├── docker
├── inference_img
├── inference_video
└── Dockerfile
├── demo
├── I0_0.png
├── I0_1.png
├── I1_0.png
├── I1_1.png
├── I2_0.png
├── I2_1.png
├── intro.png
├── D0_slomo_clipped.gif
├── D2_slomo_clipped.gif
├── I0_slomo_clipped.gif
└── I2_slomo_clipped.gif
├── .gitignore
├── requirements.txt
├── benchmark
├── testtime.py
├── MiddleBury_Other.py
├── UCF101.py
├── Vimeo90K.py
├── ATD12K.py
├── HD.py
├── yuv_frame_io.py
└── HD_multi_4X.py
├── LICENSE
├── model
├── warplayer.py
├── laplacian.py
├── refine.py
├── refine_2R.py
├── RIFE.py
├── oldmodel
│ ├── IFNet_HDv2.py
│ ├── IFNet_HD.py
│ ├── RIFE_HDv2.py
│ └── RIFE_HD.py
├── IFNet.py
├── IFNet_2R.py
├── IFNet_m.py
├── loss.py
└── pytorch_msssim
│ └── __init__.py
├── Colab_demo.ipynb
├── inference_img.py
├── dataset.py
├── train.py
├── README.md
└── inference_video.py
/docker/inference_img:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 | python3 /rife/inference_img.py $@
3 |
--------------------------------------------------------------------------------
/docker/inference_video:
--------------------------------------------------------------------------------
1 | #!/bin/sh
2 | python3 /rife/inference_video.py $@
3 |
--------------------------------------------------------------------------------
/demo/I0_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I0_0.png
--------------------------------------------------------------------------------
/demo/I0_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I0_1.png
--------------------------------------------------------------------------------
/demo/I1_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I1_0.png
--------------------------------------------------------------------------------
/demo/I1_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I1_1.png
--------------------------------------------------------------------------------
/demo/I2_0.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I2_0.png
--------------------------------------------------------------------------------
/demo/I2_1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I2_1.png
--------------------------------------------------------------------------------
/demo/intro.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/intro.png
--------------------------------------------------------------------------------
/demo/D0_slomo_clipped.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/D0_slomo_clipped.gif
--------------------------------------------------------------------------------
/demo/D2_slomo_clipped.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/D2_slomo_clipped.gif
--------------------------------------------------------------------------------
/demo/I0_slomo_clipped.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I0_slomo_clipped.gif
--------------------------------------------------------------------------------
/demo/I2_slomo_clipped.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/hzwer/ECCV2022-RIFE/HEAD/demo/I2_slomo_clipped.gif
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 | *.py~
3 | *.py#
4 |
5 | *.pkl
6 | output/*
7 | train_log/*
8 | *.mp4
9 |
10 | test/
11 | .idea/
12 | *.npz
13 |
14 | *.zip
15 |
--------------------------------------------------------------------------------
/requirements.txt:
--------------------------------------------------------------------------------
1 | numpy>=1.16, <=1.23.5
2 | tqdm>=4.35.0
3 | sk-video>=1.1.10
4 | torch>=1.6.0
5 | opencv-python>=4.1.2
6 | moviepy>=1.0.3
7 | torchvision>=0.7.0
8 |
--------------------------------------------------------------------------------
/docker/Dockerfile:
--------------------------------------------------------------------------------
1 | FROM python:3.8-slim
2 |
3 | # install deps
4 | RUN apt-get update && apt-get -y install \
5 | bash ffmpeg
6 |
7 | # setup RIFE
8 | WORKDIR /rife
9 | COPY . .
10 | RUN pip3 install -r requirements.txt
11 |
12 | ADD docker/inference_img /usr/local/bin/inference_img
13 | RUN chmod +x /usr/local/bin/inference_img
14 | ADD docker/inference_video /usr/local/bin/inference_video
15 | RUN chmod +x /usr/local/bin/inference_video
16 |
17 | # add pre-trained models
18 | COPY train_log /rife/train_log
19 |
20 | WORKDIR /host
21 | ENTRYPOINT ["/bin/bash"]
22 |
23 | ENV NVIDIA_DRIVER_CAPABILITIES all
--------------------------------------------------------------------------------
/benchmark/testtime.py:
--------------------------------------------------------------------------------
1 | import cv2
2 | import sys
3 | sys.path.append('.')
4 | import time
5 | import torch
6 | import torch.nn as nn
7 | from model.RIFE import Model
8 |
9 | model = Model()
10 | model.eval()
11 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
12 | torch.set_grad_enabled(False)
13 | if torch.cuda.is_available():
14 | torch.backends.cudnn.enabled = True
15 | torch.backends.cudnn.benchmark = True
16 |
17 | I0 = torch.rand(1, 3, 480, 640).to(device)
18 | I1 = torch.rand(1, 3, 480, 640).to(device)
19 | with torch.no_grad():
20 | for i in range(100):
21 | pred = model.inference(I0, I1)
22 | if torch.cuda.is_available():
23 | torch.cuda.synchronize()
24 | time_stamp = time.time()
25 | for i in range(100):
26 | pred = model.inference(I0, I1)
27 | if torch.cuda.is_available():
28 | torch.cuda.synchronize()
29 | print((time.time() - time_stamp) / 100)
30 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) Megvii Inc.
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/model/warplayer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 |
4 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
5 | backwarp_tenGrid = {}
6 |
7 |
8 | def warp(tenInput, tenFlow):
9 | k = (str(tenFlow.device), str(tenFlow.size()))
10 | if k not in backwarp_tenGrid:
11 | tenHorizontal = torch.linspace(-1.0, 1.0, tenFlow.shape[3], device=device).view(
12 | 1, 1, 1, tenFlow.shape[3]).expand(tenFlow.shape[0], -1, tenFlow.shape[2], -1)
13 | tenVertical = torch.linspace(-1.0, 1.0, tenFlow.shape[2], device=device).view(
14 | 1, 1, tenFlow.shape[2], 1).expand(tenFlow.shape[0], -1, -1, tenFlow.shape[3])
15 | backwarp_tenGrid[k] = torch.cat(
16 | [tenHorizontal, tenVertical], 1).to(device)
17 |
18 | tenFlow = torch.cat([tenFlow[:, 0:1, :, :] / ((tenInput.shape[3] - 1.0) / 2.0),
19 | tenFlow[:, 1:2, :, :] / ((tenInput.shape[2] - 1.0) / 2.0)], 1)
20 |
21 | g = (backwarp_tenGrid[k] + tenFlow).permute(0, 2, 3, 1)
22 | return torch.nn.functional.grid_sample(input=tenInput, grid=g, mode='bilinear', padding_mode='border', align_corners=True)
23 |
--------------------------------------------------------------------------------
/benchmark/MiddleBury_Other.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | sys.path.append('.')
4 | import cv2
5 | import math
6 | import torch
7 | import argparse
8 | import numpy as np
9 | from torch.nn import functional as F
10 | from model.pytorch_msssim import ssim_matlab
11 | from model.RIFE import Model
12 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13 |
14 | model = Model()
15 | model.load_model('train_log')
16 | model.eval()
17 | model.device()
18 |
19 | name = ['Beanbags', 'Dimetrodon', 'DogDance', 'Grove2', 'Grove3', 'Hydrangea', 'MiniCooper', 'RubberWhale', 'Urban2', 'Urban3', 'Venus', 'Walking']
20 | IE_list = []
21 | for i in name:
22 | i0 = cv2.imread('other-data/{}/frame10.png'.format(i)).transpose(2, 0, 1) / 255.
23 | i1 = cv2.imread('other-data/{}/frame11.png'.format(i)).transpose(2, 0, 1) / 255.
24 | gt = cv2.imread('other-gt-interp/{}/frame10i11.png'.format(i))
25 | h, w = i0.shape[1], i0.shape[2]
26 | imgs = torch.zeros([1, 6, 480, 640]).to(device)
27 | ph = (480 - h) // 2
28 | pw = (640 - w) // 2
29 | imgs[:, :3, :h, :w] = torch.from_numpy(i0).unsqueeze(0).float().to(device)
30 | imgs[:, 3:, :h, :w] = torch.from_numpy(i1).unsqueeze(0).float().to(device)
31 | I0 = imgs[:, :3]
32 | I2 = imgs[:, 3:]
33 | pred = model.inference(I0, I2)
34 | out = pred[0].detach().cpu().numpy().transpose(1, 2, 0)
35 | out = np.round(out[:h, :w] * 255)
36 | IE_list.append(np.abs((out - gt * 1.0)).mean())
37 | print(np.mean(IE_list))
38 |
--------------------------------------------------------------------------------
/benchmark/UCF101.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | sys.path.append('.')
4 | import cv2
5 | import math
6 | import torch
7 | import argparse
8 | import numpy as np
9 | from torch.nn import functional as F
10 | from model.pytorch_msssim import ssim_matlab
11 | from model.RIFE import Model
12 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13 |
14 | model = Model()
15 | model.load_model('train_log')
16 | model.eval()
17 | model.device()
18 |
19 | path = 'UCF101/ucf101_interp_ours/'
20 | dirs = os.listdir(path)
21 | psnr_list = []
22 | ssim_list = []
23 | print(len(dirs))
24 | for d in dirs:
25 | img0 = (path + d + '/frame_00.png')
26 | img1 = (path + d + '/frame_02.png')
27 | gt = (path + d + '/frame_01_gt.png')
28 | img0 = (torch.tensor(cv2.imread(img0).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
29 | img1 = (torch.tensor(cv2.imread(img1).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
30 | gt = (torch.tensor(cv2.imread(gt).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
31 | pred = model.inference(img0, img1)[0]
32 | ssim = ssim_matlab(gt, torch.round(pred * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
33 | out = pred.detach().cpu().numpy().transpose(1, 2, 0)
34 | out = np.round(out * 255) / 255.
35 | gt = gt[0].cpu().numpy().transpose(1, 2, 0)
36 | psnr = -10 * math.log10(((gt - out) * (gt - out)).mean())
37 | psnr_list.append(psnr)
38 | ssim_list.append(ssim)
39 | print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
40 |
--------------------------------------------------------------------------------
/benchmark/Vimeo90K.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | sys.path.append('.')
4 | import cv2
5 | import math
6 | import torch
7 | import argparse
8 | import numpy as np
9 | from torch.nn import functional as F
10 | from model.pytorch_msssim import ssim_matlab
11 | from model.RIFE import Model
12 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13 |
14 | model = Model()
15 | model.load_model('train_log')
16 | model.eval()
17 | model.device()
18 |
19 | path = 'vimeo_interp_test/'
20 | f = open(path + 'tri_testlist.txt', 'r')
21 | psnr_list = []
22 | ssim_list = []
23 | for i in f:
24 | name = str(i).strip()
25 | if(len(name) <= 1):
26 | continue
27 | print(path + 'target/' + name + '/im1.png')
28 | I0 = cv2.imread(path + 'target/' + name + '/im1.png')
29 | I1 = cv2.imread(path + 'target/' + name + '/im2.png')
30 | I2 = cv2.imread(path + 'target/' + name + '/im3.png')
31 | I0 = (torch.tensor(I0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
32 | I2 = (torch.tensor(I2.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
33 | mid = model.inference(I0, I2)[0]
34 | ssim = ssim_matlab(torch.tensor(I1.transpose(2, 0, 1)).to(device).unsqueeze(0) / 255., torch.round(mid * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
35 | mid = np.round((mid * 255).detach().cpu().numpy()).astype('uint8').transpose(1, 2, 0) / 255.
36 | I1 = I1 / 255.
37 | psnr = -10 * math.log10(((I1 - mid) * (I1 - mid)).mean())
38 | psnr_list.append(psnr)
39 | ssim_list.append(ssim)
40 | print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
41 |
--------------------------------------------------------------------------------
/benchmark/ATD12K.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | sys.path.append('.')
4 | import cv2
5 | import math
6 | import torch
7 | import argparse
8 | import numpy as np
9 | from torch.nn import functional as F
10 | from model.pytorch_msssim import ssim_matlab
11 | from model.RIFE import Model
12 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
13 |
14 | model = Model()
15 | model.load_model('train_log')
16 | model.eval()
17 | model.device()
18 |
19 | path = 'datasets/test_2k_540p/'
20 | dirs = os.listdir(path)
21 | psnr_list = []
22 | ssim_list = []
23 | print(len(dirs))
24 | for d in dirs:
25 | img0 = (path + d + '/frame1.png')
26 | img1 = (path + d + '/frame3.png')
27 | gt = (path + d + '/frame2.png')
28 | img0 = (torch.tensor(cv2.imread(img0).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
29 | img1 = (torch.tensor(cv2.imread(img1).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
30 | gt = (torch.tensor(cv2.imread(gt).transpose(2, 0, 1) / 255.)).to(device).float().unsqueeze(0)
31 | pader = torch.nn.ReplicationPad2d([0, 0, 2, 2])
32 | img0 = pader(img0)
33 | img1 = pader(img1)
34 | pred = model.inference(img0, img1)[0][:, 2:-2]
35 | ssim = ssim_matlab(gt, torch.round(pred * 255).unsqueeze(0) / 255.).detach().cpu().numpy()
36 | out = pred.detach().cpu().numpy().transpose(1, 2, 0)
37 | out = np.round(out * 255) / 255.
38 | gt = gt[0].cpu().numpy().transpose(1, 2, 0)
39 | psnr = -10 * math.log10(((gt - out) * (gt - out)).mean())
40 | psnr_list.append(psnr)
41 | ssim_list.append(ssim)
42 | print("Avg PSNR: {} SSIM: {}".format(np.mean(psnr_list), np.mean(ssim_list)))
43 |
--------------------------------------------------------------------------------
/model/laplacian.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 |
6 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7 |
8 | import torch
9 |
10 | def gauss_kernel(size=5, channels=3):
11 | kernel = torch.tensor([[1., 4., 6., 4., 1],
12 | [4., 16., 24., 16., 4.],
13 | [6., 24., 36., 24., 6.],
14 | [4., 16., 24., 16., 4.],
15 | [1., 4., 6., 4., 1.]])
16 | kernel /= 256.
17 | kernel = kernel.repeat(channels, 1, 1, 1)
18 | kernel = kernel.to(device)
19 | return kernel
20 |
21 | def downsample(x):
22 | return x[:, :, ::2, ::2]
23 |
24 | def upsample(x):
25 | cc = torch.cat([x, torch.zeros(x.shape[0], x.shape[1], x.shape[2], x.shape[3]).to(device)], dim=3)
26 | cc = cc.view(x.shape[0], x.shape[1], x.shape[2]*2, x.shape[3])
27 | cc = cc.permute(0,1,3,2)
28 | cc = torch.cat([cc, torch.zeros(x.shape[0], x.shape[1], x.shape[3], x.shape[2]*2).to(device)], dim=3)
29 | cc = cc.view(x.shape[0], x.shape[1], x.shape[3]*2, x.shape[2]*2)
30 | x_up = cc.permute(0,1,3,2)
31 | return conv_gauss(x_up, 4*gauss_kernel(channels=x.shape[1]))
32 |
33 | def conv_gauss(img, kernel):
34 | img = torch.nn.functional.pad(img, (2, 2, 2, 2), mode='reflect')
35 | out = torch.nn.functional.conv2d(img, kernel, groups=img.shape[1])
36 | return out
37 |
38 | def laplacian_pyramid(img, kernel, max_levels=3):
39 | current = img
40 | pyr = []
41 | for level in range(max_levels):
42 | filtered = conv_gauss(current, kernel)
43 | down = downsample(filtered)
44 | up = upsample(down)
45 | diff = current-up
46 | pyr.append(diff)
47 | current = down
48 | return pyr
49 |
50 | class LapLoss(torch.nn.Module):
51 | def __init__(self, max_levels=5, channels=3):
52 | super(LapLoss, self).__init__()
53 | self.max_levels = max_levels
54 | self.gauss_kernel = gauss_kernel(channels=channels)
55 |
56 | def forward(self, input, target):
57 | pyr_input = laplacian_pyramid(img=input, kernel=self.gauss_kernel, max_levels=self.max_levels)
58 | pyr_target = laplacian_pyramid(img=target, kernel=self.gauss_kernel, max_levels=self.max_levels)
59 | return sum(torch.nn.functional.l1_loss(a, b) for a, b in zip(pyr_input, pyr_target))
60 |
--------------------------------------------------------------------------------
/model/refine.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import numpy as np
4 | import torch.optim as optim
5 | import itertools
6 | from model.warplayer import warp
7 | import torch.nn.functional as F
8 |
9 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10 |
11 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
12 | return nn.Sequential(
13 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
14 | padding=padding, dilation=dilation, bias=True),
15 | nn.PReLU(out_planes)
16 | )
17 |
18 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
19 | return nn.Sequential(
20 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True),
21 | nn.PReLU(out_planes)
22 | )
23 |
24 | class Conv2(nn.Module):
25 | def __init__(self, in_planes, out_planes, stride=2):
26 | super(Conv2, self).__init__()
27 | self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
28 | self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
29 |
30 | def forward(self, x):
31 | x = self.conv1(x)
32 | x = self.conv2(x)
33 | return x
34 |
35 | c = 16
36 | class Contextnet(nn.Module):
37 | def __init__(self):
38 | super(Contextnet, self).__init__()
39 | self.conv1 = Conv2(3, c)
40 | self.conv2 = Conv2(c, 2*c)
41 | self.conv3 = Conv2(2*c, 4*c)
42 | self.conv4 = Conv2(4*c, 8*c)
43 |
44 | def forward(self, x, flow):
45 | x = self.conv1(x)
46 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
47 | f1 = warp(x, flow)
48 | x = self.conv2(x)
49 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
50 | f2 = warp(x, flow)
51 | x = self.conv3(x)
52 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
53 | f3 = warp(x, flow)
54 | x = self.conv4(x)
55 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
56 | f4 = warp(x, flow)
57 | return [f1, f2, f3, f4]
58 |
59 | class Unet(nn.Module):
60 | def __init__(self):
61 | super(Unet, self).__init__()
62 | self.down0 = Conv2(17, 2*c)
63 | self.down1 = Conv2(4*c, 4*c)
64 | self.down2 = Conv2(8*c, 8*c)
65 | self.down3 = Conv2(16*c, 16*c)
66 | self.up0 = deconv(32*c, 8*c)
67 | self.up1 = deconv(16*c, 4*c)
68 | self.up2 = deconv(8*c, 2*c)
69 | self.up3 = deconv(4*c, c)
70 | self.conv = nn.Conv2d(c, 3, 3, 1, 1)
71 |
72 | def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
73 | s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
74 | s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
75 | s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
76 | s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
77 | x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
78 | x = self.up1(torch.cat((x, s2), 1))
79 | x = self.up2(torch.cat((x, s1), 1))
80 | x = self.up3(torch.cat((x, s0), 1))
81 | x = self.conv(x)
82 | return torch.sigmoid(x)
83 |
--------------------------------------------------------------------------------
/benchmark/HD.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | sys.path.append('.')
