├── .dev_scripts
├── batch_test_list.py
├── batch_train_list.txt
├── benchmark_filter.py
├── benchmark_inference_fps.py
├── benchmark_test_image.py
├── check_links.py
├── convert_test_benchmark_script.py
├── convert_train_benchmark_script.py
├── gather_models.py
├── gather_test_benchmark_metric.py
├── gather_train_benchmark_metric.py
├── linter.sh
├── test_benchmark.sh
├── test_init_backbone.py
└── train_benchmark.sh
├── .github
├── CODE_OF_CONDUCT.md
├── CONTRIBUTING.md
├── ISSUE_TEMPLATE
│ ├── config.yml
│ ├── error-report.md
│ ├── feature_request.md
│ ├── general_questions.md
│ └── reimplementation_questions.md
└── pull_request_template.md
├── .gitignore
├── .pre-commit-config.yaml
├── .readthedocs.yml
├── LICENSE
├── MANIFEST.in
├── README.md
├── configs
├── _base_
│ ├── datasets
│ │ ├── cityscapes_detection.py
│ │ ├── cityscapes_instance.py
│ │ ├── coco_detection.py
│ │ ├── coco_instance.py
│ │ ├── coco_instance_semantic.py
│ │ ├── coco_panoptic.py
│ │ ├── deepfashion.py
│ │ ├── lvis_v0.5_instance.py
│ │ ├── lvis_v1_instance.py
│ │ ├── openimages_detection.py
│ │ ├── voc0712.py
│ │ ├── wider_face.py
│ │ └── youtubevis.py
│ ├── default_runtime.py
│ ├── models
│ │ ├── cascade_mask_rcnn_r50_fpn.py
│ │ ├── cascade_rcnn_r50_fpn.py
│ │ ├── fast_rcnn_r50_fpn.py
│ │ ├── faster_rcnn_r50_caffe_c4.py
│ │ ├── faster_rcnn_r50_caffe_dc5.py
│ │ ├── faster_rcnn_r50_fpn.py
│ │ ├── mask_rcnn_r50_caffe_c4.py
│ │ ├── mask_rcnn_r50_fpn.py
│ │ ├── retinanet_r50_fpn.py
│ │ ├── rpn_r50_caffe_c4.py
│ │ ├── rpn_r50_fpn.py
│ │ └── ssd300.py
│ └── schedules
│ │ ├── schedule_1x.py
│ │ ├── schedule_20e.py
│ │ └── schedule_2x.py
├── albu_example
│ ├── README.md
│ └── mask_rcnn_r50_fpn_albu_1x_coco.py
├── atss
│ ├── README.md
│ ├── atss_r101_fpn_1x_coco.py
│ ├── atss_r50_fpn_1x_coco.py
│ └── metafile.yml
├── autoassign
│ ├── README.md
│ ├── autoassign_r50_fpn_8x2_1x_coco.py
│ └── metafile.yml
├── carafe
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_carafe_1x_coco.py
│ ├── mask_rcnn_r50_fpn_carafe_1x_coco.py
│ └── metafile.yml
├── cascade_rcnn
│ ├── README.md
│ ├── cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py
│ ├── cascade_mask_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_r101_fpn_1x_coco.py
│ ├── cascade_mask_rcnn_r101_fpn_20e_coco.py
│ ├── cascade_mask_rcnn_r101_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_r50_fpn_1x_coco.py
│ ├── cascade_mask_rcnn_r50_fpn_20e_coco.py
│ ├── cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py
│ ├── cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py
│ ├── cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
│ ├── cascade_rcnn_r101_caffe_fpn_1x_coco.py
│ ├── cascade_rcnn_r101_fpn_1x_coco.py
│ ├── cascade_rcnn_r101_fpn_20e_coco.py
│ ├── cascade_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── cascade_rcnn_r50_fpn_1x_coco.py
│ ├── cascade_rcnn_r50_fpn_20e_coco.py
│ ├── cascade_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── cascade_rcnn_x101_32x4d_fpn_20e_coco.py
│ ├── cascade_rcnn_x101_64x4d_fpn_1x_coco.py
│ ├── cascade_rcnn_x101_64x4d_fpn_20e_coco.py
│ └── metafile.yml
├── cascade_rpn
│ ├── README.md
│ ├── crpn_fast_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── crpn_faster_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── crpn_r50_caffe_fpn_1x_coco.py
│ └── metafile.yml
├── centernet
│ ├── README.md
│ ├── centernet_resnet18_140e_coco.py
│ ├── centernet_resnet18_dcnv2_140e_coco.py
│ └── metafile.yml
├── centripetalnet
│ ├── README.md
│ ├── centripetalnet_hourglass104_mstest_16x6_210e_coco.py
│ └── metafile.yml
├── cityscapes
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_1x_cityscapes.py
│ └── mask_rcnn_r50_fpn_1x_cityscapes.py
├── common
│ ├── lsj_100e_coco_instance.py
│ ├── mstrain-poly_3x_coco_instance.py
│ ├── mstrain_3x_coco.py
│ └── mstrain_3x_coco_instance.py
├── cornernet
│ ├── README.md
│ ├── cornernet_hourglass104_mstest_10x5_210e_coco.py
│ ├── cornernet_hourglass104_mstest_32x3_210e_coco.py
│ ├── cornernet_hourglass104_mstest_8x6_210e_coco.py
│ └── metafile.yml
├── dcn
│ ├── README.md
│ ├── cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ ├── cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
│ ├── cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ ├── cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ ├── faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ ├── faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ ├── faster_rcnn_r50_fpn_dpool_1x_coco.py
│ ├── faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py
│ ├── mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py
│ └── metafile.yml
├── dcnv2
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
│ ├── faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py
│ ├── faster_rcnn_r50_fpn_mdpool_1x_coco.py
│ ├── mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py
│ └── metafile.yml
├── deepfashion
│ ├── README.md
│ └── mask_rcnn_r50_fpn_15e_deepfashion.py
├── deformable_detr
│ ├── README.md
│ ├── deformable_detr_r50_16x2_50e_coco.py
│ ├── deformable_detr_refine_r50_16x2_50e_coco.py
│ ├── deformable_detr_twostage_refine_r50_16x2_50e_coco.py
│ └── metafile.yml
├── detectors
│ ├── README.md
│ ├── cascade_rcnn_r50_rfp_1x_coco.py
│ ├── cascade_rcnn_r50_sac_1x_coco.py
│ ├── detectors_cascade_rcnn_r50_1x_coco.py
│ ├── detectors_htc_r101_20e_coco.py
│ ├── detectors_htc_r50_1x_coco.py
│ ├── htc_r50_rfp_1x_coco.py
│ ├── htc_r50_sac_1x_coco.py
│ └── metafile.yml
├── detr
│ ├── README.md
│ ├── detr_r50_8x2_150e_coco.py
│ └── metafile.yml
├── double_heads
│ ├── README.md
│ ├── dh_faster_rcnn_r50_fpn_1x_coco.py
│ └── metafile.yml
├── dyhead
│ ├── README.md
│ ├── atss_r50_caffe_fpn_dyhead_1x_coco.py
│ ├── atss_r50_fpn_dyhead_1x_coco.py
│ └── metafile.yml
├── dynamic_rcnn
│ ├── README.md
│ ├── dynamic_rcnn_r50_fpn_1x_coco.py
│ └── metafile.yml
├── efficientnet
│ ├── README.md
│ ├── metafile.yml
│ └── retinanet_effb3_fpn_crop896_8x4_1x_coco.py
├── empirical_attention
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_attention_0010_1x_coco.py
│ ├── faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py
│ ├── faster_rcnn_r50_fpn_attention_1111_1x_coco.py
│ ├── faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py
│ └── metafile.yml
├── fast_rcnn
│ ├── README.md
│ ├── fast_rcnn_r101_caffe_fpn_1x_coco.py
│ ├── fast_rcnn_r101_fpn_1x_coco.py
│ ├── fast_rcnn_r101_fpn_2x_coco.py
│ ├── fast_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── fast_rcnn_r50_fpn_1x_coco.py
│ └── fast_rcnn_r50_fpn_2x_coco.py
├── faster_rcnn
│ ├── README.md
│ ├── faster_rcnn_r101_caffe_fpn_1x_coco.py
│ ├── faster_rcnn_r101_caffe_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_r101_fpn_1x_coco.py
│ ├── faster_rcnn_r101_fpn_2x_coco.py
│ ├── faster_rcnn_r101_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_r50_caffe_c4_1x_coco.py
│ ├── faster_rcnn_r50_caffe_dc5_1x_coco.py
│ ├── faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py
│ ├── faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py
│ ├── faster_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── faster_rcnn_r50_caffe_fpn_90k_coco.py
│ ├── faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py
│ ├── faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py
│ ├── faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
│ ├── faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py
│ ├── faster_rcnn_r50_caffe_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py
│ ├── faster_rcnn_r50_fpn_1x_coco.py
│ ├── faster_rcnn_r50_fpn_2x_coco.py
│ ├── faster_rcnn_r50_fpn_bounded_iou_1x_coco.py
│ ├── faster_rcnn_r50_fpn_ciou_1x_coco.py
│ ├── faster_rcnn_r50_fpn_fp16_1x_coco.py
│ ├── faster_rcnn_r50_fpn_giou_1x_coco.py
│ ├── faster_rcnn_r50_fpn_iou_1x_coco.py
│ ├── faster_rcnn_r50_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_r50_fpn_ohem_1x_coco.py
│ ├── faster_rcnn_r50_fpn_soft_nms_1x_coco.py
│ ├── faster_rcnn_r50_fpn_tnr-pretrain_1x_coco.py
│ ├── faster_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── faster_rcnn_x101_32x4d_fpn_2x_coco.py
│ ├── faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_x101_32x8d_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_x101_64x4d_fpn_1x_coco.py
│ ├── faster_rcnn_x101_64x4d_fpn_2x_coco.py
│ ├── faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py
│ └── metafile.yml
├── fcos
│ ├── README.md
│ ├── fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_1x_coco.py
│ ├── fcos_center-normbbox-centeronreg-giou_r50_caffe_fpn_gn-head_dcn_1x_coco.py
│ ├── fcos_center_r50_caffe_fpn_gn-head_1x_coco.py
│ ├── fcos_r101_caffe_fpn_gn-head_1x_coco.py
│ ├── fcos_r101_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
│ ├── fcos_r50_caffe_fpn_gn-head_1x_coco.py
│ ├── fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py
│ ├── fcos_r50_caffe_fpn_gn-head_mstrain_640-800_2x_coco.py
│ ├── fcos_x101_64x4d_fpn_gn-head_mstrain_640-800_2x_coco.py
│ └── metafile.yml
├── foveabox
│ ├── README.md
│ ├── fovea_align_r101_fpn_gn-head_4x4_2x_coco.py
│ ├── fovea_align_r101_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
│ ├── fovea_align_r50_fpn_gn-head_4x4_2x_coco.py
│ ├── fovea_align_r50_fpn_gn-head_mstrain_640-800_4x4_2x_coco.py
│ ├── fovea_r101_fpn_4x4_1x_coco.py
│ ├── fovea_r101_fpn_4x4_2x_coco.py
│ ├── fovea_r50_fpn_4x4_1x_coco.py
│ ├── fovea_r50_fpn_4x4_2x_coco.py
│ └── metafile.yml
├── fpg
│ ├── README.md
│ ├── faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py
│ ├── faster_rcnn_r50_fpg_crop640_50e_coco.py
│ ├── faster_rcnn_r50_fpn_crop640_50e_coco.py
│ ├── mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py
│ ├── mask_rcnn_r50_fpg_crop640_50e_coco.py
│ ├── mask_rcnn_r50_fpn_crop640_50e_coco.py
│ ├── metafile.yml
│ ├── retinanet_r50_fpg-chn128_crop640_50e_coco.py
│ └── retinanet_r50_fpg_crop640_50e_coco.py
├── free_anchor
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_free_anchor_r101_fpn_1x_coco.py
│ ├── retinanet_free_anchor_r50_fpn_1x_coco.py
│ └── retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py
├── fsaf
│ ├── README.md
│ ├── fsaf_r101_fpn_1x_coco.py
│ ├── fsaf_r50_fpn_1x_coco.py
│ ├── fsaf_x101_64x4d_fpn_1x_coco.py
│ └── metafile.yml
├── gcnet
│ ├── README.md
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ ├── cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py
│ ├── mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py
│ ├── mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py
│ └── metafile.yml
├── gfl
│ ├── README.md
│ ├── gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
│ ├── gfl_r101_fpn_mstrain_2x_coco.py
│ ├── gfl_r50_fpn_1x_coco.py
│ ├── gfl_r50_fpn_mstrain_2x_coco.py
│ ├── gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py
│ ├── gfl_x101_32x4d_fpn_mstrain_2x_coco.py
│ └── metafile.yml
├── ghm
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_ghm_r101_fpn_1x_coco.py
│ ├── retinanet_ghm_r50_fpn_1x_coco.py
│ ├── retinanet_ghm_x101_32x4d_fpn_1x_coco.py
│ └── retinanet_ghm_x101_64x4d_fpn_1x_coco.py
├── gn+ws
│ ├── README.md
│ ├── faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py
│ ├── faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py
│ ├── faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py
│ ├── faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py
│ ├── mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py
│ ├── mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py
│ ├── mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py
│ ├── mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py
│ ├── mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py
│ ├── mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py
│ └── metafile.yml
├── gn
│ ├── README.md
│ ├── mask_rcnn_r101_fpn_gn-all_2x_coco.py
│ ├── mask_rcnn_r101_fpn_gn-all_3x_coco.py
│ ├── mask_rcnn_r50_fpn_gn-all_2x_coco.py
│ ├── mask_rcnn_r50_fpn_gn-all_3x_coco.py
│ ├── mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py
│ ├── mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py
│ └── metafile.yml
├── grid_rcnn
│ ├── README.md
│ ├── grid_rcnn_r101_fpn_gn-head_2x_coco.py
│ ├── grid_rcnn_r50_fpn_gn-head_1x_coco.py
│ ├── grid_rcnn_r50_fpn_gn-head_2x_coco.py
│ ├── grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py
│ ├── grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py
│ └── metafile.yml
├── groie
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_groie_1x_coco.py
│ ├── grid_rcnn_r50_fpn_gn-head_groie_1x_coco.py
│ ├── mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
│ ├── mask_rcnn_r50_fpn_groie_1x_coco.py
│ ├── mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_groie_1x_coco.py
│ └── metafile.yml
├── guided_anchoring
│ ├── README.md
│ ├── ga_fast_r50_caffe_fpn_1x_coco.py
│ ├── ga_faster_r101_caffe_fpn_1x_coco.py
│ ├── ga_faster_r50_caffe_fpn_1x_coco.py
│ ├── ga_faster_r50_fpn_1x_coco.py
│ ├── ga_faster_x101_32x4d_fpn_1x_coco.py
│ ├── ga_faster_x101_64x4d_fpn_1x_coco.py
│ ├── ga_retinanet_r101_caffe_fpn_1x_coco.py
│ ├── ga_retinanet_r101_caffe_fpn_mstrain_2x.py
│ ├── ga_retinanet_r50_caffe_fpn_1x_coco.py
│ ├── ga_retinanet_r50_fpn_1x_coco.py
│ ├── ga_retinanet_x101_32x4d_fpn_1x_coco.py
│ ├── ga_retinanet_x101_64x4d_fpn_1x_coco.py
│ ├── ga_rpn_r101_caffe_fpn_1x_coco.py
│ ├── ga_rpn_r50_caffe_fpn_1x_coco.py
│ ├── ga_rpn_r50_fpn_1x_coco.py
│ ├── ga_rpn_x101_32x4d_fpn_1x_coco.py
│ ├── ga_rpn_x101_64x4d_fpn_1x_coco.py
│ └── metafile.yml
├── hrnet
│ ├── README.md
│ ├── cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py
│ ├── cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py
│ ├── cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py
│ ├── cascade_rcnn_hrnetv2p_w18_20e_coco.py
│ ├── cascade_rcnn_hrnetv2p_w32_20e_coco.py
│ ├── cascade_rcnn_hrnetv2p_w40_20e_coco.py
│ ├── faster_rcnn_hrnetv2p_w18_1x_coco.py
│ ├── faster_rcnn_hrnetv2p_w18_2x_coco.py
│ ├── faster_rcnn_hrnetv2p_w32_1x_coco.py
│ ├── faster_rcnn_hrnetv2p_w32_2x_coco.py
│ ├── faster_rcnn_hrnetv2p_w40_1x_coco.py
│ ├── faster_rcnn_hrnetv2p_w40_2x_coco.py
│ ├── fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py
│ ├── fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py
│ ├── fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py
│ ├── fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py
│ ├── fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py
│ ├── fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py
│ ├── fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py
│ ├── htc_hrnetv2p_w18_20e_coco.py
│ ├── htc_hrnetv2p_w32_20e_coco.py
│ ├── htc_hrnetv2p_w40_20e_coco.py
│ ├── htc_hrnetv2p_w40_28e_coco.py
│ ├── htc_x101_64x4d_fpn_16x1_28e_coco.py
│ ├── mask_rcnn_hrnetv2p_w18_1x_coco.py
│ ├── mask_rcnn_hrnetv2p_w18_2x_coco.py
│ ├── mask_rcnn_hrnetv2p_w32_1x_coco.py
│ ├── mask_rcnn_hrnetv2p_w32_2x_coco.py
│ ├── mask_rcnn_hrnetv2p_w40_1x_coco.py
│ ├── mask_rcnn_hrnetv2p_w40_2x_coco.py
│ └── metafile.yml
├── htc
│ ├── README.md
│ ├── htc_r101_fpn_20e_coco.py
│ ├── htc_r50_fpn_1x_coco.py
│ ├── htc_r50_fpn_20e_coco.py
│ ├── htc_without_semantic_r50_fpn_1x_coco.py
│ ├── htc_x101_32x4d_fpn_16x1_20e_coco.py
│ ├── htc_x101_64x4d_fpn_16x1_20e_coco.py
│ ├── htc_x101_64x4d_fpn_dconv_c3-c5_mstrain_400_1400_16x1_20e_coco.py
│ └── metafile.yml
├── instaboost
│ ├── README.md
│ ├── cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py
│ ├── cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py
│ ├── cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
