├── .gitignore
├── LICENSE
├── README.md
├── cnn.py
├── data
├── 0_100.jpg
├── 0_104.jpg
├── 0_106.jpg
├── 0_107.jpg
├── 0_108.jpg
├── 0_109.jpg
├── 0_110.jpg
├── 0_113.jpg
├── 0_114.jpg
├── 0_115.jpg
├── 0_117.jpg
├── 0_119.jpg
├── 0_122.jpg
├── 0_123.jpg
├── 0_124.jpg
├── 0_126.jpg
├── 0_127.jpg
├── 0_131.jpg
├── 0_132.jpg
├── 0_133.jpg
├── 0_134.jpg
├── 0_135.jpg
├── 0_136.jpg
├── 0_138.jpg
├── 0_139.jpg
├── 0_141.jpg
├── 0_17.jpg
├── 0_27.jpg
├── 0_30.jpg
├── 0_38.jpg
├── 0_39.jpg
├── 0_45.jpg
├── 0_53.jpg
├── 0_57.jpg
├── 0_59.jpg
├── 0_6.jpg
├── 0_60.jpg
├── 0_63.jpg
├── 0_67.jpg
├── 0_69.jpg
├── 0_7.jpg
├── 0_70.jpg
├── 0_73.jpg
├── 0_81.jpg
├── 0_84.jpg
├── 0_85.jpg
├── 0_89.jpg
├── 0_9.jpg
├── 0_91.jpg
├── 0_97.jpg
├── 1_0.jpg
├── 1_1.jpg
├── 1_101.jpg
├── 1_102.jpg
├── 1_103.jpg
├── 1_12.jpg
├── 1_13.jpg
├── 1_14.jpg
├── 1_21.jpg
├── 1_22.jpg
├── 1_24.jpg
├── 1_25.jpg
├── 1_26.jpg
├── 1_28.jpg
├── 1_31.jpg
├── 1_32.jpg
├── 1_33.jpg
├── 1_34.jpg
├── 1_35.jpg
├── 1_37.jpg
├── 1_40.jpg
├── 1_44.jpg
├── 1_46.jpg
├── 1_47.jpg
├── 1_48.jpg
├── 1_50.jpg
├── 1_52.jpg
├── 1_54.jpg
├── 1_56.jpg
├── 1_58.jpg
├── 1_64.jpg
├── 1_65.jpg
├── 1_66.jpg
├── 1_71.jpg
├── 1_72.jpg
├── 1_74.jpg
├── 1_75.jpg
├── 1_76.jpg
├── 1_77.jpg
├── 1_78.jpg
├── 1_79.jpg
├── 1_8.jpg
├── 1_80.jpg
├── 1_83.jpg
├── 1_87.jpg
├── 1_93.jpg
├── 1_94.jpg
├── 1_96.jpg
├── 1_98.jpg
├── 1_99.jpg
├── 2_10.jpg
├── 2_105.jpg
├── 2_11.jpg
├── 2_111.jpg
├── 2_112.jpg
├── 2_116.jpg
├── 2_118.jpg
├── 2_120.jpg
├── 2_121.jpg
├── 2_125.jpg
├── 2_128.jpg
├── 2_129.jpg
├── 2_130.jpg
├── 2_137.jpg
├── 2_140.jpg
├── 2_142.jpg
├── 2_143.jpg
├── 2_144.jpg
├── 2_145.jpg
├── 2_146.jpg
├── 2_147.jpg
├── 2_148.jpg
├── 2_149.jpg
├── 2_15.jpg
├── 2_16.jpg
├── 2_18.jpg
├── 2_19.jpg
├── 2_2.jpg
├── 2_20.jpg
├── 2_23.jpg
├── 2_29.jpg
├── 2_3.jpg
├── 2_36.jpg
├── 2_4.jpg
├── 2_41.jpg
├── 2_42.jpg
├── 2_43.jpg
├── 2_49.jpg
├── 2_5.jpg
├── 2_51.jpg
├── 2_55.jpg
├── 2_61.jpg
├── 2_62.jpg
├── 2_68.jpg
├── 2_82.jpg
├── 2_86.jpg
├── 2_88.jpg
├── 2_90.jpg
├── 2_92.jpg
└── 2_95.jpg
├── demo.png
└── download_cifar.py
/.gitignore:
--------------------------------------------------------------------------------
1 | /.idea/
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Tensorflow-CNN-Tutorial
2 |
3 | 这是一个手把手教你用Tensorflow构建卷机网络(CNN)进行图像分类的教程。完整代码可在Github中下载:[https://github.com/hujunxianligong/Tensorflow-CNN-Tutorial](https://github.com/hujunxianligong/Tensorflow-CNN-Tutorial)。教程并没有使用MNIST数据集,而是使用了真实的图片文件,并且教程代码包含了模型的保存、加载等功能,因此希望在日常项目中使用Tensorflow的朋友可以参考这篇教程。
4 |
5 |
6 | ## 概述
7 |
8 |
9 |
10 | + 代码利用卷积网络完成一个图像分类的功能
11 | + 训练完成后,模型保存在model文件中,可直接使用模型进行线上分类
12 | + 同一个代码包括了训练和测试阶段,通过修改train参数为True和False控制训练和测试
13 |
14 | ## 数据准备
15 |
16 | 教程的图片从Cifar数据集中获取,`download_cifar.py`从Keras自带的Cifar数据集中获取了部分Cifar数据集,并将其转换为jpg图片。
17 |
18 | 默认从Cifar数据集中选取了3类图片,每类50张图,分别是
19 | + 0 => 飞机
20 | + 1 => 汽车
21 | + 2 => 鸟
22 |
23 | 图片都放在data文件夹中,按照label_id.jpg进行命名,例如2_111.jpg代表图片类别为2(鸟),id为111。
24 |
25 |
26 |
27 | 
28 |
29 | ## 导入相关库
30 |
31 | 除了Tensorflow,本教程还需要使用pillow(PIL),在Windows下PIL可能需要使用conda安装。
32 |
33 | 如果使用`download_cifar.py`自己构建数据集,还需要安装keras。
34 |
35 |
36 | ```python
37 | import os
38 | #图像读取库
39 | from PIL import Image
40 | #矩阵运算库
41 | import numpy as np
42 | import tensorflow as tf
43 | ```
44 |
45 | ## 配置信息
46 |
47 | 设置了一些变量增加程序的灵活性。图片文件存放在`data_dir`文件夹中,`train`表示当前执行是训练还是测试,`model-path`约定了模型存放的路径。
48 |
49 | ```python
50 | # 数据文件夹
51 | data_dir = "data"
52 | # 训练还是测试
53 | train = True
54 | # 模型文件路径
55 | model_path = "model/image_model"
56 | ```
57 |
58 | ## 数据读取
59 |
60 | 从图片文件夹中将图片读入numpy的array中。这里有几个细节:
61 |
62 | + pillow读取的图像像素值在0-255之间,需要归一化。
63 | + 在读取图像数据、Label信息的同时,记录图像的路径,方便后期调试。
64 |
65 | ```python
66 |
67 | # 从文件夹读取图片和标签到numpy数组中
68 | # 标签信息在文件名中,例如1_40.jpg表示该图片的标签为1
69 | def read_data(data_dir):
70 | datas = []
71 | labels = []
72 | fpaths = []
73 | for fname in os.listdir(data_dir):
74 | fpath = os.path.join(data_dir, fname)
75 | fpaths.append(fpath)
76 | image = Image.open(fpath)
77 | data = np.array(image) / 255.0
78 | label = int(fname.split("_")[0])
79 | datas.append(data)
80 | labels.append(label)
81 |
82 | datas = np.array(datas)
83 | labels = np.array(labels)
84 |
85 | print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))
86 | return fpaths, datas, labels
87 |
88 |
89 | fpaths, datas, labels = read_data(data_dir)
90 |
91 | # 计算有多少类图片
92 | num_classes = len(set(labels))
93 | ```
94 |
95 | ## 定义placeholder(容器)
96 |
97 | 除了图像数据和Label,Dropout率也要放在placeholder中,因为在训练阶段和测试阶段需要设置不同的Dropout率。
98 |
99 | ```python
