├── LICENSE.txt ├── README.md ├── absa ├── run_base.py ├── run_cls_span.py ├── run_extract_span.py ├── run_joint_span.py └── utils.py ├── bert ├── modeling.py ├── optimization.py ├── sentiment_modeling.py └── tokenization.py ├── data └── absa │ ├── laptop14_test.txt │ ├── laptop14_train.txt │ ├── rest_total_test.txt │ ├── rest_total_train.txt │ ├── twitter10_test.txt │ ├── twitter10_train.txt │ ├── twitter1_test.txt │ ├── twitter1_train.txt │ ├── twitter2_test.txt │ ├── twitter2_train.txt │ ├── twitter3_test.txt │ ├── twitter3_train.txt │ ├── twitter4_test.txt │ ├── twitter4_train.txt │ ├── twitter5_test.txt │ ├── twitter5_train.txt │ ├── twitter6_test.txt │ ├── twitter6_train.txt │ ├── twitter7_test.txt │ ├── twitter7_train.txt │ ├── twitter8_test.txt │ ├── twitter8_train.txt │ ├── twitter9_test.txt │ └── twitter9_train.txt ├── image └── framework.PNG └── squad ├── __pycache__ ├── squad_evaluate.cpython-35.pyc ├── squad_evaluate.cpython-36.pyc ├── squad_utils.cpython-35.pyc └── squad_utils.cpython-36.pyc ├── squad_evaluate.py └── squad_utils.py /LICENSE.txt: -------------------------------------------------------------------------------- 1 | 2 | Apache License 3 | Version 2.0, January 2004 4 | http://www.apache.org/licenses/ 5 | 6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 7 | 8 | 1. Definitions. 9 | 10 | "License" shall mean the terms and conditions for use, reproduction, 11 | and distribution as defined by Sections 1 through 9 of this document. 12 | 13 | "Licensor" shall mean the copyright owner or entity authorized by 14 | the copyright owner that is granting the License. 15 | 16 | "Legal Entity" shall mean the union of the acting entity and all 17 | other entities that control, are controlled by, or are under common 18 | control with that entity. For the purposes of this definition, 19 | "control" means (i) the power, direct or indirect, to cause the 20 | direction or management of such entity, whether by contract or 21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 22 | outstanding shares, or (iii) beneficial ownership of such entity. 23 | 24 | "You" (or "Your") shall mean an individual or Legal Entity 25 | exercising permissions granted by this License. 26 | 27 | "Source" form shall mean the preferred form for making modifications, 28 | including but not limited to software source code, documentation 29 | source, and configuration files. 30 | 31 | "Object" form shall mean any form resulting from mechanical 32 | transformation or translation of a Source form, including but 33 | not limited to compiled object code, generated documentation, 34 | and conversions to other media types. 35 | 36 | "Work" shall mean the work of authorship, whether in Source or 37 | Object form, made available under the License, as indicated by a 38 | copyright notice that is included in or attached to the work 39 | (an example is provided in the Appendix below). 40 | 41 | "Derivative Works" shall mean any work, whether in Source or Object 42 | form, that is based on (or derived from) the Work and for which the 43 | editorial revisions, annotations, elaborations, or other modifications 44 | represent, as a whole, an original work of authorship. For the purposes 45 | of this License, Derivative Works shall not include works that remain 46 | separable from, or merely link (or bind by name) to the interfaces of, 47 | the Work and Derivative Works thereof. 48 | 49 | "Contribution" shall mean any work of authorship, including 50 | the original version of the Work and any modifications or additions 51 | to that Work or Derivative Works thereof, that is intentionally 52 | submitted to Licensor for inclusion in the Work by the copyright owner 53 | or by an individual or Legal Entity authorized to submit on behalf of 54 | the copyright owner. For the purposes of this definition, "submitted" 55 | means any form of electronic, verbal, or written communication sent 56 | to the Licensor or its representatives, including but not limited to 57 | communication on electronic mailing lists, source code control systems, 58 | and issue tracking systems that are managed by, or on behalf of, the 59 | Licensor for the purpose of discussing and improving the Work, but 60 | excluding communication that is conspicuously marked or otherwise 61 | designated in writing by the copyright owner as "Not a Contribution." 62 | 63 | "Contributor" shall mean Licensor and any individual or Legal Entity 64 | on behalf of whom a Contribution has been received by Licensor and 65 | subsequently incorporated within the Work. 66 | 67 | 2. Grant of Copyright License. Subject to the terms and conditions of 68 | this License, each Contributor hereby grants to You a perpetual, 69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 70 | copyright license to reproduce, prepare Derivative Works of, 71 | publicly display, publicly perform, sublicense, and distribute the 72 | Work and such Derivative Works in Source or Object form. 73 | 74 | 3. Grant of Patent License. Subject to the terms and conditions of 75 | this License, each Contributor hereby grants to You a perpetual, 76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 77 | (except as stated in this section) patent license to make, have made, 78 | use, offer to sell, sell, import, and otherwise transfer the Work, 79 | where such license applies only to those patent claims licensable 80 | by such Contributor that are necessarily infringed by their 81 | Contribution(s) alone or by combination of their Contribution(s) 82 | with the Work to which such Contribution(s) was submitted. If You 83 | institute patent litigation against any entity (including a 84 | cross-claim or counterclaim in a lawsuit) alleging that the Work 85 | or a Contribution incorporated within the Work constitutes direct 86 | or contributory patent infringement, then any patent licenses 87 | granted to You under this License for that Work shall terminate 88 | as of the date such litigation is filed. 89 | 90 | 4. Redistribution. You may reproduce and distribute copies of the 91 | Work or Derivative Works thereof in any medium, with or without 92 | modifications, and in Source or Object form, provided that You 93 | meet the following conditions: 94 | 95 | (a) You must give any other recipients of the Work or 96 | Derivative Works a copy of this License; and 97 | 98 | (b) You must cause any modified files to carry prominent notices 99 | stating that You changed the files; and 100 | 101 | (c) You must retain, in the Source form of any Derivative Works 102 | that You distribute, all copyright, patent, trademark, and 103 | attribution notices from the Source form of the Work, 104 | excluding those notices that do not pertain to any part of 105 | the Derivative Works; and 106 | 107 | (d) If the Work includes a "NOTICE" text file as part of its 108 | distribution, then any Derivative Works that You distribute must 109 | include a readable copy of the attribution notices contained 110 | within such NOTICE file, excluding those notices that do not 111 | pertain to any part of the Derivative Works, in at least one 112 | of the following places: within a NOTICE text file distributed 113 | as part of the Derivative Works; within the Source form or 114 | documentation, if provided along with the Derivative Works; or, 115 | within a display generated by the Derivative Works, if and 116 | wherever such third-party notices normally appear. The contents 117 | of the NOTICE file are for informational purposes only and 118 | do not modify the License. You may add Your own attribution 119 | notices within Derivative Works that You distribute, alongside 120 | or as an addendum to the NOTICE text from the Work, provided 121 | that such additional attribution notices cannot be construed 122 | as modifying the License. 123 | 124 | You may add Your own copyright statement to Your modifications and 125 | may provide additional or different license terms and conditions 126 | for use, reproduction, or distribution of Your modifications, or 127 | for any such Derivative Works as a whole, provided Your use, 128 | reproduction, and distribution of the Work otherwise complies with 129 | the conditions stated in this License. 130 | 131 | 5. Submission of Contributions. Unless You explicitly state otherwise, 132 | any Contribution intentionally submitted for inclusion in the Work 133 | by You to the Licensor shall be under the terms and conditions of 134 | this License, without any additional terms or conditions. 135 | Notwithstanding the above, nothing herein shall supersede or modify 136 | the terms of any separate license agreement you may have executed 137 | with Licensor regarding such Contributions. 138 | 139 | 6. Trademarks. This License does not grant permission to use the trade 140 | names, trademarks, service marks, or product names of the Licensor, 141 | except as required for reasonable and customary use in describing the 142 | origin of the Work and reproducing the content of the NOTICE file. 143 | 144 | 7. Disclaimer of Warranty. Unless required by applicable law or 145 | agreed to in writing, Licensor provides the Work (and each 146 | Contributor provides its Contributions) on an "AS IS" BASIS, 147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 148 | implied, including, without limitation, any warranties or conditions 149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 150 | PARTICULAR PURPOSE. You are solely responsible for determining the 151 | appropriateness of using or redistributing the Work and assume any 152 | risks associated with Your exercise of permissions under this License. 153 | 154 | 8. Limitation of Liability. In no event and under no legal theory, 155 | whether in tort (including negligence), contract, or otherwise, 156 | unless required by applicable law (such as deliberate and grossly 157 | negligent acts) or agreed to in writing, shall any Contributor be 158 | liable to You for damages, including any direct, indirect, special, 159 | incidental, or consequential damages of any character arising as a 160 | result of this License or out of the use or inability to use the 161 | Work (including but not limited to damages for loss of goodwill, 162 | work stoppage, computer failure or malfunction, or any and all 163 | other commercial damages or losses), even if such Contributor 164 | has been advised of the possibility of such damages. 165 | 166 | 9. Accepting Warranty or Additional Liability. While redistributing 167 | the Work or Derivative Works thereof, You may choose to offer, 168 | and charge a fee for, acceptance of support, warranty, indemnity, 169 | or other liability obligations and/or rights consistent with this 170 | License. However, in accepting such obligations, You may act only 171 | on Your own behalf and on Your sole responsibility, not on behalf 172 | of any other Contributor, and only if You agree to indemnify, 173 | defend, and hold each Contributor harmless for any liability 174 | incurred by, or claims asserted against, such Contributor by reason 175 | of your accepting any such warranty or additional liability. 176 | 177 | END OF TERMS AND CONDITIONS 178 | 179 | APPENDIX: How to apply the Apache License to your work. 180 | 181 | To apply the Apache License to your work, attach the following 182 | boilerplate notice, with the fields enclosed by brackets "[]" 183 | replaced with your own identifying information. (Don't include 184 | the brackets!) The text should be enclosed in the appropriate 185 | comment syntax for the file format. We also recommend that a 186 | file or class name and description of purpose be included on the 187 | same "printed page" as the copyright notice for easier 188 | identification within third-party archives. 189 | 190 | Copyright [yyyy] [name of copyright owner] 191 | 192 | Licensed under the Apache License, Version 2.0 (the "License"); 193 | you may not use this file except in compliance with the License. 194 | You may obtain a copy of the License at 195 | 196 | http://www.apache.org/licenses/LICENSE-2.0 197 | 198 | Unless required by applicable law or agreed to in writing, software 199 | distributed under the License is distributed on an "AS IS" BASIS, 200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 201 | See the License for the specific language governing permissions and 202 | limitations under the License. 203 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification 2 | 3 | This repo contains the code and data of the following paper: 4 | 5 | [Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification](https://arxiv.org/abs/1906.03820). Minghao Hu, Yuxing Peng, Zhen Huang, Dongsheng Li, Yiwei Lv. ACL 2019. 6 | 7 | In this paper, we propose a span-based extract-then-classify framework for the open-domain targeted sentiment analysis task, which is shown as below: 8 |

9 | 10 |

11 | 12 | This framework consists of two components: 13 | - Multi-target extractor 14 | - Polarity classifier 15 | 16 | Both of two components utilize [BERT](https://github.com/huggingface/pytorch-pretrained-BERT) as backbone network. The multi-target extractor aims to propose one or multiple candidate targets based on the probabilities of the start and end positions. The polarity classifier predicts the sentiment polarity using the span representation of the given target. 17 | 18 | ## Requirements 19 | - Python 3.6 20 | - [Pytorch 1.1](https://pytorch.org/) 21 | - [Allennlp](https://allennlp.org/) 22 | 23 | Download the uncased [BERT-Base](https://drive.google.com/file/d/13I0Gj7v8lYhW5Hwmp5kxm3CTlzWZuok2/view?usp=sharing) model and unzip it in the current directory. 24 | 25 | Run the following commands to set up environments: 26 | ```bash 27 | export DATA_DIR=data/absa 28 | export BERT_DIR=bert-base-uncased 29 | ``` 30 | 31 | ## Multi-target extractor 32 | Train the multi-target extractor: 33 | ```shell 34 | python -m absa.run_extract_span \ 35 | --vocab_file $BERT_DIR/vocab.txt \ 36 | --bert_config_file $BERT_DIR/bert_config.json \ 37 | --init_checkpoint $BERT_DIR/pytorch_model.bin \ 38 | --do_train \ 39 | --do_predict \ 40 | --data_dir $DATA_DIR \ 41 | --train_file rest_total_train.txt \ 42 | --predict_file rest_total_test.txt \ 43 | --train_batch_size 32 \ 44 | --output_dir out/extract/01 45 | ``` 46 | 47 | ## Polarity classifier 48 | Train the polarity classifier: 49 | ```shell 50 | python -m absa.run_cls_span \ 51 | --vocab_file $BERT_DIR/vocab.txt \ 52 | --bert_config_file $BERT_DIR/bert_config.json \ 53 | --init_checkpoint $BERT_DIR/pytorch_model.bin \ 54 | --do_train \ 55 | --do_predict \ 56 | --data_dir $DATA_DIR \ 57 | --train_file rest_total_train.txt \ 58 | --predict_file rest_total_test.txt \ 59 | --train_batch_size 32 \ 60 | --output_dir out/cls/01 61 | ``` 62 | 63 | ## Pipelined method 64 | Once the above two components have been trained, we can construct a pipeline system by running the following command: 65 | ```shell 66 | python -m absa.run_extract_span \ 67 | --vocab_file $BERT_DIR/vocab.txt \ 68 | --bert_config_file $BERT_DIR/bert_config.json \ 69 | --do_pipeline \ 70 | --data_dir $DATA_DIR \ 71 | --predict_file rest_total_test.txt \ 72 | --logit_threshold 9.5 \ 73 | --output_dir out/extract/01 74 | 75 | python -m absa.run_cls_span \ 76 | --vocab_file $BERT_DIR/vocab.txt \ 77 | --bert_config_file $BERT_DIR/bert_config.json \ 78 | --do_pipeline \ 79 | --data_dir $DATA_DIR \ 80 | --predict_file rest_total_test.txt \ 81 | --output_dir out/cls/01 \ 82 | --extraction_file out/extract/01/extraction_results.pkl 83 | ``` 84 | The predicted results will be saved into a file called `predictions.json` in the `output_dir`: 85 | ```bash 86 | cat out/cls/01/predictions.json 87 | ``` 88 | 89 | The test performance is shown in a file called `performance.txt` in the `output_dir`: 90 | ```bash 91 | cat out/cls/01/performance.txt 92 | ``` 93 | Which should produce an output like this: 94 | ```bash 95 | pipeline, step: 210, P: 0.6991, R: 0.7156, F1: 0.7073 (common: 1638.0, retrieved: 2343.0, relevant: 2289.0) 96 | ``` 97 | 98 | If you train with the `BERT-Large` model, you should see a result similar to 74.9 F1 reported in the paper (The `logit_threshold` is set as 12). 99 | 100 | ## Joint method 101 | You can also try to run the joint method, which jointly train both the multi-target extractor and the polarity classifier: 102 | ```shell 103 | python -m absa.run_joint_span \ 104 | --vocab_file $BERT_DIR/vocab.txt \ 105 | --bert_config_file $BERT_DIR/bert_config.json \ 106 | --init_checkpoint $BERT_DIR/pytorch_model.bin \ 107 | --do_train \ 108 | --do_predict \ 109 | --data_dir $DATA_DIR \ 110 | --train_file rest_total_train.txt \ 111 | --predict_file rest_total_test.txt \ 112 | --train_batch_size 32 \ 113 | --logit_threshold 8.0 \ 114 | --output_dir out/joint/01 115 | ``` 116 | 117 | This will produce a result like this: 118 | ```bash 119 | threshold: 8.0, step: 234, P: 0.7192, R: 0.6514, F1: 0.6836 (common: 1491.0, retrieved: 2073.0, relevant: 2289.0) 120 | ``` 121 | 122 | ## Acknowledgements 123 | We sincerely thank Xin Li for releasing the [datasets](https://github.com/lixin4ever/E2E-TBSA). 124 | 125 | If you find the paper or this repository helpful in your work, please use the following citation: 126 | ``` 127 | @inproceedings{hu2019open, 128 | title={Open-Domain Targeted Sentiment Analysis via Span-Based Extraction and Classification}, 129 | author={Hu, Minghao and Peng, Yuxing and Huang, Zhen and Li, Dongsheng and Lv, Yiwei}, 130 | booktitle={Proceedings of ACL}, 131 | year={2019} 132 | } 133 | ``` 134 | -------------------------------------------------------------------------------- /absa/run_base.py: -------------------------------------------------------------------------------- 1 | from __future__ import absolute_import 2 | from __future__ import division 3 | from __future__ import print_function 4 | 5 | import sys 6 | import torch 7 | from bert.optimization import BERTAdam 8 | 9 | try: 10 | import xml.etree.ElementTree as ET, getopt, logging, sys, random, re, copy 11 | from xml.sax.saxutils import escape 12 | except: 13 | sys.exit('Some package is missing... Perhaps ?') 14 | 15 | logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', 16 | datefmt = '%m/%d/%Y %H:%M:%S', 17 | level = logging.INFO) 18 | logger = logging.getLogger(__name__) 19 | 20 | def copy_optimizer_params_to_model(named_params_model, named_params_optimizer): 21 | """ Utility function for optimize_on_cpu and 16-bits training. 22 | Copy the parameters optimized on CPU/RAM back to the model on GPU 23 | """ 24 | for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): 25 | if name_opti != name_model: 26 | logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) 27 | raise ValueError 28 | param_model.data.copy_(param_opti.data) 29 | 30 | def set_optimizer_params_grad(named_params_optimizer, named_params_model, test_nan=False): 31 | """ Utility function for optimize_on_cpu and 16-bits training. 32 | Copy the gradient of the GPU parameters to the CPU/RAMM copy of the model 33 | """ 34 | is_nan = False 35 | for (name_opti, param_opti), (name_model, param_model) in zip(named_params_optimizer, named_params_model): 36 | if name_opti != name_model: 37 | logger.error("name_opti != name_model: {} {}".format(name_opti, name_model)) 38 | raise ValueError 39 | if test_nan and torch.isnan(param_model.grad).sum() > 0: 40 | is_nan = True 41 | if param_opti.grad is None: 42 | param_opti.grad = torch.nn.Parameter(param_opti.data.new().resize_(*param_opti.data.size())) 43 | param_opti.grad.data.copy_(param_model.grad.data) 44 | return is_nan 45 | 46 | def prepare_optimizer(args, model, num_train_steps): 47 | if args.fp16: 48 | param_optimizer = [(n, param.clone().detach().to('cpu').float().requires_grad_()) \ 49 | for n, param in model.named_parameters()] 50 | elif args.optimize_on_cpu: 51 | param_optimizer = [(n, param.clone().detach().to('cpu').requires_grad_()) \ 52 | for n, param in model.named_parameters()] 53 | else: 54 | param_optimizer = list(model.named_parameters()) 55 | no_decay = ['bias', 'LayerNorm'] 56 | optimizer_grouped_parameters = [ 57 | {'params': [p for n, p in param_optimizer if not any(nd in n for nd in no_decay)], 'weight_decay': 0.01}, 58 | {'params': [p for n, p in param_optimizer if any(nd in n for nd in no_decay)], 'weight_decay': 0.0}] 59 | optimizer = BERTAdam(optimizer_grouped_parameters, 60 | lr=args.learning_rate, 61 | warmup=args.warmup_proportion, 62 | t_total=num_train_steps) 63 | return optimizer, param_optimizer 64 | 65 | def post_process_loss(args, n_gpu, loss): 66 | if n_gpu > 1: 67 | loss = loss.mean() # mean() to average on multi-gpu. 68 | if args.fp16 and args.loss_scale != 1.0: 69 | # rescale loss for fp16 training 70 | # see https://docs.nvidia.com/deeplearning/sdk/mixed-precision-training/index.html 71 | loss = loss * args.loss_scale 72 | if args.gradient_accumulation_steps > 1: 73 | loss = loss / args.gradient_accumulation_steps 74 | return loss 75 | 76 | def bert_load_state_dict(model, state_dict): 77 | missing_keys = [] 78 | unexpected_keys = [] 79 | error_msgs = [] 80 | 81 | # copy state_dict so _load_from_state_dict can modify it 82 | metadata = getattr(state_dict, '_metadata', None) 83 | state_dict = state_dict.copy() 84 | if metadata is not None: 85 | state_dict._metadata = metadata 86 | 87 | def load(module, prefix=''): 88 | local_metadata = {} if metadata is None else metadata.get(prefix[:-1], {}) 89 | module._load_from_state_dict( 90 | state_dict, prefix, local_metadata, True, missing_keys, unexpected_keys, error_msgs) 91 | for name, child in module._modules.items(): 92 | if child is not None: 93 | load(child, prefix + name + '.') 94 | 95 | load(model, prefix='' if hasattr(model, 'bert') else 'bert.') 96 | 97 | if len(missing_keys) > 0: 98 | logger.info("Weights of {} not initialized from pretrained model: {}".format( 99 | model.__class__.__name__, missing_keys)) 100 | if len(unexpected_keys) > 0: 101 | logger.info("Weights from pretrained model not used in {}: {}".format( 102 | model.__class__.__name__, unexpected_keys)) 103 | return model -------------------------------------------------------------------------------- /absa/run_cls_span.py: -------------------------------------------------------------------------------- 1 | # coding=utf-8 2 | # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. 3 | # 4 | # Licensed under the Apache License, Version 2.0 (the "License"); 5 | # you may not use this file except in compliance with the License. 6 | # You may obtain a copy of the License at 7 | # 8 | # http://www.apache.org/licenses/LICENSE-2.0 9 | # 10 | # Unless required by applicable law or agreed to in writing, software 11 | # distributed under the License is distributed on an "AS IS" BASIS, 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 | # See the License for the specific language governing permissions and 14 | # limitations under the License. 