│ ├── mask_rcnn_r101_fpn_instaboost_4x_coco.py
│ ├── mask_rcnn_r50_fpn_instaboost_4x_coco.py
│ ├── mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py
│ └── metafile.yml
├── lad
│ ├── README.md
│ ├── lad_r101_paa_r50_fpn_coco_1x.py
│ ├── lad_r50_paa_r101_fpn_coco_1x.py
│ └── metafile.yml
├── ld
│ ├── README.md
│ ├── ld_r101_gflv1_r101dcn_fpn_coco_2x.py
│ ├── ld_r18_gflv1_r101_fpn_coco_1x.py
│ ├── ld_r34_gflv1_r101_fpn_coco_1x.py
│ ├── ld_r50_gflv1_r101_fpn_coco_1x.py
│ └── metafile.yml
├── legacy_1.x
│ ├── README.md
│ ├── cascade_mask_rcnn_r50_fpn_1x_coco_v1.py
│ ├── faster_rcnn_r50_fpn_1x_coco_v1.py
│ ├── mask_rcnn_r50_fpn_1x_coco_v1.py
│ ├── retinanet_r50_caffe_fpn_1x_coco_v1.py
│ ├── retinanet_r50_fpn_1x_coco_v1.py
│ └── ssd300_coco_v1.py
├── libra_rcnn
│ ├── README.md
│ ├── libra_fast_rcnn_r50_fpn_1x_coco.py
│ ├── libra_faster_rcnn_r101_fpn_1x_coco.py
│ ├── libra_faster_rcnn_r50_fpn_1x_coco.py
│ ├── libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py
│ ├── libra_retinanet_r50_fpn_1x_coco.py
│ └── metafile.yml
├── lvis
│ ├── README.md
│ ├── mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ ├── mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ ├── mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ ├── mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ ├── mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ ├── mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
│ ├── mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py
│ └── mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py
├── mask2former
│ ├── mask2former_r50_lsj_8x2_50e_coco.py
│ └── mask2former_swin-t-p4-w7-224_lsj_8x2_50e_coco.py
├── mask_rcnn
│ ├── README.md
│ ├── mask_rcnn_r101_caffe_fpn_1x_coco.py
│ ├── mask_rcnn_r101_caffe_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_r101_fpn_1x_coco.py
│ ├── mask_rcnn_r101_fpn_2x_coco.py
│ ├── mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_r50_caffe_c4_1x_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_mstrain_1x_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_poly_1x_coco_v1.py
│ ├── mask_rcnn_r50_fpn_1x_coco.py
│ ├── mask_rcnn_r50_fpn_2x_coco.py
│ ├── mask_rcnn_r50_fpn_fp16_1x_coco.py
│ ├── mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_r50_fpn_poly_1x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_2x_coco.py
│ ├── mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_x101_32x8d_fpn_1x_coco.py
│ ├── mask_rcnn_x101_32x8d_fpn_mstrain-poly_1x_coco.py
│ ├── mask_rcnn_x101_32x8d_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_x101_64x4d_fpn_1x_coco.py
│ ├── mask_rcnn_x101_64x4d_fpn_2x_coco.py
│ ├── mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py
│ └── metafile.yml
├── maskformer
│ ├── README.md
│ ├── maskformer_r50_mstrain_16x1_75e_coco.py
│ └── metafile.yml
├── ms_rcnn
│ ├── README.md
│ ├── metafile.yml
│ ├── ms_rcnn_r101_caffe_fpn_1x_coco.py
│ ├── ms_rcnn_r101_caffe_fpn_2x_coco.py
│ ├── ms_rcnn_r50_caffe_fpn_1x_coco.py
│ ├── ms_rcnn_r50_caffe_fpn_2x_coco.py
│ ├── ms_rcnn_r50_fpn_1x_coco.py
│ ├── ms_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── ms_rcnn_x101_64x4d_fpn_1x_coco.py
│ └── ms_rcnn_x101_64x4d_fpn_2x_coco.py
├── nas_fcos
│ ├── README.md
│ ├── metafile.yml
│ ├── nas_fcos_fcoshead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
│ └── nas_fcos_nashead_r50_caffe_fpn_gn-head_4x4_1x_coco.py
├── nas_fpn
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_r50_fpn_crop640_50e_coco.py
│ └── retinanet_r50_nasfpn_crop640_50e_coco.py
├── openimages
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_32x2_1x_openimages.py
│ ├── faster_rcnn_r50_fpn_32x2_1x_openimages_challenge.py
│ ├── metafile.yml
│ ├── retinanet_r50_fpn_32x2_1x_openimages.py
│ └── ssd300_32x8_36e_openimages.py
├── paa
│ ├── README.md
│ ├── metafile.yml
│ ├── paa_r101_fpn_1x_coco.py
│ ├── paa_r101_fpn_2x_coco.py
│ ├── paa_r101_fpn_mstrain_3x_coco.py
│ ├── paa_r50_fpn_1.5x_coco.py
│ ├── paa_r50_fpn_1x_coco.py
│ ├── paa_r50_fpn_2x_coco.py
│ └── paa_r50_fpn_mstrain_3x_coco.py
├── pafpn
│ ├── README.md
│ ├── faster_rcnn_r50_pafpn_1x_coco.py
│ └── metafile.yml
├── panoptic_fpn
│ ├── README.md
│ ├── metafile.yml
│ ├── panoptic_fpn_r101_fpn_1x_coco.py
│ ├── panoptic_fpn_r101_fpn_mstrain_3x_coco.py
│ ├── panoptic_fpn_r50_fpn_1x_coco.py
│ └── panoptic_fpn_r50_fpn_mstrain_3x_coco.py
├── pascal_voc
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_1x_voc0712.py
│ ├── faster_rcnn_r50_fpn_1x_voc0712_cocofmt.py
│ ├── retinanet_r50_fpn_1x_voc0712.py
│ ├── ssd300_voc0712.py
│ └── ssd512_voc0712.py
├── pisa
│ ├── README.md
│ ├── metafile.yml
│ ├── pisa_faster_rcnn_r50_fpn_1x_coco.py
│ ├── pisa_faster_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── pisa_mask_rcnn_r50_fpn_1x_coco.py
│ ├── pisa_mask_rcnn_x101_32x4d_fpn_1x_coco.py
│ ├── pisa_retinanet_r50_fpn_1x_coco.py
│ ├── pisa_retinanet_x101_32x4d_fpn_1x_coco.py
│ ├── pisa_ssd300_coco.py
│ └── pisa_ssd512_coco.py
├── point_rend
│ ├── README.md
│ ├── metafile.yml
│ ├── point_rend_r50_caffe_fpn_mstrain_1x_coco.py
│ └── point_rend_r50_caffe_fpn_mstrain_3x_coco.py
├── pvt
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_pvt-l_fpn_1x_coco.py
│ ├── retinanet_pvt-m_fpn_1x_coco.py
│ ├── retinanet_pvt-s_fpn_1x_coco.py
│ ├── retinanet_pvt-t_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b0_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b1_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b2_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b3_fpn_1x_coco.py
│ ├── retinanet_pvtv2-b4_fpn_1x_coco.py
│ └── retinanet_pvtv2-b5_fpn_1x_coco.py
├── queryinst
│ ├── README.md
│ ├── metafile.yml
│ ├── queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
│ ├── queryinst_r101_fpn_mstrain_480-800_3x_coco.py
│ ├── queryinst_r50_fpn_1x_coco.py
│ ├── queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
│ └── queryinst_r50_fpn_mstrain_480-800_3x_coco.py
├── regnet
│ ├── README.md
│ ├── cascade_mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
│ ├── cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py
│ ├── faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py
│ ├── faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py
│ ├── faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py
│ ├── mask_rcnn_regnetx-1.6GF_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_regnetx-12GF_fpn_1x_coco.py
│ ├── mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py
│ ├── mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py
│ ├── mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py
│ ├── mask_rcnn_regnetx-400MF_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_regnetx-4GF_fpn_1x_coco.py
│ ├── mask_rcnn_regnetx-4GF_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py
│ ├── mask_rcnn_regnetx-800MF_fpn_mstrain-poly_3x_coco.py
│ ├── mask_rcnn_regnetx-8GF_fpn_1x_coco.py
│ ├── metafile.yml
│ ├── retinanet_regnetx-1.6GF_fpn_1x_coco.py
│ ├── retinanet_regnetx-3.2GF_fpn_1x_coco.py
│ └── retinanet_regnetx-800MF_fpn_1x_coco.py
├── reppoints
│ ├── README.md
│ ├── bbox_r50_grid_center_fpn_gn-neck+head_1x_coco.py
│ ├── bbox_r50_grid_fpn_gn-neck+head_1x_coco.py
│ ├── metafile.yml
│ ├── reppoints.png
│ ├── reppoints_minmax_r50_fpn_gn-neck+head_1x_coco.py
│ ├── reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
│ ├── reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py
│ ├── reppoints_moment_r50_fpn_1x_coco.py
│ ├── reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py
│ ├── reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py
│ ├── reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py
│ └── reppoints_partial_minmax_r50_fpn_gn-neck+head_1x_coco.py
├── res2net
│ ├── README.md
│ ├── cascade_mask_rcnn_r2_101_fpn_20e_coco.py
│ ├── cascade_rcnn_r2_101_fpn_20e_coco.py
│ ├── faster_rcnn_r2_101_fpn_2x_coco.py
│ ├── htc_r2_101_fpn_20e_coco.py
│ ├── mask_rcnn_r2_101_fpn_2x_coco.py
│ └── metafile.yml
├── resnest
│ ├── README.md
│ ├── cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ ├── cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ ├── cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ ├── cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ ├── faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ ├── faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py
│ ├── mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ ├── mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py
│ └── metafile.yml
├── resnet_strikes_back
│ ├── README.md
│ ├── cascade_mask_rcnn_r50_fpn_rsb-pretrain_1x_coco.py
│ ├── faster_rcnn_r50_fpn_rsb-pretrain_1x_coco.py
│ ├── mask_rcnn_r50_fpn_rsb-pretrain_1x_coco.py
│ ├── metafile.yml
│ └── retinanet_r50_fpn_rsb-pretrain_1x_coco.py
├── retinanet
│ ├── README.md
│ ├── metafile.yml
│ ├── retinanet_r101_caffe_fpn_1x_coco.py
│ ├── retinanet_r101_caffe_fpn_mstrain_3x_coco.py
│ ├── retinanet_r101_fpn_1x_coco.py
│ ├── retinanet_r101_fpn_2x_coco.py
│ ├── retinanet_r101_fpn_mstrain_640-800_3x_coco.py
│ ├── retinanet_r50_caffe_fpn_1x_coco.py
│ ├── retinanet_r50_caffe_fpn_mstrain_1x_coco.py
│ ├── retinanet_r50_caffe_fpn_mstrain_2x_coco.py
│ ├── retinanet_r50_caffe_fpn_mstrain_3x_coco.py
│ ├── retinanet_r50_fpn_1x_coco.py
│ ├── retinanet_r50_fpn_2x_coco.py
│ ├── retinanet_r50_fpn_90k_coco.py
│ ├── retinanet_r50_fpn_fp16_1x_coco.py
│ ├── retinanet_r50_fpn_mstrain_640-800_3x_coco.py
│ ├── retinanet_x101_32x4d_fpn_1x_coco.py
│ ├── retinanet_x101_32x4d_fpn_2x_coco.py
│ ├── retinanet_x101_64x4d_fpn_1x_coco.py
│ ├── retinanet_x101_64x4d_fpn_2x_coco.py
│ └── retinanet_x101_64x4d_fpn_mstrain_640-800_3x_coco.py
├── rpn
│ ├── README.md
│ ├── rpn_r101_caffe_fpn_1x_coco.py
│ ├── rpn_r101_fpn_1x_coco.py
│ ├── rpn_r101_fpn_2x_coco.py
│ ├── rpn_r50_caffe_c4_1x_coco.py
│ ├── rpn_r50_caffe_fpn_1x_coco.py
│ ├── rpn_r50_fpn_1x_coco.py
│ ├── rpn_r50_fpn_2x_coco.py
│ ├── rpn_x101_32x4d_fpn_1x_coco.py
│ ├── rpn_x101_32x4d_fpn_2x_coco.py
│ ├── rpn_x101_64x4d_fpn_1x_coco.py
│ └── rpn_x101_64x4d_fpn_2x_coco.py
├── sabl
│ ├── README.md
│ ├── metafile.yml
│ ├── sabl_cascade_rcnn_r101_fpn_1x_coco.py
│ ├── sabl_cascade_rcnn_r50_fpn_1x_coco.py
│ ├── sabl_faster_rcnn_r101_fpn_1x_coco.py
│ ├── sabl_faster_rcnn_r50_fpn_1x_coco.py
│ ├── sabl_retinanet_r101_fpn_1x_coco.py
│ ├── sabl_retinanet_r101_fpn_gn_1x_coco.py
│ ├── sabl_retinanet_r101_fpn_gn_2x_ms_480_960_coco.py
│ ├── sabl_retinanet_r101_fpn_gn_2x_ms_640_800_coco.py
│ ├── sabl_retinanet_r50_fpn_1x_coco.py
│ └── sabl_retinanet_r50_fpn_gn_1x_coco.py
├── scnet
│ ├── README.md
│ ├── metafile.yml
│ ├── scnet_r101_fpn_20e_coco.py
│ ├── scnet_r50_fpn_1x_coco.py
│ ├── scnet_r50_fpn_20e_coco.py
│ ├── scnet_x101_64x4d_fpn_20e_coco.py
│ └── scnet_x101_64x4d_fpn_8x1_20e_coco.py
├── scratch
│ ├── README.md
│ ├── faster_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
│ ├── mask_rcnn_r50_fpn_gn-all_scratch_6x_coco.py
│ └── metafile.yml
├── seesaw_loss
│ ├── README.md
│ ├── cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
│ ├── cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ ├── cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
│ ├── cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py
│ ├── mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py
│ └── metafile.yml
├── selfsup_pretrain
│ ├── README.md
│ ├── mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py
│ ├── mask_rcnn_r50_fpn_mocov2-pretrain_ms-2x_coco.py
│ ├── mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py
│ └── mask_rcnn_r50_fpn_swav-pretrain_ms-2x_coco.py
├── solo
│ ├── README.md
│ ├── decoupled_solo_light_r50_fpn_3x_coco.py
│ ├── decoupled_solo_r50_fpn_1x_coco.py
│ ├── decoupled_solo_r50_fpn_3x_coco.py
│ ├── metafile.yml
│ ├── solo_r50_fpn_1x_coco.py
│ └── solo_r50_fpn_3x_coco.py
├── sparse_rcnn
│ ├── README.md
│ ├── metafile.yml
│ ├── sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
│ ├── sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py
│ ├── sparse_rcnn_r50_fpn_1x_coco.py
│ ├── sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py
│ └── sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py
├── ssd
│ ├── README.md
│ ├── metafile.yml
│ ├── ssd300_coco.py
│ ├── ssd512_coco.py
│ └── ssdlite_mobilenetv2_scratch_600e_coco.py
├── strong_baselines
│ ├── README.md
│ ├── mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py
│ ├── mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_400e_coco.py
│ ├── mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py
│ ├── mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py
│ └── mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_50e_coco.py
├── swin
│ ├── README.md
│ ├── mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco.py
│ ├── mask_rcnn_swin-t-p4-w7_fpn_1x_coco.py
│ ├── mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py
│ ├── mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py
│ ├── metafile.yml
│ └── retinanet_swin-t-p4-w7_fpn_1x_coco.py
├── tevit
│ ├── tevit_msgshift.py
│ ├── tevit_msgshift_mstrain.py
│ ├── tevit_r50.py
│ ├── tevit_r50_mstrain.py
│ └── tevit_swin-l_mstrain.py
├── timm_example
│ ├── README.md
│ ├── retinanet_timm_efficientnet_b1_fpn_1x_coco.py
│ └── retinanet_timm_tv_resnet50_fpn_1x_coco.py
├── tood
│ ├── README.md
│ ├── metafile.yml
│ ├── tood_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py
│ ├── tood_r101_fpn_mstrain_2x_coco.py
│ ├── tood_r50_fpn_1x_coco.py
│ ├── tood_r50_fpn_anchor_based_1x_coco.py
│ ├── tood_r50_fpn_mstrain_2x_coco.py
│ ├── tood_x101_64x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py
│ └── tood_x101_64x4d_fpn_mstrain_2x_coco.py
├── tridentnet
│ ├── README.md
│ ├── metafile.yml
│ ├── tridentnet_r50_caffe_1x_coco.py
│ ├── tridentnet_r50_caffe_mstrain_1x_coco.py
│ └── tridentnet_r50_caffe_mstrain_3x_coco.py
├── vfnet
│ ├── README.md
│ ├── metafile.yml
│ ├── vfnet_r101_fpn_1x_coco.py
│ ├── vfnet_r101_fpn_2x_coco.py
│ ├── vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ ├── vfnet_r101_fpn_mstrain_2x_coco.py
│ ├── vfnet_r2_101_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ ├── vfnet_r2_101_fpn_mstrain_2x_coco.py
│ ├── vfnet_r50_fpn_1x_coco.py
│ ├── vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ ├── vfnet_r50_fpn_mstrain_2x_coco.py
│ ├── vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ ├── vfnet_x101_32x4d_fpn_mstrain_2x_coco.py
│ ├── vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py
│ └── vfnet_x101_64x4d_fpn_mstrain_2x_coco.py
├── wider_face
│ ├── README.md
│ └── ssd300_wider_face.py
├── yolact
│ ├── README.md
│ ├── metafile.yml
│ ├── yolact_r101_1x8_coco.py
│ ├── yolact_r50_1x8_coco.py
│ └── yolact_r50_8x8_coco.py
├── yolo
│ ├── README.md
│ ├── metafile.yml
│ ├── yolov3_d53_320_273e_coco.py
│ ├── yolov3_d53_fp16_mstrain-608_273e_coco.py
│ ├── yolov3_d53_mstrain-416_273e_coco.py
│ ├── yolov3_d53_mstrain-608_273e_coco.py
│ ├── yolov3_mobilenetv2_320_300e_coco.py
│ └── yolov3_mobilenetv2_mstrain-416_300e_coco.py
├── yolof
│ ├── README.md
│ ├── metafile.yml
│ ├── yolof_r50_c5_8x8_1x_coco.py
│ └── yolof_r50_c5_8x8_iter-1x_coco.py
└── yolox
│ ├── README.md
│ ├── metafile.yml
│ ├── yolox_l_8x8_300e_coco.py
│ ├── yolox_m_8x8_300e_coco.py
│ ├── yolox_nano_8x8_300e_coco.py
│ ├── yolox_s_8x8_300e_coco.py
│ ├── yolox_tiny_8x8_300e_coco.py
│ └── yolox_x_8x8_300e_coco.py
├── demo
├── MMDet_InstanceSeg_Tutorial.ipynb
├── MMDet_Tutorial.ipynb
├── create_result_gif.py
├── demo.jpg
├── demo.mp4
├── image_demo.py
├── inference_demo.ipynb
├── video_demo.py