100 | # 定义Placeholder,存放输入和标签
101 | datas_placeholder = tf.placeholder(tf.float32, [None, 32, 32, 3])
102 | labels_placeholder = tf.placeholder(tf.int32, [None])
103 |
104 | # 存放DropOut参数的容器,训练时为0.25,测试时为0
105 | dropout_placeholdr = tf.placeholder(tf.float32)
106 | ```
107 |
108 | ## 定义卷基网络(卷积和Pooling部分)
109 | ```python
110 | # 定义卷积层, 20个卷积核, 卷积核大小为5,用Relu激活
111 | conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
112 | # 定义max-pooling层,pooling窗口为2x2,步长为2x2
113 | pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])
114 |
115 | # 定义卷积层, 40个卷积核, 卷积核大小为4,用Relu激活
116 | conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
117 | # 定义max-pooling层,pooling窗口为2x2,步长为2x2
118 | pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])
119 | ```
120 |
121 | ## 定义全连接部分
122 | ```python
123 | # 将3维特征转换为1维向量
124 | flatten = tf.layers.flatten(pool1)
125 |
126 | # 全连接层,转换为长度为100的特征向量
127 | fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)
128 |
129 | # 加上DropOut,防止过拟合
130 | dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)
131 |
132 | # 未激活的输出层
133 | logits = tf.layers.dense(dropout_fc, num_classes)
134 |
135 | predicted_labels = tf.arg_max(logits, 1)
136 | ```
137 |
138 | ## 定义损失函数和优化器
139 |
140 | 这里有一个技巧,没有必要给Optimizer传递平均的损失,直接将未平均的损失函数传给Optimizer即可。
141 |
142 | ```python
143 | # 利用交叉熵定义损失
144 | losses = tf.nn.softmax_cross_entropy_with_logits(
145 | labels=tf.one_hot(labels_placeholder, num_classes),
146 | logits=logits
147 | )
148 | # 平均损失
149 | mean_loss = tf.reduce_mean(losses)
150 |
151 | # 定义优化器,指定要优化的损失函数
152 | optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)
153 | ```
154 |
155 | ## 定义模型保存器/载入器
156 | 如果在比较大的数据集上进行长时间训练,建议定期保存模型。
157 | ```python
158 | # 用于保存和载入模型
159 | saver = tf.train.Saver()
160 | ```
161 |
162 | ## 进入训练/测试执行阶段
163 | ```python
164 | with tf.Session() as sess:
165 | ```
166 |
167 | 在执行阶段有两条分支:
168 | + 如果trian为True,进行训练。训练需要使用`sess.run(tf.global_variables_initializer())`初始化参数,训练完成后,需要使用`saver.save(sess, model_path)`保存模型参数。
169 | + 如果train为False,进行测试,测试需要使用`saver.restore(sess, model_path)`读取参数。
170 |
171 | ## 训练阶段执行
172 | ```python
173 | if train:
174 | print("训练模式")
175 | # 如果是训练,初始化参数
176 | sess.run(tf.global_variables_initializer())
177 | # 定义输入和Label以填充容器,训练时dropout为0.25
178 | train_feed_dict = {
179 | datas_placeholder: datas,
180 | labels_placeholder: labels,
181 | dropout_placeholdr: 0.25
182 | }
183 | for step in range(150):
184 | _, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)
185 | if step % 10 == 0:
186 | print("step = {}\tmean loss = {}".format(step, mean_loss_val))
187 | saver.save(sess, model_path)
188 | print("训练结束,保存模型到{}".format(model_path))
189 | ```
190 |
191 | ### 测试阶段执行
192 | ```python
193 | else:
194 | print("测试模式")
195 | # 如果是测试,载入参数
196 | saver.restore(sess, model_path)
197 | print("从{}载入模型".format(model_path))
198 | # label和名称的对照关系
199 | label_name_dict = {
200 | 0: "飞机",
201 | 1: "汽车",
202 | 2: "鸟"
203 | }
204 | # 定义输入和Label以填充容器,测试时dropout为0
205 | test_feed_dict = {
206 | datas_placeholder: datas,
207 | labels_placeholder: labels,
208 | dropout_placeholdr: 0
209 | }
210 | predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)
211 | # 真实label与模型预测label
212 | for fpath, real_label, predicted_label in zip(fpaths, labels, predicted_labels_val):
213 | # 将label id转换为label名
214 | real_label_name = label_name_dict[real_label]
215 | predicted_label_name = label_name_dict[predicted_label]
216 | print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))
217 | ```
218 |
--------------------------------------------------------------------------------
/cnn.py:
--------------------------------------------------------------------------------
1 | #coding=utf-8
2 |
3 | import os
4 | #图像读取库
5 | from PIL import Image
6 | #矩阵运算库
7 | import numpy as np
8 | import tensorflow as tf
9 |
10 |
11 | # 数据文件夹
12 | data_dir = "data"
13 | # 训练还是测试
14 | train = True
15 | # 模型文件路径
16 | model_path = "model/image_model"
17 |
18 |
19 | # 从文件夹读取图片和标签到numpy数组中
20 | # 标签信息在文件名中,例如1_40.jpg表示该图片的标签为1
21 | def read_data(data_dir):
22 | datas = []
23 | labels = []
24 | fpaths = []
25 | for fname in os.listdir(data_dir):
26 | fpath = os.path.join(data_dir, fname)
27 | fpaths.append(fpath)
28 | image = Image.open(fpath)
29 | data = np.array(image) / 255.0
30 | label = int(fname.split("_")[0])
31 | datas.append(data)
32 | labels.append(label)
33 |
34 | datas = np.array(datas)
35 | labels = np.array(labels)
36 |
37 | print("shape of datas: {}\tshape of labels: {}".format(datas.shape, labels.shape))
38 | return fpaths, datas, labels
39 |
40 |
