encoder", 534 | revision=args.revision, 535 | ) 536 | vae = AutoencoderKL.from_pretrained( 537 | args.pretrained_model_name_or_path, subfolder="vae", revision=args.revision 538 | ) 539 | unet = UNet2DConditionModel.from_pretrained( 540 | args.pretrained_model_name_or_path, 541 | subfolder="unet", 542 | revision=args.non_ema_revision, 543 | ) 544 | 545 | # Freeze vae and text_encoder 546 | vae.requires_grad_(False) 547 | text_encoder.requires_grad_(False) 548 | 549 | # Create EMA for the unet. 550 | if args.use_ema: 551 | ema_unet = EMAModel( 552 | unet.parameters(), model_cls=UNet2DConditionModel, model_config=unet.config 553 | ) 554 | 555 | if args.enable_xformers_memory_efficient_attention: 556 | if is_xformers_available(): 557 | import xformers 558 | 559 | xformers_version = version.parse(xformers.__version__) 560 | if xformers_version == version.parse("0.0.16"): 561 | logger.warn( 562 | "xFormers 0.0.16 cannot be used for training in some GPUs. If you observe problems during training, please update xFormers to at least 0.0.17. See https://huggingface.co/docs/diffusers/main/en/optimization/xformers for more details." 563 | ) 564 | unet.enable_xformers_memory_efficient_attention() 565 | else: 566 | raise ValueError( 567 | "xformers is not available. Make sure it is installed correctly" 568 | ) 569 | 570 | # `accelerate` 0.16.0 will have better support for customized saving 571 | if version.parse(accelerate.__version__) >= version.parse("0.16.0"): 572 | # create custom saving & loading hooks so that `accelerator.save_state(...)` serializes in a nice format 573 | def save_model_hook(models, weights, output_dir): 574 | if args.use_ema: 575 | ema_unet.save_pretrained(os.path.join(output_dir, "unet_ema")) 576 | 577 | for i, model in enumerate(models): 578 | model.save_pretrained(os.path.join(output_dir, "unet")) 579 | 580 | # make sure to pop weight so that corresponding model is not saved again 581 | weights.pop() 582 | 583 | def load_model_hook(models, input_dir): 584 | if args.use_ema: 585 | load_model = EMAModel.from_pretrained( 586 | os.path.join(input_dir, "unet_ema"), UNet2DConditionModel 587 | ) 588 | ema_unet.load_state_dict(load_model.state_dict()) 589 | ema_unet.to(accelerator.device) 590 | del load_model 591 | 592 | for i in range(len(models)): 593 | # pop models so that they are not loaded again 594 | model = models.pop() 595 | 596 | # load diffusers style into model 597 | load_model = UNet2DConditionModel.from_pretrained( 598 | input_dir, subfolder="unet" 599 | ) 600 | model.register_to_config(**load_model.config) 601 | 602 | model.load_state_dict(load_model.state_dict()) 603 | del load_model 604 | 605 | accelerator.register_save_state_pre_hook(save_model_hook) 606 | accelerator.register_load_state_pre_hook(load_model_hook) 607 | 608 | if args.gradient_checkpointing: 609 | unet.enable_gradient_checkpointing() 610 | 611 | # Enable TF32 for faster training on Ampere GPUs, 612 | # cf https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices 613 | if args.allow_tf32: 614 | torch.backends.cuda.matmul.allow_tf32 = True 615 | 616 | if args.scale_lr: 617 | args.learning_rate = ( 618 | args.learning_rate 619 | * args.gradient_accumulation_steps 620 | * args.train_batch_size 621 | * accelerator.num_processes 622 | ) 623 | 624 | # Initialize the optimizer 625 | if args.use_8bit_adam: 626 | try: 627 | import bitsandbytes as bnb 628 | except ImportError: 629 | raise ImportError( 630 | "Please install bitsandbytes to use 8-bit Adam. You can do so by running `pip install bitsandbytes`" 631 | ) 632 | 633 | optimizer_cls = bnb.optim.AdamW8bit 634 | else: 635 | optimizer_cls = torch.optim.AdamW 636 | 637 | optimizer = optimizer_cls( 638 | unet.parameters(), 639 | lr=args.learning_rate, 640 | betas=(args.adam_beta1, args.adam_beta2), 641 | weight_decay=args.adam_weight_decay, 642 | eps=args.adam_epsilon, 643 | ) 644 | 645 | # Get the datasets: you can either provide your own training and evaluation files (see below) 646 | # or specify a Dataset from the hub (the dataset will be downloaded automatically from the datasets Hub). 