├── .gitignore
├── LICENSE.txt
├── README
├── pom.xml
└── src
├── main
├── java
│ ├── com
│ │ └── jssrc
│ │ │ └── resample
│ │ │ ├── JSSRCResampler.java
│ │ │ └── JSSRCSampleRateConversionProvider.java
│ └── vavi
│ │ ├── sound
│ │ └── pcm
│ │ │ └── resampling
│ │ │ └── ssrc
│ │ │ └── SSRC.java
│ │ └── util
│ │ ├── I0Bessel.java
│ │ └── SplitRadixFft.java
└── resources
│ └── META-INF
│ └── services
│ └── javax.sound.sampled.spi.FormatConversionProvider
├── site
├── apt
│ ├── downloads.apt
│ ├── help.apt
│ ├── index.apt
│ ├── release-notes.apt
│ └── source-repository.apt
├── changes
│ └── changes.xml
├── resources
│ ├── CNAME
│ └── images
│ │ └── logo.png
└── site.xml
└── test
├── java
└── com
│ └── jssrc
│ └── resample
│ └── JSSRCResamplerTest.java
└── resources
├── mono_short_test.wav
├── stereo_long_test.wav
└── testng.xml
/.gitignore:
--------------------------------------------------------------------------------
1 | target/
2 | *.iml
3 | *.ipr
4 |
5 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | JAMAL software is developed and distributed under the
2 | terms of the GNU General Public License
3 |
4 |
5 | GNU GENERAL PUBLIC LICENSE
6 | Version 2, June 1991
7 |
8 | Copyright (C) 1989, 1991 Free Software Foundation, Inc.
9 | 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
10 | Everyone is permitted to copy and distribute verbatim copies
11 | of this license document, but changing it is not allowed.
12 |
13 | Preamble
14 |
15 | The licenses for most software are designed to take away your
16 | freedom to share and change it. By contrast, the GNU General Public
17 | License is intended to guarantee your freedom to share and change free
18 | software--to make sure the software is free for all its users. This
19 | General Public License applies to most of the Free Software
20 | Foundation's software and to any other program whose authors commit to
21 | using it. (Some other Free Software Foundation software is covered by
22 | the GNU Lesser General Public License instead.) You can apply it to
23 | your programs, too.
24 |
25 | When we speak of free software, we are referring to freedom, not
26 | price. Our General Public Licenses are designed to make sure that you
27 | have the freedom to distribute copies of free software (and charge for
28 | this service if you wish), that you receive source code or can get it
29 | if you want it, that you can change the software or use pieces of it
30 | in new free programs; and that you know you can do these things.
31 |
32 | To protect your rights, we need to make restrictions that forbid
33 | anyone to deny you these rights or to ask you to surrender the rights.
34 | These restrictions translate to certain responsibilities for you if you
35 | distribute copies of the software, or if you modify it.
36 |
37 | For example, if you distribute copies of such a program, whether
38 | gratis or for a fee, you must give the recipients all the rights that
39 | you have. You must make sure that they, too, receive or can get the
40 | source code. And you must show them these terms so they know their
41 | rights.
42 |
43 | We protect your rights with two steps: (1) copyright the software, and
44 | (2) offer you this license which gives you legal permission to copy,
45 | distribute and/or modify the software.
46 |
47 | Also, for each author's protection and ours, we want to make certain
48 | that everyone understands that there is no warranty for this free
49 | software. If the software is modified by someone else and passed on, we
50 | want its recipients to know that what they have is not the original, so
51 | that any problems introduced by others will not reflect on the original
52 | authors' reputations.
53 |
54 | Finally, any free program is threatened constantly by software
55 | patents. We wish to avoid the danger that redistributors of a free
56 | program will individually obtain patent licenses, in effect making the
57 | program proprietary. To prevent this, we have made it clear that any
58 | patent must be licensed for everyone's free use or not licensed at all.
59 |
60 | The precise terms and conditions for copying, distribution and
61 | modification follow.
62 |
63 | GNU GENERAL PUBLIC LICENSE
64 | TERMS AND CONDITIONS FOR COPYING, DISTRIBUTION AND MODIFICATION
65 |
66 | 0. This License applies to any program or other work which contains
67 | a notice placed by the copyright holder saying it may be distributed
68 | under the terms of this General Public License. The "Program", below,
69 | refers to any such program or work, and a "work based on the Program"
70 | means either the Program or any derivative work under copyright law:
71 | that is to say, a work containing the Program or a portion of it,
72 | either verbatim or with modifications and/or translated into another
73 | language. (Hereinafter, translation is included without limitation in
74 | the term "modification".) Each licensee is addressed as "you".
75 |
76 | Activities other than copying, distribution and modification are not
77 | covered by this License; they are outside its scope. The act of
78 | running the Program is not restricted, and the output from the Program
79 | is covered only if its contents constitute a work based on the
80 | Program (independent of having been made by running the Program).
81 | Whether that is true depends on what the Program does.
82 |
83 | 1. You may copy and distribute verbatim copies of the Program's
84 | source code as you receive it, in any medium, provided that you
85 | conspicuously and appropriately publish on each copy an appropriate
86 | copyright notice and disclaimer of warranty; keep intact all the
87 | notices that refer to this License and to the absence of any warranty;
88 | and give any other recipients of the Program a copy of this License
89 | along with the Program.
90 |
91 | You may charge a fee for the physical act of transferring a copy, and
92 | you may at your option offer warranty protection in exchange for a fee.
93 |
94 | 2. You may modify your copy or copies of the Program or any portion
95 | of it, thus forming a work based on the Program, and copy and
96 | distribute such modifications or work under the terms of Section 1
97 | above, provided that you also meet all of these conditions:
98 |
99 | a) You must cause the modified files to carry prominent notices
100 | stating that you changed the files and the date of any change.
101 |
102 | b) You must cause any work that you distribute or publish, that in
103 | whole or in part contains or is derived from the Program or any
104 | part thereof, to be licensed as a whole at no charge to all third
105 | parties under the terms of this License.
106 |
107 | c) If the modified program normally reads commands interactively
108 | when run, you must cause it, when started running for such
109 | interactive use in the most ordinary way, to print or display an
110 | announcement including an appropriate copyright notice and a
111 | notice that there is no warranty (or else, saying that you provide
112 | a warranty) and that users may redistribute the program under
113 | these conditions, and telling the user how to view a copy of this
114 | License. (Exception: if the Program itself is interactive but
115 | does not normally print such an announcement, your work based on
116 | the Program is not required to print an announcement.)
117 |
118 | These requirements apply to the modified work as a whole. If
119 | identifiable sections of that work are not derived from the Program,
120 | and can be reasonably considered independent and separate works in
121 | themselves, then this License, and its terms, do not apply to those
122 | sections when you distribute them as separate works. But when you
123 | distribute the same sections as part of a whole which is a work based
124 | on the Program, the distribution of the whole must be on the terms of
125 | this License, whose permissions for other licensees extend to the
126 | entire whole, and thus to each and every part regardless of who wrote it.
127 |
128 | Thus, it is not the intent of this section to claim rights or contest
129 | your rights to work written entirely by you; rather, the intent is to
130 | exercise the right to control the distribution of derivative or
131 | collective works based on the Program.
132 |
133 | In addition, mere aggregation of another work not based on the Program
134 | with the Program (or with a work based on the Program) on a volume of
135 | a storage or distribution medium does not bring the other work under
136 | the scope of this License.
137 |
138 | 3. You may copy and distribute the Program (or a work based on it,
139 | under Section 2) in object code or executable form under the terms of
140 | Sections 1 and 2 above provided that you also do one of the following:
141 |
142 | a) Accompany it with the complete corresponding machine-readable
143 | source code, which must be distributed under the terms of Sections
144 | 1 and 2 above on a medium customarily used for software interchange; or,
145 |
146 | b) Accompany it with a written offer, valid for at least three
147 | years, to give any third party, for a charge no more than your
148 | cost of physically performing source distribution, a complete
149 | machine-readable copy of the corresponding source code, to be
150 | distributed under the terms of Sections 1 and 2 above on a medium
151 | customarily used for software interchange; or,
152 |
153 | c) Accompany it with the information you received as to the offer
154 | to distribute corresponding source code. (This alternative is
155 | allowed only for noncommercial distribution and only if you
156 | received the program in object code or executable form with such
157 | an offer, in accord with Subsection b above.)
158 |
159 | The source code for a work means the preferred form of the work for
160 | making modifications to it. For an executable work, complete source
161 | code means all the source code for all modules it contains, plus any
162 | associated interface definition files, plus the scripts used to
163 | control compilation and installation of the executable. However, as a
164 | special exception, the source code distributed need not include
165 | anything that is normally distributed (in either source or binary
166 | form) with the major components (compiler, kernel, and so on) of the
167 | operating system on which the executable runs, unless that component
168 | itself accompanies the executable.
169 |
170 | If distribution of executable or object code is made by offering
171 | access to copy from a designated place, then offering equivalent
172 | access to copy the source code from the same place counts as
173 | distribution of the source code, even though third parties are not
174 | compelled to copy the source along with the object code.
175 |
176 | 4. You may not copy, modify, sublicense, or distribute the Program
177 | except as expressly provided under this License. Any attempt
178 | otherwise to copy, modify, sublicense or distribute the Program is
179 | void, and will automatically terminate your rights under this License.
180 | However, parties who have received copies, or rights, from you under
181 | this License will not have their licenses terminated so long as such
182 | parties remain in full compliance.
183 |
184 | 5. You are not required to accept this License, since you have not
185 | signed it. However, nothing else grants you permission to modify or
186 | distribute the Program or its derivative works. These actions are
187 | prohibited by law if you do not accept this License. Therefore, by
188 | modifying or distributing the Program (or any work based on the
189 | Program), you indicate your acceptance of this License to do so, and
190 | all its terms and conditions for copying, distributing or modifying
191 | the Program or works based on it.
192 |
193 | 6. Each time you redistribute the Program (or any work based on the
194 | Program), the recipient automatically receives a license from the
195 | original licensor to copy, distribute or modify the Program subject to
196 | these terms and conditions. You may not impose any further
197 | restrictions on the recipients' exercise of the rights granted herein.
198 | You are not responsible for enforcing compliance by third parties to
199 | this License.
200 |
201 | 7. If, as a consequence of a court judgment or allegation of patent
202 | infringement or for any other reason (not limited to patent issues),
203 | conditions are imposed on you (whether by court order, agreement or
204 | otherwise) that contradict the conditions of this License, they do not
205 | excuse you from the conditions of this License. If you cannot
206 | distribute so as to satisfy simultaneously your obligations under this
207 | License and any other pertinent obligations, then as a consequence you
208 | may not distribute the Program at all. For example, if a patent
209 | license would not permit royalty-free redistribution of the Program by
210 | all those who receive copies directly or indirectly through you, then
211 | the only way you could satisfy both it and this License would be to
212 | refrain entirely from distribution of the Program.
213 |
214 | If any portion of this section is held invalid or unenforceable under
215 | any particular circumstance, the balance of the section is intended to
216 | apply and the section as a whole is intended to apply in other
217 | circumstances.
218 |
219 | It is not the purpose of this section to induce you to infringe any
220 | patents or other property right claims or to contest validity of any
221 | such claims; this section has the sole purpose of protecting the
222 | integrity of the free software distribution system, which is
223 | implemented by public license practices. Many people have made
224 | generous contributions to the wide range of software distributed
225 | through that system in reliance on consistent application of that
226 | system; it is up to the author/donor to decide if he or she is willing
227 | to distribute software through any other system and a licensee cannot
228 | impose that choice.
229 |
230 | This section is intended to make thoroughly clear what is believed to
231 | be a consequence of the rest of this License.
232 |
233 | 8. If the distribution and/or use of the Program is restricted in
234 | certain countries either by patents or by copyrighted interfaces, the
235 | original copyright holder who places the Program under this License
236 | may add an explicit geographical distribution limitation excluding
237 | those countries, so that distribution is permitted only in or among
238 | countries not thus excluded. In such case, this License incorporates
239 | the limitation as if written in the body of this License.
240 |
241 | 9. The Free Software Foundation may publish revised and/or new versions
242 | of the General Public License from time to time. Such new versions will
243 | be similar in spirit to the present version, but may differ in detail to
244 | address new problems or concerns.
245 |
246 | Each version is given a distinguishing version number. If the Program
247 | specifies a version number of this License which applies to it and "any
248 | later version", you have the option of following the terms and conditions
249 | either of that version or of any later version published by the Free
250 | Software Foundation. If the Program does not specify a version number of
251 | this License, you may choose any version ever published by the Free Software
252 | Foundation.
253 |
254 | 10. If you wish to incorporate parts of the Program into other free
255 | programs whose distribution conditions are different, write to the author
256 | to ask for permission. For software which is copyrighted by the Free
257 | Software Foundation, write to the Free Software Foundation; we sometimes
258 | make exceptions for this. Our decision will be guided by the two goals
259 | of preserving the free status of all derivatives of our free software and
260 | of promoting the sharing and reuse of software generally.
261 |
262 | NO WARRANTY
263 |
264 | 11. BECAUSE THE PROGRAM IS LICENSED FREE OF CHARGE, THERE IS NO WARRANTY
265 | FOR THE PROGRAM, TO THE EXTENT PERMITTED BY APPLICABLE LAW. EXCEPT WHEN
266 | OTHERWISE STATED IN WRITING THE COPYRIGHT HOLDERS AND/OR OTHER PARTIES
267 | PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESSED
268 | OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
269 | MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE. THE ENTIRE RISK AS
270 | TO THE QUALITY AND PERFORMANCE OF THE PROGRAM IS WITH YOU. SHOULD THE
271 | PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF ALL NECESSARY SERVICING,
272 | REPAIR OR CORRECTION.
273 |
274 | 12. IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
275 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MAY MODIFY AND/OR
276 | REDISTRIBUTE THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES,
277 | INCLUDING ANY GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING
278 | OUT OF THE USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED
279 | TO LOSS OF DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY
280 | YOU OR THIRD PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER
281 | PROGRAMS), EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE
282 | POSSIBILITY OF SUCH DAMAGES.
283 |
284 | END OF TERMS AND CONDITIONS
285 |
--------------------------------------------------------------------------------
/README:
--------------------------------------------------------------------------------
1 | JSSRC project is aimed at creating high quality audio resampler written in pure java.
2 |
3 | It is based on the SSRC High Quality Audio Sampling Rate Converter (http://shibatch.sourceforge.net/) by Naoki Shibata written in C.
4 | Naohide Sano ported the C code into java.
5 | Finally, a number of small modification were performed in order to have a java resampling service that is easy to use.