41 | fpaths, datas, labels = read_data(data_dir)
42 |
43 | # 计算有多少类图片
44 | num_classes = len(set(labels))
45 |
46 |
47 | # 定义Placeholder,存放输入和标签
48 | datas_placeholder = tf.placeholder(tf.float32, [None, 32, 32, 3])
49 | labels_placeholder = tf.placeholder(tf.int32, [None])
50 |
51 | # 存放DropOut参数的容器,训练时为0.25,测试时为0
52 | dropout_placeholdr = tf.placeholder(tf.float32)
53 |
54 | # 定义卷积层, 20个卷积核, 卷积核大小为5,用Relu激活
55 | conv0 = tf.layers.conv2d(datas_placeholder, 20, 5, activation=tf.nn.relu)
56 | # 定义max-pooling层,pooling窗口为2x2,步长为2x2
57 | pool0 = tf.layers.max_pooling2d(conv0, [2, 2], [2, 2])
58 |
59 | # 定义卷积层, 40个卷积核, 卷积核大小为4,用Relu激活
60 | conv1 = tf.layers.conv2d(pool0, 40, 4, activation=tf.nn.relu)
61 | # 定义max-pooling层,pooling窗口为2x2,步长为2x2
62 | pool1 = tf.layers.max_pooling2d(conv1, [2, 2], [2, 2])
63 |
64 | # 将3维特征转换为1维向量
65 | flatten = tf.layers.flatten(pool1)
66 |
67 | # 全连接层,转换为长度为100的特征向量
68 | fc = tf.layers.dense(flatten, 400, activation=tf.nn.relu)
69 |
70 | # 加上DropOut,防止过拟合
71 | dropout_fc = tf.layers.dropout(fc, dropout_placeholdr)
72 |
73 | # 未激活的输出层
74 | logits = tf.layers.dense(dropout_fc, num_classes)
75 |
76 | predicted_labels = tf.arg_max(logits, 1)
77 |
78 |
79 | # 利用交叉熵定义损失
80 | losses = tf.nn.softmax_cross_entropy_with_logits(
81 | labels=tf.one_hot(labels_placeholder, num_classes),
82 | logits=logits
83 | )
84 | # 平均损失
85 | mean_loss = tf.reduce_mean(losses)
86 |
87 | # 定义优化器,指定要优化的损失函数
88 | optimizer = tf.train.AdamOptimizer(learning_rate=1e-2).minimize(losses)
89 |
90 |
91 | # 用于保存和载入模型
92 | saver = tf.train.Saver()
93 |
94 | with tf.Session() as sess:
95 |
96 | if train:
97 | print("训练模式")
98 | # 如果是训练,初始化参数
99 | sess.run(tf.global_variables_initializer())
100 | # 定义输入和Label以填充容器,训练时dropout为0.25
101 | train_feed_dict = {
102 | datas_placeholder: datas,
103 | labels_placeholder: labels,
104 | dropout_placeholdr: 0.25
105 | }
106 | for step in range(150):
107 | _, mean_loss_val = sess.run([optimizer, mean_loss], feed_dict=train_feed_dict)
108 |
109 | if step % 10 == 0:
110 | print("step = {}\tmean loss = {}".format(step, mean_loss_val))
111 | saver.save(sess, model_path)
112 | print("训练结束,保存模型到{}".format(model_path))
113 | else:
114 | print("测试模式")
115 | # 如果是测试,载入参数
116 | saver.restore(sess, model_path)
117 | print("从{}载入模型".format(model_path))
118 | # label和名称的对照关系
119 | label_name_dict = {
120 | 0: "飞机",
121 | 1: "汽车",
122 | 2: "鸟"
123 | }
124 | # 定义输入和Label以填充容器,测试时dropout为0
125 | test_feed_dict = {
126 | datas_placeholder: datas,
127 | labels_placeholder: labels,
128 | dropout_placeholdr: 0
129 | }
130 | predicted_labels_val = sess.run(predicted_labels, feed_dict=test_feed_dict)
131 | # 真实label与模型预测label
132 | for fpath, real_label, predicted_label in zip(fpaths, labels, predicted_labels_val):
133 | # 将label id转换为label名
134 | real_label_name = label_name_dict[real_label]
135 | predicted_label_name = label_name_dict[predicted_label]
136 | print("{}\t{} => {}".format(fpath, real_label_name, predicted_label_name))
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
--------------------------------------------------------------------------------
/data/0_100.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_100.jpg
--------------------------------------------------------------------------------
/data/0_104.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_104.jpg
--------------------------------------------------------------------------------
/data/0_106.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_106.jpg
--------------------------------------------------------------------------------
/data/0_107.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_107.jpg
--------------------------------------------------------------------------------
/data/0_108.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_108.jpg
--------------------------------------------------------------------------------
/data/0_109.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_109.jpg
--------------------------------------------------------------------------------
/data/0_110.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_110.jpg
--------------------------------------------------------------------------------
/data/0_113.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_113.jpg
--------------------------------------------------------------------------------
/data/0_114.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_114.jpg
--------------------------------------------------------------------------------