647 | 648 | # In distributed training, the load_dataset function guarantees that only one local process can concurrently 649 | # download the dataset. 650 | if args.dataset_name is not None: 651 | # Downloading and loading a dataset from the hub. 652 | dataset = load_dataset( 653 | args.dataset_name, 654 | args.dataset_config_name, 655 | cache_dir=args.cache_dir, 656 | use_auth_token=True, 657 | ) 658 | else: 659 | data_files = {} 660 | if args.train_data_dir is not None: 661 | data_files["train"] = os.path.join(args.train_data_dir, "**") 662 | dataset = load_dataset( 663 | "imagefolder", 664 | data_files=data_files, 665 | cache_dir=args.cache_dir, 666 | ) 667 | # See more about loading custom images at 668 | # https://huggingface.co/docs/datasets/main/en/image_load#imagefolder 669 | 670 | # Preprocessing the datasets. 671 | # We need to tokenize inputs and targets. 672 | column_names = dataset["train"].column_names 673 | 674 | # 6. Get the column names for input/target. 675 | dataset_columns = DATASET_NAME_MAPPING.get(args.dataset_name, None) 676 | if args.original_image_column is None: 677 | original_image_column = ( 678 | dataset_columns[0] if dataset_columns is not None else column_names[0] 679 | ) 680 | else: 681 | original_image_column = args.original_image_column 682 | if original_image_column not in column_names: 683 | raise ValueError( 684 | f"--original_image_column' value '{args.original_image_column}' needs to be one of: {', '.join(column_names)}" 685 | ) 686 | if args.edit_prompt_column is None: 687 | edit_prompt_column = ( 688 | dataset_columns[1] if dataset_columns is not None else column_names[1] 689 | ) 690 | else: 691 | edit_prompt_column = args.edit_prompt_column 692 | if edit_prompt_column not in column_names: 693 | raise ValueError( 694 | f"--edit_prompt_column' value '{args.edit_prompt_column}' needs to be one of: {', '.join(column_names)}" 695 | ) 696 | if args.edited_image_column is None: 697 | edited_image_column = ( 698 | dataset_columns[2] if dataset_columns is not None else column_names[2] 699 | ) 700 | else: 701 | edited_image_column = args.edited_image_column 702 | if edited_image_column not in column_names: 703 | raise ValueError( 704 | f"--edited_image_column' value '{args.edited_image_column}' needs to be one of: {', '.join(column_names)}" 705 | ) 706 | 707 | # Preprocessing the datasets. 708 | # We need to tokenize input captions and transform the images. 709 | def tokenize_captions(captions): 710 | inputs = tokenizer( 711 | captions, 712 | max_length=tokenizer.model_max_length, 713 | padding="max_length", 714 | truncation=True, 715 | return_tensors="pt", 716 | ) 717 | return inputs.input_ids 718 | 719 | # Preprocessing the datasets. 720 | train_transforms = transforms.Compose( 721 | [ 722 | transforms.CenterCrop(args.resolution) 723 | if args.center_crop 724 | else transforms.RandomCrop(args.resolution), 725 | transforms.RandomHorizontalFlip() 726 | if args.random_flip 727 | else transforms.Lambda(lambda x: x), 728 | ] 729 | ) 730 | 731 | def preprocess_images(examples): 732 | original_images = np.concatenate( 733 | [ 734 | convert_to_np(image, args.resolution) 735 | for image in examples[original_image_column] 736 | ] 737 | ) 738 | edited_images = np.concatenate( 739 | [ 740 | convert_to_np(image, args.resolution) 741 | for image in examples[edited_image_column] 742 | ] 743 | ) 744 | # We need to ensure that the original and the edited images undergo the same 745 | # augmentation transforms. 