4 | import cv2
5 | import math
6 | import torch
7 | import argparse
8 | import numpy as np
9 | from torch.nn import functional as F
10 | from model.pytorch_msssim import ssim_matlab
11 | from model.RIFE import Model
12 | from skimage.color import rgb2yuv, yuv2rgb
13 | from yuv_frame_io import YUV_Read,YUV_Write
14 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15 |
16 | model = Model()
17 | model.load_model('train_log')
18 | model.eval()
19 | model.device()
20 |
21 | name_list = [
22 | ('HD_dataset/HD720p_GT/parkrun_1280x720_50.yuv', 720, 1280),
23 | ('HD_dataset/HD720p_GT/shields_1280x720_60.yuv', 720, 1280),
24 | ('HD_dataset/HD720p_GT/stockholm_1280x720_60.yuv', 720, 1280),
25 | ('HD_dataset/HD1080p_GT/BlueSky.yuv', 1080, 1920),
26 | ('HD_dataset/HD1080p_GT/Kimono1_1920x1080_24.yuv', 1080, 1920),
27 | ('HD_dataset/HD1080p_GT/ParkScene_1920x1080_24.yuv', 1080, 1920),
28 | ('HD_dataset/HD1080p_GT/sunflower_1080p25.yuv', 1080, 1920),
29 | ('HD_dataset/HD544p_GT/Sintel_Alley2_1280x544.yuv', 544, 1280),
30 | ('HD_dataset/HD544p_GT/Sintel_Market5_1280x544.yuv', 544, 1280),
31 | ('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280),
32 | ('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280),
33 | ]
34 | tot = 0.
35 | for data in name_list:
36 | psnr_list = []
37 | name = data[0]
38 | h = data[1]
39 | w = data[2]
40 | if 'yuv' in name:
41 | Reader = YUV_Read(name, h, w, toRGB=True)
42 | else:
43 | Reader = cv2.VideoCapture(name)
44 | _, lastframe = Reader.read()
45 | # fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
46 | # video = cv2.VideoWriter(name + '.mp4', fourcc, 30, (w, h))
47 | for index in range(0, 100, 2):
48 | if 'yuv' in name:
49 | IMAGE1, success1 = Reader.read(index)
50 | gt, _ = Reader.read(index + 1)
51 | IMAGE2, success2 = Reader.read(index + 2)
52 | if not success2:
53 | break
54 | else:
55 | success1, gt = Reader.read()
56 | success2, frame = Reader.read()
57 | IMAGE1 = lastframe
58 | IMAGE2 = frame
59 | lastframe = frame
60 | if not success2:
61 | break
62 | I0 = torch.from_numpy(np.transpose(IMAGE1, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
63 | I1 = torch.from_numpy(np.transpose(IMAGE2, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
64 |
65 | if h == 720:
66 | pad = 24
67 | elif h == 1080:
68 | pad = 4
69 | else:
70 | pad = 16
71 | pader = torch.nn.ReplicationPad2d([0, 0, pad, pad])
72 | I0 = pader(I0)
73 | I1 = pader(I1)
74 | with torch.no_grad():
75 | pred = model.inference(I0, I1)
76 | pred = pred[:, :, pad: -pad]
77 | out = (np.round(pred[0].detach().cpu().numpy().transpose(1, 2, 0) * 255)).astype('uint8')
78 | # video.write(out)
79 | if 'yuv' in name:
80 | diff_rgb = 128.0 + rgb2yuv(gt / 255.)[:, :, 0] * 255 - rgb2yuv(out / 255.)[:, :, 0] * 255
81 | mse = np.mean((diff_rgb - 128.0) ** 2)
82 | PIXEL_MAX = 255.0
83 | psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
84 | else:
85 | psnr = skim.compare_psnr(gt, out)
86 | psnr_list.append(psnr)
87 | print(np.mean(psnr_list))
88 | tot += np.mean(psnr_list)
89 | print('avg psnr', tot / len(name_list))
90 |
--------------------------------------------------------------------------------
/model/refine_2R.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import numpy as np
4 | import torch.optim as optim
5 | import itertools
6 | from model.warplayer import warp
7 | from torch.nn.parallel import DistributedDataParallel as DDP
8 | import torch.nn.functional as F
9 |
10 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11 |
12 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
13 | return nn.Sequential(
14 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
15 | padding=padding, dilation=dilation, bias=True),
16 | nn.PReLU(out_planes)
17 | )
18 |
19 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
20 | return nn.Sequential(
21 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1, bias=True),
22 | nn.PReLU(out_planes)
23 | )
24 |
25 | class Conv2(nn.Module):
26 | def __init__(self, in_planes, out_planes, stride=2):
27 | super(Conv2, self).__init__()
28 | self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
29 | self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
30 |
31 | def forward(self, x):
32 | x = self.conv1(x)
33 | x = self.conv2(x)
34 | return x
35 |
36 | c = 16
37 | class Contextnet(nn.Module):
38 | def __init__(self):
39 | super(Contextnet, self).__init__()
40 | self.conv1 = Conv2(3, c, 1)
41 | self.conv2 = Conv2(c, 2*c)
42 | self.conv3 = Conv2(2*c, 4*c)
43 | self.conv4 = Conv2(4*c, 8*c)
44 |
45 | def forward(self, x, flow):
46 | x = self.conv1(x)
47 | # flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
48 | f1 = warp(x, flow)
49 | x = self.conv2(x)
50 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
51 | f2 = warp(x, flow)
52 | x = self.conv3(x)
53 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
54 | f3 = warp(x, flow)
55 | x = self.conv4(x)
56 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False, recompute_scale_factor=False) * 0.5
57 | f4 = warp(x, flow)
58 | return [f1, f2, f3, f4]
59 |
60 | class Unet(nn.Module):
61 | def __init__(self):
62 | super(Unet, self).__init__()
63 | self.down0 = Conv2(17, 2*c, 1)
64 | self.down1 = Conv2(4*c, 4*c)
65 | self.down2 = Conv2(8*c, 8*c)
66 | self.down3 = Conv2(16*c, 16*c)
67 | self.up0 = deconv(32*c, 8*c)
68 | self.up1 = deconv(16*c, 4*c)
69 | self.up2 = deconv(8*c, 2*c)
70 | self.up3 = deconv(4*c, c)
71 | self.conv = nn.Conv2d(c, 3, 3, 2, 1)
72 |
73 | def forward(self, img0, img1, warped_img0, warped_img1, mask, flow, c0, c1):
74 | s0 = self.down0(torch.cat((img0, img1, warped_img0, warped_img1, mask, flow), 1))
75 | s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
76 | s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
77 | s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
78 | x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
79 | x = self.up1(torch.cat((x, s2), 1))
80 | x = self.up2(torch.cat((x, s1), 1))
81 | x = self.up3(torch.cat((x, s0), 1))
82 | x = self.conv(x)
83 | return torch.sigmoid(x)
84 |
--------------------------------------------------------------------------------
/model/RIFE.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import numpy as np
4 | from torch.optim import AdamW
5 | import torch.optim as optim
6 | import itertools
7 | from model.warplayer import warp
8 | from torch.nn.parallel import DistributedDataParallel as DDP
9 | from model.IFNet import *
10 | from model.IFNet_m import *
11 | import torch.nn.functional as F
12 | from model.loss import *
13 | from model.laplacian import *
14 | from model.refine import *
15 |
16 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
17 |
18 | class Model:
19 | def __init__(self, local_rank=-1, arbitrary=False):
20 | if arbitrary == True:
21 | self.flownet = IFNet_m()
22 | else:
23 | self.flownet = IFNet()
24 | self.device()
25 | self.optimG = AdamW(self.flownet.parameters(), lr=1e-6, weight_decay=1e-3) # use large weight decay may avoid NaN loss
26 | self.epe = EPE()
27 | self.lap = LapLoss()
28 | self.sobel = SOBEL()
29 | if local_rank != -1:
30 | self.flownet = DDP(self.flownet, device_ids=[local_rank], output_device=local_rank)
31 |
32 | def train(self):
33 | self.flownet.train()
34 |
35 | def eval(self):
36 | self.flownet.eval()
37 |
38 | def device(self):
39 | self.flownet.to(device)
40 |
41 | def load_model(self, path, rank=0):
42 | def convert(param):
43 | return {
44 | k.replace("module.", ""): v
45 | for k, v in param.items()
46 | if "module." in k
47 | }
48 |
49 | if rank <= 0:
50 | self.flownet.load_state_dict(convert(torch.load('{}/flownet.pkl'.format(path))))
51 |
52 | def save_model(self, path, rank=0):
53 | if rank == 0:
54 | torch.save(self.flownet.state_dict(),'{}/flownet.pkl'.format(path))
55 |
56 | def inference(self, img0, img1, scale=1, scale_list=None, TTA=False, timestep=0.5):
57 | if scale_list is None:
58 | scale_list = [4, 2, 1]
59 | for i in range(3):
60 | scale_list[i] = scale_list[i] * 1.0 / scale
61 | imgs = torch.cat((img0, img1), 1)
62 | flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(imgs, scale_list, timestep=timestep)
63 | if TTA == False:
64 | return merged[2]
65 | else:
66 | flow2, mask2, merged2, flow_teacher2, merged_teacher2, loss_distill2 = self.flownet(imgs.flip(2).flip(3), scale_list, timestep=timestep)
67 | return (merged[2] + merged2[2].flip(2).flip(3)) / 2
68 |
69 | def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
70 | for param_group in self.optimG.param_groups:
71 | param_group['lr'] = learning_rate
72 | img0 = imgs[:, :3]
73 | img1 = imgs[:, 3:]
74 | if training:
75 | self.train()
76 | else:
77 | self.eval()
78 | flow, mask, merged, flow_teacher, merged_teacher, loss_distill = self.flownet(torch.cat((imgs, gt), 1), scale=[4, 2, 1])
79 | loss_l1 = (self.lap(merged[2], gt)).mean()
80 | loss_tea = (self.lap(merged_teacher, gt)).mean()
81 | if training:
82 | self.optimG.zero_grad()
83 | loss_G = loss_l1 + loss_tea + loss_distill * 0.01 # when training RIFEm, the weight of loss_distill should be 0.005 or 0.002
84 | loss_G.backward()
85 | self.optimG.step()
86 | else:
87 | flow_teacher = flow[2]
88 | return merged[2], {
89 | 'merged_tea': merged_teacher,
90 | 'mask': mask,
91 | 'mask_tea': mask,
92 | 'flow': flow[2][:, :2],
93 | 'flow_tea': flow_teacher,
94 | 'loss_l1': loss_l1,
95 | 'loss_tea': loss_tea,
96 | 'loss_distill': loss_distill,
97 | }
98 |
--------------------------------------------------------------------------------
/Colab_demo.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "colab_type": "text",
7 | "id": "view-in-github"
8 | },
9 | "source": [
10 | "
"
11 | ]
12 | },
13 | {
14 | "cell_type": "code",
15 | "execution_count": null,
16 | "metadata": {
17 | "id": "FypCcZkNNt2p"
18 | },
19 | "outputs": [],
20 | "source": [
21 | "!git clone https://github.com/hzwer/arXiv2020-RIFE"
22 | ]
23 | },
24 | {
25 | "cell_type": "code",
26 | "execution_count": null,
27 | "metadata": {
28 | "id": "1wysVHxoN54f"
29 | },
30 | "outputs": [],
31 | "source": [
32 | "!mkdir /content/arXiv2020-RIFE/train_log\n",
33 | "%cd /content/arXiv2020-RIFE/train_log\n",
34 | "!gdown --id 1APIzVeI-4ZZCEuIRE1m6WYfSCaOsi_7_\n",
35 | "!7z e RIFE_trained_model_v3.6.zip"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": null,
41 | "metadata": {
42 | "id": "AhbHfRBJRAUt"
43 | },
44 | "outputs": [],
45 | "source": [
46 | "%cd /content/arXiv2020-RIFE/\n",
47 | "!gdown --id 1i3xlKb7ax7Y70khcTcuePi6E7crO_dFc\n",
48 | "!pip install git+https://github.com/rk-exxec/scikit-video.git@numpy_deprecation"
49 | ]
50 | },
51 | {
52 | "cell_type": "markdown",
53 | "metadata": {
54 | "id": "rirngW5uRMdg"
55 | },
56 | "source": [
57 | "Please upload your video to content/arXiv2020-RIFE/video.mp4, or use our demo video."
58 | ]
59 | },
60 | {
61 | "cell_type": "code",
62 | "execution_count": null,
63 | "metadata": {
64 | "id": "dnLn4aHHPzN3"
65 | },
66 | "outputs": [],
67 | "source": [
68 | "!nvidia-smi\n",
69 | "!python3 inference_video.py --exp=2 --video=demo.mp4 --montage"
70 | ]
71 | },
72 | {
73 | "cell_type": "markdown",
74 | "metadata": {
75 | "id": "77KK6lxHgJhf"
76 | },
77 | "source": [
78 | "Our demo.mp4 is 25FPS. You can adjust the parameters for your own perference.\n",
79 | "For example: \n",
80 | "--fps=60 --exp=1 --video=mydemo.avi --png"
81 | ]
82 | },
83 | {
84 | "cell_type": "code",
85 | "execution_count": null,
86 | "metadata": {
87 | "cellView": "code",
88 | "id": "0zIBbVE3UfUD"
89 | },
90 | "outputs": [],
91 | "source": [
92 | "from IPython.display import display, Image\n",
93 | "import moviepy.editor as mpy\n",
94 | "display(mpy.ipython_display('demo_4X_100fps.mp4', height=256, max_duration=100.))"