15 | """Run BERT on SemEval.""" 16 | 17 | from __future__ import absolute_import 18 | from __future__ import division 19 | from __future__ import print_function 20 | 21 | import sys 22 | import os 23 | import pickle 24 | import json 25 | import argparse 26 | import collections 27 | 28 | import numpy as np 29 | import torch 30 | from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler 31 | from torch.utils.data.distributed import DistributedSampler 32 | 33 | import bert.tokenization as tokenization 34 | from bert.modeling import BertConfig 35 | from bert.sentiment_modeling import BertForSpanAspectClassification 36 | 37 | from squad.squad_evaluate import exact_match_score 38 | from absa.utils import read_absa_data, convert_absa_data, convert_examples_to_features, \ 39 | RawFinalResult, wrapped_get_final_text, id_to_label 40 | from absa.run_base import copy_optimizer_params_to_model, set_optimizer_params_grad, prepare_optimizer, post_process_loss, bert_load_state_dict 41 | 42 | try: 43 | import xml.etree.ElementTree as ET, getopt, logging, sys, random, re, copy 44 | from xml.sax.saxutils import escape 45 | except: 46 | sys.exit('Some package is missing... Perhaps ?') 47 | 48 | logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', 49 | datefmt = '%m/%d/%Y %H:%M:%S', 50 | level = logging.INFO) 51 | logger = logging.getLogger(__name__) 52 | 53 | def read_train_data(args, tokenizer, logger): 54 | if args.debug: 55 | args.train_batch_size = 8 56 | 57 | train_path = os.path.join(args.data_dir, args.train_file) 58 | train_set = read_absa_data(train_path) 59 | train_examples = convert_absa_data(dataset=train_set, verbose_logging=args.verbose_logging) 60 | train_features = convert_examples_to_features(train_examples, tokenizer, args.max_seq_length, 61 | args.verbose_logging, logger) 62 | 63 | num_train_steps = int( 64 | len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) 65 | logger.info("Num orig examples = %d", len(train_examples)) 66 | logger.info("Num split features = %d", len(train_features)) 67 | logger.info("Batch size = %d", args.train_batch_size) 68 | logger.info("Num steps = %d", num_train_steps) 69 | all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) 70 | all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) 71 | all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) 72 | all_span_starts = torch.tensor([f.start_indexes for f in train_features], dtype=torch.long) 73 | all_span_ends = torch.tensor([f.end_indexes for f in train_features], dtype=torch.long) 74 | all_labels = torch.tensor([f.polarity_labels for f in train_features], dtype=torch.long) 75 | all_label_masks = torch.tensor([f.label_masks for f in train_features], dtype=torch.long) 76 | 77 | train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_span_starts, all_span_ends, 78 | all_labels, all_label_masks) 79 | if args.local_rank == -1: 80 | train_sampler = RandomSampler(train_data) 81 | else: 82 | train_sampler = DistributedSampler(train_data) 83 | train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) 84 | return train_dataloader, num_train_steps 85 | 86 | def read_eval_data(args, tokenizer, logger): 87 | if args.debug: 88 | args.predict_batch_size = 8 89 | 90 | eval_path = os.path.join(args.data_dir, args.predict_file) 91 | eval_set = read_absa_data(eval_path) 92 | eval_examples = convert_absa_data(dataset=eval_set, verbose_logging=args.verbose_logging) 93 | eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, 94 | args.verbose_logging, logger) 95 | 96 | logger.info("Num orig examples = %d", len(eval_examples)) 97 | logger.info("Num split features = %d", len(eval_features)) 98 | logger.info("Batch size = %d", args.predict_batch_size) 99 | all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) 100 | all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) 101 | all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) 102 | all_span_starts = torch.tensor([f.start_indexes for f in eval_features], dtype=torch.long) 103 | all_span_ends = torch.tensor([f.end_indexes for f in eval_features], dtype=torch.long) 104 | all_label_masks = torch.tensor([f.label_masks for f in eval_features], dtype=torch.long) 105 | all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) 106 | eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_span_starts, all_span_ends, 107 | all_label_masks, all_example_index) 108 | if args.local_rank == -1: 109 | eval_sampler = SequentialSampler(eval_data) 110 | else: 111 | eval_sampler = DistributedSampler(eval_data) 112 | eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) 113 | return eval_examples, eval_features, eval_dataloader 114 | 115 | def pipeline_eval_data(args, tokenizer, logger): 116 | if args.debug: 117 | args.predict_batch_size = 8 118 | 119 | eval_path = os.path.join(args.data_dir, args.predict_file) 120 | eval_set = read_absa_data(eval_path) 121 | eval_examples = convert_absa_data(dataset=eval_set, verbose_logging=args.verbose_logging) 122 | 123 | eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, 124 | args.verbose_logging, logger) 125 | 126 | assert args.extraction_file is not None 127 | eval_extract_preds = [] 128 | extract_predictions = pickle.load(open(args.extraction_file, 'rb')) 129 | extract_dict = {} 130 | for pred in extract_predictions: 131 | extract_dict[pred.unique_id] = pred 132 | for eval_feature in eval_features: 133 | eval_extract_preds.append(extract_dict[eval_feature.unique_id]) 134 | assert len(eval_extract_preds) == len(eval_features) 135 | 136 | logger.info("Num orig examples = %d", len(eval_examples)) 137 | logger.info("Num split features = %d", len(eval_features)) 138 | logger.info("Batch size = %d", args.predict_batch_size) 139 | all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) 140 | all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) 141 | all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) 142 | all_span_starts = torch.tensor([f.start_indexes for f in eval_extract_preds], dtype=torch.long) 143 | all_span_ends = torch.tensor([f.end_indexes for f in eval_extract_preds], dtype=torch.long) 144 | all_label_masks = torch.tensor([f.span_masks for f in eval_extract_preds], dtype=torch.long) 145 | all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) 146 | eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_span_starts, all_span_ends, 147 | all_label_masks, all_example_index) 148 | if args.local_rank == -1: 149 | eval_sampler = SequentialSampler(eval_data) 150 | else: 151 | eval_sampler = DistributedSampler(eval_data) 152 | eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) 153 | return eval_examples, eval_features, eval_dataloader 154 | 155 | def run_train_epoch(args, global_step, model, param_optimizer, train_dataloader, 156 | eval_examples, eval_features, eval_dataloader, 157 | optimizer, n_gpu, device, logger, log_path, save_path, 158 | save_checkpoints_steps, start_save_steps, best_f1): 159 | running_loss, count = 0.0, 0 160 | for step, batch in enumerate(train_dataloader): 161 | if n_gpu == 1: 162 | batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self 163 | input_ids, input_mask, segment_ids, span_starts, span_ends, labels, label_masks = batch 164 | loss = model('train', input_mask, input_ids=input_ids, token_type_ids=segment_ids, 165 | span_starts=span_starts, span_ends=span_ends, labels=labels, label_masks=label_masks) 166 | loss = post_process_loss(args, n_gpu, loss) 167 | loss.backward() 168 | running_loss += loss.item() 169 | 170 | if (step + 1) % args.gradient_accumulation_steps == 0: 171 | if args.fp16 or args.optimize_on_cpu: 172 | if args.fp16 and args.loss_scale != 1.0: 173 | # scale down gradients for fp16 training 174 | for param in model.parameters(): 175 | param.grad.data = param.grad.data / args.loss_scale 176 | is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) 177 | if is_nan: 178 | logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") 179 | args.loss_scale = args.loss_scale / 2 180 | model.zero_grad() 181 | continue 182 | optimizer.step() 183 | copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) 184 | else: 185 | optimizer.step() 186 | model.zero_grad() 187 | global_step += 1 188 | count += 1 189 | 190 | if global_step % save_checkpoints_steps == 0 and count != 0: 191 | logger.info("step: {}, loss: {:.4f}".format(global_step, running_loss / count)) 192 | 193 | if global_step % save_checkpoints_steps == 0 and global_step > start_save_steps and count != 0: # eval & save model 194 | logger.info("***** Running evaluation *****") 195 | model.eval() 196 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger) 197 | f = open(log_path, "a") 198 | print("step: {}, loss: {:.4f}, P: {:.4f}, R: {:.4f}, F1: {:.4f} " 199 | "(common: {}, retrieved: {}, relevant: {})" 200 | .format(global_step, running_loss / count, metrics['p'], metrics['r'], 201 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant']), file=f) 202 | print(" ", file=f) 203 | f.close() 204 | running_loss, count = 0.0, 0 205 | model.train() 206 | if metrics['f1'] > best_f1: 207 | best_f1 = metrics['f1'] 208 | torch.save({ 209 | 'model': model.state_dict(), 210 | 'optimizer': optimizer.state_dict(), 211 | 'step': global_step 212 | }, save_path) 213 | if args.debug: 214 | break 215 | return global_step, model, best_f1 216 | 217 | def metric_max_over_ground_truths(metric_fn, term, polarity, gold_terms, gold_polarities): 218 | hit = 0 219 | for gold_term, gold_polarity in zip(gold_terms, gold_polarities): 220 | score = metric_fn(term, gold_term) 221 | if score and polarity == gold_polarity: 222 | hit = 1 223 | return hit 224 | 225 | def eval_absa(all_examples, all_features, all_results, do_lower_case, verbose_logging, logger): 226 | unique_id_to_result = {} 227 | for result in all_results: 228 | unique_id_to_result[result.unique_id] = result 229 | 230 | all_nbest_json = collections.OrderedDict() 231 | common, relevant, retrieved = 0., 0., 0. 232 | for (feature_index, feature) in enumerate(all_features): 233 | example = all_examples[feature.example_index] 234 | result = unique_id_to_result[feature.unique_id] 235 | 236 | pred_terms = [] 237 | pred_polarities = [] 238 | for start_index, end_index, cls_pred, span_mask in \ 239 | zip(result.start_indexes, result.end_indexes, result.cls_pred, result.span_masks): 240 | if span_mask: 241 | final_text = wrapped_get_final_text(example, feature, start_index, end_index, 242 | do_lower_case, verbose_logging, logger) 243 | pred_terms.append(final_text) 244 | pred_polarities.append(id_to_label[cls_pred]) 245 | 246 | prediction = {'pred_terms': pred_terms, 'pred_polarities': pred_polarities} 247 | all_nbest_json[example.example_id] = prediction 248 | 249 | for term, polarity in zip(pred_terms, pred_polarities): 250 | common += metric_max_over_ground_truths(exact_match_score, term, polarity, example.term_texts, example.polarities) 251 | retrieved += len(pred_terms) 252 | relevant += len(example.term_texts) 253 | p = common / retrieved if retrieved > 0 else 0. 254 | r = common / relevant 255 | f1 = (2 * p * r) / (p + r) if p > 0 and r > 0 else 0. 256 | return {'p': p, 'r': r, 'f1': f1, 'common': common, 'retrieved': retrieved, 'relevant': relevant}, all_nbest_json 257 | 258 | def evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=False): 259 | all_results = [] 260 | for batch in eval_dataloader: 261 | batch = tuple(t.to(device) for t in batch) 262 | input_ids, input_mask, segment_ids, span_starts, span_ends, label_masks, example_indices = batch 263 | with torch.no_grad(): 264 | cls_logits = model('inference', input_mask, input_ids=input_ids, token_type_ids=segment_ids, 265 | span_starts=span_starts, span_ends=span_ends) 266 | 267 | for j, example_index in enumerate(example_indices): 268 | cls_pred = cls_logits[j].detach().cpu().numpy().argmax(axis=1).tolist() 269 | start_indexes = span_starts[j].detach().cpu().tolist() 270 | end_indexes = span_ends[j].detach().cpu().tolist() 271 | span_masks = label_masks[j].detach().cpu().tolist() 272 | eval_feature = eval_features[example_index.item()] 273 | unique_id = int(eval_feature.unique_id) 274 | all_results.append(RawFinalResult(unique_id=unique_id, start_indexes=start_indexes, 275 | end_indexes=end_indexes, cls_pred=cls_pred, span_masks=span_masks)) 276 | 277 | metrics, all_nbest_json = eval_absa(eval_examples, eval_features, all_results, 278 | args.do_lower_case, args.verbose_logging, logger) 279 | 280 | if write_pred: 281 | output_file = os.path.join(args.output_dir, "predictions.json") 282 | with open(output_file, "w") as writer: 283 | writer.write(json.dumps(all_nbest_json, indent=4) + "\n") 284 | logger.info("Writing predictions to: %s" % (output_file)) 285 | return metrics 286 | 287 | def main(): 288 | parser = argparse.ArgumentParser() 289 | 290 | ## Required parameters 291 | parser.add_argument("--bert_config_file", default=None, type=str, required=True, 292 | help="The config json file corresponding to the pre-trained BERT model. " 293 | "This specifies the model architecture.") 294 | parser.add_argument("--vocab_file", default=None, type=str, required=True, 295 | help="The vocabulary file that the BERT model was trained on.") 296 | parser.add_argument("--output_dir", default=None, type=str, required=True, 297 | help="The output directory where the model checkpoints will be written.") 298 | 299 | ## Other parameters 300 | parser.add_argument("--debug", default=False, action='store_true', help="Whether to run in debug mode.") 301 | parser.add_argument("--data_dir", default='data/semeval_14', type=str, help="SemEval data dir") 302 | parser.add_argument("--train_file", default=None, type=str, help="SemEval xml for training") 303 | parser.add_argument("--predict_file", default=None, type=str, help="SemEval csv for prediction") 304 | parser.add_argument("--extraction_file", default=None, type=str, help="pkl file for extraction") 305 | parser.add_argument("--init_checkpoint", default=None, type=str, 306 | help="Initial checkpoint (usually from a pre-trained BERT model).") 307 | parser.add_argument("--do_lower_case", default=True, action='store_true', 308 | help="Whether to lower case the input text. Should be True for uncased " 309 | "models and False for cased models.") 310 | parser.add_argument("--max_seq_length", default=96, type=int, 311 | help="The maximum total input sequence length after WordPiece tokenization. Sequences " 312 | "longer than this will be truncated, and sequences shorter than this will be padded.") 313 | parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") 314 | parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") 315 | parser.add_argument("--do_pipeline", default=False, action='store_true', help="Whether to run pipeline on the dev set.") 316 | parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") 317 | parser.add_argument("--predict_batch_size", default=32, type=int, help="Total batch size for predictions.") 318 | parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") 319 | parser.add_argument("--num_train_epochs", default=3.0, type=float, 320 | help="Total number of training epochs to perform.") 321 | parser.add_argument("--warmup_proportion", default=0.1, type=float, 322 | help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " 323 | "of training.") 324 | parser.add_argument("--save_proportion", default=0.5, type=float, 325 | help="Proportion of steps to save models for. E.g., 0.5 = 50% " 326 | "of training.") 327 | parser.add_argument("--verbose_logging", default=False, action='store_true', 328 | help="If true, all of the warnings related to data processing will be printed. " 329 | "A number of warnings are expected for a normal SQuAD evaluation.") 330 | parser.add_argument("--no_cuda", 331 | default=False, 332 | action='store_true', 333 | help="Whether not to use CUDA when available") 334 | parser.add_argument('--seed', 335 | type=int, 336 | default=42, 337 | help="random seed for initialization") 338 | parser.add_argument('--gradient_accumulation_steps', 339 | type=int, 340 | default=1, 341 | help="Number of updates steps to accumulate before performing a backward/update pass.") 342 | parser.add_argument("--local_rank", 343 | type=int, 344 | default=-1, 345 | help="local_rank for distributed training on gpus") 346 | parser.add_argument('--optimize_on_cpu', 347 | default=False, 348 | action='store_true', 349 | help="Whether to perform optimization and keep the optimizer averages on CPU") 350 | parser.add_argument('--fp16', 351 | default=False, 352 | action='store_true', 353 | help="Whether to use 16-bit float precision instead of 32-bit") 354 | parser.add_argument('--loss_scale', 355 | type=float, default=128, 356 | help='Loss scaling, positive power of 2 values can improve fp16 convergence.') 357 | 358 | args = parser.parse_args() 359 | 360 | if not args.do_train and not args.do_predict and not args.do_pipeline: 361 | raise ValueError("At least one of `do_train` or `do_predict` must be True.") 362 | 363 | if args.do_train and not args.train_file: 364 | raise ValueError( 365 | "If `do_train` is True, then `train_file` must be specified.") 366 | if args.do_predict and not args.predict_file: 367 | raise ValueError( 368 | "If `do_predict` is True, then `predict_file` must be specified.") 369 | if args.do_pipeline and not args.extraction_file: 370 | raise ValueError( 371 | "If `do_pipeline` is True, then `extraction_file` must be specified.") 372 | 373 | if args.local_rank == -1 or args.no_cuda: 374 | device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") 375 | n_gpu = torch.cuda.device_count() 376 | else: 377 | device = torch.device("cuda", args.local_rank) 378 | n_gpu = 1 379 | # Initializes the distributed backend which will take care of sychronizing nodes/GPUs 380 | torch.distributed.init_process_group(backend='nccl') 381 | if args.fp16: 382 | logger.info("16-bits training currently not supported in distributed training") 383 | args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) 384 | logger.info("torch_version: {} device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( 385 | torch.__version__, device, n_gpu, bool(args.local_rank != -1), args.fp16)) 386 | 387 | if args.gradient_accumulation_steps < 1: 388 | raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( 389 | args.gradient_accumulation_steps)) 390 | 391 | random.seed(args.seed) 392 | np.random.seed(args.seed) 393 | torch.manual_seed(args.seed) 394 | if n_gpu > 0: 395 | torch.cuda.manual_seed_all(args.seed) 396 | 397 | bert_config = BertConfig.from_json_file(args.bert_config_file) 398 | 399 | if args.max_seq_length > bert_config.max_position_embeddings: 400 | raise ValueError( 401 | "Cannot use sequence length %d because the BERT model " 402 | "was only trained up to sequence length %d" % 403 | (args.max_seq_length, bert_config.max_position_embeddings)) 404 | 405 | tokenizer = tokenization.FullTokenizer( 406 | vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) 407 | 408 | if not os.path.exists(args.output_dir): 409 | os.makedirs(args.output_dir) 410 | logger.info('output_dir: {}'.format(args.output_dir)) 411 | save_path = os.path.join(args.output_dir, 'checkpoint.pth.tar') 412 | log_path = os.path.join(args.output_dir, 'performance.txt') 413 | network_path = os.path.join(args.output_dir, 'network.txt') 414 | parameter_path = os.path.join(args.output_dir, 'parameter.txt') 415 | 416 | f = open(parameter_path, "w") 417 | for arg in sorted(vars(args)): 418 | print("{}: {}".format(arg, getattr(args, arg)), file=f) 419 | f.close() 420 | 421 | logger.info("***** Preparing model *****") 422 | model = BertForSpanAspectClassification(bert_config) 423 | if args.init_checkpoint is not None and not os.path.isfile(save_path): 424 | model = bert_load_state_dict(model, torch.load(args.init_checkpoint, map_location='cpu')) 425 | logger.info("Loading model from pretrained checkpoint: {}".format(args.init_checkpoint)) 426 | 427 | if args.fp16: 428 | model.half() 429 | model.to(device) 430 | if args.local_rank != -1: 431 | model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], 432 | output_device=args.local_rank) 433 | elif n_gpu > 1: 434 | model = torch.nn.DataParallel(model) 435 | 436 | if os.path.isfile(save_path): 437 | checkpoint = torch.load(save_path) 438 | model.load_state_dict(checkpoint['model']) 439 | step = checkpoint['step'] 440 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 441 | .format(save_path, step)) 442 | 443 | f = open(network_path, "w") 444 | for n, param in model.named_parameters(): 445 | print("name: {}, size: {}, dtype: {}, requires_grad: {}" 446 | .format(n, param.size(), param.dtype, param.requires_grad), file=f) 447 | total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) 448 | total_params = sum(p.numel() for p in model.parameters()) 449 | print("Total trainable parameters: {}".format(total_trainable_params), file=f) 450 | print("Total parameters: {}".format(total_params), file=f) 451 | f.close() 452 | 453 | logger.info("***** Preparing data *****") 454 | train_dataloader, num_train_steps = None, None 455 | eval_examples, eval_features, eval_dataloader = None, None, None 456 | args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) 457 | if args.do_train: 458 | logger.info("***** Preparing training *****") 459 | train_dataloader, num_train_steps = read_train_data(args, tokenizer, logger) 460 | logger.info("***** Preparing evaluation *****") 461 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 462 | 463 | logger.info("***** Preparing optimizer *****") 464 | optimizer, param_optimizer = prepare_optimizer(args, model, num_train_steps) 465 | 466 | global_step = 0 467 | if os.path.isfile(save_path): 468 | checkpoint = torch.load(save_path) 469 | optimizer.load_state_dict(checkpoint['optimizer']) 470 | step = checkpoint['step'] 471 | logger.info("Loading optimizer from finetuned checkpoint: '{}' (step {})".format(save_path, step)) 472 | global_step = step 473 | 474 | if args.do_train: 475 | logger.info("***** Running training *****") 476 | best_f1 = 0 477 | save_checkpoints_steps = int(num_train_steps / (5 * args.num_train_epochs)) 478 | start_save_steps = int(num_train_steps * args.save_proportion) 479 | if args.debug: 480 | args.num_train_epochs = 1 481 | save_checkpoints_steps = 20 482 | start_save_steps = 0 483 | model.train() 484 | for epoch in range(int(args.num_train_epochs)): 485 | logger.info("***** Epoch: {} *****".format(epoch+1)) 486 | global_step, model, best_f1 = run_train_epoch(args, global_step, model, param_optimizer, 487 | train_dataloader, eval_examples, eval_features, 488 | eval_dataloader, 489 | optimizer, n_gpu, device, logger, log_path, save_path, 490 | save_checkpoints_steps, start_save_steps, best_f1) 491 | 492 | if args.do_predict: 493 | logger.info("***** Running prediction *****") 494 | if eval_dataloader is None: 495 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 496 | 497 | # restore from best checkpoint 498 | if save_path and os.path.isfile(save_path) and args.do_train: 499 | checkpoint = torch.load(save_path) 500 | model.load_state_dict(checkpoint['model']) 501 | step = checkpoint['step'] 502 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 503 | .format(save_path, step)) 504 | 505 | model.eval() 506 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=True) 507 | print("step: {}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 508 | .format(global_step, metrics['p'], metrics['r'], 509 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant'])) 510 | 511 | if args.do_pipeline: 512 | logger.info("***** Running prediction *****") 513 | eval_examples, eval_features, eval_dataloader = pipeline_eval_data(args, tokenizer, logger) 514 | 515 | # restore from best checkpoint 516 | if save_path and os.path.isfile(save_path) and args.do_train: 517 | checkpoint = torch.load(save_path) 518 | model.load_state_dict(checkpoint['model']) 519 | step = checkpoint['step'] 520 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 521 | .format(save_path, step)) 522 | 523 | model.eval() 524 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=True) 525 | f = open(log_path, "a") 526 | print("pipeline, step: {}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 527 | .format(global_step, metrics['p'], metrics['r'], 528 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant']), file=f) 529 | print(" ", file=f) 530 | f.close() 531 | 532 | 533 | if __name__=='__main__': 534 | main() 535 | -------------------------------------------------------------------------------- /absa/run_extract_span.py: -------------------------------------------------------------------------------- 1 | # coding=utf-8 2 | # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. 