6 |
7 | You can find some examples of upsampling/downsampling in the test directory
--------------------------------------------------------------------------------
/pom.xml:
--------------------------------------------------------------------------------
1 |
2 |
15 | */
16 | public class I0Bessel {
17 | /** */
18 | private static final double[] a = {
19 | 8.5246820682016865877e-11, 2.5966600546497407288e-9,
20 | 7.9689994568640180274e-8, 1.9906710409667748239e-6,
21 | 4.0312469446528002532e-5, 6.4499871606224265421e-4,
22 | 0.0079012345761930579108, 0.071111111109207045212,
23 | 0.444444444444724909, 1.7777777777777532045,
24 | 4.0000000000000011182, 3.99999999999999998,
25 | 1.0000000000000000001,
26 | 1.1520919130377195927e-10, 2.2287613013610985225e-9,
27 | 8.1903951930694585113e-8, 1.9821560631611544984e-6,
28 | 4.0335461940910133184e-5, 6.4495330974432203401e-4,
29 | 0.0079013012611467520626, 0.071111038160875566622,
30 | 0.44444450319062699316, 1.7777777439146450067,
31 | 4.0000000132337935071, 3.9999999968569015366,
32 | 1.0000000003426703174,
33 | 1.5476870780515238488e-10, 1.2685004214732975355e-9,
34 | 9.2776861851114223267e-8, 1.9063070109379044378e-6,
35 | 4.0698004389917945832e-5, 6.4370447244298070713e-4,
36 | 0.0079044749458444976958, 0.071105052411749363882,
37 | 0.44445280640924755082, 1.7777694934432109713,
38 | 4.0000055808824003386, 3.9999977081165740932,
39 | 1.0000004333949319118,
40 | 2.0675200625006793075e-10, -6.1689554705125681442e-10,
41 | 1.2436765915401571654e-7, 1.5830429403520613423e-6,
42 | 4.2947227560776583326e-5, 6.3249861665073441312e-4,
43 | 0.0079454472840953930811, 0.070994327785661860575,
44 | 0.44467219586283000332, 1.7774588182255374745,
45 | 4.0003038986252717972, 3.9998233869142057195,
46 | 1.0000472932961288324,
47 | 2.7475684794982708655e-10, -3.8991472076521332023e-9,
48 | 1.9730170483976049388e-7, 5.9651531561967674521e-7,
49 | 5.1992971474748995357e-5, 5.7327338675433770752e-4,
50 | 0.0082293143836530412024, 0.069990934858728039037,
51 | 0.44726764292723985087, 1.7726685170014087784,
52 | 4.0062907863712704432, 3.9952750700487845355,
53 | 1.0016354346654179322
54 | };
55 | /** */
56 | private static final double[] b = {
57 | 6.7852367144945531383e-8, 4.6266061382821826854e-7,
58 | 6.9703135812354071774e-6, 7.6637663462953234134e-5,
59 | 7.9113515222612691636e-4, 0.0073401204731103808981,
60 | 0.060677114958668837046, 0.43994941411651569622,
61 | 2.7420017097661750609, 14.289661921740860534,
62 | 59.820609640320710779, 188.78998681199150629,
63 | 399.8731367825601118, 427.56411572180478514,
64 | 1.8042097874891098754e-7, 1.2277164312044637357e-6,
65 | 1.8484393221474274861e-5, 2.0293995900091309208e-4,
66 | 0.0020918539850246207459, 0.019375315654033949297,
67 | 0.15985869016767185908, 1.1565260527420641724,
68 | 7.1896341224206072113, 37.354773811947484532,
69 | 155.80993164266268457, 489.5211371158540918,
70 | 1030.9147225169564806, 1093.5883545113746958,
71 | 4.8017305613187493564e-7, 3.261317843912380074e-6,
72 | 4.9073137508166159639e-5, 5.3806506676487583755e-4,
73 | 0.0055387918291051866561, 0.051223717488786549025,
74 | 0.42190298621367914765, 3.0463625987357355872,
75 | 18.895299447327733204, 97.915189029455461554,
76 | 407.13940115493494659, 1274.3088990480582632,
77 | 2670.9883037012547506, 2815.7166284662544712,
78 | 1.2789926338424623394e-6, 8.6718263067604918916e-6,
79 | 1.3041508821299929489e-4, 0.001428224737372747892,
80 | 0.014684070635768789378, 0.13561403190404185755,
81 | 1.1152592585977393953, 8.0387088559465389038,
82 | 49.761318895895479206, 257.2684232313529138,
83 | 1066.8543146269566231, 3328.3874581009636362,
84 | 6948.8586598121634874, 7288.4893398212481055,
85 | 3.409350368197032893e-6, 2.3079025203103376076e-5,
86 | 3.4691373283901830239e-4, 0.003794994977222908545,
87 | 0.038974209677945602145, 0.3594948380414878371,
88 | 2.9522878893539528226, 21.246564609514287056,
89 | 131.28727387146173141, 677.38107093296675421,
90 | 2802.3724744545046518, 8718.5731420798254081,
91 | 18141.348781638832286, 18948.925349296308859
92 | };
93 | /** */
94 | private static final double[] c = {
95 | 2.5568678676452702768e-15, 3.0393953792305924324e-14,
96 | 6.3343751991094840009e-13, 1.5041298011833009649e-11,
97 | 4.4569436918556541414e-10, 1.746393051427167951e-8,
98 | 1.0059224011079852317e-6, 1.0729838945088577089e-4,
99 | 0.05150322693642527738,
100 | 5.2527963991711562216e-15, 7.202118481421005641e-15,
101 | 7.2561421229904797156e-13, 1.482312146673104251e-11,
102 | 4.4602670450376245434e-10, 1.7463600061788679671e-8,
103 | 1.005922609132234756e-6, 1.0729838937545111487e-4,
104 | 0.051503226936437300716,
105 | 1.3365917359358069908e-14, -1.2932643065888544835e-13,
106 | 1.7450199447905602915e-12, 1.0419051209056979788e-11,
107 | 4.58047881980598326e-10, 1.7442405450073548966e-8,
108 | 1.0059461453281292278e-6, 1.0729837434500161228e-4,
109 | 0.051503226940658446941,
110 | 5.3771611477352308649e-14, -1.1396193006413731702e-12,
111 | 1.2858641335221653409e-11, -5.9802086004570057703e-11,
112 | 7.3666894305929510222e-10, 1.6731837150730356448e-8,
113 | 1.0070831435812128922e-6, 1.0729733111203704813e-4,
114 | 0.051503227360726294675,
115 | 3.7819492084858931093e-14, -4.8600496888588034879e-13,
116 | 1.6898350504817224909e-12, 4.5884624327524255865e-11,
117 | 1.2521615963377513729e-10, 1.8959658437754727957e-8,
118 | 1.0020716710561353622e-6, 1.073037119856927559e-4,
119 | 0.05150322383300230775
120 | };
121 |
122 | /**
123 | *
124 | * @param x
125 | * @return
126 | */
127 | public static double value(double x) {
128 | int k;
129 | double w, t, y;
130 | w = Math.abs(x);
131 | if (w < 8.5) {
132 | t = w * w * 0.0625;
133 | k = 13 * ((int) t);
134 | y = (((((((((((a[k] * t + a[k + 1]) * t +
135 | a[k + 2]) * t + a[k + 3]) * t + a[k + 4]) * t +
136 | a[k + 5]) * t + a[k + 6]) * t + a[k + 7]) * t +
137 | a[k + 8]) * t + a[k + 9]) * t + a[k + 10]) * t +
138 | a[k + 11]) * t + a[k + 12];
139 | } else if (w < 12.5) {
140 | k = (int) w;
141 | t = w - k;
142 | k = 14 * (k - 8);
143 | y = ((((((((((((b[k] * t + b[k + 1]) * t +
144 | b[k + 2]) * t + b[k + 3]) * t + b[k + 4]) * t +
145 | b[k + 5]) * t + b[k + 6]) * t + b[k + 7]) * t +
146 | b[k + 8]) * t + b[k + 9]) * t + b[k + 10]) * t +
147 | b[k + 11]) * t + b[k + 12]) * t + b[k + 13];
148 | } else {
149 | t = 60 / w;
150 | k = 9 * ((int) t);
151 | y = ((((((((c[k] * t + c[k + 1]) * t +
152 | c[k + 2]) * t + c[k + 3]) * t + c[k + 4]) * t +
153 | c[k + 5]) * t + c[k + 6]) * t + c[k + 7]) * t +
154 | c[k + 8]) * Math.sqrt(t) * Math.exp(w);
155 | }
156 | return y;
157 | }
158 | }
159 |
160 | /* */
161 |
--------------------------------------------------------------------------------
/src/main/java/vavi/util/SplitRadixFft.java:
--------------------------------------------------------------------------------
1 | /*
2 | * Copyright Takuya OOURA, 1996-2001
3 | *
4 | * You may use, copy, modify and distribute this code
5 | * for any purpose (include commercial use) and without fee.
6 | * Please refer to this package when you modify this code.
7 | */
8 | package vavi.util;
9 |
10 |
11 |
12 |
13 | /**
14 | * Fast Fourier/Cosine/Sine Transform.
15 | *
16 | * dimension :one 17 | * data length :power of 2 18 | * decimation :frequency 19 | * radix :split-radix 20 | * data :inplace 21 | * table :use 22 | *23 | *
25 | * The cos/sin table is recalculated when the larger table required. 26 | * w[] and ip[] are compatible with all routines. 27 | *
28 | * @author Takuya OOURA 29 | * @author Naohide Sano (nsano) 30 | * @version 0.00 060127 nsano port to java version40 | * [definition] 41 | * <case1> 42 | * X[k] = sum_j=0ˆn-1 x[j]*exp(2*pi*i*j*k/n), 0<=k<n 43 | * <case2> 44 | * X[k] = sum_j=0ˆn-1 x[j]*exp(-2*pi*i*j*k/n), 0<=k<n 45 | * (notes: sum_j=0ˆn-1 is a summation from j=0 to n-1) 46 | * [usage] 47 | * <case1> 48 | * ip[0] = 0; // first time only 49 | * cdft(2*n, 1, a, ip, w); 50 | * <case2> 51 | * ip[0] = 0; // first time only 52 | * cdft(2*n, -1, a, ip, w); 53 | * [remark] 54 | * Inverse of 55 | * cdft(2*n, -1, a, ip, w); 56 | * is 57 | * cdft(2*n, 1, a, ip, w); 58 | * for (j = 0; j <= 2 * n - 1; j++) { 59 | * a[j] *= 1.0 / n; 60 | * } 61 | * . 62 | *63 | * @param n 2*n data length (int) 64 | * n >= 1, n = power of 2 65 | * @param isgn 66 | * @param a a[0...2*n-1] input/output data (REAL *) 67 | * input data 68 | * a[2*j] = Re(x[j]), 69 | * a[2*j+1] = Im(x[j]), 0<=j<n 70 | * output data 71 | * a[2*k] = Re(X[k]), 72 | * a[2*k+1] = Im(X[k]), 0<=k<n 73 | * @param ip ip[0...*] work area for bit reversal (int *) 74 | * length of ip >= 2+sqrt(n) 75 | * strictly, 76 | * length of ip >= 77 | * 2+(1<<(int)(log(n+0.5)/log(2))/2). 78 | * ip[0],ip[1] are pointers of the cos/sin table. 79 | * @param w w[0...n/2-1] cos/sin table (REAL *) 80 | * w[],ip[] are initialized if ip[0] == 0. 81 | */ 82 | public void cdft(int n, int isgn, double[] a, int[] ip, double[] w) { 83 | int nw; 84 | 85 | nw = ip[0]; 86 | if (n > (nw << 2)) { 87 | nw = n >> 2; 88 | makewt(nw, ip, w); 89 | } 90 | if (isgn >= 0) { 91 | cftfsub(n, a, ip, 2, nw, w); 92 | } else { 93 | cftbsub(n, a, ip, 2, nw, w); 94 | } 95 | } 96 | 97 | /** 98 | * Real Discrete Fourier Transform. 99 | *
100 | * [definition] 101 | * <case1> RDFT 102 | * R[k] = sum_j = 0 & ˆ (n - 1) a[j] * cos(2 * pi * j * k / n), 0 <= k <= n / 2 103 | * I[k] = sum_j = 0 & ˆ (n - 1) a[j] * sin(2 * pi * j * k / n), 0 < k < n / 2 104 | * <case2> IRDFT (excluding scale) 105 | * a[k] = (R[0] + R[n / 2] * cos(pi * k)) / 2 + 106 | * sum_j = 1 & ˆ (n / 2 - 1) R[j] * cos(2 * pi * j * k / n) + 107 | * sum_j = 1 & ˆ (n / 2 - 1) I[j] * sin(2 * pi * j * k / n), 0 <= k < n 108 | * [usage] 109 | * <case1> 110 | * ip[0] = 0; // first time only 111 | * rdft(n, 1, a, ip, w); 112 | * <case2> 113 | * ip[0] = 0; // first time only 114 | * rdft(n, -1, a, ip, w); 115 | * [remark] 116 | * Inverse of 117 | * rdft(n, 1, a, ip, w); 118 | * is 119 | * rdft(n, -1, a, ip, w); 120 | * for (j = 0; j <= n - 1; j++) { 121 | * a[j] *= 2.0 / n; 122 | * } 123 | * . 124 | *125 | * @param n data length
130 | * <case1> 131 | * output data 132 | * a[2 * k] = R[k], 0 <= k < n / 2 133 | * a[2 * k + 1] = I[k], 0 < k < n / 2 134 | * a[1] = R[n/2] 135 | * <case2> 136 | * input data 137 | * a[2 * j] = R[j], 0 <= j < n / 2 138 | * a[2 * j + 1] = I[j], 0 < j < n / 2 139 | * a[1] = R[n / 2] 140 | *141 | * @param ip [0...*] work area for bit reversal 142 | *
143 | * length of ip >= 2 + sqrt(n / 2) 144 | * strictly, 145 | * length of ip >= 146 | * 2 + (1 << (int) (log(n / 2 + 0.5) / log(2)) / 2). 147 | *148 | * ip[0],ip[1] are pointers of the cos/sin table. 149 | * @param w [0...n/2-1] cos/sin table
191 | * [definition] 192 | * <case1> IDCT (excluding scale) 193 | * C[k] = sum_j=0ˆn-1 a[j]*cos(pi*j*(k+1/2)/n), 0<=k<n 194 | * <case2> DCT 195 | * C[k] = sum_j=0ˆn-1 a[j]*cos(pi*(j+1/2)*k/n), 0<=k<n 196 | * [usage] 197 | * <case1> 198 | * ip[0] = 0; // first time only 199 | * ddct(n, 1, a, ip, w); 200 | * <case2> 201 | * ip[0] = 0; // first time only 202 | * ddct(n, -1, a, ip, w); 203 | * [remark] 204 | * Inverse of 205 | * ddct(n, -1, a, ip, w); 206 | * is 207 | * a[0] *= 0.5; 208 | * ddct(n, 1, a, ip, w); 209 | * for (j = 0; j <= n - 1; j++) { 210 | * a[j] *= 2.0 / n; 211 | * } 212 | * . 213 | *214 | * @param n data length (int) 215 | *
216 | * n >= 2, n = power of 2 217 | *218 | * @param isgn 219 | * @param a [0...n-1] input/output data (REAL *) 220 | *
221 | * output data 222 | * a[k] = C[k], 0<=k<n 223 | *224 | * @param ip [0...*] work area for bit reversal (int *) 225 | *
226 | * length of ip >= 2+sqrt(n/2) 227 | * strictly, 228 | * length of ip >= 229 | * 2+(1<<(int)(log(n/2+0.5)/log(2))/2). 230 | * ip[0],ip[1] are pointers of the cos/sin table. 231 | *232 | * @param w [0...n*5/4-1] cos/sin table (REAL *) 233 | *