└── webcam_demo.py
├── docker
├── Dockerfile
└── serve
│ ├── Dockerfile
│ ├── config.properties
│ └── entrypoint.sh
├── docs
├── en
│ ├── 1_exist_data_model.md
│ ├── 2_new_data_model.md
│ ├── 3_exist_data_new_model.md
│ ├── Makefile
│ ├── _static
│ │ ├── css
│ │ │ └── readthedocs.css
│ │ └── image
│ │ │ └── mmdet-logo.png
│ ├── api.rst
│ ├── changelog.md
│ ├── compatibility.md
│ ├── conf.py
│ ├── conventions.md
│ ├── faq.md
│ ├── get_started.md
│ ├── index.rst
│ ├── make.bat
│ ├── model_zoo.md
│ ├── projects.md
│ ├── robustness_benchmarking.md
│ ├── stat.py
│ ├── switch_language.md
│ ├── tutorials
│ │ ├── config.md
│ │ ├── customize_dataset.md
│ │ ├── customize_losses.md
│ │ ├── customize_models.md
│ │ ├── customize_runtime.md
│ │ ├── data_pipeline.md
│ │ ├── finetune.md
│ │ ├── how_to.md
│ │ ├── index.rst
│ │ ├── init_cfg.md
│ │ ├── onnx2tensorrt.md
│ │ ├── pytorch2onnx.md
│ │ └── test_results_submission.md
│ └── useful_tools.md
└── zh_cn
│ ├── 1_exist_data_model.md
│ ├── 2_new_data_model.md
│ ├── 3_exist_data_new_model.md
│ ├── Makefile
│ ├── _static
│ ├── css
│ │ └── readthedocs.css
│ └── image
│ │ └── mmdet-logo.png
│ ├── api.rst
│ ├── article.md
│ ├── compatibility.md
│ ├── conf.py
│ ├── conventions.md
│ ├── faq.md
│ ├── get_started.md
│ ├── index.rst
│ ├── make.bat
│ ├── model_zoo.md
│ ├── projects.md
│ ├── robustness_benchmarking.md
│ ├── stat.py
│ ├── switch_language.md
│ ├── tutorials
│ ├── config.md
│ ├── customize_dataset.md
│ ├── customize_losses.md
│ ├── customize_models.md
│ ├── customize_runtime.md
│ ├── data_pipeline.md
│ ├── finetune.md
│ ├── how_to.md
│ ├── index.rst
│ ├── init_cfg.md
│ ├── onnx2tensorrt.md
│ └── pytorch2onnx.md
│ └── useful_tools.md
├── mindspore
├── README.md
├── fpn.py
├── mask_head.py
├── resnet.py
├── roi_align.py
├── rpn.py
├── stqi_head.py
├── test_vis.py
├── tevit.py
└── transformer.py
├── mmdet
├── __init__.py
├── apis
│ ├── __init__.py
│ ├── inference.py
│ ├── test.py
│ └── train.py
├── core
│ ├── __init__.py
│ ├── anchor
│ │ ├── __init__.py
│ │ ├── anchor_generator.py
│ │ ├── builder.py
│ │ ├── point_generator.py
│ │ └── utils.py
│ ├── bbox
│ │ ├── __init__.py
│ │ ├── assigners
│ │ │ ├── __init__.py
│ │ │ ├── approx_max_iou_assigner.py
│ │ │ ├── assign_result.py
│ │ │ ├── atss_assigner.py
│ │ │ ├── base_assigner.py
│ │ │ ├── center_region_assigner.py
│ │ │ ├── grid_assigner.py
│ │ │ ├── hungarian_assigner.py
│ │ │ ├── mask_hungarian_assigner.py
│ │ │ ├── max_iou_assigner.py
│ │ │ ├── point_assigner.py
│ │ │ ├── region_assigner.py
│ │ │ ├── sim_ota_assigner.py
│ │ │ ├── task_aligned_assigner.py
│ │ │ ├── tevit_hungarian_assigner.py
│ │ │ └── uniform_assigner.py
│ │ ├── builder.py
│ │ ├── coder
│ │ │ ├── __init__.py
│ │ │ ├── base_bbox_coder.py
│ │ │ ├── bucketing_bbox_coder.py
│ │ │ ├── delta_xywh_bbox_coder.py
│ │ │ ├── distance_point_bbox_coder.py
│ │ │ ├── legacy_delta_xywh_bbox_coder.py
│ │ │ ├── pseudo_bbox_coder.py
│ │ │ ├── tblr_bbox_coder.py
│ │ │ └── yolo_bbox_coder.py
│ │ ├── demodata.py
│ │ ├── iou_calculators
│ │ │ ├── __init__.py
│ │ │ ├── builder.py
│ │ │ └── iou2d_calculator.py
│ │ ├── match_costs
│ │ │ ├── __init__.py
│ │ │ ├── builder.py
│ │ │ └── match_cost.py
│ │ ├── samplers
│ │ │ ├── __init__.py
│ │ │ ├── base_sampler.py
│ │ │ ├── combined_sampler.py
│ │ │ ├── instance_balanced_pos_sampler.py
│ │ │ ├── iou_balanced_neg_sampler.py
│ │ │ ├── mask_pseudo_sampler.py
│ │ │ ├── mask_sampling_result.py
│ │ │ ├── ohem_sampler.py
│ │ │ ├── pseudo_sampler.py
│ │ │ ├── random_sampler.py
│ │ │ ├── sampling_result.py
│ │ │ └── score_hlr_sampler.py
│ │ └── transforms.py
│ ├── data_structures
│ │ ├── __init__.py
│ │ ├── general_data.py
│ │ └── instance_data.py
│ ├── evaluation
│ │ ├── __init__.py
│ │ ├── bbox_overlaps.py
│ │ ├── class_names.py
│ │ ├── eval_hooks.py
│ │ ├── mean_ap.py
│ │ ├── panoptic_utils.py
│ │ └── recall.py
│ ├── export
│ │ ├── __init__.py
│ │ ├── model_wrappers.py
│ │ ├── onnx_helper.py
│ │ └── pytorch2onnx.py
│ ├── hook
│ │ ├── __init__.py
│ │ ├── checkloss_hook.py
│ │ ├── ema.py
│ │ ├── set_epoch_info_hook.py
│ │ ├── sync_norm_hook.py
│ │ ├── sync_random_size_hook.py
│ │ ├── yolox_lrupdater_hook.py
│ │ └── yolox_mode_switch_hook.py
│ ├── mask
│ │ ├── __init__.py
│ │ ├── mask_target.py
│ │ ├── structures.py
│ │ └── utils.py
│ ├── post_processing
│ │ ├── __init__.py
│ │ ├── bbox_nms.py
│ │ ├── matrix_nms.py
│ │ └── merge_augs.py
│ ├── utils
│ │ ├── __init__.py
│ │ ├── dist_utils.py
│ │ └── misc.py
│ └── visualization
│ │ ├── __init__.py
│ │ ├── image.py
│ │ └── palette.py
├── datasets
│ ├── __init__.py
│ ├── api_wrappers
│ │ ├── __init__.py
│ │ ├── coco_api.py
│ │ └── panoptic_evaluation.py
│ ├── builder.py
│ ├── cityscapes.py
│ ├── coco.py
│ ├── coco_panoptic.py
│ ├── custom.py
│ ├── dataset_wrappers.py
│ ├── deepfashion.py
│ ├── lvis.py
│ ├── openimages.py
│ ├── pipelines
│ │ ├── __init__.py
│ │ ├── auto_augment.py
│ │ ├── compose.py
│ │ ├── formating.py
│ │ ├── formatting.py
│ │ ├── instaboost.py
│ │ ├── loading.py
│ │ ├── test_time_aug.py
│ │ └── transforms.py
│ ├── samplers
│ │ ├── __init__.py
│ │ ├── distributed_sampler.py
│ │ ├── group_sampler.py
│ │ └── infinite_sampler.py
│ ├── utils.py
│ ├── voc.py
│ ├── wider_face.py
│ ├── xml_style.py
│ └── youtubevis.py
├── models
│ ├── __init__.py
│ ├── backbones
│ │ ├── __init__.py
│ │ ├── csp_darknet.py
│ │ ├── darknet.py
│ │ ├── detectors_resnet.py
│ │ ├── detectors_resnext.py
│ │ ├── efficientnet.py
│ │ ├── hourglass.py
│ │ ├── hrnet.py
│ │ ├── mobilenet_v2.py
│ │ ├── msgshift.py
│ │ ├── pvt.py
│ │ ├── regnet.py
│ │ ├── res2net.py
│ │ ├── resnest.py
│ │ ├── resnet.py
│ │ ├── resnext.py
│ │ ├── ssd_vgg.py
│ │ ├── swin.py
│ │ └── trident_resnet.py
│ ├── builder.py
│ ├── dense_heads
│ │ ├── __init__.py
│ │ ├── anchor_free_head.py
│ │ ├── anchor_head.py
│ │ ├── atss_head.py
│ │ ├── autoassign_head.py
│ │ ├── base_dense_head.py
│ │ ├── base_mask_head.py
│ │ ├── cascade_rpn_head.py
│ │ ├── centernet_head.py
│ │ ├── centripetal_head.py
│ │ ├── corner_head.py
│ │ ├── deformable_detr_head.py
│ │ ├── dense_test_mixins.py
│ │ ├── detr_head.py
│ │ ├── embedding_rpn_head.py
│ │ ├── fcos_head.py
│ │ ├── fovea_head.py
│ │ ├── free_anchor_retina_head.py
│ │ ├── fsaf_head.py
│ │ ├── ga_retina_head.py
│ │ ├── ga_rpn_head.py
│ │ ├── gfl_head.py
│ │ ├── guided_anchor_head.py
│ │ ├── lad_head.py
│ │ ├── ld_head.py
│ │ ├── mask2former_head.py
│ │ ├── maskformer_head.py
│ │ ├── nasfcos_head.py
│ │ ├── paa_head.py
│ │ ├── pisa_retinanet_head.py
│ │ ├── pisa_ssd_head.py
│ │ ├── reppoints_head.py
│ │ ├── retina_head.py
│ │ ├── retina_sepbn_head.py
│ │ ├── rpn_head.py
│ │ ├── sabl_retina_head.py
│ │ ├── solo_head.py
│ │ ├── ssd_head.py
│ │ ├── tood_head.py
│ │ ├── vfnet_head.py
│ │ ├── yolact_head.py
│ │ ├── yolo_head.py
│ │ ├── yolof_head.py
│ │ └── yolox_head.py
│ ├── detectors
│ │ ├── __init__.py
│ │ ├── atss.py
│ │ ├── autoassign.py
│ │ ├── base.py
│ │ ├── cascade_rcnn.py
│ │ ├── centernet.py
│ │ ├── cornernet.py
│ │ ├── deformable_detr.py
│ │ ├── detr.py
│ │ ├── fast_rcnn.py
│ │ ├── faster_rcnn.py
│ │ ├── fcos.py
│ │ ├── fovea.py
│ │ ├── fsaf.py
│ │ ├── gfl.py
│ │ ├── grid_rcnn.py
│ │ ├── htc.py
│ │ ├── kd_one_stage.py
│ │ ├── lad.py
│ │ ├── mask2former.py
│ │ ├── mask_rcnn.py
│ │ ├── mask_scoring_rcnn.py
│ │ ├── maskformer.py
│ │ ├── nasfcos.py
│ │ ├── paa.py
│ │ ├── panoptic_fpn.py
│ │ ├── panoptic_two_stage_segmentor.py
│ │ ├── point_rend.py
│ │ ├── queryinst.py
│ │ ├── reppoints_detector.py
│ │ ├── retinanet.py
│ │ ├── rpn.py
│ │ ├── scnet.py
│ │ ├── single_stage.py
│ │ ├── single_stage_instance_seg.py
│ │ ├── solo.py
│ │ ├── sparse_rcnn.py
│ │ ├── tevit.py
│ │ ├── tood.py
│ │ ├── trident_faster_rcnn.py
│ │ ├── two_stage.py
│ │ ├── vfnet.py
│ │ ├── yolact.py
│ │ ├── yolo.py
│ │ ├── yolof.py
│ │ └── yolox.py
│ ├── losses
│ │ ├── __init__.py
│ │ ├── accuracy.py
│ │ ├── ae_loss.py
│ │ ├── balanced_l1_loss.py
│ │ ├── cross_entropy_loss.py
│ │ ├── dice_loss.py
│ │ ├── focal_loss.py
│ │ ├── gaussian_focal_loss.py
│ │ ├── gfocal_loss.py
│ │ ├── ghm_loss.py
│ │ ├── iou_loss.py
│ │ ├── kd_loss.py
│ │ ├── mse_loss.py
│ │ ├── pisa_loss.py
│ │ ├── seesaw_loss.py
│ │ ├── smooth_l1_loss.py
│ │ ├── utils.py
│ │ └── varifocal_loss.py
│ ├── necks
│ │ ├── __init__.py
│ │ ├── bfp.py
│ │ ├── channel_mapper.py
│ │ ├── ct_resnet_neck.py
│ │ ├── dilated_encoder.py
│ │ ├── dyhead.py
│ │ ├── fpg.py
│ │ ├── fpn.py
│ │ ├── fpn_carafe.py
│ │ ├── hrfpn.py
│ │ ├── nas_fpn.py
│ │ ├── nasfcos_fpn.py
│ │ ├── pafpn.py
│ │ ├── rfp.py
│ │ ├── ssd_neck.py
│ │ ├── yolo_neck.py
│ │ └── yolox_pafpn.py
│ ├── plugins
│ │ ├── __init__.py
│ │ ├── dropblock.py
│ │ ├── msdeformattn_pixel_decoder.py
│ │ └── pixel_decoder.py
│ ├── roi_heads
│ │ ├── __init__.py
│ │ ├── base_roi_head.py
│ │ ├── bbox_heads
│ │ │ ├── __init__.py
│ │ │ ├── bbox_head.py
│ │ │ ├── convfc_bbox_head.py
│ │ │ ├── dii_head.py
│ │ │ ├── double_bbox_head.py
│ │ │ ├── sabl_head.py
│ │ │ ├── scnet_bbox_head.py
│ │ │ └── stqi_head.py
│ │ ├── cascade_roi_head.py
│ │ ├── double_roi_head.py
│ │ ├── dynamic_roi_head.py
│ │ ├── grid_roi_head.py
│ │ ├── htc_roi_head.py
│ │ ├── mask_heads
│ │ │ ├── __init__.py
│ │ │ ├── coarse_mask_head.py
│ │ │ ├── dynamic_mask_head.py
│ │ │ ├── fcn_mask_head.py
│ │ │ ├── feature_relay_head.py
│ │ │ ├── fused_semantic_head.py
│ │ │ ├── global_context_head.py
│ │ │ ├── grid_head.py
│ │ │ ├── htc_mask_head.py
│ │ │ ├── mask_point_head.py
│ │ │ ├── maskiou_head.py
│ │ │ ├── scnet_mask_head.py
│ │ │ └── scnet_semantic_head.py
│ │ ├── mask_scoring_roi_head.py
│ │ ├── pisa_roi_head.py
│ │ ├── point_rend_roi_head.py
│ │ ├── roi_extractors
│ │ │ ├── __init__.py
│ │ │ ├── base_roi_extractor.py
│ │ │ ├── generic_roi_extractor.py
│ │ │ └── single_level_roi_extractor.py
│ │ ├── scnet_roi_head.py
│ │ ├── shared_heads
│ │ │ ├── __init__.py
│ │ │ └── res_layer.py
│ │ ├── sparse_roi_head.py
│ │ ├── standard_roi_head.py
│ │ ├── test_mixins.py
│ │ ├── tevit_roi_head.py
│ │ └── trident_roi_head.py
│ ├── seg_heads
│ │ ├── __init__.py
│ │ ├── base_semantic_head.py
│ │ ├── panoptic_fpn_head.py
│ │ └── panoptic_fusion_heads
│ │ │ ├── __init__.py
│ │ │ ├── base_panoptic_fusion_head.py
│ │ │ ├── heuristic_fusion_head.py
│ │ │ └── maskformer_fusion_head.py
│ └── utils
│ │ ├── __init__.py
│ │ ├── brick_wrappers.py
│ │ ├── builder.py
│ │ ├── ckpt_convert.py
│ │ ├── conv_upsample.py
│ │ ├── csp_layer.py
│ │ ├── gaussian_target.py
│ │ ├── inverted_residual.py
│ │ ├── make_divisible.py
│ │ ├── misc.py
│ │ ├── normed_predictor.py
│ │ ├── panoptic_gt_processing.py
│ │ ├── point_sample.py
│ │ ├── positional_encoding.py
│ │ ├── res_layer.py
│ │ ├── se_layer.py
│ │ └── transformer.py
├── utils
│ ├── __init__.py
│ ├── collect_env.py
│ ├── contextmanagers.py
│ ├── logger.py
│ ├── misc.py
│ ├── profiling.py
│ ├── setup_env.py
│ ├── util_mixins.py
│ └── util_random.py
└── version.py
├── model-index.yml
├── pytest.ini
├── requirements.txt
├── requirements
├── albu.txt
├── build.txt
├── docs.txt
├── mminstall.txt
├── optional.txt
├── readthedocs.txt
├── runtime.txt
└── tests.txt
├── resources
├── coco_test_12510.jpg
├── corruptions_sev_3.png
├── data_pipeline.png
├── gif
│ ├── 00f88c4f0a.gif
│ ├── 0b97736357.gif
│ ├── 2e21c7e59b.gif
│ ├── 49fcb27427.gif
│ ├── 4b1a561480.gif
│ └── 91eb6cb6dc.gif
├── loss_curve.png
├── mmdet-logo.png
├── qq_group_qrcode.jpg
├── tevit.png
├── tevit_vis.png
└── zhihu_qrcode.jpg
├── setup.cfg
├── setup.py
├── tests
├── test_data
│ ├── test_datasets
│ │ ├── test_coco_dataset.py
│ │ ├── test_common.py
│ │ ├── test_custom_dataset.py
│ │ ├── test_dataset_wrapper.py
│ │ ├── test_openimages_dataset.py
│ │ ├── test_panoptic_dataset.py
│ │ └── test_xml_dataset.py
│ ├── test_pipelines
│ │ ├── test_formatting.py
│ │ ├── test_loading.py
│ │ ├── test_sampler.py
│ │ └── test_transform
│ │ │ ├── __init__.py
│ │ │ ├── test_img_augment.py
│ │ │ ├── test_models_aug_test.py
│ │ │ ├── test_rotate.py
│ │ │ ├── test_shear.py
│ │ │ ├── test_transform.py
│ │ │ ├── test_translate.py
│ │ │ └── utils.py
│ └── test_utils.py
├── test_downstream
│ └── test_mmtrack.py
├── test_metrics
│ ├── test_box_overlap.py
│ ├── test_losses.py
│ ├── test_mean_ap.py
│ └── test_recall.py
├── test_models
│ ├── test_backbones
│ │ ├── __init__.py
│ │ ├── test_csp_darknet.py
│ │ ├── test_detectors_resnet.py
│ │ ├── test_efficientnet.py
│ │ ├── test_hourglass.py
│ │ ├── test_hrnet.py
│ │ ├── test_mobilenet_v2.py
│ │ ├── test_pvt.py
│ │ ├── test_regnet.py
│ │ ├── test_renext.py
│ │ ├── test_res2net.py
│ │ ├── test_resnest.py
│ │ ├── test_resnet.py
│ │ ├── test_swin.py
│ │ ├── test_trident_resnet.py
│ │ └── utils.py
│ ├── test_dense_heads
│ │ ├── test_anchor_head.py
│ │ ├── test_atss_head.py
│ │ ├── test_autoassign_head.py
│ │ ├── test_centernet_head.py
│ │ ├── test_corner_head.py
│ │ ├── test_dense_heads_attr.py
│ │ ├── test_detr_head.py
│ │ ├── test_fcos_head.py
│ │ ├── test_fsaf_head.py
│ │ ├── test_ga_anchor_head.py
│ │ ├── test_gfl_head.py
│ │ ├── test_lad_head.py
│ │ ├── test_ld_head.py
│ │ ├── test_mask2former_head.py
│ │ ├── test_maskformer_head.py
│ │ ├── test_paa_head.py
│ │ ├── test_pisa_head.py
│ │ ├── test_sabl_retina_head.py
│ │ ├── test_solo_head.py
│ │ ├── test_tood_head.py
│ │ ├── test_vfnet_head.py
│ │ ├── test_yolact_head.py
│ │ ├── test_yolof_head.py
│ │ └── test_yolox_head.py
│ ├── test_forward.py
│ ├── test_loss.py
│ ├── test_loss_compatibility.py
│ ├── test_necks.py
│ ├── test_plugins.py
│ ├── test_roi_heads
│ │ ├── __init__.py
│ │ ├── test_bbox_head.py
│ │ ├── test_mask_head.py
│ │ ├── test_roi_extractor.py
│ │ ├── test_sabl_bbox_head.py
│ │ └── utils.py
│ ├── test_seg_heads
│ │ └── test_maskformer_fusion_head.py
│ └── test_utils
│ │ ├── test_brick_wrappers.py
│ │ ├── test_conv_upsample.py
│ │ ├── test_inverted_residual.py
│ │ ├── test_model_misc.py
│ │ ├── test_position_encoding.py
│ │ ├── test_se_layer.py
│ │ └── test_transformer.py
├── test_onnx
│ ├── __init__.py
│ ├── test_head.py
│ ├── test_neck.py
│ └── utils.py
├── test_runtime
│ ├── async_benchmark.py
│ ├── test_async.py
│ ├── test_config.py
│ ├── test_eval_hook.py
│ └── test_fp16.py
└── test_utils
│ ├── test_anchor.py
│ ├── test_assigner.py
│ ├── test_coder.py
│ ├── test_general_data.py
│ ├── test_hook.py
│ ├── test_logger.py
│ ├── test_masks.py
│ ├── test_misc.py
│ ├── test_nms.py
│ ├── test_setup_env.py
│ ├── test_version.py
│ └── test_visualization.py
└── tools
├── analysis_tools
├── analyze_logs.py
├── analyze_results.py
├── benchmark.py
├── coco_error_analysis.py
├── confusion_matrix.py
├── eval_metric.py
├── get_flops.py
├── optimize_anchors.py
├── robustness_eval.py
└── test_robustness.py
├── dataset_converters
├── cityscapes.py
├── images2coco.py
└── pascal_voc.py
├── deployment
├── mmdet2torchserve.py
├── mmdet_handler.py
├── onnx2tensorrt.py
├── pytorch2onnx.py
├── test.py
└── test_torchserver.py
├── dist_test.sh
├── dist_train.sh
├── misc
├── browse_dataset.py
├── download_dataset.py
├── gen_coco_panoptic_test_info.py
├── get_image_metas.py
└── print_config.py
├── model_converters
├── detectron2pytorch.py
├── publish_model.py
├── regnet2mmdet.py
├── selfsup2mmdet.py
├── upgrade_model_version.py
└── upgrade_ssd_version.py
├── slurm_test.sh
├── slurm_train.sh
├── test.py
├── test_vis.py
└── train.py
/.dev_scripts/linter.sh:
--------------------------------------------------------------------------------
1 | yapf -r -i mmdet/ configs/ tests/ tools/
2 | isort -rc mmdet/ configs/ tests/ tools/
3 | flake8 .