/data/0_115.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_115.jpg
--------------------------------------------------------------------------------
/data/0_117.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_117.jpg
--------------------------------------------------------------------------------
/data/0_119.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_119.jpg
--------------------------------------------------------------------------------
/data/0_122.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_122.jpg
--------------------------------------------------------------------------------
/data/0_123.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_123.jpg
--------------------------------------------------------------------------------
/data/0_124.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_124.jpg
--------------------------------------------------------------------------------
/data/0_126.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_126.jpg
--------------------------------------------------------------------------------
/data/0_127.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_127.jpg
--------------------------------------------------------------------------------
/data/0_131.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_131.jpg
--------------------------------------------------------------------------------
/data/0_132.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_132.jpg
--------------------------------------------------------------------------------
/data/0_133.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_133.jpg
--------------------------------------------------------------------------------
/data/0_134.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_134.jpg
--------------------------------------------------------------------------------
/data/0_135.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_135.jpg
--------------------------------------------------------------------------------
/data/0_136.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_136.jpg
--------------------------------------------------------------------------------
/data/0_138.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_138.jpg
--------------------------------------------------------------------------------
/data/0_139.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_139.jpg
--------------------------------------------------------------------------------
/data/0_141.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_141.jpg
--------------------------------------------------------------------------------
/data/0_17.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_17.jpg
--------------------------------------------------------------------------------
/data/0_27.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_27.jpg
--------------------------------------------------------------------------------
/data/0_30.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_30.jpg
--------------------------------------------------------------------------------
/data/0_38.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_38.jpg
--------------------------------------------------------------------------------
/data/0_39.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_39.jpg
--------------------------------------------------------------------------------
/data/0_45.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_45.jpg
--------------------------------------------------------------------------------
/data/0_53.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_53.jpg
--------------------------------------------------------------------------------
/data/0_57.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_57.jpg
--------------------------------------------------------------------------------
/data/0_59.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_59.jpg
--------------------------------------------------------------------------------
/data/0_6.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_6.jpg
--------------------------------------------------------------------------------
/data/0_60.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_60.jpg
--------------------------------------------------------------------------------
/data/0_63.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_63.jpg
--------------------------------------------------------------------------------
/data/0_67.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_67.jpg
--------------------------------------------------------------------------------