746 | images = np.concatenate([original_images, edited_images]) 747 | images = torch.tensor(images) 748 | images = 2 * (images / 255) - 1 749 | return train_transforms(images) 750 | 751 | def preprocess_train(examples): 752 | # Preprocess images. 753 | preprocessed_images = preprocess_images(examples) 754 | # Since the original and edited images were concatenated before 755 | # applying the transformations, we need to separate them and reshape 756 | # them accordingly. 757 | original_images, edited_images = preprocessed_images.chunk(2) 758 | original_images = original_images.reshape( 759 | -1, 3, args.resolution, args.resolution 760 | ) 761 | edited_images = edited_images.reshape(-1, 3, args.resolution, args.resolution) 762 | 763 | # Collate the preprocessed images into the `examples`. 764 | examples["original_pixel_values"] = original_images 765 | examples["edited_pixel_values"] = edited_images 766 | 767 | # Preprocess the captions. 768 | captions = [caption for caption in examples[edit_prompt_column]] 769 | examples["input_ids"] = tokenize_captions(captions) 770 | return examples 771 | 772 | with accelerator.main_process_first(): 773 | if args.max_train_samples is not None: 774 | dataset["train"] = ( 775 | dataset["train"] 776 | .shuffle(seed=args.seed) 777 | .select(range(args.max_train_samples)) 778 | ) 779 | # Set the training transforms 780 | train_dataset = dataset["train"].with_transform(preprocess_train) 781 | 782 | def collate_fn(examples): 783 | original_pixel_values = torch.stack( 784 | [example["original_pixel_values"] for example in examples] 785 | ) 786 | original_pixel_values = original_pixel_values.to( 787 | memory_format=torch.contiguous_format 788 | ).float() 789 | edited_pixel_values = torch.stack( 790 | [example["edited_pixel_values"] for example in examples] 791 | ) 792 | edited_pixel_values = edited_pixel_values.to( 793 | memory_format=torch.contiguous_format 794 | ).float() 795 | input_ids = torch.stack([example["input_ids"] for example in examples]) 796 | return { 797 | "original_pixel_values": original_pixel_values, 798 | "edited_pixel_values": edited_pixel_values, 799 | "input_ids": input_ids, 800 | } 801 | 802 | # DataLoaders creation: 803 | train_dataloader = torch.utils.data.DataLoader( 804 | train_dataset, 805 | shuffle=True, 806 | collate_fn=collate_fn, 807 | batch_size=args.train_batch_size, 808 | num_workers=args.dataloader_num_workers, 809 | ) 810 | 811 | # Scheduler and math around the number of training steps. 812 | overrode_max_train_steps = False 813 | num_update_steps_per_epoch = math.ceil( 814 | len(train_dataloader) / args.gradient_accumulation_steps 815 | ) 816 | if args.max_train_steps is None: 817 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch 818 | overrode_max_train_steps = True 819 | 820 | lr_scheduler = get_scheduler( 821 | args.lr_scheduler, 822 | optimizer=optimizer, 823 | num_warmup_steps=args.lr_warmup_steps * args.gradient_accumulation_steps, 824 | num_training_steps=args.max_train_steps * args.gradient_accumulation_steps, 825 | ) 826 | 827 | # Prepare everything with our `accelerator`. 828 | unet, optimizer, train_dataloader, lr_scheduler = accelerator.prepare( 829 | unet, optimizer, train_dataloader, lr_scheduler 830 | ) 831 | 832 | if args.use_ema: 833 | ema_unet.to(accelerator.device) 834 | 835 | # For mixed precision training we cast the text_encoder and vae weights to half-precision 836 | # as these models are only used for inference, keeping weights in full precision is not required. 