├── pandas day 1 ├── pandas day 1.ipynb ├── pandas day 2 (1).ipynb └── pandas day 3 (1).ipynb /pandas day 1: -------------------------------------------------------------------------------- 1 | data link - https://drive.google.com/drive/folders/1zauEUoewFclurlYCh89FHgDfW9is6Y_r?usp=share_link 2 | 3 | Excel data - https://docs.google.com/spreadsheets/d/1fzzsmqAiC_yoiB2k1inDYVCYQ-Djo4G1/edit?usp=share_link&ouid=111840944180463951908&rtpof=true&sd=true 4 | 5 | Excel Data Airline 1 - https://docs.google.com/spreadsheets/d/1tGh7f3JkPS2TQXLtzdB-JWGCAwRHCxYE/edit?usp=share_link&ouid=111840944180463951908&rtpof=true&sd=true 6 | 7 | git hub data - https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv 8 | 9 | read from html - https://www.basketball-reference.com/leagues/NBA_2015_totals.html 10 | -------------------------------------------------------------------------------- /pandas day 3 (1).ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 2, 6 | "id": "2634dd02-5e1b-4bef-9a38-7198b2c1990e", 7 | "metadata": {}, 8 | "outputs": [], 9 | "source": [ 10 | "d1 = {'key1':[1,2,3,4,5,\"sudh\"],\n", 11 | " 'key2' : [7,8,9,10,11,12],\n", 12 | " 'key3':[13,14,15,16,17,18],\n", 13 | " 'key4':[19,20,21,22,23,24]\n", 14 | "}" 15 | ] 16 | }, 17 | { 18 | "cell_type": "code", 19 | "execution_count": 3, 20 | "id": "098f537b-eeef-4326-8a77-e374e041aac5", 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "import pandas as pd " 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": 4, 30 | "id": "05e765e2-cfa0-49b7-a457-38a983c06b59", 31 | "metadata": {}, 32 | "outputs": [], 33 | "source": [ 34 | "df1 = pd.DataFrame(d1 )" 35 | ] 36 | }, 37 | { 38 | "cell_type": "code", 39 | "execution_count": 5, 40 | "id": "3aaa77ad-bdec-4364-a347-0151d7c0e333", 41 | "metadata": {}, 42 | "outputs": [], 43 | "source": [ 44 | "d2 = {'key1':[1,2,3,4,5,\"sudh\"],\n", 45 | " 'key2' : [7,8,\"kumar\",10,11,12],\n", 46 | " 'key3':[13,14,15,16,17,18],\n", 47 | " 'key4':[19,20,21,\"ineuron\",\"pwskills\",24]\n", 48 | "}" 49 | ] 50 | }, 51 | { 52 | "cell_type": "code", 53 | "execution_count": 6, 54 | "id": "9cca371e-4e10-466c-8608-438e750d2d05", 55 | "metadata": {}, 56 | "outputs": [], 57 | "source": [ 58 | "df2 = pd.DataFrame(d2)" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": 7, 64 | "id": "a09f3e4d-1ca2-43ac-86eb-b2a74c135044", 65 | "metadata": {}, 66 | "outputs": [ 67 | { 68 | "data": { 69 | "text/html": [ 70 | "
\n", 71 | "\n", 84 | "\n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | "
key1key2key3key4
0171319
1281420
2391521
34101622
45111723
5sudh121824
\n", 139 | "
" 140 | ], 141 | "text/plain": [ 142 | " key1 key2 key3 key4\n", 143 | "0 1 7 13 19\n", 144 | "1 2 8 14 20\n", 145 | "2 3 9 15 21\n", 146 | "3 4 10 16 22\n", 147 | "4 5 11 17 23\n", 148 | "5 sudh 12 18 24" 149 | ] 150 | }, 151 | "execution_count": 7, 152 | "metadata": {}, 153 | "output_type": "execute_result" 154 | } 155 | ], 156 | "source": [ 157 | "df1" 158 | ] 159 | }, 160 | { 161 | "cell_type": "code", 162 | "execution_count": 8, 163 | "id": "afbc9a05-3ce2-484d-8287-8ce28a21cd4e", 164 | "metadata": {}, 165 | "outputs": [ 166 | { 167 | "data": { 168 | "text/html": [ 169 | "
\n", 170 | "\n", 183 | "\n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | "
key1key2key3key4
0171319
1281420
23kumar1521
341016ineuron
451117pwskills
5sudh121824
\n", 238 | "
" 239 | ], 240 | "text/plain": [ 241 | " key1 key2 key3 key4\n", 242 | "0 1 7 13 19\n", 243 | "1 2 8 14 20\n", 244 | "2 3 kumar 15 21\n", 245 | "3 4 10 16 ineuron\n", 246 | "4 5 11 17 pwskills\n", 247 | "5 sudh 12 18 24" 248 | ] 249 | }, 250 | "execution_count": 8, 251 | "metadata": {}, 252 | "output_type": "execute_result" 253 | } 254 | ], 255 | "source": [ 256 | "df2" 257 | ] 258 | }, 259 | { 260 | "cell_type": "code", 261 | "execution_count": 9, 262 | "id": "6bd5d2bc-99ee-4f10-ab60-b4f3e3e35d4d", 263 | "metadata": {}, 264 | "outputs": [ 265 | { 266 | "name": "stderr", 267 | "output_type": "stream", 268 | "text": [ 269 | "/tmp/ipykernel_1400/1864705398.py:1: FutureWarning: In a future version, the Index constructor will not infer numeric dtypes when passed object-dtype sequences (matching Series behavior)\n", 270 | " pd.merge(df1,df2,how= 'outer',on= ['key4','key1'])\n" 271 | ] 272 | }, 273 | { 274 | "data": { 275 | "text/html": [ 276 | "
\n", 277 | "\n", 290 | "\n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | "
key1key2_xkey3_xkey4key2_ykey3_y
017.013.019.0713.0
128.014.020.0814.0
239.015.021.0kumar15.0
3410.016.022.0NaNNaN
4511.017.023.0NaNNaN
5sudh12.018.024.01218.0
64NaNNaNineuron1016.0
75NaNNaNpwskills1117.0
\n", 377 | "