/data/0_69.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_69.jpg
--------------------------------------------------------------------------------
/data/0_7.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_7.jpg
--------------------------------------------------------------------------------
/data/0_70.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_70.jpg
--------------------------------------------------------------------------------
/data/0_73.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_73.jpg
--------------------------------------------------------------------------------
/data/0_81.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_81.jpg
--------------------------------------------------------------------------------
/data/0_84.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_84.jpg
--------------------------------------------------------------------------------
/data/0_85.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_85.jpg
--------------------------------------------------------------------------------
/data/0_89.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_89.jpg
--------------------------------------------------------------------------------
/data/0_9.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_9.jpg
--------------------------------------------------------------------------------
/data/0_91.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_91.jpg
--------------------------------------------------------------------------------
/data/0_97.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/0_97.jpg
--------------------------------------------------------------------------------
/data/1_0.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_0.jpg
--------------------------------------------------------------------------------
/data/1_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_1.jpg
--------------------------------------------------------------------------------
/data/1_101.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_101.jpg
--------------------------------------------------------------------------------
/data/1_102.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_102.jpg
--------------------------------------------------------------------------------
/data/1_103.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_103.jpg
--------------------------------------------------------------------------------
/data/1_12.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_12.jpg
--------------------------------------------------------------------------------
/data/1_13.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_13.jpg
--------------------------------------------------------------------------------
/data/1_14.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_14.jpg
--------------------------------------------------------------------------------
/data/1_21.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_21.jpg
--------------------------------------------------------------------------------
/data/1_22.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_22.jpg
--------------------------------------------------------------------------------
/data/1_24.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_24.jpg
--------------------------------------------------------------------------------
/data/1_25.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_25.jpg
--------------------------------------------------------------------------------
/data/1_26.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_26.jpg
--------------------------------------------------------------------------------
/data/1_28.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_28.jpg
--------------------------------------------------------------------------------
/data/1_31.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_31.jpg
--------------------------------------------------------------------------------
/data/1_32.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_32.jpg
--------------------------------------------------------------------------------
/data/1_33.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_33.jpg
--------------------------------------------------------------------------------
/data/1_34.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_34.jpg
--------------------------------------------------------------------------------
/data/1_35.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_35.jpg