3 | # 4 | # Licensed under the Apache License, Version 2.0 (the "License"); 5 | # you may not use this file except in compliance with the License. 6 | # You may obtain a copy of the License at 7 | # 8 | # http://www.apache.org/licenses/LICENSE-2.0 9 | # 10 | # Unless required by applicable law or agreed to in writing, software 11 | # distributed under the License is distributed on an "AS IS" BASIS, 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 | # See the License for the specific language governing permissions and 14 | # limitations under the License. 15 | """Run BERT on SemEval.""" 16 | 17 | from __future__ import absolute_import 18 | from __future__ import division 19 | from __future__ import print_function 20 | 21 | import sys 22 | import os 23 | import json 24 | import pickle 25 | import argparse 26 | import collections 27 | 28 | import numpy as np 29 | import torch 30 | from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler 31 | from torch.utils.data.distributed import DistributedSampler 32 | 33 | import bert.tokenization as tokenization 34 | from bert.modeling import BertConfig 35 | from bert.sentiment_modeling import BertForSpanAspectExtraction 36 | 37 | from squad.squad_evaluate import exact_match_score, metric_max_over_ground_truths 38 | from absa.utils import read_absa_data, convert_absa_data, convert_examples_to_features, RawFinalResult, RawSpanResult, \ 39 | span_annotate_candidates, wrapped_get_final_text 40 | from absa.run_base import copy_optimizer_params_to_model, set_optimizer_params_grad, prepare_optimizer, post_process_loss, bert_load_state_dict 41 | 42 | try: 43 | import xml.etree.ElementTree as ET, getopt, logging, sys, random, re, copy 44 | from xml.sax.saxutils import escape 45 | except: 46 | sys.exit('Some package is missing... Perhaps ?') 47 | 48 | logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', 49 | datefmt = '%m/%d/%Y %H:%M:%S', 50 | level = logging.INFO) 51 | logger = logging.getLogger(__name__) 52 | 53 | def read_train_data(args, tokenizer, logger): 54 | train_path = os.path.join(args.data_dir, args.train_file) 55 | train_set = read_absa_data(train_path) 56 | train_examples = convert_absa_data(dataset=train_set, verbose_logging=args.verbose_logging) 57 | 58 | train_features = convert_examples_to_features(train_examples, tokenizer, args.max_seq_length, 59 | args.verbose_logging, logger) 60 | 61 | num_train_steps = int( 62 | len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) 63 | logger.info("Num orig examples = %d", len(train_examples)) 64 | logger.info("Num split features = %d", len(train_features)) 65 | logger.info("Batch size = %d", args.train_batch_size) 66 | logger.info("Num steps = %d", num_train_steps) 67 | all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) 68 | all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) 69 | all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) 70 | all_start_positions = torch.tensor([f.start_positions for f in train_features], dtype=torch.long) 71 | all_end_positions = torch.tensor([f.end_positions for f in train_features], dtype=torch.long) 72 | 73 | train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions) 74 | if args.local_rank == -1: 75 | train_sampler = RandomSampler(train_data) 76 | else: 77 | train_sampler = DistributedSampler(train_data) 78 | train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) 79 | return train_dataloader, num_train_steps 80 | 81 | def read_eval_data(args, tokenizer, logger): 82 | eval_path = os.path.join(args.data_dir, args.predict_file) 83 | eval_set = read_absa_data(eval_path) 84 | eval_examples = convert_absa_data(dataset=eval_set, verbose_logging=args.verbose_logging) 85 | 86 | eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, 87 | args.verbose_logging, logger) 88 | 89 | logger.info("Num orig examples = %d", len(eval_examples)) 90 | logger.info("Num split features = %d", len(eval_features)) 91 | logger.info("Batch size = %d", args.predict_batch_size) 92 | all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) 93 | all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) 94 | all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) 95 | all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) 96 | eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) 97 | if args.local_rank == -1: 98 | eval_sampler = SequentialSampler(eval_data) 99 | else: 100 | eval_sampler = DistributedSampler(eval_data) 101 | eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) 102 | return eval_examples, eval_features, eval_dataloader 103 | 104 | def run_train_epoch(args, global_step, model, param_optimizer, train_dataloader, 105 | eval_examples, eval_features, eval_dataloader, 106 | optimizer, n_gpu, device, logger, log_path, save_path, 107 | save_checkpoints_steps, start_save_steps, best_f1): 108 | running_loss, count = 0.0, 0 109 | for step, batch in enumerate(train_dataloader): 110 | if n_gpu == 1: 111 | batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self 112 | input_ids, input_mask, segment_ids, start_positions, end_positions = batch 113 | loss = model(input_ids, segment_ids, input_mask, start_positions, end_positions) 114 | loss = post_process_loss(args, n_gpu, loss) 115 | loss.backward() 116 | running_loss += loss.item() 117 | 118 | if (step + 1) % args.gradient_accumulation_steps == 0: 119 | if args.fp16 or args.optimize_on_cpu: 120 | if args.fp16 and args.loss_scale != 1.0: 121 | # scale down gradients for fp16 training 122 | for param in model.parameters(): 123 | param.grad.data = param.grad.data / args.loss_scale 124 | is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) 125 | if is_nan: 126 | logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") 127 | args.loss_scale = args.loss_scale / 2 128 | model.zero_grad() 129 | continue 130 | optimizer.step() 131 | copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) 132 | else: 133 | optimizer.step() 134 | model.zero_grad() 135 | global_step += 1 136 | count += 1 137 | 138 | if global_step % save_checkpoints_steps == 0 and count != 0: 139 | logger.info("step: {}, loss: {:.4f}".format(global_step, running_loss / count)) 140 | 141 | if global_step % save_checkpoints_steps == 0 and global_step > start_save_steps and count != 0: # eval & save model 142 | logger.info("***** Running evaluation *****") 143 | model.eval() 144 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger) 145 | f = open(log_path, "a") 146 | print("step: {}, loss: {:.4f}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 147 | .format(global_step, running_loss / count, metrics['p'], metrics['r'], 148 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant']), file=f) 149 | print(" ", file=f) 150 | f.close() 151 | running_loss, count = 0.0, 0 152 | model.train() 153 | if metrics['f1'] > best_f1: 154 | best_f1 = metrics['f1'] 155 | torch.save({ 156 | 'model': model.state_dict(), 157 | 'optimizer': optimizer.state_dict(), 158 | 'step': global_step 159 | }, save_path) 160 | if args.debug: 161 | break 162 | return global_step, model, best_f1 163 | 164 | def eval_aspect_extract(all_examples, all_features, all_results, do_lower_case, verbose_logging, logger): 165 | unique_id_to_result = {} 166 | for result in all_results: 167 | unique_id_to_result[result.unique_id] = result 168 | 169 | all_nbest_json = collections.OrderedDict() 170 | common, relevant, retrieved = 0., 0., 0. 171 | for (feature_index, feature) in enumerate(all_features): 172 | example = all_examples[feature.example_index] 173 | result = unique_id_to_result[feature.unique_id] 174 | 175 | pred_terms = [] 176 | for start_index, end_index, span_mask in zip(result.start_indexes, result.end_indexes, result.span_masks): 177 | if span_mask: 178 | final_text = wrapped_get_final_text(example, feature, start_index, end_index, 179 | do_lower_case, verbose_logging, logger) 180 | pred_terms.append(final_text) 181 | 182 | prediction = {'pred': pred_terms, 'gold': example.term_texts} 183 | all_nbest_json[example.example_id] = prediction 184 | 185 | for pred_term in pred_terms: 186 | common += metric_max_over_ground_truths(exact_match_score, pred_term, example.term_texts) 187 | retrieved += len(pred_terms) 188 | relevant += len(example.term_texts) 189 | p = common / retrieved if retrieved > 0 else 0. 190 | r = common / relevant 191 | f1 = (2 * p * r) / (p + r) if p > 0 and r > 0 else 0. 192 | 193 | return {'p': p, 'r': r, 'f1': f1, 'common': common, 'retrieved': retrieved, 'relevant': relevant}, all_nbest_json 194 | 195 | def evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=False, do_pipeline=False): 196 | all_results = [] 197 | for batch in eval_dataloader: 198 | batch = tuple(t.to(device) for t in batch) 199 | input_ids, input_mask, segment_ids, example_indices = batch 200 | with torch.no_grad(): 201 | batch_start_logits, batch_end_logits = model(input_ids, segment_ids, input_mask) 202 | 203 | batch_features, batch_results = [], [] 204 | for j, example_index in enumerate(example_indices): 205 | start_logits = batch_start_logits[j].detach().cpu().tolist() 206 | end_logits = batch_end_logits[j].detach().cpu().tolist() 207 | eval_feature = eval_features[example_index.item()] 208 | unique_id = int(eval_feature.unique_id) 209 | batch_features.append(eval_feature) 210 | batch_results.append(RawSpanResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) 211 | 212 | span_starts, span_ends, _, label_masks = span_annotate_candidates(eval_examples, batch_features, batch_results, 213 | args.filter_type, False, 214 | args.use_heuristics, args.use_nms, 215 | args.logit_threshold, args.n_best_size, 216 | args.max_answer_length, args.do_lower_case, 217 | args.verbose_logging, logger) 218 | 219 | for j, example_index in enumerate(example_indices): 220 | start_indexes = span_starts[j] 221 | end_indexes = span_ends[j] 222 | span_masks = label_masks[j] 223 | eval_feature = eval_features[example_index.item()] 224 | unique_id = int(eval_feature.unique_id) 225 | all_results.append(RawFinalResult(unique_id=unique_id, start_indexes=start_indexes, 226 | end_indexes=end_indexes, cls_pred=None, span_masks=span_masks)) 227 | 228 | metrics, all_nbest_json = eval_aspect_extract(eval_examples, eval_features, all_results, 229 | args.do_lower_case, args.verbose_logging, logger) 230 | if write_pred: 231 | output_file = os.path.join(args.output_dir, "predictions.json") 232 | with open(output_file, "w") as writer: 233 | writer.write(json.dumps(all_nbest_json, indent=4) + "\n") 234 | logger.info("Writing predictions to: %s" % (output_file)) 235 | if do_pipeline: 236 | output_file = os.path.join(args.output_dir, "extraction_results.pkl") 237 | pickle.dump(all_results, open(output_file, 'wb')) 238 | return metrics 239 | 240 | 241 | def main(): 242 | parser = argparse.ArgumentParser() 243 | 244 | ## Required parameters 245 | parser.add_argument("--bert_config_file", default=None, type=str, required=True, 246 | help="The config json file corresponding to the pre-trained BERT model. " 247 | "This specifies the model architecture.") 248 | parser.add_argument("--vocab_file", default=None, type=str, required=True, 249 | help="The vocabulary file that the BERT model was trained on.") 250 | parser.add_argument("--output_dir", default=None, type=str, required=True, 251 | help="The output directory where the model checkpoints will be written.") 252 | 253 | ## Other parameters 254 | parser.add_argument("--debug", default=False, action='store_true', help="Whether to run in debug mode.") 255 | parser.add_argument("--data_dir", default='data/semeval_14', type=str, help="SemEval data dir") 256 | parser.add_argument("--train_file", default=None, type=str, help="SemEval xml for training") 257 | parser.add_argument("--predict_file", default=None, type=str, help="SemEval csv for prediction") 258 | parser.add_argument("--init_checkpoint", default=None, type=str, 259 | help="Initial checkpoint (usually from a pre-trained BERT model).") 260 | parser.add_argument("--do_lower_case", default=True, action='store_true', 261 | help="Whether to lower case the input text. Should be True for uncased " 262 | "models and False for cased models.") 263 | parser.add_argument("--max_seq_length", default=96, type=int, 264 | help="The maximum total input sequence length after WordPiece tokenization. Sequences " 265 | "longer than this will be truncated, and sequences shorter than this will be padded.") 266 | parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") 267 | parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") 268 | parser.add_argument("--do_pipeline", default=False, action='store_true', help="Whether to run pipeline on the dev set.") 269 | parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") 270 | parser.add_argument("--predict_batch_size", default=32, type=int, help="Total batch size for predictions.") 271 | parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") 272 | parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") 273 | parser.add_argument("--warmup_proportion", default=0.1, type=float, 274 | help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " 275 | "of training.") 276 | parser.add_argument("--save_proportion", default=0.5, type=float, 277 | help="Proportion of steps to save models for. E.g., 0.5 = 50% of training.") 278 | parser.add_argument("--n_best_size", default=20, type=int, 279 | help="The total number of n-best predictions to generate in the nbest_predictions.json " 280 | "output file.") 281 | parser.add_argument("--max_answer_length", default=12, type=int, 282 | help="The maximum length of an answer that can be generated. This is needed because the start " 283 | "and end predictions are not conditioned on one another.") 284 | parser.add_argument("--logit_threshold", default=7.5, type=float, 285 | help="Logit threshold for annotating labels.") 286 | parser.add_argument("--filter_type", default="f1", type=str, help="Which filter type to use") 287 | parser.add_argument("--use_heuristics", default=True, action='store_true', 288 | help="If true, use heuristic regularization on span length") 289 | parser.add_argument("--use_nms", default=True, action='store_true', 290 | help="If true, use nms to prune redundant spans") 291 | parser.add_argument("--verbose_logging", default=False, action='store_true', 292 | help="If true, all of the warnings related to data processing will be printed. " 293 | "A number of warnings are expected for a normal SQuAD evaluation.") 294 | parser.add_argument("--no_cuda", 295 | default=False, 296 | action='store_true', 297 | help="Whether not to use CUDA when available") 298 | parser.add_argument('--seed', 299 | type=int, 300 | default=42, 301 | help="random seed for initialization") 302 | parser.add_argument('--gradient_accumulation_steps', 303 | type=int, 304 | default=1, 305 | help="Number of updates steps to accumulate before performing a backward/update pass.") 306 | parser.add_argument("--local_rank", 307 | type=int, 308 | default=-1, 309 | help="local_rank for distributed training on gpus") 310 | parser.add_argument('--optimize_on_cpu', 311 | default=False, 312 | action='store_true', 313 | help="Whether to perform optimization and keep the optimizer averages on CPU") 314 | parser.add_argument('--fp16', 315 | default=False, 316 | action='store_true', 317 | help="Whether to use 16-bit float precision instead of 32-bit") 318 | parser.add_argument('--loss_scale', 319 | type=float, default=128, 320 | help='Loss scaling, positive power of 2 values can improve fp16 convergence.') 321 | 322 | args = parser.parse_args() 323 | 324 | if not args.do_train and not args.do_predict and not args.do_pipeline: 325 | raise ValueError("At least one of `do_train` or `do_predict` must be True.") 326 | 327 | if args.do_train and not args.train_file: 328 | raise ValueError( 329 | "If `do_train` is True, then `train_file` must be specified.") 330 | if args.do_predict and not args.predict_file: 331 | raise ValueError( 332 | "If `do_predict` is True, then `predict_file` must be specified.") 333 | 334 | if args.local_rank == -1 or args.no_cuda: 335 | device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") 336 | n_gpu = torch.cuda.device_count() 337 | else: 338 | device = torch.device("cuda", args.local_rank) 339 | n_gpu = 1 340 | # Initializes the distributed backend which will take care of sychronizing nodes/GPUs 341 | torch.distributed.init_process_group(backend='nccl') 342 | if args.fp16: 343 | logger.info("16-bits training currently not supported in distributed training") 344 | args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) 345 | logger.info("torch_version: {} device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( 346 | torch.__version__, device, n_gpu, bool(args.local_rank != -1), args.fp16)) 347 | 348 | if args.gradient_accumulation_steps < 1: 349 | raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( 350 | args.gradient_accumulation_steps)) 351 | 352 | random.seed(args.seed) 353 | np.random.seed(args.seed) 354 | torch.manual_seed(args.seed) 355 | if n_gpu > 0: 356 | torch.cuda.manual_seed_all(args.seed) 357 | 358 | bert_config = BertConfig.from_json_file(args.bert_config_file) 359 | 360 | if args.max_seq_length > bert_config.max_position_embeddings: 361 | raise ValueError( 362 | "Cannot use sequence length %d because the BERT model " 363 | "was only trained up to sequence length %d" % 364 | (args.max_seq_length, bert_config.max_position_embeddings)) 365 | 366 | tokenizer = tokenization.FullTokenizer( 367 | vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) 368 | 369 | if not os.path.exists(args.output_dir): 370 | os.makedirs(args.output_dir) 371 | logger.info('output_dir: {}'.format(args.output_dir)) 372 | save_path = os.path.join(args.output_dir, 'checkpoint.pth.tar') 373 | log_path = os.path.join(args.output_dir, 'performance.txt') 374 | network_path = os.path.join(args.output_dir, 'network.txt') 375 | parameter_path = os.path.join(args.output_dir, 'parameter.txt') 376 | 377 | f = open(parameter_path, "w") 378 | for arg in sorted(vars(args)): 379 | print("{}: {}".format(arg, getattr(args, arg)), file=f) 380 | f.close() 381 | 382 | logger.info("***** Preparing model *****") 383 | model = BertForSpanAspectExtraction(bert_config) 384 | if args.init_checkpoint is not None and not os.path.isfile(save_path): 385 | model = bert_load_state_dict(model, torch.load(args.init_checkpoint, map_location='cpu')) 386 | logger.info("Loading model from pretrained checkpoint: {}".format(args.init_checkpoint)) 387 | 388 | if args.fp16: 389 | model.half() 390 | model.to(device) 391 | if args.local_rank != -1: 392 | model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], 393 | output_device=args.local_rank) 394 | elif n_gpu > 1: 395 | model = torch.nn.DataParallel(model) 396 | 397 | if os.path.isfile(save_path): 398 | checkpoint = torch.load(save_path) 399 | model.load_state_dict(checkpoint['model']) 400 | step = checkpoint['step'] 401 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 402 | .format(save_path, step)) 403 | 404 | f = open(network_path, "w") 405 | for n, param in model.named_parameters(): 406 | print("name: {}, size: {}, dtype: {}, requires_grad: {}" 407 | .format(n, param.size(), param.dtype, param.requires_grad), file=f) 408 | total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) 409 | total_params = sum(p.numel() for p in model.parameters()) 410 | print("Total trainable parameters: {}".format(total_trainable_params), file=f) 411 | print("Total parameters: {}".format(total_params), file=f) 412 | f.close() 413 | 414 | logger.info("***** Preparing data *****") 415 | train_dataloader, num_train_steps = None, None 416 | eval_examples, eval_features, eval_dataloader = None, None, None 417 | args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) 418 | if args.do_train: 419 | logger.info("***** Preparing training *****") 420 | train_dataloader, num_train_steps = read_train_data(args, tokenizer, logger) 421 | logger.info("***** Preparing evaluation *****") 422 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 423 | 424 | logger.info("***** Preparing optimizer *****") 425 | optimizer, param_optimizer = prepare_optimizer(args, model, num_train_steps) 426 | 427 | global_step = 0 428 | if os.path.isfile(save_path): 429 | checkpoint = torch.load(save_path) 430 | optimizer.load_state_dict(checkpoint['optimizer']) 431 | step = checkpoint['step'] 432 | logger.info("Loading optimizer from finetuned checkpoint: '{}' (step {})".format(save_path, step)) 433 | global_step = step 434 | 435 | if args.do_train: 436 | logger.info("***** Running training *****") 437 | best_f1 = 0 438 | save_checkpoints_steps = int(num_train_steps / (5 * args.num_train_epochs)) 439 | start_save_steps = int(num_train_steps * args.save_proportion) 440 | if args.debug: 441 | args.num_train_epochs = 1 442 | save_checkpoints_steps = 20 443 | start_save_steps = 0 444 | model.train() 445 | for epoch in range(int(args.num_train_epochs)): 446 | logger.info("***** Epoch: {} *****".format(epoch+1)) 447 | global_step, model, best_f1 = run_train_epoch(args, global_step, model, param_optimizer, 448 | train_dataloader, eval_examples, eval_features, eval_dataloader, 449 | optimizer, n_gpu, device, logger, log_path, save_path, 450 | save_checkpoints_steps, start_save_steps, best_f1) 451 | 452 | if args.do_predict: 453 | logger.info("***** Running prediction *****") 454 | if eval_dataloader is None: 455 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 456 | 457 | # restore from best checkpoint 458 | if save_path and os.path.isfile(save_path) and args.do_train: 459 | checkpoint = torch.load(save_path) 460 | model.load_state_dict(checkpoint['model']) 461 | step = checkpoint['step'] 462 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 463 | .format(save_path, step)) 464 | 465 | model.eval() 466 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=True) 467 | f = open(log_path, "a") 468 | print("threshold: {}, step: {}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 469 | .format(args.logit_threshold, global_step, metrics['p'], metrics['r'], 470 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant']), file=f) 471 | print(" ", file=f) 472 | f.close() 473 | 474 | if args.do_pipeline: 475 | logger.info("***** Running pipeline *****") 476 | if eval_dataloader is None: 477 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 478 | 479 | # restore from best checkpoint 480 | if save_path and os.path.isfile(save_path) and args.do_train: 481 | checkpoint = torch.load(save_path) 482 | model.load_state_dict(checkpoint['model']) 483 | step = checkpoint['step'] 484 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 485 | .format(save_path, step)) 486 | 487 | model.eval() 488 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=True, 489 | do_pipeline=True) 490 | print("step: {}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 491 | .format(global_step, metrics['p'], metrics['r'], 492 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant'])) 493 | 494 | 495 | if __name__=='__main__': 496 | main() 497 | 498 | 499 | 500 | 501 | 502 | 503 | 504 | 505 | 506 | 507 | 508 | -------------------------------------------------------------------------------- /absa/run_joint_span.py: -------------------------------------------------------------------------------- 1 | # coding=utf-8 2 | # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. 