95 | ]
96 | },
97 | {
98 | "cell_type": "code",
99 | "execution_count": null,
100 | "metadata": {
101 | "id": "tWkJCNgP3zXA"
102 | },
103 | "outputs": [],
104 | "source": [
105 | "!python3 inference_img.py --img demo/I0_0.png demo/I0_1.png\n",
106 | "ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -vf \"split[s0][s1];[s0]palettegen=stats_mode=single[p];[s1][p]paletteuse=new=1\" output/slomo.gif\n",
107 | "# Image interpolation"
108 | ]
109 | }
110 | ],
111 | "metadata": {
112 | "accelerator": "GPU",
113 | "colab": {
114 | "include_colab_link": true,
115 | "name": "Untitled0.ipynb",
116 | "provenance": []
117 | },
118 | "kernelspec": {
119 | "display_name": "Python 3",
120 | "name": "python3"
121 | }
122 | },
123 | "nbformat": 4,
124 | "nbformat_minor": 0
125 | }
126 |
--------------------------------------------------------------------------------
/model/oldmodel/IFNet_HDv2.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | from model.warplayer import warp
6 |
7 |
8 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9 |
10 | def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
11 | return nn.Sequential(
12 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
13 | padding=padding, dilation=dilation, bias=True),
14 | )
15 |
16 |
17 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
18 | return nn.Sequential(
19 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
20 | padding=padding, dilation=dilation, bias=True),
21 | nn.PReLU(out_planes)
22 | )
23 |
24 | class IFBlock(nn.Module):
25 | def __init__(self, in_planes, scale=1, c=64):
26 | super(IFBlock, self).__init__()
27 | self.scale = scale
28 | self.conv0 = nn.Sequential(
29 | conv(in_planes, c, 3, 2, 1),
30 | conv(c, 2*c, 3, 2, 1),
31 | )
32 | self.convblock = nn.Sequential(
33 | conv(2*c, 2*c),
34 | conv(2*c, 2*c),
35 | conv(2*c, 2*c),
36 | conv(2*c, 2*c),
37 | conv(2*c, 2*c),
38 | conv(2*c, 2*c),
39 | )
40 | self.conv1 = nn.ConvTranspose2d(2*c, 4, 4, 2, 1)
41 |
42 | def forward(self, x):
43 | if self.scale != 1:
44 | x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
45 | align_corners=False)
46 | x = self.conv0(x)
47 | x = self.convblock(x)
48 | x = self.conv1(x)
49 | flow = x
50 | if self.scale != 1:
51 | flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
52 | align_corners=False)
53 | return flow
54 |
55 |
56 | class IFNet(nn.Module):
57 | def __init__(self):
58 | super(IFNet, self).__init__()
59 | self.block0 = IFBlock(6, scale=8, c=192)
60 | self.block1 = IFBlock(10, scale=4, c=128)
61 | self.block2 = IFBlock(10, scale=2, c=96)
62 | self.block3 = IFBlock(10, scale=1, c=48)
63 |
64 | def forward(self, x, scale=1.0):
65 | if scale != 1.0:
66 | x = F.interpolate(x, scale_factor=scale, mode="bilinear", align_corners=False)
67 | flow0 = self.block0(x)
68 | F1 = flow0
69 | F1_large = F.interpolate(F1, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
70 | warped_img0 = warp(x[:, :3], F1_large[:, :2])
71 | warped_img1 = warp(x[:, 3:], F1_large[:, 2:4])
72 | flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1_large), 1))
73 | F2 = (flow0 + flow1)
74 | F2_large = F.interpolate(F2, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
75 | warped_img0 = warp(x[:, :3], F2_large[:, :2])
76 | warped_img1 = warp(x[:, 3:], F2_large[:, 2:4])
77 | flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2_large), 1))
78 | F3 = (flow0 + flow1 + flow2)
79 | F3_large = F.interpolate(F3, scale_factor=2.0, mode="bilinear", align_corners=False) * 2.0
80 | warped_img0 = warp(x[:, :3], F3_large[:, :2])
81 | warped_img1 = warp(x[:, 3:], F3_large[:, 2:4])
82 | flow3 = self.block3(torch.cat((warped_img0, warped_img1, F3_large), 1))
83 | F4 = (flow0 + flow1 + flow2 + flow3)
84 | if scale != 1.0:
85 | F4 = F.interpolate(F4, scale_factor=1 / scale, mode="bilinear", align_corners=False) / scale
86 | return F4, [F1, F2, F3, F4]
87 |
88 | if __name__ == '__main__':
89 | img0 = torch.zeros(3, 3, 256, 256).float().to(device)
90 | img1 = torch.tensor(np.random.normal(
91 | 0, 1, (3, 3, 256, 256))).float().to(device)
92 | imgs = torch.cat((img0, img1), 1)
93 | flownet = IFNet()
94 | flow, _ = flownet(imgs)
95 | print(flow.shape)
96 |
--------------------------------------------------------------------------------
/benchmark/yuv_frame_io.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import getopt
3 | import math
4 | import numpy
5 | import random
6 | import logging
7 | import numpy as np
8 | from skimage.color import rgb2yuv, yuv2rgb
9 | from PIL import Image
10 | import os
11 | from shutil import copyfile
12 |
13 | class YUV_Read():
14 | def __init__(self, filepath, h, w, format='yuv420', toRGB=True):
15 |
16 | self.h = h
17 | self.w = w
18 |
19 | self.fp = open(filepath, 'rb')
20 |
21 | if format == 'yuv420':
22 | self.frame_length = int(1.5 * h * w)
23 | self.Y_length = h * w
24 | self.Uv_length = int(0.25 * h * w)
25 | else:
26 | pass
27 | self.toRGB = toRGB
28 |
29 | def read(self, offset_frame=None):
30 | if not offset_frame == None:
31 | self.fp.seek(offset_frame * self.frame_length, 0)
32 |
33 | Y = np.fromfile(self.fp, np.uint8, count=self.Y_length)
34 | U = np.fromfile(self.fp, np.uint8, count=self.Uv_length)
35 | V = np.fromfile(self.fp, np.uint8, count=self.Uv_length)
36 | if Y.size < self.Y_length or \
37 | U.size < self.Uv_length or \
38 | V.size < self.Uv_length:
39 | return None, False
40 |
41 | Y = np.reshape(Y, [self.w, self.h], order='F')
42 | Y = np.transpose(Y)
43 |
44 | U = np.reshape(U, [int(self.w / 2), int(self.h / 2)], order='F')
45 | U = np.transpose(U)
46 |
47 | V = np.reshape(V, [int(self.w / 2), int(self.h / 2)], order='F')
48 | V = np.transpose(V)
49 |
50 | U = np.array(Image.fromarray(U).resize([self.w, self.h]))
51 | V = np.array(Image.fromarray(V).resize([self.w, self.h]))
52 |
53 | if self.toRGB:
54 | Y = Y / 255.0
55 | U = U / 255.0 - 0.5
56 | V = V / 255.0 - 0.5
57 |
58 | self.YUV = np.stack((Y, U, V), axis=-1)
59 | self.RGB = (255.0 * np.clip(yuv2rgb(self.YUV), 0.0, 1.0)).astype('uint8')
60 |
61 | self.YUV = None
62 | return self.RGB, True
63 | else:
64 | self.YUV = np.stack((Y, U, V), axis=-1)
65 | return self.YUV, True
66 |
67 | def close(self):
68 | self.fp.close()
69 |
70 |
71 | class YUV_Write():
72 | def __init__(self, filepath, fromRGB=True):
73 | if os.path.exists(filepath):
74 | print(filepath)
75 |
76 | self.fp = open(filepath, 'wb')
77 | self.fromRGB = fromRGB
78 |
79 | def write(self, Frame):
80 |
81 | self.h = Frame.shape[0]
82 | self.w = Frame.shape[1]
83 | c = Frame.shape[2]
84 |
85 | assert c == 3
86 | if format == 'yuv420':
87 | self.frame_length = int(1.5 * self.h * self.w)
88 | self.Y_length = self.h * self.w
89 | self.Uv_length = int(0.25 * self.h * self.w)
90 | else:
91 | pass
92 | if self.fromRGB:
93 | Frame = Frame / 255.0
94 | YUV = rgb2yuv(Frame)
95 | Y, U, V = np.dsplit(YUV, 3)
96 | Y = Y[:, :, 0]
97 | U = U[:, :, 0]
98 | V = V[:, :, 0]
99 | U = np.clip(U + 0.5, 0.0, 1.0)
100 | V = np.clip(V + 0.5, 0.0, 1.0)
101 |
102 | U = U[::2, ::2] # imresize(U,[int(self.h/2),int(self.w/2)],interp = 'nearest')
103 | V = V[::2, ::2] # imresize(V ,[int(self.h/2),int(self.w/2)],interp = 'nearest')
104 | Y = (255.0 * Y).astype('uint8')
105 | U = (255.0 * U).astype('uint8')
106 | V = (255.0 * V).astype('uint8')
107 | else:
108 | YUV = Frame
109 | Y = YUV[:, :, 0]
110 | U = YUV[::2, ::2, 1]
111 | V = YUV[::2, ::2, 2]
112 |
113 | Y = Y.flatten() # the first order is 0-dimension so don't need to transpose before flatten
114 | U = U.flatten()
115 | V = V.flatten()
116 |
117 | Y.tofile(self.fp)
118 | U.tofile(self.fp)
119 | V.tofile(self.fp)
120 |
121 | return True
122 |
123 | def close(self):
124 | self.fp.close()
125 |
--------------------------------------------------------------------------------
/benchmark/HD_multi_4X.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | sys.path.append('.')
4 | import cv2
5 | import math
6 | import torch
7 | import argparse
8 | import numpy as np
9 | from torch.nn import functional as F
10 | from model.pytorch_msssim import ssim_matlab
11 | from model.RIFE import Model
12 | from skimage.color import rgb2yuv, yuv2rgb
13 | from yuv_frame_io import YUV_Read,YUV_Write
14 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
15 |
16 | model = Model(arbitrary=True)
17 | model.load_model('RIFE_m_train_log')
18 | model.eval()
19 | model.device()
20 |
21 | name_list = [
22 | ('HD_dataset/HD720p_GT/parkrun_1280x720_50.yuv', 720, 1280),
23 | ('HD_dataset/HD720p_GT/shields_1280x720_60.yuv', 720, 1280),
24 | ('HD_dataset/HD720p_GT/stockholm_1280x720_60.yuv', 720, 1280),
25 | ('HD_dataset/HD1080p_GT/BlueSky.yuv', 1080, 1920),
26 | ('HD_dataset/HD1080p_GT/Kimono1_1920x1080_24.yuv', 1080, 1920),
27 | ('HD_dataset/HD1080p_GT/ParkScene_1920x1080_24.yuv', 1080, 1920),
28 | ('HD_dataset/HD1080p_GT/sunflower_1080p25.yuv', 1080, 1920),
29 | ('HD_dataset/HD544p_GT/Sintel_Alley2_1280x544.yuv', 544, 1280),
30 | ('HD_dataset/HD544p_GT/Sintel_Market5_1280x544.yuv', 544, 1280),
31 | ('HD_dataset/HD544p_GT/Sintel_Temple1_1280x544.yuv', 544, 1280),
32 | ('HD_dataset/HD544p_GT/Sintel_Temple2_1280x544.yuv', 544, 1280),
33 | ]
34 | def inference(I0, I1, pad, multi=2, arbitrary=True):
35 | img = [I0, I1]
36 | if not arbitrary:
37 | for i in range(multi):
38 | res = [I0]
39 | for j in range(len(img) - 1):
40 | res.append(model.inference(img[j], img[j + 1]))
41 | res.append(img[j + 1])
42 | img = res
43 | else:
44 | img = [I0]
45 | p = 2**multi
46 | for i in range(p-1):
47 | img.append(model.inference(I0, I1, timestep=(i+1)*(1./p)))
48 | img.append(I1)
49 | for i in range(len(img)):
50 | img[i] = img[i][0][:, pad: -pad]
51 | return img[1: -1]
52 |
53 | tot = []
54 | for data in name_list:
55 | psnr_list = []
56 | name = data[0]
57 | h = data[1]
58 | w = data[2]
59 | if 'yuv' in name:
60 | Reader = YUV_Read(name, h, w, toRGB=True)
61 | else:
62 | Reader = cv2.VideoCapture(name)
63 | _, lastframe = Reader.read()
64 | # fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
65 | # video = cv2.VideoWriter(name + '.mp4', fourcc, 30, (w, h))
66 | for index in range(0, 100, 4):
67 | gt = []
68 | if 'yuv' in name:
69 | IMAGE1, success1 = Reader.read(index)
70 | IMAGE2, success2 = Reader.read(index + 4)
71 | if not success2:
72 | break
73 | for i in range(1, 4):
74 | tmp, _ = Reader.read(index + i)
75 | gt.append(tmp)
76 | else:
77 | print('Not Implement')
78 | I0 = torch.from_numpy(np.transpose(IMAGE1, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
79 | I1 = torch.from_numpy(np.transpose(IMAGE2, (2,0,1)).astype("float32") / 255.).cuda().unsqueeze(0)
80 |
81 | if h == 720:
82 | pad = 24
83 | elif h == 1080:
84 | pad = 4
85 | else:
86 | pad = 16
87 | pader = torch.nn.ReplicationPad2d([0, 0, pad, pad])
88 | I0 = pader(I0)
89 | I1 = pader(I1)
90 | with torch.no_grad():
91 | pred = inference(I0, I1, pad)
92 | for i in range(4 - 1):
93 | out = (np.round(pred[i].detach().cpu().numpy().transpose(1, 2, 0) * 255)).astype('uint8')
94 | if 'yuv' in name:
95 | diff_rgb = 128.0 + rgb2yuv(gt[i] / 255.)[:, :, 0] * 255 - rgb2yuv(out / 255.)[:, :, 0] * 255
96 | mse = np.mean((diff_rgb - 128.0) ** 2)
97 | PIXEL_MAX = 255.0
98 | psnr = 20 * math.log10(PIXEL_MAX / math.sqrt(mse))
99 | else:
100 | print('Not Implement')
101 | psnr_list.append(psnr)
102 | print(np.mean(psnr_list))
103 | tot.append(np.mean(psnr_list))
104 |
105 | print('PSNR: {}(544*1280), {}(720p), {}(1080p)'.format(np.mean(tot[7:11]), np.mean(tot[:3]), np.mean(tot[3:7])))
106 |
--------------------------------------------------------------------------------
/inference_img.py:
--------------------------------------------------------------------------------
1 | import os
2 | import cv2
3 | import torch
4 | import argparse
5 | from torch.nn import functional as F
6 | import warnings
7 | warnings.filterwarnings("ignore")
8 |
9 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
10 | torch.set_grad_enabled(False)
11 | if torch.cuda.is_available():
12 | torch.backends.cudnn.enabled = True
13 | torch.backends.cudnn.benchmark = True
14 |
15 | parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
16 | parser.add_argument('--img', dest='img', nargs=2, required=True)
17 | parser.add_argument('--exp', default=4, type=int)
18 | parser.add_argument('--ratio', default=0, type=float, help='inference ratio between two images with 0 - 1 range')
19 | parser.add_argument('--rthreshold', default=0.02, type=float, help='returns image when actual ratio falls in given range threshold')
20 | parser.add_argument('--rmaxcycles', default=8, type=int, help='limit max number of bisectional cycles')
21 | parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
22 |
23 | args = parser.parse_args()
24 |
25 | try:
26 | try:
27 | try:
28 | from model.RIFE_HDv2 import Model
29 | model = Model()
30 | model.load_model(args.modelDir, -1)
31 | print("Loaded v2.x HD model.")
32 | except:
33 | from train_log.RIFE_HDv3 import Model
34 | model = Model()
35 | model.load_model(args.modelDir, -1)
36 | print("Loaded v3.x HD model.")
37 | except:
38 | from model.RIFE_HD import Model
39 | model = Model()
40 | model.load_model(args.modelDir, -1)
41 | print("Loaded v1.x HD model")
42 | except:
43 | from model.RIFE import Model
44 | model = Model()
45 | model.load_model(args.modelDir, -1)
46 | print("Loaded ArXiv-RIFE model")
47 | model.eval()
48 | model.device()
49 |
50 | if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
51 | img0 = cv2.imread(args.img[0], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
52 | img1 = cv2.imread(args.img[1], cv2.IMREAD_COLOR | cv2.IMREAD_ANYDEPTH)
53 | img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device)).unsqueeze(0)
54 | img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device)).unsqueeze(0)
55 |
56 | else:
57 | img0 = cv2.imread(args.img[0], cv2.IMREAD_UNCHANGED)
58 | img1 = cv2.imread(args.img[1], cv2.IMREAD_UNCHANGED)
59 | img0 = (torch.tensor(img0.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
60 | img1 = (torch.tensor(img1.transpose(2, 0, 1)).to(device) / 255.).unsqueeze(0)
61 |
62 | n, c, h, w = img0.shape
63 | ph = ((h - 1) // 32 + 1) * 32
64 | pw = ((w - 1) // 32 + 1) * 32
65 | padding = (0, pw - w, 0, ph - h)
66 | img0 = F.pad(img0, padding)
67 | img1 = F.pad(img1, padding)
68 |
69 |
70 | if args.ratio:
71 | img_list = [img0]
72 | img0_ratio = 0.0
73 | img1_ratio = 1.0
74 | if args.ratio <= img0_ratio + args.rthreshold / 2:
75 | middle = img0
76 | elif args.ratio >= img1_ratio - args.rthreshold / 2:
77 | middle = img1
78 | else:
79 | tmp_img0 = img0
80 | tmp_img1 = img1
81 | for inference_cycle in range(args.rmaxcycles):
82 | middle = model.inference(tmp_img0, tmp_img1)
83 | middle_ratio = ( img0_ratio + img1_ratio ) / 2
84 | if args.ratio - (args.rthreshold / 2) <= middle_ratio <= args.ratio + (args.rthreshold / 2):
85 | break
86 | if args.ratio > middle_ratio:
87 | tmp_img0 = middle
88 | img0_ratio = middle_ratio
89 | else:
90 | tmp_img1 = middle
91 | img1_ratio = middle_ratio
92 | img_list.append(middle)
93 | img_list.append(img1)
94 | else:
95 | img_list = [img0, img1]
96 | for i in range(args.exp):
97 | tmp = []
98 | for j in range(len(img_list) - 1):
99 | mid = model.inference(img_list[j], img_list[j + 1])
100 | tmp.append(img_list[j])
101 | tmp.append(mid)
102 | tmp.append(img1)
103 | img_list = tmp
104 |
105 | if not os.path.exists('output'):
106 | os.mkdir('output')
107 | for i in range(len(img_list)):
108 | if args.img[0].endswith('.exr') and args.img[1].endswith('.exr'):
109 | cv2.imwrite('output/img{}.exr'.format(i), (img_list[i][0]).cpu().numpy().transpose(1, 2, 0)[:h, :w], [cv2.IMWRITE_EXR_TYPE, cv2.IMWRITE_EXR_TYPE_HALF])
110 | else:
111 | cv2.imwrite('output/img{}.png'.format(i), (img_list[i][0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w])
112 |
--------------------------------------------------------------------------------
/dataset.py:
--------------------------------------------------------------------------------
1 | import os
2 | import cv2
3 | import ast
4 | import torch
5 | import numpy as np
6 | import random
7 | from torch.utils.data import DataLoader, Dataset
8 |
9 | cv2.setNumThreads(1)
10 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
11 | class VimeoDataset(Dataset):
12 | def __init__(self, dataset_name, batch_size=32):
13 | self.batch_size = batch_size
14 | self.dataset_name = dataset_name
15 | self.h = 256
16 | self.w = 448
17 | self.data_root = 'vimeo_triplet'
18 | self.image_root = os.path.join(self.data_root, 'sequences')
19 | train_fn = os.path.join(self.data_root, 'tri_trainlist.txt')
20 | test_fn = os.path.join(self.data_root, 'tri_testlist.txt')
21 | with open(train_fn, 'r') as f:
22 | self.trainlist = f.read().splitlines()
23 | with open(test_fn, 'r') as f:
24 | self.testlist = f.read().splitlines()
25 | self.load_data()