" 378 | ], 379 | "text/plain": [ 380 | " key1 key2_x key3_x key4 key2_y key3_y\n", 381 | "0 1 7.0 13.0 19.0 7 13.0\n", 382 | "1 2 8.0 14.0 20.0 8 14.0\n", 383 | "2 3 9.0 15.0 21.0 kumar 15.0\n", 384 | "3 4 10.0 16.0 22.0 NaN NaN\n", 385 | "4 5 11.0 17.0 23.0 NaN NaN\n", 386 | "5 sudh 12.0 18.0 24.0 12 18.0\n", 387 | "6 4 NaN NaN ineuron 10 16.0\n", 388 | "7 5 NaN NaN pwskills 11 17.0" 389 | ] 390 | }, 391 | "execution_count": 9, 392 | "metadata": {}, 393 | "output_type": "execute_result" 394 | } 395 | ], 396 | "source": [ 397 | "pd.merge(df1,df2,how= 'outer',on= ['key4','key1'])" 398 | ] 399 | }, 400 | { 401 | "cell_type": "code", 402 | "execution_count": 10, 403 | "id": "1a22191e-8b0c-40f7-97c7-48cefb5d7f60", 404 | "metadata": {}, 405 | "outputs": [ 406 | { 407 | "data": { 408 | "text/html": [ 409 | "
\n", 410 | "\n", 423 | "\n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | "
key1_xkey2_xkey3_xkey4key1_ykey2_ykey3_y
01713191713.0
12814202814.0
23915213kumar15.0
34101622NaNNaNNaN
45111723NaNNaNNaN
5sudh121824sudh1218.0
\n", 499 | "
" 500 | ], 501 | "text/plain": [ 502 | " key1_x key2_x key3_x key4 key1_y key2_y key3_y\n", 503 | "0 1 7 13 19 1 7 13.0\n", 504 | "1 2 8 14 20 2 8 14.0\n", 505 | "2 3 9 15 21 3 kumar 15.0\n", 506 | "3 4 10 16 22 NaN NaN NaN\n", 507 | "4 5 11 17 23 NaN NaN NaN\n", 508 | "5 sudh 12 18 24 sudh 12 18.0" 509 | ] 510 | }, 511 | "execution_count": 10, 512 | "metadata": {}, 513 | "output_type": "execute_result" 514 | } 515 | ], 516 | "source": [ 517 | "pd.merge(df1,df2,how= 'left',on= 'key4')" 518 | ] 519 | }, 520 | { 521 | "cell_type": "code", 522 | "execution_count": 11, 523 | "id": "f588bc63-cf3d-4b9c-9a85-723a9ae9662d", 524 | "metadata": {}, 525 | "outputs": [ 526 | { 527 | "data": { 528 | "text/html": [ 529 | "
\n", 530 | "\n", 543 | "\n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | "
key1_xkey2_xkey3_xkey4key1_ykey2_ykey3_y
01713191713
12814202814
23915213kumar15
3sudh121824sudh1218
\n", 599 | "
" 600 | ], 601 | "text/plain": [ 602 | " key1_x key2_x key3_x key4 key1_y key2_y key3_y\n", 603 | "0 1 7 13 19 1 7 13\n", 604 | "1 2 8 14 20 2 8 14\n", 605 | "2 3 9 15 21 3 kumar 15\n", 606 | "3 sudh 12 18 24 sudh 12 18" 607 | ] 608 | }, 609 | "execution_count": 11, 610 | "metadata": {}, 611 | "output_type": "execute_result" 612 | } 613 | ], 614 | "source": [ 615 | "pd.merge(df1,df2,how= 'inner',on= 'key4')" 616 | ] 617 | }, 618 | { 619 | "cell_type": "code", 620 | "execution_count": 12, 621 | "id": "766ab323-a189-4641-a961-514f317cc568", 622 | "metadata": {}, 623 | "outputs": [ 624 | { 625 | "data": { 626 | "text/html": [ 627 | "
\n", 628 | "\n", 641 | "\n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | "
key1key2_xkey3_xkey4_xkey2_ykey3_ykey4_y
017131971319
128142081420
2391521kumar1521
341016221016ineuron
451117231117pwskills
5sudh121824121824
\n", 717 | "
" 718 | ], 719 | "text/plain": [ 720 | " key1 key2_x key3_x key4_x key2_y key3_y key4_y\n", 721 | "0 1 7 13 19 7 13 19\n", 722 | "1 2 8 14 20 8 14 20\n", 723 | "2 3 9 15 21 kumar 15 21\n", 724 | "3 4 10 16 22 10 16 ineuron\n", 725 | "4 5 11 17 23 11 17 pwskills\n", 726 | "5 sudh 12 18 24 12 18 24" 727 | ] 728 | }, 729 | "execution_count": 12, 730 | "metadata": {}, 731 | "output_type": "execute_result" 732 | } 733 | ], 734 | "source": [ 735 | "pd.merge(df1,df2,how= 'inner',on= 'key1')" 736 | ] 737 | }, 738 | { 739 | "cell_type": "code", 740 | "execution_count": 13, 741 | "id": "7c088acf-ff3b-45ee-8ad9-1d4bde39bb8e", 742 | "metadata": {}, 743 | "outputs": [ 744 | { 745 | "data": { 746 | "text/html": [ 747 | "
\n", 748 | "\n", 761 | "\n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | "
key1key2key3key4
0171319
1281420
2sudh121824
\n", 795 | "
" 796 | ], 797 | "text/plain": [ 798 | " key1 key2 key3 key4\n", 799 | "0 1 7 13 19\n", 800 | "1 2 8 14 20\n", 801 | "2 sudh 12 18 24" 802 | ] 803 | }, 804 | "execution_count": 13, 805 | "metadata": {}, 806 | "output_type": "execute_result" 807 | } 808 | ], 809 | "source": [ 810 | "pd.merge(df1,df2)" 811 | ] 812 | }, 813 | { 814 | "cell_type": "code", 815 | "execution_count": 14, 816 | "id": "bad995e3-4559-48a0-a173-eac5322e071e", 817 | "metadata": {}, 818 | "outputs": [], 819 | "source": [ 820 | "d11 = {'a':[1,2,3,4,5,\"sudh\"],\n", 821 | " 'b' : [7,8,9,10,11,12],\n", 822 | " 'c':[13,14,15,16,17,18],\n", 823 | " 'd':[19,20,21,22,23,24]\n", 824 | "}" 825 | ] 826 | }, 827 | { 828 | "cell_type": "code", 829 | "execution_count": 15, 830 | "id": "2b066ac8-f853-454f-b557-bd7f1ab9734e", 831 | "metadata": {}, 832 | "outputs": [], 833 | "source": [ 834 | "d12 = {'key1':[1,2,3,4,5,\"sudh\"],\n", 835 | " 'key2' : [7,8,\"kumar\",10,11,12],\n", 836 | " 'key3':[13,14,15,16,17,18],\n", 837 | " 'key4':[19,20,21,\"ineuron\",\"pwskills\",24]\n", 838 | "}" 839 | ] 840 | }, 841 | { 842 | "cell_type": "code", 843 | "execution_count": 16, 844 | "id": "81b144a3-8f41-469b-94a6-144a117a42d6", 845 | "metadata": {}, 846 | "outputs": [], 847 | "source": [ 848 | "df11 = pd.DataFrame(d11)" 849 | ] 850 | }, 851 | { 852 | "cell_type": "code", 853 | "execution_count": 17, 854 | "id": "9379405d-41cb-4aae-a415-f3c1aab7d4b4", 855 | "metadata": {}, 856 | "outputs": [ 857 | { 858 | "data": { 859 | "text/html": [ 860 | "
\n", 861 | "\n", 874 | "\n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | "
abcd
0171319
1281420
2391521
34101622
45111723
5sudh121824
\n", 929 | "