3 | # 4 | # Licensed under the Apache License, Version 2.0 (the "License"); 5 | # you may not use this file except in compliance with the License. 6 | # You may obtain a copy of the License at 7 | # 8 | # http://www.apache.org/licenses/LICENSE-2.0 9 | # 10 | # Unless required by applicable law or agreed to in writing, software 11 | # distributed under the License is distributed on an "AS IS" BASIS, 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 | # See the License for the specific language governing permissions and 14 | # limitations under the License. 15 | """Run BERT on SemEval.""" 16 | 17 | from __future__ import absolute_import 18 | from __future__ import division 19 | from __future__ import print_function 20 | 21 | import sys 22 | import os 23 | import json 24 | import argparse 25 | 26 | import numpy as np 27 | import torch 28 | from torch.utils.data import TensorDataset, DataLoader, RandomSampler, SequentialSampler 29 | from torch.utils.data.distributed import DistributedSampler 30 | 31 | import bert.tokenization as tokenization 32 | from bert.modeling import BertConfig 33 | from bert.sentiment_modeling import BertForJointSpanExtractAndClassification 34 | 35 | from absa.utils import read_absa_data, convert_absa_data, convert_examples_to_features, RawFinalResult, RawSpanResult, span_annotate_candidates 36 | from absa.run_base import copy_optimizer_params_to_model, set_optimizer_params_grad, prepare_optimizer, post_process_loss, bert_load_state_dict 37 | from absa.run_cls_span import eval_absa 38 | 39 | try: 40 | import xml.etree.ElementTree as ET, getopt, logging, sys, random, re, copy 41 | from xml.sax.saxutils import escape 42 | except: 43 | sys.exit('Some package is missing... Perhaps ?') 44 | 45 | logging.basicConfig(format = '%(asctime)s - %(levelname)s - %(name)s - %(message)s', 46 | datefmt = '%m/%d/%Y %H:%M:%S', 47 | level = logging.INFO) 48 | logger = logging.getLogger(__name__) 49 | 50 | def read_train_data(args, tokenizer, logger): 51 | train_path = os.path.join(args.data_dir, args.train_file) 52 | train_set = read_absa_data(train_path) 53 | train_examples = convert_absa_data(dataset=train_set, verbose_logging=args.verbose_logging) 54 | train_features = convert_examples_to_features(train_examples, tokenizer, args.max_seq_length, 55 | args.verbose_logging, logger) 56 | 57 | num_train_steps = int( 58 | len(train_features) / args.train_batch_size / args.gradient_accumulation_steps * args.num_train_epochs) 59 | logger.info("Num orig examples = %d", len(train_examples)) 60 | logger.info("Num split features = %d", len(train_features)) 61 | logger.info("Batch size = %d", args.train_batch_size) 62 | logger.info("Num steps = %d", num_train_steps) 63 | all_input_ids = torch.tensor([f.input_ids for f in train_features], dtype=torch.long) 64 | all_input_mask = torch.tensor([f.input_mask for f in train_features], dtype=torch.long) 65 | all_segment_ids = torch.tensor([f.segment_ids for f in train_features], dtype=torch.long) 66 | all_start_positions = torch.tensor([f.start_positions for f in train_features], dtype=torch.long) 67 | all_end_positions = torch.tensor([f.end_positions for f in train_features], dtype=torch.long) 68 | all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) 69 | 70 | train_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_start_positions, all_end_positions, all_example_index) 71 | if args.local_rank == -1: 72 | train_sampler = RandomSampler(train_data) 73 | else: 74 | train_sampler = DistributedSampler(train_data) 75 | train_dataloader = DataLoader(train_data, sampler=train_sampler, batch_size=args.train_batch_size) 76 | return train_examples, train_features, train_dataloader, num_train_steps 77 | 78 | def read_eval_data(args, tokenizer, logger): 79 | eval_path = os.path.join(args.data_dir, args.predict_file) 80 | eval_set = read_absa_data(eval_path) 81 | eval_examples = convert_absa_data(dataset=eval_set, verbose_logging=args.verbose_logging) 82 | 83 | eval_features = convert_examples_to_features(eval_examples, tokenizer, args.max_seq_length, 84 | args.verbose_logging, logger) 85 | 86 | logger.info("Num orig examples = %d", len(eval_examples)) 87 | logger.info("Num split features = %d", len(eval_features)) 88 | logger.info("Batch size = %d", args.predict_batch_size) 89 | all_input_ids = torch.tensor([f.input_ids for f in eval_features], dtype=torch.long) 90 | all_input_mask = torch.tensor([f.input_mask for f in eval_features], dtype=torch.long) 91 | all_segment_ids = torch.tensor([f.segment_ids for f in eval_features], dtype=torch.long) 92 | all_example_index = torch.arange(all_input_ids.size(0), dtype=torch.long) 93 | eval_data = TensorDataset(all_input_ids, all_input_mask, all_segment_ids, all_example_index) 94 | if args.local_rank == -1: 95 | eval_sampler = SequentialSampler(eval_data) 96 | else: 97 | eval_sampler = DistributedSampler(eval_data) 98 | eval_dataloader = DataLoader(eval_data, sampler=eval_sampler, batch_size=args.predict_batch_size) 99 | return eval_examples, eval_features, eval_dataloader 100 | 101 | def run_train_epoch(args, global_step, model, param_optimizer, 102 | train_examples, train_features, train_dataloader, 103 | eval_examples, eval_features, eval_dataloader, 104 | optimizer, n_gpu, device, logger, log_path, save_path, 105 | save_checkpoints_steps, start_save_steps, best_f1): 106 | running_loss, count = 0.0, 0 107 | for step, batch in enumerate(train_dataloader): 108 | if n_gpu == 1: 109 | batch = tuple(t.to(device) for t in batch) # multi-gpu does scattering it-self 110 | input_ids, input_mask, segment_ids, start_positions, end_positions, example_indices = batch 111 | batch_start_logits, batch_end_logits, _ = model('extract_inference', input_mask, input_ids=input_ids, token_type_ids=segment_ids) 112 | 113 | batch_features, batch_results = [], [] 114 | for j, example_index in enumerate(example_indices): 115 | start_logits = batch_start_logits[j].detach().cpu().tolist() 116 | end_logits = batch_end_logits[j].detach().cpu().tolist() 117 | train_feature = train_features[example_index.item()] 118 | unique_id = int(train_feature.unique_id) 119 | batch_features.append(train_feature) 120 | batch_results.append(RawSpanResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) 121 | 122 | span_starts, span_ends, labels, label_masks = span_annotate_candidates(train_examples, batch_features, 123 | batch_results, 124 | args.filter_type, True, 125 | args.use_heuristics, 126 | args.use_nms, 127 | args.logit_threshold, 128 | args.n_best_size, 129 | args.max_answer_length, 130 | args.do_lower_case, 131 | args.verbose_logging, logger) 132 | 133 | span_starts = torch.tensor(span_starts, dtype=torch.long) 134 | span_ends = torch.tensor(span_ends, dtype=torch.long) 135 | labels = torch.tensor(labels, dtype=torch.long) 136 | label_masks = torch.tensor(label_masks, dtype=torch.long) 137 | span_starts = span_starts.to(device) 138 | span_ends = span_ends.to(device) 139 | labels = labels.to(device) 140 | label_masks = label_masks.to(device) 141 | 142 | loss = model('train', input_mask, input_ids=input_ids, token_type_ids=segment_ids, 143 | start_positions=start_positions, end_positions=end_positions, 144 | span_starts=span_starts, span_ends=span_ends, 145 | polarity_labels=labels, label_masks=label_masks) 146 | loss = post_process_loss(args, n_gpu, loss) 147 | loss.backward() 148 | running_loss += loss.item() 149 | 150 | if (step + 1) % args.gradient_accumulation_steps == 0: 151 | if args.fp16 or args.optimize_on_cpu: 152 | if args.fp16 and args.loss_scale != 1.0: 153 | # scale down gradients for fp16 training 154 | for param in model.parameters(): 155 | param.grad.data = param.grad.data / args.loss_scale 156 | is_nan = set_optimizer_params_grad(param_optimizer, model.named_parameters(), test_nan=True) 157 | if is_nan: 158 | logger.info("FP16 TRAINING: Nan in gradients, reducing loss scaling") 159 | args.loss_scale = args.loss_scale / 2 160 | model.zero_grad() 161 | continue 162 | optimizer.step() 163 | copy_optimizer_params_to_model(model.named_parameters(), param_optimizer) 164 | else: 165 | optimizer.step() 166 | model.zero_grad() 167 | global_step += 1 168 | count += 1 169 | 170 | if global_step % save_checkpoints_steps == 0 and count != 0: 171 | logger.info("step: {}, loss: {:.4f}".format(global_step, running_loss / count)) 172 | 173 | if global_step % save_checkpoints_steps == 0 and global_step > start_save_steps and count != 0: # eval & save model 174 | logger.info("***** Running evaluation *****") 175 | model.eval() 176 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger) 177 | f = open(log_path, "a") 178 | print("step: {}, loss: {:.4f}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 179 | .format(global_step, running_loss / count, metrics['p'], metrics['r'], 180 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant']), file=f) 181 | print(" ", file=f) 182 | f.close() 183 | running_loss, count = 0.0, 0 184 | model.train() 185 | if metrics['f1'] > best_f1: 186 | best_f1 = metrics['f1'] 187 | torch.save({ 188 | 'model': model.state_dict(), 189 | 'optimizer': optimizer.state_dict(), 190 | 'step': global_step 191 | }, save_path) 192 | if args.debug: 193 | break 194 | return global_step, model, best_f1 195 | 196 | 197 | def evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=False): 198 | all_results = [] 199 | for batch in eval_dataloader: 200 | batch = tuple(t.to(device) for t in batch) 201 | input_ids, input_mask, segment_ids, example_indices = batch 202 | with torch.no_grad(): 203 | batch_start_logits, batch_end_logits, sequence_output = model('extract_inference', input_mask, 204 | input_ids=input_ids, 205 | token_type_ids=segment_ids) 206 | 207 | batch_features, batch_results = [], [] 208 | for j, example_index in enumerate(example_indices): 209 | start_logits = batch_start_logits[j].detach().cpu().tolist() 210 | end_logits = batch_end_logits[j].detach().cpu().tolist() 211 | eval_feature = eval_features[example_index.item()] 212 | unique_id = int(eval_feature.unique_id) 213 | batch_features.append(eval_feature) 214 | batch_results.append(RawSpanResult(unique_id=unique_id, start_logits=start_logits, end_logits=end_logits)) 215 | 216 | span_starts, span_ends, _, label_masks = span_annotate_candidates(eval_examples, batch_features, batch_results, 217 | args.filter_type, False, 218 | args.use_heuristics, args.use_nms, 219 | args.logit_threshold, args.n_best_size, 220 | args.max_answer_length, args.do_lower_case, 221 | args.verbose_logging, logger) 222 | 223 | span_starts = torch.tensor(span_starts, dtype=torch.long) 224 | span_ends = torch.tensor(span_ends, dtype=torch.long) 225 | span_starts = span_starts.to(device) 226 | span_ends = span_ends.to(device) 227 | sequence_output = sequence_output.to(device) 228 | with torch.no_grad(): 229 | batch_ac_logits = model('classify_inference', input_mask, span_starts=span_starts, 230 | span_ends=span_ends, sequence_input=sequence_output) # [N, M, 4] 231 | 232 | for j, example_index in enumerate(example_indices): 233 | cls_pred = batch_ac_logits[j].detach().cpu().numpy().argmax(axis=1).tolist() 234 | start_indexes = span_starts[j].detach().cpu().tolist() 235 | end_indexes = span_ends[j].detach().cpu().tolist() 236 | span_masks = label_masks[j] 237 | eval_feature = eval_features[example_index.item()] 238 | unique_id = int(eval_feature.unique_id) 239 | all_results.append(RawFinalResult(unique_id=unique_id, start_indexes=start_indexes, 240 | end_indexes=end_indexes, cls_pred=cls_pred, span_masks=span_masks)) 241 | 242 | metrics, all_nbest_json = eval_absa(eval_examples, eval_features, all_results, 243 | args.do_lower_case, args.verbose_logging, logger) 244 | if write_pred: 245 | output_file = os.path.join(args.output_dir, "predictions.json") 246 | with open(output_file, "w") as writer: 247 | writer.write(json.dumps(all_nbest_json, indent=4) + "\n") 248 | logger.info("Writing predictions to: %s" % (output_file)) 249 | return metrics 250 | 251 | 252 | def main(): 253 | parser = argparse.ArgumentParser() 254 | 255 | ## Required parameters 256 | parser.add_argument("--bert_config_file", default=None, type=str, required=True, 257 | help="The config json file corresponding to the pre-trained BERT model. " 258 | "This specifies the model architecture.") 259 | parser.add_argument("--vocab_file", default=None, type=str, required=True, 260 | help="The vocabulary file that the BERT model was trained on.") 261 | parser.add_argument("--output_dir", default=None, type=str, required=True, 262 | help="The output directory where the model checkpoints will be written.") 263 | 264 | ## Other parameters 265 | parser.add_argument("--debug", default=False, action='store_true', help="Whether to run in debug mode.") 266 | parser.add_argument("--data_dir", default='data/semeval_14', type=str, help="SemEval data dir") 267 | parser.add_argument("--train_file", default=None, type=str, help="SemEval xml for training") 268 | parser.add_argument("--predict_file", default=None, type=str, help="SemEval csv for prediction") 269 | parser.add_argument("--init_checkpoint", default=None, type=str, 270 | help="Initial checkpoint (usually from a pre-trained BERT model).") 271 | parser.add_argument("--do_lower_case", default=True, action='store_true', 272 | help="Whether to lower case the input text. Should be True for uncased " 273 | "models and False for cased models.") 274 | parser.add_argument("--max_seq_length", default=96, type=int, 275 | help="The maximum total input sequence length after WordPiece tokenization. Sequences " 276 | "longer than this will be truncated, and sequences shorter than this will be padded.") 277 | parser.add_argument("--do_train", default=False, action='store_true', help="Whether to run training.") 278 | parser.add_argument("--do_predict", default=False, action='store_true', help="Whether to run eval on the dev set.") 279 | parser.add_argument("--train_batch_size", default=32, type=int, help="Total batch size for training.") 280 | parser.add_argument("--predict_batch_size", default=32, type=int, help="Total batch size for predictions.") 281 | parser.add_argument("--learning_rate", default=2e-5, type=float, help="The initial learning rate for Adam.") 282 | parser.add_argument("--num_train_epochs", default=3.0, type=float, help="Total number of training epochs to perform.") 283 | parser.add_argument("--warmup_proportion", default=0.1, type=float, 284 | help="Proportion of training to perform linear learning rate warmup for. E.g., 0.1 = 10% " 285 | "of training.") 286 | parser.add_argument("--save_proportion", default=0.5, type=float, 287 | help="Proportion of steps to save models for. E.g., 0.5 = 50% of training.") 288 | parser.add_argument("--n_best_size", default=20, type=int, 289 | help="The total number of n-best predictions to generate in the nbest_predictions.json " 290 | "output file.") 291 | parser.add_argument("--max_answer_length", default=12, type=int, 292 | help="The maximum length of an answer that can be generated. This is needed because the start " 293 | "and end predictions are not conditioned on one another.") 294 | parser.add_argument("--logit_threshold", default=8., type=float, 295 | help="Logit threshold for annotating labels.") 296 | parser.add_argument("--filter_type", default="f1", type=str, help="Which filter type to use") 297 | parser.add_argument("--use_heuristics", default=True, action='store_true', 298 | help="If true, use heuristic regularization on span length") 299 | parser.add_argument("--use_nms", default=True, action='store_true', 300 | help="If true, use nms to prune redundant spans") 301 | parser.add_argument("--verbose_logging", default=False, action='store_true', 302 | help="If true, all of the warnings related to data processing will be printed. " 303 | "A number of warnings are expected for a normal SQuAD evaluation.") 304 | parser.add_argument("--no_cuda", 305 | default=False, 306 | action='store_true', 307 | help="Whether not to use CUDA when available") 308 | parser.add_argument('--seed', 309 | type=int, 310 | default=42, 311 | help="random seed for initialization") 312 | parser.add_argument('--gradient_accumulation_steps', 313 | type=int, 314 | default=1, 315 | help="Number of updates steps to accumulate before performing a backward/update pass.") 316 | parser.add_argument("--local_rank", 317 | type=int, 318 | default=-1, 319 | help="local_rank for distributed training on gpus") 320 | parser.add_argument('--optimize_on_cpu', 321 | default=False, 322 | action='store_true', 323 | help="Whether to perform optimization and keep the optimizer averages on CPU") 324 | parser.add_argument('--fp16', 325 | default=False, 326 | action='store_true', 327 | help="Whether to use 16-bit float precision instead of 32-bit") 328 | parser.add_argument('--loss_scale', 329 | type=float, default=128, 330 | help='Loss scaling, positive power of 2 values can improve fp16 convergence.') 331 | 332 | args = parser.parse_args() 333 | 334 | if not args.do_train and not args.do_predict: 335 | raise ValueError("At least one of `do_train` or `do_predict` must be True.") 336 | 337 | if args.do_train and not args.train_file: 338 | raise ValueError( 339 | "If `do_train` is True, then `train_file` must be specified.") 340 | if args.do_predict and not args.predict_file: 341 | raise ValueError( 342 | "If `do_predict` is True, then `predict_file` must be specified.") 343 | 344 | if args.local_rank == -1 or args.no_cuda: 345 | device = torch.device("cuda" if torch.cuda.is_available() and not args.no_cuda else "cpu") 346 | n_gpu = torch.cuda.device_count() 347 | else: 348 | device = torch.device("cuda", args.local_rank) 349 | n_gpu = 1 350 | # Initializes the distributed backend which will take care of sychronizing nodes/GPUs 351 | torch.distributed.init_process_group(backend='nccl') 352 | if args.fp16: 353 | logger.info("16-bits training currently not supported in distributed training") 354 | args.fp16 = False # (see https://github.com/pytorch/pytorch/pull/13496) 355 | logger.info("torch_version: {} device: {} n_gpu: {}, distributed training: {}, 16-bits training: {}".format( 356 | torch.