--------------------------------------------------------------------------------
/data/1_37.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_37.jpg
--------------------------------------------------------------------------------
/data/1_40.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_40.jpg
--------------------------------------------------------------------------------
/data/1_44.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_44.jpg
--------------------------------------------------------------------------------
/data/1_46.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_46.jpg
--------------------------------------------------------------------------------
/data/1_47.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_47.jpg
--------------------------------------------------------------------------------
/data/1_48.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_48.jpg
--------------------------------------------------------------------------------
/data/1_50.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_50.jpg
--------------------------------------------------------------------------------
/data/1_52.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_52.jpg
--------------------------------------------------------------------------------
/data/1_54.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_54.jpg
--------------------------------------------------------------------------------
/data/1_56.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_56.jpg
--------------------------------------------------------------------------------
/data/1_58.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_58.jpg
--------------------------------------------------------------------------------
/data/1_64.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_64.jpg
--------------------------------------------------------------------------------
/data/1_65.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_65.jpg
--------------------------------------------------------------------------------
/data/1_66.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_66.jpg
--------------------------------------------------------------------------------
/data/1_71.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_71.jpg
--------------------------------------------------------------------------------
/data/1_72.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_72.jpg
--------------------------------------------------------------------------------
/data/1_74.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_74.jpg
--------------------------------------------------------------------------------
/data/1_75.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_75.jpg
--------------------------------------------------------------------------------
/data/1_76.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_76.jpg
--------------------------------------------------------------------------------
/data/1_77.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_77.jpg
--------------------------------------------------------------------------------
/data/1_78.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_78.jpg
--------------------------------------------------------------------------------
/data/1_79.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_79.jpg
--------------------------------------------------------------------------------
/data/1_8.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_8.jpg
--------------------------------------------------------------------------------
/data/1_80.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_80.jpg
--------------------------------------------------------------------------------
/data/1_83.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_83.jpg
--------------------------------------------------------------------------------
/data/1_87.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_87.jpg
--------------------------------------------------------------------------------
/data/1_93.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_93.jpg
--------------------------------------------------------------------------------
/data/1_94.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_94.jpg
--------------------------------------------------------------------------------
/data/1_96.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_96.jpg
--------------------------------------------------------------------------------
/data/1_98.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_98.jpg