" 930 | ], 931 | "text/plain": [ 932 | " a b c d\n", 933 | "0 1 7 13 19\n", 934 | "1 2 8 14 20\n", 935 | "2 3 9 15 21\n", 936 | "3 4 10 16 22\n", 937 | "4 5 11 17 23\n", 938 | "5 sudh 12 18 24" 939 | ] 940 | }, 941 | "execution_count": 17, 942 | "metadata": {}, 943 | "output_type": "execute_result" 944 | } 945 | ], 946 | "source": [ 947 | "df11" 948 | ] 949 | }, 950 | { 951 | "cell_type": "code", 952 | "execution_count": 18, 953 | "id": "d7538e48-99f0-4d71-9969-51446ca4df48", 954 | "metadata": {}, 955 | "outputs": [], 956 | "source": [ 957 | "df12 = pd.DataFrame(d12)" 958 | ] 959 | }, 960 | { 961 | "cell_type": "code", 962 | "execution_count": 19, 963 | "id": "bb578813-d943-4a8d-a8a1-4f529513f920", 964 | "metadata": {}, 965 | "outputs": [ 966 | { 967 | "data": { 968 | "text/html": [ 969 | "
\n", 970 | "\n", 983 | "\n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | " \n", 996 | " \n", 997 | " \n", 998 | " \n", 999 | " \n", 1000 | " \n", 1001 | " \n", 1002 | " \n", 1003 | " \n", 1004 | " \n", 1005 | " \n", 1006 | " \n", 1007 | " \n", 1008 | " \n", 1009 | " \n", 1010 | " \n", 1011 | " \n", 1012 | " \n", 1013 | " \n", 1014 | " \n", 1015 | " \n", 1016 | " \n", 1017 | " \n", 1018 | " \n", 1019 | " \n", 1020 | " \n", 1021 | " \n", 1022 | " \n", 1023 | " \n", 1024 | " \n", 1025 | " \n", 1026 | " \n", 1027 | " \n", 1028 | " \n", 1029 | " \n", 1030 | " \n", 1031 | " \n", 1032 | " \n", 1033 | " \n", 1034 | " \n", 1035 | " \n", 1036 | " \n", 1037 | "
key1key2key3key4
0171319
1281420
23kumar1521
341016ineuron
451117pwskills
5sudh121824
\n", 1038 | "
" 1039 | ], 1040 | "text/plain": [ 1041 | " key1 key2 key3 key4\n", 1042 | "0 1 7 13 19\n", 1043 | "1 2 8 14 20\n", 1044 | "2 3 kumar 15 21\n", 1045 | "3 4 10 16 ineuron\n", 1046 | "4 5 11 17 pwskills\n", 1047 | "5 sudh 12 18 24" 1048 | ] 1049 | }, 1050 | "execution_count": 19, 1051 | "metadata": {}, 1052 | "output_type": "execute_result" 1053 | } 1054 | ], 1055 | "source": [ 1056 | "df12" 1057 | ] 1058 | }, 1059 | { 1060 | "cell_type": "code", 1061 | "execution_count": 20, 1062 | "id": "b19a58c6-ccb4-4cdd-8f3f-f2fcd9131408", 1063 | "metadata": {}, 1064 | "outputs": [ 1065 | { 1066 | "data": { 1067 | "text/html": [ 1068 | "
\n", 1069 | "\n", 1082 | "\n", 1083 | " \n", 1084 | " \n", 1085 | " \n", 1086 | " \n", 1087 | " \n", 1088 | " \n", 1089 | " \n", 1090 | " \n", 1091 | " \n", 1092 | " \n", 1093 | " \n", 1094 | " \n", 1095 | " \n", 1096 | " \n", 1097 | " \n", 1098 | " \n", 1099 | " \n", 1100 | " \n", 1101 | " \n", 1102 | " \n", 1103 | " \n", 1104 | " \n", 1105 | " \n", 1106 | " \n", 1107 | " \n", 1108 | " \n", 1109 | " \n", 1110 | " \n", 1111 | " \n", 1112 | " \n", 1113 | " \n", 1114 | " \n", 1115 | " \n", 1116 | " \n", 1117 | " \n", 1118 | " \n", 1119 | " \n", 1120 | " \n", 1121 | " \n", 1122 | " \n", 1123 | " \n", 1124 | " \n", 1125 | " \n", 1126 | " \n", 1127 | " \n", 1128 | " \n", 1129 | " \n", 1130 | " \n", 1131 | " \n", 1132 | " \n", 1133 | " \n", 1134 | " \n", 1135 | " \n", 1136 | " \n", 1137 | " \n", 1138 | " \n", 1139 | " \n", 1140 | " \n", 1141 | " \n", 1142 | " \n", 1143 | " \n", 1144 | " \n", 1145 | " \n", 1146 | " \n", 1147 | " \n", 1148 | " \n", 1149 | " \n", 1150 | " \n", 1151 | " \n", 1152 | " \n", 1153 | " \n", 1154 | " \n", 1155 | " \n", 1156 | " \n", 1157 | " \n", 1158 | " \n", 1159 | " \n", 1160 | " \n", 1161 | " \n", 1162 | " \n", 1163 | " \n", 1164 | "
abcdkey1key2key3key4
0171319171319
1281420281420
23915213kumar1521
3410162241016ineuron
4511172351117pwskills
5sudh121824sudh121824
\n", 1165 | "
" 1166 | ], 1167 | "text/plain": [ 1168 | " a b c d key1 key2 key3 key4\n", 1169 | "0 1 7 13 19 1 7 13 19\n", 1170 | "1 2 8 14 20 2 8 14 20\n", 1171 | "2 3 9 15 21 3 kumar 15 21\n", 1172 | "3 4 10 16 22 4 10 16 ineuron\n", 1173 | "4 5 11 17 23 5 11 17 pwskills\n", 1174 | "5 sudh 12 18 24 sudh 12 18 24" 1175 | ] 1176 | }, 1177 | "execution_count": 20, 1178 | "metadata": {}, 1179 | "output_type": "execute_result" 1180 | } 1181 | ], 1182 | "source": [ 1183 | "pd.merge(df11, df12 , how = 'left' , left_on = 'a' , right_on='key1')" 1184 | ] 1185 | }, 1186 | { 1187 | "cell_type": "code", 1188 | "execution_count": 21, 1189 | "id": "b7749074-e054-450b-ae44-f37f54f4a7a0", 1190 | "metadata": {}, 1191 | "outputs": [ 1192 | { 1193 | "data": { 1194 | "text/html": [ 1195 | "
\n", 1196 | "\n", 1209 | "\n", 1210 | " \n", 1211 | " \n", 1212 | " \n", 1213 | " \n", 1214 | " \n", 1215 | " \n", 1216 | " \n", 1217 | " \n", 1218 | " \n", 1219 | " \n", 1220 | " \n", 1221 | " \n", 1222 | " \n", 1223 | " \n", 1224 | " \n", 1225 | " \n", 1226 | " \n", 1227 | " \n", 1228 | " \n", 1229 | " \n", 1230 | " \n", 1231 | " \n", 1232 | " \n", 1233 | " \n", 1234 | " \n", 1235 | " \n", 1236 | " \n", 1237 | " \n", 1238 | " \n", 1239 | " \n", 1240 | " \n", 1241 | " \n", 1242 | " \n", 1243 | " \n", 1244 | " \n", 1245 | " \n", 1246 | " \n", 1247 | " \n", 1248 | " \n", 1249 | " \n", 1250 | " \n", 1251 | " \n", 1252 | " \n", 1253 | " \n", 1254 | " \n", 1255 | " \n", 1256 | " \n", 1257 | " \n", 1258 | " \n", 1259 | " \n", 1260 | " \n", 1261 | " \n", 1262 | " \n", 1263 | "