26 |
27 | def __len__(self):
28 | return len(self.meta_data)
29 |
30 | def load_data(self):
31 | cnt = int(len(self.trainlist) * 0.95)
32 | if self.dataset_name == 'train':
33 | self.meta_data = self.trainlist[:cnt]
34 | elif self.dataset_name == 'test':
35 | self.meta_data = self.testlist
36 | else:
37 | self.meta_data = self.trainlist[cnt:]
38 |
39 | def crop(self, img0, gt, img1, h, w):
40 | ih, iw, _ = img0.shape
41 | x = np.random.randint(0, ih - h + 1)
42 | y = np.random.randint(0, iw - w + 1)
43 | img0 = img0[x:x+h, y:y+w, :]
44 | img1 = img1[x:x+h, y:y+w, :]
45 | gt = gt[x:x+h, y:y+w, :]
46 | return img0, gt, img1
47 |
48 | def getimg(self, index):
49 | imgpath = os.path.join(self.image_root, self.meta_data[index])
50 | imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png']
51 |
52 | # Load images
53 | img0 = cv2.imread(imgpaths[0])
54 | gt = cv2.imread(imgpaths[1])
55 | img1 = cv2.imread(imgpaths[2])
56 | timestep = 0.5
57 | return img0, gt, img1, timestep
58 |
59 | # RIFEm with Vimeo-Septuplet
60 | # imgpaths = [imgpath + '/im1.png', imgpath + '/im2.png', imgpath + '/im3.png', imgpath + '/im4.png', imgpath + '/im5.png', imgpath + '/im6.png', imgpath + '/im7.png']
61 | # ind = [0, 1, 2, 3, 4, 5, 6]
62 | # random.shuffle(ind)
63 | # ind = ind[:3]
64 | # ind.sort()
65 | # img0 = cv2.imread(imgpaths[ind[0]])
66 | # gt = cv2.imread(imgpaths[ind[1]])
67 | # img1 = cv2.imread(imgpaths[ind[2]])
68 | # timestep = (ind[1] - ind[0]) * 1.0 / (ind[2] - ind[0] + 1e-6)
69 |
70 | def __getitem__(self, index):
71 | img0, gt, img1, timestep = self.getimg(index)
72 | if self.dataset_name == 'train':
73 | img0, gt, img1 = self.crop(img0, gt, img1, 224, 224)
74 | if random.uniform(0, 1) < 0.5:
75 | img0 = img0[:, :, ::-1]
76 | img1 = img1[:, :, ::-1]
77 | gt = gt[:, :, ::-1]
78 | if random.uniform(0, 1) < 0.5:
79 | img0 = img0[::-1]
80 | img1 = img1[::-1]
81 | gt = gt[::-1]
82 | if random.uniform(0, 1) < 0.5:
83 | img0 = img0[:, ::-1]
84 | img1 = img1[:, ::-1]
85 | gt = gt[:, ::-1]
86 | if random.uniform(0, 1) < 0.5:
87 | tmp = img1
88 | img1 = img0
89 | img0 = tmp
90 | timestep = 1 - timestep
91 | # random rotation
92 | p = random.uniform(0, 1)
93 | if p < 0.25:
94 | img0 = cv2.rotate(img0, cv2.ROTATE_90_CLOCKWISE)
95 | gt = cv2.rotate(gt, cv2.ROTATE_90_CLOCKWISE)
96 | img1 = cv2.rotate(img1, cv2.ROTATE_90_CLOCKWISE)
97 | elif p < 0.5:
98 | img0 = cv2.rotate(img0, cv2.ROTATE_180)
99 | gt = cv2.rotate(gt, cv2.ROTATE_180)
100 | img1 = cv2.rotate(img1, cv2.ROTATE_180)
101 | elif p < 0.75:
102 | img0 = cv2.rotate(img0, cv2.ROTATE_90_COUNTERCLOCKWISE)
103 | gt = cv2.rotate(gt, cv2.ROTATE_90_COUNTERCLOCKWISE)
104 | img1 = cv2.rotate(img1, cv2.ROTATE_90_COUNTERCLOCKWISE)
105 | img0 = torch.from_numpy(img0.copy()).permute(2, 0, 1)
106 | img1 = torch.from_numpy(img1.copy()).permute(2, 0, 1)
107 | gt = torch.from_numpy(gt.copy()).permute(2, 0, 1)
108 | timestep = torch.tensor(timestep).reshape(1, 1, 1)
109 | return torch.cat((img0, img1, gt), 0), timestep
110 |
--------------------------------------------------------------------------------
/model/IFNet.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from model.warplayer import warp
5 | from model.refine import *
6 |
7 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
8 | return nn.Sequential(
9 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
10 | nn.PReLU(out_planes)
11 | )
12 |
13 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
14 | return nn.Sequential(
15 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
16 | padding=padding, dilation=dilation, bias=True),
17 | nn.PReLU(out_planes)
18 | )
19 |
20 | class IFBlock(nn.Module):
21 | def __init__(self, in_planes, c=64):
22 | super(IFBlock, self).__init__()
23 | self.conv0 = nn.Sequential(
24 | conv(in_planes, c//2, 3, 2, 1),
25 | conv(c//2, c, 3, 2, 1),
26 | )
27 | self.convblock = nn.Sequential(
28 | conv(c, c),
29 | conv(c, c),
30 | conv(c, c),
31 | conv(c, c),
32 | conv(c, c),
33 | conv(c, c),
34 | conv(c, c),
35 | conv(c, c),
36 | )
37 | self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
38 |
39 | def forward(self, x, flow, scale):
40 | if scale != 1:
41 | x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
42 | if flow != None:
43 | flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
44 | x = torch.cat((x, flow), 1)
45 | x = self.conv0(x)
46 | x = self.convblock(x) + x
47 | tmp = self.lastconv(x)
48 | tmp = F.interpolate(tmp, scale_factor = scale * 2, mode="bilinear", align_corners=False)
49 | flow = tmp[:, :4] * scale * 2
50 | mask = tmp[:, 4:5]
51 | return flow, mask
52 |
53 | class IFNet(nn.Module):
54 | def __init__(self):
55 | super(IFNet, self).__init__()
56 | self.block0 = IFBlock(6, c=240)
57 | self.block1 = IFBlock(13+4, c=150)
58 | self.block2 = IFBlock(13+4, c=90)
59 | self.block_tea = IFBlock(16+4, c=90)
60 | self.contextnet = Contextnet()
61 | self.unet = Unet()
62 |
63 | def forward(self, x, scale=[4,2,1], timestep=0.5):
64 | img0 = x[:, :3]
65 | img1 = x[:, 3:6]
66 | gt = x[:, 6:] # In inference time, gt is None
67 | flow_list = []
68 | merged = []
69 | mask_list = []
70 | warped_img0 = img0
71 | warped_img1 = img1
72 | flow = None
73 | loss_distill = 0
74 | stu = [self.block0, self.block1, self.block2]
75 | for i in range(3):
76 | if flow != None:
77 | flow_d, mask_d = stu[i](torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
78 | flow = flow + flow_d
79 | mask = mask + mask_d
80 | else:
81 | flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
82 | mask_list.append(torch.sigmoid(mask))
83 | flow_list.append(flow)
84 | warped_img0 = warp(img0, flow[:, :2])
85 | warped_img1 = warp(img1, flow[:, 2:4])
86 | merged_student = (warped_img0, warped_img1)
87 | merged.append(merged_student)
88 | if gt.shape[1] == 3:
89 | flow_d, mask_d = self.block_tea(torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
90 | flow_teacher = flow + flow_d
91 | warped_img0_teacher = warp(img0, flow_teacher[:, :2])
92 | warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
93 | mask_teacher = torch.sigmoid(mask + mask_d)
94 | merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
95 | else:
96 | flow_teacher = None
97 | merged_teacher = None
98 | for i in range(3):
99 | merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
100 | if gt.shape[1] == 3:
101 | loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
102 | loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
103 | c0 = self.contextnet(img0, flow[:, :2])
104 | c1 = self.contextnet(img1, flow[:, 2:4])
105 | tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
106 | res = tmp[:, :3] * 2 - 1
107 | merged[2] = torch.clamp(merged[2] + res, 0, 1)
108 | return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
109 |
--------------------------------------------------------------------------------
/model/IFNet_2R.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from model.warplayer import warp
5 | from model.refine_2R import *
6 |
7 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
8 | return nn.Sequential(
9 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
10 | nn.PReLU(out_planes)
11 | )
12 |
13 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
14 | return nn.Sequential(
15 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
16 | padding=padding, dilation=dilation, bias=True),
17 | nn.PReLU(out_planes)
18 | )
19 |
20 | class IFBlock(nn.Module):
21 | def __init__(self, in_planes, c=64):
22 | super(IFBlock, self).__init__()
23 | self.conv0 = nn.Sequential(
24 | conv(in_planes, c//2, 3, 1, 1),
25 | conv(c//2, c, 3, 2, 1),
26 | )
27 | self.convblock = nn.Sequential(
28 | conv(c, c),
29 | conv(c, c),
30 | conv(c, c),
31 | conv(c, c),
32 | conv(c, c),
33 | conv(c, c),
34 | conv(c, c),
35 | conv(c, c),
36 | )
37 | self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
38 |
39 | def forward(self, x, flow, scale):
40 | if scale != 1:
41 | x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
42 | if flow != None:
43 | flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
44 | x = torch.cat((x, flow), 1)
45 | x = self.conv0(x)
46 | x = self.convblock(x) + x
47 | tmp = self.lastconv(x)
48 | tmp = F.interpolate(tmp, scale_factor = scale, mode="bilinear", align_corners=False)
49 | flow = tmp[:, :4] * scale
50 | mask = tmp[:, 4:5]
51 | return flow, mask
52 |
53 | class IFNet(nn.Module):
54 | def __init__(self):
55 | super(IFNet, self).__init__()
56 | self.block0 = IFBlock(6, c=240)
57 | self.block1 = IFBlock(13+4, c=150)
58 | self.block2 = IFBlock(13+4, c=90)
59 | self.block_tea = IFBlock(16+4, c=90)
60 | self.contextnet = Contextnet()
61 | self.unet = Unet()
62 |
63 | def forward(self, x, scale=[4,2,1], timestep=0.5):
64 | img0 = x[:, :3]
65 | img1 = x[:, 3:6]
66 | gt = x[:, 6:] # In inference time, gt is None
67 | flow_list = []
68 | merged = []
69 | mask_list = []
70 | warped_img0 = img0
71 | warped_img1 = img1
72 | flow = None
73 | loss_distill = 0
74 | stu = [self.block0, self.block1, self.block2]
75 | for i in range(3):
76 | if flow != None:
77 | flow_d, mask_d = stu[i](torch.cat((img0, img1, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
78 | flow = flow + flow_d
79 | mask = mask + mask_d
80 | else:
81 | flow, mask = stu[i](torch.cat((img0, img1), 1), None, scale=scale[i])
82 | mask_list.append(torch.sigmoid(mask))
83 | flow_list.append(flow)
84 | warped_img0 = warp(img0, flow[:, :2])
85 | warped_img1 = warp(img1, flow[:, 2:4])
86 | merged_student = (warped_img0, warped_img1)
87 | merged.append(merged_student)
88 | if gt.shape[1] == 3:
89 | flow_d, mask_d = self.block_tea(torch.cat((img0, img1, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
90 | flow_teacher = flow + flow_d
91 | warped_img0_teacher = warp(img0, flow_teacher[:, :2])
92 | warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
93 | mask_teacher = torch.sigmoid(mask + mask_d)
94 | merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
95 | else:
96 | flow_teacher = None
97 | merged_teacher = None
98 | for i in range(3):
99 | merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
100 | if gt.shape[1] == 3:
101 | loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
102 | loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
103 | c0 = self.contextnet(img0, flow[:, :2])
104 | c1 = self.contextnet(img1, flow[:, 2:4])
105 | tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
106 | res = tmp[:, :3] * 2 - 1
107 | merged[2] = torch.clamp(merged[2] + res, 0, 1)
108 | return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
109 |
--------------------------------------------------------------------------------
/model/oldmodel/IFNet_HD.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | from model.warplayer import warp
6 |
7 |
8 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
9 |
10 | def conv_wo_act(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
11 | return nn.Sequential(
12 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
13 | padding=padding, dilation=dilation, bias=False),
14 | nn.BatchNorm2d(out_planes),
15 | )
16 |
17 |
18 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
19 | return nn.Sequential(
20 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
21 | padding=padding, dilation=dilation, bias=False),
22 | nn.BatchNorm2d(out_planes),
23 | nn.PReLU(out_planes)
24 | )
25 |
26 |
27 | class ResBlock(nn.Module):
28 | def __init__(self, in_planes, out_planes, stride=1):
29 | super(ResBlock, self).__init__()
30 | if in_planes == out_planes and stride == 1:
31 | self.conv0 = nn.Identity()
32 | else:
33 | self.conv0 = nn.Conv2d(in_planes, out_planes,
34 | 3, stride, 1, bias=False)
35 | self.conv1 = conv(in_planes, out_planes, 5, stride, 2)
36 | self.conv2 = conv_wo_act(out_planes, out_planes, 3, 1, 1)
37 | self.relu1 = nn.PReLU(1)
38 | self.relu2 = nn.PReLU(out_planes)
39 | self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
40 | self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
41 |
42 | def forward(self, x):
43 | y = self.conv0(x)
44 | x = self.conv1(x)
45 | x = self.conv2(x)
46 | w = x.mean(3, True).mean(2, True)
47 | w = self.relu1(self.fc1(w))
48 | w = torch.sigmoid(self.fc2(w))
49 | x = self.relu2(x * w + y)
50 | return x
51 |
52 |
53 | class IFBlock(nn.Module):
54 | def __init__(self, in_planes, scale=1, c=64):
55 | super(IFBlock, self).__init__()
56 | self.scale = scale
57 | self.conv0 = conv(in_planes, c, 5, 2, 2)
58 | self.res0 = ResBlock(c, c)
59 | self.res1 = ResBlock(c, c)
60 | self.res2 = ResBlock(c, c)
61 | self.res3 = ResBlock(c, c)
62 | self.res4 = ResBlock(c, c)
63 | self.res5 = ResBlock(c, c)
64 | self.conv1 = nn.Conv2d(c, 8, 3, 1, 1)
65 | self.up = nn.PixelShuffle(2)
66 |
67 | def forward(self, x):
68 | if self.scale != 1:
69 | x = F.interpolate(x, scale_factor=1. / self.scale, mode="bilinear",
70 | align_corners=False)
71 | x = self.conv0(x)
72 | x = self.res0(x)
73 | x = self.res1(x)
74 | x = self.res2(x)
75 | x = self.res3(x)
76 | x = self.res4(x)
77 | x = self.res5(x)
78 | x = self.conv1(x)
79 | flow = self.up(x)
80 | if self.scale != 1:
81 | flow = F.interpolate(flow, scale_factor=self.scale, mode="bilinear",
82 | align_corners=False)
83 | return flow
84 |
85 |
86 | class IFNet(nn.Module):
87 | def __init__(self):
88 | super(IFNet, self).__init__()
89 | self.block0 = IFBlock(6, scale=8, c=192)
90 | self.block1 = IFBlock(8, scale=4, c=128)
91 | self.block2 = IFBlock(8, scale=2, c=96)
92 | self.block3 = IFBlock(8, scale=1, c=48)
93 |
94 | def forward(self, x, scale=1.0):
95 | x = F.interpolate(x, scale_factor=0.5 * scale, mode="bilinear",
96 | align_corners=False)
97 | flow0 = self.block0(x)
98 | F1 = flow0
99 | warped_img0 = warp(x[:, :3], F1)
100 | warped_img1 = warp(x[:, 3:], -F1)
101 | flow1 = self.block1(torch.cat((warped_img0, warped_img1, F1), 1))
102 | F2 = (flow0 + flow1)
103 | warped_img0 = warp(x[:, :3], F2)
104 | warped_img1 = warp(x[:, 3:], -F2)
105 | flow2 = self.block2(torch.cat((warped_img0, warped_img1, F2), 1))
106 | F3 = (flow0 + flow1 + flow2)
107 | warped_img0 = warp(x[:, :3], F3)
108 | warped_img1 = warp(x[:, 3:], -F3)
109 | flow3 = self.block3(torch.cat((warped_img0, warped_img1, F3), 1))
110 | F4 = (flow0 + flow1 + flow2 + flow3)
111 | F4 = F.interpolate(F4, scale_factor=1 / scale, mode="bilinear",
112 | align_corners=False) / scale
113 | return F4, [F1, F2, F3, F4]
114 |
115 | if __name__ == '__main__':
116 | img0 = torch.zeros(3, 3, 256, 256).float().to(device)
117 | img1 = torch.tensor(np.random.normal(
118 | 0, 1, (3, 3, 256, 256))).float().to(device)
119 | imgs = torch.cat((img0, img1), 1)
120 | flownet = IFNet()
121 | flow, _ = flownet(imgs)
122 | print(flow.shape)
123 |
--------------------------------------------------------------------------------
/model/IFNet_m.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import torch.nn.functional as F
4 | from model.warplayer import warp
5 | from model.refine import *
6 |
7 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
8 | return nn.Sequential(
9 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes, kernel_size=4, stride=2, padding=1),
10 | nn.PReLU(out_planes)
11 | )
12 |
13 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
14 | return nn.Sequential(
15 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
16 | padding=padding, dilation=dilation, bias=True),
17 | nn.PReLU(out_planes)
18 | )
19 |
20 | class IFBlock(nn.Module):
21 | def __init__(self, in_planes, c=64):
22 | super(IFBlock, self).__init__()
23 | self.conv0 = nn.Sequential(
24 | conv(in_planes, c//2, 3, 2, 1),
25 | conv(c//2, c, 3, 2, 1),
26 | )
27 | self.convblock = nn.Sequential(
28 | conv(c, c),
29 | conv(c, c),
30 | conv(c, c),
31 | conv(c, c),
32 | conv(c, c),
33 | conv(c, c),
34 | conv(c, c),
35 | conv(c, c),
36 | )
37 | self.lastconv = nn.ConvTranspose2d(c, 5, 4, 2, 1)
38 |
39 | def forward(self, x, flow, scale):
40 | if scale != 1:
41 | x = F.interpolate(x, scale_factor = 1. / scale, mode="bilinear", align_corners=False)
42 | if flow != None:
43 | flow = F.interpolate(flow, scale_factor = 1. / scale, mode="bilinear", align_corners=False) * 1. / scale
44 | x = torch.cat((x, flow), 1)
45 | x = self.conv0(x)
46 | x = self.convblock(x) + x
47 | tmp = self.lastconv(x)
48 | tmp = F.interpolate(tmp, scale_factor = scale * 2, mode="bilinear", align_corners=False)
49 | flow = tmp[:, :4] * scale * 2
50 | mask = tmp[:, 4:5]
51 | return flow, mask
52 |
53 | class IFNet_m(nn.Module):
54 | def __init__(self):
55 | super(IFNet_m, self).__init__()
56 | self.block0 = IFBlock(6+1, c=240)
57 | self.block1 = IFBlock(13+4+1, c=150)
58 | self.block2 = IFBlock(13+4+1, c=90)
59 | self.block_tea = IFBlock(16+4+1, c=90)
60 | self.contextnet = Contextnet()
61 | self.unet = Unet()
62 |
63 | def forward(self, x, scale=[4,2,1], timestep=0.5, returnflow=False):