837 | weight_dtype = torch.float32 838 | if accelerator.mixed_precision == "fp16": 839 | weight_dtype = torch.float16 840 | elif accelerator.mixed_precision == "bf16": 841 | weight_dtype = torch.bfloat16 842 | 843 | # Move text_encode and vae to gpu and cast to weight_dtype 844 | text_encoder.to(accelerator.device, dtype=weight_dtype) 845 | vae.to(accelerator.device, dtype=weight_dtype) 846 | 847 | # We need to recalculate our total training steps as the size of the training dataloader may have changed. 848 | num_update_steps_per_epoch = math.ceil( 849 | len(train_dataloader) / args.gradient_accumulation_steps 850 | ) 851 | if overrode_max_train_steps: 852 | args.max_train_steps = args.num_train_epochs * num_update_steps_per_epoch 853 | # Afterwards we recalculate our number of training epochs 854 | args.num_train_epochs = math.ceil(args.max_train_steps / num_update_steps_per_epoch) 855 | 856 | # We need to initialize the trackers we use, and also store our configuration. 857 | # The trackers initializes automatically on the main process. 858 | if accelerator.is_main_process: 859 | accelerator.init_trackers("instruct-pix2pix-cartoonizer", config=vars(args)) 860 | 861 | # Train! 862 | total_batch_size = ( 863 | args.train_batch_size 864 | * accelerator.num_processes 865 | * args.gradient_accumulation_steps 866 | ) 867 | 868 | logger.info("***** Running training *****") 869 | logger.info(f" Num examples = {len(train_dataset)}") 870 | logger.info(f" Num Epochs = {args.num_train_epochs}") 871 | logger.info(f" Instantaneous batch size per device = {args.train_batch_size}") 872 | logger.info( 873 | f" Total train batch size (w. parallel, distributed & accumulation) = {total_batch_size}" 874 | ) 875 | logger.info(f" Gradient Accumulation steps = {args.gradient_accumulation_steps}") 876 | logger.info(f" Total optimization steps = {args.max_train_steps}") 877 | global_step = 0 878 | first_epoch = 0 879 | 880 | # Potentially load in the weights and states from a previous save 881 | if args.resume_from_checkpoint: 882 | if args.resume_from_checkpoint != "latest": 883 | path = os.path.basename(args.resume_from_checkpoint) 884 | else: 885 | # Get the most recent checkpoint 886 | dirs = os.listdir(args.output_dir) 887 | dirs = [d for d in dirs if d.startswith("checkpoint")] 888 | dirs = sorted(dirs, key=lambda x: int(x.split("-")[1])) 889 | path = dirs[-1] if len(dirs) > 0 else None 890 | 891 | if path is None: 892 | accelerator.print( 893 | f"Checkpoint '{args.resume_from_checkpoint}' does not exist. Starting a new training run." 894 | ) 895 | args.resume_from_checkpoint = None 896 | else: 897 | accelerator.print(f"Resuming from checkpoint {path}") 898 | accelerator.load_state(os.path.join(args.output_dir, path)) 899 | global_step = int(path.split("-")[1]) 900 | 901 | resume_global_step = global_step * args.gradient_accumulation_steps 902 | first_epoch = global_step // num_update_steps_per_epoch 903 | resume_step = resume_global_step % ( 904 | num_update_steps_per_epoch * args.gradient_accumulation_steps 905 | ) 906 | 907 | # Only show the progress bar once on each machine. 908 | progress_bar = tqdm( 909 | range(global_step, args.max_train_steps), 910 | disable=not accelerator.is_local_main_process, 911 | ) 912 | progress_bar.set_description("Steps") 913 | 914 | for epoch in range(first_epoch, args.num_train_epochs): 915 | unet.train() 916 | train_loss = 0.0 917 | for step, batch in enumerate(train_dataloader): 918 | # Skip steps until we reach the resumed step 919 | if ( 920 | args.resume_from_checkpoint 921 | and epoch == first_epoch 922 | and step < resume_step 923 | ): 924 | if step % args.gradient_accumulation_steps == 0: 925 | progress_bar.update(1) 926 | continue 927 | 928 | with accelerator.accumulate(unet): 929 | # We want to learn the denoising process w.r.t the edited images which 930 | # are conditioned on the original image (which was edited) and the edit instruction. 