4 |
--------------------------------------------------------------------------------
/.github/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | We appreciate all contributions to improve MMDetection. Please refer to [CONTRIBUTING.md](https://github.com/open-mmlab/mmcv/blob/master/CONTRIBUTING.md) in MMCV for more details about the contributing guideline.
2 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/config.yml:
--------------------------------------------------------------------------------
1 | blank_issues_enabled: false
2 |
3 | contact_links:
4 | - name: Common Issues
5 | url: https://mmdetection.readthedocs.io/en/latest/faq.html
6 | about: Check if your issue already has solutions
7 | - name: MMDetection Documentation
8 | url: https://mmdetection.readthedocs.io/en/latest/
9 | about: Check if your question is answered in docs
10 |
--------------------------------------------------------------------------------
/.github/ISSUE_TEMPLATE/general_questions.md:
--------------------------------------------------------------------------------
1 | ---
2 | name: General questions
3 | about: Ask general questions to get help
4 | title: ''
5 | labels: ''
6 | assignees: ''
7 |
8 | ---
9 |
--------------------------------------------------------------------------------
/.readthedocs.yml:
--------------------------------------------------------------------------------
1 | version: 2
2 |
3 | formats: all
4 |
5 | python:
6 | version: 3.7
7 | install:
8 | - requirements: requirements/docs.txt
9 | - requirements: requirements/readthedocs.txt
10 |
--------------------------------------------------------------------------------
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include requirements/*.txt
2 | include mmdet/VERSION
3 | include mmdet/.mim/model-index.yml
4 | include mmdet/.mim/demo/*/*
5 | recursive-include mmdet/.mim/configs *.py *.yml
6 | recursive-include mmdet/.mim/tools *.sh *.py
7 |
--------------------------------------------------------------------------------
/configs/_base_/default_runtime.py:
--------------------------------------------------------------------------------
1 | checkpoint_config = dict(interval=1)
2 | # yapf:disable
3 | log_config = dict(
4 | interval=50,
5 | hooks=[
6 | dict(type='TextLoggerHook'),
7 | # dict(type='TensorboardLoggerHook')
8 | ])
9 | # yapf:enable
10 | custom_hooks = [dict(type='NumClassCheckHook')]
11 |
12 | dist_params = dict(backend='nccl')
13 | log_level = 'INFO'
14 | load_from = None
15 | resume_from = None
16 | workflow = [('train', 1)]
17 |
18 | # disable opencv multithreading to avoid system being overloaded
19 | opencv_num_threads = 0
20 | # set multi-process start method as `fork` to speed up the training
21 | mp_start_method = 'fork'
22 |
--------------------------------------------------------------------------------
/configs/_base_/schedules/schedule_1x.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
3 | optimizer_config = dict(grad_clip=None)
4 | # learning policy
5 | lr_config = dict(
6 | policy='step',
7 | warmup='linear',
8 | warmup_iters=500,
9 | warmup_ratio=0.001,
10 | step=[8, 11])
11 | runner = dict(type='EpochBasedRunner', max_epochs=12)
12 |
--------------------------------------------------------------------------------
/configs/_base_/schedules/schedule_20e.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
3 | optimizer_config = dict(grad_clip=None)
4 | # learning policy
5 | lr_config = dict(
6 | policy='step',
7 | warmup='linear',
8 | warmup_iters=500,
9 | warmup_ratio=0.001,
10 | step=[16, 19])
11 | runner = dict(type='EpochBasedRunner', max_epochs=20)
12 |
--------------------------------------------------------------------------------
/configs/_base_/schedules/schedule_2x.py:
--------------------------------------------------------------------------------
1 | # optimizer
2 | optimizer = dict(type='SGD', lr=0.02, momentum=0.9, weight_decay=0.0001)
3 | optimizer_config = dict(grad_clip=None)
4 | # learning policy
5 | lr_config = dict(
6 | policy='step',
7 | warmup='linear',
8 | warmup_iters=500,
9 | warmup_ratio=0.001,
10 | step=[16, 22])
11 | runner = dict(type='EpochBasedRunner', max_epochs=24)
12 |
--------------------------------------------------------------------------------
/configs/atss/atss_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './atss_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r101_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_caffe_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_20e.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain_3x_coco_instance.py',
3 | '../_base_/models/cascade_mask_rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_mask_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 19])
4 | runner = dict(type='EpochBasedRunner', max_epochs=20)
5 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_x101_32x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | type='CascadeRCNN',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | groups=64,
8 | base_width=4,
9 | num_stages=4,
10 | out_indices=(0, 1, 2, 3),
11 | frozen_stages=1,
12 | norm_cfg=dict(type='BN', requires_grad=True),
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
16 |
--------------------------------------------------------------------------------
/configs/cascade_rcnn/cascade_rcnn_x101_64x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | type='CascadeRCNN',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | groups=64,
8 | base_width=4,
9 | num_stages=4,
10 | out_indices=(0, 1, 2, 3),
11 | frozen_stages=1,
12 | norm_cfg=dict(type='BN', requires_grad=True),
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
16 |
--------------------------------------------------------------------------------
/configs/centernet/centernet_resnet18_140e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './centernet_resnet18_dcnv2_140e_coco.py'
2 |
3 | model = dict(neck=dict(use_dcn=False))
4 |
--------------------------------------------------------------------------------
/configs/dcn/cascade_mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade_mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/cascade_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/faster_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/faster_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/faster_rcnn_r50_fpn_dpool_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_roi_extractor=dict(
5 | type='SingleRoIExtractor',
6 | roi_layer=dict(
7 | _delete_=True,
8 | type='DeformRoIPoolPack',
9 | output_size=7,
10 | output_channels=256),
11 | out_channels=256,
12 | featmap_strides=[4, 8, 16, 32])))
13 |
--------------------------------------------------------------------------------
/configs/dcn/faster_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
14 | stage_with_dcn=(False, True, True, True),
15 | init_cfg=dict(
16 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
17 |
--------------------------------------------------------------------------------
/configs/dcn/mask_rcnn_r101_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/mask_rcnn_r50_fpn_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcn/mask_rcnn_r50_fpn_fp16_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
7 | fp16 = dict(loss_scale=512.)
8 |
--------------------------------------------------------------------------------
/configs/dcnv2/faster_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcnv2/faster_rcnn_r50_fpn_mdconv_c3-c5_group4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=4, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/dcnv2/faster_rcnn_r50_fpn_mdpool_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_roi_extractor=dict(
5 | type='SingleRoIExtractor',
6 | roi_layer=dict(
7 | _delete_=True,
8 | type='ModulatedDeformRoIPoolPack',
9 | output_size=7,
10 | output_channels=256),
11 | out_channels=256,
12 | featmap_strides=[4, 8, 16, 32])))
13 |
--------------------------------------------------------------------------------
/configs/dcnv2/mask_rcnn_r50_fpn_fp16_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
7 | fp16 = dict(loss_scale=512.)
8 |
--------------------------------------------------------------------------------
/configs/dcnv2/mask_rcnn_r50_fpn_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)))
6 |
--------------------------------------------------------------------------------
/configs/deepfashion/mask_rcnn_r50_fpn_15e_deepfashion.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/deepfashion.py', '../_base_/schedules/schedule_1x.py',
4 | '../_base_/default_runtime.py'
5 | ]
6 | model = dict(
7 | roi_head=dict(
8 | bbox_head=dict(num_classes=15), mask_head=dict(num_classes=15)))
9 | # runtime settings
10 | runner = dict(type='EpochBasedRunner', max_epochs=15)
11 |
--------------------------------------------------------------------------------
/configs/deformable_detr/deformable_detr_refine_r50_16x2_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'deformable_detr_r50_16x2_50e_coco.py'
2 | model = dict(bbox_head=dict(with_box_refine=True))
3 |
--------------------------------------------------------------------------------
/configs/deformable_detr/deformable_detr_twostage_refine_r50_16x2_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'deformable_detr_refine_r50_16x2_50e_coco.py'
2 | model = dict(bbox_head=dict(as_two_stage=True))
3 |
--------------------------------------------------------------------------------
/configs/detectors/cascade_rcnn_r50_sac_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/cascade_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | backbone=dict(
9 | type='DetectoRS_ResNet',
10 | conv_cfg=dict(type='ConvAWS'),
11 | sac=dict(type='SAC', use_deform=True),
12 | stage_with_sac=(False, True, True, True)))
13 |
--------------------------------------------------------------------------------
/configs/detectors/htc_r50_sac_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | type='DetectoRS_ResNet',
6 | conv_cfg=dict(type='ConvAWS'),
7 | sac=dict(type='SAC', use_deform=True),
8 | stage_with_sac=(False, True, True, True)))
9 |
--------------------------------------------------------------------------------
/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(
6 | type='GeneralizedAttention',
7 | spatial_range=-1,
8 | num_heads=8,
9 | attention_type='0010',
10 | kv_stride=2),
11 | stages=(False, False, True, True),
12 | position='after_conv2')
13 | ]))
14 |
--------------------------------------------------------------------------------
/configs/empirical_attention/faster_rcnn_r50_fpn_attention_0010_dcn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | plugins=[
5 | dict(
6 | cfg=dict(
7 | type='GeneralizedAttention',
8 | spatial_range=-1,
9 | num_heads=8,
10 | attention_type='0010',
11 | kv_stride=2),
12 | stages=(False, False, True, True),
13 | position='after_conv2')
14 | ],
15 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
16 | stage_with_dcn=(False, True, True, True)))
17 |
--------------------------------------------------------------------------------
/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(
6 | type='GeneralizedAttention',
7 | spatial_range=-1,
8 | num_heads=8,
9 | attention_type='1111',
10 | kv_stride=2),
11 | stages=(False, False, True, True),
12 | position='after_conv2')
13 | ]))
14 |
--------------------------------------------------------------------------------
/configs/empirical_attention/faster_rcnn_r50_fpn_attention_1111_dcn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | plugins=[
5 | dict(
6 | cfg=dict(
7 | type='GeneralizedAttention',
8 | spatial_range=-1,
9 | num_heads=8,
10 | attention_type='1111',
11 | kv_stride=2),
12 | stages=(False, False, True, True),
13 | position='after_conv2')
14 | ],
15 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
16 | stage_with_dcn=(False, True, True, True)))
17 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast_rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/fast_rcnn/fast_rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fast_rcnn_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[16, 22])
5 | runner = dict(type='EpochBasedRunner', max_epochs=24)
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_r50_fpn_mstrain_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_caffe_dc5_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_dc5_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_90k_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_r50_caffe_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(
5 | policy='step',
6 | warmup='linear',
7 | warmup_iters=500,
8 | warmup_ratio=0.001,
9 | step=[60000, 80000])
10 |
11 | # Runner type
12 | runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000)
13 |
14 | checkpoint_config = dict(interval=10000)
15 | evaluation = dict(interval=10000, metric='bbox')
16 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person-bicycle-car.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
2 | model = dict(roi_head=dict(bbox_head=dict(num_classes=3)))
3 | classes = ('person', 'bicycle', 'car')
4 | data = dict(
5 | train=dict(classes=classes),
6 | val=dict(classes=classes),
7 | test=dict(classes=classes))
8 |
9 | load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
10 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_1x_coco-person.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
2 | model = dict(roi_head=dict(bbox_head=dict(num_classes=1)))
3 | classes = ('person', )
4 | data = dict(
5 | train=dict(classes=classes),
6 | val=dict(classes=classes),
7 | test=dict(classes=classes))
8 |
9 | load_from = 'https://download.openmmlab.com/mmdetection/v2.0/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco/faster_rcnn_r50_caffe_fpn_mstrain_3x_coco_bbox_mAP-0.398_20200504_163323-30042637.pth' # noqa
10 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_caffe_fpn_mstrain_90k_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_r50_caffe_fpn_mstrain_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(
5 | policy='step',
6 | warmup='linear',
7 | warmup_iters=500,
8 | warmup_ratio=0.001,
9 | step=[60000, 80000])
10 |
11 | # Runner type
12 | runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000)
13 |
14 | checkpoint_config = dict(interval=10000)
15 | evaluation = dict(interval=10000, metric='bbox')
16 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_bounded_iou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='BoundedIoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_ciou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='CIoULoss', loss_weight=12.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_fp16_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_giou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='GIoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_iou_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | roi_head=dict(
4 | bbox_head=dict(
5 | reg_decoded_bbox=True,
6 | loss_bbox=dict(type='IoULoss', loss_weight=10.0))))
7 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
3 | ]
4 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_ohem_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(train_cfg=dict(rcnn=dict(sampler=dict(type='OHEMSampler'))))
3 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_soft_nms_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | test_cfg=dict(
9 | rcnn=dict(
10 | score_thr=0.05,
11 | nms=dict(type='soft_nms', iou_threshold=0.5),
12 | max_per_img=100)))
13 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_r50_fpn_tnr-pretrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | checkpoint = 'https://download.pytorch.org/models/resnet50-11ad3fa6.pth'
8 | model = dict(
9 | backbone=dict(init_cfg=dict(type='Pretrained', checkpoint=checkpoint)))
10 |
11 | # `lr` and `weight_decay` have been searched to be optimal.