234 | * w[],ip[] are initialized if ip[0] == 0. 235 | *236 | */ 237 | public void ddct(int n, int isgn, double[] a, int[] ip, double[] w) { 238 | int j, nw, nc; 239 | double xr; 240 | 241 | nw = ip[0]; 242 | if (n > (nw << 2)) { 243 | nw = n >> 2; 244 | makewt(nw, ip, w); 245 | } 246 | nc = ip[1]; 247 | if (n > nc) { 248 | nc = n; 249 | makect(nc, ip, w, nw); 250 | } 251 | if (isgn < 0) { 252 | xr = a[n - 1]; 253 | for (j = n - 2; j >= 2; j -= 2) { 254 | a[j + 1] = a[j] - a[j - 1]; 255 | a[j] += a[j - 1]; 256 | } 257 | a[1] = a[0] - xr; 258 | a[0] += xr; 259 | if (n > 4) { 260 | rftbsub(n, a, nc, w, nw); 261 | cftbsub(n, a, ip, 2, nw, w); 262 | } else if (n == 4) { 263 | cftbsub(n, a, ip, 2, nw, w); 264 | } 265 | } 266 | dctsub(n, a, nc, w, nw); 267 | if (isgn >= 0) { 268 | if (n > 4) { 269 | cftfsub(n, a, ip, 2, nw, w); 270 | rftfsub(n, a, nc, w, nw); 271 | } else if (n == 4) { 272 | cftfsub(n, a, ip, 2, nw, w); 273 | } 274 | xr = a[0] - a[1]; 275 | a[0] += a[1]; 276 | for (j = 2; j < n; j += 2) { 277 | a[j - 1] = a[j] - a[j + 1]; 278 | a[j] += a[j + 1]; 279 | } 280 | a[n - 1] = xr; 281 | } 282 | } 283 | 284 | /** 285 | * Discrete Sine Transform. 286 | *
287 | * [definition] 288 | * <case1> IDST (excluding scale) 289 | * S[k] = sum_j=1ˆn A[j]*sin(pi*j*(k+1/2)/n), 0<=k<n 290 | * <case2> DST 291 | * S[k] = sum_j=0ˆn-1 a[j]*sin(pi*(j+1/2)*k/n), 0<k<=n 292 | * [usage] 293 | * <case1> 294 | * ip[0] = 0; // first time only 295 | * ddst(n, 1, a, ip, w); 296 | * <case2> 297 | * ip[0] = 0; // first time only 298 | * ddst(n, -1, a, ip, w); 299 | * [remark] 300 | * Inverse of 301 | * ddst(n, -1, a, ip, w); 302 | * is 303 | * a[0] *= 0.5; 304 | * ddst(n, 1, a, ip, w); 305 | * for (j = 0; j <= n - 1; j++) { 306 | * a[j] *= 2.0 / n; 307 | * } 308 | * . 309 | *310 | * @param n data length (int) 311 | * n >= 2, n = power of 2 312 | * @param isgn 313 | * @param a [0...n-1] input/output data (REAL *) 314 | * <case1> 315 | * input data 316 | * a[j] = A[j], 0<j<n 317 | * a[0] = A[n] 318 | * output data 319 | * a[k] = S[k], 0<=k<n 320 | * <case2> 321 | * output data 322 | * a[k] = S[k], 0<k<n 323 | * a[0] = S[n] 324 | * @param ip [0...*] work area for bit reversal (int *) 325 | * length of ip >= 2+sqrt(n/2) 326 | * strictly, 327 | * length of ip >= 328 | * 2+(1<<(int)(log(n/2+0.5)/log(2))/2). 329 | * ip[0],ip[1] are pointers of the cos/sin table. 330 | * @param w [0...n*5/4-1] cos/sin table (REAL *) 331 | * w[],ip[] are initialized if ip[0] == 0. 332 | */ 333 | public void ddst(int n, int isgn, double[] a, int[] ip, double[] w) { 334 | int j, nw, nc; 335 | double xr; 336 | 337 | nw = ip[0]; 338 | if (n > (nw << 2)) { 339 | nw = n >> 2; 340 | makewt(nw, ip, w); 341 | } 342 | nc = ip[1]; 343 | if (n > nc) { 344 | nc = n; 345 | makect(nc, ip, w, nw); 346 | } 347 | if (isgn < 0) { 348 | xr = a[n - 1]; 349 | for (j = n - 2; j >= 2; j -= 2) { 350 | a[j + 1] = -a[j] - a[j - 1]; 351 | a[j] -= a[j - 1]; 352 | } 353 | a[1] = a[0] + xr; 354 | a[0] -= xr; 355 | if (n > 4) { 356 | rftbsub(n, a, nc, w, nw); 357 | cftbsub(n, a, ip, 2, nw, w); 358 | } else if (n == 4) { 359 | cftbsub(n, a, ip, 2, nw, w); 360 | } 361 | } 362 | dstsub(n, a, nc, w, nw); 363 | if (isgn >= 0) { 364 | if (n > 4) { 365 | cftfsub(n, a, ip, 2, nw, w); 366 | rftfsub(n, a, nc, w, nw); 367 | } else if (n == 4) { 368 | cftfsub(n, a, ip, 2, nw, w); 369 | } 370 | xr = a[0] - a[1]; 371 | a[0] += a[1]; 372 | for (j = 2; j < n; j += 2) { 373 | a[j - 1] = -a[j] - a[j + 1]; 374 | a[j] -= a[j + 1]; 375 | } 376 | a[n - 1] = -xr; 377 | } 378 | } 379 | 380 | /** 381 | * Cosine Transform of RDFT (Real Symmetric DFT). 382 | *
383 | * [definition] 384 | * C[k] = sum_j=0ˆn a[j]*cos(pi*j*k/n), 0<=k<=n 385 | * [usage] 386 | * ip[0] = 0; // first time only 387 | * dfct(n, a, t, ip, w); 388 | * [parameters] 389 | * [remark] 390 | * Inverse of 391 | * a[0] *= 0.5; 392 | * a[n] *= 0.5; 393 | * dfct(n, a, t, ip, w); 394 | * is 395 | * a[0] *= 0.5; 396 | * a[n] *= 0.5; 397 | * dfct(n, a, t, ip, w); 398 | * for (j = 0; j <= n; j++) { 399 | * a[j] *= 2.0 / n; 400 | * } 401 | * . 402 | *403 | * @param n data length - 1 (int) 404 | *
405 | * n >= 2, n = power of 2 406 | *407 | * @param a [0...n] input/output data (REAL *) 408 | *
409 | * output data 410 | * a[k] = C[k], 0<=k<=n 411 | *412 | * @param t [0...n/2] work area (REAL *) 413 | * @param ip [0...*] work area for bit reversal (int *) 414 | *
415 | * length of ip >= 2+sqrt(n/4) 416 | * strictly, 417 | * length of ip >= 418 | * 2+(1<<(int)(log(n/4+0.5)/log(2))/2). 419 | * ip[0],ip[1] are pointers of the cos/sin table. 420 | *421 | * @param w [0...n*5/8-1] cos/sin table (REAL *) 422 | *
423 | * w[],ip[] are initialized if ip[0] == 0. 424 | *425 | */ 426 | public void dfct(int n, double[] a, double[] t, int[] ip, double[] w) { 427 | int j, k, l, m, mh, nw, nc; 428 | double xr, xi, yr, yi; 429 | 430 | nw = ip[0]; 431 | if (n > (nw << 3)) { 432 | nw = n >> 3; 433 | makewt(nw, ip, w); 434 | } 435 | nc = ip[1]; 436 | if (n > (nc << 1)) { 437 | nc = n >> 1; 438 | makect(nc, ip, w, nw); 439 | } 440 | m = n >> 1; 441 | yi = a[m]; 442 | xi = a[0] + a[n]; 443 | a[0] -= a[n]; 444 | t[0] = xi - yi; 445 | t[m] = xi + yi; 446 | if (n > 2) { 447 | mh = m >> 1; 448 | for (j = 1; j < mh; j++) { 449 | k = m - j; 450 | xr = a[j] - a[n - j]; 451 | xi = a[j] + a[n - j]; 452 | yr = a[k] - a[n - k]; 453 | yi = a[k] + a[n - k]; 454 | a[j] = xr; 455 | a[k] = yr; 456 | t[j] = xi - yi; 457 | t[k] = xi + yi; 458 | } 459 | t[mh] = a[mh] + a[n - mh]; 460 | a[mh] -= a[n - mh]; 461 | dctsub(m, a, nc, w, nw); 462 | if (m > 4) { 463 | cftfsub(m, a, ip, 2, nw, w); 464 | rftfsub(m, a, nc, w, nw); 465 | } else if (m == 4) { 466 | cftfsub(m, a, ip, 2, nw, w); 467 | } 468 | a[n - 1] = a[0] - a[1]; 469 | a[1] = a[0] + a[1]; 470 | for (j = m - 2; j >= 2; j -= 2) { 471 | a[2 * j + 1] = a[j] + a[j + 1]; 472 | a[2 * j - 1] = a[j] - a[j + 1]; 473 | } 474 | l = 2; 475 | m = mh; 476 | while (m >= 2) { 477 | dctsub(m, t, nc, w, nw); 478 | if (m > 4) { 479 | cftfsub(m, t, ip, 2, nw, w); 480 | rftfsub(m, t, nc, w, nw); 481 | } else if (m == 4) { 482 | cftfsub(m, t, ip, 2, nw, w); 483 | } 484 | a[n - l] = t[0] - t[1]; 485 | a[l] = t[0] + t[1]; 486 | k = 0; 487 | for (j = 2; j < m; j += 2) { 488 | k += l << 2; 489 | a[k - l] = t[j] - t[j + 1]; 490 | a[k + l] = t[j] + t[j + 1]; 491 | } 492 | l <<= 1; 493 | mh = m >> 1; 494 | for (j = 0; j < mh; j++) { 495 | k = m - j; 496 | t[j] = t[m + k] - t[m + j]; 497 | t[k] = t[m + k] + t[m + j]; 498 | } 499 | t[mh] = t[m + mh]; 500 | m = mh; 501 | } 502 | a[l] = t[0]; 503 | a[n] = t[2] - t[1]; 504 | a[0] = t[2] + t[1]; 505 | } else { 506 | a[1] = a[0]; 507 | a[2] = t[0]; 508 | a[0] = t[1]; 509 | } 510 | } 511 | 512 | /** 513 | * Sine Transform of RDFT (Real Anti-symmetric DFT). 514 | *
515 | * [definition] 516 | * S[k] = sum_j=1ˆn-1 a[j]*sin(pi*j*k/n), 0<k<n 517 | * [usage] 518 | * ip[0] = 0; // first time only 519 | * dfst(n, a, t, ip, w); 520 | * [remark] 521 | * Inverse of 522 | * dfst(n, a, t, ip, w); 523 | * is 524 | * dfst(n, a, t, ip, w); 525 | * for (j = 1; j <= n - 1; j++) { 526 | * a[j] *= 2.0 / n; 527 | * } 528 | * . 529 | *530 | * @param n data length + 1 (int) 531 | *
532 | * n >= 2, n = power of 2 533 | *534 | * @param a [0...n-1] input/output data (REAL *) 535 | *
536 | * output data 537 | * a[k] = S[k], 0<k<n 538 | * (a[0] is used for work area) 539 | *540 | * @param t [0...n/2-1] work area (REAL *) 541 | * @param ip [0...*] work area for bit reversal (int *) 542 | *
543 | * length of ip >= 2+sqrt(n/4) 544 | * strictly, 545 | * length of ip >= 546 | * 2+(1<<(int)(log(n/4+0.5)/log(2))/2). 547 | * ip[0],ip[1] are pointers of the cos/sin table. 548 | *549 | * @param w [0...n*5/8-1] cos/sin table (REAL *) 550 | *
551 | * w[],ip[] are initialized if ip[0] == 0. 552 | *553 | */ 554 | public void dfst(int n, double[] a, double[] t, int[] ip, double[] w) { 555 | int j, k, l, m, mh, nw, nc; 556 | double xr, xi, yr, yi; 557 | 558 | nw = ip[0]; 559 | if (n > (nw << 3)) { 560 | nw = n >> 3; 561 | makewt(nw, ip, w); 562 | } 563 | nc = ip[1]; 564 | if (n > (nc << 1)) { 565 | nc = n >> 1; 566 | makect(nc, ip, w, nw); 567 | } 568 | if (n > 2) { 569 | m = n >> 1; 570 | mh = m >> 1; 571 | for (j = 1; j < mh; j++) { 572 | k = m - j; 573 | xr = a[j] + a[n - j]; 574 | xi = a[j] - a[n - j]; 575 | yr = a[k] + a[n - k]; 576 | yi = a[k] - a[n - k]; 577 | a[j] = xr; 578 | a[k] = yr; 579 | t[j] = xi + yi; 580 | t[k] = xi - yi; 581 | } 582 | t[0] = a[mh] - a[n - mh]; 583 | a[mh] += a[n - mh]; 584 | a[0] = a[m]; 585 | dstsub(m, a, nc, w, nw); 586 | if (m > 4) { 587 | cftfsub(m, a, ip, 2, nw, w); 588 | rftfsub(m, a, nc, w, nw); 589 | } else if (m == 4) { 590 | cftfsub(m, a, ip, 2, nw, w); 591 | } 592 | a[n - 1] = a[1] - a[0]; 593 | a[1] = a[0] + a[1]; 594 | for (j = m - 2; j >= 2; j -= 2) { 595 | a[2 * j + 1] = a[j] - a[j + 1]; 596 | a[2 * j - 1] = -a[j] - a[j + 1]; 597 | } 598 | l = 2; 599 | m = mh; 600 | while (m >= 2) { 601 | dstsub(m, t, nc, w, nw); 602 | if (m > 4) { 603 | cftfsub(m, t, ip, 2, nw, w); 604 | rftfsub(m, t, nc, w, nw); 605 | } else if (m == 4) { 606 | cftfsub(m, t, ip, 2, nw, w); 607 | } 608 | a[n - l] = t[1] - t[0]; 609 | a[l] = t[0] + t[1]; 610 | k = 0; 611 | for (j = 2; j < m; j += 2) { 612 | k += l << 2; 613 | a[k - l] = -t[j] - t[j + 1]; 614 | a[k + l] = t[j] - t[j + 1]; 615 | } 616 | l <<= 1; 617 | mh = m >> 1; 618 | for (j = 1; j < mh; j++) { 619 | k = m - j; 620 | t[j] = t[m + k] + t[m + j]; 621 | t[k] = t[m + k] - t[m + j]; 622 | } 623 | t[0] = t[m + mh]; 624 | m = mh; 625 | } 626 | a[l] = t[0]; 627 | } 628 | a[0] = 0; 629 | } 630 | 631 | // -------- initializing routines -------- 632 | 633 | /** */ 634 | private void makewt(int nw, int[] ip, double[] w) { 635 | int j, nwh, nw0, nw1; 636 | double delta, wn4r, wk1r, wk1i, wk3r, wk3i; 637 | 638 | ip[0] = nw; 639 | ip[1] = 1; 640 | if (nw > 2) { 641 | nwh = nw >> 1; 642 | // delta = Math.atan(1.0) / nwh; 643 | delta = Math.PI / 4 / nwh; 644 | wn4r = Math.cos(delta * nwh); 645 | w[0] = 1; 646 | w[1] = wn4r; 647 | if (nwh >= 4) { 648 | w[2] = 0.5 / Math.cos(delta * 2); 649 | w[3] = 0.5 / Math.cos(delta * 6); 650 | } 651 | for (j = 4; j < nwh; j += 4) { 652 | w[j] = Math.cos(delta * j); 653 | w[j + 1] = Math.sin(delta * j); 654 | w[j + 2] = Math.cos(3 * delta * j); 655 | w[j + 3] = Math.sin(3 * delta * j); 656 | } 657 | nw0 = 0; 658 | while (nwh > 2) { 659 | nw1 = nw0 + nwh; 660 | nwh >>= 1; 661 | w[nw1] = 1; 662 | w[nw1 + 1] = wn4r; 663 | if (nwh >= 4) { 664 | wk1r = w[nw0 + 4]; 665 | wk3r = w[nw0 + 6]; 666 | w[nw1 + 2] = 0.5 / wk1r; 667 | w[nw1 + 3] = 0.5 / wk3r; 668 | } 669 | for (j = 4; j < nwh; j += 4) { 670 | wk1r = w[nw0 + 2 * j]; 671 | wk1i = w[nw0 + 2 * j + 1]; 672 | wk3r = w[nw0 + 2 * j + 2]; 673 | wk3i = w[nw0 + 2 * j + 3]; 674 | w[nw1 + j] = wk1r; 675 | w[nw1 + j + 1] = wk1i; 676 | w[nw1 + j + 2] = wk3r; 677 | w[nw1 + j + 3] = wk3i; 678 | } 679 | nw0 = nw1; 680 | } 681 | } 682 | } 683 | 684 | /** */ 685 | private void makect(int nc, int[] ip, double[] c, int cP) { 686 | int j, nch; 687 | double delta; 688 | 689 | ip[1] = nc; 690 | if (nc > 1) { 691 | nch = nc >> 1; 692 | // delta = Math.atan(1.0) / nch; 693 | delta = Math.PI / 4 / nch; 694 | c[cP + 0] = Math.cos(delta * nch); 695 | c[cP + nch] = 0.5 * c[cP + 0]; 696 | for (j = 1; j < nch; j++) { 697 | c[cP + j] = 0.5 * Math.cos(delta * j); 698 | c[cP + nc - j] = 0.5 * Math.sin(delta * j); 699 | } 700 | } 701 | } 702 | 703 | // -------- child routines -------- 704 | 705 | /** 706 | * 2nd 707 | * @see #rdft(int, int, double[], int[], double[]) 708 | * @see #ddct(int, int, double[], int[], double[]) 709 | * @see #cdft(int, int, double[], int[], double[]) 710 | * @see #ddst(int, int, double[], int[], double[]) 711 | * @see #dfst(int, double[], double[], int[], double[]) 712 | * @see #dfct(int, double[], double[], int[], double[]) 713 | */ 714 | private void cftfsub(int n, double[] a, int[] ip, int ipP, int nw, double[] w) { 715 | int m; 716 | 717 | if (n > 32) { 718 | m = n >> 2; 719 | cftf1st(n, a, w, nw - m); 720 | if (n > CDFT_RECURSIVE_N) { 721 | cftrec1(m, a, 0, nw, w); 722 | cftrec2(m, a, m, nw, w); 723 | cftrec1(m, a, 2 * m, nw, w); 724 | cftrec1(m, a, 3 * m, nw, w); 725 | } else