key1key2key3key4
0171319
1281420
2391521
34101622
45111723
5sudh121824
\n", 1264 | "
" 1265 | ], 1266 | "text/plain": [ 1267 | " key1 key2 key3 key4\n", 1268 | "0 1 7 13 19\n", 1269 | "1 2 8 14 20\n", 1270 | "2 3 9 15 21\n", 1271 | "3 4 10 16 22\n", 1272 | "4 5 11 17 23\n", 1273 | "5 sudh 12 18 24" 1274 | ] 1275 | }, 1276 | "execution_count": 21, 1277 | "metadata": {}, 1278 | "output_type": "execute_result" 1279 | } 1280 | ], 1281 | "source": [ 1282 | "df1" 1283 | ] 1284 | }, 1285 | { 1286 | "cell_type": "code", 1287 | "execution_count": 22, 1288 | "id": "4233fb06-db78-4dc7-8899-a6d2fa19e0ec", 1289 | "metadata": {}, 1290 | "outputs": [ 1291 | { 1292 | "data": { 1293 | "text/html": [ 1294 | "
\n", 1295 | "\n", 1308 | "\n", 1309 | " \n", 1310 | " \n", 1311 | " \n", 1312 | " \n", 1313 | " \n", 1314 | " \n", 1315 | " \n", 1316 | " \n", 1317 | " \n", 1318 | " \n", 1319 | " \n", 1320 | " \n", 1321 | " \n", 1322 | " \n", 1323 | " \n", 1324 | " \n", 1325 | " \n", 1326 | " \n", 1327 | " \n", 1328 | " \n", 1329 | " \n", 1330 | " \n", 1331 | " \n", 1332 | " \n", 1333 | " \n", 1334 | " \n", 1335 | " \n", 1336 | " \n", 1337 | " \n", 1338 | " \n", 1339 | " \n", 1340 | " \n", 1341 | " \n", 1342 | " \n", 1343 | " \n", 1344 | " \n", 1345 | " \n", 1346 | " \n", 1347 | " \n", 1348 | " \n", 1349 | " \n", 1350 | " \n", 1351 | " \n", 1352 | " \n", 1353 | " \n", 1354 | " \n", 1355 | " \n", 1356 | " \n", 1357 | " \n", 1358 | " \n", 1359 | " \n", 1360 | " \n", 1361 | " \n", 1362 | "
key1key2key3key4
0171319
1281420
23kumar1521
341016ineuron
451117pwskills
5sudh121824
\n", 1363 | "
" 1364 | ], 1365 | "text/plain": [ 1366 | " key1 key2 key3 key4\n", 1367 | "0 1 7 13 19\n", 1368 | "1 2 8 14 20\n", 1369 | "2 3 kumar 15 21\n", 1370 | "3 4 10 16 ineuron\n", 1371 | "4 5 11 17 pwskills\n", 1372 | "5 sudh 12 18 24" 1373 | ] 1374 | }, 1375 | "execution_count": 22, 1376 | "metadata": {}, 1377 | "output_type": "execute_result" 1378 | } 1379 | ], 1380 | "source": [ 1381 | "df2" 1382 | ] 1383 | }, 1384 | { 1385 | "cell_type": "code", 1386 | "execution_count": 35, 1387 | "id": "095467bf-0bd4-4a2b-a170-6f8052d05ebb", 1388 | "metadata": {}, 1389 | "outputs": [], 1390 | "source": [ 1391 | "d10 = {'key11':[1,2,3,4,5,\"sudh\"],\n", 1392 | " 'key21' : [7,8,9,10,11,12],\n", 1393 | " 'key31':[13,14,15,16,17,18],\n", 1394 | " 'key41':[19,20,21,22,23,24]\n", 1395 | "}" 1396 | ] 1397 | }, 1398 | { 1399 | "cell_type": "code", 1400 | "execution_count": 36, 1401 | "id": "e7f0f269-7009-4827-be0a-909c1dc8e8a7", 1402 | "metadata": {}, 1403 | "outputs": [], 1404 | "source": [ 1405 | "d20 = {'key1':[1,2,3,4,5,\"sudh\"],\n", 1406 | " 'key2' : [7,8,\"kumar\",10,11,12],\n", 1407 | " 'key3':[13,14,15,16,17,18],\n", 1408 | " 'key4':[19,20,21,\"ineuron\",\"pwskills\",24]\n", 1409 | "}" 1410 | ] 1411 | }, 1412 | { 1413 | "cell_type": "code", 1414 | "execution_count": 46, 1415 | "id": "d175fbed-f677-4356-82bf-8e29be81ee05", 1416 | "metadata": {}, 1417 | "outputs": [], 1418 | "source": [ 1419 | "df10 = pd.DataFrame(d10 , index = [1,2,3,4,5,6])" 1420 | ] 1421 | }, 1422 | { 1423 | "cell_type": "code", 1424 | "execution_count": 47, 1425 | "id": "bc675706-4ee9-486c-b92c-b362798595d2", 1426 | "metadata": {}, 1427 | "outputs": [], 1428 | "source": [ 1429 | "df20 = pd.DataFrame(d20, index=[1,2,3,4,5,'sudh'])" 1430 | ] 1431 | }, 1432 | { 1433 | "cell_type": "code", 1434 | "execution_count": 48, 1435 | "id": "0992f4f1-09b2-488c-9620-7fdca3edc071", 1436 | "metadata": {}, 1437 | "outputs": [ 1438 | { 1439 | "data": { 1440 | "text/html": [ 1441 | "
\n", 1442 | "\n", 1455 | "\n", 1456 | " \n", 1457 | " \n", 1458 | " \n", 1459 | " \n", 1460 | " \n", 1461 | " \n", 1462 | " \n", 1463 | " \n", 1464 | " \n", 1465 | " \n", 1466 | " \n", 1467 | " \n", 1468 | " \n", 1469 | " \n", 1470 | " \n", 1471 | " \n", 1472 | " \n", 1473 | " \n", 1474 | " \n", 1475 | " \n", 1476 | " \n", 1477 | " \n", 1478 | " \n", 1479 | " \n", 1480 | " \n", 1481 | " \n", 1482 | " \n", 1483 | " \n", 1484 | " \n", 1485 | " \n", 1486 | " \n", 1487 | " \n", 1488 | " \n", 1489 | " \n", 1490 | " \n", 1491 | " \n", 1492 | " \n", 1493 | " \n", 1494 | " \n", 1495 | " \n", 1496 | " \n", 1497 | " \n", 1498 | " \n", 1499 | " \n", 1500 | " \n", 1501 | " \n", 1502 | " \n", 1503 | " \n", 1504 | " \n", 1505 | " \n", 1506 | " \n", 1507 | " \n", 1508 | " \n", 1509 | "
key11key21key31key41
1171319
2281420
3391521
44101622
55111723
6sudh121824
\n", 1510 | "
" 1511 | ], 1512 | "text/plain": [ 1513 | " key11 key21 key31 key41\n", 1514 | "1 1 7 13 19\n", 1515 | "2 2 8 14 20\n", 1516 | "3 3 9 15 21\n", 1517 | "4 4 10 16 22\n", 1518 | "5 5 11 17 23\n", 1519 | "6 sudh 12 18 24" 1520 | ] 1521 | }, 1522 | "execution_count": 48, 1523 | "metadata": {}, 1524 | "output_type": "execute_result" 1525 | } 1526 | ], 1527 | "source": [ 1528 | "df10" 1529 | ] 1530 | }, 1531 | { 1532 | "cell_type": "code", 1533 | "execution_count": 49, 1534 | "id": "5b61d81a-cdd1-4562-ab68-62bf2b722349", 1535 | "metadata": {}, 1536 | "outputs": [ 1537 | { 1538 | "data": { 1539 | "text/html": [ 1540 | "