64 | timestep = (x[:, :1].clone() * 0 + 1) * timestep
65 | img0 = x[:, :3]
66 | img1 = x[:, 3:6]
67 | gt = x[:, 6:] # In inference time, gt is None
68 | flow_list = []
69 | merged = []
70 | mask_list = []
71 | warped_img0 = img0
72 | warped_img1 = img1
73 | flow = None
74 | loss_distill = 0
75 | stu = [self.block0, self.block1, self.block2]
76 | for i in range(3):
77 | if flow != None:
78 | flow_d, mask_d = stu[i](torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask), 1), flow, scale=scale[i])
79 | flow = flow + flow_d
80 | mask = mask + mask_d
81 | else:
82 | flow, mask = stu[i](torch.cat((img0, img1, timestep), 1), None, scale=scale[i])
83 | mask_list.append(torch.sigmoid(mask))
84 | flow_list.append(flow)
85 | warped_img0 = warp(img0, flow[:, :2])
86 | warped_img1 = warp(img1, flow[:, 2:4])
87 | merged_student = (warped_img0, warped_img1)
88 | merged.append(merged_student)
89 | if gt.shape[1] == 3:
90 | flow_d, mask_d = self.block_tea(torch.cat((img0, img1, timestep, warped_img0, warped_img1, mask, gt), 1), flow, scale=1)
91 | flow_teacher = flow + flow_d
92 | warped_img0_teacher = warp(img0, flow_teacher[:, :2])
93 | warped_img1_teacher = warp(img1, flow_teacher[:, 2:4])
94 | mask_teacher = torch.sigmoid(mask + mask_d)
95 | merged_teacher = warped_img0_teacher * mask_teacher + warped_img1_teacher * (1 - mask_teacher)
96 | else:
97 | flow_teacher = None
98 | merged_teacher = None
99 | for i in range(3):
100 | merged[i] = merged[i][0] * mask_list[i] + merged[i][1] * (1 - mask_list[i])
101 | if gt.shape[1] == 3:
102 | loss_mask = ((merged[i] - gt).abs().mean(1, True) > (merged_teacher - gt).abs().mean(1, True) + 0.01).float().detach()
103 | loss_distill += (((flow_teacher.detach() - flow_list[i]) ** 2).mean(1, True) ** 0.5 * loss_mask).mean()
104 | if returnflow:
105 | return flow
106 | else:
107 | c0 = self.contextnet(img0, flow[:, :2])
108 | c1 = self.contextnet(img1, flow[:, 2:4])
109 | tmp = self.unet(img0, img1, warped_img0, warped_img1, mask, flow, c0, c1)
110 | res = tmp[:, :3] * 2 - 1
111 | merged[2] = torch.clamp(merged[2] + res, 0, 1)
112 | return flow_list, mask_list[2], merged, flow_teacher, merged_teacher, loss_distill
113 |
--------------------------------------------------------------------------------
/model/loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import torch.nn as nn
4 | import torch.nn.functional as F
5 | import torchvision.models as models
6 |
7 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8 |
9 |
10 | class EPE(nn.Module):
11 | def __init__(self):
12 | super(EPE, self).__init__()
13 |
14 | def forward(self, flow, gt, loss_mask):
15 | loss_map = (flow - gt.detach()) ** 2
16 | loss_map = (loss_map.sum(1, True) + 1e-6) ** 0.5
17 | return (loss_map * loss_mask)
18 |
19 |
20 | class Ternary(nn.Module):
21 | def __init__(self):
22 | super(Ternary, self).__init__()
23 | patch_size = 7
24 | out_channels = patch_size * patch_size
25 | self.w = np.eye(out_channels).reshape(
26 | (patch_size, patch_size, 1, out_channels))
27 | self.w = np.transpose(self.w, (3, 2, 0, 1))
28 | self.w = torch.tensor(self.w).float().to(device)
29 |
30 | def transform(self, img):
31 | patches = F.conv2d(img, self.w, padding=3, bias=None)
32 | transf = patches - img
33 | transf_norm = transf / torch.sqrt(0.81 + transf**2)
34 | return transf_norm
35 |
36 | def rgb2gray(self, rgb):
37 | r, g, b = rgb[:, 0:1, :, :], rgb[:, 1:2, :, :], rgb[:, 2:3, :, :]
38 | gray = 0.2989 * r + 0.5870 * g + 0.1140 * b
39 | return gray
40 |
41 | def hamming(self, t1, t2):
42 | dist = (t1 - t2) ** 2
43 | dist_norm = torch.mean(dist / (0.1 + dist), 1, True)
44 | return dist_norm
45 |
46 | def valid_mask(self, t, padding):
47 | n, _, h, w = t.size()
48 | inner = torch.ones(n, 1, h - 2 * padding, w - 2 * padding).type_as(t)
49 | mask = F.pad(inner, [padding] * 4)
50 | return mask
51 |
52 | def forward(self, img0, img1):
53 | img0 = self.transform(self.rgb2gray(img0))
54 | img1 = self.transform(self.rgb2gray(img1))
55 | return self.hamming(img0, img1) * self.valid_mask(img0, 1)
56 |
57 |
58 | class SOBEL(nn.Module):
59 | def __init__(self):
60 | super(SOBEL, self).__init__()
61 | self.kernelX = torch.tensor([
62 | [1, 0, -1],
63 | [2, 0, -2],
64 | [1, 0, -1],
65 | ]).float()
66 | self.kernelY = self.kernelX.clone().T
67 | self.kernelX = self.kernelX.unsqueeze(0).unsqueeze(0).to(device)
68 | self.kernelY = self.kernelY.unsqueeze(0).unsqueeze(0).to(device)
69 |
70 | def forward(self, pred, gt):
71 | N, C, H, W = pred.shape[0], pred.shape[1], pred.shape[2], pred.shape[3]
72 | img_stack = torch.cat(
73 | [pred.reshape(N*C, 1, H, W), gt.reshape(N*C, 1, H, W)], 0)
74 | sobel_stack_x = F.conv2d(img_stack, self.kernelX, padding=1)
75 | sobel_stack_y = F.conv2d(img_stack, self.kernelY, padding=1)
76 | pred_X, gt_X = sobel_stack_x[:N*C], sobel_stack_x[N*C:]
77 | pred_Y, gt_Y = sobel_stack_y[:N*C], sobel_stack_y[N*C:]
78 |
79 | L1X, L1Y = torch.abs(pred_X-gt_X), torch.abs(pred_Y-gt_Y)
80 | loss = (L1X+L1Y)
81 | return loss
82 |
83 | class MeanShift(nn.Conv2d):
84 | def __init__(self, data_mean, data_std, data_range=1, norm=True):
85 | c = len(data_mean)
86 | super(MeanShift, self).__init__(c, c, kernel_size=1)
87 | std = torch.Tensor(data_std)
88 | self.weight.data = torch.eye(c).view(c, c, 1, 1)
89 | if norm:
90 | self.weight.data.div_(std.view(c, 1, 1, 1))
91 | self.bias.data = -1 * data_range * torch.Tensor(data_mean)
92 | self.bias.data.div_(std)
93 | else:
94 | self.weight.data.mul_(std.view(c, 1, 1, 1))
95 | self.bias.data = data_range * torch.Tensor(data_mean)
96 | self.requires_grad = False
97 |
98 | class VGGPerceptualLoss(torch.nn.Module):
99 | def __init__(self, rank=0):
100 | super(VGGPerceptualLoss, self).__init__()
101 | blocks = []
102 | pretrained = True
103 | self.vgg_pretrained_features = models.vgg19(pretrained=pretrained).features
104 | self.normalize = MeanShift([0.485, 0.456, 0.406], [0.229, 0.224, 0.225], norm=True).cuda()
105 | for param in self.parameters():
106 | param.requires_grad = False
107 |
108 | def forward(self, X, Y, indices=None):
109 | X = self.normalize(X)
110 | Y = self.normalize(Y)
111 | indices = [2, 7, 12, 21, 30]
112 | weights = [1.0/2.6, 1.0/4.8, 1.0/3.7, 1.0/5.6, 10/1.5]
113 | k = 0
114 | loss = 0
115 | for i in range(indices[-1]):
116 | X = self.vgg_pretrained_features[i](X)
117 | Y = self.vgg_pretrained_features[i](Y)
118 | if (i+1) in indices:
119 | loss += weights[k] * (X - Y.detach()).abs().mean() * 0.1
120 | k += 1
121 | return loss
122 |
123 | if __name__ == '__main__':
124 | img0 = torch.zeros(3, 3, 256, 256).float().to(device)
125 | img1 = torch.tensor(np.random.normal(
126 | 0, 1, (3, 3, 256, 256))).float().to(device)
127 | ternary_loss = Ternary()
128 | print(ternary_loss(img0, img1).shape)
129 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | import os
2 | import cv2
3 | import math
4 | import time
5 | import torch
6 | import torch.distributed as dist
7 | import numpy as np
8 | import random
9 | import argparse
10 |
11 | from model.RIFE import Model
12 | from dataset import *
13 | from torch.utils.data import DataLoader, Dataset
14 | from torch.utils.tensorboard import SummaryWriter
15 | from torch.utils.data.distributed import DistributedSampler
16 |
17 | device = torch.device("cuda")
18 |
19 | log_path = 'train_log'
20 |
21 | def get_learning_rate(step):
22 | if step < 2000:
23 | mul = step / 2000.
24 | return 3e-4 * mul
25 | else:
26 | mul = np.cos((step - 2000) / (args.epoch * args.step_per_epoch - 2000.) * math.pi) * 0.5 + 0.5
27 | return (3e-4 - 3e-6) * mul + 3e-6
28 |
29 | def flow2rgb(flow_map_np):
30 | h, w, _ = flow_map_np.shape
31 | rgb_map = np.ones((h, w, 3)).astype(np.float32)
32 | normalized_flow_map = flow_map_np / (np.abs(flow_map_np).max())
33 |
34 | rgb_map[:, :, 0] += normalized_flow_map[:, :, 0]
35 | rgb_map[:, :, 1] -= 0.5 * (normalized_flow_map[:, :, 0] + normalized_flow_map[:, :, 1])
36 | rgb_map[:, :, 2] += normalized_flow_map[:, :, 1]
37 | return rgb_map.clip(0, 1)
38 |
39 | def train(model, local_rank):
40 | if local_rank == 0:
41 | writer = SummaryWriter('train')
42 | writer_val = SummaryWriter('validate')
43 | else:
44 | writer = None
45 | writer_val = None
46 | step = 0
47 | nr_eval = 0
48 | dataset = VimeoDataset('train')
49 | sampler = DistributedSampler(dataset)
50 | train_data = DataLoader(dataset, batch_size=args.batch_size, num_workers=8, pin_memory=True, drop_last=True, sampler=sampler)
51 | args.step_per_epoch = train_data.__len__()
52 | dataset_val = VimeoDataset('validation')
53 | val_data = DataLoader(dataset_val, batch_size=16, pin_memory=True, num_workers=8)
54 | print('training...')
55 | time_stamp = time.time()
56 | for epoch in range(args.epoch):
57 | sampler.set_epoch(epoch)
58 | for i, data in enumerate(train_data):
59 | data_time_interval = time.time() - time_stamp
60 | time_stamp = time.time()
61 | data_gpu, timestep = data
62 | data_gpu = data_gpu.to(device, non_blocking=True) / 255.
63 | timestep = timestep.to(device, non_blocking=True)
64 | imgs = data_gpu[:, :6]
65 | gt = data_gpu[:, 6:9]
66 | learning_rate = get_learning_rate(step) * args.world_size / 4
67 | pred, info = model.update(imgs, gt, learning_rate, training=True) # pass timestep if you are training RIFEm
68 | train_time_interval = time.time() - time_stamp
69 | time_stamp = time.time()
70 | if step % 200 == 1 and local_rank == 0:
71 | writer.add_scalar('learning_rate', learning_rate, step)
72 | writer.add_scalar('loss/l1', info['loss_l1'], step)
73 | writer.add_scalar('loss/tea', info['loss_tea'], step)
74 | writer.add_scalar('loss/distill', info['loss_distill'], step)
75 | if step % 1000 == 1 and local_rank == 0:
76 | gt = (gt.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
77 | mask = (torch.cat((info['mask'], info['mask_tea']), 3).permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
78 | pred = (pred.permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
79 | merged_img = (info['merged_tea'].permute(0, 2, 3, 1).detach().cpu().numpy() * 255).astype('uint8')
80 | flow0 = info['flow'].permute(0, 2, 3, 1).detach().cpu().numpy()
81 | flow1 = info['flow_tea'].permute(0, 2, 3, 1).detach().cpu().numpy()
82 | for i in range(5):
83 | imgs = np.concatenate((merged_img[i], pred[i], gt[i]), 1)[:, :, ::-1]
84 | writer.add_image(str(i) + '/img', imgs, step, dataformats='HWC')
85 | writer.add_image(str(i) + '/flow', np.concatenate((flow2rgb(flow0[i]), flow2rgb(flow1[i])), 1), step, dataformats='HWC')
86 | writer.add_image(str(i) + '/mask', mask[i], step, dataformats='HWC')
87 | writer.flush()
88 | if local_rank == 0:
89 | print('epoch:{} {}/{} time:{:.2f}+{:.2f} loss_l1:{:.4e}'.format(epoch, i, args.step_per_epoch, data_time_interval, train_time_interval, info['loss_l1']))
90 | step += 1
91 | nr_eval += 1
92 | if nr_eval % 5 == 0:
93 | evaluate(model, val_data, step, local_rank, writer_val)
94 | model.save_model(log_path, local_rank)
95 | dist.barrier()
96 |
97 | def evaluate(model, val_data, nr_eval, local_rank, writer_val):
98 | loss_l1_list = []
99 | loss_distill_list = []
100 | loss_tea_list = []
101 | psnr_list = []
102 | psnr_list_teacher = []
103 | time_stamp = time.time()
104 | for i, data in enumerate(val_data):
105 | data_gpu, timestep = data
106 | data_gpu = data_gpu.to(device, non_blocking=True) / 255.
107 | imgs = data_gpu[:, :6]
108 | gt = data_gpu[:, 6:9]
109 | with torch.no_grad():
110 | pred, info = model.update(imgs, gt, training=False)
111 | merged_img = info['merged_tea']
112 | loss_l1_list.append(info['loss_l1'].cpu().numpy())
113 | loss_tea_list.append(info['loss_tea'].cpu().numpy())
114 | loss_distill_list.append(info['loss_distill'].cpu().numpy())
115 | for j in range(gt.shape[0]):
116 | psnr = -10 * math.log10(torch.mean((gt[j] - pred[j]) * (gt[j] - pred[j])).cpu().data)
117 | psnr_list.append(psnr)
118 | psnr = -10 * math.log10(torch.mean((merged_img[j] - gt[j]) * (merged_img[j] - gt[j])).cpu().data)
119 | psnr_list_teacher.append(psnr)
120 | gt = (gt.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
121 | pred = (pred.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
122 | merged_img = (merged_img.permute(0, 2, 3, 1).cpu().numpy() * 255).astype('uint8')
123 | flow0 = info['flow'].permute(0, 2, 3, 1).cpu().numpy()
124 | flow1 = info['flow_tea'].permute(0, 2, 3, 1).cpu().numpy()
125 | if i == 0 and local_rank == 0:
126 | for j in range(10):
127 | imgs = np.concatenate((merged_img[j], pred[j], gt[j]), 1)[:, :, ::-1]
128 | writer_val.add_image(str(j) + '/img', imgs.copy(), nr_eval, dataformats='HWC')
129 | writer_val.add_image(str(j) + '/flow', flow2rgb(flow0[j][:, :, ::-1]), nr_eval, dataformats='HWC')
130 |
131 | eval_time_interval = time.time() - time_stamp
132 |
133 | if local_rank != 0:
134 | return
135 | writer_val.add_scalar('psnr', np.array(psnr_list).mean(), nr_eval)
136 | writer_val.add_scalar('psnr_teacher', np.array(psnr_list_teacher).mean(), nr_eval)
137 |
138 | if __name__ == "__main__":
139 | parser = argparse.ArgumentParser()
140 | parser.add_argument('--epoch', default=300, type=int)
141 | parser.add_argument('--batch_size', default=16, type=int, help='minibatch size')
142 | parser.add_argument('--local_rank', default=0, type=int, help='local rank')
143 | parser.add_argument('--world_size', default=4, type=int, help='world size')
144 | args = parser.parse_args()
145 | torch.distributed.init_process_group(backend="nccl", world_size=args.world_size)
146 | torch.cuda.set_device(args.local_rank)
147 | seed = 1234
148 | random.seed(seed)
149 | np.random.seed(seed)
150 | torch.manual_seed(seed)
151 | torch.cuda.manual_seed_all(seed)
152 | torch.backends.cudnn.benchmark = True
153 | model = Model(args.local_rank)
154 | train(model, args.local_rank)
155 |
156 |
--------------------------------------------------------------------------------
/model/pytorch_msssim/__init__.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | from math import exp
4 | import numpy as np
5 |
6 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
7 |
8 | def gaussian(window_size, sigma):
9 | gauss = torch.Tensor([exp(-(x - window_size//2)**2/float(2*sigma**2)) for x in range(window_size)])
10 | return gauss/gauss.sum()
11 |
12 |
13 | def create_window(window_size, channel=1):
14 | _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
15 | _2D_window = _1D_window.mm(_1D_window.t()).float().unsqueeze(0).unsqueeze(0).to(device)
16 | window = _2D_window.expand(channel, 1, window_size, window_size).contiguous()
17 | return window
18 |
19 | def create_window_3d(window_size, channel=1):
20 | _1D_window = gaussian(window_size, 1.5).unsqueeze(1)
21 | _2D_window = _1D_window.mm(_1D_window.t())
22 | _3D_window = _2D_window.unsqueeze(2) @ (_1D_window.t())
23 | window = _3D_window.expand(1, channel, window_size, window_size, window_size).contiguous().to(device)
24 | return window
25 |
26 |
27 | def ssim(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
28 | # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
29 | if val_range is None:
30 | if torch.max(img1) > 128:
31 | max_val = 255
32 | else:
33 | max_val = 1
34 |
35 | if torch.min(img1) < -0.5:
36 | min_val = -1
37 | else:
38 | min_val = 0
39 | L = max_val - min_val
40 | else:
41 | L = val_range
42 |
43 | padd = 0
44 | (_, channel, height, width) = img1.size()
45 | if window is None:
46 | real_size = min(window_size, height, width)
47 | window = create_window(real_size, channel=channel).to(img1.device)
48 |
49 | # mu1 = F.conv2d(img1, window, padding=padd, groups=channel)
50 | # mu2 = F.conv2d(img2, window, padding=padd, groups=channel)
51 | mu1 = F.conv2d(F.pad(img1, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
52 | mu2 = F.conv2d(F.pad(img2, (5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=channel)
53 |
54 | mu1_sq = mu1.pow(2)
55 | mu2_sq = mu2.pow(2)
56 | mu1_mu2 = mu1 * mu2
57 |
58 | sigma1_sq = F.conv2d(F.pad(img1 * img1, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_sq
59 | sigma2_sq = F.conv2d(F.pad(img2 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu2_sq
60 | sigma12 = F.conv2d(F.pad(img1 * img2, (5, 5, 5, 5), 'replicate'), window, padding=padd, groups=channel) - mu1_mu2
61 |
62 | C1 = (0.01 * L) ** 2
63 | C2 = (0.03 * L) ** 2
64 |
65 | v1 = 2.0 * sigma12 + C2
66 | v2 = sigma1_sq + sigma2_sq + C2
67 | cs = torch.mean(v1 / v2) # contrast sensitivity
68 |
69 | ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
70 |
71 | if size_average:
72 | ret = ssim_map.mean()
73 | else:
74 | ret = ssim_map.mean(1).mean(1).mean(1)
75 |
76 | if full:
77 | return ret, cs
78 | return ret
79 |
80 |
81 | def ssim_matlab(img1, img2, window_size=11, window=None, size_average=True, full=False, val_range=None):
82 | # Value range can be different from 255. Other common ranges are 1 (sigmoid) and 2 (tanh).