__version__, device, n_gpu, bool(args.local_rank != -1), args.fp16)) 357 | 358 | if args.gradient_accumulation_steps < 1: 359 | raise ValueError("Invalid gradient_accumulation_steps parameter: {}, should be >= 1".format( 360 | args.gradient_accumulation_steps)) 361 | 362 | random.seed(args.seed) 363 | np.random.seed(args.seed) 364 | torch.manual_seed(args.seed) 365 | if n_gpu > 0: 366 | torch.cuda.manual_seed_all(args.seed) 367 | 368 | bert_config = BertConfig.from_json_file(args.bert_config_file) 369 | 370 | if args.max_seq_length > bert_config.max_position_embeddings: 371 | raise ValueError( 372 | "Cannot use sequence length %d because the BERT model " 373 | "was only trained up to sequence length %d" % 374 | (args.max_seq_length, bert_config.max_position_embeddings)) 375 | 376 | tokenizer = tokenization.FullTokenizer( 377 | vocab_file=args.vocab_file, do_lower_case=args.do_lower_case) 378 | 379 | if not os.path.exists(args.output_dir): 380 | os.makedirs(args.output_dir) 381 | logger.info('output_dir: {}'.format(args.output_dir)) 382 | save_path = os.path.join(args.output_dir, 'checkpoint.pth.tar') 383 | log_path = os.path.join(args.output_dir, 'performance.txt') 384 | network_path = os.path.join(args.output_dir, 'network.txt') 385 | parameter_path = os.path.join(args.output_dir, 'parameter.txt') 386 | 387 | f = open(parameter_path, "w") 388 | for arg in sorted(vars(args)): 389 | print("{}: {}".format(arg, getattr(args, arg)), file=f) 390 | f.close() 391 | 392 | logger.info("***** Preparing model *****") 393 | model = BertForJointSpanExtractAndClassification(bert_config) 394 | if args.init_checkpoint is not None and not os.path.isfile(save_path): 395 | model = bert_load_state_dict(model, torch.load(args.init_checkpoint, map_location='cpu')) 396 | logger.info("Loading model from pretrained checkpoint: {}".format(args.init_checkpoint)) 397 | 398 | if args.fp16: 399 | model.half() 400 | model.to(device) 401 | if args.local_rank != -1: 402 | model = torch.nn.parallel.DistributedDataParallel(model, device_ids=[args.local_rank], 403 | output_device=args.local_rank) 404 | elif n_gpu > 1: 405 | model = torch.nn.DataParallel(model) 406 | 407 | if os.path.isfile(save_path): 408 | checkpoint = torch.load(save_path) 409 | model.load_state_dict(checkpoint['model']) 410 | step = checkpoint['step'] 411 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 412 | .format(save_path, step)) 413 | 414 | f = open(network_path, "w") 415 | for n, param in model.named_parameters(): 416 | print("name: {}, size: {}, dtype: {}, requires_grad: {}" 417 | .format(n, param.size(), param.dtype, param.requires_grad), file=f) 418 | total_trainable_params = sum(p.numel() for p in model.parameters() if p.requires_grad) 419 | total_params = sum(p.numel() for p in model.parameters()) 420 | print("Total trainable parameters: {}".format(total_trainable_params), file=f) 421 | print("Total parameters: {}".format(total_params), file=f) 422 | f.close() 423 | 424 | logger.info("***** Preparing data *****") 425 | train_examples, train_features, train_dataloader, num_train_steps = None, None, None, None 426 | eval_examples, eval_features, eval_dataloader = None, None, None 427 | args.train_batch_size = int(args.train_batch_size / args.gradient_accumulation_steps) 428 | if args.do_train: 429 | logger.info("***** Preparing training *****") 430 | train_examples, train_features, train_dataloader, num_train_steps = read_train_data(args, tokenizer, logger) 431 | logger.info("***** Preparing evaluation *****") 432 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 433 | 434 | logger.info("***** Preparing optimizer *****") 435 | optimizer, param_optimizer = prepare_optimizer(args, model, num_train_steps) 436 | 437 | global_step = 0 438 | if os.path.isfile(save_path): 439 | checkpoint = torch.load(save_path) 440 | optimizer.load_state_dict(checkpoint['optimizer']) 441 | step = checkpoint['step'] 442 | logger.info("Loading optimizer from finetuned checkpoint: '{}' (step {})".format(save_path, step)) 443 | global_step = step 444 | 445 | if args.do_train: 446 | logger.info("***** Running training *****") 447 | best_f1 = 0 448 | save_checkpoints_steps = int(num_train_steps / (5 * args.num_train_epochs)) 449 | start_save_steps = int(num_train_steps * args.save_proportion) 450 | if args.debug: 451 | args.num_train_epochs = 1 452 | save_checkpoints_steps = 20 453 | start_save_steps = 0 454 | model.train() 455 | for epoch in range(int(args.num_train_epochs)): 456 | logger.info("***** Epoch: {} *****".format(epoch+1)) 457 | global_step, model, best_f1 = run_train_epoch(args, global_step, model, param_optimizer, 458 | train_examples, train_features, train_dataloader, 459 | eval_examples, eval_features, eval_dataloader, 460 | optimizer, n_gpu, device, logger, log_path, save_path, 461 | save_checkpoints_steps, start_save_steps, best_f1) 462 | 463 | if args.do_predict: 464 | logger.info("***** Running prediction *****") 465 | if eval_dataloader is None: 466 | eval_examples, eval_features, eval_dataloader = read_eval_data(args, tokenizer, logger) 467 | 468 | # restore from best checkpoint 469 | if save_path and os.path.isfile(save_path) and args.do_train: 470 | checkpoint = torch.load(save_path) 471 | model.load_state_dict(checkpoint['model']) 472 | step = checkpoint['step'] 473 | logger.info("Loading model from finetuned checkpoint: '{}' (step {})" 474 | .format(save_path, step)) 475 | 476 | model.eval() 477 | metrics = evaluate(args, model, device, eval_examples, eval_features, eval_dataloader, logger, write_pred=True) 478 | f = open(log_path, "a") 479 | print("threshold: {}, step: {}, P: {:.4f}, R: {:.4f}, F1: {:.4f} (common: {}, retrieved: {}, relevant: {})" 480 | .format(args.logit_threshold, global_step, metrics['p'], metrics['r'], 481 | metrics['f1'], metrics['common'], metrics['retrieved'], metrics['relevant']), file=f) 482 | print(" ", file=f) 483 | f.close() 484 | 485 | if __name__=='__main__': 486 | main() -------------------------------------------------------------------------------- /absa/utils.py: -------------------------------------------------------------------------------- 1 | import json 2 | import collections 3 | import numpy as np 4 | 5 | import bert.tokenization as tokenization 6 | from squad.squad_utils import get_final_text, _get_best_indexes 7 | from squad.squad_evaluate import exact_match_score, f1_score 8 | 9 | label_to_id = {'other': 0, 'neutral': 1, 'positive': 2, 'negative': 3, 'conflict': 4} 10 | id_to_label = {0: 'other', 1: 'neutral', 2: 'positive', 3: 'negative', 4: 'conflict'} 11 | 12 | 13 | class SemEvalExample(object): 14 | def __init__(self, 15 | example_id, 16 | sent_tokens, 17 | term_texts=None, 18 | start_positions=None, 19 | end_positions=None, 20 | polarities=None): 21 | self.example_id = example_id 22 | self.sent_tokens = sent_tokens 23 | self.term_texts = term_texts 24 | self.start_positions = start_positions 25 | self.end_positions = end_positions 26 | self.polarities = polarities 27 | 28 | def __str__(self): 29 | return self.__repr__() 30 | 31 | def __repr__(self): 32 | s = "" 33 | # s += "example_id: %s" % (tokenization.printable_text(self.example_id)) 34 | s += ", sent_tokens: [%s]" % (" ".join(self.sent_tokens)) 35 | if self.term_texts: 36 | s += ", term_texts: {}".format(self.term_texts) 37 | # if self.start_positions: 38 | # s += ", start_positions: {}".format(self.start_positions) 39 | # if self.end_positions: 40 | # s += ", end_positions: {}".format(self.end_positions) 41 | if self.polarities: 42 | s += ", polarities: {}".format(self.polarities) 43 | return s 44 | 45 | 46 | class InputFeatures(object): 47 | """A single set of features of data.""" 48 | 49 | def __init__(self, 50 | unique_id, 51 | example_index, 52 | tokens, 53 | token_to_orig_map, 54 | input_ids, 55 | input_mask, 56 | segment_ids, 57 | start_positions=None, 58 | end_positions=None, 59 | start_indexes=None, 60 | end_indexes=None, 61 | bio_labels=None, 62 | polarity_positions=None, 63 | polarity_labels=None, 64 | label_masks=None): 65 | self.unique_id = unique_id 66 | self.example_index = example_index 67 | self.tokens = tokens 68 | self.token_to_orig_map = token_to_orig_map 69 | self.input_ids = input_ids 70 | self.input_mask = input_mask 71 | self.segment_ids = segment_ids 72 | self.start_positions = start_positions 73 | self.end_positions = end_positions 74 | self.start_indexes = start_indexes 75 | self.end_indexes = end_indexes 76 | self.bio_labels = bio_labels 77 | self.polarity_positions = polarity_positions 78 | self.polarity_labels = polarity_labels 79 | self.label_masks = label_masks 80 | 81 | 82 | def convert_examples_to_features(examples, tokenizer, max_seq_length, verbose_logging=False, logger=None): 83 | max_term_num = max([len(example.term_texts) for (example_index, example) in enumerate(examples)]) 84 | max_sent_length, max_term_length = 0, 0 85 | 86 | unique_id = 1000000000 87 | features = [] 88 | for (example_index, example) in enumerate(examples): 89 | tok_to_orig_index = [] 90 | orig_to_tok_index = [] 91 | all_doc_tokens = [] 92 | for (i, token) in enumerate(example.sent_tokens): 93 | orig_to_tok_index.append(len(all_doc_tokens)) 94 | sub_tokens = tokenizer.tokenize(token) 95 | for sub_token in sub_tokens: 96 | tok_to_orig_index.append(i) 97 | all_doc_tokens.append(sub_token) 98 | if len(all_doc_tokens) > max_sent_length: 99 | max_sent_length = len(all_doc_tokens) 100 | 101 | tok_start_positions = [] 102 | tok_end_positions = [] 103 | for start_position, end_position in \ 104 | zip(example.start_positions, example.end_positions): 105 | tok_start_position = orig_to_tok_index[start_position] 106 | if end_position < len(example.sent_tokens) - 1: 107 | tok_end_position = orig_to_tok_index[end_position + 1] - 1 108 | else: 109 | tok_end_position = len(all_doc_tokens) - 1 110 | tok_start_positions.append(tok_start_position) 111 | tok_end_positions.append(tok_end_position) 112 | 113 | # Account for [CLS] and [SEP] with "- 2" 114 | if len(all_doc_tokens) > max_seq_length - 2: 115 | all_doc_tokens = all_doc_tokens[0:(max_seq_length - 2)] 116 | 117 | tokens = [] 118 | token_to_orig_map = {} 119 | segment_ids = [] 120 | tokens.append("[CLS]") 121 | segment_ids.append(0) 122 | 123 | for index, token in enumerate(all_doc_tokens): 124 | token_to_orig_map[len(tokens)] = tok_to_orig_index[index] 125 | tokens.append(token) 126 | segment_ids.append(0) 127 | tokens.append("[SEP]") 128 | segment_ids.append(0) 129 | 130 | input_ids = tokenizer.convert_tokens_to_ids(tokens) 131 | input_mask = [1] * len(input_ids) 132 | 133 | while len(input_ids) < max_seq_length: 134 | input_ids.append(0) 135 | input_mask.append(0) 136 | segment_ids.append(0) 137 | 138 | assert len(input_ids) == max_seq_length 139 | assert len(input_mask) == max_seq_length 140 | assert len(segment_ids) == max_seq_length 141 | 142 | # For distant supervision, we annotate the positions of all answer spans 143 | start_positions = [0] * len(input_ids) 144 | end_positions = [0] * len(input_ids) 145 | bio_labels = [0] * len(input_ids) 146 | polarity_positions = [0] * len(input_ids) 147 | start_indexes, end_indexes = [], [] 148 | for tok_start_position, tok_end_position, polarity in zip(tok_start_positions, tok_end_positions, example.polarities): 149 | if (tok_start_position >= 0 and tok_end_position <= (max_seq_length - 1)): 150 | start_position = tok_start_position + 1 # [CLS] 151 | end_position = tok_end_position + 1 # [CLS] 152 | start_positions[start_position] = 1 153 | end_positions[end_position] = 1 154 | start_indexes.append(start_position) 155 | end_indexes.append(end_position) 156 | term_length = tok_end_position - tok_start_position + 1 157 | max_term_length = term_length if term_length > max_term_length else max_term_length 158 | bio_labels[start_position] = 1 # 'B' 159 | if start_position < end_position: 160 | for idx in range(start_position + 1, end_position + 1): 161 | bio_labels[idx] = 2 # 'I' 162 | for idx in range(start_position, end_position + 1): 163 | polarity_positions[idx] = label_to_id[polarity] 164 | 165 | polarity_labels = [label_to_id[polarity] for polarity in example.polarities] 166 | label_masks = [1] * len(polarity_labels) 167 | 168 | while len(start_indexes) < max_term_num: 169 | start_indexes.append(0) 170 | end_indexes.append(0) 171 | polarity_labels.append(0) 172 | label_masks.append(0) 173 | 174 | assert len(start_indexes) == max_term_num 175 | assert len(end_indexes) == max_term_num 176 | assert len(polarity_labels) == max_term_num 177 | assert len(label_masks) == max_term_num 178 | 179 | if example_index < 1 and verbose_logging: 180 | logger.info("*** Example ***") 181 | logger.info("unique_id: %s" % (unique_id)) 182 | logger.info("example_index: %s" % (example_index)) 183 | logger.info("tokens: {}".format(tokens)) 184 | logger.info("token_to_orig_map: {}".format(token_to_orig_map)) 185 | logger.info("start_indexes: {}".format(start_indexes)) 186 | logger.info("end_indexes: {}".format(end_indexes)) 187 | logger.info("bio_labels: {}".format(bio_labels)) 188 | logger.info("polarity_positions: {}".format(polarity_positions)) 189 | logger.info("polarity_labels: {}".format(polarity_labels)) 190 | 191 | features.append( 192 | InputFeatures( 193 | unique_id=unique_id, 194 | example_index=example_index, 195 | tokens=tokens, 196 | token_to_orig_map=token_to_orig_map, 197 | input_ids=input_ids, 198 | input_mask=input_mask, 199 | segment_ids=segment_ids, 200 | start_positions=start_positions, 201 | end_positions=end_positions, 202 | start_indexes=start_indexes, 203 | end_indexes=end_indexes, 204 | bio_labels=bio_labels, 205 | polarity_positions=polarity_positions, 206 | polarity_labels=polarity_labels, 207 | label_masks=label_masks)) 208 | unique_id += 1 209 | logger.info("Max sentence length: {}".format(max_sent_length)) 210 | logger.info("Max term length: {}".format(max_term_length)) 211 | logger.info("Max term num: {}".format(max_term_num)) 212 | return features 213 | 214 | 215 | RawSpanResult = collections.namedtuple("RawSpanResult", 216 | ["unique_id", "start_logits", "end_logits"]) 217 | 218 | RawSpanCollapsedResult = collections.namedtuple("RawSpanCollapsedResult", 219 | ["unique_id", "neu_start_logits", "neu_end_logits", "pos_start_logits", "pos_end_logits", 220 | "neg_start_logits", "neg_end_logits"]) 221 | 222 | RawBIOResult = collections.namedtuple("RawBIOResult", ["unique_id", "bio_pred"]) 223 | 224 | RawBIOClsResult = collections.namedtuple("RawBIOClsResult", ["unique_id", "start_indexes", "end_indexes", "bio_pred", "span_masks"]) 225 | 226 | RawFinalResult = collections.namedtuple("RawFinalResult", 227 | ["unique_id", "start_indexes", "end_indexes", "cls_pred", "span_masks"]) 228 | 229 | 230 | def wrapped_get_final_text(example, feature, start_index, end_index, do_lower_case, verbose_logging, logger): 231 | tok_tokens = feature.tokens[start_index:(end_index + 1)] 232 | orig_doc_start = feature.token_to_orig_map[start_index] 233 | orig_doc_end = feature.token_to_orig_map[end_index] 234 | orig_tokens = example.sent_tokens[orig_doc_start:(orig_doc_end + 1)] 235 | tok_text = " ".join(tok_tokens) 236 | 237 | # De-tokenize WordPieces that have been split off. 238 | tok_text = tok_text.replace(" ##", "") 239 | tok_text = tok_text.replace("##", "") 240 | 241 | # Clean whitespace 242 | tok_text = tok_text.strip() 243 | tok_text = " ".join(tok_text.split()) 244 | orig_text = " ".join(orig_tokens) 245 | 246 | final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging, logger) 247 | return final_text 248 | 249 | 250 | def span_annotate_candidates(all_examples, batch_features, batch_results, filter_type, is_training, use_heuristics, use_nms, 251 | logit_threshold, n_best_size, max_answer_length, do_lower_case, verbose_logging, logger): 252 | """Annotate top-k candidate answers into features.""" 253 | unique_id_to_result = {} 254 | for result in batch_results: 255 | unique_id_to_result[result.unique_id] = result 256 | 257 | _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name 258 | "PrelimPrediction", 259 | ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) 260 | 261 | batch_span_starts, batch_span_ends, batch_labels, batch_label_masks = [], [], [], [] 262 | for (feature_index, feature) in enumerate(batch_features): 263 | example = all_examples[feature.example_index] 264 | result = unique_id_to_result[feature.unique_id] 265 | 266 | seen_predictions = {} 267 | span_starts, span_ends, labels, label_masks = [], [], [], [] 268 | if is_training: 269 | # add ground-truth terms 270 | for start_index, end_index, polarity_label, mask in \ 271 | zip(feature.start_indexes, feature.end_indexes, feature.polarity_labels, feature.label_masks): 272 | if mask and start_index in feature.token_to_orig_map and end_index in feature.token_to_orig_map: 273 | final_text = wrapped_get_final_text(example, feature, start_index, end_index, 274 | do_lower_case, verbose_logging, logger) 275 | if final_text in seen_predictions: 276 | continue 277 | seen_predictions[final_text] = True 278 | 279 | span_starts.append(start_index) 280 | span_ends.append(end_index) 281 | labels.append(polarity_label) 282 | label_masks.append(1) 283 | else: 284 | prelim_predictions_per_feature = [] 285 | start_indexes = _get_best_indexes(result.start_logits, n_best_size) 286 | end_indexes = _get_best_indexes(result.end_logits, n_best_size) 287 | for start_index in start_indexes: 288 | for end_index in end_indexes: 289 | # We could hypothetically create invalid predictions, e.g., predict 290 | # that the start of the span is in the question. We throw out all 291 | # invalid predictions. 292 | if start_index >= len(feature.tokens): 293 | continue 294 | if end_index >= len(feature.tokens): 295 | continue 296 | if start_index not in feature.token_to_orig_map: 297 | continue 298 | if end_index not in feature.token_to_orig_map: 299 | continue 300 | if end_index < start_index: 301 | continue 302 | length = end_index - start_index + 1 303 | if length > max_answer_length: 304 | continue 305 | start_logit = result.start_logits[start_index] 306 | end_logit = result.end_logits[end_index] 307 | if start_logit + end_logit < logit_threshold: 308 | continue 309 | 310 | prelim_predictions_per_feature.append( 311 | _PrelimPrediction( 312 | feature_index=feature_index, 313 | start_index=start_index, 314 | end_index=end_index, 315 | start_logit=start_logit, 316 | end_logit=end_logit)) 317 | 318 | if use_heuristics: 319 | prelim_predictions_per_feature = sorted( 320 | prelim_predictions_per_feature, 321 | key=lambda x: (x.start_logit + x.end_logit - (x.end_index - x.start_index + 1)), 322 | reverse=True) 323 | else: 324 | prelim_predictions_per_feature = sorted( 325 | prelim_predictions_per_feature, 326 | key=lambda x: (x.start_logit + x.end_logit), 327 | reverse=True) 328 | 329 | for i, pred_i in enumerate(prelim_predictions_per_feature): 330 | if len(span_starts) >= int(n_best_size)/2: 331 | break 332 | final_text = wrapped_get_final_text(example, feature, pred_i.start_index, pred_i.end_index, 333 | do_lower_case, verbose_logging, logger) 334 | if final_text in seen_predictions: 335 | continue 336 | seen_predictions[final_text] = True 337 | 338 | span_starts.append(pred_i.start_index) 339 | span_ends.append(pred_i.end_index) 340 | labels.append(0) 341 | label_masks.append(1) 342 | 343 | # filter out redundant candidates 344 | if (i+1) < len(prelim_predictions_per_feature) and use_nms: 345 | indexes = [] 346 | for j, pred_j in enumerate(prelim_predictions_per_feature[(i+1):]): 347 | filter_text = wrapped_get_final_text(example, feature, pred_j.start_index, pred_j.end_index, 348 | do_lower_case, verbose_logging, logger) 349 | if filter_type == 'em': 350 | if exact_match_score(final_text, filter_text): 351 | indexes.append(i + j + 1) 352 | elif filter_type == 'f1': 353 | if f1_score(final_text, filter_text) > 0: 354 | indexes.append(i + j + 1) 355 | else: 356 | raise Exception 357 | [prelim_predictions_per_feature.pop(index - k) for k, index in enumerate(indexes)] 358 | 359 | # Pad to fixed length 360 | while len(span_starts) < int(n_best_size): 361 | span_starts.append(0) 362 | span_ends.append(0) 363 | labels.append(0) 364 | label_masks.append(0) 365 | assert len(span_starts) == int(n_best_size) 366 | assert len(span_ends) == int(n_best_size) 367 | assert len(labels) == int(n_best_size) 368 | assert len(label_masks) == int(n_best_size) 369 | 370 | batch_span_starts.append(span_starts) 371 | batch_span_ends.append(span_ends) 372 | batch_labels.append(labels) 373 | batch_label_masks.append(label_masks) 374 | return batch_span_starts, batch_span_ends, batch_labels, batch_label_masks 375 | 376 | 377 | def ts2start_end(ts_tag_sequence): 378 | starts, ends = [], [] 379 | n_tag = len(ts_tag_sequence) 380 | prev_pos, prev_sentiment = '$$$', '$$$' 381 | tag_on = False 382 | for i in range(n_tag): 383 | cur_ts_tag = ts_tag_sequence[i] 384 | if cur_ts_tag != 'O': 385 | cur_pos, cur_sentiment = cur_ts_tag.split('-') 386 | else: 387 | cur_pos, cur_sentiment = 'O', '$$$' 388 | assert cur_pos == 'O' or cur_pos == 'T' 389 | if cur_pos == 'T': 390 | if prev_pos != 'T': 391 | # cur tag is at the beginning of the opinion target 392 | starts.append(i) 393 | tag_on = True 394 | else: 395 | if cur_sentiment != prev_sentiment: 396 | # prev sentiment is not equal to current sentiment 397 | ends.append(i - 1) 398 | starts.append(i) 399 | tag_on = True 400 | else: 401 | if prev_pos == 'T': 402 | ends.append(i - 1) 403 | tag_on = False 404 | prev_pos = cur_pos 405 | prev_sentiment = cur_sentiment 406 | if tag_on: 407 | ends.append(n_tag-1) 408 | assert len(starts) == len(ends), (len(starts), len(ends), ts_tag_sequence) 409 | return starts, ends 410 | 411 | 412 | def ts2polarity(words, ts_tag_sequence, starts, ends): 413 | polarities = [] 414 | for start, end in zip(starts, ends): 415 | cur_ts_tag = ts_tag_sequence[start] 416 | cur_pos, cur_sentiment = cur_ts_tag.split('-') 417 | assert cur_pos == 'T' 418 | prev_sentiment = cur_sentiment 419 | if start < end: 420 | for idx in range(start, end + 1): 421 | cur_ts_tag = ts_tag_sequence[idx] 422 | cur_pos, cur_sentiment = cur_ts_tag.split('-') 423 | assert cur_pos == 'T' 424 | assert cur_sentiment == prev_sentiment, (words, ts_tag_sequence, start, end) 425 | prev_sentiment = cur_sentiment 426 | polarities.append(cur_sentiment) 427 | return polarities 428 | 429 | 430 | def pos2term(words, starts, ends): 431 | term_texts = [] 432 | for start, end in zip(starts, ends): 433 | term_texts.append(' '.join(words[start:end+1])) 434 | return term_texts 435 | 436 | 437 | def convert_absa_data(dataset, verbose_logging=False): 438 | examples = [] 439 | n_records = len(dataset) 440 | for i in range(n_records): 441 | words = dataset[i]['words'] 442 | ts_tags = dataset[i]['ts_raw_tags'] 443 | starts, ends = ts2start_end(ts_tags) 444 | polarities = ts2polarity(words, ts_tags, starts, ends) 445 | term_texts = pos2term(words, starts, ends) 446 | 447 | if term_texts != []: 448 | new_polarities = [] 449 | for polarity in polarities: 450 | if polarity == 'POS': 451 | new_polarities.append('positive') 452 | elif polarity == 'NEG': 453 | new_polarities.append('negative') 454 | elif polarity == 'NEU': 455 | new_polarities.append('neutral') 456 | else: 457 | raise Exception 458 | assert len(term_texts) == len(starts) 459 | assert len(term_texts) == len(new_polarities) 460 | example = SemEvalExample(str(i), words, term_texts, starts, ends, new_polarities) 461 | examples.append(example) 462 | if i < 50 and verbose_logging: 463 | print(example) 464 | print("Convert %s examples" % len(examples)) 465 | return examples 466 | 467 | 468 | def read_absa_data(path): 469 | """ 470 | read data from the specified path 471 | :param path: path of dataset 472 | :return: 473 | """ 474 | dataset = [] 475 | with open(path, encoding='UTF-8') as fp: 476 | for line in fp: 477 | record = {} 478 | sent, tag_string = line.strip().split('####') 479 | record['sentence'] = sent 480 | word_tag_pairs = tag_string.split(' ') 481 | # tag sequence for targeted sentiment 482 | ts_tags = [] 483 | # tag sequence for opinion target extraction 484 | ote_tags = [] 485 | # word sequence 486 | words = [] 487 | for item in word_tag_pairs: 488 | # valid label is: O, T-POS, T-NEG, T-NEU 489 | eles = item.split('=') 490 | if len(eles) == 2: 491 | word, tag = eles 492 | elif len(eles) > 2: 493 | tag = eles[-1] 494 | word = (len(eles) - 2) * "=" 495 | words.append(word.lower()) 496 | if tag == 'O': 497 | ote_tags.append('O') 498 | ts_tags.append('O') 499 | elif tag == 'T-POS': 500 | ote_tags.append('T') 501 | ts_tags.append('T-POS') 502 | elif tag == 'T-NEG': 503 | ote_tags.append('T') 504 | ts_tags.append('T-NEG') 505 | elif tag == 'T-NEU': 506 | ote_tags.append('T') 507 | ts_tags.append('T-NEU') 508 | else: 509 | raise Exception('Invalid tag %s!!!' % tag) 510 | record['words'] = words.copy() 511 | record['ote_raw_tags'] = ote_tags.copy() 512 | record['ts_raw_tags'] = ts_tags.copy() 513 | dataset.append(record) 514 | print("Obtain %s records from %s" % (len(dataset), path)) 515 | return dataset -------------------------------------------------------------------------------- /bert/modeling.py: -------------------------------------------------------------------------------- 1 | # coding=utf-8 2 | # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. 