\n", 1541 | "\n", 1554 | "\n", 1555 | " \n", 1556 | " \n", 1557 | " \n", 1558 | " \n", 1559 | " \n", 1560 | " \n", 1561 | " \n", 1562 | " \n", 1563 | " \n", 1564 | " \n", 1565 | " \n", 1566 | " \n", 1567 | " \n", 1568 | " \n", 1569 | " \n", 1570 | " \n", 1571 | " \n", 1572 | " \n", 1573 | " \n", 1574 | " \n", 1575 | " \n", 1576 | " \n", 1577 | " \n", 1578 | " \n", 1579 | " \n", 1580 | " \n", 1581 | " \n", 1582 | " \n", 1583 | " \n", 1584 | " \n", 1585 | " \n", 1586 | " \n", 1587 | " \n", 1588 | " \n", 1589 | " \n", 1590 | " \n", 1591 | " \n", 1592 | " \n", 1593 | " \n", 1594 | " \n", 1595 | " \n", 1596 | " \n", 1597 | " \n", 1598 | " \n", 1599 | " \n", 1600 | " \n", 1601 | " \n", 1602 | " \n", 1603 | " \n", 1604 | " \n", 1605 | " \n", 1606 | " \n", 1607 | " \n", 1608 | "
key1key2key3key4
1171319
2281420
33kumar1521
441016ineuron
551117pwskills
sudhsudh121824
\n", 1609 | "
" 1610 | ], 1611 | "text/plain": [ 1612 | " key1 key2 key3 key4\n", 1613 | "1 1 7 13 19\n", 1614 | "2 2 8 14 20\n", 1615 | "3 3 kumar 15 21\n", 1616 | "4 4 10 16 ineuron\n", 1617 | "5 5 11 17 pwskills\n", 1618 | "sudh sudh 12 18 24" 1619 | ] 1620 | }, 1621 | "execution_count": 49, 1622 | "metadata": {}, 1623 | "output_type": "execute_result" 1624 | } 1625 | ], 1626 | "source": [ 1627 | "df20" 1628 | ] 1629 | }, 1630 | { 1631 | "cell_type": "code", 1632 | "execution_count": 50, 1633 | "id": "9bdca038-b30a-479f-a68e-e0f0b04480f2", 1634 | "metadata": {}, 1635 | "outputs": [ 1636 | { 1637 | "data": { 1638 | "text/html": [ 1639 | "
\n", 1640 | "\n", 1653 | "\n", 1654 | " \n", 1655 | " \n", 1656 | " \n", 1657 | " \n", 1658 | " \n", 1659 | " \n", 1660 | " \n", 1661 | " \n", 1662 | " \n", 1663 | " \n", 1664 | " \n", 1665 | " \n", 1666 | " \n", 1667 | " \n", 1668 | " \n", 1669 | " \n", 1670 | " \n", 1671 | " \n", 1672 | " \n", 1673 | " \n", 1674 | " \n", 1675 | " \n", 1676 | " \n", 1677 | " \n", 1678 | " \n", 1679 | " \n", 1680 | " \n", 1681 | " \n", 1682 | " \n", 1683 | " \n", 1684 | " \n", 1685 | " \n", 1686 | " \n", 1687 | " \n", 1688 | " \n", 1689 | " \n", 1690 | " \n", 1691 | " \n", 1692 | " \n", 1693 | " \n", 1694 | " \n", 1695 | " \n", 1696 | " \n", 1697 | " \n", 1698 | " \n", 1699 | " \n", 1700 | " \n", 1701 | " \n", 1702 | " \n", 1703 | " \n", 1704 | " \n", 1705 | " \n", 1706 | " \n", 1707 | " \n", 1708 | " \n", 1709 | " \n", 1710 | " \n", 1711 | " \n", 1712 | " \n", 1713 | " \n", 1714 | " \n", 1715 | " \n", 1716 | " \n", 1717 | " \n", 1718 | " \n", 1719 | " \n", 1720 | " \n", 1721 | " \n", 1722 | " \n", 1723 | " \n", 1724 | " \n", 1725 | " \n", 1726 | " \n", 1727 | " \n", 1728 | " \n", 1729 | " \n", 1730 | " \n", 1731 | " \n", 1732 | " \n", 1733 | " \n", 1734 | " \n", 1735 | "
key11key21key31key41key1key2key3key4
117.013.019.0171319
228.014.020.0281420
339.015.021.03kumar1521
4410.016.022.041016ineuron
5511.017.023.051117pwskills
sudhNaNNaNNaNNaNsudh121824
\n", 1736 | "
" 1737 | ], 1738 | "text/plain": [ 1739 | " key11 key21 key31 key41 key1 key2 key3 key4\n", 1740 | "1 1 7.0 13.0 19.0 1 7 13 19\n", 1741 | "2 2 8.0 14.0 20.0 2 8 14 20\n", 1742 | "3 3 9.0 15.0 21.0 3 kumar 15 21\n", 1743 | "4 4 10.0 16.0 22.0 4 10 16 ineuron\n", 1744 | "5 5 11.0 17.0 23.0 5 11 17 pwskills\n", 1745 | "sudh NaN NaN NaN NaN sudh 12 18 24" 1746 | ] 1747 | }, 1748 | "execution_count": 50, 1749 | "metadata": {}, 1750 | "output_type": "execute_result" 1751 | } 1752 | ], 1753 | "source": [ 1754 | "df10.join(df20,how = 'right')" 1755 | ] 1756 | }, 1757 | { 1758 | "cell_type": "code", 1759 | "execution_count": 51, 1760 | "id": "d95eab7a-2a8a-45f8-a355-2d8ec6f01d5d", 1761 | "metadata": {}, 1762 | "outputs": [ 1763 | { 1764 | "data": { 1765 | "text/html": [ 1766 | "
\n", 1767 | "\n", 1780 | "\n", 1781 | " \n", 1782 | " \n", 1783 | " \n", 1784 | " \n", 1785 | " \n", 1786 | " \n", 1787 | " \n", 1788 | " \n", 1789 | " \n", 1790 | " \n", 1791 | " \n", 1792 | " \n", 1793 | " \n", 1794 | " \n", 1795 | " \n", 1796 | " \n", 1797 | " \n", 1798 | " \n", 1799 | " \n", 1800 | " \n", 1801 | " \n", 1802 | " \n", 1803 | " \n", 1804 | " \n", 1805 | " \n", 1806 | " \n", 1807 | " \n", 1808 | " \n", 1809 | " \n", 1810 | " \n", 1811 | " \n", 1812 | " \n", 1813 | " \n", 1814 | " \n", 1815 | " \n", 1816 | " \n", 1817 | " \n", 1818 | " \n", 1819 | " \n", 1820 | " \n", 1821 | " \n", 1822 | " \n", 1823 | " \n", 1824 | " \n", 1825 | " \n", 1826 | " \n", 1827 | " \n", 1828 | " \n", 1829 | " \n", 1830 | " \n", 1831 | " \n", 1832 | " \n", 1833 | " \n", 1834 | " \n", 1835 | " \n", 1836 | " \n", 1837 | " \n", 1838 | " \n", 1839 | " \n", 1840 | " \n", 1841 | " \n", 1842 | " \n", 1843 | " \n", 1844 | " \n", 1845 | " \n", 1846 | " \n", 1847 | " \n", 1848 | " \n", 1849 | " \n", 1850 | " \n", 1851 | " \n", 1852 | " \n", 1853 | " \n", 1854 | " \n", 1855 | " \n", 1856 | " \n", 1857 | " \n", 1858 | " \n", 1859 | " \n", 1860 | " \n", 1861 | " \n", 1862 | "
key11key21key31key41key1key2key3key4