if (m > 32) { 726 | cftexp1(n, a, 0, nw, w); 727 | } else { 728 | cftfx41(n, a, 0, nw, w); 729 | } 730 | bitrv2(n, ip, ipP, a); 731 | } else if (n > 8) { 732 | if (n == 32) { 733 | cftf161(a, 0, w, nw - 8); 734 | bitrv216(a); 735 | } else { 736 | cftf081(a, 0, w, 0); 737 | bitrv208(a); 738 | } 739 | } else if (n == 8) { 740 | cftf040(a); 741 | } else if (n == 4) { 742 | cftx020(a); 743 | } 744 | } 745 | 746 | /** 747 | * 2nd 748 | * @see #rdft(int, int, double[], int[], double[]) 749 | * @see #ddct(int, int, double[], int[], double[]) 750 | * @see #cdft(int, int, double[], int[], double[]) 751 | * @see #ddst(int, int, double[], int[], double[]) 752 | */ 753 | private void cftbsub(int n, double[] a, int[] ip, int ipP, int nw, double[] w) { 754 | int m; 755 | 756 | if (n > 32) { 757 | m = n >> 2; 758 | cftb1st(n, a, w, nw - m); 759 | if (n > CDFT_RECURSIVE_N) { 760 | cftrec1(m, a, 0, nw, w); 761 | cftrec2(m, a, m, nw, w); 762 | cftrec1(m, a, 2 * m, nw, w); 763 | cftrec1(m, a, 3 * m, nw, w); 764 | } else if (m > 32) { 765 | cftexp1(n, a, 0, nw, w); 766 | } else { 767 | cftfx41(n, a, 0, nw, w); 768 | } 769 | bitrv2conj(n, ip, ipP, a); 770 | } else if (n > 8) { 771 | if (n == 32) { 772 | cftf161(a, 0, w, nw - 8); 773 | bitrv216neg(a); 774 | } else { 775 | cftf081(a, 0, w, 0); 776 | bitrv208neg(a); 777 | } 778 | } else if (n == 8) { 779 | cftb040(a); 780 | } else if (n == 4) { 781 | cftx020(a); 782 | } 783 | } 784 | 785 | /** 786 | * 3rd 787 | * @see #cftfsub(int, double[], int[], int, int, double[]) 788 | */ 789 | private final void bitrv2(int n, int[] ip, int ipP, double[] a) { 790 | int j, j1, k, k1, l, m, m2; 791 | double xr, xi, yr, yi; 792 | 793 | ip[ipP + 0] = 0; 794 | l = n; 795 | m = 1; 796 | while ((m << 3) < l) { 797 | l >>= 1; 798 | for (j = 0; j < m; j++) { 799 | ip[ipP + m + j] = ip[ipP + j] + l; 800 | } 801 | m <<= 1; 802 | } 803 | m2 = 2 * m; 804 | if ((m << 3) == l) { 805 | for (k = 0; k < m; k++) { 806 | for (j = 0; j < k; j++) { 807 | j1 = 2 * j + ip[ipP + k]; 808 | k1 = 2 * k + ip[ipP + j]; 809 | xr = a[j1]; 810 | xi = a[j1 + 1]; 811 | yr = a[k1]; 812 | yi = a[k1 + 1]; 813 | a[j1] = yr; 814 | a[j1 + 1] = yi; 815 | a[k1] = xr; 816 | a[k1 + 1] = xi; 817 | j1 += m2; 818 | k1 += 2 * m2; 819 | xr = a[j1]; 820 | xi = a[j1 + 1]; 821 | yr = a[k1]; 822 | yi = a[k1 + 1]; 823 | a[j1] = yr; 824 | a[j1 + 1] = yi; 825 | a[k1] = xr; 826 | a[k1 + 1] = xi; 827 | j1 += m2; 828 | k1 -= m2; 829 | xr = a[j1]; 830 | xi = a[j1 + 1]; 831 | yr = a[k1]; 832 | yi = a[k1 + 1]; 833 | a[j1] = yr; 834 | a[j1 + 1] = yi; 835 | a[k1] = xr; 836 | a[k1 + 1] = xi; 837 | j1 += m2; 838 | k1 += 2 * m2; 839 | xr = a[j1]; 840 | xi = a[j1 + 1]; 841 | yr = a[k1]; 842 | yi = a[k1 + 1]; 843 | a[j1] = yr; 844 | a[j1 + 1] = yi; 845 | a[k1] = xr; 846 | a[k1 + 1] = xi; 847 | } 848 | j1 = 2 * k + m2 + ip[ipP + k]; 849 | k1 = j1 + m2; 850 | xr = a[j1]; 851 | xi = a[j1 + 1]; 852 | yr = a[k1]; 853 | yi = a[k1 + 1]; 854 | a[j1] = yr; 855 | a[j1 + 1] = yi; 856 | a[k1] = xr; 857 | a[k1 + 1] = xi; 858 | } 859 | } else { 860 | for (k = 1; k < m; k++) { 861 | for (j = 0; j < k; j++) { 862 | j1 = 2 * j + ip[ipP + k]; 863 | k1 = 2 * k + ip[ipP + j]; 864 | xr = a[j1]; 865 | xi = a[j1 + 1]; 866 | yr = a[k1]; 867 | yi = a[k1 + 1]; 868 | a[j1] = yr; 869 | a[j1 + 1] = yi; 870 | a[k1] = xr; 871 | a[k1 + 1] = xi; 872 | j1 += m2; 873 | k1 += m2; 874 | xr = a[j1]; 875 | xi = a[j1 + 1]; 876 | yr = a[k1]; 877 | yi = a[k1 + 1]; 878 | a[j1] = yr; 879 | a[j1 + 1] = yi; 880 | a[k1] = xr; 881 | a[k1 + 1] = xi; 882 | } 883 | } 884 | } 885 | } 886 | 887 | /** 888 | * 3rd 889 | * @see #cftbsub(int, double[], int[], int, int, double[]) 890 | */ 891 | private final void bitrv2conj(int n, int[] ip, int ipP, double[] a) { 892 | int j, j1, k, k1, l, m, m2; 893 | double xr, xi, yr, yi; 894 | 895 | ip[ipP + 0] = 0; 896 | l = n; 897 | m = 1; 898 | while ((m << 3) < l) { 899 | l >>= 1; 900 | for (j = 0; j < m; j++) { 901 | ip[ipP + m + j] = ip[ipP + j] + l; 902 | } 903 | m <<= 1; 904 | } 905 | m2 = 2 * m; 906 | if ((m << 3) == l) { 907 | for (k = 0; k < m; k++) { 908 | for (j = 0; j < k; j++) { 909 | j1 = 2 * j + ip[ipP + k]; 910 | k1 = 2 * k + ip[ipP + j]; 911 | xr = a[j1]; 912 | xi = -a[j1 + 1]; 913 | yr = a[k1]; 914 | yi = -a[k1 + 1]; 915 | a[j1] = yr; 916 | a[j1 + 1] = yi; 917 | a[k1] = xr; 918 | a[k1 + 1] = xi; 919 | j1 += m2; 920 | k1 += 2 * m2; 921 | xr = a[j1]; 922 | xi = -a[j1 + 1]; 923 | yr = a[k1]; 924 | yi = -a[k1 + 1]; 925 | a[j1] = yr; 926 | a[j1 + 1] = yi; 927 | a[k1] = xr; 928 | a[k1 + 1] = xi; 929 | j1 += m2; 930 | k1 -= m2; 931 | xr = a[j1]; 932 | xi = -a[j1 + 1]; 933 | yr = a[k1]; 934 | yi = -a[k1 + 1]; 935 | a[j1] = yr; 936 | a[j1 + 1] = yi; 937 | a[k1] = xr; 938 | a[k1 + 1] = xi; 939 | j1 += m2; 940 | k1 += 2 * m2; 941 | xr = a[j1]; 942 | xi = -a[j1 + 1]; 943 | yr = a[k1]; 944 | yi = -a[k1 + 1]; 945 | a[j1] = yr; 946 | a[j1 + 1] = yi; 947 | a[k1] = xr; 948 | a[k1 + 1] = xi; 949 | } 950 | k1 = 2 * k + ip[ipP + k]; 951 | a[k1 + 1] = -a[k1 + 1]; 952 | j1 = k1 + m2; 953 | k1 = j1 + m2; 954 | xr = a[j1]; 955 | xi = -a[j1 + 1]; 956 | yr = a[k1]; 957 | yi = -a[k1 + 1]; 958 | a[j1] = yr; 959 | a[j1 + 1] = yi; 960 | a[k1] = xr; 961 | a[k1 + 1] = xi; 962 | k1 += m2; 963 | a[k1 + 1] = -a[k1 + 1]; 964 | } 965 | } else { 966 | a[1] = -a[1]; 967 | a[m2 + 1] = -a[m2 + 1]; 968 | for (k = 1; k < m; k++) { 969 | for (j = 0; j < k; j++) { 970 | j1 = 2 * j + ip[ipP + k]; 971 | k1 = 2 * k + ip[ipP + j]; 972 | xr = a[j1]; 973 | xi = -a[j1 + 1]; 974 | yr = a[k1]; 975 | yi = -a[k1 + 1]; 976 | a[j1] = yr; 977 | a[j1 + 1] = yi; 978 | a[k1] = xr; 979 | a[k1 + 1] = xi; 980 | j1 += m2; 981 | k1 += m2; 982 | xr = a[j1]; 983 | xi = -a[j1 + 1]; 984 | yr = a[k1]; 985 | yi = -a[k1 + 1]; 986 | a[j1] = yr; 987 | a[j1 + 1] = yi; 988 | a[k1] = xr; 989 | a[k1 + 1] = xi; 990 | } 991 | k1 = 2 * k + ip[ipP + k]; 992 | a[k1 + 1] = -a[k1 + 1]; 993 | a[k1 + m2 + 1] = -a[k1 + m2 + 1]; 994 | } 995 | } 996 | } 997 | 998 | /** 999 | * 3rd 1000 | * @see #cftfsub(int, double[], int[], int, int, double[]) 1001 | */ 1002 | private void bitrv216(double[] a) { 1003 | double x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r, x5i, x7r, x7i, x8r, x8i, x10r, x10i, x11r, x11i, x12r, x12i, x13r, x13i, x14r, x14i; 1004 | 1005 | x1r = a[2]; 1006 | x1i = a[3]; 1007 | x2r = a[4]; 1008 | x2i = a[5]; 1009 | x3r = a[6]; 1010 | x3i = a[7]; 1011 | x4r = a[8]; 1012 | x4i = a[9]; 1013 | x5r = a[10]; 1014 | x5i = a[11]; 1015 | x7r = a[14]; 1016 | x7i = a[15]; 1017 | x8r = a[16]; 1018 | x8i = a[17]; 1019 | x10r = a[20]; 1020 | x10i = a[21]; 1021 | x11r = a[22]; 1022 | x11i = a[23]; 1023 | x12r = a[24]; 1024 | x12i = a[25]; 1025 | x13r = a[26]; 1026 | x13i = a[27]; 1027 | x14r = a[28]; 1028 | x14i = a[29]; 1029 | a[2] = x8r; 1030 | a[3] = x8i; 1031 | a[4] = x4r; 1032 | a[5] = x4i; 1033 | a[6] = x12r; 1034 | a[7] = x12i; 1035 | a[8] = x2r; 1036 | a[9] = x2i; 1037 | a[10] = x10r; 1038 | a[11] = x10i; 1039 | a[14] = x14r; 1040 | a[15] = x14i; 1041 | a[16] = x1r; 1042 | a[17] = x1i; 1043 | a[20] = x5r; 1044 | a[21] = x5i; 1045 | a[22] = x13r; 1046 | a[23] = x13i; 1047 | a[24] = x3r; 1048 | a[25] = x3i; 1049 | a[26] = x11r; 1050 | a[27] = x11i; 1051 | a[28] = x7r; 1052 | a[29] = x7i; 1053 | } 1054 | 1055 | /** 1056 | * 3rd 1057 | * @see #cftbsub(int, double[], int[], int, int, double[]) 1058 | */ 1059 | private void bitrv216neg(double[] a) { 1060 | double x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r, x5i, x6r, x6i, x7r, x7i, x8r, x8i, x9r, x9i, x10r, x10i, x11r, x11i, x12r, x12i, x13r, x13i, x14r, x14i, x15r, x15i; 1061 | 1062 | x1r = a[2]; 1063 | x1i = a[3]; 1064 | x2r = a[4]; 1065 | x2i = a[5]; 1066 | x3r = a[6]; 1067 | x3i = a[7]; 1068 | x4r = a[8]; 1069 | x4i = a[9]; 1070 | x5r = a[10]; 1071 | x5i = a[11]; 1072 | x6r = a[12]; 1073 | x6i = a[13]; 1074 | x7r = a[14]; 1075 | x7i = a[15]; 1076 | x8r = a[16]; 1077 | x8i = a[17]; 1078 | x9r = a[18]; 1079 | x9i = a[19]; 1080 | x10r = a[20]; 1081 | x10i = a[21]; 1082 | x11r = a[22]; 1083 | x11i = a[23]; 1084 | x12r = a[24]; 1085 | x12i = a[25]; 1086 | x13r = a[26]; 1087 | x13i = a[27]; 1088 | x14r = a[28]; 1089 | x14i = a[29]; 1090 | x15r = a[30]; 1091 | x15i = a[31]; 1092 | a[2] = x15r; 1093 | a[3] = x15i; 1094 | a[4] = x7r; 1095 | a[5] = x7i; 1096 | a[6] = x11r; 1097 | a[7] = x11i; 1098 | a[8] = x3r; 1099 | a[9] = x3i; 1100 | a[10] = x13r; 1101 | a[11] = x13i; 1102 | a[12] = x5r; 1103 | a[13] = x5i; 1104 | a[14] = x9r; 1105 | a[15] = x9i; 1106 | a[16] = x1r; 1107 | a[17] = x1i; 1108 | a[18] = x14r; 1109 | a[19] = x14i; 1110 | a[20] = x6r; 1111 | a[21] = x6i; 1112 | a[22] = x10r; 1113 | a[23] = x10i; 1114 | a[24] = x2r; 1115 | a[25] = x2i; 1116 | a[26] = x12r; 1117 | a[27] = x12i; 1118 | a[28] = x4r; 1119 | a[29] = x4i; 1120 | a[30] = x8r; 1121 | a[31] = x8i; 1122 | } 1123 | 1124 | /** 1125 | * 3rd 1126 | * @see #cftfsub(int, double[], int[], int, int, double[]) 1127 | */ 1128 | private void bitrv208(double[] a) { 1129 | double x1r, x1i, x3r, x3i, x4r, x4i, x6r, x6i; 1130 | 1131 | x1r = a[2]; 1132 | x1i = a[3]; 1133 | x3r = a[6]; 1134 | x3i = a[7]; 1135 | x4r = a[8]; 1136 | x4i = a[9]; 1137 | x6r = a[12]; 1138 | x6i = a[13]; 1139 | a[2] = x4r; 1140 | a[3] = x4i; 1141 | a[6] = x6r; 1142 | a[7] = x6i; 1143 | a[8] = x1r; 1144 | a[9] = x1i; 1145 | a[12] = x3r; 1146 | a[13] = x3i; 1147 | } 1148 | 1149 | /** 1150 | * 3rd 1151 | * @see #cftbsub(int, double[], int[], int, int, double[]) 1152 | */ 1153 | private void bitrv208neg(double[] a) { 1154 | double x1r, x1i, x2r, x2i, x3r, x3i, x4r, x4i, x5r, x5i, x6r, x6i, x7r, x7i; 1155 | 1156 | x1r = a[2]; 1157 | x1i = a[3]; 1158 | x2r = a[4]; 1159 | x2i = a[5]; 1160 | x3r = a[6]; 1161 | x3i = a[7]; 1162 | x4r = a[8]; 1163 | x4i = a[9]; 1164 | x5r = a[10]; 1165 | x5i = a[11]; 1166 | x6r = a[12]; 1167 | x6i = a[13]; 1168 | x7r = a[14]; 1169 | x7i = a[15]; 1170 | a[2] = x7r; 1171 | a[3] = x7i; 1172 | a[4] = x3r; 1173 | a[5] = x3i; 1174 | a[6] = x5r; 1175 | a[7] = x5i; 1176 | a[8] = x1r; 1177 | a[9] = x1i; 1178 | a[10] = x6r; 1179 | a[11] = x6i; 1180 | a[12] = x2r; 1181 | a[13] = x2i; 1182 | a[14] = x4r; 1183 | a[15] = x4i; 1184 | } 1185 | 1186 | /** 1187 | * 3rd 1188 | * @see #cftfsub(int, double[], int[], int, int, double[]) 1189 | */ 1190 | private void cftf1st(int n, double[] a, double[] w, int wP) { 1191 | int j, j0, j1, j2, j3, k, m, mh; 1192 | double wn4r, csc1, csc3, wk1r, wk1i, wk3r, wk3i, wd1r, wd1i, wd3r, wd3i; 1193 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i; 1194 | 1195 | mh = n >> 3; 1196 | m = 2 * mh; 1197 | j1 = m; 1198 | j2 = j1 + m; 1199 | j3 = j2 + m; 1200 | x0r = a[0] + a[j2]; 1201 | x0i = a[1] + a[j2 + 1]; 1202 | x1r = a[0] - a[j2]; 1203 | x1i = a[1] - a[j2 + 1]; 1204 | x2r = a[j1] + a[j3]; 1205 | x2i = a[j1 + 1] + a[j3 + 1]; 1206 | x3r = a[j1] - a[j3]; 1207 | x3i = a[j1 + 1] - a[j3 + 1]; 1208 | a[0] = x0r + x2r; 1209 | a[1] = x0i + x2i; 1210 | a[j1] = x0r - x2r; 1211 | a[j1 + 1] = x0i - x2i; 1212 | a[j2] = x1r - x3i; 1213 | a[j2 + 1] = x1i + x3r; 1214 | a[j3] = x1r + x3i; 1215 | a[j3 + 1] = x1i - x3r; 1216 | wn4r = w[wP + 1]; 1217 | csc1 = w[wP + 2]; 1218 | csc3 = w[wP + 3]; 1219 | wd1r = 1; 1220 | wd1i = 0; 1221 | wd3r = 1; 1222 | wd3i = 0; 1223 | k = 0; 1224 | for (j = 2; j < mh - 2; j += 4) { 1225 | k += 4; 1226 | wk1r = csc1 * (wd1r + w[wP + k]); 1227 | wk1i = csc1 * (wd1i + w[wP + k + 1]); 1228 | wk3r = csc3 * (wd3r + w[wP + k + 2]); 1229 | wk3i = csc3 * (wd3i - w[wP + k + 3]); 1230 | wd1r = w[wP + k]; 1231 | wd1i = w[wP + k + 1]; 1232 | wd3r = w[wP + k + 2]; 1233 | wd3i = -w[wP + k + 3]; 1234 | j1 = j + m; 1235 | j2 = j1 + m; 1236 | j3 = j2 + m; 1237 | x0r = a[j] + a[j2]; 1238 | x0i = a[j + 1] + a[j2 + 1]; 1239 | x1r = a[j] - a[j2]; 1240 | x1i = a[j + 1] - a[j2 + 1]; 1241 | y0r = a[j + 2] + a[j2 + 2]; 1242 | y0i = a[j + 3] + a[j2 + 3]; 1243 | y1r = a[j + 2] - a[j2 + 2]; 1244 | y1i = a[j + 3] - a[j2 + 3]; 1245 | x2r = a[j1] + a[j3]; 1246 | x2i = a[j1 + 1] + a[j3 + 1]; 1247 | x3r = a[j1] - a[j3]; 1248 | x3i = a[j1 + 1] - a[j3 + 1]; 1249 | y2r = a[j1 + 2] + a[j3 + 2]; 1250 | y2i = a[j1 + 3] + a[j3 + 3]; 1251 | y3r = a[j1 + 2] - a[j3 + 2]; 1252 | y3i = a[j1 + 3] - a[j3 + 3]; 1253 | a[j] = x0r + x2r; 1254 | a[j + 1] = x0i + x2i; 1255 | a[j + 2] = y0r + y2r; 1256 | a[j + 3] = y0i + y2i; 1257 | a[j1] = x0r - x2r; 1258 | a[j1 + 1] = x0i - x2i; 1259 | a[j1 + 2] = y0r - y2r; 1260 | a[j1 + 3] = y0i - y2i; 1261 | x0r = x1r - x3i; 1262 | x0i = x1i + x3r; 1263 | a[j2] = wk1r * x0r - wk1i * x0i; 1264 | a[j2 + 1] = wk1r * x0i + wk1i * x0r; 1265 | x0r = y1r - y3i; 1266 | x0i = y1i + y3r; 1267 | a[j2 + 2] = wd1r * x0r - wd1i * x0i; 1268 | a[j2 + 3] = wd1r * x0i + wd1i * x0r; 1269 | x0r = x1r + x3i; 1270 | x0i = x1i - x3r; 1271 | a[j3] = wk3r * x0r + wk3i * x0i; 1272 | a[j3 + 1] = wk3r * x0i - wk3i * x0r; 1273 | x0r = y1r + y3i; 1274 | x0i = y1i - y3r; 1275 | a[j3 + 2] = wd3r * x0r + wd3i * x0i; 1276 | a[j3 + 3] = wd3r * x0i - wd3i * x0r; 1277 | j0 = m - j; 1278 | j1 = j0 + m; 1279 | j2 = j1 + m; 1280 | j3 = j2 + m; 1281 | x0r = a[j0] + a[j2]; 1282 | x0i = a[j0 + 1] + a[j2 + 1]; 1283 | x1r = a[j0] - a[j2]; 1284 | x1i = a[j0 + 1] - a[j2 + 1]; 1285 | y0r = a[j0 - 2] + a[j2 - 2]; 1286 | y0i = a[j0 - 1] + a[j2 - 1]; 1287 | y1r = a[j0 - 2] - a[j2 - 2]; 1288 | y1i = a[j0 - 1] - a[j2 - 1]; 1289 | x2r = a[j1] + a[j3]; 1290 | x2i = a[j1 + 1] + a[j3 + 1]; 1291 | x3r = a[j1] - a[j3]; 1292 | x3i = a[j1 + 1] - a[j3 + 1]; 1293 | y2r = a[j1 - 2] + a[j3 - 2]; 1294 | y2i = a[j1 - 1] + a[j3 - 1]; 1295 | y3r = a[j1 - 2] - a[j3 - 2]; 1296 | y3i = a[j1 - 1] - a[j3 - 1]; 1297 | a[j0] = x0r + x2r; 1298 | a[j0 + 1] = x0i + x2i; 1299 | a[j0 - 2] = y0r + y2r; 1300 | a[j0 - 1] = y0i + y2i; 1301 | a[j1] = x0r - x2r; 1302 | a[j1 + 1] = x0i - x2i; 1303 | a[j1 - 2] = y0r - y2r; 1304 | a[j1 - 1] = y0i - y2i; 1305 | x0r = x1r - x3i; 1306 | x0i = x1i + x3r; 1307 | a[j2] = wk1i * x0r - wk1r * x0i; 1308 | a[j2 + 1] = wk1i * x0i + wk1r * x0r; 1309 | x0r = y1r - y3i; 1310 | x0i = y1i + y3r; 1311 | a[j2 - 2] = wd1i * x0r - wd1r * x0i; 1312 | a[j2 - 1] = wd1i * x0i + wd1r * x0r; 1313 | x0r = x1r + x3i; 1314 | x0i = x1i - x3r; 1315 | a[j3] = wk3i * x0r + wk3r * x0i; 1316 | a[j3 + 1] = wk3i * x0i - wk3r * x0r; 1317 | x0r = y1r + y3i; 1318 | x0i = y1i - y3r; 1319 | a[j3 - 2] = wd3i * x0r + wd3r * x0i; 1320 | a[j3 - 1] = wd3i * x0i - wd3r * x0r; 1321 | } 1322 | wk1r = csc1 * (wd1r + wn4r); 1323 | wk1i = csc1 * (wd1i + wn4r); 1324 | wk3r = csc3 * (wd3r - wn4r); 1325 | wk3i = csc3 * (wd3i - wn4r); 1326 | j0 = mh; 1327 | j1 = j0 + m; 1328 | j2 = j1 + m; 1329 | j3 = j2 + m; 1330 | x0r = a[j0 - 2] + a[j2 - 2]; 1331 | x0i = a[j0 - 1] + a[j2 - 1]; 1332 | x1r = a[j0 - 2] - a[j2 - 2]; 1333 | x1i = a[j0 - 1] - a[j2 - 1]; 1334 | x2r = a[j1 - 2] + a[j3 - 2]; 1335 | x2i = a[j1 - 1] + a[j3 - 1]; 1336 | x3r = a[j1 - 2] - a[j3 - 2]; 1337 | x3i = a[j1 - 1] - a[j3 - 1]; 1338 | a[j0 - 2] = x0r + x2r; 1339 | a[j0 - 1] = x0i + x2i; 1340 | a[j1 - 2] = x0r - x2r; 1341 | a[j1 - 1] = x0i - x2i; 1342 | x0r = x1r - x3i; 1343 | x0i = x1i + x3r; 1344 | a[j2 - 2] = wk1r * x0r - wk1i * x0i; 1345 | a[j2 - 1] = wk1r * x0i + wk1i * x0r; 1346 | x0r = x1r + x3i; 1347 | x0i = x1i - x3r; 1348 | a[j3 - 2] = wk3r * x0r + wk3i * x0i; 1349 | a[j3 - 1] = wk3r * x0i - wk3i * x0r; 1350 | x0r = a[j0] + a[j2]; 1351 | x0i = a[j0 + 1] + a[j2 + 1]; 1352 | x1r = a[j0] - a[j2]; 1353 | x1i = a[j0 + 1] - a[j2 + 1]; 1354 | x2r = a[j1] + a[j3]; 1355 | x2i = a[j1 + 1] + a[j3 + 1]; 1356 | x3r = a[j1] - a[j3]; 1357 | x3i = a[j1 + 1] - a[j3 + 1]; 1358 | a[j0] = x0r + x2r; 1359 | a[j0 + 1] = x0i + x2i; 1360 | a[j1] = x0r - x2r; 1361 | a[j1 + 1] = x0i - x2i; 1362 | x0r = x1r - x3i; 1363 | x0i = x1i + x3r; 1364 | a[j2] = wn4r * (x0r - x0i); 1365 | a[j2 + 1] = wn4r * (x0i + x0r); 1366 | x0r = x1r + x3i; 1367 | x0i = x1i - x3r; 1368 | a[j3] = -wn4r * (x0r + x0i); 1369 | a[j3 + 1] = -wn4r * (x0i - x0r); 1370 | x0r = a[j0 + 2] + a[j2 + 2]; 1371 | x0i = a[j0 + 3] + a[j2 + 3]; 1372 | x1r = a[j0 + 2] - a[j2 + 2]; 1373 | x1i = a[j0 + 3] - a[j2 + 3]; 1374 | x2r = a[j1 + 2] + a[j3 + 2]; 1375 | x2i = a[j1 + 3] + a[j3 + 3]; 1376 | x3r = a[j1 + 2] - a[j3 + 2]; 1377 | x3i = a[j1 + 3] - a[j3 + 3]; 1378 | a[j0 + 2] = x0r + x2r; 1379 | a[j0 + 3] = x0i + x2i; 1380 | a[j1 + 2] = x0r - x2r; 1381 | a[j1 + 3] = x0i - x2i; 1382 | x0r = x1r - x3i; 1383 | x0i = x1i + x3r; 1384 | a[j2 + 2] = wk1i * x0r - wk1r * x0i; 1385 | a[j2 + 3] = wk1i * x0i + wk1r * x0r; 1386 | x0r = x1r + x3i; 1387 | x0i = x1i - x3r; 1388 | a[j3 + 2] = wk3i * x0r + wk3r * x0i; 1389 | a[j3 + 3] = wk3i * x0i - wk3r * x0r; 1390 | } 1391 | 1392 | /** 1393 | * 3rd 1394 | * @see #cftbsub(int, double[], int[], int, int, double[]) 1395 | */ 1396 | private final void cftb1st(int n, double[] a, double[] w, int wP) { 1397 | int j, j0, j1, j2, j3, k, m, mh; 1398 | double wn4r, csc1, csc3, wk1r, wk1i, wk3r, wk3i, wd1r, wd1i, wd3r, wd3i; 1399 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i; 1400 | 1401 | mh = n >> 3; 1402 | m = 2 * mh; 1403 | j1 = m; 1404 | j2 = j1 + m; 1405 | j3 = j2 + m; 1406 | x0r = a[0] + a[j2]; 1407 | x0i = -a[1] - a[j2 + 1]; 1408 | x1r = a[0] - a[j2]; 1409 | x1i = -a[1] + a[j2 + 1]; 1410 | x2r = a[j1] + a[j3]; 1411 | x2i = a[j1 + 1] + a[j3 + 1]; 1412 | x3r = a[j1] - a[j3]; 1413 | x3i = a[j1 + 1] - a[j3 + 1]; 1414 | a[0] = x0r + x2r; 1415 | a[1] = x0i - x2i; 1416 | a[j1] = x0r - x2r; 1417 | a[j1 + 1] = x0i + x2i; 1418 | a[j2] = x1r + x3i; 1419 | a[j2 + 1] = x1i + x3r; 1420 | a[j3] = x1r - x3i; 1421 | a[j3 + 1] = x1i - x3r; 1422 | wn4r = w[wP + 1]; 1423 | csc1 = w[wP + 2]; 1424 | csc3 = w[wP + 3]; 1425 | wd1r = 1; 1426 | wd1i = 0; 1427 | wd3r = 1; 1428 | wd3i = 0; 1429 | k = 0; 1430 | for (j = 2; j < mh - 2; j += 4) { 1431 | k += 4; 1432 | wk1r = csc1 * (wd1r + w[wP + k]); 1433 | wk1i = csc1 * (wd1i + w[wP + k + 1]); 1434 | wk3r = csc3 * (wd3r + w[wP + k + 2]); 1435 | wk3i = csc3 * (wd3i - w[wP + k + 3]); 1436 | wd1r = w[wP + k]; 1437 | wd1i = w[wP + k + 1]; 1438 | wd3r = w[wP + k + 2]; 1439 | wd3i = -w[wP + k + 3]; 1440 | j1 = j + m; 1441 | j2 = j1 + m; 1442 | j3 = j2 + m; 1443 | x0r = a[j] + a[j2]; 1444 | x0i = -a[j + 1] - a[j2 + 1]; 1445 | x1r = a[j] - a[j2]; 1446 | x1i = -a[j + 1] + a[j2 + 1]; 1447 | y0r = a[j + 2] + a[j2 + 2]; 1448 | y0i = -a[j + 3] - a[j2 + 3]; 1449 | y1r = a[j + 2] - a[j2 + 2]; 1450 | y1i = -a[j + 3] + a[j2 + 3]; 1451 | x2r = a[j1] + a[j3]; 1452 | x2i = a[j1 + 1] + a[j3 + 1]; 1453 | x3r = a[j1] - a[j3]; 1454 | x3i = a[j1 + 1] - a[j3 + 1]; 1455 | y2r = a[j1 + 2] + a[j3 + 2]; 1456 | y2i = a[j1 + 3] + a[j3 + 3]; 1457 | y3r = a[j1 + 2] - a[j3 + 2]; 1458 | y3i = a[j1 + 3] - a[j3 + 3]; 1459 | a[j] = x0r + x2r; 1460 | a[j + 1] = x0i - x2i; 1461 | a[j + 2] = y0r + y2r; 1462 | a[j + 3] = y0i - y2i; 1463 | a[j1] = x0r - x2r; 1464 | a[j1 + 1] = x0i + x2i; 1465 | a[j1 + 2] = y0r - y2r; 1466 | a[j1 + 3] = y0i + y2i; 1467 | x0r = x1r + x3i; 1468 | x0i = x1i + x3r; 1469 | a[j2] = wk1r * x0r - wk1i * x0i; 1470 | a[j2 + 1] = wk1r * x0i + wk1i * x0r; 1471 | x0r = y1r + y3i; 1472 | x0i = y1i + y3r; 1473 | a[j2 + 2] = wd1r * x0r - wd1i * x0i; 1474 | a[j2 + 3] = wd1r * x0i + wd1i * x0r; 1475 | x0r = x1r - x3i; 1476 | x0i = x1i - x3r; 1477 | a[j3] = wk3r * x0r + wk3i * x0i; 1478 | a[j3 + 1] = wk3r * x0i - wk3i * x0r; 1479 | x0r = y1r - y3i; 1480 | x0i = y1i - y3r; 1481 | a[j3 + 2] = wd3r * x0r + wd3i * x0i; 1482 | a[j3 + 3] = wd3r * x0i - wd3i * x0r; 1483 | j0 = m - j; 1484 | j1 = j0 + m; 1485 | j2 = j1 + m; 1486 | j3 = j2 + m; 1487 | x0r = a[j0] + a[j2]; 1488 | x0i = -a[j0 + 1] - a[j2 + 1]; 1489 | x1r = a[j0] - a[j2]; 1490 | x1i = -a[j0 + 1] + a[j2 + 1]; 1491 | y0r = a[j0 - 2] + a[j2 - 2]; 1492 | y0i = -a[j0 - 1] - a[j2 - 1]; 1493 | y1r = a[j0 - 2] - a[j2 - 2]; 1494 | y1i = -a[j0 - 1] + a[j2 - 1]; 1495 | x2r = a[j1] + a[j3]; 1496 | x2i = a[j1 + 1] + a[j3 + 1]; 1497 | x3r = a[j1] - a[j3]; 1498 | x3i = a[j1 + 1] - a[j3 + 1]; 1499 | y2r = a[j1 - 2] + a[j3 - 2]; 1500 | y2i = a[j1 - 1] + a[j3 - 1]; 1501 | y3r = a[j1 - 2] - a[j3 - 2]; 1502 | y3i = a[j1 - 1] - a[j3 - 1]; 1503 | a[j0] = x0r + x2r; 1504 | a[j0 + 1] = x0i - x2i; 1505 | a[j0 - 2] = y0r + y2r; 1506 | a[j0 - 1] = y0i - y2i; 1507 | a[j1] = x0r - x2r; 1508 | a[j1 + 1] = x0i + x2i; 1509 | a[j1 - 2] = y0r - y2r; 1510 | a[j1 - 1] = y0i + y2i; 1511 | x0r = x1r + x3i; 1512 | x0i = x1i + x3r; 1513 | a[j2] = wk1i * x0r - wk1r * x0i; 1514 | a[j2 + 1] = wk1i * x0i + wk1r * x0r; 1515 | x0r = y1r + y3i; 1516 | x0i = y1i + y3r; 1517 | a[j2 - 2] = wd1i * x0r - wd1r * x0i; 1518 | a[j2 - 1] = wd1i * x0i + wd1r * x0r; 1519 | x0r = x1r - x3i; 1520 | x0i = x1i - x3r; 1521 | a[j3] = wk3i * x0r + wk3r * x0i; 1522 | a[j3 + 1] = wk3i * x0i - wk3r * x0r; 1523 | x0r = y1r - y3i; 1524 | x0i = y1i - y3r; 1525 | a[j3 - 2] = wd3i * x0r + wd3r * x0i; 1526 | a[j3 - 1] = wd3i * x0i - wd3r * x0r; 1527 | } 1528 | wk1r = csc1 * (wd1r + wn4r); 1529 | wk1i = csc1 * (wd1i + wn4r); 1530 | wk3r = csc3 * (wd3r - wn4r); 1531 | wk3i = csc3 * (wd3i - wn4r); 1532 | j0 = mh; 1533 | j1 = j0 + m; 1534 | j2 = j1 + m; 1535 | j3 = j2 + m; 1536 | x0r = a[j0 - 2] + a[j2 - 2]; 1537 | x0i = -a[j0 - 1] - a[j2 - 1]; 1538 | x1r = a[j0 - 2] - a[j2 - 2]; 1539 | x1i = -a[j0 - 1] + a[j2 - 1]; 1540 | x2r = a[j1 - 2] + a[j3 - 2]; 1541 | x2i = a[j1 - 1] + a[j3 - 1]; 1542 | x3r = a[j1 - 2] - a[j3 - 2]; 1543 | x3i = a[j1 - 1] - a[j3 - 1]; 1544 | a[j0 - 2] = x0r + x2r; 1545 | a[j0 - 1] = x0i - x2i; 1546 | a[j1 - 2] = x0r - x2r; 1547 | a[j1 - 1] = x0i + x2i; 1548 | x0r = x1r + x3i; 1549 | x0i = x1i + x3r; 1550 | a[j2 - 2] = wk1r * x0r - wk1i * x0i; 1551 | a[j2 - 1] = wk1r * x0i + wk1i * x0r; 1552 | x0r = x1r - x3i; 1553 | x0i = x1i - x3r; 1554 | a[j3 - 2] = wk3r * x0r + wk3i * x0i; 1555 | a[j3 - 1] = wk3r * x0i - wk3i * x0r; 1556 | x0r = a[j0] + a[j2]; 1557 | x0i = -a[j0 + 1] - a[j2 + 1]; 1558 | x1r = a[j0] - a[j2]; 1559 | x1i = -a[j0 + 1] + a[j2 + 1]; 1560 | x2r = a[j1] + a[j3]; 1561 | x2i = a[j1 + 1] + a[j3 + 1]; 1562 | x3r = a[j1] - a[j3]; 1563 | x3i = a[j1 + 1] - a[j3 + 1]; 1564 | a[j0] = x0r + x2r; 1565 | a[j0 + 1] = x0i - x2i; 1566 | a[j1] = x0r - x2r; 1567 | a[j1 + 1] = x0i + x2i; 1568 | x0r = x1r + x3i; 1569 | x0i = x1i + x3r; 1570 | a[j2] = wn4r * (x0r - x0i); 1571 | a[j2 + 1] = wn4r * (x0i + x0r); 1572 | x0r = x1r - x3i; 1573 | x0i = x1i - x3r; 1574 | a[j3] = -wn4r * (x0r + x0i); 1575 | a[j3 + 1] = -wn4r * (x0i - x0r); 1576 | x0r = a[j0 + 2] + a[j2 + 2]; 1577 | x0i = -a[j0 + 3] - a[j2 + 3]; 1578 | x1r = a[j0 + 2] - a[j2 + 2]; 1579 | x1i = -a[j0 + 3] + a[j2 + 3]; 1580 | x2r = a[j1 + 2] + a[j3 + 2]; 1581 | x2i = a[j1 + 3] + a[j3 + 3]; 1582 | x3r = a[j1 + 2] - a[j3 + 2]; 1583 | x3i = a[j1 + 3] - a[j3 + 3]; 1584 | a[j0 + 2] = x0r + x2r; 1585 | a[j0 + 3] = x0i - x2i; 1586 | a[j1 + 2] = x0r - x2r; 1587 | a[j1 + 3] = x0i + x2i; 1588 | x0r = x1r + x3i; 1589 | x0i = x1i + x3r; 1590 | a[j2 + 2] = wk1i * x0r - wk1r * x0i; 1591 | a[j2 + 3] = wk1i * x0i + wk1r * x0r; 1592 | x0r = x1r - x3i; 1593 | x0i = x1i - x3r; 1594 | a[j3 + 2] = wk3i * x0r + wk3r * x0i; 1595 | a[j3 + 3] = wk3i * x0i - wk3r * x0r; 1596 | } 1597 | 1598 | /** */ 1599 | private void cftrec1(int n, double[] a, int aP, int nw, double[] w) { 1600 | int m; 1601 | 1602 | m = n >> 2; 1603 | cftmdl1(n, a, aP, w, nw - 2 * m); 1604 | if (n > CDFT_RECURSIVE_N) { 1605 | cftrec1(m, a, aP, nw, w); 1606 | cftrec2(m, a, aP + m, nw, w); 1607 | cftrec1(m, a, aP + 2 * m, nw, w); 1608 | cftrec1(m, a, aP + 3 * m, nw, w); 1609 | } else { 1610 | cftexp1(n, a, aP, nw, w); 1611 | } 1612 | } 1613 | 1614 | /** */ 1615 | private void cftrec2(int n, double[] a, int aP, int nw, double[] w) { 1616 | int m; 1617 | 1618 | m = n >> 2; 1619 | cftmdl2(n, a, aP, w, nw - n); 1620 | if (n > CDFT_RECURSIVE_N) { 1621 | cftrec1(m, a, aP, nw, w); 1622 | cftrec2(m, a, aP + m, nw, w); 1623 | cftrec1(m, a, aP + 2 * m, nw, w); 1624 | cftrec2(m, a, aP + 3 * m, nw, w); 1625 | } else { 1626 | cftexp2(n, a, aP, nw, w); 1627 | } 1628 | } 1629 | 1630 | /** */ 1631 | private void cftexp1(int n, double[] a, int aP, int nw, double[] w) { 1632 | int j, k, l; 1633 | 1634 | l = n >> 2; 1635 | while (l > 128) { 1636 | for (k = l; k < n; k <<= 2) { 1637 | for (j = k - l; j < n; j += 4 * k) { 1638 | cftmdl1(l, a, aP + j, w, nw - (l >> 1)); 1639 | cftmdl2(l, a, aP + k + j, w, nw - l); 1640 | cftmdl1(l, a, aP + 2 * k + j, w, nw - (l >> 1)); 1641 | } 1642 | } 1643 | cftmdl1(l, a, aP + n - l, w, nw - (l >> 1)); 1644 | l >>= 2; 1645 | } 1646 | for (k = l; k < n; k <<= 2) { 1647 | for (j = k - l; j < n; j += 4 * k) { 1648 | cftmdl1(l, a, aP + j, w, nw - (l >> 1)); 1649 | cftfx41(l, a, aP + j, nw, w); 1650 | cftmdl2(l, a, aP + k + j, w, nw - l); 1651 | cftfx42(l, a, aP + k + j, nw, w); 1652 | cftmdl1(l, a, aP + 2 * k + j, w, nw - (l >> 1)); 1653 | cftfx41(l, a, aP + 2 * k + j, nw, w); 1654 | } 1655 | } 1656 | cftmdl1(l, a, aP + n - l, w, nw - (l >> 1)); 1657 | cftfx41(l, a, aP + n - l, nw, w); 1658 | } 1659 | 1660 | /** */ 1661 | private void cftexp2(int n, double[] a, int aP, int nw, double[] w) { 1662 | int j, k, l, m; 1663 | 1664 | m = n >> 1; 1665 | l = n >> 2; 1666 | while (l > 128) { 1667 | for (k = l; k < m; k <<= 2) { 1668 | for (j = k - l; j < m; j += 2 * k) { 1669 | cftmdl1(l, a, aP + j, w, nw - (l >> 1)); 1670 | cftmdl1(l, a, aP + m + j, w, nw - (l >> 1)); 1671 | } 1672 | for (j = 2 * k - l; j < m; j += 4 * k) { 1673 | cftmdl2(l, a, aP + j, w, nw - l); 1674 | cftmdl2(l, a, aP + m + j, w, nw - l); 1675 | } 1676 | } 1677 | l >>= 2; 1678 | } 1679 | for (k = l; k < m; k <<= 2) { 1680 | for (j = k - l; j < m; j += 2 * k) { 1681 | cftmdl1(l, a, aP + j, w, nw - (l >> 1)); 1682 | cftfx41(l, a, aP + j, nw, w); 1683 | cftmdl1(l, a, aP + m + j, w, nw - (l >> 1)); 1684 | cftfx41(l, a, aP + m + j, nw, w); 1685 | } 1686 | for (j = 2 * k - l; j < m; j += 4 * k) { 1687 | cftmdl2(l, a, aP + j, w, nw - l); 1688 | cftfx42(l, a, aP + j, nw, w); 1689 | cftmdl2(l, a, aP + m + j, w, nw - l); 1690 | cftfx42(l, a, aP + m + j, nw, w); 1691 | } 1692 | } 1693 | } 1694 | 1695 | /** */ 1696 | private final void cftmdl1(int n, double[] a, int aP, double[] w, int wP) { 1697 | int j, j0, j1, j2, j3, k, m, mh; 1698 | double wn4r, wk1r, wk1i, wk3r, wk3i; 1699 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; 1700 | 1701 | mh = n >> 3; 1702 | m = 2 * mh; 1703 | j1 = m; 1704 | j2 = j1 + m; 1705 | j3 = j2 + m; 1706 | x0r = a[aP + 0] + a[aP + j2]; 1707 | x0i = a[aP + 1] + a[aP + j2 + 1]; 1708 | x1r = a[aP + 0] - a[aP + j2]; 1709 | x1i = a[aP + 1] - a[aP + j2 + 1]; 1710 | x2r = a[aP + j1] + a[aP + j3]; 1711 | x2i = a[aP + j1 + 1] + a[aP + j3 + 1]; 1712 | x3r = a[aP + j1] - a[aP + j3]; 1713 | x3i = a[aP + j1 + 1] - a[aP + j3 + 1]; 1714 | a[aP + 0] = x0r + x2r; 1715 | a[aP + 1] = x0i + x2i; 1716 | a[aP + j1] = x0r - x2r; 1717 | a[aP + j1 + 1] = x0i - x2i; 1718 | a[aP + j2] = x1r - x3i; 1719 | a[aP + j2 + 1] = x1i + x3r; 1720 | a[aP + j3] = x1r + x3i; 1721 | a[aP + j3 + 1] = x1i - x3r; 1722 | wn4r = w[wP + 1]; 1723 | k = 0; 1724 | for (j = 2; j < mh; j += 2) { 1725 | k += 4; 1726 | wk1r = w[wP + k]; 1727 | wk1i = w[wP + k + 1]; 1728 | wk3r = w[wP + k + 2]; 1729 | wk3i = -w[wP + k + 3]; 1730 | j1 = j + m; 1731 | j2 = j1 + m; 1732 | j3 = j2 + m; 1733 | x0r = a[aP + j] + a[aP + j2]; 1734 | x0i = a[aP + j + 1] + a[aP + j2 + 1]; 1735 | x1r = a[aP + j] - a[aP + j2]; 1736 | x1i = a[aP + j + 1] - a[aP + j2 + 1]; 1737 | x2r = a[aP + j1] + a[aP + j3]; 1738 | x2i = a[aP + j1 + 1] + a[aP + j3 + 1]; 1739 | x3r = a[aP + j1] - a[aP + j3]; 1740 | x3i = a[aP + j1 + 1] - a[aP + j3 + 1]; 1741 | a[aP + j] = x0r + x2r; 1742 | a[aP + j + 1] = x0i + x2i; 1743 | a[aP + j1] = x0r - x2r; 1744 | a[aP + j1 + 1] = x0i - x2i; 1745 | x0r = x1r - x3i; 1746 | x0i = x1i + x3r; 1747 | a[aP + j2] = wk1r * x0r - wk1i * x0i; 1748 | a[aP + j2 + 1] = wk1r * x0i + wk1i * x0r; 1749 | x0r = x1r + x3i; 1750 | x0i = x1i - x3r; 1751 | a[aP + j3] = wk3r * x0r + wk3i * x0i; 1752 | a[aP + j3 + 1] = wk3r * x0i - wk3i * x0r; 1753 | j0 = m - j; 1754 | j1 = j0 + m; 1755 | j2 = j1 + m; 1756 | j3 = j2 + m; 1757 | x0r = a[aP + j0] + a[aP + j2]; 1758 | x0i = a[aP + j0 + 1] + a[aP + j2 + 1]; 1759 | x1r = a[aP + j0] - a[aP + j2]; 1760 | x1i = a[aP + j0 + 1] - a[aP + j2 + 1]; 1761 | x2r = a[aP + j1] + a[aP + j3]; 1762 | x2i = a[aP + j1 + 1] + a[aP + j3 + 1]; 1763 | x3r = a[aP + j1] - a[aP + j3]; 1764 | x3i = a[aP + j1 + 1] - a[aP + j3 + 1]; 1765 | a[aP + j0] = x0r + x2r; 1766 | a[aP + j0 + 1] = x0i + x2i; 1767 | a[aP + j1] = x0r - x2r; 1768 | a[aP + j1 + 1] = x0i - x2i; 1769 | x0r = x1r - x3i; 1770 | x0i = x1i + x3r; 1771 | a[aP + j2] = wk1i * x0r - wk1r * x0i; 1772 | a[aP + j2 + 1] = wk1i * x0i + wk1r * x0r; 1773 | x0r = x1r + x3i; 1774 | x0i = x1i - x3r; 1775 | a[aP + j3] = wk3i * x0r + wk3r * x0i; 1776 | a[aP + j3 + 1] = wk3i * x0i - wk3r * x0r; 1777 | } 1778 | j0 = mh; 1779 | j1 = j0 + m; 1780 | j2 = j1 + m; 1781 | j3 = j2 + m; 1782 | x0r = a[aP + j0] + a[aP + j2]; 1783 | x0i = a[aP + j0 + 1] + a[aP + j2 + 1]; 1784 | x1r = a[aP + j0] - a[aP + j2]; 1785 | x1i = a[aP + j0 + 1] - a[aP + j2 + 1]; 1786 | x2r = a[aP + j1] + a[aP + j3]; 1787 | x2i = a[aP + j1 + 1] + a[aP + j3 + 1]; 1788 | x3r = a[aP + j1] - a[aP + j3]; 1789 | x3i = a[aP + j1 + 1] - a[aP + j3 + 1]; 1790 | a[aP + j0] = x0r + x2r; 1791 | a[aP + j0 + 1] = x0i + x2i; 1792 | a[aP + j1] = x0r - x2r; 1793 | a[aP + j1 + 1] = x0i - x2i; 1794 | x0r = x1r - x3i; 1795 | x0i = x1i + x3r; 1796 | a[aP + j2] = wn4r * (x0r - x0i); 1797 | a[aP + j2 + 1] = wn4r * (x0i + x0r); 1798 | x0r = x1r + x3i; 1799 | x0i = x1i - x3r; 1800 | a[aP + j3] = -wn4r * (x0r + x0i); 1801 | a[aP + j3 + 1] = -wn4r * (x0i - x0r); 1802 | } 1803 | 1804 | /** */ 1805 | private final void cftmdl2(int n, double[] a, int aP, double[] w, int wP) { 1806 | int j, j0, j1, j2, j3, k, kr, m, mh; 1807 | double wn4r, wk1r, wk1i, wk3r, wk3i, wd1r, wd1i, wd3r, wd3i; 1808 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y2r, y2i; 1809 | 1810 | mh = n >> 3; 1811 | m = 2 * mh; 1812 | wn4r = w[wP + 1]; 1813 | j1 = m; 1814 | j2 = j1 + m; 1815 | j3 = j2 + m; 1816 | x0r = a[aP + 0] - a[aP + j2 + 1]; 1817 | x0i = a[aP + 1] + a[aP + j2]; 1818 | x1r = a[aP + 0] + a[aP + j2 + 1]; 1819 | x1i = a[aP + 1] - a[aP + j2]; 1820 | x2r = a[aP + j1] - a[aP + j3 + 1]; 1821 | x2i = a[aP + j1 + 1] + a[aP + j3]; 1822 | x3r = a[aP + j1] + a[aP + j3 + 1]; 1823 | x3i = a[aP + j1 + 1] - a[aP + j3]; 1824 | y0r = wn4r * (x2r - x2i); 1825 | y0i = wn4r * (x2i + x2r); 1826 | a[aP + 0] = x0r + y0r; 1827 | a[aP + 1] = x0i + y0i; 1828 | a[aP + j1] = x0r - y0r; 1829 | a[aP + j1 + 1] = x0i - y0i; 1830 | y0r = wn4r * (x3r - x3i); 1831 | y0i = wn4r * (x3i + x3r); 1832 | a[aP + j2] = x1r - y0i; 1833 | a[aP + j2 + 1] = x1i + y0r; 1834 | a[aP + j3] = x1r + y0i; 1835 | a[aP + j3 + 1] = x1i - y0r; 1836 | k = 0; 1837 | kr = 2 * m; 1838 | for (j = 2; j < mh; j += 2) { 1839 | k += 4; 1840 | wk1r = w[wP + k]; 1841 | wk1i = w[wP + k + 1]; 1842 | wk3r = w[wP + k + 2]; 1843 | wk3i = -w[wP + k + 3]; 1844 | kr -= 4; 1845 | wd1i = w[wP + kr]; 1846 | wd1r = w[wP + kr + 1]; 1847 | wd3i = w[wP + kr + 2]; 1848 | wd3r = -w[wP + kr + 3]; 1849 | j1 = j + m; 1850 | j2 = j1 + m; 1851 | j3 = j2 + m; 1852 | x0r = a[aP + j] - a[aP + j2 + 1]; 1853 | x0i = a[aP + j + 1] + a[aP + j2]; 1854 | x1r = a[aP + j] + a[aP + j2 + 1]; 1855 | x1i = a[aP + j + 1] - a[aP + j2]; 1856 | x2r = a[aP + j1] - a[aP + j3 + 1]; 1857 | x2i = a[aP + j1 + 1] + a[aP + j3]; 1858 | x3r = a[aP + j1] + a[aP + j3 + 1]; 1859 | x3i = a[aP + j1 + 1] - a[aP + j3]; 1860 | y0r = wk1r * x0r - wk1i * x0i; 1861 | y0i = wk1r * x0i + wk1i * x0r; 1862 | y2r = wd1r * x2r - wd1i * x2i; 1863 | y2i = wd1r * x2i + wd1i * x2r; 1864 | a[aP + j] = y0r + y2r; 1865 | a[aP + j + 1] = y0i + y2i; 1866 | a[aP + j1] = y0r - y2r; 1867 | a[aP + j1 + 1] = y0i - y2i; 1868 | y0r = wk3r * x1r + wk3i * x1i; 1869 | y0i = wk3r * x1i - wk3i * x1r; 1870 | y2r = wd3r * x3r + wd3i * x3i; 1871 | y2i = wd3r * x3i - wd3i * x3r; 1872 | a[aP + j2] = y0r + y2r; 1873 | a[aP + j2 + 1] = y0i + y2i; 1874 | a[aP + j3] = y0r - y2r; 1875 | a[aP + j3 + 1] = y0i - y2i; 1876 | j0 = m - j; 1877 | j1 = j0 + m; 1878 | j2 = j1 + m; 1879 | j3 = j2 + m; 1880 | x0r = a[aP + j0] - a[aP + j2 + 1]; 1881 | x0i = a[aP + j0 + 1] + a[aP + j2]; 1882 | x1r = a[aP + j0] + a[aP + j2 + 1]; 1883 | x1i = a[aP + j0 + 1] - a[aP + j2]; 1884 | x2r = a[aP + j1] - a[aP + j3 + 1]; 1885 | x2i = a[aP + j1 + 1] + a[aP + j3]; 1886 | x3r = a[aP + j1] + a[aP + j3 + 1]; 1887 | x3i = a[aP + j1 + 1] - a[aP + j3]; 1888 | y0r = wd1i * x0r - wd1r * x0i; 1889 | y0i = wd1i * x0i + wd1r * x0r; 1890 | y2r = wk1i * x2r - wk1r * x2i; 1891 | y2i = wk1i * x2i + wk1r * x2r; 1892 | a[aP + j0] = y0r + y2r; 1893 | a[aP + j0 + 1] = y0i + y2i; 1894 | a[aP + j1] = y0r - y2r; 1895 | a[aP + j1 + 1] = y0i - y2i; 1896 | y0r = wd3i * x1r + wd3r * x1i; 1897 | y0i = wd3i * x1i - wd3r * x1r; 1898 | y2r = wk3i * x3r + wk3r * x3i; 1899 | y2i = wk3i * x3i - wk3r * x3r; 1900 | a[aP + j2] = y0r + y2r; 1901 | a[aP + j2 + 1] = y0i + y2i; 1902 | a[aP + j3] = y0r - y2r; 1903 | a[aP + j3 + 1] = y0i - y2i; 1904 | } 1905 | wk1r = w[wP + m]; 1906 | wk1i = w[wP + m + 1]; 1907 | j0 = mh; 1908 | j1 = j0 + m; 1909 | j2 = j1 + m; 1910 | j3 = j2 + m; 1911 | x0r = a[aP + j0] - a[aP + j2 + 1]; 1912 | x0i = a[aP + j0 + 1] + a[aP + j2]; 1913 | x1r = a[aP + j0] + a[aP + j2 + 1]; 1914 | x1i = a[aP + j0 + 1] - a[aP + j2]; 1915 | x2r = a[aP + j1] - a[aP + j3 + 1]; 1916 | x2i = a[aP + j1 + 1] + a[aP + j3]; 1917 | x3r = a[aP + j1] + a[aP + j3 + 1]; 1918 | x3i = a[aP + j1 + 1] - a[aP + j3]; 1919 | y0r = wk1r * x0r - wk1i * x0i; 1920 | y0i = wk1r * x0i + wk1i * x0r; 1921 | y2r = wk1i * x2r - wk1r * x2i; 1922 | y2i = wk1i * x2i + wk1r * x2r; 1923 | a[aP + j0] = y0r + y2r; 1924 | a[aP + j0 + 1] = y0i + y2i; 1925 | a[aP + j1] = y0r - y2r; 1926 | a[aP + j1 + 1] = y0i - y2i; 1927 | y0r = wk1i * x1r - wk1r * x1i; 1928 | y0i = wk1i * x1i + wk1r * x1r; 1929 | y2r = wk1r * x3r - wk1i * x3i; 1930 | y2i = wk1r * x3i + wk1i * x3r; 1931 | a[aP + j2] = y0r - y2r; 1932 | a[aP + j2 + 1] = y0i - y2i; 1933 | a[aP + j3] = y0r + y2r; 1934 | a[aP + j3 + 1] = y0i + y2i; 1935 | } 1936 | 1937 | /** */ 1938 | private void cftfx41(int n, double[] a, int aP, int nw, double[] w) { 1939 | if (n == 128) { 1940 | cftf161(a, aP, w, nw - 8); 1941 | cftf162(a, aP + 32, w, nw - 32); 1942 | cftf161(a, aP + 64, w, nw - 8); 1943 | cftf161(a, aP + 96, w, nw - 8); 1944 | } else { 1945 | cftf081(a, aP, w, nw - 16); 1946 | cftf082(a, aP + 16, w, nw - 16); 1947 | cftf081(a, aP + 32, w, nw - 16); 1948 | cftf081(a, aP + 48, w, nw - 16); 1949 | } 1950 | } 1951 | 1952 | /** */ 1953 | private void cftfx42(int n, double[] a, int aP, int nw, double[] w) { 1954 | if (n == 128) { 1955 | cftf161(a, aP, w, nw - 8); 1956 | cftf162(a, aP + 32, w, nw - 32); 1957 | cftf161(a, aP + 64, w, nw - 8); 1958 | cftf162(a, aP + 96, w, nw - 32); 1959 | } else { 1960 | cftf081(a, aP, w, nw - 16); 1961 | cftf082(a, aP + 16, w, nw - 16); 1962 | cftf081(a, aP + 32, w, nw - 16); 1963 | cftf082(a, aP + 48, w, nw - 16); 1964 | } 1965 | } 1966 | 1967 | /** */ 1968 | private void cftf161(double[] a, int aP, double[] w, int wP) { 1969 | double wn4r, wk1r, wk1i, x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i, y8r, y8i, y9r, y9i, y10r, y10i, y11r, y11i, y12r, y12i, y13r, y13i, y14r, y14i, y15r, y15i; 1970 | 1971 | wn4r = w[wP + 1]; 1972 | wk1i = wn4r * w[wP + 2]; 1973 | wk1r = wk1i + w[wP + 2]; 1974 | x0r = a[aP + 0] + a[aP + 16]; 1975 | x0i = a[aP + 1] + a[aP + 17]; 1976 | x1r = a[aP + 0] - a[aP + 16]; 1977 | x1i = a[aP + 1] - a[aP + 17]; 1978 | x2r = a[aP + 8] + a[aP + 24]; 1979 | x2i = a[aP + 9] + a[aP + 25]; 1980 | x3r = a[aP + 8] - a[aP + 24]; 1981 | x3i = a[aP + 9] - a[aP + 25]; 1982 | y0r = x0r + x2r; 1983 | y0i = x0i + x2i; 1984 | y4r = x0r - x2r; 1985 | y4i = x0i - x2i; 1986 | y8r = x1r - x3i; 1987 | y8i = x1i + x3r; 1988 | y12r = x1r + x3i; 1989 | y12i = x1i - x3r; 1990 | x0r = a[aP + 2] + a[aP + 18]; 1991 | x0i = a[aP + 3] + a[aP + 19]; 1992 | x1r = a[aP + 2] - a[aP + 18]; 1993 | x1i = a[aP + 3] - a[aP + 19]; 1994 | x2r = a[aP + 10] + a[aP + 26]; 1995 | x2i = a[aP + 11] + a[aP + 27]; 1996 | x3r = a[aP + 10] - a[aP + 26]; 1997 | x3i = a[aP + 11] - a[aP + 27]; 1998 | y1r = x0r + x2r; 1999 | y1i = x0i + x2i; 2000 | y5r = x0r - x2r; 