83 | if val_range is None:
84 | if torch.max(img1) > 128:
85 | max_val = 255
86 | else:
87 | max_val = 1
88 |
89 | if torch.min(img1) < -0.5:
90 | min_val = -1
91 | else:
92 | min_val = 0
93 | L = max_val - min_val
94 | else:
95 | L = val_range
96 |
97 | padd = 0
98 | (_, _, height, width) = img1.size()
99 | if window is None:
100 | real_size = min(window_size, height, width)
101 | window = create_window_3d(real_size, channel=1).to(img1.device)
102 | # Channel is set to 1 since we consider color images as volumetric images
103 |
104 | img1 = img1.unsqueeze(1)
105 | img2 = img2.unsqueeze(1)
106 |
107 | mu1 = F.conv3d(F.pad(img1, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
108 | mu2 = F.conv3d(F.pad(img2, (5, 5, 5, 5, 5, 5), mode='replicate'), window, padding=padd, groups=1)
109 |
110 | mu1_sq = mu1.pow(2)
111 | mu2_sq = mu2.pow(2)
112 | mu1_mu2 = mu1 * mu2
113 |
114 | sigma1_sq = F.conv3d(F.pad(img1 * img1, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_sq
115 | sigma2_sq = F.conv3d(F.pad(img2 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu2_sq
116 | sigma12 = F.conv3d(F.pad(img1 * img2, (5, 5, 5, 5, 5, 5), 'replicate'), window, padding=padd, groups=1) - mu1_mu2
117 |
118 | C1 = (0.01 * L) ** 2
119 | C2 = (0.03 * L) ** 2
120 |
121 | v1 = 2.0 * sigma12 + C2
122 | v2 = sigma1_sq + sigma2_sq + C2
123 | cs = torch.mean(v1 / v2) # contrast sensitivity
124 |
125 | ssim_map = ((2 * mu1_mu2 + C1) * v1) / ((mu1_sq + mu2_sq + C1) * v2)
126 |
127 | if size_average:
128 | ret = ssim_map.mean()
129 | else:
130 | ret = ssim_map.mean(1).mean(1).mean(1)
131 |
132 | if full:
133 | return ret, cs
134 | return ret
135 |
136 |
137 | def msssim(img1, img2, window_size=11, size_average=True, val_range=None, normalize=False):
138 | device = img1.device
139 | weights = torch.FloatTensor([0.0448, 0.2856, 0.3001, 0.2363, 0.1333]).to(device)
140 | levels = weights.size()[0]
141 | mssim = []
142 | mcs = []
143 | for _ in range(levels):
144 | sim, cs = ssim(img1, img2, window_size=window_size, size_average=size_average, full=True, val_range=val_range)
145 | mssim.append(sim)
146 | mcs.append(cs)
147 |
148 | img1 = F.avg_pool2d(img1, (2, 2))
149 | img2 = F.avg_pool2d(img2, (2, 2))
150 |
151 | mssim = torch.stack(mssim)
152 | mcs = torch.stack(mcs)
153 |
154 | # Normalize (to avoid NaNs during training unstable models, not compliant with original definition)
155 | if normalize:
156 | mssim = (mssim + 1) / 2
157 | mcs = (mcs + 1) / 2
158 |
159 | pow1 = mcs ** weights
160 | pow2 = mssim ** weights
161 | # From Matlab implementation https://ece.uwaterloo.ca/~z70wang/research/iwssim/
162 | output = torch.prod(pow1[:-1] * pow2[-1])
163 | return output
164 |
165 |
166 | # Classes to re-use window
167 | class SSIM(torch.nn.Module):
168 | def __init__(self, window_size=11, size_average=True, val_range=None):
169 | super(SSIM, self).__init__()
170 | self.window_size = window_size
171 | self.size_average = size_average
172 | self.val_range = val_range
173 |
174 | # Assume 3 channel for SSIM
175 | self.channel = 3
176 | self.window = create_window(window_size, channel=self.channel)
177 |
178 | def forward(self, img1, img2):
179 | (_, channel, _, _) = img1.size()
180 |
181 | if channel == self.channel and self.window.dtype == img1.dtype:
182 | window = self.window
183 | else:
184 | window = create_window(self.window_size, channel).to(img1.device).type(img1.dtype)
185 | self.window = window
186 | self.channel = channel
187 |
188 | _ssim = ssim(img1, img2, window=window, window_size=self.window_size, size_average=self.size_average)
189 | dssim = (1 - _ssim) / 2
190 | return dssim
191 |
192 | class MSSSIM(torch.nn.Module):
193 | def __init__(self, window_size=11, size_average=True, channel=3):
194 | super(MSSSIM, self).__init__()
195 | self.window_size = window_size
196 | self.size_average = size_average
197 | self.channel = channel
198 |
199 | def forward(self, img1, img2):
200 | return msssim(img1, img2, window_size=self.window_size, size_average=self.size_average)
201 |
--------------------------------------------------------------------------------
/model/oldmodel/RIFE_HDv2.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import numpy as np
4 | from torch.optim import AdamW
5 | import torch.optim as optim
6 | import itertools
7 | from model.warplayer import warp
8 | from torch.nn.parallel import DistributedDataParallel as DDP
9 | from model.oldmodel.IFNet_HDv2 import *
10 | import torch.nn.functional as F
11 | from model.loss import *
12 |
13 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14 |
15 |
16 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
17 | return nn.Sequential(
18 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
19 | padding=padding, dilation=dilation, bias=True),
20 | nn.PReLU(out_planes)
21 | )
22 |
23 |
24 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
25 | return nn.Sequential(
26 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
27 | kernel_size=4, stride=2, padding=1, bias=True),
28 | nn.PReLU(out_planes)
29 | )
30 |
31 | def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
32 | return nn.Sequential(
33 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
34 | padding=padding, dilation=dilation, bias=True),
35 | )
36 |
37 | class Conv2(nn.Module):
38 | def __init__(self, in_planes, out_planes, stride=2):
39 | super(Conv2, self).__init__()
40 | self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
41 | self.conv2 = conv(out_planes, out_planes, 3, 1, 1)
42 |
43 | def forward(self, x):
44 | x = self.conv1(x)
45 | x = self.conv2(x)
46 | return x
47 |
48 | c = 32
49 |
50 | class ContextNet(nn.Module):
51 | def __init__(self):
52 | super(ContextNet, self).__init__()
53 | self.conv0 = Conv2(3, c)
54 | self.conv1 = Conv2(c, c)
55 | self.conv2 = Conv2(c, 2*c)
56 | self.conv3 = Conv2(2*c, 4*c)
57 | self.conv4 = Conv2(4*c, 8*c)
58 |
59 | def forward(self, x, flow):
60 | x = self.conv0(x)
61 | x = self.conv1(x)
62 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
63 | f1 = warp(x, flow)
64 | x = self.conv2(x)
65 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
66 | align_corners=False) * 0.5
67 | f2 = warp(x, flow)
68 | x = self.conv3(x)
69 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
70 | align_corners=False) * 0.5
71 | f3 = warp(x, flow)
72 | x = self.conv4(x)
73 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
74 | align_corners=False) * 0.5
75 | f4 = warp(x, flow)
76 | return [f1, f2, f3, f4]
77 |
78 |
79 | class FusionNet(nn.Module):
80 | def __init__(self):
81 | super(FusionNet, self).__init__()
82 | self.conv0 = Conv2(10, c)
83 | self.down0 = Conv2(c, 2*c)
84 | self.down1 = Conv2(4*c, 4*c)
85 | self.down2 = Conv2(8*c, 8*c)
86 | self.down3 = Conv2(16*c, 16*c)
87 | self.up0 = deconv(32*c, 8*c)
88 | self.up1 = deconv(16*c, 4*c)
89 | self.up2 = deconv(8*c, 2*c)
90 | self.up3 = deconv(4*c, c)
91 | self.conv = nn.ConvTranspose2d(c, 4, 4, 2, 1)
92 |
93 | def forward(self, img0, img1, flow, c0, c1, flow_gt):
94 | warped_img0 = warp(img0, flow[:, :2])
95 | warped_img1 = warp(img1, flow[:, 2:4])
96 | if flow_gt == None:
97 | warped_img0_gt, warped_img1_gt = None, None
98 | else:
99 | warped_img0_gt = warp(img0, flow_gt[:, :2])
100 | warped_img1_gt = warp(img1, flow_gt[:, 2:4])
101 | x = self.conv0(torch.cat((warped_img0, warped_img1, flow), 1))
102 | s0 = self.down0(x)
103 | s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
104 | s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
105 | s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
106 | x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
107 | x = self.up1(torch.cat((x, s2), 1))
108 | x = self.up2(torch.cat((x, s1), 1))
109 | x = self.up3(torch.cat((x, s0), 1))
110 | x = self.conv(x)
111 | return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
112 |
113 |
114 | class Model:
115 | def __init__(self, local_rank=-1):
116 | self.flownet = IFNet()
117 | self.contextnet = ContextNet()
118 | self.fusionnet = FusionNet()
119 | self.device()
120 | self.optimG = AdamW(itertools.chain(
121 | self.flownet.parameters(),
122 | self.contextnet.parameters(),
123 | self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
124 | self.schedulerG = optim.lr_scheduler.CyclicLR(
125 | self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
126 | self.epe = EPE()
127 | self.ter = Ternary()
128 | self.sobel = SOBEL()
129 | if local_rank != -1:
130 | self.flownet = DDP(self.flownet, device_ids=[
131 | local_rank], output_device=local_rank)
132 | self.contextnet = DDP(self.contextnet, device_ids=[
133 | local_rank], output_device=local_rank)
134 | self.fusionnet = DDP(self.fusionnet, device_ids=[
135 | local_rank], output_device=local_rank)
136 |
137 | def train(self):
138 | self.flownet.train()
139 | self.contextnet.train()
140 | self.fusionnet.train()
141 |
142 | def eval(self):
143 | self.flownet.eval()
144 | self.contextnet.eval()
145 | self.fusionnet.eval()
146 |
147 | def device(self):
148 | self.flownet.to(device)
149 | self.contextnet.to(device)
150 | self.fusionnet.to(device)
151 |
152 | def load_model(self, path, rank):
153 | def convert(param):
154 | if rank == -1:
155 | return {
156 | k.replace("module.", ""): v
157 | for k, v in param.items()
158 | if "module." in k
159 | }
160 | else:
161 | return param
162 | if rank <= 0:
163 | self.flownet.load_state_dict(
164 | convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
165 | self.contextnet.load_state_dict(
166 | convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
167 | self.fusionnet.load_state_dict(
168 | convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))
169 |
170 | def save_model(self, path, rank):
171 | if rank == 0:
172 | torch.save(self.flownet.state_dict(), '{}/flownet.pkl'.format(path))
173 | torch.save(self.contextnet.state_dict(), '{}/contextnet.pkl'.format(path))
174 | torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
175 |
176 | def predict(self, imgs, flow, training=True, flow_gt=None):
177 | img0 = imgs[:, :3]
178 | img1 = imgs[:, 3:]
179 | c0 = self.contextnet(img0, flow[:, :2])
180 | c1 = self.contextnet(img1, flow[:, 2:4])
181 | flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
182 | align_corners=False) * 2.0
183 | refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
184 | img0, img1, flow, c0, c1, flow_gt)
185 | res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
186 | mask = torch.sigmoid(refine_output[:, 3:4])
187 | merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
188 | pred = merged_img + res
189 | pred = torch.clamp(pred, 0, 1)
190 | if training:
191 | return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
192 | else:
193 | return pred
194 |
195 | def inference(self, img0, img1, scale=1.0):
196 | imgs = torch.cat((img0, img1), 1)
197 | flow, _ = self.flownet(imgs, scale)
198 | return self.predict(imgs, flow, training=False)
199 |
200 | def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
201 | for param_group in self.optimG.param_groups:
202 | param_group['lr'] = learning_rate
203 | if training:
204 | self.train()
205 | else:
206 | self.eval()
207 | flow, flow_list = self.flownet(imgs)
208 | pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
209 | imgs, flow, flow_gt=flow_gt)
210 | loss_ter = self.ter(pred, gt).mean()
211 | if training:
212 | with torch.no_grad():
213 | loss_flow = torch.abs(warped_img0_gt - gt).mean()
214 | loss_mask = torch.abs(
215 | merged_img - gt).sum(1, True).float().detach()
216 | loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
217 | align_corners=False).detach()
218 | flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
219 | align_corners=False) * 0.5).detach()
220 | loss_cons = 0
221 | for i in range(4):
222 | loss_cons += self.epe(flow_list[i][:, :2], flow_gt[:, :2], 1)
223 | loss_cons += self.epe(flow_list[i][:, 2:4], flow_gt[:, 2:4], 1)
224 | loss_cons = loss_cons.mean() * 0.01
225 | else:
226 | loss_cons = torch.tensor([0])
227 | loss_flow = torch.abs(warped_img0 - gt).mean()
228 | loss_mask = 1
229 | loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
230 | if training:
231 | self.optimG.zero_grad()
232 | loss_G = loss_l1 + loss_cons + loss_ter
233 | loss_G.backward()
234 | self.optimG.step()
235 | return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
236 |
237 |
238 | if __name__ == '__main__':
239 | img0 = torch.zeros(3, 3, 256, 256).float().to(device)
240 | img1 = torch.tensor(np.random.normal(
241 | 0, 1, (3, 3, 256, 256))).float().to(device)
242 | imgs = torch.cat((img0, img1), 1)
243 | model = Model()
244 | model.eval()
245 | print(model.inference(imgs).shape)
246 |
--------------------------------------------------------------------------------
/model/oldmodel/RIFE_HD.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn as nn
3 | import numpy as np
4 | from torch.optim import AdamW
5 | import torch.optim as optim
6 | import itertools
7 | from model.warplayer import warp
8 | from torch.nn.parallel import DistributedDataParallel as DDP
9 | from model.oldmodel.IFNet_HD import *
10 | import torch.nn.functional as F
11 | from model.loss import *
12 |
13 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14 |
15 |
16 | def conv(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
17 | return nn.Sequential(
18 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
19 | padding=padding, dilation=dilation, bias=True),
20 | nn.PReLU(out_planes)
21 | )
22 |
23 |
24 | def deconv(in_planes, out_planes, kernel_size=4, stride=2, padding=1):
25 | return nn.Sequential(
26 | torch.nn.ConvTranspose2d(in_channels=in_planes, out_channels=out_planes,
27 | kernel_size=4, stride=2, padding=1, bias=True),
28 | nn.PReLU(out_planes)
29 | )
30 |
31 | def conv_woact(in_planes, out_planes, kernel_size=3, stride=1, padding=1, dilation=1):
32 | return nn.Sequential(
33 | nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride,
34 | padding=padding, dilation=dilation, bias=True),
35 | )
36 |
37 | class ResBlock(nn.Module):
38 | def __init__(self, in_planes, out_planes, stride=2):
39 | super(ResBlock, self).__init__()
40 | if in_planes == out_planes and stride == 1:
41 | self.conv0 = nn.Identity()
42 | else:
43 | self.conv0 = nn.Conv2d(in_planes, out_planes,
44 | 3, stride, 1, bias=False)
45 | self.conv1 = conv(in_planes, out_planes, 3, stride, 1)
46 | self.conv2 = conv_woact(out_planes, out_planes, 3, 1, 1)
47 | self.relu1 = nn.PReLU(1)
48 | self.relu2 = nn.PReLU(out_planes)
49 | self.fc1 = nn.Conv2d(out_planes, 16, kernel_size=1, bias=False)
50 | self.fc2 = nn.Conv2d(16, out_planes, kernel_size=1, bias=False)
51 |
52 | def forward(self, x):
53 | y = self.conv0(x)
54 | x = self.conv1(x)
55 | x = self.conv2(x)
56 | w = x.mean(3, True).mean(2, True)
57 | w = self.relu1(self.fc1(w))
58 | w = torch.sigmoid(self.fc2(w))
59 | x = self.relu2(x * w + y)
60 | return x