12 | optimizer = dict(
13 | _delete_=True,
14 | type='AdamW',
15 | lr=0.0001,
16 | weight_decay=0.1,
17 | paramwise_cfg=dict(norm_decay_mult=0., bypass_duplicate=True))
18 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_x101_32x4d_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
3 | ]
4 | model = dict(
5 | backbone=dict(
6 | type='ResNeXt',
7 | depth=101,
8 | groups=32,
9 | base_width=4,
10 | num_stages=4,
11 | out_indices=(0, 1, 2, 3),
12 | frozen_stages=1,
13 | norm_cfg=dict(type='BN', requires_grad=True),
14 | style='pytorch',
15 | init_cfg=dict(
16 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
17 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/faster_rcnn/faster_rcnn_x101_64x4d_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain_3x_coco.py', '../_base_/models/faster_rcnn_r50_fpn.py'
3 | ]
4 | model = dict(
5 | backbone=dict(
6 | type='ResNeXt',
7 | depth=101,
8 | groups=64,
9 | base_width=4,
10 | num_stages=4,
11 | out_indices=(0, 1, 2, 3),
12 | frozen_stages=1,
13 | norm_cfg=dict(type='BN', requires_grad=True),
14 | style='pytorch',
15 | init_cfg=dict(
16 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
17 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_center_r50_caffe_fpn_gn-head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
2 | model = dict(bbox_head=dict(center_sampling=True, center_sample_radius=1.5))
3 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r101_caffe_fpn_gn-head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_r50_caffe_fpn_gn-head_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/fcos/fcos_r50_caffe_fpn_gn-head_4x4_1x_coco.py:
--------------------------------------------------------------------------------
1 | # TODO: Remove this config after benchmarking all related configs
2 | _base_ = 'fcos_r50_caffe_fpn_gn-head_1x_coco.py'
3 |
4 | data = dict(samples_per_gpu=4, workers_per_gpu=4)
5 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_align_r101_fpn_gn-head_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')),
7 | bbox_head=dict(
8 | with_deform=True,
9 | norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
10 | # learning policy
11 | lr_config = dict(step=[16, 22])
12 | runner = dict(type='EpochBasedRunner', max_epochs=24)
13 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_align_r50_fpn_gn-head_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_1x_coco.py'
2 | model = dict(
3 | bbox_head=dict(
4 | with_deform=True,
5 | norm_cfg=dict(type='GN', num_groups=32, requires_grad=True)))
6 | # learning policy
7 | lr_config = dict(step=[16, 22])
8 | runner = dict(type='EpochBasedRunner', max_epochs=24)
9 | optimizer_config = dict(
10 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
11 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_r101_fpn_4x4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_r101_fpn_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/foveabox/fovea_r50_fpn_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fovea_r50_fpn_4x4_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/fpg/faster_rcnn_r50_fpg-chn128_crop640_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_r50_fpg_crop640_50e_coco.py'
2 |
3 | norm_cfg = dict(type='BN', requires_grad=True)
4 | model = dict(
5 | neck=dict(out_channels=128, inter_channels=128),
6 | rpn_head=dict(in_channels=128),
7 | roi_head=dict(
8 | bbox_roi_extractor=dict(out_channels=128),
9 | bbox_head=dict(in_channels=128)))
10 |
--------------------------------------------------------------------------------
/configs/fpg/mask_rcnn_r50_fpg-chn128_crop640_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_fpg_crop640_50e_coco.py'
2 |
3 | model = dict(
4 | neck=dict(out_channels=128, inter_channels=128),
5 | rpn_head=dict(in_channels=128),
6 | roi_head=dict(
7 | bbox_roi_extractor=dict(out_channels=128),
8 | bbox_head=dict(in_channels=128),
9 | mask_roi_extractor=dict(out_channels=128),
10 | mask_head=dict(in_channels=128)))
11 |
--------------------------------------------------------------------------------
/configs/fpg/retinanet_r50_fpg-chn128_crop640_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_r50_fpg_crop640_50e_coco.py'
2 |
3 | model = dict(
4 | neck=dict(out_channels=128, inter_channels=128),
5 | bbox_head=dict(in_channels=128))
6 |
--------------------------------------------------------------------------------
/configs/free_anchor/retinanet_free_anchor_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_free_anchor_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/free_anchor/retinanet_free_anchor_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_free_anchor_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | style='pytorch',
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
14 |
--------------------------------------------------------------------------------
/configs/fsaf/fsaf_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fsaf_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/fsaf/fsaf_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fsaf_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_dconv_c3-c5_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../dcn/cascade_mask_rcnn_x101_32x4d_fpn_dconv_c3-c5_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/cascade_mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r101_fpn_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 16),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r101_fpn_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 4),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r101_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r50_fpn_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 16),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r50_fpn_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(plugins=[
4 | dict(
5 | cfg=dict(type='ContextBlock', ratio=1. / 4),
6 | stages=(False, True, True, True),
7 | position='after_conv3')
8 | ]))
9 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_r50_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True), norm_eval=False))
5 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r16_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 16),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gcnet/mask_rcnn_x101_32x4d_fpn_syncbn-backbone_r4_gcb_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | norm_cfg=dict(type='SyncBN', requires_grad=True),
5 | norm_eval=False,
6 | plugins=[
7 | dict(
8 | cfg=dict(type='ContextBlock', ratio=1. / 4),
9 | stages=(False, True, True, True),
10 | position='after_conv3')
11 | ]))
12 |
--------------------------------------------------------------------------------
/configs/gfl/gfl_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNet',
5 | depth=101,
6 | num_stages=4,
7 | out_indices=(0, 1, 2, 3),
8 | frozen_stages=1,
9 | norm_cfg=dict(type='BN', requires_grad=True),
10 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
11 | stage_with_dcn=(False, True, True, True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(type='Pretrained',
15 | checkpoint='torchvision://resnet101')))
16 |
--------------------------------------------------------------------------------
/configs/gfl/gfl_r101_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNet',
5 | depth=101,
6 | num_stages=4,
7 | out_indices=(0, 1, 2, 3),
8 | frozen_stages=1,
9 | norm_cfg=dict(type='BN', requires_grad=True),
10 | norm_eval=True,
11 | style='pytorch',
12 | init_cfg=dict(type='Pretrained',
13 | checkpoint='torchvision://resnet101')))
14 |
--------------------------------------------------------------------------------
/configs/gfl/gfl_x101_32x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | type='GFL',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | groups=32,
8 | base_width=4,
9 | num_stages=4,
10 | out_indices=(0, 1, 2, 3),
11 | frozen_stages=1,
12 | norm_cfg=dict(type='BN', requires_grad=True),
13 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
14 | stage_with_dcn=(False, False, True, True),
15 | norm_eval=True,
16 | style='pytorch',
17 | init_cfg=dict(
18 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
19 |
--------------------------------------------------------------------------------
/configs/gfl/gfl_x101_32x4d_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './gfl_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | type='GFL',
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | groups=32,
8 | base_width=4,
9 | num_stages=4,
10 | out_indices=(0, 1, 2, 3),
11 | frozen_stages=1,
12 | norm_cfg=dict(type='BN', requires_grad=True),
13 | norm_eval=True,
14 | style='pytorch',
15 | init_cfg=dict(
16 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
17 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_ghm_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_ghm_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | bbox_head=dict(
4 | loss_cls=dict(
5 | _delete_=True,
6 | type='GHMC',
7 | bins=30,
8 | momentum=0.75,
9 | use_sigmoid=True,
10 | loss_weight=1.0),
11 | loss_bbox=dict(
12 | _delete_=True,
13 | type='GHMR',
14 | mu=0.02,
15 | bins=10,
16 | momentum=0.7,
17 | loss_weight=10.0)))
18 | optimizer_config = dict(
19 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
20 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_ghm_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ghm/retinanet_ghm_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_ghm_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/gn+ws/faster_rcnn_r101_fpn_gn_ws-all_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
7 |
--------------------------------------------------------------------------------
/configs/gn+ws/faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 | conv_cfg = dict(type='ConvWS')
3 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
4 | model = dict(
5 | backbone=dict(
6 | conv_cfg=conv_cfg,
7 | norm_cfg=norm_cfg,
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet50_gn_ws')),
10 | neck=dict(conv_cfg=conv_cfg, norm_cfg=norm_cfg),
11 | roi_head=dict(
12 | bbox_head=dict(
13 | type='Shared4Conv1FCBBoxHead',
14 | conv_out_channels=256,
15 | conv_cfg=conv_cfg,
16 | norm_cfg=norm_cfg)))
17 |
--------------------------------------------------------------------------------
/configs/gn+ws/faster_rcnn_x101_32x4d_fpn_gn_ws-all_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
2 | conv_cfg = dict(type='ConvWS')
3 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
4 | model = dict(
5 | backbone=dict(
6 | type='ResNeXt',
7 | depth=101,
8 | groups=32,
9 | base_width=4,
10 | num_stages=4,
11 | out_indices=(0, 1, 2, 3),
12 | frozen_stages=1,
13 | style='pytorch',
14 | conv_cfg=conv_cfg,
15 | norm_cfg=norm_cfg,
16 | init_cfg=dict(
17 | type='Pretrained',
18 | checkpoint='open-mmlab://jhu/resnext101_32x4d_gn_ws')))
19 |
--------------------------------------------------------------------------------
/configs/gn+ws/faster_rcnn_x50_32x4d_fpn_gn_ws-all_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_r50_fpn_gn_ws-all_1x_coco.py'
2 | conv_cfg = dict(type='ConvWS')
3 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
4 | model = dict(
5 | backbone=dict(
6 | type='ResNeXt',
7 | depth=50,
8 | groups=32,
9 | base_width=4,
10 | num_stages=4,
11 | out_indices=(0, 1, 2, 3),
12 | frozen_stages=1,
13 | style='pytorch',
14 | conv_cfg=conv_cfg,
15 | norm_cfg=norm_cfg,
16 | init_cfg=dict(
17 | type='Pretrained',
18 | checkpoint='open-mmlab://jhu/resnext50_32x4d_gn_ws')))
19 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_r101_fpn_gn_ws-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained', checkpoint='open-mmlab://jhu/resnet101_gn_ws')))
7 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_r50_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_x101_32x4d_fpn_gn_ws-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
2 | # model settings
3 | conv_cfg = dict(type='ConvWS')
4 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
5 | model = dict(
6 | backbone=dict(
7 | type='ResNeXt',
8 | depth=101,
9 | groups=32,
10 | base_width=4,
11 | num_stages=4,
12 | out_indices=(0, 1, 2, 3),
13 | frozen_stages=1,
14 | style='pytorch',
15 | conv_cfg=conv_cfg,
16 | norm_cfg=norm_cfg,
17 | init_cfg=dict(
18 | type='Pretrained',
19 | checkpoint='open-mmlab://jhu/resnext101_32x4d_gn_ws')))
20 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_20_23_24e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[20, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/gn+ws/mask_rcnn_x50_32x4d_fpn_gn_ws-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn_ws-all_2x_coco.py'
2 | # model settings
3 | conv_cfg = dict(type='ConvWS')
4 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
5 | model = dict(
6 | backbone=dict(
7 | type='ResNeXt',
8 | depth=50,
9 | groups=32,
10 | base_width=4,
11 | num_stages=4,
12 | out_indices=(0, 1, 2, 3),
13 | frozen_stages=1,
14 | style='pytorch',
15 | conv_cfg=conv_cfg,
16 | norm_cfg=norm_cfg,
17 | init_cfg=dict(
18 | type='Pretrained',
19 | checkpoint='open-mmlab://jhu/resnext50_32x4d_gn_ws')))
20 |
--------------------------------------------------------------------------------
/configs/gn/mask_rcnn_r101_fpn_gn-all_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron/resnet101_gn')))
8 |
--------------------------------------------------------------------------------
/configs/gn/mask_rcnn_r101_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r101_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[28, 34])
5 | runner = dict(type='EpochBasedRunner', max_epochs=36)
6 |
--------------------------------------------------------------------------------
/configs/gn/mask_rcnn_r50_fpn_gn-all_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn-all_2x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[28, 34])
5 | runner = dict(type='EpochBasedRunner', max_epochs=36)
6 |
--------------------------------------------------------------------------------
/configs/gn/mask_rcnn_r50_fpn_gn-all_contrib_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_gn-all_contrib_2x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[28, 34])
5 | runner = dict(type='EpochBasedRunner', max_epochs=36)
6 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid_rcnn_r101_fpn_gn-head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid_rcnn_r50_fpn_gn-head_2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid_rcnn_r50_fpn_gn-head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = ['grid_rcnn_r50_fpn_gn-head_2x_coco.py']
2 | # learning policy
3 | lr_config = dict(
4 | policy='step',
5 | warmup='linear',
6 | warmup_iters=500,
7 | warmup_ratio=0.001,
8 | step=[8, 11])
9 | checkpoint_config = dict(interval=1)
10 | # runtime settings
11 | runner = dict(type='EpochBasedRunner', max_epochs=12)
12 |
--------------------------------------------------------------------------------
/configs/grid_rcnn/grid_rcnn_x101_64x4d_fpn_gn-head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './grid_rcnn_x101_32x4d_fpn_gn-head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | style='pytorch',
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
14 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_faster_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_faster_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_faster_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_faster_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_faster_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_faster_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_retinanet_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_retinanet_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_retinanet_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_retinanet_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_rpn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_rpn_r50_caffe_fpn_1x_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(
7 | type='Pretrained',
8 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
9 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_rpn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/guided_anchoring/ga_rpn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ga_rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w18_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | extra=dict(
6 | stage2=dict(num_channels=(18, 36)),
7 | stage3=dict(num_channels=(18, 36, 72)),
8 | stage4=dict(num_channels=(18, 36, 72, 144))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
11 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/cascade_mask_rcnn_hrnetv2p_w40_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_hrnetv2p_w32_20e_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | type='HRNet',
6 | extra=dict(
7 | stage2=dict(num_channels=(40, 80)),
8 | stage3=dict(num_channels=(40, 80, 160)),
9 | stage4=dict(num_channels=(40, 80, 160, 320))),
10 | init_cfg=dict(
11 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
12 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
13 |
--------------------------------------------------------------------------------
/configs/hrnet/cascade_rcnn_hrnetv2p_w18_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_hrnetv2p_w32_20e_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | extra=dict(
6 | stage2=dict(num_channels=(18, 36)),
7 | stage3=dict(num_channels=(18, 36, 72)),
8 | stage4=dict(num_channels=(18, 36, 72, 144))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
11 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/cascade_rcnn_hrnetv2p_w40_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_hrnetv2p_w32_20e_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | type='HRNet',
6 | extra=dict(
7 | stage2=dict(num_channels=(40, 80)),
8 | stage3=dict(num_channels=(40, 80, 160)),
9 | stage4=dict(num_channels=(40, 80, 160, 320))),
10 | init_cfg=dict(
11 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
12 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
13 |
--------------------------------------------------------------------------------
/configs/hrnet/faster_rcnn_hrnetv2p_w18_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
2 | # model settings
3 | model = dict(
4 | backbone=dict(
5 | extra=dict(
6 | stage2=dict(num_channels=(18, 36)),
7 | stage3=dict(num_channels=(18, 36, 72)),
8 | stage4=dict(num_channels=(18, 36, 72, 144))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
11 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/faster_rcnn_hrnetv2p_w18_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w18_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[16, 22])
5 | runner = dict(type='EpochBasedRunner', max_epochs=24)
6 |
--------------------------------------------------------------------------------
/configs/hrnet/faster_rcnn_hrnetv2p_w32_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/faster_rcnn_hrnetv2p_w40_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w32_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/faster_rcnn_hrnetv2p_w40_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_hrnetv2p_w40_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p_w18_gn-head_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w18_gn-head_4x4_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p_w18_gn-head_mstrain_640-800_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p_w32_gn-head_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w32_gn-head_4x4_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/fcos_hrnetv2p_w40_gn-head_mstrain_640-800_4x4_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './fcos_hrnetv2p_w32_gn-head_mstrain_640-800_4x4_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_hrnetv2p_w18_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p_w32_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_hrnetv2p_w40_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p_w32_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_hrnetv2p_w40_28e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_hrnetv2p_w40_20e_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[24, 27])
4 | runner = dict(type='EpochBasedRunner', max_epochs=28)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/htc_x101_64x4d_fpn_16x1_28e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_x101_64x4d_fpn_16x1_20e_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[24, 27])
4 | runner = dict(type='EpochBasedRunner', max_epochs=28)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/mask_rcnn_hrnetv2p_w18_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | extra=dict(
5 | stage2=dict(num_channels=(18, 36)),
6 | stage3=dict(num_channels=(18, 36, 72)),
7 | stage4=dict(num_channels=(18, 36, 72, 144))),
8 | init_cfg=dict(
9 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w18')),
10 | neck=dict(type='HRFPN', in_channels=[18, 36, 72, 144], out_channels=256))
11 |
--------------------------------------------------------------------------------
/configs/hrnet/mask_rcnn_hrnetv2p_w18_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/mask_rcnn_hrnetv2p_w32_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w32_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/hrnet/mask_rcnn_hrnetv2p_w40_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w18_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='HRNet',
5 | extra=dict(
6 | stage2=dict(num_channels=(40, 80)),
7 | stage3=dict(num_channels=(40, 80, 160)),
8 | stage4=dict(num_channels=(40, 80, 160, 320))),
9 | init_cfg=dict(
10 | type='Pretrained', checkpoint='open-mmlab://msra/hrnetv2_w40')),
11 | neck=dict(type='HRFPN', in_channels=[40, 80, 160, 320], out_channels=256))
12 |
--------------------------------------------------------------------------------
/configs/hrnet/mask_rcnn_hrnetv2p_w40_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_hrnetv2p_w40_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/htc/htc_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 | # learning policy
8 | lr_config = dict(step=[16, 19])
9 | runner = dict(type='EpochBasedRunner', max_epochs=20)
10 |
--------------------------------------------------------------------------------
/configs/htc/htc_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 19])
4 | runner = dict(type='EpochBasedRunner', max_epochs=20)
5 |
--------------------------------------------------------------------------------
/configs/htc/htc_x101_32x4d_fpn_16x1_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
16 | data = dict(samples_per_gpu=1, workers_per_gpu=1)
17 | # learning policy
18 | lr_config = dict(step=[16, 19])
19 | runner = dict(type='EpochBasedRunner', max_epochs=20)
20 |
--------------------------------------------------------------------------------
/configs/htc/htc_x101_64x4d_fpn_16x1_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './htc_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
16 | data = dict(samples_per_gpu=1, workers_per_gpu=1)
17 | # learning policy
18 | lr_config = dict(step=[16, 19])
19 | runner = dict(type='EpochBasedRunner', max_epochs=20)
20 |
--------------------------------------------------------------------------------
/configs/instaboost/cascade_mask_rcnn_r101_fpn_instaboost_4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/instaboost/cascade_mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r50_fpn_instaboost_4x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/instaboost/mask_rcnn_r101_fpn_instaboost_4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_instaboost_4x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/instaboost/mask_rcnn_x101_64x4d_fpn_instaboost_4x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_instaboost_4x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ld/ld_r34_gflv1_r101_fpn_coco_1x.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py']
2 | model = dict(
3 | backbone=dict(
4 | type='ResNet',
5 | depth=34,
6 | num_stages=4,
7 | out_indices=(0, 1, 2, 3),
8 | frozen_stages=1,
9 | norm_cfg=dict(type='BN', requires_grad=True),
10 | norm_eval=True,
11 | style='pytorch',
12 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet34')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[64, 128, 256, 512],
16 | out_channels=256,
17 | start_level=1,
18 | add_extra_convs='on_output',
19 | num_outs=5))
20 |
--------------------------------------------------------------------------------
/configs/ld/ld_r50_gflv1_r101_fpn_coco_1x.py:
--------------------------------------------------------------------------------
1 | _base_ = ['./ld_r18_gflv1_r101_fpn_coco_1x.py']
2 | model = dict(
3 | backbone=dict(
4 | type='ResNet',
5 | depth=50,
6 | num_stages=4,
7 | out_indices=(0, 1, 2, 3),
8 | frozen_stages=1,
9 | norm_cfg=dict(type='BN', requires_grad=True),
10 | norm_eval=True,
11 | style='pytorch',
12 | init_cfg=dict(type='Pretrained', checkpoint='torchvision://resnet50')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[256, 512, 1024, 2048],
16 | out_channels=256,
17 | start_level=1,
18 | add_extra_convs='on_output',
19 | num_outs=5))
20 |
--------------------------------------------------------------------------------
/configs/libra_rcnn/libra_faster_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './libra_faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/libra_rcnn/libra_faster_rcnn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './libra_faster_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_1x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/lvis/mask_rcnn_r101_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/lvis/mask_rcnn_x101_32x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_1x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_1x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/lvis/mask_rcnn_x101_64x4d_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_mstrain_2x_lvis_v0.5.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r101_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain-poly_3x_coco_instance.py',
3 | '../_base_/models/mask_rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | depth=101,
9 | init_cfg=dict(type='Pretrained',
10 | checkpoint='torchvision://resnet101')))
11 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r50_caffe_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_mstrain-poly_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_2x.py', '../_base_/default_runtime.py'
5 | ]
6 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r50_fpn_fp16_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_1x_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_r50_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain-poly_3x_coco_instance.py',
3 | '../_base_/models/mask_rcnn_r50_fpn.py'
4 | ]