2001 | y5i = x0i - x2i; 2002 | x0r = x1r - x3i; 2003 | x0i = x1i + x3r; 2004 | y9r = wk1r * x0r - wk1i * x0i; 2005 | y9i = wk1r * x0i + wk1i * x0r; 2006 | x0r = x1r + x3i; 2007 | x0i = x1i - x3r; 2008 | y13r = wk1i * x0r - wk1r * x0i; 2009 | y13i = wk1i * x0i + wk1r * x0r; 2010 | x0r = a[aP + 4] + a[aP + 20]; 2011 | x0i = a[aP + 5] + a[aP + 21]; 2012 | x1r = a[aP + 4] - a[aP + 20]; 2013 | x1i = a[aP + 5] - a[aP + 21]; 2014 | x2r = a[aP + 12] + a[aP + 28]; 2015 | x2i = a[aP + 13] + a[aP + 29]; 2016 | x3r = a[aP + 12] - a[aP + 28]; 2017 | x3i = a[aP + 13] - a[aP + 29]; 2018 | y2r = x0r + x2r; 2019 | y2i = x0i + x2i; 2020 | y6r = x0r - x2r; 2021 | y6i = x0i - x2i; 2022 | x0r = x1r - x3i; 2023 | x0i = x1i + x3r; 2024 | y10r = wn4r * (x0r - x0i); 2025 | y10i = wn4r * (x0i + x0r); 2026 | x0r = x1r + x3i; 2027 | x0i = x1i - x3r; 2028 | y14r = wn4r * (x0r + x0i); 2029 | y14i = wn4r * (x0i - x0r); 2030 | x0r = a[aP + 6] + a[aP + 22]; 2031 | x0i = a[aP + 7] + a[aP + 23]; 2032 | x1r = a[aP + 6] - a[aP + 22]; 2033 | x1i = a[aP + 7] - a[aP + 23]; 2034 | x2r = a[aP + 14] + a[aP + 30]; 2035 | x2i = a[aP + 15] + a[aP + 31]; 2036 | x3r = a[aP + 14] - a[aP + 30]; 2037 | x3i = a[aP + 15] - a[aP + 31]; 2038 | y3r = x0r + x2r; 2039 | y3i = x0i + x2i; 2040 | y7r = x0r - x2r; 2041 | y7i = x0i - x2i; 2042 | x0r = x1r - x3i; 2043 | x0i = x1i + x3r; 2044 | y11r = wk1i * x0r - wk1r * x0i; 2045 | y11i = wk1i * x0i + wk1r * x0r; 2046 | x0r = x1r + x3i; 2047 | x0i = x1i - x3r; 2048 | y15r = wk1r * x0r - wk1i * x0i; 2049 | y15i = wk1r * x0i + wk1i * x0r; 2050 | x0r = y12r - y14r; 2051 | x0i = y12i - y14i; 2052 | x1r = y12r + y14r; 2053 | x1i = y12i + y14i; 2054 | x2r = y13r - y15r; 2055 | x2i = y13i - y15i; 2056 | x3r = y13r + y15r; 2057 | x3i = y13i + y15i; 2058 | a[aP + 24] = x0r + x2r; 2059 | a[aP + 25] = x0i + x2i; 2060 | a[aP + 26] = x0r - x2r; 2061 | a[aP + 27] = x0i - x2i; 2062 | a[aP + 28] = x1r - x3i; 2063 | a[aP + 29] = x1i + x3r; 2064 | a[aP + 30] = x1r + x3i; 2065 | a[aP + 31] = x1i - x3r; 2066 | x0r = y8r + y10r; 2067 | x0i = y8i + y10i; 2068 | x1r = y8r - y10r; 2069 | x1i = y8i - y10i; 2070 | x2r = y9r + y11r; 2071 | x2i = y9i + y11i; 2072 | x3r = y9r - y11r; 2073 | x3i = y9i - y11i; 2074 | a[aP + 16] = x0r + x2r; 2075 | a[aP + 17] = x0i + x2i; 2076 | a[aP + 18] = x0r - x2r; 2077 | a[aP + 19] = x0i - x2i; 2078 | a[aP + 20] = x1r - x3i; 2079 | a[aP + 21] = x1i + x3r; 2080 | a[aP + 22] = x1r + x3i; 2081 | a[aP + 23] = x1i - x3r; 2082 | x0r = y5r - y7i; 2083 | x0i = y5i + y7r; 2084 | x2r = wn4r * (x0r - x0i); 2085 | x2i = wn4r * (x0i + x0r); 2086 | x0r = y5r + y7i; 2087 | x0i = y5i - y7r; 2088 | x3r = wn4r * (x0r - x0i); 2089 | x3i = wn4r * (x0i + x0r); 2090 | x0r = y4r - y6i; 2091 | x0i = y4i + y6r; 2092 | x1r = y4r + y6i; 2093 | x1i = y4i - y6r; 2094 | a[aP + 8] = x0r + x2r; 2095 | a[aP + 9] = x0i + x2i; 2096 | a[aP + 10] = x0r - x2r; 2097 | a[aP + 11] = x0i - x2i; 2098 | a[aP + 12] = x1r - x3i; 2099 | a[aP + 13] = x1i + x3r; 2100 | a[aP + 14] = x1r + x3i; 2101 | a[aP + 15] = x1i - x3r; 2102 | x0r = y0r + y2r; 2103 | x0i = y0i + y2i; 2104 | x1r = y0r - y2r; 2105 | x1i = y0i - y2i; 2106 | x2r = y1r + y3r; 2107 | x2i = y1i + y3i; 2108 | x3r = y1r - y3r; 2109 | x3i = y1i - y3i; 2110 | a[aP + 0] = x0r + x2r; 2111 | a[aP + 1] = x0i + x2i; 2112 | a[aP + 2] = x0r - x2r; 2113 | a[aP + 3] = x0i - x2i; 2114 | a[aP + 4] = x1r - x3i; 2115 | a[aP + 5] = x1i + x3r; 2116 | a[aP + 6] = x1r + x3i; 2117 | a[aP + 7] = x1i - x3r; 2118 | } 2119 | 2120 | /** */ 2121 | private void cftf162(double[] a, int aP, double[] w, int wP) { 2122 | double wn4r, wk1r, wk1i, wk2r, wk2i, wk3r, wk3i, x0r, x0i, x1r, x1i, x2r, x2i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i, y8r, y8i, y9r, y9i, y10r, y10i, y11r, y11i, y12r, y12i, y13r, y13i, y14r, y14i, y15r, y15i; 2123 | 2124 | wn4r = w[wP + 1]; 2125 | wk1r = w[wP + 4]; 2126 | wk1i = w[wP + 5]; 2127 | wk3r = w[wP + 6]; 2128 | wk3i = w[wP + 7]; 2129 | wk2r = w[wP + 8]; 2130 | wk2i = w[wP + 9]; 2131 | x1r = a[aP + 0] - a[aP + 17]; 2132 | x1i = a[aP + 1] + a[aP + 16]; 2133 | x0r = a[aP + 8] - a[aP + 25]; 2134 | x0i = a[aP + 9] + a[aP + 24]; 2135 | x2r = wn4r * (x0r - x0i); 2136 | x2i = wn4r * (x0i + x0r); 2137 | y0r = x1r + x2r; 2138 | y0i = x1i + x2i; 2139 | y4r = x1r - x2r; 2140 | y4i = x1i - x2i; 2141 | x1r = a[aP + 0] + a[aP + 17]; 2142 | x1i = a[aP + 1] - a[aP + 16]; 2143 | x0r = a[aP + 8] + a[aP + 25]; 2144 | x0i = a[aP + 9] - a[aP + 24]; 2145 | x2r = wn4r * (x0r - x0i); 2146 | x2i = wn4r * (x0i + x0r); 2147 | y8r = x1r - x2i; 2148 | y8i = x1i + x2r; 2149 | y12r = x1r + x2i; 2150 | y12i = x1i - x2r; 2151 | x0r = a[aP + 2] - a[aP + 19]; 2152 | x0i = a[aP + 3] + a[aP + 18]; 2153 | x1r = wk1r * x0r - wk1i * x0i; 2154 | x1i = wk1r * x0i + wk1i * x0r; 2155 | x0r = a[aP + 10] - a[aP + 27]; 2156 | x0i = a[aP + 11] + a[aP + 26]; 2157 | x2r = wk3i * x0r - wk3r * x0i; 2158 | x2i = wk3i * x0i + wk3r * x0r; 2159 | y1r = x1r + x2r; 2160 | y1i = x1i + x2i; 2161 | y5r = x1r - x2r; 2162 | y5i = x1i - x2i; 2163 | x0r = a[aP + 2] + a[aP + 19]; 2164 | x0i = a[aP + 3] - a[aP + 18]; 2165 | x1r = wk3r * x0r - wk3i * x0i; 2166 | x1i = wk3r * x0i + wk3i * x0r; 2167 | x0r = a[aP + 10] + a[aP + 27]; 2168 | x0i = a[aP + 11] - a[aP + 26]; 2169 | x2r = wk1r * x0r + wk1i * x0i; 2170 | x2i = wk1r * x0i - wk1i * x0r; 2171 | y9r = x1r - x2r; 2172 | y9i = x1i - x2i; 2173 | y13r = x1r + x2r; 2174 | y13i = x1i + x2i; 2175 | x0r = a[aP + 4] - a[aP + 21]; 2176 | x0i = a[aP + 5] + a[aP + 20]; 2177 | x1r = wk2r * x0r - wk2i * x0i; 2178 | x1i = wk2r * x0i + wk2i * x0r; 2179 | x0r = a[aP + 12] - a[aP + 29]; 2180 | x0i = a[aP + 13] + a[aP + 28]; 2181 | x2r = wk2i * x0r - wk2r * x0i; 2182 | x2i = wk2i * x0i + wk2r * x0r; 2183 | y2r = x1r + x2r; 2184 | y2i = x1i + x2i; 2185 | y6r = x1r - x2r; 2186 | y6i = x1i - x2i; 2187 | x0r = a[aP + 4] + a[aP + 21]; 2188 | x0i = a[aP + 5] - a[aP + 20]; 2189 | x1r = wk2i * x0r - wk2r * x0i; 2190 | x1i = wk2i * x0i + wk2r * x0r; 2191 | x0r = a[aP + 12] + a[aP + 29]; 2192 | x0i = a[aP + 13] - a[aP + 28]; 2193 | x2r = wk2r * x0r - wk2i * x0i; 2194 | x2i = wk2r * x0i + wk2i * x0r; 2195 | y10r = x1r - x2r; 2196 | y10i = x1i - x2i; 2197 | y14r = x1r + x2r; 2198 | y14i = x1i + x2i; 2199 | x0r = a[aP + 6] - a[aP + 23]; 2200 | x0i = a[aP + 7] + a[aP + 22]; 2201 | x1r = wk3r * x0r - wk3i * x0i; 2202 | x1i = wk3r * x0i + wk3i * x0r; 2203 | x0r = a[aP + 14] - a[aP + 31]; 2204 | x0i = a[aP + 15] + a[aP + 30]; 2205 | x2r = wk1i * x0r - wk1r * x0i; 2206 | x2i = wk1i * x0i + wk1r * x0r; 2207 | y3r = x1r + x2r; 2208 | y3i = x1i + x2i; 2209 | y7r = x1r - x2r; 2210 | y7i = x1i - x2i; 2211 | x0r = a[aP + 6] + a[aP + 23]; 2212 | x0i = a[aP + 7] - a[aP + 22]; 2213 | x1r = wk1i * x0r + wk1r * x0i; 2214 | x1i = wk1i * x0i - wk1r * x0r; 2215 | x0r = a[aP + 14] + a[aP + 31]; 2216 | x0i = a[aP + 15] - a[aP + 30]; 2217 | x2r = wk3i * x0r - wk3r * x0i; 2218 | x2i = wk3i * x0i + wk3r * x0r; 2219 | y11r = x1r + x2r; 2220 | y11i = x1i + x2i; 2221 | y15r = x1r - x2r; 2222 | y15i = x1i - x2i; 2223 | x1r = y0r + y2r; 2224 | x1i = y0i + y2i; 2225 | x2r = y1r + y3r; 2226 | x2i = y1i + y3i; 2227 | a[aP + 0] = x1r + x2r; 2228 | a[aP + 1] = x1i + x2i; 2229 | a[aP + 2] = x1r - x2r; 2230 | a[aP + 3] = x1i - x2i; 2231 | x1r = y0r - y2r; 2232 | x1i = y0i - y2i; 2233 | x2r = y1r - y3r; 2234 | x2i = y1i - y3i; 2235 | a[aP + 4] = x1r - x2i; 2236 | a[aP + 5] = x1i + x2r; 2237 | a[aP + 6] = x1r + x2i; 2238 | a[aP + 7] = x1i - x2r; 2239 | x1r = y4r - y6i; 2240 | x1i = y4i + y6r; 2241 | x0r = y5r - y7i; 2242 | x0i = y5i + y7r; 2243 | x2r = wn4r * (x0r - x0i); 2244 | x2i = wn4r * (x0i + x0r); 2245 | a[aP + 8] = x1r + x2r; 2246 | a[aP + 9] = x1i + x2i; 2247 | a[aP + 10] = x1r - x2r; 2248 | a[aP + 11] = x1i - x2i; 2249 | x1r = y4r + y6i; 2250 | x1i = y4i - y6r; 2251 | x0r = y5r + y7i; 2252 | x0i = y5i - y7r; 2253 | x2r = wn4r * (x0r - x0i); 2254 | x2i = wn4r * (x0i + x0r); 2255 | a[aP + 12] = x1r - x2i; 2256 | a[aP + 13] = x1i + x2r; 2257 | a[aP + 14] = x1r + x2i; 2258 | a[aP + 15] = x1i - x2r; 2259 | x1r = y8r + y10r; 2260 | x1i = y8i + y10i; 2261 | x2r = y9r - y11r; 2262 | x2i = y9i - y11i; 2263 | a[aP + 16] = x1r + x2r; 2264 | a[aP + 17] = x1i + x2i; 2265 | a[aP + 18] = x1r - x2r; 2266 | a[aP + 19] = x1i - x2i; 2267 | x1r = y8r - y10r; 2268 | x1i = y8i - y10i; 2269 | x2r = y9r + y11r; 2270 | x2i = y9i + y11i; 2271 | a[aP + 20] = x1r - x2i; 2272 | a[aP + 21] = x1i + x2r; 2273 | a[aP + 22] = x1r + x2i; 2274 | a[aP + 23] = x1i - x2r; 2275 | x1r = y12r - y14i; 2276 | x1i = y12i + y14r; 2277 | x0r = y13r + y15i; 2278 | x0i = y13i - y15r; 2279 | x2r = wn4r * (x0r - x0i); 2280 | x2i = wn4r * (x0i + x0r); 2281 | a[aP + 24] = x1r + x2r; 2282 | a[aP + 25] = x1i + x2i; 2283 | a[aP + 26] = x1r - x2r; 2284 | a[aP + 27] = x1i - x2i; 2285 | x1r = y12r + y14i; 2286 | x1i = y12i - y14r; 2287 | x0r = y13r - y15i; 2288 | x0i = y13i + y15r; 2289 | x2r = wn4r * (x0r - x0i); 2290 | x2i = wn4r * (x0i + x0r); 2291 | a[aP + 28] = x1r - x2i; 2292 | a[aP + 29] = x1i + x2r; 2293 | a[aP + 30] = x1r + x2i; 2294 | a[aP + 31] = x1i - x2r; 2295 | } 2296 | 2297 | /** */ 2298 | private void cftf081(double[] a, int aP, double[] w, int wP) { 2299 | double wn4r, x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i; 2300 | 2301 | wn4r = w[wP + 1]; 2302 | x0r = a[aP + 0] + a[aP + 8]; 2303 | x0i = a[aP + 1] + a[aP + 9]; 2304 | x1r = a[aP + 0] - a[aP + 8]; 2305 | x1i = a[aP + 1] - a[aP + 9]; 2306 | x2r = a[aP + 4] + a[aP + 12]; 2307 | x2i = a[aP + 5] + a[aP + 13]; 2308 | x3r = a[aP + 4] - a[aP + 12]; 2309 | x3i = a[aP + 5] - a[aP + 13]; 2310 | y0r = x0r + x2r; 2311 | y0i = x0i + x2i; 2312 | y2r = x0r - x2r; 2313 | y2i = x0i - x2i; 2314 | y1r = x1r - x3i; 2315 | y1i = x1i + x3r; 2316 | y3r = x1r + x3i; 2317 | y3i = x1i - x3r; 2318 | x0r = a[aP + 2] + a[aP + 10]; 2319 | x0i = a[aP + 3] + a[aP + 11]; 2320 | x1r = a[aP + 2] - a[aP + 10]; 2321 | x1i = a[aP + 3] - a[aP + 11]; 2322 | x2r = a[aP + 6] + a[aP + 14]; 2323 | x2i = a[aP + 7] + a[aP + 15]; 2324 | x3r = a[aP + 6] - a[aP + 14]; 2325 | x3i = a[aP + 7] - a[aP + 15]; 2326 | y4r = x0r + x2r; 2327 | y4i = x0i + x2i; 2328 | y6r = x0r - x2r; 2329 | y6i = x0i - x2i; 2330 | x0r = x1r - x3i; 2331 | x0i = x1i + x3r; 2332 | x2r = x1r + x3i; 2333 | x2i = x1i - x3r; 2334 | y5r = wn4r * (x0r - x0i); 2335 | y5i = wn4r * (x0r + x0i); 2336 | y7r = wn4r * (x2r - x2i); 2337 | y7i = wn4r * (x2r + x2i); 2338 | a[aP + 8] = y1r + y5r; 2339 | a[aP + 9] = y1i + y5i; 2340 | a[aP + 10] = y1r - y5r; 2341 | a[aP + 11] = y1i - y5i; 2342 | a[aP + 12] = y3r - y7i; 2343 | a[aP + 13] = y3i + y7r; 2344 | a[aP + 14] = y3r + y7i; 2345 | a[aP + 15] = y3i - y7r; 2346 | a[aP + 0] = y0r + y4r; 2347 | a[aP + 1] = y0i + y4i; 2348 | a[aP + 2] = y0r - y4r; 2349 | a[aP + 3] = y0i - y4i; 2350 | a[aP + 4] = y2r - y6i; 2351 | a[aP + 5] = y2i + y6r; 2352 | a[aP + 6] = y2r + y6i; 2353 | a[aP + 7] = y2i - y6r; 2354 | } 2355 | 2356 | /** */ 2357 | private void cftf082(double[] a, int aP, double[] w, int wP) { 2358 | double wn4r, wk1r, wk1i, x0r, x0i, x1r, x1i, y0r, y0i, y1r, y1i, y2r, y2i, y3r, y3i, y4r, y4i, y5r, y5i, y6r, y6i, y7r, y7i; 2359 | 2360 | wn4r = w[wP + 1]; 2361 | wk1r = w[wP + 4]; 2362 | wk1i = w[wP + 5]; 2363 | y0r = a[aP + 0] - a[aP + 9]; 2364 | y0i = a[aP + 1] + a[aP + 8]; 2365 | y1r = a[aP + 0] + a[aP + 9]; 2366 | y1i = a[aP + 1] - a[aP + 8]; 2367 | x0r = a[aP + 4] - a[aP + 13]; 2368 | x0i = a[aP + 5] + a[aP + 12]; 2369 | y2r = wn4r * (x0r - x0i); 2370 | y2i = wn4r * (x0i + x0r); 2371 | x0r = a[aP + 4] + a[aP + 13]; 2372 | x0i = a[aP + 5] - a[aP + 12]; 2373 | y3r = wn4r * (x0r - x0i); 2374 | y3i = wn4r * (x0i + x0r); 2375 | x0r = a[aP + 2] - a[aP + 11]; 2376 | x0i = a[aP + 3] + a[aP + 10]; 2377 | y4r = wk1r * x0r - wk1i * x0i; 2378 | y4i = wk1r * x0i + wk1i * x0r; 2379 | x0r = a[aP + 2] + a[aP + 11]; 2380 | x0i = a[aP + 3] - a[aP + 10]; 2381 | y5r = wk1i * x0r - wk1r * x0i; 2382 | y5i = wk1i * x0i + wk1r * x0r; 2383 | x0r = a[aP + 6] - a[aP + 15]; 2384 | x0i = a[aP + 7] + a[aP + 14]; 2385 | y6r = wk1i * x0r - wk1r * x0i; 2386 | y6i = wk1i * x0i + wk1r * x0r; 2387 | x0r = a[aP + 6] + a[aP + 15]; 2388 | x0i = a[aP + 7] - a[aP + 14]; 2389 | y7r = wk1r * x0r - wk1i * x0i; 2390 | y7i = wk1r * x0i + wk1i * x0r; 2391 | x0r = y0r + y2r; 2392 | x0i = y0i + y2i; 2393 | x1r = y4r + y6r; 2394 | x1i = y4i + y6i; 2395 | a[aP + 0] = x0r + x1r; 2396 | a[aP + 1] = x0i + x1i; 2397 | a[aP + 2] = x0r - x1r; 2398 | a[aP + 3] = x0i - x1i; 2399 | x0r = y0r - y2r; 2400 | x0i = y0i - y2i; 2401 | x1r = y4r - y6r; 2402 | x1i = y4i - y6i; 2403 | a[aP + 4] = x0r - x1i; 2404 | a[aP + 5] = x0i + x1r; 2405 | a[aP + 6] = x0r + x1i; 2406 | a[aP + 7] = x0i - x1r; 2407 | x0r = y1r - y3i; 2408 | x0i = y1i + y3r; 2409 | x1r = y5r - y7r; 2410 | x1i = y5i - y7i; 2411 | a[aP + 8] = x0r + x1r; 2412 | a[aP + 9] = x0i + x1i; 2413 | a[aP + 10] = x0r - x1r; 2414 | a[aP + 11] = x0i - x1i; 2415 | x0r = y1r + y3i; 2416 | x0i = y1i - y3r; 2417 | x1r = y5r + y7r; 2418 | x1i = y5i + y7i; 2419 | a[aP + 12] = x0r - x1i; 2420 | a[aP + 13] = x0i + x1r; 2421 | a[aP + 14] = x0r + x1i; 2422 | a[aP + 15] = x0i - x1r; 2423 | } 2424 | 2425 | /** 2426 | * 3rd 2427 | * when n = 8. 