61 |
62 | c = 32
63 |
64 | class ContextNet(nn.Module):
65 | def __init__(self):
66 | super(ContextNet, self).__init__()
67 | self.conv0 = conv(3, c, 3, 2, 1)
68 | self.conv1 = ResBlock(c, c)
69 | self.conv2 = ResBlock(c, 2*c)
70 | self.conv3 = ResBlock(2*c, 4*c)
71 | self.conv4 = ResBlock(4*c, 8*c)
72 |
73 | def forward(self, x, flow):
74 | x = self.conv0(x)
75 | x = self.conv1(x)
76 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear", align_corners=False) * 0.5
77 | f1 = warp(x, flow)
78 | x = self.conv2(x)
79 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
80 | align_corners=False) * 0.5
81 | f2 = warp(x, flow)
82 | x = self.conv3(x)
83 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
84 | align_corners=False) * 0.5
85 | f3 = warp(x, flow)
86 | x = self.conv4(x)
87 | flow = F.interpolate(flow, scale_factor=0.5, mode="bilinear",
88 | align_corners=False) * 0.5
89 | f4 = warp(x, flow)
90 | return [f1, f2, f3, f4]
91 |
92 |
93 | class FusionNet(nn.Module):
94 | def __init__(self):
95 | super(FusionNet, self).__init__()
96 | self.conv0 = conv(8, c, 3, 2, 1)
97 | self.down0 = ResBlock(c, 2*c)
98 | self.down1 = ResBlock(4*c, 4*c)
99 | self.down2 = ResBlock(8*c, 8*c)
100 | self.down3 = ResBlock(16*c, 16*c)
101 | self.up0 = deconv(32*c, 8*c)
102 | self.up1 = deconv(16*c, 4*c)
103 | self.up2 = deconv(8*c, 2*c)
104 | self.up3 = deconv(4*c, c)
105 | self.conv = nn.Conv2d(c, 16, 3, 1, 1)
106 | self.up4 = nn.PixelShuffle(2)
107 |
108 | def forward(self, img0, img1, flow, c0, c1, flow_gt):
109 | warped_img0 = warp(img0, flow)
110 | warped_img1 = warp(img1, -flow)
111 | if flow_gt == None:
112 | warped_img0_gt, warped_img1_gt = None, None
113 | else:
114 | warped_img0_gt = warp(img0, flow_gt[:, :2])
115 | warped_img1_gt = warp(img1, flow_gt[:, 2:4])
116 | x = self.conv0(torch.cat((warped_img0, warped_img1, flow), 1))
117 | s0 = self.down0(x)
118 | s1 = self.down1(torch.cat((s0, c0[0], c1[0]), 1))
119 | s2 = self.down2(torch.cat((s1, c0[1], c1[1]), 1))
120 | s3 = self.down3(torch.cat((s2, c0[2], c1[2]), 1))
121 | x = self.up0(torch.cat((s3, c0[3], c1[3]), 1))
122 | x = self.up1(torch.cat((x, s2), 1))
123 | x = self.up2(torch.cat((x, s1), 1))
124 | x = self.up3(torch.cat((x, s0), 1))
125 | x = self.up4(self.conv(x))
126 | return x, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
127 |
128 |
129 | class Model:
130 | def __init__(self, local_rank=-1):
131 | self.flownet = IFNet()
132 | self.contextnet = ContextNet()
133 | self.fusionnet = FusionNet()
134 | self.device()
135 | self.optimG = AdamW(itertools.chain(
136 | self.flownet.parameters(),
137 | self.contextnet.parameters(),
138 | self.fusionnet.parameters()), lr=1e-6, weight_decay=1e-4)
139 | self.schedulerG = optim.lr_scheduler.CyclicLR(
140 | self.optimG, base_lr=1e-6, max_lr=1e-3, step_size_up=8000, cycle_momentum=False)
141 | self.epe = EPE()
142 | self.ter = Ternary()
143 | self.sobel = SOBEL()
144 | if local_rank != -1:
145 | self.flownet = DDP(self.flownet, device_ids=[
146 | local_rank], output_device=local_rank)
147 | self.contextnet = DDP(self.contextnet, device_ids=[
148 | local_rank], output_device=local_rank)
149 | self.fusionnet = DDP(self.fusionnet, device_ids=[
150 | local_rank], output_device=local_rank)
151 |
152 | def train(self):
153 | self.flownet.train()
154 | self.contextnet.train()
155 | self.fusionnet.train()
156 |
157 | def eval(self):
158 | self.flownet.eval()
159 | self.contextnet.eval()
160 | self.fusionnet.eval()
161 |
162 | def device(self):
163 | self.flownet.to(device)
164 | self.contextnet.to(device)
165 | self.fusionnet.to(device)
166 |
167 | def load_model(self, path, rank):
168 | def convert(param):
169 | if rank == -1:
170 | return {
171 | k.replace("module.", ""): v
172 | for k, v in param.items()
173 | if "module." in k
174 | }
175 | else:
176 | return param
177 | if rank <= 0:
178 | self.flownet.load_state_dict(
179 | convert(torch.load('{}/flownet.pkl'.format(path), map_location=device)))
180 | self.contextnet.load_state_dict(
181 | convert(torch.load('{}/contextnet.pkl'.format(path), map_location=device)))
182 | self.fusionnet.load_state_dict(
183 | convert(torch.load('{}/unet.pkl'.format(path), map_location=device)))
184 |
185 | def save_model(self, path, rank):
186 | if rank == 0:
187 | torch.save(self.flownet.state_dict(), '{}/flownet.pkl'.format(path))
188 | torch.save(self.contextnet.state_dict(), '{}/contextnet.pkl'.format(path))
189 | torch.save(self.fusionnet.state_dict(), '{}/unet.pkl'.format(path))
190 |
191 | def predict(self, imgs, flow, training=True, flow_gt=None):
192 | img0 = imgs[:, :3]
193 | img1 = imgs[:, 3:]
194 | c0 = self.contextnet(img0, flow)
195 | c1 = self.contextnet(img1, -flow)
196 | flow = F.interpolate(flow, scale_factor=2.0, mode="bilinear",
197 | align_corners=False) * 2.0
198 | refine_output, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.fusionnet(
199 | img0, img1, flow, c0, c1, flow_gt)
200 | res = torch.sigmoid(refine_output[:, :3]) * 2 - 1
201 | mask = torch.sigmoid(refine_output[:, 3:4])
202 | merged_img = warped_img0 * mask + warped_img1 * (1 - mask)
203 | pred = merged_img + res
204 | pred = torch.clamp(pred, 0, 1)
205 | if training:
206 | return pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt
207 | else:
208 | return pred
209 |
210 | def inference(self, img0, img1, scale=1.0):
211 | imgs = torch.cat((img0, img1), 1)
212 | flow, _ = self.flownet(imgs, scale)
213 | return self.predict(imgs, flow, training=False)
214 |
215 | def update(self, imgs, gt, learning_rate=0, mul=1, training=True, flow_gt=None):
216 | for param_group in self.optimG.param_groups:
217 | param_group['lr'] = learning_rate
218 | if training:
219 | self.train()
220 | else:
221 | self.eval()
222 | flow, flow_list = self.flownet(imgs)
223 | pred, mask, merged_img, warped_img0, warped_img1, warped_img0_gt, warped_img1_gt = self.predict(
224 | imgs, flow, flow_gt=flow_gt)
225 | loss_ter = self.ter(pred, gt).mean()
226 | if training:
227 | with torch.no_grad():
228 | loss_flow = torch.abs(warped_img0_gt - gt).mean()
229 | loss_mask = torch.abs(
230 | merged_img - gt).sum(1, True).float().detach()
231 | loss_mask = F.interpolate(loss_mask, scale_factor=0.5, mode="bilinear",
232 | align_corners=False).detach()
233 | flow_gt = (F.interpolate(flow_gt, scale_factor=0.5, mode="bilinear",
234 | align_corners=False) * 0.5).detach()
235 | loss_cons = 0
236 | for i in range(3):
237 | loss_cons += self.epe(flow_list[i], flow_gt[:, :2], 1)
238 | loss_cons += self.epe(-flow_list[i], flow_gt[:, 2:4], 1)
239 | loss_cons = loss_cons.mean() * 0.01
240 | else:
241 | loss_cons = torch.tensor([0])
242 | loss_flow = torch.abs(warped_img0 - gt).mean()
243 | loss_mask = 1
244 | loss_l1 = (((pred - gt) ** 2 + 1e-6) ** 0.5).mean()
245 | if training:
246 | self.optimG.zero_grad()
247 | loss_G = loss_l1 + loss_cons + loss_ter
248 | loss_G.backward()
249 | self.optimG.step()
250 | return pred, merged_img, flow, loss_l1, loss_flow, loss_cons, loss_ter, loss_mask
251 |
252 |
253 | if __name__ == '__main__':
254 | img0 = torch.zeros(3, 3, 256, 256).float().to(device)
255 | img1 = torch.tensor(np.random.normal(
256 | 0, 1, (3, 3, 256, 256))).float().to(device)
257 | imgs = torch.cat((img0, img1), 1)
258 | model = Model()
259 | model.eval()
260 | print(model.inference(imgs).shape)
261 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Real-Time Intermediate Flow Estimation for Video Frame Interpolation
2 | ## [YouTube](https://www.youtube.com/results?search_query=rife+interpolation&sp=CAM%253D) | [BiliBili](https://search.bilibili.com/all?keyword=SVFI&order=stow&duration=0&tids_1=0) | [Colab](https://colab.research.google.com/github/hzwer/ECCV2022-RIFE/blob/main/Colab_demo.ipynb) | [Tutorial](https://www.youtube.com/watch?v=gf_on-dbwyU&feature=emb_title) | [DeepWiki](https://deepwiki.com/hzwer/ECCV2022-RIFE)
3 |
4 | ## Introduction
5 | This project is the implement of [Real-Time Intermediate Flow Estimation for Video Frame Interpolation](https://arxiv.org/abs/2011.06294). Currently, our model can run 30+FPS for 2X 720p interpolation on a 2080Ti GPU. It supports arbitrary-timestep interpolation between a pair of images.
6 |
7 | **2024.08 - We find that [4.22.lite](https://github.com/hzwer/Practical-RIFE/tree/main?tab=readme-ov-file#model-list) is quite suitable for post-processing of [some diffusion model generated videos](https://drive.google.com/drive/folders/1hSzUn10Era3JCaVz0Z5Eg4wT9R6eJ9U9?usp=sharing).**
8 |
9 | 2023.11 - We recently release new [v4.7-4.10](https://github.com/hzwer/Practical-RIFE/tree/main#model-list) optimized for anime scenes! We draw from [SAFA](https://github.com/megvii-research/WACV2024-SAFA/tree/main)’s research.
10 |
11 | 2022.7.4 - Our paper is accepted by ECCV2022. Thanks to all relevant authors, contributors and users!
12 |
13 | From 2020 to 2022, we submitted RIFE for five submissions(rejected by CVPR21 ICCV21 AAAI22 CVPR22). Thanks to all anonymous reviewers, your suggestions have helped to significantly improve the paper!
14 |
15 | [ECCV Poster](https://drive.google.com/file/d/1xCXuLUCSwhN61kvIF8jxDvQiUGtLK0kN/view?usp=sharing) | [ECCV 5-min presentation](https://youtu.be/qdp-NYqWQpA) | [论文中文介绍](https://zhuanlan.zhihu.com/p/568553080) | [rebuttal (2WA1WR->3WA)](https://drive.google.com/file/d/16IVjwRpwbTuJbYyTn4PizKX8I257QxY-/view?usp=sharing)
16 |
17 | **Pinned Software: [RIFE-App](https://grisk.itch.io/rife-app) | [FlowFrames](https://nmkd.itch.io/flowframes) | [SVFI (中文)](https://github.com/YiWeiHuang-stack/Squirrel-Video-Frame-Interpolation)**
18 |
19 | 16X interpolation results from two input images:
20 |
21 | 
22 | 
23 |
24 | ## Software
25 | [Flowframes](https://nmkd.itch.io/flowframes) | [SVFI(中文)](https://github.com/YiWeiHuang-stack/Squirrel-Video-Frame-Interpolation) | [Waifu2x-Extension-GUI](https://github.com/AaronFeng753/Waifu2x-Extension-GUI) | [Autodesk Flame](https://vimeo.com/505942142) | [SVP](https://www.svp-team.com/wiki/RIFE_AI_interpolation) | [mpv_PlayKit](https://github.com/hooke007/mpv_PlayKit) | [enhancr](https://github.com/mafiosnik777/enhancr)
26 |
27 | [RIFE-App(Paid)](https://grisk.itch.io/rife-app) | [Steam-VFI(Paid)](https://store.steampowered.com/app/1692080/SVFI/)
28 |
29 | We are not responsible for and participating in the development of above software. According to the open source license, we respect the commercial behavior of other developers.
30 |
31 | [VapourSynth-RIFE](https://github.com/HolyWu/vs-rife) | [RIFE-ncnn-vulkan](https://github.com/nihui/rife-ncnn-vulkan) | [VapourSynth-RIFE-ncnn-Vulkan](https://github.com/styler00dollar/VapourSynth-RIFE-ncnn-Vulkan) | [vs-mlrt](https://github.com/AmusementClub/vs-mlrt)
32 |
33 |
34 |
35 | If you are a developer, welcome to follow [Practical-RIFE](https://github.com/hzwer/Practical-RIFE), which aims to make RIFE more practical for users by adding various features and design new models with faster speed.
36 |
37 | You may check [this pull request](https://github.com/megvii-research/ECCV2022-RIFE/pull/300) for supporting macOS.
38 | ## CLI Usage
39 |
40 | ### Installation
41 |
42 | ```
43 | git clone git@github.com:megvii-research/ECCV2022-RIFE.git
44 | cd ECCV2022-RIFE
45 | pip3 install -r requirements.txt
46 | ```
47 |
48 | * Download the pretrained **HD** models from [here](https://drive.google.com/file/d/1APIzVeI-4ZZCEuIRE1m6WYfSCaOsi_7_/view?usp=sharing). (百度网盘链接:https://pan.baidu.com/share/init?surl=u6Q7-i4Hu4Vx9_5BJibPPA 密码:hfk3,把压缩包解开后放在 train_log/\*)
49 |
50 | * Unzip and move the pretrained parameters to train_log/\*
51 |
52 | * This model is not reported by our paper, for our paper model please refer to [evaluation](https://github.com/hzwer/ECCV2022-RIFE#evaluation).
53 |
54 | ### Run
55 |
56 | **Video Frame Interpolation**
57 |
58 | You can use our [demo video](https://drive.google.com/file/d/1i3xlKb7ax7Y70khcTcuePi6E7crO_dFc/view?usp=sharing) or your own video.
59 | ```
60 | python3 inference_video.py --exp=1 --video=video.mp4
61 | ```
62 | (generate video_2X_xxfps.mp4)
63 | ```
64 | python3 inference_video.py --exp=2 --video=video.mp4
65 | ```
66 | (for 4X interpolation)
67 | ```
68 | python3 inference_video.py --exp=1 --video=video.mp4 --scale=0.5
69 | ```
70 | (If your video has very high resolution such as 4K, we recommend set --scale=0.5 (default 1.0). If you generate disordered pattern on your videos, try set --scale=2.0. This parameter control the process resolution for optical flow model.)
71 | ```
72 | python3 inference_video.py --exp=2 --img=input/
73 | ```
74 | (to read video from pngs, like input/0.png ... input/612.png, ensure that the png names are numbers)
75 | ```
76 | python3 inference_video.py --exp=2 --video=video.mp4 --fps=60
77 | ```
78 | (add slomo effect, the audio will be removed)
79 | ```
80 | python3 inference_video.py --video=video.mp4 --montage --png
81 | ```
82 | (if you want to montage the origin video and save the png format output)
83 |
84 | **Extended Application**
85 |
86 | You may refer to [#278](https://github.com/megvii-research/ECCV2022-RIFE/issues/278#event-7199085190) for **Optical Flow Estimation** and refer to [#291](https://github.com/hzwer/ECCV2022-RIFE/issues/291#issuecomment-1328685348) for **Video Stitching**.
87 |
88 | **Image Interpolation**
89 |
90 | ```
91 | python3 inference_img.py --img img0.png img1.png --exp=4
92 | ```
93 | (2^4=16X interpolation results)
94 | After that, you can use pngs to generate mp4:
95 | ```
96 | ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -c:v libx264 -pix_fmt yuv420p output/slomo.mp4 -q:v 0 -q:a 0
97 | ```
98 | You can also use pngs to generate gif:
99 | ```
100 | ffmpeg -r 10 -f image2 -i output/img%d.png -s 448x256 -vf "split[s0][s1];[s0]palettegen=stats_mode=single[p];[s1][p]paletteuse=new=1" output/slomo.gif
101 | ```
102 |
103 | ### Run in docker
104 | Place the pre-trained models in `train_log/\*.pkl` (as above)
105 |
106 | Building the container:
107 | ```
108 | docker build -t rife -f docker/Dockerfile .
109 | ```
110 |
111 | Running the container:
112 | ```
113 | docker run --rm -it -v $PWD:/host rife:latest inference_video --exp=1 --video=untitled.mp4 --output=untitled_rife.mp4
114 | ```
115 | ```
116 | docker run --rm -it -v $PWD:/host rife:latest inference_img --img img0.png img1.png --exp=4
117 | ```
118 |
119 | Using gpu acceleration (requires proper gpu drivers for docker):
120 | ```
121 | docker run --rm -it --gpus all -v /dev/dri:/dev/dri -v $PWD:/host rife:latest inference_video --exp=1 --video=untitled.mp4 --output=untitled_rife.mp4
122 | ```
123 |
124 | ## Evaluation
125 | Download [RIFE model](https://drive.google.com/file/d/1h42aGYPNJn2q8j_GVkS_yDu__G_UZ2GX/view?usp=sharing) or [RIFE_m model](https://drive.google.com/file/d/147XVsDXBfJPlyct2jfo9kpbL944mNeZr/view?usp=sharing) reported by our paper.