5 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r101_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r101_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_x101_32x4d_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain-poly_3x_coco_instance.py',
3 | '../_base_/models/mask_rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | type='ResNeXt',
9 | depth=101,
10 | groups=32,
11 | base_width=4,
12 | num_stages=4,
13 | out_indices=(0, 1, 2, 3),
14 | frozen_stages=1,
15 | norm_cfg=dict(type='BN', requires_grad=True),
16 | style='pytorch',
17 | init_cfg=dict(
18 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
19 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_x101_32x4d_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_x101_32x4d_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/mask_rcnn/mask_rcnn_x101_64x4d_fpn_mstrain-poly_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../common/mstrain-poly_3x_coco_instance.py',
3 | '../_base_/models/mask_rcnn_r50_fpn.py'
4 | ]
5 |
6 | model = dict(
7 | backbone=dict(
8 | type='ResNeXt',
9 | depth=101,
10 | groups=64,
11 | base_width=4,
12 | num_stages=4,
13 | out_indices=(0, 1, 2, 3),
14 | frozen_stages=1,
15 | norm_cfg=dict(type='BN', requires_grad=True),
16 | style='pytorch',
17 | init_cfg=dict(
18 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
19 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_r101_caffe_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r101_caffe_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | type='MaskScoringRCNN',
4 | roi_head=dict(
5 | type='MaskScoringRoIHead',
6 | mask_iou_head=dict(
7 | type='MaskIoUHead',
8 | num_convs=4,
9 | num_fcs=2,
10 | roi_feat_size=14,
11 | in_channels=256,
12 | conv_out_channels=256,
13 | fc_out_channels=1024,
14 | num_classes=80)),
15 | # model training and testing settings
16 | train_cfg=dict(rcnn=dict(mask_thr_binary=0.5)))
17 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_r50_caffe_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r50_caffe_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | type='MaskScoringRCNN',
4 | roi_head=dict(
5 | type='MaskScoringRoIHead',
6 | mask_iou_head=dict(
7 | type='MaskIoUHead',
8 | num_convs=4,
9 | num_fcs=2,
10 | roi_feat_size=14,
11 | in_channels=256,
12 | conv_out_channels=256,
13 | fc_out_channels=1024,
14 | num_classes=80)),
15 | # model training and testing settings
16 | train_cfg=dict(rcnn=dict(mask_thr_binary=0.5)))
17 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/ms_rcnn/ms_rcnn_x101_64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './ms_rcnn_x101_64x4d_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/openimages/faster_rcnn_r50_fpn_32x2_1x_openimages.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py',
3 | '../_base_/datasets/openimages_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(roi_head=dict(bbox_head=dict(num_classes=601)))
8 |
9 | # Using 32 GPUS while training
10 | optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001)
11 | optimizer_config = dict(
12 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
13 | lr_config = dict(
14 | policy='step',
15 | warmup='linear',
16 | warmup_iters=26000,
17 | warmup_ratio=1.0 / 64,
18 | step=[8, 11])
19 |
--------------------------------------------------------------------------------
/configs/openimages/retinanet_r50_fpn_32x2_1x_openimages.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py',
3 | '../_base_/datasets/openimages_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(bbox_head=dict(num_classes=601))
8 |
9 | optimizer = dict(type='SGD', lr=0.08, momentum=0.9, weight_decay=0.0001)
10 | optimizer_config = dict(
11 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
12 | lr_config = dict(
13 | policy='step',
14 | warmup='linear',
15 | warmup_iters=26000,
16 | warmup_ratio=1.0 / 64,
17 | step=[8, 11])
18 |
--------------------------------------------------------------------------------
/configs/paa/paa_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/paa/paa_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r101_fpn_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/configs/paa/paa_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/paa/paa_r50_fpn_1.5x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | lr_config = dict(step=[12, 16])
3 | runner = dict(type='EpochBasedRunner', max_epochs=18)
4 |
--------------------------------------------------------------------------------
/configs/paa/paa_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './paa_r50_fpn_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/configs/pafpn/faster_rcnn_r50_pafpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | neck=dict(
5 | type='PAFPN',
6 | in_channels=[256, 512, 1024, 2048],
7 | out_channels=256,
8 | num_outs=5))
9 |
--------------------------------------------------------------------------------
/configs/panoptic_fpn/panoptic_fpn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './panoptic_fpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/panoptic_fpn/panoptic_fpn_r101_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './panoptic_fpn_r50_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/pascal_voc/faster_rcnn_r50_fpn_1x_voc0712.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/faster_rcnn_r50_fpn.py', '../_base_/datasets/voc0712.py',
3 | '../_base_/default_runtime.py'
4 | ]
5 | model = dict(roi_head=dict(bbox_head=dict(num_classes=20)))
6 | # optimizer
7 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
8 | optimizer_config = dict(grad_clip=None)
9 | # learning policy
10 | # actual epoch = 3 * 3 = 9
11 | lr_config = dict(policy='step', step=[3])
12 | # runtime settings
13 | runner = dict(
14 | type='EpochBasedRunner', max_epochs=4) # actual epoch = 4 * 3 = 12
15 |
--------------------------------------------------------------------------------
/configs/pascal_voc/retinanet_r50_fpn_1x_voc0712.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../_base_/datasets/voc0712.py',
3 | '../_base_/default_runtime.py'
4 | ]
5 | model = dict(bbox_head=dict(num_classes=20))
6 | # optimizer
7 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
8 | optimizer_config = dict(grad_clip=None)
9 | # learning policy
10 | # actual epoch = 3 * 3 = 9
11 | lr_config = dict(policy='step', step=[3])
12 | # runtime settings
13 | runner = dict(
14 | type='EpochBasedRunner', max_epochs=4) # actual epoch = 4 * 3 = 12
15 |
--------------------------------------------------------------------------------
/configs/pisa/pisa_retinanet_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_r50_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(
5 | type='PISARetinaHead',
6 | loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
7 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
8 |
--------------------------------------------------------------------------------
/configs/pisa/pisa_retinanet_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../retinanet/retinanet_x101_32x4d_fpn_1x_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(
5 | type='PISARetinaHead',
6 | loss_bbox=dict(type='SmoothL1Loss', beta=0.11, loss_weight=1.0)),
7 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
8 |
--------------------------------------------------------------------------------
/configs/pisa/pisa_ssd300_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../ssd/ssd300_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(type='PISASSDHead'),
5 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
6 |
7 | optimizer_config = dict(
8 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
9 |
--------------------------------------------------------------------------------
/configs/pisa/pisa_ssd512_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../ssd/ssd512_coco.py'
2 |
3 | model = dict(
4 | bbox_head=dict(type='PISASSDHead'),
5 | train_cfg=dict(isr=dict(k=2., bias=0.), carl=dict(k=1., bias=0.2)))
6 |
7 | optimizer_config = dict(
8 | _delete_=True, grad_clip=dict(max_norm=35, norm_type=2))
9 |
--------------------------------------------------------------------------------
/configs/point_rend/point_rend_r50_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './point_rend_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-l_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 8, 27, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_large.pth')))
7 | fp16 = dict(loss_scale=dict(init_scale=512))
8 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-m_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 4, 18, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_medium.pth')))
7 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-s_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvt-t_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | num_layers=[3, 4, 6, 3],
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_small.pth')))
7 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvt-t_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 | model = dict(
7 | type='RetinaNet',
8 | backbone=dict(
9 | _delete_=True,
10 | type='PyramidVisionTransformer',
11 | num_layers=[2, 2, 2, 2],
12 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
13 | 'releases/download/v2/pvt_tiny.pth')),
14 | neck=dict(in_channels=[64, 128, 320, 512]))
15 | # optimizer
16 | optimizer = dict(_delete_=True, type='AdamW', lr=0.0001, weight_decay=0.0001)
17 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b1_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
6 | 'releases/download/v2/pvt_v2_b1.pth')),
7 | neck=dict(in_channels=[64, 128, 320, 512]))
8 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b2_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 4, 6, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b2.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b3_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 4, 18, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b3.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b4_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 8, 27, 3],
6 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
7 | 'releases/download/v2/pvt_v2_b4.pth')),
8 | neck=dict(in_channels=[64, 128, 320, 512]))
9 | # optimizer
10 | optimizer = dict(
11 | _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001)
12 | # dataset settings
13 | data = dict(samples_per_gpu=1, workers_per_gpu=1)
14 |
--------------------------------------------------------------------------------
/configs/pvt/retinanet_pvtv2-b5_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_pvtv2-b0_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | embed_dims=64,
5 | num_layers=[3, 6, 40, 3],
6 | mlp_ratios=(4, 4, 4, 4),
7 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
8 | 'releases/download/v2/pvt_v2_b5.pth')),
9 | neck=dict(in_channels=[64, 128, 320, 512]))
10 | # optimizer
11 | optimizer = dict(
12 | _delete_=True, type='AdamW', lr=0.0001 / 1.4, weight_decay=0.0001)
13 | # dataset settings
14 | data = dict(samples_per_gpu=1, workers_per_gpu=1)
15 |
--------------------------------------------------------------------------------
/configs/queryinst/queryinst_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './queryinst_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/queryinst/queryinst_r101_fpn_mstrain_480-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './queryinst_r50_fpn_mstrain_480-800_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/regnet/cascade_mask_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_1.6gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[72, 168, 408, 912],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/cascade_mask_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_400mf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[32, 64, 160, 384],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/cascade_mask_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_4.0gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_4.0gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[80, 240, 560, 1360],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/cascade_mask_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'cascade_mask_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_800mf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[64, 128, 288, 672],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/faster_rcnn_regnetx-1.6GF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_1.6gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[72, 168, 408, 912],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/faster_rcnn_regnetx-3.2GF_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/configs/regnet/faster_rcnn_regnetx-400MF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_400mf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_400mf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[32, 64, 160, 384],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/faster_rcnn_regnetx-4GF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_4.0gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_4.0gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[80, 240, 560, 1360],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/faster_rcnn_regnetx-800MF_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'faster_rcnn_regnetx-3.2GF_fpn_mstrain_3x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_800mf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[64, 128, 288, 672],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/mask_rcnn_regnetx-12GF_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_12gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_12gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[224, 448, 896, 2240],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/mask_rcnn_regnetx-3.2GF_fpn_mdconv_c3-c5_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True),
6 | init_cfg=dict(
7 | type='Pretrained', checkpoint='open-mmlab://regnetx_3.2gf')))
8 |
--------------------------------------------------------------------------------
/configs/regnet/mask_rcnn_regnetx-4GF_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_4.0gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_4.0gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[80, 240, 560, 1360],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/mask_rcnn_regnetx-6.4GF_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_6.4gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_6.4gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[168, 392, 784, 1624],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/mask_rcnn_regnetx-8GF_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_8.0gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_8.0gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[80, 240, 720, 1920],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/retinanet_regnetx-1.6GF_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_1.6gf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_1.6gf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[72, 168, 408, 912],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/regnet/retinanet_regnetx-800MF_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_regnetx-3.2GF_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='RegNet',
5 | arch='regnetx_800mf',
6 | out_indices=(0, 1, 2, 3),
7 | frozen_stages=1,
8 | norm_cfg=dict(type='BN', requires_grad=True),
9 | norm_eval=True,
10 | style='pytorch',
11 | init_cfg=dict(
12 | type='Pretrained', checkpoint='open-mmlab://regnetx_800mf')),
13 | neck=dict(
14 | type='FPN',
15 | in_channels=[64, 128, 288, 672],
16 | out_channels=256,
17 | num_outs=5))
18 |
--------------------------------------------------------------------------------
/configs/reppoints/bbox_r50_grid_center_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='minmax', use_grid_points=True))
3 |
--------------------------------------------------------------------------------
/configs/reppoints/bbox_r50_grid_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(
3 | bbox_head=dict(transform_method='minmax', use_grid_points=True),
4 | # training and testing settings
5 | train_cfg=dict(
6 | init=dict(
7 | assigner=dict(
8 | _delete_=True,
9 | type='MaxIoUAssigner',
10 | pos_iou_thr=0.5,
11 | neg_iou_thr=0.4,
12 | min_pos_iou=0,
13 | ignore_iof_thr=-1))))
14 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/configs/reppoints/reppoints.png
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_minmax_r50_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='minmax'))
3 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_moment_r101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
6 | stage_with_dcn=(False, True, True, True),
7 | init_cfg=dict(type='Pretrained',
8 | checkpoint='torchvision://resnet101')))
9 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_moment_r101_fpn_gn-neck+head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_1x_coco.py'
2 | norm_cfg = dict(type='GN', num_groups=32, requires_grad=True)
3 | model = dict(neck=dict(norm_cfg=norm_cfg), bbox_head=dict(norm_cfg=norm_cfg))
4 | optimizer = dict(lr=0.01)
5 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | lr_config = dict(step=[16, 22])
3 | runner = dict(type='EpochBasedRunner', max_epochs=24)
4 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_moment_x101_fpn_dconv_c3-c5_gn-neck+head_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | dcn=dict(type='DCN', deform_groups=1, fallback_on_stride=False),
14 | stage_with_dcn=(False, True, True, True),
15 | init_cfg=dict(
16 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
17 |
--------------------------------------------------------------------------------
/configs/reppoints/reppoints_partial_minmax_r50_fpn_gn-neck+head_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './reppoints_moment_r50_fpn_gn-neck+head_1x_coco.py'
2 | model = dict(bbox_head=dict(transform_method='partial_minmax'))
3 |
--------------------------------------------------------------------------------
/configs/res2net/cascade_mask_rcnn_r2_101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_mask_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/cascade_rcnn_r2_101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../cascade_rcnn/cascade_rcnn_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/faster_rcnn_r2_101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../faster_rcnn/faster_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/res2net/htc_r2_101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../htc/htc_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 | # learning policy
12 | lr_config = dict(step=[16, 19])
13 | runner = dict(type='EpochBasedRunner', max_epochs=20)
14 |
--------------------------------------------------------------------------------
/configs/res2net/mask_rcnn_r2_101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = '../mask_rcnn/mask_rcnn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | init_cfg=dict(
9 | type='Pretrained',
10 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
11 |
--------------------------------------------------------------------------------
/configs/resnest/cascade_mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/resnest/cascade_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/resnest/faster_rcnn_s101_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './faster_rcnn_s50_fpn_syncbn-backbone+head_mstrain-range_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/resnest/mask_rcnn_s101_fpn_syncbn-backbone+head_mstrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_s50_fpn_syncbn-backbone+head_mstrain_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | stem_channels=128,
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='open-mmlab://resnest101')))
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | model = dict(
4 | pretrained='open-mmlab://detectron2/resnet101_caffe',
5 | backbone=dict(depth=101))
6 | lr_config = dict(step=[28, 34])
7 | runner = dict(type='EpochBasedRunner', max_epochs=36)
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r101_fpn_mstrain_640-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py'
3 | ]
4 | # optimizer
5 | model = dict(pretrained='torchvision://resnet101', backbone=dict(depth=101))
6 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
7 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 23])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_caffe_fpn_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_caffe_fpn_mstrain_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py',
3 | '../_base_/datasets/coco_detection.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 | # optimizer
7 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
8 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 22])
4 | runner = dict(type='EpochBasedRunner', max_epochs=24)
5 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_90k_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'retinanet_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(
5 | policy='step',
6 | warmup='linear',
7 | warmup_iters=500,
8 | warmup_ratio=0.001,
9 | step=[60000, 80000])
10 |
11 | # Runner type
12 | runner = dict(_delete_=True, type='IterBasedRunner', max_iters=90000)
13 |
14 | checkpoint_config = dict(interval=10000)
15 | evaluation = dict(interval=10000, metric='bbox')
16 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_fp16_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_r50_fpn_mstrain_640-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py'
3 | ]
4 | # optimizer
5 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
6 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101_32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101_64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './retinanet_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/retinanet/retinanet_x101_64x4d_fpn_mstrain_640-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/retinanet_r50_fpn.py', '../common/mstrain_3x_coco.py'
3 | ]
4 | # optimizer
5 | model = dict(
6 | pretrained='open-mmlab://resnext101_64x4d',
7 | backbone=dict(type='ResNeXt', depth=101, groups=64, base_width=4))
8 | optimizer = dict(type='SGD', lr=0.01)
9 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r101_caffe_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_caffe_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(
6 | type='Pretrained',
7 | checkpoint='open-mmlab://detectron2/resnet101_caffe')))
8 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_r50_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 |
3 | # learning policy
4 | lr_config = dict(step=[16, 22])
5 | runner = dict(type='EpochBasedRunner', max_epochs=24)
6 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101_32x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101_32x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101_64x4d_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/rpn/rpn_x101_64x4d_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './rpn_r50_fpn_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | style='pytorch',
13 | init_cfg=dict(
14 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
15 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_r101_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_r50_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_1x_coco.py'
2 | # learning policy
3 | lr_config = dict(step=[16, 19])
4 | runner = dict(type='EpochBasedRunner', max_epochs=20)
5 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_x101_64x4d_fpn_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_r50_fpn_20e_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
16 |
--------------------------------------------------------------------------------
/configs/scnet/scnet_x101_64x4d_fpn_8x1_20e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './scnet_x101_64x4d_fpn_20e_coco.py'
2 | data = dict(samples_per_gpu=1, workers_per_gpu=1)
3 | optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
4 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './cascade_mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask_rcnn_r101_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask_rcnn_r101_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py' # noqa: E501
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask_rcnn_r50_fpn_random_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_random_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/seesaw_loss/mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_normed_mask_mstrain_2x_lvis_v1.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_fpn_sample1e-3_seesaw_loss_mstrain_2x_lvis_v1.py'
2 | model = dict(
3 | roi_head=dict(
4 | mask_head=dict(
5 | predictor_cfg=dict(type='NormedConv2d', tempearture=20))))
6 |
--------------------------------------------------------------------------------
/configs/selfsup_pretrain/mask_rcnn_r50_fpn_mocov2-pretrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | backbone=dict(
9 | frozen_stages=0,
10 | norm_cfg=dict(type='SyncBN', requires_grad=True),
11 | norm_eval=False,
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='./mocov2_r50_800ep_pretrain.pth')))
14 |
--------------------------------------------------------------------------------
/configs/selfsup_pretrain/mask_rcnn_r50_fpn_swav-pretrain_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/mask_rcnn_r50_fpn.py',
3 | '../_base_/datasets/coco_instance.py',
4 | '../_base_/schedules/schedule_1x.py', '../_base_/default_runtime.py'
5 | ]
6 |
7 | model = dict(
8 | backbone=dict(
9 | frozen_stages=0,
10 | norm_cfg=dict(type='SyncBN', requires_grad=True),
11 | norm_eval=False,
12 | init_cfg=dict(
13 | type='Pretrained', checkpoint='./swav_800ep_pretrain.pth.tar')))
14 |
--------------------------------------------------------------------------------
/configs/sparse_rcnn/sparse_rcnn_r101_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './sparse_rcnn_r50_fpn_300_proposals_crop_mstrain_480-800_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/sparse_rcnn/sparse_rcnn_r101_fpn_mstrain_480-800_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './sparse_rcnn_r50_fpn_mstrain_480-800_3x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 | fp16 = dict(loss_scale=512.)
3 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_400e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_r50_caffe_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 |
3 | # Use RepeatDataset to speed up training
4 | # change repeat time from 4 (for 100 epochs) to 16 (for 400 epochs)
5 | data = dict(train=dict(times=4 * 4))
6 | lr_config = dict(warmup_iters=500 * 4)
7 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_fp16_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 | # use FP16
3 | fp16 = dict(loss_scale=512.)