931 | # So, first, convert images to latent space. 932 | latents = vae.encode( 933 | batch["edited_pixel_values"].to(weight_dtype) 934 | ).latent_dist.sample() 935 | latents = latents * vae.config.scaling_factor 936 | 937 | # Sample noise that we'll add to the latents 938 | noise = torch.randn_like(latents) 939 | bsz = latents.shape[0] 940 | # Sample a random timestep for each image 941 | timesteps = torch.randint( 942 | 0, 943 | noise_scheduler.num_train_timesteps, 944 | (bsz,), 945 | device=latents.device, 946 | ) 947 | timesteps = timesteps.long() 948 | 949 | # Add noise to the latents according to the noise magnitude at each timestep 950 | # (this is the forward diffusion process) 951 | noisy_latents = noise_scheduler.add_noise(latents, noise, timesteps) 952 | 953 | # Get the text embedding for conditioning. 954 | encoder_hidden_states = text_encoder(batch["input_ids"])[0] 955 | 956 | # Get the additional image embedding for conditioning. 957 | # Instead of getting a diagonal Gaussian here, we simply take the mode. 958 | original_image_embeds = vae.encode( 959 | batch["original_pixel_values"].to(weight_dtype) 960 | ).latent_dist.mode() 961 | 962 | # Conditioning dropout to support classifier-free guidance during inference. For more details 963 | # check out the section 3.2.1 of the original paper https://arxiv.org/abs/2211.09800. 964 | if args.conditioning_dropout_prob is not None: 965 | random_p = torch.rand( 966 | bsz, device=latents.device, generator=generator 967 | ) 968 | # Sample masks for the edit prompts. 969 | prompt_mask = random_p < 2 * args.conditioning_dropout_prob 970 | prompt_mask = prompt_mask.reshape(bsz, 1, 1) 971 | # Final text conditioning. 972 | null_conditioning = text_encoder( 973 | tokenize_captions([""]).to(accelerator.device) 974 | )[0] 975 | encoder_hidden_states = torch.where( 976 | prompt_mask, null_conditioning, encoder_hidden_states 977 | ) 978 | 979 | # Sample masks for the original images. 980 | image_mask_dtype = original_image_embeds.dtype 981 | image_mask = 1 - ( 982 | (random_p >= args.conditioning_dropout_prob).to( 983 | image_mask_dtype 984 | ) 985 | * (random_p < 3 * args.conditioning_dropout_prob).to( 986 | image_mask_dtype 987 | ) 988 | ) 989 | image_mask = image_mask.reshape(bsz, 1, 1, 1) 990 | # Final image conditioning. 991 | original_image_embeds = image_mask * original_image_embeds 992 | 993 | # Concatenate the `original_image_embeds` with the `noisy_latents`. 994 | concatenated_noisy_latents = torch.cat( 995 | [noisy_latents, original_image_embeds], dim=1 996 | ) 997 | 998 | # Get the target for loss depending on the prediction type 999 | if noise_scheduler.config.prediction_type == "epsilon": 1000 | target = noise 1001 | elif noise_scheduler.config.prediction_type == "v_prediction": 1002 | target = noise_scheduler.get_velocity(latents, noise, timesteps) 1003 | else: 1004 | raise ValueError( 1005 | f"Unknown prediction type {noise_scheduler.config.prediction_type}" 1006 | ) 1007 | 1008 | # Predict the noise residual and compute loss 1009 | model_pred = unet( 1010 | concatenated_noisy_latents, timesteps, encoder_hidden_states 1011 | ).sample 1012 | loss = F.mse_loss(model_pred.float(), target.float(), reduction="mean") 1013 | 1014 | # Gather the losses across all processes for logging (if we use distributed training). 