3 | # 4 | # Licensed under the Apache License, Version 2.0 (the "License"); 5 | # you may not use this file except in compliance with the License. 6 | # You may obtain a copy of the License at 7 | # 8 | # http://www.apache.org/licenses/LICENSE-2.0 9 | # 10 | # Unless required by applicable law or agreed to in writing, software 11 | # distributed under the License is distributed on an "AS IS" BASIS, 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 | # See the License for the specific language governing permissions and 14 | # limitations under the License. 15 | """PyTorch BERT model.""" 16 | 17 | from __future__ import absolute_import 18 | from __future__ import division 19 | from __future__ import print_function 20 | 21 | import copy 22 | import json 23 | import math 24 | import six 25 | import torch 26 | import torch.nn as nn 27 | from torch.nn import CrossEntropyLoss 28 | 29 | 30 | def gelu(x): 31 | """Implementation of the gelu activation function. 32 | For information: OpenAI GPT's gelu is slightly different (and gives slightly different results): 33 | 0.5 * x * (1 + torch.tanh(math.sqrt(2 / math.pi) * (x + 0.044715 * torch.pow(x, 3)))) 34 | """ 35 | return x * 0.5 * (1.0 + torch.erf(x / math.sqrt(2.0))) 36 | 37 | 38 | class BertConfig(object): 39 | """Configuration class to store the configuration of a `BertModel`. 40 | """ 41 | def __init__(self, 42 | vocab_size, 43 | hidden_size=768, 44 | num_hidden_layers=12, 45 | num_attention_heads=12, 46 | intermediate_size=3072, 47 | hidden_act="gelu", 48 | hidden_dropout_prob=0.1, 49 | attention_probs_dropout_prob=0.1, 50 | max_position_embeddings=512, 51 | type_vocab_size=16, 52 | initializer_range=0.02): 53 | """Constructs BertConfig. 54 | 55 | Args: 56 | vocab_size: Vocabulary size of `inputs_ids` in `BertModel`. 57 | hidden_size: Size of the encoder layers and the pooler layer. 58 | num_hidden_layers: Number of hidden layers in the Transformer encoder. 59 | num_attention_heads: Number of attention heads for each attention layer in 60 | the Transformer encoder. 61 | intermediate_size: The size of the "intermediate" (i.e., feed-forward) 62 | layer in the Transformer encoder. 63 | hidden_act: The non-linear activation function (function or string) in the 64 | encoder and pooler. 65 | hidden_dropout_prob: The dropout probabilitiy for all fully connected 66 | layers in the embeddings, encoder, and pooler. 67 | attention_probs_dropout_prob: The dropout ratio for the attention 68 | probabilities. 69 | max_position_embeddings: The maximum sequence length that this model might 70 | ever be used with. Typically set this to something large just in case 71 | (e.g., 512 or 1024 or 2048). 72 | type_vocab_size: The vocabulary size of the `token_type_ids` passed into 73 | `BertModel`. 74 | initializer_range: The sttdev of the truncated_normal_initializer for 75 | initializing all weight matrices. 76 | """ 77 | self.vocab_size = vocab_size 78 | self.hidden_size = hidden_size 79 | self.num_hidden_layers = num_hidden_layers 80 | self.num_attention_heads = num_attention_heads 81 | self.hidden_act = hidden_act 82 | self.intermediate_size = intermediate_size 83 | self.hidden_dropout_prob = hidden_dropout_prob 84 | self.attention_probs_dropout_prob = attention_probs_dropout_prob 85 | self.max_position_embeddings = max_position_embeddings 86 | self.type_vocab_size = type_vocab_size 87 | self.initializer_range = initializer_range 88 | 89 | @classmethod 90 | def from_dict(cls, json_object): 91 | """Constructs a `BertConfig` from a Python dictionary of parameters.""" 92 | config = BertConfig(vocab_size=None) 93 | for (key, value) in six.iteritems(json_object): 94 | config.__dict__[key] = value 95 | return config 96 | 97 | @classmethod 98 | def from_json_file(cls, json_file): 99 | """Constructs a `BertConfig` from a json file of parameters.""" 100 | with open(json_file, "r") as reader: 101 | text = reader.read() 102 | return cls.from_dict(json.loads(text)) 103 | 104 | def to_dict(self): 105 | """Serializes this instance to a Python dictionary.""" 106 | output = copy.deepcopy(self.__dict__) 107 | return output 108 | 109 | def to_json_string(self): 110 | """Serializes this instance to a JSON string.""" 111 | return json.dumps(self.to_dict(), indent=2, sort_keys=True) + "\n" 112 | 113 | 114 | class BERTLayerNorm(nn.Module): 115 | def __init__(self, config, variance_epsilon=1e-12): 116 | """Construct a layernorm module in the TF style (epsilon inside the square root). 117 | """ 118 | super(BERTLayerNorm, self).__init__() 119 | self.gamma = nn.Parameter(torch.ones(config.hidden_size)) 120 | self.beta = nn.Parameter(torch.zeros(config.hidden_size)) 121 | self.variance_epsilon = variance_epsilon 122 | 123 | def forward(self, x): 124 | u = x.mean(-1, keepdim=True) 125 | s = (x - u).pow(2).mean(-1, keepdim=True) 126 | x = (x - u) / torch.sqrt(s + self.variance_epsilon) 127 | return self.gamma * x + self.beta 128 | 129 | 130 | class BERTEmbeddings(nn.Module): 131 | def __init__(self, config): 132 | super(BERTEmbeddings, self).__init__() 133 | """Construct the embedding module from word, position and token_type embeddings. 134 | """ 135 | self.word_embeddings = nn.Embedding(config.vocab_size, config.hidden_size) 136 | self.position_embeddings = nn.Embedding(config.max_position_embeddings, config.hidden_size) 137 | self.token_type_embeddings = nn.Embedding(config.type_vocab_size, config.hidden_size) 138 | 139 | # self.LayerNorm is not snake-cased to stick with TensorFlow model variable name and be able to load 140 | # any TensorFlow checkpoint file 141 | self.LayerNorm = BERTLayerNorm(config) 142 | self.dropout = nn.Dropout(config.hidden_dropout_prob) 143 | 144 | def forward(self, input_ids, token_type_ids=None): 145 | seq_length = input_ids.size(1) 146 | position_ids = torch.arange(seq_length, dtype=torch.long, device=input_ids.device) 147 | position_ids = position_ids.unsqueeze(0).expand_as(input_ids) 148 | if token_type_ids is None: 149 | token_type_ids = torch.zeros_like(input_ids) 150 | 151 | words_embeddings = self.word_embeddings(input_ids) 152 | position_embeddings = self.position_embeddings(position_ids) 153 | token_type_embeddings = self.token_type_embeddings(token_type_ids) 154 | 155 | embeddings = words_embeddings + position_embeddings + token_type_embeddings 156 | embeddings = self.LayerNorm(embeddings) 157 | embeddings = self.dropout(embeddings) 158 | return embeddings 159 | 160 | 161 | class BERTSelfAttention(nn.Module): 162 | def __init__(self, config): 163 | super(BERTSelfAttention, self).__init__() 164 | if config.hidden_size % config.num_attention_heads != 0: 165 | raise ValueError( 166 | "The hidden size (%d) is not a multiple of the number of attention " 167 | "heads (%d)" % (config.hidden_size, config.num_attention_heads)) 168 | self.num_attention_heads = config.num_attention_heads 169 | self.attention_head_size = int(config.hidden_size / config.num_attention_heads) 170 | self.all_head_size = self.num_attention_heads * self.attention_head_size 171 | 172 | self.query = nn.Linear(config.hidden_size, self.all_head_size) 173 | self.key = nn.Linear(config.hidden_size, self.all_head_size) 174 | self.value = nn.Linear(config.hidden_size, self.all_head_size) 175 | 176 | self.dropout = nn.Dropout(config.attention_probs_dropout_prob) 177 | 178 | def transpose_for_scores(self, x): 179 | new_x_shape = x.size()[:-1] + (self.num_attention_heads, self.attention_head_size) 180 | x = x.view(*new_x_shape) 181 | return x.permute(0, 2, 1, 3) 182 | 183 | def forward(self, hidden_states, attention_mask): 184 | mixed_query_layer = self.query(hidden_states) # [N, L, H] 185 | mixed_key_layer = self.key(hidden_states) 186 | mixed_value_layer = self.value(hidden_states) 187 | 188 | query_layer = self.transpose_for_scores(mixed_query_layer) # [N, K, L, H//K] 189 | key_layer = self.transpose_for_scores(mixed_key_layer) 190 | value_layer = self.transpose_for_scores(mixed_value_layer) 191 | 192 | # Take the dot product between "query" and "key" to get the raw attention scores. 193 | attention_scores = torch.matmul(query_layer, key_layer.transpose(-1, -2)) # [N, K, L, L] 194 | attention_scores = attention_scores / math.sqrt(self.attention_head_size) 195 | # Apply the attention mask is (precomputed for all layers in BertModel forward() function) 196 | attention_scores = attention_scores + attention_mask 197 | 198 | # Normalize the attention scores to probabilities. 199 | attention_probs = nn.Softmax(dim=-1)(attention_scores) 200 | 201 | # This is actually dropping out entire tokens to attend to, which might 202 | # seem a bit unusual, but is taken from the original Transformer paper. 203 | attention_probs = self.dropout(attention_probs) 204 | 205 | context_layer = torch.matmul(attention_probs, value_layer) # [N, K, L, H//K] 206 | context_layer = context_layer.permute(0, 2, 1, 3).contiguous() # [N, L, K, H//K] 207 | new_context_layer_shape = context_layer.size()[:-2] + (self.all_head_size,) 208 | context_layer = context_layer.view(*new_context_layer_shape) # [N, L, H] 209 | return context_layer 210 | 211 | 212 | class BERTSelfOutput(nn.Module): 213 | def __init__(self, config): 214 | super(BERTSelfOutput, self).__init__() 215 | self.dense = nn.Linear(config.hidden_size, config.hidden_size) 216 | self.LayerNorm = BERTLayerNorm(config) 217 | self.dropout = nn.Dropout(config.hidden_dropout_prob) 218 | 219 | def forward(self, hidden_states, input_tensor): 220 | hidden_states = self.dense(hidden_states) 221 | hidden_states = self.dropout(hidden_states) 222 | hidden_states = self.LayerNorm(hidden_states + input_tensor) 223 | return hidden_states 224 | 225 | 226 | class BERTAttention(nn.Module): 227 | def __init__(self, config): 228 | super(BERTAttention, self).__init__() 229 | self.self = BERTSelfAttention(config) 230 | self.output = BERTSelfOutput(config) 231 | 232 | def forward(self, input_tensor, attention_mask): 233 | self_output = self.self(input_tensor, attention_mask) 234 | attention_output = self.output(self_output, input_tensor) 235 | return attention_output 236 | 237 | 238 | class BERTIntermediate(nn.Module): 239 | def __init__(self, config): 240 | super(BERTIntermediate, self).__init__() 241 | self.dense = nn.Linear(config.hidden_size, config.intermediate_size) 242 | self.intermediate_act_fn = gelu 243 | 244 | def forward(self, hidden_states): 245 | hidden_states = self.dense(hidden_states) 246 | hidden_states = self.intermediate_act_fn(hidden_states) 247 | return hidden_states 248 | 249 | 250 | class BERTOutput(nn.Module): 251 | def __init__(self, config): 252 | super(BERTOutput, self).__init__() 253 | self.dense = nn.Linear(config.intermediate_size, config.hidden_size) 254 | self.LayerNorm = BERTLayerNorm(config) 255 | self.dropout = nn.Dropout(config.hidden_dropout_prob) 256 | 257 | def forward(self, hidden_states, input_tensor): 258 | hidden_states = self.dense(hidden_states) 259 | hidden_states = self.dropout(hidden_states) 260 | hidden_states = self.LayerNorm(hidden_states + input_tensor) 261 | return hidden_states 262 | 263 | 264 | class BERTLayer(nn.Module): 265 | def __init__(self, config): 266 | super(BERTLayer, self).__init__() 267 | self.attention = BERTAttention(config) 268 | self.intermediate = BERTIntermediate(config) 269 | self.output = BERTOutput(config) 270 | 271 | def forward(self, hidden_states, attention_mask): 272 | attention_output = self.attention(hidden_states, attention_mask) 273 | intermediate_output = self.intermediate(attention_output) 274 | layer_output = self.output(intermediate_output, attention_output) 275 | return layer_output 276 | 277 | 278 | class BERTEncoder(nn.Module): 279 | def __init__(self, config): 280 | super(BERTEncoder, self).__init__() 281 | layer = BERTLayer(config) 282 | self.layer = nn.ModuleList([copy.deepcopy(layer) for _ in range(config.num_hidden_layers)]) 283 | 284 | def forward(self, hidden_states, attention_mask): 285 | all_encoder_layers = [] 286 | for layer_module in self.layer: 287 | hidden_states = layer_module(hidden_states, attention_mask) 288 | all_encoder_layers.append(hidden_states) 289 | return all_encoder_layers 290 | 291 | 292 | class BERTPooler(nn.Module): 293 | def __init__(self, config): 294 | super(BERTPooler, self).__init__() 295 | self.dense = nn.Linear(config.hidden_size, config.hidden_size) 296 | self.activation = nn.Tanh() 297 | 298 | def forward(self, hidden_states): 299 | # We "pool" the model by simply taking the hidden state corresponding 300 | # to the first token. 301 | first_token_tensor = hidden_states[:, 0] 302 | pooled_output = self.dense(first_token_tensor) 303 | pooled_output = self.activation(pooled_output) 304 | return pooled_output 305 | 306 | 307 | class BertModel(nn.Module): 308 | """BERT model ("Bidirectional Embedding Representations from a Transformer"). 309 | 310 | Example usage: 311 | ```python 312 | # Already been converted into WordPiece token ids 313 | input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) 314 | input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) 315 | token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) 316 | 317 | config = modeling.BertConfig(vocab_size=32000, hidden_size=512, 318 | num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) 319 | 320 | model = modeling.BertModel(config=config) 321 | all_encoder_layers, pooled_output = model(input_ids, token_type_ids, input_mask) 322 | ``` 323 | """ 324 | def __init__(self, config: BertConfig): 325 | """Constructor for BertModel. 326 | 327 | Args: 328 | config: `BertConfig` instance. 329 | """ 330 | super(BertModel, self).__init__() 331 | self.embeddings = BERTEmbeddings(config) 332 | self.encoder = BERTEncoder(config) 333 | self.pooler = BERTPooler(config) 334 | 335 | def forward(self, input_ids, token_type_ids=None, attention_mask=None): 336 | if attention_mask is None: 337 | attention_mask = torch.ones_like(input_ids) 338 | if token_type_ids is None: 339 | token_type_ids = torch.zeros_like(input_ids) 340 | 341 | # We create a 3D attention mask from a 2D tensor mask. 342 | # Sizes are [batch_size, 1, 1, to_seq_length] 343 | # So we can broadcast to [batch_size, num_heads, from_seq_length, to_seq_length] 344 | # this attention mask is more simple than the triangular masking of causal attention 345 | # used in OpenAI GPT, we just need to prepare the broadcast dimension here. 346 | extended_attention_mask = attention_mask.unsqueeze(1).unsqueeze(2) 347 | 348 | # Since attention_mask is 1.0 for positions we want to attend and 0.0 for 349 | # masked positions, this operation will create a tensor which is 0.0 for 350 | # positions we want to attend and -10000.0 for masked positions. 351 | # Since we are adding it to the raw scores before the softmax, this is 352 | # effectively the same as removing these entirely. 353 | extended_attention_mask = extended_attention_mask.to(dtype=next(self.parameters()).dtype) # fp16 compatibility 354 | extended_attention_mask = (1.0 - extended_attention_mask) * -10000.0 355 | 356 | embedding_output = self.embeddings(input_ids, token_type_ids) 357 | all_encoder_layers = self.encoder(embedding_output, extended_attention_mask) 358 | sequence_output = all_encoder_layers[-1] 359 | pooled_output = self.pooler(sequence_output) 360 | return all_encoder_layers, pooled_output 361 | 362 | 363 | class BertForSequenceClassification(nn.Module): 364 | """BERT model for classification. 365 | This module is composed of the BERT model with a linear layer on top of 366 | the pooled output. 367 | 368 | Example usage: 369 | ```python 370 | # Already been converted into WordPiece token ids 371 | input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) 372 | input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) 373 | token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) 374 | 375 | config = BertConfig(vocab_size=32000, hidden_size=512, 376 | num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) 377 | 378 | num_labels = 2 379 | 380 | model = BertForSequenceClassification(config, num_labels) 381 | logits = model(input_ids, token_type_ids, input_mask) 382 | ``` 383 | """ 384 | def __init__(self, config, num_labels): 385 | super(BertForSequenceClassification, self).__init__() 386 | self.bert = BertModel(config) 387 | self.dropout = nn.Dropout(config.hidden_dropout_prob) 388 | self.classifier = nn.Linear(config.hidden_size, num_labels) 389 | 390 | def init_weights(module): 391 | if isinstance(module, (nn.Linear, nn.Embedding)): 392 | # Slightly different from the TF version which uses truncated_normal for initialization 393 | # cf https://github.com/pytorch/pytorch/pull/5617 394 | module.weight.data.normal_(mean=0.0, std=config.initializer_range) 395 | elif isinstance(module, BERTLayerNorm): 396 | module.beta.data.normal_(mean=0.0, std=config.initializer_range) 397 | module.gamma.data.normal_(mean=0.0, std=config.initializer_range) 398 | if isinstance(module, nn.Linear): 399 | module.bias.data.zero_() 400 | self.apply(init_weights) 401 | 402 | def forward(self, input_ids, token_type_ids, attention_mask, labels=None): 403 | _, pooled_output = self.bert(input_ids, token_type_ids, attention_mask) 404 | pooled_output = self.dropout(pooled_output) 405 | logits = self.classifier(pooled_output) 406 | 407 | if labels is not None: 408 | loss_fct = CrossEntropyLoss() 409 | loss = loss_fct(logits, labels) 410 | return loss, logits 411 | else: 412 | return logits 413 | 414 | 415 | class BertForQuestionAnswering(nn.Module): 416 | """BERT model for Question Answering (span extraction). 417 | This module is composed of the BERT model with a linear layer on top of 418 | the sequence output that computes start_logits and end_logits 419 | 420 | Example usage: 421 | ```python 422 | # Already been converted into WordPiece token ids 423 | input_ids = torch.LongTensor([[31, 51, 99], [15, 5, 0]]) 424 | input_mask = torch.LongTensor([[1, 1, 1], [1, 1, 0]]) 425 | token_type_ids = torch.LongTensor([[0, 0, 1], [0, 2, 0]]) 426 | 427 | config = BertConfig(vocab_size=32000, hidden_size=512, 428 | num_hidden_layers=8, num_attention_heads=6, intermediate_size=1024) 429 | 430 | model = BertForQuestionAnswering(config) 431 | start_logits, end_logits = model(input_ids, token_type_ids, input_mask) 432 | ``` 433 | """ 434 | def __init__(self, config): 435 | super(BertForQuestionAnswering, self).__init__() 436 | self.bert = BertModel(config) 437 | # TODO check with Google if it's normal there is no dropout on the token classifier of SQuAD in the TF version 438 | # self.dropout = nn.Dropout(config.hidden_dropout_prob) 439 | self.qa_outputs = nn.Linear(config.hidden_size, 2) 440 | 441 | def init_weights(module): 442 | if isinstance(module, (nn.Linear, nn.Embedding)): 443 | # Slightly different from the TF version which uses truncated_normal for initialization 444 | # cf https://github.com/pytorch/pytorch/pull/5617 445 | module.weight.data.normal_(mean=0.0, std=config.initializer_range) 446 | elif isinstance(module, BERTLayerNorm): 447 | module.beta.data.normal_(mean=0.0, std=config.initializer_range) 448 | module.gamma.data.normal_(mean=0.0, std=config.initializer_range) 449 | if isinstance(module, nn.Linear): 450 | module.bias.data.zero_() 451 | self.apply(init_weights) 452 | 453 | def forward(self, input_ids, token_type_ids, attention_mask, start_positions=None, end_positions=None): 454 | all_encoder_layers, _ = self.bert(input_ids, token_type_ids, attention_mask) 455 | sequence_output = all_encoder_layers[-1] 456 | logits = self.qa_outputs(sequence_output) 457 | start_logits, end_logits = logits.split(1, dim=-1) 458 | start_logits = start_logits.squeeze(-1) 459 | end_logits = end_logits.squeeze(-1) 460 | 461 | if start_positions is not None and end_positions is not None: 462 | # If we are on multi-GPU, split add a dimension 463 | if len(start_positions.size()) > 1: 464 | start_positions = start_positions.squeeze(-1) 465 | if len(end_positions.size()) > 1: 466 | end_positions = end_positions.squeeze(-1) 467 | # sometimes the start/end positions are outside our model inputs, we ignore these terms 468 | ignored_index = start_logits.size(1) 469 | start_positions.clamp_(0, ignored_index) 470 | end_positions.clamp_(0, ignored_index) 471 | 472 | loss_fct = CrossEntropyLoss(ignore_index=ignored_index) 473 | start_loss = loss_fct(start_logits, start_positions) 474 | end_loss = loss_fct(end_logits, end_positions) 475 | total_loss = (start_loss + end_loss) / 2 476 | return total_loss 477 | else: 478 | return start_logits, end_logits -------------------------------------------------------------------------------- /bert/optimization.py: -------------------------------------------------------------------------------- 1 | # coding=utf-8 2 | # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. 3 | # 4 | # Licensed under the Apache License, Version 2.0 (the "License"); 5 | # you may not use this file except in compliance with the License. 6 | # You may obtain a copy of the License at 7 | # 8 | # http://www.apache.org/licenses/LICENSE-2.0 9 | # 10 | # Unless required by applicable law or agreed to in writing, software 11 | # distributed under the License is distributed on an "AS IS" BASIS, 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 | # See the License for the specific language governing permissions and 14 | # limitations under the License. 15 | """PyTorch optimization for BERT model.""" 16 | 17 | import math 18 | import torch 19 | from torch.optim import Optimizer 20 | from torch.nn.utils import clip_grad_norm_ 21 | 22 | def warmup_cosine(x, warmup=0.002): 23 | if x < warmup: 24 | return x/warmup 25 | return 0.5 * (1.0 + torch.cos(math.pi * x)) 26 | 27 | def warmup_constant(x, warmup=0.002): 28 | if x < warmup: 29 | return x/warmup 30 | return 1.0 31 | 32 | def warmup_linear(x, warmup=0.002): 33 | if x < warmup: 34 | return x/warmup 35 | return 1.0 - x 36 | 37 | SCHEDULES = { 38 | 'warmup_cosine':warmup_cosine, 39 | 'warmup_constant':warmup_constant, 40 | 'warmup_linear':warmup_linear, 41 | } 42 | 43 | 44 | class BERTAdam(Optimizer): 45 | """Implements BERT version of Adam algorithm with weight decay fix (and no ). 