4 |
--------------------------------------------------------------------------------
/configs/strong_baselines/mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_50e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'mask_rcnn_r50_fpn_syncbn-all_rpn-2conv_lsj_100e_coco.py'
2 |
3 | # Use RepeatDataset to speed up training
4 | # change repeat time from 4 (for 100 epochs) to 2 (for 50 epochs)
5 | data = dict(train=dict(times=2))
6 |
--------------------------------------------------------------------------------
/configs/swin/mask_rcnn_swin-s-p4-w7_fpn_fp16_ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py'
2 | pretrained = 'https://github.com/SwinTransformer/storage/releases/download/v1.0.0/swin_small_patch4_window7_224.pth' # noqa
3 | model = dict(
4 | backbone=dict(
5 | depths=[2, 2, 18, 2],
6 | init_cfg=dict(type='Pretrained', checkpoint=pretrained)))
7 |
--------------------------------------------------------------------------------
/configs/swin/mask_rcnn_swin-t-p4-w7_fpn_fp16_ms-crop-3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './mask_rcnn_swin-t-p4-w7_fpn_ms-crop-3x_coco.py'
2 | # you need to set mode='dynamic' if you are using pytorch<=1.5.0
3 | fp16 = dict(loss_scale=dict(init_scale=512))
4 |
--------------------------------------------------------------------------------
/configs/tevit/tevit_msgshift.py:
--------------------------------------------------------------------------------
1 | _base_ = './tevit_r50.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | _delete_=True,
6 | type='MsgShifT',
7 | embed_dims=64,
8 | num_layers=[2, 2, 2, 2],
9 | init_cfg=dict(checkpoint='https://github.com/whai362/PVT/'
10 | 'releases/download/v2/pvt_v2_b1.pth')),
11 | neck=dict(in_channels=[64, 128, 320, 512]))
12 |
--------------------------------------------------------------------------------
/configs/tood/tood_r101_fpn_dconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r101_fpn_mstrain_2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
6 | stage_with_dcn=(False, True, True, True)),
7 | bbox_head=dict(num_dcn=2))
8 |
--------------------------------------------------------------------------------
/configs/tood/tood_r101_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r50_fpn_mstrain_2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/tood/tood_r50_fpn_anchor_based_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r50_fpn_1x_coco.py'
2 | model = dict(bbox_head=dict(anchor_type='anchor_based'))
3 |
--------------------------------------------------------------------------------
/configs/tood/tood_x101_64x4d_fpn_dconv_c4-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_x101_64x4d_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deformable_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, False, True, True),
6 | ),
7 | bbox_head=dict(num_dcn=2))
8 |
--------------------------------------------------------------------------------
/configs/tood/tood_x101_64x4d_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './tood_r50_fpn_mstrain_2x_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | type='ResNeXt',
6 | depth=101,
7 | groups=64,
8 | base_width=4,
9 | num_stages=4,
10 | out_indices=(0, 1, 2, 3),
11 | frozen_stages=1,
12 | norm_cfg=dict(type='BN', requires_grad=True),
13 | norm_eval=True,
14 | style='pytorch',
15 | init_cfg=dict(
16 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
17 |
--------------------------------------------------------------------------------
/configs/tridentnet/tridentnet_r50_caffe_mstrain_3x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'tridentnet_r50_caffe_mstrain_1x_coco.py'
2 |
3 | lr_config = dict(step=[28, 34])
4 | runner = dict(type='EpochBasedRunner', max_epochs=36)
5 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r101_fpn_1x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r101_fpn_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_1x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 | lr_config = dict(step=[16, 22])
8 | runner = dict(type='EpochBasedRunner', max_epochs=24)
9 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r101_fpn_mdconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNet',
5 | depth=101,
6 | num_stages=4,
7 | out_indices=(0, 1, 2, 3),
8 | frozen_stages=1,
9 | norm_cfg=dict(type='BN', requires_grad=True),
10 | norm_eval=True,
11 | style='pytorch',
12 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
13 | stage_with_dcn=(False, True, True, True),
14 | init_cfg=dict(type='Pretrained',
15 | checkpoint='torchvision://resnet101')))
16 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r101_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | depth=101,
5 | init_cfg=dict(type='Pretrained',
6 | checkpoint='torchvision://resnet101')))
7 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r2_101_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='Res2Net',
5 | depth=101,
6 | scales=4,
7 | base_width=26,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained',
16 | checkpoint='open-mmlab://res2net101_v1d_26w_4s')))
17 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
5 | stage_with_dcn=(False, True, True, True)),
6 | bbox_head=dict(dcn_on_last_conv=True))
7 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_x101_32x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
15 | stage_with_dcn=(False, True, True, True),
16 | init_cfg=dict(
17 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
18 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_x101_32x4d_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=32,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_32x4d')))
16 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_x101_64x4d_fpn_mdconv_c3-c5_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mdconv_c3-c5_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | dcn=dict(type='DCNv2', deform_groups=1, fallback_on_stride=False),
15 | stage_with_dcn=(False, True, True, True),
16 | init_cfg=dict(
17 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
18 |
--------------------------------------------------------------------------------
/configs/vfnet/vfnet_x101_64x4d_fpn_mstrain_2x_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './vfnet_r50_fpn_mstrain_2x_coco.py'
2 | model = dict(
3 | backbone=dict(
4 | type='ResNeXt',
5 | depth=101,
6 | groups=64,
7 | base_width=4,
8 | num_stages=4,
9 | out_indices=(0, 1, 2, 3),
10 | frozen_stages=1,
11 | norm_cfg=dict(type='BN', requires_grad=True),
12 | norm_eval=True,
13 | style='pytorch',
14 | init_cfg=dict(
15 | type='Pretrained', checkpoint='open-mmlab://resnext101_64x4d')))
16 |
--------------------------------------------------------------------------------
/configs/wider_face/ssd300_wider_face.py:
--------------------------------------------------------------------------------
1 | _base_ = [
2 | '../_base_/models/ssd300.py', '../_base_/datasets/wider_face.py',
3 | '../_base_/default_runtime.py'
4 | ]
5 | model = dict(bbox_head=dict(num_classes=1))
6 | # optimizer
7 | optimizer = dict(type='SGD', lr=0.012, momentum=0.9, weight_decay=5e-4)
8 | optimizer_config = dict()
9 | # learning policy
10 | lr_config = dict(
11 | policy='step',
12 | warmup='linear',
13 | warmup_iters=1000,
14 | warmup_ratio=0.001,
15 | step=[16, 20])
16 | # runtime settings
17 | runner = dict(type='EpochBasedRunner', max_epochs=24)
18 | log_config = dict(interval=1)
19 |
--------------------------------------------------------------------------------
/configs/yolact/yolact_r101_1x8_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolact_r50_1x8_coco.py'
2 |
3 | model = dict(
4 | backbone=dict(
5 | depth=101,
6 | init_cfg=dict(type='Pretrained',
7 | checkpoint='torchvision://resnet101')))
8 |
--------------------------------------------------------------------------------
/configs/yolact/yolact_r50_8x8_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = 'yolact_r50_1x8_coco.py'
2 |
3 | optimizer = dict(type='SGD', lr=8e-3, momentum=0.9, weight_decay=5e-4)
4 | optimizer_config = dict(grad_clip=dict(max_norm=35, norm_type=2))
5 | # learning policy
6 | lr_config = dict(
7 | policy='step',
8 | warmup='linear',
9 | warmup_iters=1000,
10 | warmup_ratio=0.1,
11 | step=[20, 42, 49, 52])
12 |
--------------------------------------------------------------------------------
/configs/yolo/yolov3_d53_fp16_mstrain-608_273e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolov3_d53_mstrain-608_273e_coco.py'
2 | # fp16 settings
3 | fp16 = dict(loss_scale='dynamic')
4 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_l_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=1.0, widen_factor=1.0),
6 | neck=dict(
7 | in_channels=[256, 512, 1024], out_channels=256, num_csp_blocks=3),
8 | bbox_head=dict(in_channels=256, feat_channels=256))
9 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_m_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=0.67, widen_factor=0.75),
6 | neck=dict(in_channels=[192, 384, 768], out_channels=192, num_csp_blocks=2),
7 | bbox_head=dict(in_channels=192, feat_channels=192),
8 | )
9 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_nano_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_tiny_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=0.33, widen_factor=0.25, use_depthwise=True),
6 | neck=dict(
7 | in_channels=[64, 128, 256],
8 | out_channels=64,
9 | num_csp_blocks=1,
10 | use_depthwise=True),
11 | bbox_head=dict(in_channels=64, feat_channels=64, use_depthwise=True))
12 |
--------------------------------------------------------------------------------
/configs/yolox/yolox_x_8x8_300e_coco.py:
--------------------------------------------------------------------------------
1 | _base_ = './yolox_s_8x8_300e_coco.py'
2 |
3 | # model settings
4 | model = dict(
5 | backbone=dict(deepen_factor=1.33, widen_factor=1.25),
6 | neck=dict(
7 | in_channels=[320, 640, 1280], out_channels=320, num_csp_blocks=4),
8 | bbox_head=dict(in_channels=320, feat_channels=320))
9 |
--------------------------------------------------------------------------------
/demo/demo.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/demo/demo.jpg
--------------------------------------------------------------------------------
/demo/demo.mp4:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/demo/demo.mp4
--------------------------------------------------------------------------------
/docker/serve/config.properties:
--------------------------------------------------------------------------------
1 | inference_address=http://0.0.0.0:8080
2 | management_address=http://0.0.0.0:8081
3 | metrics_address=http://0.0.0.0:8082
4 | model_store=/home/model-server/model-store
5 | load_models=all
6 |
--------------------------------------------------------------------------------
/docker/serve/entrypoint.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | if [[ "$1" = "serve" ]]; then
5 | shift 1
6 | torchserve --start --ts-config /home/model-server/config.properties
7 | else
8 | eval "$@"
9 | fi
10 |
11 | # prevent docker exit
12 | tail -f /dev/null
13 |
--------------------------------------------------------------------------------
/docs/en/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../image/mmdet-logo.png");
3 | background-size: 156px 40px;
4 | height: 40px;
5 | width: 156px;
6 | }
7 |
--------------------------------------------------------------------------------
/docs/en/_static/image/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/docs/en/_static/image/mmdet-logo.png
--------------------------------------------------------------------------------
/docs/en/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/docs/en/tutorials/index.rst:
--------------------------------------------------------------------------------
1 | .. toctree::
2 | :maxdepth: 2
3 |
4 | config.md
5 | customize_dataset.md
6 | data_pipeline.md
7 | customize_models.md
8 | customize_runtime.md
9 | customize_losses.md
10 | finetune.md
11 | robustness_benchmarking.md
12 | pytorch2onnx.md
13 | onnx2tensorrt.md
14 | init_cfg.md
15 | how_to.md
16 |
--------------------------------------------------------------------------------
/docs/zh_cn/_static/css/readthedocs.css:
--------------------------------------------------------------------------------
1 | .header-logo {
2 | background-image: url("../image/mmdet-logo.png");
3 | background-size: 156px 40px;
4 | height: 40px;
5 | width: 156px;
6 | }
7 |
--------------------------------------------------------------------------------
/docs/zh_cn/_static/image/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/docs/zh_cn/_static/image/mmdet-logo.png
--------------------------------------------------------------------------------
/docs/zh_cn/switch_language.md:
--------------------------------------------------------------------------------
1 | ## English
2 |
3 | ## 简体中文
4 |
--------------------------------------------------------------------------------
/docs/zh_cn/tutorials/customize_runtime.md:
--------------------------------------------------------------------------------
1 | # 教程 5: 自定义训练配置
2 |
--------------------------------------------------------------------------------
/docs/zh_cn/tutorials/index.rst:
--------------------------------------------------------------------------------
1 | .. toctree::
2 | :maxdepth: 2
3 |
4 | config.md
5 | customize_dataset.md
6 | data_pipeline.md
7 | customize_models.md
8 | customize_runtime.md
9 | customize_losses.md
10 | finetune.md
11 | pytorch2onnx.md
12 | onnx2tensorrt.md
13 | init_cfg.md
14 | how_to.md
15 |
--------------------------------------------------------------------------------
/docs/zh_cn/tutorials/pytorch2onnx.md:
--------------------------------------------------------------------------------
1 | # 教程 8: Pytorch 到 ONNX 的模型转换(实验性支持)
2 |
3 |
4 | > ## [尝试使用新的 MMDeploy 來部署你的模型](https://mmdeploy.readthedocs.io/)
5 |
--------------------------------------------------------------------------------
/docs/zh_cn/useful_tools.md:
--------------------------------------------------------------------------------
1 | ## 日志分析
2 |
--------------------------------------------------------------------------------
/mmdet/apis/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .inference import (async_inference_detector, inference_detector,
3 | init_detector, show_result_pyplot)
4 | from .test import multi_gpu_test, single_gpu_test
5 | from .train import (get_root_logger, init_random_seed, set_random_seed,
6 | train_detector)
7 |
8 | __all__ = [
9 | 'get_root_logger', 'set_random_seed', 'train_detector', 'init_detector',
10 | 'async_inference_detector', 'inference_detector', 'show_result_pyplot',
11 | 'multi_gpu_test', 'single_gpu_test', 'init_random_seed'
12 | ]
13 |
--------------------------------------------------------------------------------
/mmdet/core/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .anchor import * # noqa: F401, F403
3 | from .bbox import * # noqa: F401, F403
4 | from .data_structures import * # noqa: F401, F403
5 | from .evaluation import * # noqa: F401, F403
6 | from .hook import * # noqa: F401, F403
7 | from .mask import * # noqa: F401, F403
8 | from .post_processing import * # noqa: F401, F403
9 | from .utils import * # noqa: F401, F403
10 |
--------------------------------------------------------------------------------
/mmdet/core/anchor/builder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | import warnings
3 |
4 | from mmcv.utils import Registry, build_from_cfg
5 |
6 | PRIOR_GENERATORS = Registry('Generator for anchors and points')
7 |
8 | ANCHOR_GENERATORS = PRIOR_GENERATORS
9 |
10 |
11 | def build_prior_generator(cfg, default_args=None):
12 | return build_from_cfg(cfg, PRIOR_GENERATORS, default_args)
13 |
14 |
15 | def build_anchor_generator(cfg, default_args=None):
16 | warnings.warn(
17 | '``build_anchor_generator`` would be deprecated soon, please use '
18 | '``build_prior_generator`` ')
19 | return build_prior_generator(cfg, default_args=default_args)
20 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/assigners/base_assigner.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from abc import ABCMeta, abstractmethod
3 |
4 |
5 | class BaseAssigner(metaclass=ABCMeta):
6 | """Base assigner that assigns boxes to ground truth boxes."""
7 |
8 | @abstractmethod
9 | def assign(self, bboxes, gt_bboxes, gt_bboxes_ignore=None, gt_labels=None):
10 | """Assign boxes to either a ground truth boxes or a negative boxes."""
11 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/coder/base_bbox_coder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from abc import ABCMeta, abstractmethod
3 |
4 |
5 | class BaseBBoxCoder(metaclass=ABCMeta):
6 | """Base bounding box coder."""
7 |
8 | def __init__(self, **kwargs):
9 | pass
10 |
11 | @abstractmethod
12 | def encode(self, bboxes, gt_bboxes):
13 | """Encode deltas between bboxes and ground truth boxes."""
14 |
15 | @abstractmethod
16 | def decode(self, bboxes, bboxes_pred):
17 | """Decode the predicted bboxes according to prediction and base
18 | boxes."""
19 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/coder/pseudo_bbox_coder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from ..builder import BBOX_CODERS
3 | from .base_bbox_coder import BaseBBoxCoder
4 |
5 |
6 | @BBOX_CODERS.register_module()
7 | class PseudoBBoxCoder(BaseBBoxCoder):
8 | """Pseudo bounding box coder."""
9 |
10 | def __init__(self, **kwargs):
11 | super(BaseBBoxCoder, self).__init__(**kwargs)
12 |
13 | def encode(self, bboxes, gt_bboxes):
14 | """torch.Tensor: return the given ``bboxes``"""
15 | return gt_bboxes
16 |
17 | def decode(self, bboxes, pred_bboxes):
18 | """torch.Tensor: return the given ``pred_bboxes``"""
19 | return pred_bboxes
20 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/iou_calculators/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .builder import build_iou_calculator
3 | from .iou2d_calculator import BboxOverlaps2D, bbox_overlaps
4 |
5 | __all__ = ['build_iou_calculator', 'BboxOverlaps2D', 'bbox_overlaps']
6 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/iou_calculators/builder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmcv.utils import Registry, build_from_cfg
3 |
4 | IOU_CALCULATORS = Registry('IoU calculator')
5 |
6 |
7 | def build_iou_calculator(cfg, default_args=None):
8 | """Builder of IoU calculator."""
9 | return build_from_cfg(cfg, IOU_CALCULATORS, default_args)
10 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/match_costs/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .builder import build_match_cost
3 | from .match_cost import (BBoxL1Cost, ClassificationCost, CrossEntropyLossCost,
4 | DiceCost, FocalLossCost, IoUCost)
5 |
6 | __all__ = [
7 | 'build_match_cost', 'ClassificationCost', 'BBoxL1Cost', 'IoUCost',
8 | 'FocalLossCost', 'DiceCost', 'CrossEntropyLossCost'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmdet/core/bbox/match_costs/builder.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmcv.utils import Registry, build_from_cfg
3 |
4 | MATCH_COST = Registry('Match Cost')
5 |
6 |
7 | def build_match_cost(cfg, default_args=None):
8 | """Builder of IoU calculator."""
9 | return build_from_cfg(cfg, MATCH_COST, default_args)
10 |
--------------------------------------------------------------------------------
/mmdet/core/data_structures/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .general_data import GeneralData
3 | from .instance_data import InstanceData
4 |
5 | __all__ = ['GeneralData', 'InstanceData']
6 |
--------------------------------------------------------------------------------
/mmdet/core/evaluation/panoptic_utils.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | # A custom value to distinguish instance ID and category ID; need to
3 | # be greater than the number of categories.
4 | # For a pixel in the panoptic result map:
5 | # pan_id = ins_id * INSTANCE_OFFSET + cat_id
6 | INSTANCE_OFFSET = 1000
7 |
--------------------------------------------------------------------------------
/mmdet/core/export/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .onnx_helper import (add_dummy_nms_for_onnx, dynamic_clip_for_onnx,
3 | get_k_for_topk)
4 | from .pytorch2onnx import (build_model_from_cfg,
5 | generate_inputs_and_wrap_model,
6 | preprocess_example_input)
7 |
8 | __all__ = [
9 | 'build_model_from_cfg', 'generate_inputs_and_wrap_model',
10 | 'preprocess_example_input', 'get_k_for_topk', 'add_dummy_nms_for_onnx',
11 | 'dynamic_clip_for_onnx'
12 | ]
13 |
--------------------------------------------------------------------------------
/mmdet/core/hook/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .checkloss_hook import CheckInvalidLossHook
3 | from .ema import ExpMomentumEMAHook, LinearMomentumEMAHook
4 | from .set_epoch_info_hook import SetEpochInfoHook
5 | from .sync_norm_hook import SyncNormHook
6 | from .sync_random_size_hook import SyncRandomSizeHook
7 | from .yolox_lrupdater_hook import YOLOXLrUpdaterHook
8 | from .yolox_mode_switch_hook import YOLOXModeSwitchHook
9 |
10 | __all__ = [
11 | 'SyncRandomSizeHook', 'YOLOXModeSwitchHook', 'SyncNormHook',
12 | 'ExpMomentumEMAHook', 'LinearMomentumEMAHook', 'YOLOXLrUpdaterHook',
13 | 'CheckInvalidLossHook', 'SetEpochInfoHook'
14 | ]
15 |
--------------------------------------------------------------------------------
/mmdet/core/hook/set_epoch_info_hook.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmcv.parallel import is_module_wrapper
3 | from mmcv.runner import HOOKS, Hook
4 |
5 |
6 | @HOOKS.register_module()
7 | class SetEpochInfoHook(Hook):
8 | """Set runner's epoch information to the model."""