2428 | * @see #cftfsub(int, double[], int[], int, int, double[]) 2429 | */ 2430 | private void cftf040(double[] a) { 2431 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; 2432 | 2433 | x0r = a[0] + a[4]; 2434 | x0i = a[1] + a[5]; 2435 | x1r = a[0] - a[4]; 2436 | x1i = a[1] - a[5]; 2437 | x2r = a[2] + a[6]; 2438 | x2i = a[3] + a[7]; 2439 | x3r = a[2] - a[6]; 2440 | x3i = a[3] - a[7]; 2441 | a[0] = x0r + x2r; 2442 | a[1] = x0i + x2i; 2443 | a[4] = x0r - x2r; 2444 | a[5] = x0i - x2i; 2445 | a[2] = x1r - x3i; 2446 | a[3] = x1i + x3r; 2447 | a[6] = x1r + x3i; 2448 | a[7] = x1i - x3r; 2449 | } 2450 | 2451 | /** 2452 | * 3rd 2453 | * when n = 8. 2454 | * @see #cftbsub(int, double[], int[], int, int, double[]) 2455 | */ 2456 | private void cftb040(double[] a) { 2457 | double x0r, x0i, x1r, x1i, x2r, x2i, x3r, x3i; 2458 | 2459 | x0r = a[0] + a[4]; 2460 | x0i = a[1] + a[5]; 2461 | x1r = a[0] - a[4]; 2462 | x1i = a[1] - a[5]; 2463 | x2r = a[2] + a[6]; 2464 | x2i = a[3] + a[7]; 2465 | x3r = a[2] - a[6]; 2466 | x3i = a[3] - a[7]; 2467 | a[0] = x0r + x2r; 2468 | a[1] = x0i + x2i; 2469 | a[4] = x0r - x2r; 2470 | a[5] = x0i - x2i; 2471 | a[2] = x1r + x3i; 2472 | a[3] = x1i - x3r; 2473 | a[6] = x1r - x3i; 2474 | a[7] = x1i + x3r; 2475 | } 2476 | 2477 | /** 2478 | * 3rd 2479 | * when n = 4. 2480 | * @see #cftbsub(int, double[], int[], int, int, double[]) 2481 | * @see #cftfsub(int, double[], int[], int, int, double[]) 2482 | */ 2483 | private void cftx020(double[] a) { 2484 | double x0r, x0i; 2485 | 2486 | x0r = a[0] - a[2]; 2487 | x0i = a[1] - a[3]; 2488 | a[0] += a[2]; 2489 | a[1] += a[3]; 2490 | a[2] = x0r; 2491 | a[3] = x0i; 2492 | } 2493 | 2494 | /** 2495 | * 2nd 2496 | * @see #rdft(int, int, double[], int[], double[]) 2497 | * @see #ddct(int, int, double[], int[], double[]) 2498 | * @see #ddst(int, int, double[], int[], double[]) 2499 | * @see #dfst(int, double[], double[], int[], double[]) 2500 | * @see #dfct(int, double[], double[], int[], double[]) 2501 | */ 2502 | private void rftfsub(int n, double[] a, int nc, double[] c, int cP) { 2503 | int j, k, kk, ks, m; 2504 | double wkr, wki, xr, xi, yr, yi; 2505 | 2506 | m = n >> 1; 2507 | ks = 2 * nc / m; 2508 | kk = 0; 2509 | for (j = 2; j < m; j += 2) { 2510 | k = n - j; 2511 | kk += ks; 2512 | wkr = 0.5 - c[cP + nc - kk]; 2513 | wki = c[cP + kk]; 2514 | xr = a[j] - a[k]; 2515 | xi = a[j + 1] + a[k + 1]; 2516 | yr = wkr * xr - wki * xi; 2517 | yi = wkr * xi + wki * xr; 2518 | a[j] -= yr; 2519 | a[j + 1] -= yi; 2520 | a[k] += yr; 2521 | a[k + 1] -= yi; 2522 | } 2523 | } 2524 | 2525 | /** 2526 | * 2nd 2527 | * @see #rdft(int, int, double[], int[], double[]) 2528 | * @see #ddct(int, int, double[], int[], double[]) 2529 | * @see #ddst(int, int, double[], int[], double[]) 2530 | */ 2531 | private void rftbsub(int n, double[] a, int nc, double[] c, int cP) { 2532 | int j, k, kk, ks, m; 2533 | double wkr, wki, xr, xi, yr, yi; 2534 | 2535 | m = n >> 1; 2536 | ks = 2 * nc / m; 2537 | kk = 0; 2538 | for (j = 2; j < m; j += 2) { 2539 | k = n - j; 2540 | kk += ks; 2541 | wkr = 0.5 - c[cP + nc - kk]; 2542 | wki = c[cP + kk]; 2543 | xr = a[j] - a[k]; 2544 | xi = a[j + 1] + a[k + 1]; 2545 | yr = wkr * xr + wki * xi; 2546 | yi = wkr * xi - wki * xr; 2547 | a[j] -= yr; 2548 | a[j + 1] -= yi; 2549 | a[k] += yr; 2550 | a[k + 1] -= yi; 2551 | } 2552 | } 2553 | 2554 | /** 2555 | * 2nd 2556 | * @see #ddct(int, int, double[], int[], double[]) 2557 | * @see #dfct(int, double[], double[], int[], double[]) 2558 | */ 2559 | private void dctsub(int n, double[] a, int nc, double[] c, int cP) { 2560 | int j, k, kk, ks, m; 2561 | double wkr, wki, xr; 2562 | 2563 | m = n >> 1; 2564 | ks = nc / n; 2565 | kk = 0; 2566 | for (j = 1; j < m; j++) { 2567 | k = n - j; 2568 | kk += ks; 2569 | wkr = c[cP + kk] - c[cP + nc - kk]; 2570 | wki = c[cP + kk] + c[cP + nc - kk]; 2571 | xr = wki * a[j] - wkr * a[k]; 2572 | a[j] = wkr * a[j] + wki * a[k]; 2573 | a[k] = xr; 2574 | } 2575 | a[m] *= c[cP + 0]; 2576 | } 2577 | 2578 | /** 2579 | * 2nd 2580 | * @see #ddst(int, int, double[], int[], double[]) 2581 | * @see #dfst(int, double[], double[], int[], double[]) 2582 | */ 2583 | private void dstsub(int n, double[] a, int nc, double[] c, int cP) { 2584 | int j, k, kk, ks, m; 2585 | double wkr, wki, xr; 2586 | 2587 | m = n >> 1; 2588 | ks = nc / n; 2589 | kk = 0; 2590 | for (j = 1; j < m; j++) { 2591 | k = n - j; 2592 | kk += ks; 2593 | wkr = c[cP + kk] - c[cP + nc - kk]; 2594 | wki = c[cP + kk] + c[cP + nc - kk]; 2595 | xr = wki * a[k] - wkr * a[j]; 2596 | a[k] = wkr * a[k] + wki * a[j]; 2597 | a[j] = xr; 2598 | } 2599 | a[m] *= c[cP + 0]; 2600 | } 2601 | } 2602 | 2603 | /* */ 2604 | -------------------------------------------------------------------------------- /src/main/resources/META-INF/services/javax.sound.sampled.spi.FormatConversionProvider: -------------------------------------------------------------------------------- 1 | com.jssrc.resample.JSSRCSampleRateConversionProvider 2 | 3 | -------------------------------------------------------------------------------- /src/site/apt/downloads.apt: -------------------------------------------------------------------------------- 1 | ---------- 2 | Downloads 3 | ---------- 4 | Maksim Khadkevich 5 | ---------- 6 | 2013-02-28 7 | ----------- 8 | 9 | Downloads 10 | 11 | The main master branch can be downloaded either as {{{http://github.com/hutm/JSSRC/zipball/master}zip}} archive or as {{{http://github.com/hutm/JSSRC/tarball/master}tar}} tarball. 12 | 13 | 14 | -------------------------------------------------------------------------------- /src/site/apt/help.apt: -------------------------------------------------------------------------------- 1 | ---------- 2 | Help 3 | ---------- 4 | Maksim Khadkevich 5 | ---------- 6 | 2013-02-28 7 | ----------- 8 | 9 | Help 10 | 11 | Visit {{{http://groups.google.com/group/jssrc}JSSRC Google group}} to get help or discuss {{{http://jssrc.khadkevich.org/}JSSRC}}. 12 | 13 | 14 | -------------------------------------------------------------------------------- /src/site/apt/index.apt: -------------------------------------------------------------------------------- 1 | ---------- 2 | Overview 3 | ---------- 4 | Maksim Khadkevich 5 | ---------- 6 | 2013-02-28 7 | ----------- 8 | 9 | 10 | JSSRC Resampling Library 11 | 12 | JSSRC project is aimed at creating high quality audio resampler written in pure java. 13 | 14 | It is based on the {{{http://shibatch.sourceforge.net/}SSRC}} High Quality Audio Sampling Rate Converter by Naoki Shibata written in C. 15 | 16 | Evaluation of the SSRC resampler can be found {{{http://www.mainly.me.uk/resampling/index.html} here}}. 17 | 18 | Naohide Sano ported the C code into java. 19 | 20 | Finally, a number of small modification was performed in order to have a java resampling service that is easy to use. 21 | 22 | -------------------------------------------------------------------------------- /src/site/apt/release-notes.apt: -------------------------------------------------------------------------------- 1 | ------------------------------ 2 | Release Notes 3 | ------------------------------ 4 | Maksim Khadkevich 5 | ------------------------------ 6 | 2013-02-28 7 | ------------------------------ 8 | 9 | Release Notes for 1.0.1 10 | 11 | Minor Bug fixes. 12 | 13 | Release Notes for 1.0 14 | 15 | Initial release. 16 | 17 | 18 | 19 | -------------------------------------------------------------------------------- /src/site/apt/source-repository.apt: -------------------------------------------------------------------------------- 1 | ------------------------------ 2 | Source repository 3 | ------------------------------ 4 | Maksim Khadkevich 5 | ------------------------------ 6 | 2013-02-28 7 | ------------------------------ 8 | 9 | Repository 10 | 11 | This project uses GitHub for source code management. 12 | Instructions on Git use can be found at {{http://git-scm.com/}}. 13 | 14 | 15 | * Web Access 16 | 17 | The following is a {{{https://github.com/hutm/JSSRC}link}} to the online source repository. 18 | 19 | +----------------------------------------------------------------------------+ 20 | https://github.com/hutm/JSSRC 21 | +----------------------------------------------------------------------------+ 22 | 23 | * Anonymous access 24 | 25 | The source can be checked out from GitHub with this command: 26 | 27 | 28 | +----------------------------------------------------------------------------+ 29 | $ git clone git://github.com/hutm/JSSRC.git 30 | +----------------------------------------------------------------------------+ 31 | 32 | -------------------------------------------------------------------------------- /src/site/changes/changes.xml: -------------------------------------------------------------------------------- 1 |
03/25/201116 | * @version 1.0 17 | */ 18 | public class JSSRCResamplerTest { 19 | 20 | /** 21 | * 22 | * This simple test downsamples and upsamples two test files 23 | * 24 | */ 25 | @Test 26 | public void testReadSamples() throws Exception { 27 | 28 | String[] fileNames = new String[]{"/mono_short_test.wav", "/stereo_long_test.wav"}; 29 | 30 | float[] outSamplingRates = new float[]{11025f, 96000f}; 31 | 32 | for (String inFileName:fileNames) { 33 | for (float outSamplingRate:outSamplingRates) { 34 | String inFilePath = this.getClass().getResource(inFileName).getPath(); 35 | AudioInputStream audioInputStream = AudioSystem.getAudioInputStream(new File(inFilePath)); 36 | AudioFormat sourceFormat = audioInputStream.getFormat(); 37 | 38 | 39 | AudioFormat targetFormat = new AudioFormat(AudioFormat.Encoding.PCM_SIGNED, 40 | outSamplingRate, 41 | sourceFormat.getSampleSizeInBits(), 42 | sourceFormat.getChannels(), 43 | sourceFormat.getFrameSize(), 44 | sourceFormat.getFrameRate(), 45 | sourceFormat.isBigEndian()); 46 | 47 | AudioInputStream inputStream = AudioSystem.getAudioInputStream(targetFormat, audioInputStream); 48 | 49 | AudioSystem.write(inputStream, AudioFileFormat.Type.WAVE, new File(String.format("%s_resampled_%d.wav", inFilePath, (int) outSamplingRate))); 50 | } 51 | } 52 | 53 | } 54 | 55 | 56 | 57 | } 58 | -------------------------------------------------------------------------------- /src/test/resources/mono_short_test.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/hutm/JSSRC/4a9c1c36c4339989165a16deedd7ede180016115/src/test/resources/mono_short_test.wav -------------------------------------------------------------------------------- /src/test/resources/stereo_long_test.wav: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/hutm/JSSRC/4a9c1c36c4339989165a16deedd7ede180016115/src/test/resources/stereo_long_test.wav -------------------------------------------------------------------------------- /src/test/resources/testng.xml: -------------------------------------------------------------------------------- 1 | 16 | 17 | 32 | 33 | 34 |