46 | Params: 47 | lr: learning rate 48 | warmup: portion of t_total for the warmup, -1 means no warmup. Default: -1 49 | t_total: total number of training steps for the learning 50 | rate schedule, -1 means constant learning rate. Default: -1 51 | schedule: schedule to use for the warmup (see above). Default: 'warmup_linear' 52 | b1: Adams b1. Default: 0.9 53 | b2: Adams b2. Default: 0.999 54 | e: Adams epsilon. Default: 1e-6 55 | weight_decay_rate: Weight decay. Default: 0.01 56 | max_grad_norm: Maximum norm for the gradients (-1 means no clipping). Default: 1.0 57 | """ 58 | def __init__(self, params, lr, warmup=-1, t_total=-1, schedule='warmup_linear', 59 | b1=0.9, b2=0.999, e=1e-6, weight_decay_rate=0.01, 60 | max_grad_norm=1.0): 61 | if not lr >= 0.0: 62 | raise ValueError("Invalid learning rate: {} - should be >= 0.0".format(lr)) 63 | if schedule not in SCHEDULES: 64 | raise ValueError("Invalid schedule parameter: {}".format(schedule)) 65 | if not 0.0 <= warmup < 1.0 and not warmup == -1: 66 | raise ValueError("Invalid warmup: {} - should be in [0.0, 1.0[ or -1".format(warmup)) 67 | if not 0.0 <= b1 < 1.0: 68 | raise ValueError("Invalid b1 parameter: {} - should be in [0.0, 1.0[".format(b1)) 69 | if not 0.0 <= b2 < 1.0: 70 | raise ValueError("Invalid b2 parameter: {} - should be in [0.0, 1.0[".format(b2)) 71 | if not e >= 0.0: 72 | raise ValueError("Invalid epsilon value: {} - should be >= 0.0".format(e)) 73 | defaults = dict(lr=lr, schedule=schedule, warmup=warmup, t_total=t_total, 74 | b1=b1, b2=b2, e=e, weight_decay_rate=weight_decay_rate, 75 | max_grad_norm=max_grad_norm) 76 | super(BERTAdam, self).__init__(params, defaults) 77 | 78 | def get_lr(self): 79 | lr = [] 80 | for group in self.param_groups: 81 | for p in group['params']: 82 | state = self.state[p] 83 | if len(state) == 0: 84 | return [0] 85 | if group['t_total'] != -1: 86 | schedule_fct = SCHEDULES[group['schedule']] 87 | lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) 88 | else: 89 | lr_scheduled = group['lr'] 90 | lr.append(lr_scheduled) 91 | return lr 92 | 93 | def step(self, closure=None): 94 | """Performs a single optimization step. 95 | 96 | Arguments: 97 | closure (callable, optional): A closure that reevaluates the model 98 | and returns the loss. 99 | """ 100 | loss = None 101 | if closure is not None: 102 | loss = closure() 103 | 104 | for group in self.param_groups: 105 | for p in group['params']: 106 | if p.grad is None: 107 | continue 108 | grad = p.grad.data 109 | if grad.is_sparse: 110 | raise RuntimeError('Adam does not support sparse gradients, please consider SparseAdam instead') 111 | 112 | state = self.state[p] 113 | 114 | # State initialization 115 | if len(state) == 0: 116 | state['step'] = 0 117 | # Exponential moving average of gradient values 118 | state['next_m'] = torch.zeros_like(p.data) 119 | # Exponential moving average of squared gradient values 120 | state['next_v'] = torch.zeros_like(p.data) 121 | 122 | next_m, next_v = state['next_m'], state['next_v'] 123 | beta1, beta2 = group['b1'], group['b2'] 124 | 125 | # Add grad clipping 126 | if group['max_grad_norm'] > 0: 127 | clip_grad_norm_(p, group['max_grad_norm']) 128 | 129 | # Decay the first and second moment running average coefficient 130 | # In-place operations to update the averages at the same time 131 | next_m.mul_(beta1).add_(1 - beta1, grad) 132 | next_v.mul_(beta2).addcmul_(1 - beta2, grad, grad) 133 | update = next_m / (next_v.sqrt() + group['e']) 134 | 135 | # Just adding the square of the weights to the loss function is *not* 136 | # the correct way of using L2 regularization/weight decay with Adam, 137 | # since that will interact with the m and v parameters in strange ways. 138 | # 139 | # Instead we want ot decay the weights in a manner that doesn't interact 140 | # with the m/v parameters. This is equivalent to adding the square 141 | # of the weights to the loss with plain (non-momentum) SGD. 142 | if group['weight_decay_rate'] > 0.0: 143 | update += group['weight_decay_rate'] * p.data 144 | 145 | if group['t_total'] != -1: 146 | schedule_fct = SCHEDULES[group['schedule']] 147 | lr_scheduled = group['lr'] * schedule_fct(state['step']/group['t_total'], group['warmup']) 148 | else: 149 | lr_scheduled = group['lr'] 150 | 151 | update_with_lr = lr_scheduled * update 152 | p.data.add_(-update_with_lr) 153 | 154 | state['step'] += 1 155 | 156 | # step_size = lr_scheduled * math.sqrt(bias_correction2) / bias_correction1 157 | # bias_correction1 = 1 - beta1 ** state['step'] 158 | # bias_correction2 = 1 - beta2 ** state['step'] 159 | 160 | return loss 161 | -------------------------------------------------------------------------------- /bert/tokenization.py: -------------------------------------------------------------------------------- 1 | # coding=utf-8 2 | # Copyright 2018 The Google AI Language Team Authors and The HugginFace Inc. team. 3 | # 4 | # Licensed under the Apache License, Version 2.0 (the "License"); 5 | # you may not use this file except in compliance with the License. 6 | # You may obtain a copy of the License at 7 | # 8 | # http://www.apache.org/licenses/LICENSE-2.0 9 | # 10 | # Unless required by applicable law or agreed to in writing, software 11 | # distributed under the License is distributed on an "AS IS" BASIS, 12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 13 | # See the License for the specific language governing permissions and 14 | # limitations under the License. 15 | """Tokenization classes.""" 16 | 17 | from __future__ import absolute_import 18 | from __future__ import division 19 | from __future__ import print_function 20 | 21 | import collections 22 | import unicodedata 23 | import six 24 | 25 | 26 | def convert_to_unicode(text): 27 | """Converts `text` to Unicode (if it's not already), assuming utf-8 input.""" 28 | if six.PY3: 29 | if isinstance(text, str): 30 | return text 31 | elif isinstance(text, bytes): 32 | return text.decode("utf-8", "ignore") 33 | else: 34 | raise ValueError("Unsupported string type: %s" % (type(text))) 35 | elif six.PY2: 36 | if isinstance(text, str): 37 | return text.decode("utf-8", "ignore") 38 | elif isinstance(text, unicode): 39 | return text 40 | else: 41 | raise ValueError("Unsupported string type: %s" % (type(text))) 42 | else: 43 | raise ValueError("Not running on Python2 or Python 3?") 44 | 45 | 46 | def printable_text(text): 47 | """Returns text encoded in a way suitable for print or `tf.logging`.""" 48 | 49 | # These functions want `str` for both Python2 and Python3, but in one case 50 | # it's a Unicode string and in the other it's a byte string. 51 | if six.PY3: 52 | if isinstance(text, str): 53 | return text 54 | elif isinstance(text, bytes): 55 | return text.decode("utf-8", "ignore") 56 | else: 57 | raise ValueError("Unsupported string type: %s" % (type(text))) 58 | elif six.PY2: 59 | if isinstance(text, str): 60 | return text 61 | elif isinstance(text, unicode): 62 | return text.encode("utf-8") 63 | else: 64 | raise ValueError("Unsupported string type: %s" % (type(text))) 65 | else: 66 | raise ValueError("Not running on Python2 or Python 3?") 67 | 68 | 69 | def load_vocab(vocab_file): 70 | """Loads a vocabulary file into a dictionary.""" 71 | vocab = collections.OrderedDict() 72 | index = 0 73 | with open(vocab_file, "r", encoding="utf-8") as reader: 74 | while True: 75 | token = convert_to_unicode(reader.readline()) 76 | if not token: 77 | break 78 | token = token.strip() 79 | vocab[token] = index 80 | index += 1 81 | return vocab 82 | 83 | 84 | def convert_tokens_to_ids(vocab, tokens): 85 | """Converts a sequence of tokens into ids using the vocab.""" 86 | ids = [] 87 | for token in tokens: 88 | ids.append(vocab[token]) 89 | return ids 90 | 91 | 92 | def whitespace_tokenize(text): 93 | """Runs basic whitespace cleaning and splitting on a peice of text.""" 94 | text = text.strip() 95 | if not text: 96 | return [] 97 | tokens = text.split() 98 | return tokens 99 | 100 | 101 | class FullTokenizer(object): 102 | """Runs end-to-end tokenziation.""" 103 | 104 | def __init__(self, vocab_file, do_lower_case=True): 105 | self.vocab = load_vocab(vocab_file) 106 | self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case) 107 | self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab) 108 | 109 | def tokenize(self, text): 110 | split_tokens = [] 111 | for token in self.basic_tokenizer.tokenize(text): 112 | for sub_token in self.wordpiece_tokenizer.tokenize(token): 113 | split_tokens.append(sub_token) 114 | 115 | return split_tokens 116 | 117 | def convert_tokens_to_ids(self, tokens): 118 | return convert_tokens_to_ids(self.vocab, tokens) 119 | 120 | 121 | class BasicTokenizer(object): 122 | """Runs basic tokenization (punctuation splitting, lower casing, etc.).""" 123 | 124 | def __init__(self, do_lower_case=True): 125 | """Constructs a BasicTokenizer. 126 | 127 | Args: 128 | do_lower_case: Whether to lower case the input. 129 | """ 130 | self.do_lower_case = do_lower_case 131 | 132 | def tokenize(self, text): 133 | """Tokenizes a piece of text.""" 134 | text = convert_to_unicode(text) 135 | text = self._clean_text(text) 136 | # This was added on November 1st, 2018 for the multilingual and Chinese 137 | # models. This is also applied to the English models now, but it doesn't 138 | # matter since the English models were not trained on any Chinese data 139 | # and generally don't have any Chinese data in them (there are Chinese 140 | # characters in the vocabulary because Wikipedia does have some Chinese 141 | # words in the English Wikipedia.). 142 | text = self._tokenize_chinese_chars(text) 143 | orig_tokens = whitespace_tokenize(text) 144 | split_tokens = [] 145 | for token in orig_tokens: 146 | if self.do_lower_case: 147 | token = token.lower() 148 | token = self._run_strip_accents(token) 149 | split_tokens.extend(self._run_split_on_punc(token)) 150 | 151 | output_tokens = whitespace_tokenize(" ".join(split_tokens)) 152 | return output_tokens 153 | 154 | def _run_strip_accents(self, text): 155 | """Strips accents from a piece of text.""" 156 | text = unicodedata.normalize("NFD", text) 157 | output = [] 158 | for char in text: 159 | cat = unicodedata.category(char) 160 | if cat == "Mn": 161 | continue 162 | output.append(char) 163 | return "".join(output) 164 | 165 | def _run_split_on_punc(self, text): 166 | """Splits punctuation on a piece of text.""" 167 | chars = list(text) 168 | i = 0 169 | start_new_word = True 170 | output = [] 171 | while i < len(chars): 172 | char = chars[i] 173 | if _is_punctuation(char): 174 | output.append([char]) 175 | start_new_word = True 176 | else: 177 | if start_new_word: 178 | output.append([]) 179 | start_new_word = False 180 | output[-1].append(char) 181 | i += 1 182 | 183 | return ["".join(x) for x in output] 184 | 185 | def _tokenize_chinese_chars(self, text): 186 | """Adds whitespace around any CJK character.""" 187 | output = [] 188 | for char in text: 189 | cp = ord(char) 190 | if self._is_chinese_char(cp): 191 | output.append(" ") 192 | output.append(char) 193 | output.append(" ") 194 | else: 195 | output.append(char) 196 | return "".join(output) 197 | 198 | def _is_chinese_char(self, cp): 199 | """Checks whether CP is the codepoint of a CJK character.""" 200 | # This defines a "chinese character" as anything in the CJK Unicode block: 201 | # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block) 202 | # 203 | # Note that the CJK Unicode block is NOT all Japanese and Korean characters, 204 | # despite its name. The modern Korean Hangul alphabet is a different block, 205 | # as is Japanese Hiragana and Katakana. Those alphabets are used to write 206 | # space-separated words, so they are not treated specially and handled 207 | # like the all of the other languages. 208 | if ((cp >= 0x4E00 and cp <= 0x9FFF) or # 209 | (cp >= 0x3400 and cp <= 0x4DBF) or # 210 | (cp >= 0x20000 and cp <= 0x2A6DF) or # 211 | (cp >= 0x2A700 and cp <= 0x2B73F) or # 212 | (cp >= 0x2B740 and cp <= 0x2B81F) or # 213 | (cp >= 0x2B820 and cp <= 0x2CEAF) or 214 | (cp >= 0xF900 and cp <= 0xFAFF) or # 215 | (cp >= 0x2F800 and cp <= 0x2FA1F)): # 216 | return True 217 | 218 | return False 219 | 220 | def _clean_text(self, text): 221 | """Performs invalid character removal and whitespace cleanup on text.""" 222 | output = [] 223 | for char in text: 224 | cp = ord(char) 225 | if cp == 0 or cp == 0xfffd or _is_control(char): 226 | continue 227 | if _is_whitespace(char): 228 | output.append(" ") 229 | else: 230 | output.append(char) 231 | return "".join(output) 232 | 233 | 234 | class WordpieceTokenizer(object): 235 | """Runs WordPiece tokenization.""" 236 | 237 | def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100): 238 | self.vocab = vocab 239 | self.unk_token = unk_token 240 | self.max_input_chars_per_word = max_input_chars_per_word 241 | 242 | def tokenize(self, text): 243 | """Tokenizes a piece of text into its word pieces. 244 | 245 | This uses a greedy longest-match-first algorithm to perform tokenization 246 | using the given vocabulary. 247 | 248 | For example: 249 | input = "unaffable" 250 | output = ["un", "##aff", "##able"] 251 | 252 | Args: 253 | text: A single token or whitespace separated tokens. This should have 254 | already been passed through `BasicTokenizer. 255 | 256 | Returns: 257 | A list of wordpiece tokens. 258 | """ 259 | 260 | text = convert_to_unicode(text) 261 | 262 | output_tokens = [] 263 | for token in whitespace_tokenize(text): 264 | chars = list(token) 265 | if len(chars) > self.max_input_chars_per_word: 266 | output_tokens.append(self.unk_token) 267 | continue 268 | 269 | is_bad = False 270 | start = 0 271 | sub_tokens = [] 272 | while start < len(chars): 273 | end = len(chars) 274 | cur_substr = None 275 | while start < end: 276 | substr = "".join(chars[start:end]) 277 | if start > 0: 278 | substr = "##" + substr 279 | if substr in self.vocab: 280 | cur_substr = substr 281 | break 282 | end -= 1 283 | if cur_substr is None: 284 | is_bad = True 285 | break 286 | sub_tokens.append(cur_substr) 287 | start = end 288 | 289 | if is_bad: 290 | output_tokens.append(self.unk_token) 291 | else: 292 | output_tokens.extend(sub_tokens) 293 | return output_tokens 294 | 295 | 296 | def _is_whitespace(char): 297 | """Checks whether `chars` is a whitespace character.""" 298 | # \t, \n, and \r are technically contorl characters but we treat them 299 | # as whitespace since they are generally considered as such. 300 | if char == " " or char == "\t" or char == "\n" or char == "\r": 301 | return True 302 | cat = unicodedata.category(char) 303 | if cat == "Zs": 304 | return True 305 | return False 306 | 307 | 308 | def _is_control(char): 309 | """Checks whether `chars` is a control character.""" 310 | # These are technically control characters but we count them as whitespace 311 | # characters. 312 | if char == "\t" or char == "\n" or char == "\r": 313 | return False 314 | cat = unicodedata.category(char) 315 | if cat.startswith("C"): 316 | return True 317 | return False 318 | 319 | 320 | def _is_punctuation(char): 321 | """Checks whether `chars` is a punctuation character.""" 322 | cp = ord(char) 323 | # We treat all non-letter/number ASCII as punctuation. 324 | # Characters such as "^", "$", and "`" are not in the Unicode 325 | # Punctuation class but we treat them as punctuation anyways, for 326 | # consistency. 327 | if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or 328 | (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)): 329 | return True 330 | cat = unicodedata.category(char) 331 | if cat.startswith("P"): 332 | return True 333 | return False 334 | -------------------------------------------------------------------------------- /image/framework.PNG: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huminghao16/SpanABSA/66369af840599df2a886d4ad1db1ceec53c0649f/image/framework.PNG -------------------------------------------------------------------------------- /squad/__pycache__/squad_evaluate.cpython-35.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huminghao16/SpanABSA/66369af840599df2a886d4ad1db1ceec53c0649f/squad/__pycache__/squad_evaluate.cpython-35.pyc -------------------------------------------------------------------------------- /squad/__pycache__/squad_evaluate.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huminghao16/SpanABSA/66369af840599df2a886d4ad1db1ceec53c0649f/squad/__pycache__/squad_evaluate.cpython-36.pyc -------------------------------------------------------------------------------- /squad/__pycache__/squad_utils.cpython-35.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huminghao16/SpanABSA/66369af840599df2a886d4ad1db1ceec53c0649f/squad/__pycache__/squad_utils.cpython-35.pyc -------------------------------------------------------------------------------- /squad/__pycache__/squad_utils.cpython-36.pyc: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/huminghao16/SpanABSA/66369af840599df2a886d4ad1db1ceec53c0649f/squad/__pycache__/squad_utils.cpython-36.pyc -------------------------------------------------------------------------------- /squad/squad_evaluate.py: -------------------------------------------------------------------------------- 1 | """ Official evaluation script for v1.1 of the SQuAD dataset. [Changed name for external importing]""" 2 | from __future__ import print_function 3 | from collections import Counter 4 | import string 5 | import re 6 | import argparse 7 | import json 8 | import sys 9 | 10 | 11 | def span_len(span): 12 | return span[1] - span[0] 13 | 14 | def span_overlap(s1, s2): 15 | start = max(s1[0], s2[0]) 16 | stop = min(s1[1], s2[1]) 17 | if stop > start: 18 | return start, stop 19 | return None 20 | 21 | def span_prec(true_span, pred_span): 22 | overlap = span_overlap(true_span, pred_span) 23 | if overlap is None: 24 | return 0. 25 | return span_len(overlap) / span_len(pred_span) 26 | 27 | def span_recall(true_span, pred_span): 28 | overlap = span_overlap(true_span, pred_span) 29 | if overlap is None: 30 | return 0. 31 | return span_len(overlap) / span_len(true_span) 32 | 33 | def span_f1(true_span, pred_span): 34 | p = span_prec(true_span, pred_span) 35 | r = span_recall(true_span, pred_span) 36 | if p == 0 or r == 0: 37 | return 0.0 38 | return 2. * p * r / (p + r) 39 | 40 | 41 | def normalize_answer(s): 42 | """Lower text and remove punctuation, articles and extra whitespace.""" 43 | def remove_articles(text): 44 | return re.sub(r'\b(a|an|the)\b', ' ', text) 45 | 46 | def white_space_fix(text): 47 | return ' '.join(text.split()) 48 | 49 | def remove_punc(text): 50 | exclude = set(string.punctuation) 51 | return ''.join(ch for ch in text if ch not in exclude) 52 | 53 | def lower(text): 54 | return text.lower() 55 | 56 | return white_space_fix(remove_articles(remove_punc(lower(s)))) 57 | 58 | 59 | def f1_score(prediction, ground_truth): 60 | prediction_tokens = normalize_answer(prediction).split() 61 | ground_truth_tokens = normalize_answer(ground_truth).split() 62 | common = Counter(prediction_tokens) & Counter(ground_truth_tokens) 63 | num_same = sum(common.values()) 64 | if num_same == 0: 65 | return 0 66 | precision = 1.0 * num_same / len(prediction_tokens) 67 | recall = 1.0 * num_same / len(ground_truth_tokens) 68 | f1 = (2 * precision * recall) / (precision + recall) 69 | return f1 70 | 71 | 72 | def exact_match_score(prediction, ground_truth): 73 | return (normalize_answer(prediction) == normalize_answer(ground_truth)) 74 | 75 | 76 | def metric_max_over_ground_truths(metric_fn, prediction, ground_truths): 77 | scores_for_ground_truths = [] 78 | for ground_truth in ground_truths: 79 | score = metric_fn(prediction, ground_truth) 80 | scores_for_ground_truths.append(score) 81 | return max(scores_for_ground_truths) 82 | 83 | 84 | def evaluate(dataset, predictions): 85 | f1 = exact_match = total = 0 86 | missing_count = 0 87 | for article in dataset: 88 | for paragraph in article['paragraphs']: 89 | for qa in paragraph['qas']: 90 | total += 1 91 | if qa['id'] not in predictions: 92 | missing_count += 1 93 | # message = 'Unanswered question ' + qa['id'] + \ 94 | # ' will receive score 0.' 95 | # print(message, file=sys.stderr) 96 | continue 97 | ground_truths = list(map(lambda x: x['text'], qa['answers'])) 98 | prediction = predictions[qa['id']] 99 | exact_match += metric_max_over_ground_truths( 100 | exact_match_score, prediction, ground_truths) 101 | f1 += metric_max_over_ground_truths( 102 | f1_score, prediction, ground_truths) 103 | 104 | exact_match = 100.0 * exact_match / (total-missing_count) 105 | f1 = 100.0 * f1 / (total-missing_count) 106 | print("missing prediction on %d examples" % (missing_count)) 107 | return {'exact_match': exact_match, 'f1': f1} 108 | 109 | 110 | def merge_eval(main_eval, new_eval): 111 | for k in new_eval: 112 | main_eval['%s' % (k)] = new_eval[k] 113 | 114 | 115 | if __name__ == '__main__': 116 | expected_version = '1.1' 117 | parser = argparse.ArgumentParser( 118 | description='Evaluation for SQuAD ' + expected_version) 119 | parser.add_argument('dataset_file', help='Dataset file') 120 | parser.add_argument('prediction_file', help='Prediction File') 121 | args = parser.parse_args() 122 | with open(args.dataset_file) as dataset_file: 123 | dataset_json = json.load(dataset_file) 124 | # if (dataset_json['version'] != expected_version): 125 | # print('Evaluation expects v-' + expected_version + 126 | # ', but got dataset with v-' + dataset_json['version'], 127 | # file=sys.stderr) 128 | dataset = dataset_json['data'] 129 | with open(args.prediction_file) as prediction_file: 130 | predictions = json.load(prediction_file) 131 | print(json.dumps(evaluate(dataset, predictions))) 132 | 133 | # prediction = '1854–1855' 134 | # ground_truths = ['1854'] 135 | # print(metric_max_over_ground_truths( 136 | # f1_score, prediction, ground_truths)) 137 | -------------------------------------------------------------------------------- /squad/squad_utils.py: -------------------------------------------------------------------------------- 1 | import json 2 | import math 3 | import six 4 | import collections 5 | 6 | import bert.tokenization as tokenization 7 | 8 | 9 | class SquadExample(object): 10 | """A single training/test example for simple sequence classification.""" 11 | 12 | def __init__(self, 13 | qas_id, 14 | question_text, 15 | doc_tokens, 16 | orig_answer_text=None, 17 | start_position=None, 18 | end_position=None): 19 | self.qas_id = qas_id 20 | self.question_text = question_text 21 | self.doc_tokens = doc_tokens 22 | self.orig_answer_text = orig_answer_text 23 | self.start_position = start_position 24 | self.end_position = end_position 25 | 26 | def __str__(self): 27 | return self.