9 |
10 | def before_train_epoch(self, runner):
11 | epoch = runner.epoch
12 | model = runner.model
13 | if is_module_wrapper(model):
14 | model = model.module
15 | model.set_epoch(epoch)
16 |
--------------------------------------------------------------------------------
/mmdet/core/mask/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .mask_target import mask_target
3 | from .structures import BaseInstanceMasks, BitmapMasks, PolygonMasks
4 | from .utils import encode_mask_results, mask2bbox, split_combined_polys
5 |
6 | __all__ = [
7 | 'split_combined_polys', 'mask_target', 'BaseInstanceMasks', 'BitmapMasks',
8 | 'PolygonMasks', 'encode_mask_results', 'mask2bbox'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmdet/core/post_processing/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .bbox_nms import fast_nms, multiclass_nms
3 | from .matrix_nms import mask_matrix_nms
4 | from .merge_augs import (merge_aug_bboxes, merge_aug_masks,
5 | merge_aug_proposals, merge_aug_scores)
6 |
7 | __all__ = [
8 | 'multiclass_nms', 'merge_aug_proposals', 'merge_aug_bboxes',
9 | 'merge_aug_scores', 'merge_aug_masks', 'mask_matrix_nms', 'fast_nms'
10 | ]
11 |
--------------------------------------------------------------------------------
/mmdet/core/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .dist_utils import (DistOptimizerHook, all_reduce_dict, allreduce_grads,
3 | reduce_mean, sync_random_seed)
4 | from .misc import (center_of_mass, filter_scores_and_topk, flip_tensor,
5 | generate_coordinate, mask2ndarray, multi_apply,
6 | select_single_mlvl, unmap)
7 |
8 | __all__ = [
9 | 'allreduce_grads', 'DistOptimizerHook', 'reduce_mean', 'multi_apply',
10 | 'unmap', 'mask2ndarray', 'flip_tensor', 'all_reduce_dict',
11 | 'center_of_mass', 'generate_coordinate', 'select_single_mlvl',
12 | 'filter_scores_and_topk', 'sync_random_seed'
13 | ]
14 |
--------------------------------------------------------------------------------
/mmdet/core/visualization/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .image import (color_val_matplotlib, imshow_det_bboxes,
3 | imshow_gt_det_bboxes)
4 | from .palette import get_palette, palette_val
5 |
6 | __all__ = [
7 | 'imshow_det_bboxes', 'imshow_gt_det_bboxes', 'color_val_matplotlib',
8 | 'palette_val', 'get_palette'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmdet/datasets/api_wrappers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .coco_api import COCO, COCOeval
3 | from .panoptic_evaluation import pq_compute_multi_core, pq_compute_single_core
4 |
5 | __all__ = [
6 | 'COCO', 'COCOeval', 'pq_compute_multi_core', 'pq_compute_single_core'
7 | ]
8 |
--------------------------------------------------------------------------------
/mmdet/datasets/pipelines/formating.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | # flake8: noqa
3 | import warnings
4 |
5 | from .formatting import *
6 |
7 | warnings.warn('DeprecationWarning: mmdet.datasets.pipelines.formating will be '
8 | 'deprecated, please replace it with '
9 | 'mmdet.datasets.pipelines.formatting.')
10 |
--------------------------------------------------------------------------------
/mmdet/datasets/samplers/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .distributed_sampler import DistributedSampler
3 | from .group_sampler import DistributedGroupSampler, GroupSampler
4 | from .infinite_sampler import InfiniteBatchSampler, InfiniteGroupBatchSampler
5 |
6 | __all__ = [
7 | 'DistributedSampler', 'DistributedGroupSampler', 'GroupSampler',
8 | 'InfiniteGroupBatchSampler', 'InfiniteBatchSampler'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmdet/models/detectors/deformable_detr.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from ..builder import DETECTORS
3 | from .detr import DETR
4 |
5 |
6 | @DETECTORS.register_module()
7 | class DeformableDETR(DETR):
8 |
9 | def __init__(self, *args, **kwargs):
10 | super(DETR, self).__init__(*args, **kwargs)
11 |
--------------------------------------------------------------------------------
/mmdet/models/detectors/gfl.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from ..builder import DETECTORS
3 | from .single_stage import SingleStageDetector
4 |
5 |
6 | @DETECTORS.register_module()
7 | class GFL(SingleStageDetector):
8 |
9 | def __init__(self,
10 | backbone,
11 | neck,
12 | bbox_head,
13 | train_cfg=None,
14 | test_cfg=None,
15 | pretrained=None,
16 | init_cfg=None):
17 | super(GFL, self).__init__(backbone, neck, bbox_head, train_cfg,
18 | test_cfg, pretrained, init_cfg)
19 |
--------------------------------------------------------------------------------
/mmdet/models/detectors/htc.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from ..builder import DETECTORS
3 | from .cascade_rcnn import CascadeRCNN
4 |
5 |
6 | @DETECTORS.register_module()
7 | class HybridTaskCascade(CascadeRCNN):
8 | """Implementation of `HTC `_"""
9 |
10 | def __init__(self, **kwargs):
11 | super(HybridTaskCascade, self).__init__(**kwargs)
12 |
13 | @property
14 | def with_semantic(self):
15 | """bool: whether the detector has a semantic head"""
16 | return self.roi_head.with_semantic
17 |
--------------------------------------------------------------------------------
/mmdet/models/detectors/scnet.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from ..builder import DETECTORS
3 | from .cascade_rcnn import CascadeRCNN
4 |
5 |
6 | @DETECTORS.register_module()
7 | class SCNet(CascadeRCNN):
8 | """Implementation of `SCNet `_"""
9 |
10 | def __init__(self, **kwargs):
11 | super(SCNet, self).__init__(**kwargs)
12 |
--------------------------------------------------------------------------------
/mmdet/models/plugins/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .dropblock import DropBlock
3 | from .msdeformattn_pixel_decoder import MSDeformAttnPixelDecoder
4 | from .pixel_decoder import PixelDecoder, TransformerEncoderPixelDecoder
5 |
6 | __all__ = [
7 | 'DropBlock', 'PixelDecoder', 'TransformerEncoderPixelDecoder',
8 | 'MSDeformAttnPixelDecoder'
9 | ]
10 |
--------------------------------------------------------------------------------
/mmdet/models/roi_heads/bbox_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .bbox_head import BBoxHead
3 | from .convfc_bbox_head import (ConvFCBBoxHead, Shared2FCBBoxHead,
4 | Shared4Conv1FCBBoxHead)
5 | from .dii_head import DIIHead
6 | from .double_bbox_head import DoubleConvFCBBoxHead
7 | from .sabl_head import SABLHead
8 | from .scnet_bbox_head import SCNetBBoxHead
9 | from .stqi_head import STQIHead
10 |
11 | __all__ = [
12 | 'BBoxHead', 'ConvFCBBoxHead', 'Shared2FCBBoxHead',
13 | 'Shared4Conv1FCBBoxHead', 'DoubleConvFCBBoxHead', 'SABLHead', 'DIIHead',
14 | 'SCNetBBoxHead', 'STQIHead'
15 | ]
16 |
--------------------------------------------------------------------------------
/mmdet/models/roi_heads/roi_extractors/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_roi_extractor import BaseRoIExtractor
3 | from .generic_roi_extractor import GenericRoIExtractor
4 | from .single_level_roi_extractor import SingleRoIExtractor
5 |
6 | __all__ = ['BaseRoIExtractor', 'SingleRoIExtractor', 'GenericRoIExtractor']
7 |
--------------------------------------------------------------------------------
/mmdet/models/roi_heads/shared_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .res_layer import ResLayer
3 |
4 | __all__ = ['ResLayer']
5 |
--------------------------------------------------------------------------------
/mmdet/models/seg_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .panoptic_fpn_head import PanopticFPNHead # noqa: F401,F403
3 | from .panoptic_fusion_heads import * # noqa: F401,F403
4 |
--------------------------------------------------------------------------------
/mmdet/models/seg_heads/panoptic_fusion_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .base_panoptic_fusion_head import \
3 | BasePanopticFusionHead # noqa: F401,F403
4 | from .heuristic_fusion_head import HeuristicFusionHead # noqa: F401,F403
5 | from .maskformer_fusion_head import MaskFormerFusionHead # noqa: F401,F403
6 |
--------------------------------------------------------------------------------
/mmdet/utils/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .collect_env import collect_env
3 | from .logger import get_caller_name, get_root_logger, log_img_scale
4 | from .misc import find_latest_checkpoint, update_data_root
5 | from .setup_env import setup_multi_processes
6 |
7 | __all__ = [
8 | 'get_root_logger', 'collect_env', 'find_latest_checkpoint',
9 | 'update_data_root', 'setup_multi_processes', 'get_caller_name',
10 | 'log_img_scale'
11 | ]
12 |
--------------------------------------------------------------------------------
/mmdet/utils/collect_env.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from mmcv.utils import collect_env as collect_base_env
3 | from mmcv.utils import get_git_hash
4 |
5 | import mmdet
6 |
7 |
8 | def collect_env():
9 | """Collect the information of the running environments."""
10 | env_info = collect_base_env()
11 | env_info['MMDetection'] = mmdet.__version__ + '+' + get_git_hash()[:7]
12 | return env_info
13 |
14 |
15 | if __name__ == '__main__':
16 | for name, val in collect_env().items():
17 | print(f'{name}: {val}')
18 |
--------------------------------------------------------------------------------
/mmdet/version.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 |
3 | __version__ = '2.23.0'
4 | short_version = __version__
5 |
6 |
7 | def parse_version_info(version_str):
8 | version_info = []
9 | for x in version_str.split('.'):
10 | if x.isdigit():
11 | version_info.append(int(x))
12 | elif x.find('rc') != -1:
13 | patch_version = x.split('rc')
14 | version_info.append(int(patch_version[0]))
15 | version_info.append(f'rc{patch_version[1]}')
16 | return tuple(version_info)
17 |
18 |
19 | version_info = parse_version_info(__version__)
20 |
--------------------------------------------------------------------------------
/pytest.ini:
--------------------------------------------------------------------------------
1 | [pytest]
2 | addopts = --xdoctest --xdoctest-style=auto
3 | norecursedirs = .git ignore build __pycache__ data docker docs .eggs
4 |
5 | filterwarnings= default
6 | ignore:.*No cfgstr given in Cacher constructor or call.*:Warning
7 | ignore:.*Define the __nice__ method for.*:Warning
8 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | -r requirements/build.txt
2 | -r requirements/optional.txt
3 | -r requirements/runtime.txt
4 | -r requirements/tests.txt
5 |
--------------------------------------------------------------------------------
/requirements/albu.txt:
--------------------------------------------------------------------------------
1 | albumentations>=0.3.2 --no-binary qudida,albumentations
2 |
--------------------------------------------------------------------------------
/requirements/build.txt:
--------------------------------------------------------------------------------
1 | # These must be installed before building mmdetection
2 | cython
3 | numpy
4 |
--------------------------------------------------------------------------------
/requirements/docs.txt:
--------------------------------------------------------------------------------
1 | docutils==0.16.0
2 | -e git+https://github.com/open-mmlab/pytorch_sphinx_theme.git#egg=pytorch_sphinx_theme
3 | recommonmark
4 | sphinx==4.0.2
5 | sphinx-copybutton
6 | sphinx_markdown_tables
7 | sphinx_rtd_theme==0.5.2
8 |
--------------------------------------------------------------------------------
/requirements/mminstall.txt:
--------------------------------------------------------------------------------
1 | mmcv-full>=1.3.17
2 |
--------------------------------------------------------------------------------
/requirements/optional.txt:
--------------------------------------------------------------------------------
1 | cityscapesscripts
2 | imagecorruptions
3 | scipy
4 | sklearn
5 | timm
6 |
--------------------------------------------------------------------------------
/requirements/readthedocs.txt:
--------------------------------------------------------------------------------
1 | mmcv
2 | torch
3 | torchvision
4 |
--------------------------------------------------------------------------------
/requirements/runtime.txt:
--------------------------------------------------------------------------------
1 | matplotlib
2 | numpy
3 | pycocotools
4 | six
5 | terminaltables
6 |
--------------------------------------------------------------------------------
/requirements/tests.txt:
--------------------------------------------------------------------------------
1 | asynctest
2 | codecov
3 | flake8
4 | interrogate
5 | isort==4.3.21
6 | # Note: used for kwarray.group_items, this may be ported to mmcv in the future.
7 | kwarray
8 | -e git+https://github.com/open-mmlab/mmtracking#egg=mmtrack
9 | onnx==1.7.0
10 | onnxruntime>=1.8.0
11 | pytest
12 | ubelt
13 | xdoctest>=0.10.0
14 | yapf
15 |
--------------------------------------------------------------------------------
/resources/coco_test_12510.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/coco_test_12510.jpg
--------------------------------------------------------------------------------
/resources/corruptions_sev_3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/corruptions_sev_3.png
--------------------------------------------------------------------------------
/resources/data_pipeline.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/data_pipeline.png
--------------------------------------------------------------------------------
/resources/gif/00f88c4f0a.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/gif/00f88c4f0a.gif
--------------------------------------------------------------------------------
/resources/gif/0b97736357.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/gif/0b97736357.gif
--------------------------------------------------------------------------------
/resources/gif/2e21c7e59b.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/gif/2e21c7e59b.gif
--------------------------------------------------------------------------------
/resources/gif/49fcb27427.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/gif/49fcb27427.gif
--------------------------------------------------------------------------------
/resources/gif/4b1a561480.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/gif/4b1a561480.gif
--------------------------------------------------------------------------------
/resources/gif/91eb6cb6dc.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/gif/91eb6cb6dc.gif
--------------------------------------------------------------------------------
/resources/loss_curve.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/loss_curve.png
--------------------------------------------------------------------------------
/resources/mmdet-logo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/mmdet-logo.png
--------------------------------------------------------------------------------
/resources/qq_group_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/qq_group_qrcode.jpg
--------------------------------------------------------------------------------
/resources/tevit.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/tevit.png
--------------------------------------------------------------------------------
/resources/tevit_vis.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/tevit_vis.png
--------------------------------------------------------------------------------
/resources/zhihu_qrcode.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hustvl/TeViT/961fd6bd9a8a0e6f2f4429b8f80e768d37df32df/resources/zhihu_qrcode.jpg
--------------------------------------------------------------------------------
/tests/test_data/test_pipelines/test_transform/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import check_result_same, construct_toy_data, create_random_bboxes
3 |
4 | __all__ = ['create_random_bboxes', 'construct_toy_data', 'check_result_same']
5 |
--------------------------------------------------------------------------------
/tests/test_models/test_backbones/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import check_norm_state, is_block, is_norm
3 |
4 | __all__ = ['is_block', 'is_norm', 'check_norm_state']
5 |
--------------------------------------------------------------------------------
/tests/test_models/test_roi_heads/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import _dummy_bbox_sampling
3 |
4 | __all__ = ['_dummy_bbox_sampling']
5 |
--------------------------------------------------------------------------------
/tests/test_onnx/__init__.py:
--------------------------------------------------------------------------------
1 | # Copyright (c) OpenMMLab. All rights reserved.
2 | from .utils import ort_validate
3 |
4 | __all__ = ['ort_validate']
5 |
--------------------------------------------------------------------------------
/tools/dist_test.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | CHECKPOINT=$2
5 | GPUS=$3
6 | NNODES=${NNODES:-1}
7 | NODE_RANK=${NODE_RANK:-0}
8 | PORT=${PORT:-29500}
9 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
10 |
11 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
12 | python -m torch.distributed.launch \
13 | --nnodes=$NNODES \
14 | --node_rank=$NODE_RANK \
15 | --master_addr=$MASTER_ADDR \
16 | --nproc_per_node=$GPUS \
17 | --master_port=$PORT \
18 | $(dirname "$0")/test.py \
19 | $CONFIG \
20 | $CHECKPOINT \
21 | --launcher pytorch \
22 | ${@:4}
23 |
--------------------------------------------------------------------------------
/tools/dist_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | CONFIG=$1
4 | GPUS=$2
5 | NNODES=${NNODES:-1}
6 | NODE_RANK=${NODE_RANK:-0}
7 | PORT=${PORT:-29500}
8 | MASTER_ADDR=${MASTER_ADDR:-"127.0.0.1"}
9 |
10 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
11 | python -m torch.distributed.launch \
12 | --nnodes=$NNODES \
13 | --node_rank=$NODE_RANK \
14 | --master_addr=$MASTER_ADDR \
15 | --nproc_per_node=$GPUS \
16 | --master_port=$PORT \
17 | $(dirname "$0")/train.py \
18 | $CONFIG \
19 | --seed 0 \
20 | --launcher pytorch ${@:3}
21 |
--------------------------------------------------------------------------------
/tools/slurm_test.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 |
5 | PARTITION=$1
6 | JOB_NAME=$2
7 | CONFIG=$3
8 | CHECKPOINT=$4
9 | GPUS=${GPUS:-8}
10 | GPUS_PER_NODE=${GPUS_PER_NODE:-8}
11 | CPUS_PER_TASK=${CPUS_PER_TASK:-5}
12 | PY_ARGS=${@:5}
13 | SRUN_ARGS=${SRUN_ARGS:-""}
14 |
15 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
16 | srun -p ${PARTITION} \
17 | --job-name=${JOB_NAME} \
18 | --gres=gpu:${GPUS_PER_NODE} \
19 | --ntasks=${GPUS} \
20 | --ntasks-per-node=${GPUS_PER_NODE} \
21 | --cpus-per-task=${CPUS_PER_TASK} \
22 | --kill-on-bad-exit=1 \
23 | ${SRUN_ARGS} \
24 | python -u tools/test.py ${CONFIG} ${CHECKPOINT} --launcher="slurm" ${PY_ARGS}
25 |
--------------------------------------------------------------------------------
/tools/slurm_train.sh:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env bash
2 |
3 | set -x
4 |
5 | PARTITION=$1
6 | JOB_NAME=$2
7 | CONFIG=$3
8 | WORK_DIR=$4
9 | GPUS=${GPUS:-8}
10 | GPUS_PER_NODE=${GPUS_PER_NODE:-8}
11 | CPUS_PER_TASK=${CPUS_PER_TASK:-5}
12 | SRUN_ARGS=${SRUN_ARGS:-""}
13 | PY_ARGS=${@:5}
14 |
15 | PYTHONPATH="$(dirname $0)/..":$PYTHONPATH \
16 | srun -p ${PARTITION} \
17 | --job-name=${JOB_NAME} \
18 | --gres=gpu:${GPUS_PER_NODE} \
19 | --ntasks=${GPUS} \
20 | --ntasks-per-node=${GPUS_PER_NODE} \
21 | --cpus-per-task=${CPUS_PER_TASK} \
22 | --kill-on-bad-exit=1 \
23 | ${SRUN_ARGS} \
24 | python -u tools/train.py ${CONFIG} --work-dir=${WORK_DIR} --launcher="slurm" ${PY_ARGS}
25 |
--------------------------------------------------------------------------------