11713191713.019
22814202814.020
33915213kumar15.021
4410162241016.0ineuron
5511172351117.0pwskills
6sudh121824NaNNaNNaNNaN
\n", 1863 | "
" 1864 | ], 1865 | "text/plain": [ 1866 | " key11 key21 key31 key41 key1 key2 key3 key4\n", 1867 | "1 1 7 13 19 1 7 13.0 19\n", 1868 | "2 2 8 14 20 2 8 14.0 20\n", 1869 | "3 3 9 15 21 3 kumar 15.0 21\n", 1870 | "4 4 10 16 22 4 10 16.0 ineuron\n", 1871 | "5 5 11 17 23 5 11 17.0 pwskills\n", 1872 | "6 sudh 12 18 24 NaN NaN NaN NaN" 1873 | ] 1874 | }, 1875 | "execution_count": 51, 1876 | "metadata": {}, 1877 | "output_type": "execute_result" 1878 | } 1879 | ], 1880 | "source": [ 1881 | "df10.join(df20)" 1882 | ] 1883 | }, 1884 | { 1885 | "cell_type": "code", 1886 | "execution_count": 52, 1887 | "id": "203ef879-efd1-48f7-a82b-1b603f7cc43d", 1888 | "metadata": {}, 1889 | "outputs": [ 1890 | { 1891 | "data": { 1892 | "text/html": [ 1893 | "
\n", 1894 | "\n", 1907 | "\n", 1908 | " \n", 1909 | " \n", 1910 | " \n", 1911 | " \n", 1912 | " \n", 1913 | " \n", 1914 | " \n", 1915 | " \n", 1916 | " \n", 1917 | " \n", 1918 | " \n", 1919 | " \n", 1920 | " \n", 1921 | " \n", 1922 | " \n", 1923 | " \n", 1924 | " \n", 1925 | " \n", 1926 | " \n", 1927 | " \n", 1928 | " \n", 1929 | " \n", 1930 | " \n", 1931 | " \n", 1932 | " \n", 1933 | " \n", 1934 | " \n", 1935 | " \n", 1936 | " \n", 1937 | " \n", 1938 | " \n", 1939 | " \n", 1940 | " \n", 1941 | " \n", 1942 | " \n", 1943 | " \n", 1944 | " \n", 1945 | " \n", 1946 | " \n", 1947 | " \n", 1948 | " \n", 1949 | " \n", 1950 | " \n", 1951 | " \n", 1952 | " \n", 1953 | " \n", 1954 | " \n", 1955 | " \n", 1956 | " \n", 1957 | " \n", 1958 | " \n", 1959 | " \n", 1960 | " \n", 1961 | " \n", 1962 | " \n", 1963 | " \n", 1964 | " \n", 1965 | " \n", 1966 | " \n", 1967 | " \n", 1968 | " \n", 1969 | " \n", 1970 | " \n", 1971 | " \n", 1972 | " \n", 1973 | " \n", 1974 | " \n", 1975 | " \n", 1976 | " \n", 1977 | " \n", 1978 | " \n", 1979 | " \n", 1980 | " \n", 1981 | " \n", 1982 | " \n", 1983 | " \n", 1984 | " \n", 1985 | " \n", 1986 | " \n", 1987 | " \n", 1988 | " \n", 1989 | " \n", 1990 | " \n", 1991 | " \n", 1992 | " \n", 1993 | " \n", 1994 | " \n", 1995 | " \n", 1996 | " \n", 1997 | " \n", 1998 | " \n", 1999 | " \n", 2000 | "
key11key21key31key41key1key2key3key4
117.013.019.01713.019
228.014.020.02814.020
339.015.021.03kumar15.021
4410.016.022.041016.0ineuron
5511.017.023.051117.0pwskills
6sudh12.018.024.0NaNNaNNaNNaN
sudhNaNNaNNaNNaNsudh1218.024
\n", 2001 | "
" 2002 | ], 2003 | "text/plain": [ 2004 | " key11 key21 key31 key41 key1 key2 key3 key4\n", 2005 | "1 1 7.0 13.0 19.0 1 7 13.0 19\n", 2006 | "2 2 8.0 14.0 20.0 2 8 14.0 20\n", 2007 | "3 3 9.0 15.0 21.0 3 kumar 15.0 21\n", 2008 | "4 4 10.0 16.0 22.0 4 10 16.0 ineuron\n", 2009 | "5 5 11.0 17.0 23.0 5 11 17.0 pwskills\n", 2010 | "6 sudh 12.0 18.0 24.0 NaN NaN NaN NaN\n", 2011 | "sudh NaN NaN NaN NaN sudh 12 18.0 24" 2012 | ] 2013 | }, 2014 | "execution_count": 52, 2015 | "metadata": {}, 2016 | "output_type": "execute_result" 2017 | } 2018 | ], 2019 | "source": [ 2020 | "df10.join(df20 , how = 'outer')" 2021 | ] 2022 | }, 2023 | { 2024 | "cell_type": "code", 2025 | "execution_count": 53, 2026 | "id": "f64b7105-48f5-47b2-9362-1e4b231207ed", 2027 | "metadata": {}, 2028 | "outputs": [ 2029 | { 2030 | "data": { 2031 | "text/html": [ 2032 | "
\n", 2033 | "\n", 2046 | "\n", 2047 | " \n", 2048 | " \n", 2049 | " \n", 2050 | " \n", 2051 | " \n", 2052 | " \n", 2053 | " \n", 2054 | " \n", 2055 | " \n", 2056 | " \n", 2057 | " \n", 2058 | " \n", 2059 | " \n", 2060 | " \n", 2061 | " \n", 2062 | " \n", 2063 | " \n", 2064 | " \n", 2065 | " \n", 2066 | " \n", 2067 | " \n", 2068 | " \n", 2069 | " \n", 2070 | " \n", 2071 | " \n", 2072 | " \n", 2073 | " \n", 2074 | " \n", 2075 | " \n", 2076 | " \n", 2077 | " \n", 2078 | " \n", 2079 | " \n", 2080 | " \n", 2081 | " \n", 2082 | " \n", 2083 | " \n", 2084 | " \n", 2085 | " \n", 2086 | " \n", 2087 | " \n", 2088 | " \n", 2089 | " \n", 2090 | " \n", 2091 | " \n", 2092 | " \n", 2093 | " \n", 2094 | " \n", 2095 | " \n", 2096 | " \n", 2097 | " \n", 2098 | " \n", 2099 | " \n", 2100 | " \n", 2101 | " \n", 2102 | " \n", 2103 | " \n", 2104 | " \n", 2105 | " \n", 2106 | " \n", 2107 | " \n", 2108 | " \n", 2109 | " \n", 2110 | " \n", 2111 | " \n", 2112 | " \n", 2113 | " \n", 2114 | " \n", 2115 | " \n", 2116 | " \n", 2117 | "
key11key21key31key41key1key2key3key4
1171319171319
2281420281420
33915213kumar1521
4410162241016ineuron
5511172351117pwskills
\n", 2118 | "
" 2119 | ], 2120 | "text/plain": [ 2121 | " key11 key21 key31 key41 key1 key2 key3 key4\n", 2122 | "1 1 7 13 19 1 7 13 19\n", 2123 | "2 2 8 14 20 2 8 14 20\n", 2124 | "3 3 9 15 21 3 kumar 15 21\n", 2125 | "4 4 10 16 22 4 10 16 ineuron\n", 2126 | "5 5 11 17 23 5 11 17 pwskills" 2127 | ] 2128 | }, 2129 | "execution_count": 53, 2130 | "metadata": {}, 2131 | "output_type": "execute_result" 2132 | } 2133 | ], 2134 | "source": [ 2135 | "df10.join(df20 , how = 'inner')" 2136 | ] 2137 | }, 2138 | { 2139 | "cell_type": "code", 2140 | "execution_count": 54, 2141 | "id": "58e349ec-edfa-4fab-aae3-cd4751620a56", 2142 | "metadata": {}, 2143 | "outputs": [ 2144 | { 2145 | "data": { 2146 | "text/html": [ 2147 | "