--------------------------------------------------------------------------------
/data/1_99.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/1_99.jpg
--------------------------------------------------------------------------------
/data/2_10.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_10.jpg
--------------------------------------------------------------------------------
/data/2_105.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_105.jpg
--------------------------------------------------------------------------------
/data/2_11.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_11.jpg
--------------------------------------------------------------------------------
/data/2_111.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_111.jpg
--------------------------------------------------------------------------------
/data/2_112.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_112.jpg
--------------------------------------------------------------------------------
/data/2_116.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_116.jpg
--------------------------------------------------------------------------------
/data/2_118.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_118.jpg
--------------------------------------------------------------------------------
/data/2_120.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_120.jpg
--------------------------------------------------------------------------------
/data/2_121.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_121.jpg
--------------------------------------------------------------------------------
/data/2_125.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_125.jpg
--------------------------------------------------------------------------------
/data/2_128.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_128.jpg
--------------------------------------------------------------------------------
/data/2_129.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_129.jpg
--------------------------------------------------------------------------------
/data/2_130.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_130.jpg
--------------------------------------------------------------------------------
/data/2_137.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_137.jpg
--------------------------------------------------------------------------------
/data/2_140.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_140.jpg
--------------------------------------------------------------------------------
/data/2_142.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_142.jpg
--------------------------------------------------------------------------------
/data/2_143.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_143.jpg
--------------------------------------------------------------------------------
/data/2_144.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_144.jpg
--------------------------------------------------------------------------------
/data/2_145.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_145.jpg
--------------------------------------------------------------------------------
/data/2_146.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_146.jpg
--------------------------------------------------------------------------------
/data/2_147.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_147.jpg
--------------------------------------------------------------------------------
/data/2_148.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_148.jpg
--------------------------------------------------------------------------------
/data/2_149.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_149.jpg
--------------------------------------------------------------------------------
/data/2_15.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_15.jpg
--------------------------------------------------------------------------------
/data/2_16.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_16.jpg
--------------------------------------------------------------------------------
/data/2_18.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_18.jpg
--------------------------------------------------------------------------------
/data/2_19.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_19.jpg
--------------------------------------------------------------------------------
/data/2_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_2.jpg
--------------------------------------------------------------------------------