1015 | avg_loss = accelerator.gather(loss.repeat(args.train_batch_size)).mean() 1016 | train_loss += avg_loss.item() / args.gradient_accumulation_steps 1017 | 1018 | # Backpropagate 1019 | accelerator.backward(loss) 1020 | if accelerator.sync_gradients: 1021 | accelerator.clip_grad_norm_(unet.parameters(), args.max_grad_norm) 1022 | optimizer.step() 1023 | lr_scheduler.step() 1024 | optimizer.zero_grad() 1025 | 1026 | # Checks if the accelerator has performed an optimization step behind the scenes 1027 | if accelerator.sync_gradients: 1028 | if args.use_ema: 1029 | ema_unet.step(unet.parameters()) 1030 | progress_bar.update(1) 1031 | global_step += 1 1032 | accelerator.log({"train_loss": train_loss}, step=global_step) 1033 | train_loss = 0.0 1034 | 1035 | if global_step % args.checkpointing_steps == 0: 1036 | if accelerator.is_main_process: 1037 | save_path = os.path.join( 1038 | args.output_dir, f"checkpoint-{global_step}" 1039 | ) 1040 | accelerator.save_state(save_path) 1041 | logger.info(f"Saved state to {save_path}") 1042 | 1043 | logs = { 1044 | "step_loss": loss.detach().item(), 1045 | "lr": lr_scheduler.get_last_lr()[0], 1046 | } 1047 | progress_bar.set_postfix(**logs) 1048 | 1049 | if global_step >= args.max_train_steps: 1050 | break 1051 | 1052 | if accelerator.is_main_process: 1053 | if ( 1054 | (args.val_image_url is not None) 1055 | and (args.validation_prompt is not None) 1056 | and (epoch % args.validation_epochs == 0) 1057 | ): 1058 | logger.info( 1059 | f"Running validation... \n Generating {args.num_validation_images} images with prompt:" 1060 | f" {args.validation_prompt}." 1061 | ) 1062 | # create pipeline 1063 | if args.use_ema: 1064 | # Store the UNet parameters temporarily and load the EMA parameters to perform inference. 1065 | ema_unet.store(unet.parameters()) 1066 | ema_unet.copy_to(unet.parameters()) 1067 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 1068 | args.pretrained_model_name_or_path, 1069 | unet=unet, 1070 | revision=args.revision, 1071 | torch_dtype=weight_dtype, 1072 | ) 1073 | pipeline = pipeline.to(accelerator.device) 1074 | pipeline.set_progress_bar_config(disable=True) 1075 | 1076 | # run inference 1077 | original_image = download_image(args.val_image_url) 1078 | edited_images = [] 1079 | with torch.autocast( 1080 | str(accelerator.device), 1081 | enabled=accelerator.mixed_precision == "fp16", 1082 | ): 1083 | for _ in range(args.num_validation_images): 1084 | edited_images.append( 1085 | pipeline( 1086 | args.validation_prompt, 1087 | image=original_image, 1088 | num_inference_steps=20, 1089 | image_guidance_scale=1.5, 1090 | guidance_scale=7, 1091 | generator=generator, 1092 | ).images[0] 1093 | ) 1094 | 1095 | for tracker in accelerator.trackers: 1096 | if tracker.name == "wandb": 1097 | wandb_table = wandb.Table(columns=WANDB_TABLE_COL_NAMES) 1098 | for edited_image in edited_images: 1099 | wandb_table.add_data( 1100 | wandb.Image(original_image), 1101 | wandb.Image(edited_image), 1102 | args.validation_prompt, 1103 | ) 1104 | tracker.log({"validation": wandb_table}) 1105 | if args.use_ema: 1106 | # Switch back to the original UNet parameters. 1107 | ema_unet.restore(unet.parameters()) 1108 | 1109 | del pipeline 1110 | torch.cuda.empty_cache() 1111 | 1112 | # Create the pipeline using the trained modules and save it. 1113 | accelerator.wait_for_everyone() 1114 | if accelerator.is_main_process: 1115 | unet = accelerator.unwrap_model(unet) 1116 | if args.use_ema: 1117 | ema_unet.copy_to(unet.parameters()) 1118 | 1119 | pipeline = StableDiffusionInstructPix2PixPipeline.from_pretrained( 1120 | args.pretrained_model_name_or_path, 1121 | text_encoder=text_encoder, 1122 | vae=vae, 1123 | unet=unet, 1124 | revision=args.revision, 1125 | ) 1126 | pipeline.save_pretrained(args.output_dir) 1127 | 1128 | if args.push_to_hub: 1129 | repo.push_to_hub( 1130 | commit_message="End of training", blocking=False, auto_lfs_prune=True 1131 | ) 1132 | 1133 | accelerator.end_training() 1134 | 1135 | 1136 | if __name__ == "__main__": 1137 | main() 1138 | --------------------------------------------------------------------------------