\n", 2148 | "\n", 2161 | "\n", 2162 | " \n", 2163 | " \n", 2164 | " \n", 2165 | " \n", 2166 | " \n", 2167 | " \n", 2168 | " \n", 2169 | " \n", 2170 | " \n", 2171 | " \n", 2172 | " \n", 2173 | " \n", 2174 | " \n", 2175 | " \n", 2176 | " \n", 2177 | " \n", 2178 | " \n", 2179 | " \n", 2180 | " \n", 2181 | " \n", 2182 | " \n", 2183 | " \n", 2184 | " \n", 2185 | " \n", 2186 | " \n", 2187 | " \n", 2188 | " \n", 2189 | " \n", 2190 | " \n", 2191 | " \n", 2192 | " \n", 2193 | " \n", 2194 | " \n", 2195 | " \n", 2196 | " \n", 2197 | " \n", 2198 | " \n", 2199 | " \n", 2200 | " \n", 2201 | " \n", 2202 | " \n", 2203 | " \n", 2204 | " \n", 2205 | " \n", 2206 | " \n", 2207 | " \n", 2208 | " \n", 2209 | " \n", 2210 | " \n", 2211 | " \n", 2212 | " \n", 2213 | " \n", 2214 | " \n", 2215 | "
key11key21key31key41
1171319
2281420
3391521
44101622
55111723
6sudh121824
\n", 2216 | "
" 2217 | ], 2218 | "text/plain": [ 2219 | " key11 key21 key31 key41\n", 2220 | "1 1 7 13 19\n", 2221 | "2 2 8 14 20\n", 2222 | "3 3 9 15 21\n", 2223 | "4 4 10 16 22\n", 2224 | "5 5 11 17 23\n", 2225 | "6 sudh 12 18 24" 2226 | ] 2227 | }, 2228 | "execution_count": 54, 2229 | "metadata": {}, 2230 | "output_type": "execute_result" 2231 | } 2232 | ], 2233 | "source": [ 2234 | "df10" 2235 | ] 2236 | }, 2237 | { 2238 | "cell_type": "code", 2239 | "execution_count": 55, 2240 | "id": "4a2fa551-0e0a-4c15-ac25-c3c14a93f202", 2241 | "metadata": {}, 2242 | "outputs": [ 2243 | { 2244 | "data": { 2245 | "text/html": [ 2246 | "
\n", 2247 | "\n", 2260 | "\n", 2261 | " \n", 2262 | " \n", 2263 | " \n", 2264 | " \n", 2265 | " \n", 2266 | " \n", 2267 | " \n", 2268 | " \n", 2269 | " \n", 2270 | " \n", 2271 | " \n", 2272 | " \n", 2273 | " \n", 2274 | " \n", 2275 | " \n", 2276 | " \n", 2277 | " \n", 2278 | " \n", 2279 | " \n", 2280 | " \n", 2281 | " \n", 2282 | " \n", 2283 | " \n", 2284 | " \n", 2285 | " \n", 2286 | " \n", 2287 | " \n", 2288 | " \n", 2289 | " \n", 2290 | " \n", 2291 | " \n", 2292 | " \n", 2293 | " \n", 2294 | " \n", 2295 | " \n", 2296 | " \n", 2297 | " \n", 2298 | " \n", 2299 | " \n", 2300 | " \n", 2301 | " \n", 2302 | " \n", 2303 | " \n", 2304 | " \n", 2305 | " \n", 2306 | " \n", 2307 | " \n", 2308 | " \n", 2309 | " \n", 2310 | " \n", 2311 | " \n", 2312 | " \n", 2313 | " \n", 2314 | "
key1key2key3key4
1171319
2281420
33kumar1521
441016ineuron
551117pwskills
sudhsudh121824
\n", 2315 | "
" 2316 | ], 2317 | "text/plain": [ 2318 | " key1 key2 key3 key4\n", 2319 | "1 1 7 13 19\n", 2320 | "2 2 8 14 20\n", 2321 | "3 3 kumar 15 21\n", 2322 | "4 4 10 16 ineuron\n", 2323 | "5 5 11 17 pwskills\n", 2324 | "sudh sudh 12 18 24" 2325 | ] 2326 | }, 2327 | "execution_count": 55, 2328 | "metadata": {}, 2329 | "output_type": "execute_result" 2330 | } 2331 | ], 2332 | "source": [ 2333 | "df20" 2334 | ] 2335 | }, 2336 | { 2337 | "cell_type": "code", 2338 | "execution_count": 57, 2339 | "id": "b9954f1a-378b-431e-9f47-47a97db85ab0", 2340 | "metadata": {}, 2341 | "outputs": [ 2342 | { 2343 | "data": { 2344 | "text/html": [ 2345 | "
\n", 2346 | "\n", 2359 | "\n", 2360 | " \n", 2361 | " \n", 2362 | " \n", 2363 | " \n", 2364 | " \n", 2365 | " \n", 2366 | " \n", 2367 | " \n", 2368 | " \n", 2369 | " \n", 2370 | " \n", 2371 | " \n", 2372 | " \n", 2373 | " \n", 2374 | " \n", 2375 | " \n", 2376 | " \n", 2377 | " \n", 2378 | " \n", 2379 | " \n", 2380 | " \n", 2381 | " \n", 2382 | " \n", 2383 | " \n", 2384 | " \n", 2385 | " \n", 2386 | " \n", 2387 | " \n", 2388 | " \n", 2389 | " \n", 2390 | " \n", 2391 | " \n", 2392 | " \n", 2393 | " \n", 2394 | " \n", 2395 | " \n", 2396 | " \n", 2397 | " \n", 2398 | " \n", 2399 | " \n", 2400 | " \n", 2401 | " \n", 2402 | " \n", 2403 | " \n", 2404 | " \n", 2405 | " \n", 2406 | " \n", 2407 | " \n", 2408 | " \n", 2409 | " \n", 2410 | " \n", 2411 | " \n", 2412 | " \n", 2413 | " \n", 2414 | " \n", 2415 | " \n", 2416 | " \n", 2417 | " \n", 2418 | " \n", 2419 | " \n", 2420 | " \n", 2421 | " \n", 2422 | " \n", 2423 | " \n", 2424 | " \n", 2425 | " \n", 2426 | " \n", 2427 | " \n", 2428 | " \n", 2429 | " \n", 2430 | " \n", 2431 | " \n", 2432 | " \n", 2433 | " \n", 2434 | " \n", 2435 | " \n", 2436 | " \n", 2437 | " \n", 2438 | " \n", 2439 | " \n", 2440 | " \n", 2441 | " \n", 2442 | " \n", 2443 | " \n", 2444 | " \n", 2445 | " \n", 2446 | " \n", 2447 | " \n", 2448 | " \n", 2449 | " \n", 2450 | " \n", 2451 | " \n", 2452 | " \n", 2453 | " \n", 2454 | " \n", 2455 | "
key1key2key3key4
0171319
1281420
2391521
34101622
45111723
5sudh121824
0171319
1281420
23kumar1521
341016ineuron
451117pwskills
5sudh121824
\n", 2456 | "