/data/2_20.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_20.jpg
--------------------------------------------------------------------------------
/data/2_23.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_23.jpg
--------------------------------------------------------------------------------
/data/2_29.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_29.jpg
--------------------------------------------------------------------------------
/data/2_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_3.jpg
--------------------------------------------------------------------------------
/data/2_36.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_36.jpg
--------------------------------------------------------------------------------
/data/2_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_4.jpg
--------------------------------------------------------------------------------
/data/2_41.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_41.jpg
--------------------------------------------------------------------------------
/data/2_42.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_42.jpg
--------------------------------------------------------------------------------
/data/2_43.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_43.jpg
--------------------------------------------------------------------------------
/data/2_49.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_49.jpg
--------------------------------------------------------------------------------
/data/2_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_5.jpg
--------------------------------------------------------------------------------
/data/2_51.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_51.jpg
--------------------------------------------------------------------------------
/data/2_55.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_55.jpg
--------------------------------------------------------------------------------
/data/2_61.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_61.jpg
--------------------------------------------------------------------------------
/data/2_62.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_62.jpg
--------------------------------------------------------------------------------
/data/2_68.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_68.jpg
--------------------------------------------------------------------------------
/data/2_82.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_82.jpg
--------------------------------------------------------------------------------
/data/2_86.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_86.jpg
--------------------------------------------------------------------------------
/data/2_88.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_88.jpg
--------------------------------------------------------------------------------
/data/2_90.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_90.jpg
--------------------------------------------------------------------------------
/data/2_92.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_92.jpg
--------------------------------------------------------------------------------
/data/2_95.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/data/2_95.jpg
--------------------------------------------------------------------------------
/demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hujunxianligong/Tensorflow-CNN-Tutorial/47ab0c7215fff8d853b1df6682e946a422704cbc/demo.png
--------------------------------------------------------------------------------
/download_cifar.py:
--------------------------------------------------------------------------------
1 | from keras.datasets import cifar10
2 | from PIL import Image
3 | import numpy as np
4 | import os
5 |
6 | (x_train, y_train), (x_test, y_test) = cifar10.load_data()
7 |
8 | max_num_datas = 50
9 | num_classes = 3
10 | num_datas_list = np.zeros(num_classes)
11 |
12 | img_dir = "data"
13 | id = 0
14 |
15 | for x, y in zip(x_train, y_train):
16 |
17 | if np.sum(num_datas_list) > max_num_datas * len(num_datas_list):
18 | break
19 |
20 | label = y[0]
21 | if label >= num_classes:
22 | continue
23 |
24 | if num_datas_list[label] == max_num_datas:
25 | continue
26 |
27 | num_datas_list[label] += 1
28 |
29 | img_path = os.path.join(img_dir, "{}_{}.jpg".format(label, id))
30 | id += 1
31 | img = Image.fromarray(x)
32 | img.save(img_path)
33 |
34 |
--------------------------------------------------------------------------------