126 |
127 | **UCF101**: Download [UCF101 dataset](https://liuziwei7.github.io/projects/VoxelFlow) at ./UCF101/ucf101_interp_ours/
128 |
129 | **Vimeo90K**: Download [Vimeo90K dataset](http://toflow.csail.mit.edu/) at ./vimeo_interp_test
130 |
131 | **MiddleBury**: Download [MiddleBury OTHER dataset](https://vision.middlebury.edu/flow/data/) at ./other-data and ./other-gt-interp
132 |
133 | **HD**: Download [HD dataset](https://github.com/baowenbo/MEMC-Net) at ./HD_dataset. We also provide a [google drive download link](https://drive.google.com/file/d/1iHaLoR2g1-FLgr9MEv51NH_KQYMYz-FA/view?usp=sharing).
134 | ```
135 | # RIFE
136 | python3 benchmark/UCF101.py
137 | # "PSNR: 35.282 SSIM: 0.9688"
138 | python3 benchmark/Vimeo90K.py
139 | # "PSNR: 35.615 SSIM: 0.9779"
140 | python3 benchmark/MiddleBury_Other.py
141 | # "IE: 1.956"
142 | python3 benchmark/HD.py
143 | # "PSNR: 32.14"
144 |
145 | # RIFE_m
146 | python3 benchmark/HD_multi_4X.py
147 | # "PSNR: 22.96(544*1280), 31.87(720p), 34.25(1080p)"
148 | ```
149 |
150 | ## Training and Reproduction
151 | Download [Vimeo90K dataset](http://toflow.csail.mit.edu/).
152 |
153 | We use 16 CPUs, 4 GPUs and 20G memory for training:
154 | ```
155 | python3 -m torch.distributed.launch --nproc_per_node=4 train.py --world_size=4
156 | ```
157 |
158 | ## Revision History
159 |
160 | 2021.3.18 [arXiv](https://arxiv.org/pdf/2011.06294v5.pdf): Modify the main experimental data, especially the runtime related issues.
161 |
162 | 2021.8.12 [arXiv](https://arxiv.org/pdf/2011.06294v6.pdf): Remove pre-trained model dependency and propose privileged distillation scheme for frame interpolation. Remove [census loss](https://github.com/hzwer/arXiv2021-RIFE/blob/0e241367847a0895748e64c6e1604c94db54d395/model/loss.py#L20) supervision.
163 |
164 | 2021.11.17 [arXiv](https://arxiv.org/pdf/2011.06294v11.pdf): Support arbitrary-time frame interpolation, aka RIFEm and add more experiments.
165 |
166 | ## Recommend
167 | We sincerely recommend some related papers:
168 |
169 | CVPR22 - [Optimizing Video Prediction via Video Frame Interpolation](https://openaccess.thecvf.com/content/CVPR2022/html/Wu_Optimizing_Video_Prediction_via_Video_Frame_Interpolation_CVPR_2022_paper.html)
170 |
171 | CVPR22 - [Video Frame Interpolation with Transformer](https://openaccess.thecvf.com/content/CVPR2022/html/Lu_Video_Frame_Interpolation_With_Transformer_CVPR_2022_paper.html)
172 |
173 | CVPR22 - [IFRNet: Intermediate Feature Refine Network for Efficient Frame Interpolation](https://openaccess.thecvf.com/content/CVPR2022/html/Kong_IFRNet_Intermediate_Feature_Refine_Network_for_Efficient_Frame_Interpolation_CVPR_2022_paper.html)
174 |
175 | CVPR23 - [A Dynamic Multi-Scale Voxel Flow Network for Video Prediction](https://huxiaotaostasy.github.io/DMVFN/)
176 |
177 | CVPR23 - [Extracting Motion and Appearance via Inter-Frame Attention for Efficient Video Frame Interpolation](https://arxiv.org/abs/2303.00440)
178 |
179 | ## Citation
180 | If you think this project is helpful, please feel free to leave a star or cite our paper:
181 |
182 | ```
183 | @inproceedings{huang2022rife,
184 | title={Real-Time Intermediate Flow Estimation for Video Frame Interpolation},
185 | author={Huang, Zhewei and Zhang, Tianyuan and Heng, Wen and Shi, Boxin and Zhou, Shuchang},
186 | booktitle={Proceedings of the European Conference on Computer Vision (ECCV)},
187 | year={2022}
188 | }
189 | ```
190 |
191 | ## Reference
192 |
193 | Optical Flow:
194 | [ARFlow](https://github.com/lliuz/ARFlow) [pytorch-liteflownet](https://github.com/sniklaus/pytorch-liteflownet) [RAFT](https://github.com/princeton-vl/RAFT) [pytorch-PWCNet](https://github.com/sniklaus/pytorch-pwc)
195 |
196 | Video Interpolation:
197 | [DVF](https://github.com/lxx1991/pytorch-voxel-flow) [TOflow](https://github.com/Coldog2333/pytoflow) [SepConv](https://github.com/sniklaus/sepconv-slomo) [DAIN](https://github.com/baowenbo/DAIN) [CAIN](https://github.com/myungsub/CAIN) [MEMC-Net](https://github.com/baowenbo/MEMC-Net) [SoftSplat](https://github.com/sniklaus/softmax-splatting) [BMBC](https://github.com/JunHeum/BMBC) [EDSC](https://github.com/Xianhang/EDSC-pytorch) [EQVI](https://github.com/lyh-18/EQVI)
198 |
--------------------------------------------------------------------------------
/inference_video.py:
--------------------------------------------------------------------------------
1 | import os
2 | import cv2
3 | import torch
4 | import argparse
5 | import numpy as np
6 | from tqdm import tqdm
7 | from torch.nn import functional as F
8 | import warnings
9 | import _thread
10 | import skvideo.io
11 | from queue import Queue, Empty
12 | from model.pytorch_msssim import ssim_matlab
13 |
14 | warnings.filterwarnings("ignore")
15 |
16 | def transferAudio(sourceVideo, targetVideo):
17 | import shutil
18 | import moviepy.editor
19 | tempAudioFileName = "./temp/audio.mkv"
20 |
21 | # split audio from original video file and store in "temp" directory
22 | if True:
23 |
24 | # clear old "temp" directory if it exits
25 | if os.path.isdir("temp"):
26 | # remove temp directory
27 | shutil.rmtree("temp")
28 | # create new "temp" directory
29 | os.makedirs("temp")
30 | # extract audio from video
31 | os.system('ffmpeg -y -i "{}" -c:a copy -vn {}'.format(sourceVideo, tempAudioFileName))
32 |
33 | targetNoAudio = os.path.splitext(targetVideo)[0] + "_noaudio" + os.path.splitext(targetVideo)[1]
34 | os.rename(targetVideo, targetNoAudio)
35 | # combine audio file and new video file
36 | os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
37 |
38 | if os.path.getsize(targetVideo) == 0: # if ffmpeg failed to merge the video and audio together try converting the audio to aac
39 | tempAudioFileName = "./temp/audio.m4a"
40 | os.system('ffmpeg -y -i "{}" -c:a aac -b:a 160k -vn {}'.format(sourceVideo, tempAudioFileName))
41 | os.system('ffmpeg -y -i "{}" -i {} -c copy "{}"'.format(targetNoAudio, tempAudioFileName, targetVideo))
42 | if (os.path.getsize(targetVideo) == 0): # if aac is not supported by selected format
43 | os.rename(targetNoAudio, targetVideo)
44 | print("Audio transfer failed. Interpolated video will have no audio")
45 | else:
46 | print("Lossless audio transfer failed. Audio was transcoded to AAC (M4A) instead.")
47 |
48 | # remove audio-less video
49 | os.remove(targetNoAudio)
50 | else:
51 | os.remove(targetNoAudio)
52 |
53 | # remove temp directory
54 | shutil.rmtree("temp")
55 |
56 | parser = argparse.ArgumentParser(description='Interpolation for a pair of images')
57 | parser.add_argument('--video', dest='video', type=str, default=None)
58 | parser.add_argument('--output', dest='output', type=str, default=None)
59 | parser.add_argument('--img', dest='img', type=str, default=None)
60 | parser.add_argument('--montage', dest='montage', action='store_true', help='montage origin video')
61 | parser.add_argument('--model', dest='modelDir', type=str, default='train_log', help='directory with trained model files')
62 | parser.add_argument('--fp16', dest='fp16', action='store_true', help='fp16 mode for faster and more lightweight inference on cards with Tensor Cores')
63 | parser.add_argument('--UHD', dest='UHD', action='store_true', help='support 4k video')
64 | parser.add_argument('--scale', dest='scale', type=float, default=1.0, help='Try scale=0.5 for 4k video')
65 | parser.add_argument('--skip', dest='skip', action='store_true', help='whether to remove static frames before processing')
66 | parser.add_argument('--fps', dest='fps', type=int, default=None)
67 | parser.add_argument('--png', dest='png', action='store_true', help='whether to vid_out png format vid_outs')
68 | parser.add_argument('--ext', dest='ext', type=str, default='mp4', help='vid_out video extension')
69 | parser.add_argument('--exp', dest='exp', type=int, default=1)
70 | args = parser.parse_args()
71 | assert (not args.video is None or not args.img is None)
72 | if args.skip:
73 | print("skip flag is abandoned, please refer to issue #207.")
74 | if args.UHD and args.scale==1.0:
75 | args.scale = 0.5
76 | assert args.scale in [0.25, 0.5, 1.0, 2.0, 4.0]
77 | if not args.img is None:
78 | args.png = True
79 |
80 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
81 | torch.set_grad_enabled(False)
82 | if torch.cuda.is_available():
83 | torch.backends.cudnn.enabled = True
84 | torch.backends.cudnn.benchmark = True
85 | if(args.fp16):
86 | torch.set_default_tensor_type(torch.cuda.HalfTensor)
87 |
88 | try:
89 | try:
90 | try:
91 | from model.RIFE_HDv2 import Model
92 | model = Model()
93 | model.load_model(args.modelDir, -1)
94 | print("Loaded v2.x HD model.")
95 | except:
96 | from train_log.RIFE_HDv3 import Model
97 | model = Model()
98 | model.load_model(args.modelDir, -1)
99 | print("Loaded v3.x HD model.")
100 | except:
101 | from model.RIFE_HD import Model
102 | model = Model()
103 | model.load_model(args.modelDir, -1)
104 | print("Loaded v1.x HD model")
105 | except:
106 | from model.RIFE import Model
107 | model = Model()
108 | model.load_model(args.modelDir, -1)
109 | print("Loaded ArXiv-RIFE model")
110 | model.eval()
111 | model.device()
112 |
113 | if not args.video is None:
114 | videoCapture = cv2.VideoCapture(args.video)
115 | fps = videoCapture.get(cv2.CAP_PROP_FPS)
116 | tot_frame = videoCapture.get(cv2.CAP_PROP_FRAME_COUNT)
117 | videoCapture.release()
118 | if args.fps is None:
119 | fpsNotAssigned = True
120 | args.fps = fps * (2 ** args.exp)
121 | else:
122 | fpsNotAssigned = False
123 | videogen = skvideo.io.vreader(args.video)
124 | lastframe = next(videogen)
125 | fourcc = cv2.VideoWriter_fourcc('m', 'p', '4', 'v')
126 | video_path_wo_ext, ext = os.path.splitext(args.video)
127 | print('{}.{}, {} frames in total, {}FPS to {}FPS'.format(video_path_wo_ext, args.ext, tot_frame, fps, args.fps))
128 | if args.png == False and fpsNotAssigned == True:
129 | print("The audio will be merged after interpolation process")
130 | else:
131 | print("Will not merge audio because using png or fps flag!")
132 | else:
133 | videogen = []
134 | for f in os.listdir(args.img):
135 | if 'png' in f:
136 | videogen.append(f)
137 | tot_frame = len(videogen)
138 | videogen.sort(key= lambda x:int(x[:-4]))
139 | lastframe = cv2.imread(os.path.join(args.img, videogen[0]), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
140 | videogen = videogen[1:]
141 | h, w, _ = lastframe.shape
142 | vid_out_name = None
143 | vid_out = None
144 | if args.png:
145 | if not os.path.exists('vid_out'):
146 | os.mkdir('vid_out')
147 | else:
148 | if args.output is not None:
149 | vid_out_name = args.output
150 | else:
151 | vid_out_name = '{}_{}X_{}fps.{}'.format(video_path_wo_ext, (2 ** args.exp), int(np.round(args.fps)), args.ext)
152 | vid_out = cv2.VideoWriter(vid_out_name, fourcc, args.fps, (w, h))
153 |
154 | def clear_write_buffer(user_args, write_buffer):
155 | cnt = 0
156 | while True:
157 | item = write_buffer.get()
158 | if item is None:
159 | break
160 | if user_args.png:
161 | cv2.imwrite('vid_out/{:0>7d}.png'.format(cnt), item[:, :, ::-1])
162 | cnt += 1
163 | else:
164 | vid_out.write(item[:, :, ::-1])
165 |
166 | def build_read_buffer(user_args, read_buffer, videogen):
167 | try:
168 | for frame in videogen:
169 | if not user_args.img is None:
170 | frame = cv2.imread(os.path.join(user_args.img, frame), cv2.IMREAD_UNCHANGED)[:, :, ::-1].copy()
171 | if user_args.montage:
172 | frame = frame[:, left: left + w]
173 | read_buffer.put(frame)
174 | except:
175 | pass
176 | read_buffer.put(None)
177 |
178 | def make_inference(I0, I1, n):
179 | global model
180 | middle = model.inference(I0, I1, args.scale)
181 | if n == 1:
182 | return [middle]
183 | first_half = make_inference(I0, middle, n=n//2)
184 | second_half = make_inference(middle, I1, n=n//2)
185 | if n%2:
186 | return [*first_half, middle, *second_half]
187 | else:
188 | return [*first_half, *second_half]
189 |
190 | def pad_image(img):
191 | if(args.fp16):
192 | return F.pad(img, padding).half()
193 | else:
194 | return F.pad(img, padding)
195 |
196 | if args.montage:
197 | left = w // 4
198 | w = w // 2
199 | tmp = max(32, int(32 / args.scale))
200 | ph = ((h - 1) // tmp + 1) * tmp
201 | pw = ((w - 1) // tmp + 1) * tmp
202 | padding = (0, pw - w, 0, ph - h)
203 | pbar = tqdm(total=tot_frame)
204 | if args.montage:
205 | lastframe = lastframe[:, left: left + w]
206 | write_buffer = Queue(maxsize=500)
207 | read_buffer = Queue(maxsize=500)
208 | _thread.start_new_thread(build_read_buffer, (args, read_buffer, videogen))
209 | _thread.start_new_thread(clear_write_buffer, (args, write_buffer))
210 |
211 | I1 = torch.from_numpy(np.transpose(lastframe, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
212 | I1 = pad_image(I1)
213 | temp = None # save lastframe when processing static frame
214 |
215 | while True:
216 | if temp is not None:
217 | frame = temp
218 | temp = None
219 | else:
220 | frame = read_buffer.get()
221 | if frame is None:
222 | break
223 | I0 = I1
224 | I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
225 | I1 = pad_image(I1)
226 | I0_small = F.interpolate(I0, (32, 32), mode='bilinear', align_corners=False)
227 | I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
228 | ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
229 |
230 | break_flag = False
231 | if ssim > 0.996:
232 | frame = read_buffer.get() # read a new frame
233 | if frame is None:
234 | break_flag = True
235 | frame = lastframe
236 | else:
237 | temp = frame
238 | I1 = torch.from_numpy(np.transpose(frame, (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.
239 | I1 = pad_image(I1)
240 | I1 = model.inference(I0, I1, args.scale)
241 | I1_small = F.interpolate(I1, (32, 32), mode='bilinear', align_corners=False)
242 | ssim = ssim_matlab(I0_small[:, :3], I1_small[:, :3])
243 | frame = (I1[0] * 255).byte().cpu().numpy().transpose(1, 2, 0)[:h, :w]
244 |
245 | if ssim < 0.2:
246 | output = []
247 | for i in range((2 ** args.exp) - 1):
248 | output.append(I0)
249 | '''
250 | output = []
251 | step = 1 / (2 ** args.exp)
252 | alpha = 0
253 | for i in range((2 ** args.exp) - 1):
254 | alpha += step
255 | beta = 1-alpha
256 | output.append(torch.from_numpy(np.transpose((cv2.addWeighted(frame[:, :, ::-1], alpha, lastframe[:, :, ::-1], beta, 0)[:, :, ::-1].copy()), (2,0,1))).to(device, non_blocking=True).unsqueeze(0).float() / 255.)
257 | '''
258 | else:
259 | output = make_inference(I0, I1, 2**args.exp-1) if args.exp else []
260 |
261 | if args.montage:
262 | write_buffer.put(np.concatenate((lastframe, lastframe), 1))
263 | for mid in output:
264 | mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
265 | write_buffer.put(np.concatenate((lastframe, mid[:h, :w]), 1))
266 | else:
267 | write_buffer.put(lastframe)
268 | for mid in output:
269 | mid = (((mid[0] * 255.).byte().cpu().numpy().transpose(1, 2, 0)))
270 | write_buffer.put(mid[:h, :w])
271 | pbar.update(1)
272 | lastframe = frame
273 | if break_flag:
274 | break
275 |
276 | if args.montage:
277 | write_buffer.put(np.concatenate((lastframe, lastframe), 1))
278 | else:
279 | write_buffer.put(lastframe)
280 |
281 | write_buffer.put(None)
282 |
283 | import time
284 | while(not write_buffer.empty()):
285 | time.sleep(0.1)
286 | pbar.close()
287 | if not vid_out is None:
288 | vid_out.release()
289 |
290 | # move audio to new video file if appropriate
291 | if args.png == False and fpsNotAssigned == True and not args.video is None:
292 | try:
293 | transferAudio(args.video, vid_out_name)
294 | except:
295 | print("Audio transfer failed. Interpolated video will have no audio")
296 | targetNoAudio = os.path.splitext(vid_out_name)[0] + "_noaudio" + os.path.splitext(vid_out_name)[1]
297 | os.rename(targetNoAudio, vid_out_name)
298 |
--------------------------------------------------------------------------------