__repr__() 28 | 29 | def __repr__(self): 30 | s = "" 31 | s += "qas_id: %s" % (tokenization.printable_text(self.qas_id)) 32 | s += ", question_text: %s" % ( 33 | tokenization.printable_text(self.question_text)) 34 | s += ", doc_tokens: [%s]" % (" ".join(self.doc_tokens)) 35 | if self.start_position: 36 | s += ", start_position: %d" % (self.start_position) 37 | if self.start_position: 38 | s += ", end_position: %d" % (self.end_position) 39 | return s 40 | 41 | 42 | class InputFeatures(object): 43 | """A single set of features of data.""" 44 | 45 | def __init__(self, 46 | unique_id, 47 | example_index, 48 | doc_span_index, 49 | tokens, 50 | token_to_orig_map, 51 | token_is_max_context, 52 | input_ids, 53 | input_mask, 54 | segment_ids, 55 | start_position=None, 56 | end_position=None): 57 | self.unique_id = unique_id 58 | self.example_index = example_index 59 | self.doc_span_index = doc_span_index 60 | self.tokens = tokens 61 | self.token_to_orig_map = token_to_orig_map 62 | self.token_is_max_context = token_is_max_context 63 | self.input_ids = input_ids 64 | self.input_mask = input_mask 65 | self.segment_ids = segment_ids 66 | self.start_position = start_position 67 | self.end_position = end_position 68 | 69 | 70 | def read_squad_examples(input_file, is_training, logger): 71 | """Read a SQuAD json file into a list of SquadExample.""" 72 | with open(input_file, "r") as reader: 73 | input_data = json.load(reader)["data"] 74 | 75 | def is_whitespace(c): 76 | if c == " " or c == "\t" or c == "\r" or c == "\n" or ord(c) == 0x202F: 77 | return True 78 | return False 79 | 80 | examples = [] 81 | for entry in input_data: 82 | for paragraph in entry["paragraphs"]: 83 | paragraph_text = paragraph["context"] 84 | doc_tokens = [] 85 | char_to_word_offset = [] 86 | prev_is_whitespace = True 87 | for c in paragraph_text: 88 | if is_whitespace(c): 89 | prev_is_whitespace = True 90 | else: 91 | if prev_is_whitespace: 92 | doc_tokens.append(c) # add a new word 93 | else: 94 | doc_tokens[-1] += c # add a new character 95 | prev_is_whitespace = False 96 | char_to_word_offset.append(len(doc_tokens) - 1) 97 | 98 | for qa in paragraph["qas"]: 99 | qas_id = qa["id"] 100 | question_text = qa["question"] 101 | start_position = None 102 | end_position = None 103 | orig_answer_text = None 104 | if is_training: 105 | if len(qa["answers"]) != 1: 106 | raise ValueError( 107 | "For training, each question should have exactly 1 answer.") 108 | answer = qa["answers"][0] 109 | orig_answer_text = answer["text"] 110 | answer_offset = answer["answer_start"] 111 | answer_length = len(orig_answer_text) 112 | start_position = char_to_word_offset[answer_offset] 113 | end_position = char_to_word_offset[answer_offset + answer_length - 1] 114 | # Only add answers where the text can be exactly recovered from the 115 | # document. If this CAN'T happen it's likely due to weird Unicode 116 | # stuff so we will just skip the example. 117 | # 118 | # Note that this means for training mode, every example is NOT 119 | # guaranteed to be preserved. 120 | actual_text = " ".join(doc_tokens[start_position:(end_position + 1)]) 121 | cleaned_answer_text = " ".join( 122 | tokenization.whitespace_tokenize(orig_answer_text)) 123 | if actual_text.find(cleaned_answer_text) == -1: 124 | logger.warning("Could not find answer: '%s' vs. '%s'", 125 | actual_text, cleaned_answer_text) 126 | continue 127 | 128 | example = SquadExample( 129 | qas_id=qas_id, 130 | question_text=question_text, 131 | doc_tokens=doc_tokens, 132 | orig_answer_text=orig_answer_text, 133 | start_position=start_position, 134 | end_position=end_position) 135 | examples.append(example) 136 | return examples 137 | 138 | 139 | def convert_examples_to_features(examples, tokenizer, max_seq_length, 140 | doc_stride, max_query_length, is_training, verbose_logging=False, logger=None): 141 | """Loads a data file into a list of `InputBatch`s.""" 142 | 143 | unique_id = 1000000000 144 | 145 | features = [] 146 | for (example_index, example) in enumerate(examples): 147 | query_tokens = tokenizer.tokenize(example.question_text) 148 | 149 | if len(query_tokens) > max_query_length: 150 | query_tokens = query_tokens[0:max_query_length] 151 | 152 | tok_to_orig_index = [] 153 | orig_to_tok_index = [] 154 | all_doc_tokens = [] 155 | for (i, token) in enumerate(example.doc_tokens): 156 | orig_to_tok_index.append(len(all_doc_tokens)) 157 | sub_tokens = tokenizer.tokenize(token) 158 | for sub_token in sub_tokens: 159 | tok_to_orig_index.append(i) 160 | all_doc_tokens.append(sub_token) 161 | 162 | tok_start_position = None 163 | tok_end_position = None 164 | if is_training: 165 | tok_start_position = orig_to_tok_index[example.start_position] 166 | if example.end_position < len(example.doc_tokens) - 1: 167 | tok_end_position = orig_to_tok_index[example.end_position + 1] - 1 168 | else: 169 | tok_end_position = len(all_doc_tokens) - 1 170 | (tok_start_position, tok_end_position) = _improve_answer_span( 171 | all_doc_tokens, tok_start_position, tok_end_position, tokenizer, 172 | example.orig_answer_text) 173 | 174 | # The -3 accounts for [CLS], [SEP] and [SEP] 175 | max_tokens_for_doc = max_seq_length - len(query_tokens) - 3 176 | 177 | # We can have documents that are longer than the maximum sequence length. 178 | # To deal with this we do a sliding window approach, where we take chunks 179 | # of the up to our max length with a stride of `doc_stride`. 180 | _DocSpan = collections.namedtuple( # pylint: disable=invalid-name 181 | "DocSpan", ["start", "length"]) 182 | doc_spans = [] 183 | start_offset = 0 184 | while start_offset < len(all_doc_tokens): 185 | length = len(all_doc_tokens) - start_offset 186 | if length > max_tokens_for_doc: 187 | length = max_tokens_for_doc 188 | doc_spans.append(_DocSpan(start=start_offset, length=length)) 189 | if start_offset + length == len(all_doc_tokens): 190 | break 191 | start_offset += min(length, doc_stride) 192 | 193 | for (doc_span_index, doc_span) in enumerate(doc_spans): 194 | tokens = [] 195 | token_to_orig_map = {} 196 | token_is_max_context = {} 197 | segment_ids = [] 198 | tokens.append("[CLS]") 199 | segment_ids.append(0) 200 | for token in query_tokens: 201 | tokens.append(token) 202 | segment_ids.append(0) 203 | tokens.append("[SEP]") 204 | segment_ids.append(0) 205 | 206 | for i in range(doc_span.length): 207 | split_token_index = doc_span.start + i 208 | token_to_orig_map[len(tokens)] = tok_to_orig_index[split_token_index] 209 | 210 | is_max_context = _check_is_max_context(doc_spans, doc_span_index, 211 | split_token_index) 212 | token_is_max_context[len(tokens)] = is_max_context 213 | tokens.append(all_doc_tokens[split_token_index]) 214 | segment_ids.append(1) 215 | tokens.append("[SEP]") 216 | segment_ids.append(1) 217 | 218 | input_ids = tokenizer.convert_tokens_to_ids(tokens) 219 | 220 | # The mask has 1 for real tokens and 0 for padding tokens. Only real 221 | # tokens are attended to. 222 | input_mask = [1] * len(input_ids) 223 | 224 | # Zero-pad up to the sequence length. 225 | while len(input_ids) < max_seq_length: 226 | input_ids.append(0) 227 | input_mask.append(0) 228 | segment_ids.append(0) 229 | 230 | assert len(input_ids) == max_seq_length 231 | assert len(input_mask) == max_seq_length 232 | assert len(segment_ids) == max_seq_length 233 | 234 | start_position = None 235 | end_position = None 236 | if is_training: 237 | # For training, if our document chunk does not contain an annotation 238 | # we throw it out, since there is nothing to predict. 239 | doc_start = doc_span.start 240 | doc_end = doc_span.start + doc_span.length - 1 241 | out_of_span = False 242 | if not (tok_start_position >= doc_start and tok_end_position <= doc_end): 243 | out_of_span = True 244 | 245 | if out_of_span: 246 | start_position = 0 247 | end_position = 0 248 | else: 249 | doc_offset = len(query_tokens) + 2 250 | start_position = tok_start_position - doc_start + doc_offset 251 | end_position = tok_end_position - doc_start + doc_offset 252 | 253 | if example_index < 2 and verbose_logging: 254 | logger.info("*** Example ***") 255 | logger.info("unique_id: %s" % (unique_id)) 256 | logger.info("example_index: %s" % (example_index)) 257 | logger.info("doc_span_index: %s" % (doc_span_index)) 258 | logger.info("tokens: %s" % " ".join( 259 | [tokenization.printable_text(x) for x in tokens])) 260 | logger.info("token_to_orig_map: %s" % " ".join( 261 | ["%d:%d" % (x, y) for (x, y) in six.iteritems(token_to_orig_map)])) 262 | logger.info("token_is_max_context: %s" % " ".join([ 263 | "%d:%s" % (x, y) for (x, y) in six.iteritems(token_is_max_context) 264 | ])) 265 | logger.info("input_ids: %s" % " ".join([str(x) for x in input_ids])) 266 | logger.info( 267 | "input_mask: %s" % " ".join([str(x) for x in input_mask])) 268 | logger.info( 269 | "segment_ids: %s" % " ".join([str(x) for x in segment_ids])) 270 | if is_training: 271 | answer_text = " ".join(tokens[start_position:(end_position + 1)]) 272 | logger.info("start_position: %d" % (start_position)) 273 | logger.info("end_position: %d" % (end_position)) 274 | logger.info("answer: %s" % (tokenization.printable_text(answer_text))) 275 | 276 | features.append( 277 | InputFeatures( 278 | unique_id=unique_id, 279 | example_index=example_index, 280 | doc_span_index=doc_span_index, 281 | tokens=tokens, 282 | token_to_orig_map=token_to_orig_map, 283 | token_is_max_context=token_is_max_context, 284 | input_ids=input_ids, 285 | input_mask=input_mask, 286 | segment_ids=segment_ids, 287 | start_position=start_position, 288 | end_position=end_position)) 289 | unique_id += 1 290 | 291 | if len(features) % 5000 == 0: 292 | logger.info("Processing features: %d" % (len(features))) 293 | 294 | return features 295 | 296 | 297 | def _improve_answer_span(doc_tokens, input_start, input_end, tokenizer, 298 | orig_answer_text): 299 | """Returns tokenized answer spans that better match the annotated answer.""" 300 | 301 | # The SQuAD annotations are character based. We first project them to 302 | # whitespace-tokenized words. But then after WordPiece tokenization, we can 303 | # often find a "better match". For example: 304 | # 305 | # Question: What year was John Smith born? 306 | # Context: The leader was John Smith (1895-1943). 307 | # Answer: 1895 308 | # 309 | # The original whitespace-tokenized answer will be "(1895-1943).". However 310 | # after tokenization, our tokens will be "( 1895 - 1943 ) .". So we can match 311 | # the exact answer, 1895. 312 | # 313 | # However, this is not always possible. Consider the following: 314 | # 315 | # Question: What country is the top exporter of electornics? 316 | # Context: The Japanese electronics industry is the lagest in the world. 317 | # Answer: Japan 318 | # 319 | # In this case, the annotator chose "Japan" as a character sub-span of 320 | # the word "Japanese". Since our WordPiece tokenizer does not split 321 | # "Japanese", we just use "Japanese" as the annotation. This is fairly rare 322 | # in SQuAD, but does happen. 323 | tok_answer_text = " ".join(tokenizer.tokenize(orig_answer_text)) 324 | 325 | for new_start in range(input_start, input_end + 1): 326 | for new_end in range(input_end, new_start - 1, -1): 327 | text_span = " ".join(doc_tokens[new_start:(new_end + 1)]) 328 | if text_span == tok_answer_text: 329 | return (new_start, new_end) 330 | 331 | return (input_start, input_end) 332 | 333 | 334 | def _check_is_max_context(doc_spans, cur_span_index, position): 335 | """Check if this is the 'max context' doc span for the token.""" 336 | 337 | # Because of the sliding window approach taken to scoring documents, a single 338 | # token can appear in multiple documents. E.g. 339 | # Doc: the man went to the store and bought a gallon of milk 340 | # Span A: the man went to the 341 | # Span B: to the store and bought 342 | # Span C: and bought a gallon of 343 | # ... 344 | # 345 | # Now the word 'bought' will have two scores from spans B and C. We only 346 | # want to consider the score with "maximum context", which we define as 347 | # the *minimum* of its left and right context (the *sum* of left and 348 | # right context will always be the same, of course). 349 | # 350 | # In the example the maximum context for 'bought' would be span C since 351 | # it has 1 left context and 3 right context, while span B has 4 left context 352 | # and 0 right context. 353 | best_score = None 354 | best_span_index = None 355 | for (span_index, doc_span) in enumerate(doc_spans): 356 | end = doc_span.start + doc_span.length - 1 357 | if position < doc_span.start: 358 | continue 359 | if position > end: 360 | continue 361 | num_left_context = position - doc_span.start 362 | num_right_context = end - position 363 | score = min(num_left_context, num_right_context) + 0.01 * doc_span.length 364 | if best_score is None or score > best_score: 365 | best_score = score 366 | best_span_index = span_index 367 | 368 | return cur_span_index == best_span_index 369 | 370 | 371 | RawResult = collections.namedtuple("RawResult", 372 | ["unique_id", "start_logits", "end_logits"]) 373 | 374 | 375 | def write_predictions(all_examples, all_features, all_results, n_best_size, 376 | max_answer_length, do_lower_case, do_max_context, verbose_logging, logger): 377 | """Write final predictions to the json file.""" 378 | 379 | example_index_to_features = collections.defaultdict(list) 380 | for feature in all_features: 381 | example_index_to_features[feature.example_index].append(feature) 382 | 383 | unique_id_to_result = {} 384 | for result in all_results: 385 | unique_id_to_result[result.unique_id] = result 386 | 387 | _PrelimPrediction = collections.namedtuple( # pylint: disable=invalid-name 388 | "PrelimPrediction", 389 | ["feature_index", "start_index", "end_index", "start_logit", "end_logit"]) 390 | 391 | all_predictions = collections.OrderedDict() 392 | all_nbest_json = collections.OrderedDict() 393 | for (example_index, example) in enumerate(all_examples): 394 | features = example_index_to_features[example_index] 395 | 396 | prelim_predictions = [] 397 | for (feature_index, feature) in enumerate(features): 398 | result = unique_id_to_result[feature.unique_id] 399 | 400 | start_indexes = _get_best_indexes(result.start_logits, n_best_size) 401 | end_indexes = _get_best_indexes(result.end_logits, n_best_size) 402 | for start_index in start_indexes: 403 | for end_index in end_indexes: 404 | # We could hypothetically create invalid predictions, e.g., predict 405 | # that the start of the span is in the question. We throw out all 406 | # invalid predictions. 407 | if start_index >= len(feature.tokens): 408 | continue 409 | if end_index >= len(feature.tokens): 410 | continue 411 | if start_index not in feature.token_to_orig_map: 412 | continue 413 | if end_index not in feature.token_to_orig_map: 414 | continue 415 | if do_max_context and not feature.token_is_max_context.get(start_index, False): 416 | continue 417 | if end_index < start_index: 418 | continue 419 | length = end_index - start_index + 1 420 | if length > max_answer_length: 421 | continue 422 | prelim_predictions.append( 423 | _PrelimPrediction( 424 | feature_index=feature_index, 425 | start_index=start_index, 426 | end_index=end_index, 427 | start_logit=result.start_logits[start_index], 428 | end_logit=result.end_logits[end_index])) 429 | 430 | prelim_predictions = sorted( 431 | prelim_predictions, 432 | key=lambda x: (x.start_logit + x.end_logit), 433 | reverse=True) 434 | 435 | _NbestPrediction = collections.namedtuple( # pylint: disable=invalid-name 436 | "NbestPrediction", ["text", "start_logit", "end_logit"]) 437 | 438 | seen_predictions = {} 439 | nbest = [] 440 | for pred in prelim_predictions: 441 | if len(nbest) >= n_best_size: 442 | break 443 | feature = features[pred.feature_index] 444 | 445 | tok_tokens = feature.tokens[pred.start_index:(pred.end_index + 1)] 446 | orig_doc_start = feature.token_to_orig_map[pred.start_index] 447 | orig_doc_end = feature.token_to_orig_map[pred.end_index] 448 | orig_tokens = example.doc_tokens[orig_doc_start:(orig_doc_end + 1)] 449 | tok_text = " ".join(tok_tokens) 450 | 451 | # De-tokenize WordPieces that have been split off. 452 | tok_text = tok_text.replace(" ##", "") 453 | tok_text = tok_text.replace("##", "") 454 | 455 | # Clean whitespace 456 | tok_text = tok_text.strip() 457 | tok_text = " ".join(tok_text.split()) 458 | orig_text = " ".join(orig_tokens) 459 | 460 | final_text = get_final_text(tok_text, orig_text, do_lower_case, verbose_logging, logger) 461 | if final_text in seen_predictions: 462 | continue 463 | 464 | seen_predictions[final_text] = True 465 | nbest.append( 466 | _NbestPrediction( 467 | text=final_text, 468 | start_logit=pred.start_logit, 469 | end_logit=pred.end_logit)) 470 | 471 | # In very rare edge cases we could have no valid predictions. So we 472 | # just create a nonce prediction in this case to avoid failure. 473 | if not nbest: 474 | nbest.append( 475 | _NbestPrediction(text="empty", start_logit=0.0, end_logit=0.0)) 476 | 477 | assert len(nbest) >= 1 478 | 479 | total_scores = [] 480 | for entry in nbest: 481 | total_scores.append(entry.start_logit + entry.end_logit) 482 | 483 | probs = _compute_softmax(total_scores) 484 | 485 | nbest_json = [] 486 | for (i, entry) in enumerate(nbest): 487 | output = collections.OrderedDict() 488 | output["text"] = entry.text 489 | output["probability"] = probs[i] 490 | output["start_logit"] = entry.start_logit 491 | output["end_logit"] = entry.end_logit 492 | nbest_json.append(output) 493 | 494 | assert len(nbest_json) >= 1 495 | 496 | all_predictions[example.qas_id] = nbest_json[0]["text"] 497 | all_nbest_json[example.qas_id] = nbest_json 498 | 499 | return all_predictions, all_nbest_json 500 | 501 | 502 | def get_final_text(pred_text, orig_text, do_lower_case, verbose_logging=False, logger=None): 503 | """Project the tokenized prediction back to the original text.""" 504 | 505 | # When we created the data, we kept track of the alignment between original 506 | # (whitespace tokenized) tokens and our WordPiece tokenized tokens. So 507 | # now `orig_text` contains the span of our original text corresponding to the 508 | # span that we predicted. 509 | # 510 | # However, `orig_text` may contain extra characters that we don't want in 511 | # our prediction. 512 | # 513 | # For example, let's say: 514 | # pred_text = steve smith 515 | # orig_text = Steve Smith's 516 | # 517 | # We don't want to return `orig_text` because it contains the extra "'s". 518 | # 519 | # We don't want to return `pred_text` because it's already been normalized 520 | # (the SQuAD eval script also does punctuation stripping/lower casing but 521 | # our tokenizer does additional normalization like stripping accent 522 | # characters). 523 | # 524 | # What we really want to return is "Steve Smith". 525 | # 526 | # Therefore, we have to apply a semi-complicated alignment heruistic between 527 | # `pred_text` and `orig_text` to get a character-to-charcter alignment. This 528 | # can fail in certain cases in which case we just return `orig_text`. 529 | 530 | def _strip_spaces(text): 531 | ns_chars = [] 532 | ns_to_s_map = collections.OrderedDict() 533 | for (i, c) in enumerate(text): 534 | if c == " ": 535 | continue 536 | ns_to_s_map[len(ns_chars)] = i 537 | ns_chars.append(c) 538 | ns_text = "".join(ns_chars) 539 | return (ns_text, ns_to_s_map) 540 | 541 | # We first tokenize `orig_text`, strip whitespace from the result 542 | # and `pred_text`, and check if they are the same length. If they are 543 | # NOT the same length, the heuristic has failed. If they are the same 544 | # length, we assume the characters are one-to-one aligned. 545 | tokenizer = tokenization.BasicTokenizer(do_lower_case=do_lower_case) 546 | 547 | tok_text = " ".join(tokenizer.tokenize(orig_text)) 548 | 549 | start_position = tok_text.find(pred_text) 550 | if start_position == -1: 551 | if verbose_logging: 552 | logger.info( 553 | "Unable to find text: '%s' in '%s'" % (pred_text, orig_text)) 554 | return orig_text 555 | end_position = start_position + len(pred_text) - 1 556 | 557 | (orig_ns_text, orig_ns_to_s_map) = _strip_spaces(orig_text) 558 | (tok_ns_text, tok_ns_to_s_map) = _strip_spaces(tok_text) 559 | 560 | if len(orig_ns_text) != len(tok_ns_text): 561 | if verbose_logging: 562 | logger.info("Length not equal after stripping spaces: '%s' vs '%s'", 563 | orig_ns_text, tok_ns_text) 564 | return orig_text 565 | 566 | # We then project the characters in `pred_text` back to `orig_text` using 567 | # the character-to-character alignment. 568 | tok_s_to_ns_map = {} 569 | for (i, tok_index) in six.iteritems(tok_ns_to_s_map): 570 | tok_s_to_ns_map[tok_index] = i 571 | 572 | orig_start_position = None 573 | if start_position in tok_s_to_ns_map: 574 | ns_start_position = tok_s_to_ns_map[start_position] 575 | if ns_start_position in orig_ns_to_s_map: 576 | orig_start_position = orig_ns_to_s_map[ns_start_position] 577 | 578 | if orig_start_position is None: 579 | if verbose_logging: 580 | logger.info("Couldn't map start position") 581 | return orig_text 582 | 583 | orig_end_position = None 584 | if end_position in tok_s_to_ns_map: 585 | ns_end_position = tok_s_to_ns_map[end_position] 586 | if ns_end_position in orig_ns_to_s_map: 587 | orig_end_position = orig_ns_to_s_map[ns_end_position] 588 | 589 | if orig_end_position is None: 590 | if verbose_logging: 591 | logger.info("Couldn't map end position") 592 | return orig_text 593 | 594 | output_text = orig_text[orig_start_position:(orig_end_position + 1)] 595 | return output_text 596 | 597 | 598 | def _get_best_indexes(logits, n_best_size): 599 | """Get the n-best logits from a list.""" 600 | index_and_score = sorted(enumerate(logits), key=lambda x: x[1], reverse=True) 601 | 602 | best_indexes = [] 603 | for i in range(len(index_and_score)): 604 | if i >= n_best_size: 605 | break 606 | best_indexes.append(index_and_score[i][0]) 607 | return best_indexes 608 | 609 | 610 | def _compute_softmax(scores): 611 | """Compute softmax probability over raw logits.""" 612 | if not scores: 613 | return [] 614 | 615 | max_score = None 616 | for score in scores: 617 | if max_score is None or score > max_score: 618 | max_score = score 619 | 620 | exp_scores = [] 621 | total_sum = 0.0 622 | for score in scores: 623 | x = math.exp(score - max_score) 624 | exp_scores.append(x) 625 | total_sum += x 626 | 627 | probs = [] 628 | for score in exp_scores: 629 | probs.append(score / total_sum) 630 | return probs --------------------------------------------------------------------------------