" 2457 | ], 2458 | "text/plain": [ 2459 | " key1 key2 key3 key4\n", 2460 | "0 1 7 13 19\n", 2461 | "1 2 8 14 20\n", 2462 | "2 3 9 15 21\n", 2463 | "3 4 10 16 22\n", 2464 | "4 5 11 17 23\n", 2465 | "5 sudh 12 18 24\n", 2466 | "0 1 7 13 19\n", 2467 | "1 2 8 14 20\n", 2468 | "2 3 kumar 15 21\n", 2469 | "3 4 10 16 ineuron\n", 2470 | "4 5 11 17 pwskills\n", 2471 | "5 sudh 12 18 24" 2472 | ] 2473 | }, 2474 | "execution_count": 57, 2475 | "metadata": {}, 2476 | "output_type": "execute_result" 2477 | } 2478 | ], 2479 | "source": [ 2480 | "pd.concat([df1,df2] , axis=0)" 2481 | ] 2482 | }, 2483 | { 2484 | "cell_type": "code", 2485 | "execution_count": 60, 2486 | "id": "2bab2522-d095-468c-ae5a-fb985bad6db7", 2487 | "metadata": {}, 2488 | "outputs": [ 2489 | { 2490 | "data": { 2491 | "text/html": [ 2492 | "
\n", 2493 | "\n", 2506 | "\n", 2507 | " \n", 2508 | " \n", 2509 | " \n", 2510 | " \n", 2511 | " \n", 2512 | " \n", 2513 | " \n", 2514 | " \n", 2515 | " \n", 2516 | " \n", 2517 | " \n", 2518 | " \n", 2519 | " \n", 2520 | " \n", 2521 | " \n", 2522 | " \n", 2523 | " \n", 2524 | " \n", 2525 | " \n", 2526 | " \n", 2527 | " \n", 2528 | " \n", 2529 | " \n", 2530 | " \n", 2531 | " \n", 2532 | " \n", 2533 | " \n", 2534 | " \n", 2535 | " \n", 2536 | " \n", 2537 | " \n", 2538 | " \n", 2539 | " \n", 2540 | " \n", 2541 | " \n", 2542 | " \n", 2543 | " \n", 2544 | " \n", 2545 | " \n", 2546 | " \n", 2547 | " \n", 2548 | " \n", 2549 | " \n", 2550 | " \n", 2551 | " \n", 2552 | " \n", 2553 | " \n", 2554 | " \n", 2555 | " \n", 2556 | " \n", 2557 | " \n", 2558 | " \n", 2559 | " \n", 2560 | " \n", 2561 | " \n", 2562 | " \n", 2563 | " \n", 2564 | " \n", 2565 | " \n", 2566 | " \n", 2567 | " \n", 2568 | " \n", 2569 | " \n", 2570 | " \n", 2571 | " \n", 2572 | " \n", 2573 | " \n", 2574 | " \n", 2575 | " \n", 2576 | " \n", 2577 | " \n", 2578 | " \n", 2579 | " \n", 2580 | " \n", 2581 | " \n", 2582 | " \n", 2583 | " \n", 2584 | " \n", 2585 | " \n", 2586 | " \n", 2587 | " \n", 2588 | "
key1key2key3key4key1key2key3key4
0171319171319
1281420281420
23915213kumar1521
3410162241016ineuron
4511172351117pwskills
5sudh121824sudh121824
\n", 2589 | "
" 2590 | ], 2591 | "text/plain": [ 2592 | " key1 key2 key3 key4 key1 key2 key3 key4\n", 2593 | "0 1 7 13 19 1 7 13 19\n", 2594 | "1 2 8 14 20 2 8 14 20\n", 2595 | "2 3 9 15 21 3 kumar 15 21\n", 2596 | "3 4 10 16 22 4 10 16 ineuron\n", 2597 | "4 5 11 17 23 5 11 17 pwskills\n", 2598 | "5 sudh 12 18 24 sudh 12 18 24" 2599 | ] 2600 | }, 2601 | "execution_count": 60, 2602 | "metadata": {}, 2603 | "output_type": "execute_result" 2604 | } 2605 | ], 2606 | "source": [ 2607 | "pd.concat([df1,df2] , axis=1)" 2608 | ] 2609 | }, 2610 | { 2611 | "cell_type": "code", 2612 | "execution_count": 61, 2613 | "id": "2f1459e2-3b7e-4820-a836-b81aaef0a9b5", 2614 | "metadata": {}, 2615 | "outputs": [], 2616 | "source": [ 2617 | "import numpy as np " 2618 | ] 2619 | }, 2620 | { 2621 | "cell_type": "code", 2622 | "execution_count": 62, 2623 | "id": "b3a340e3-d856-4f37-9021-aa892653dc5e", 2624 | "metadata": {}, 2625 | "outputs": [], 2626 | "source": [ 2627 | "l = [1,2,3,4,4]" 2628 | ] 2629 | }, 2630 | { 2631 | "cell_type": "code", 2632 | "execution_count": 64, 2633 | "id": "de1f4257-a2a7-4ee4-a4bc-389eb07678e5", 2634 | "metadata": {}, 2635 | "outputs": [ 2636 | { 2637 | "data": { 2638 | "text/plain": [ 2639 | "list" 2640 | ] 2641 | }, 2642 | "execution_count": 64, 2643 | "metadata": {}, 2644 | "output_type": "execute_result" 2645 | } 2646 | ], 2647 | "source": [ 2648 | "type(l)" 2649 | ] 2650 | }, 2651 | { 2652 | "cell_type": "code", 2653 | "execution_count": 66, 2654 | "id": "297d9ac3-3769-4947-b3cf-b06d84046fdd", 2655 | "metadata": {}, 2656 | "outputs": [], 2657 | "source": [ 2658 | "a = np.array(l)" 2659 | ] 2660 | }, 2661 | { 2662 | "cell_type": "code", 2663 | "execution_count": 67, 2664 | "id": "f91841fd-f18d-4f2a-b479-715f495dddf6", 2665 | "metadata": {}, 2666 | "outputs": [ 2667 | { 2668 | "data": { 2669 | "text/plain": [ 2670 | "numpy.ndarray" 2671 | ] 2672 | }, 2673 | "execution_count": 67, 2674 | "metadata": {}, 2675 | "output_type": "execute_result" 2676 | } 2677 | ], 2678 | "source": [ 2679 | "type(a)" 2680 | ] 2681 | }, 2682 | { 2683 | "cell_type": "code", 2684 | "execution_count": 68, 2685 | "id": "f216ea2d-8ae5-4c3f-b62b-26746d1e9f7a", 2686 | "metadata": {}, 2687 | "outputs": [ 2688 | { 2689 | "data": { 2690 | "text/plain": [ 2691 | "array([1, 2, 3, 4, 4])" 2692 | ] 2693 | }, 2694 | "execution_count": 68, 2695 | "metadata": {}, 2696 | "output_type": "execute_result" 2697 | } 2698 | ], 2699 | "source": [ 2700 | "a" 2701 | ] 2702 | }, 2703 | { 2704 | "cell_type": "code", 2705 | "execution_count": 73, 2706 | "id": "6af1eefc-7afd-4dc3-a1ee-9d326c7fcfef", 2707 | "metadata": {}, 2708 | "outputs": [], 2709 | "source": [ 2710 | "a1 = np.array([[1,2,3] , [3,4,5]])" 2711 | ] 2712 | }, 2713 | { 2714 | "cell_type": "code", 2715 | "execution_count": 74, 2716 | "id": "45c4a3a5-d104-4901-819f-24936093ef36", 2717 | "metadata": {}, 2718 | "outputs": [ 2719 | { 2720 | "data": { 2721 | "text/plain": [ 2722 | "array([[1, 2, 3],\n", 2723 | " [3, 4, 5]])" 2724 | ] 2725 | }, 2726 | "execution_count": 74, 2727 | "metadata": {}, 2728 | "output_type": "execute_result" 2729 | } 2730 | ], 2731 | "source": [ 2732 | "a1\n" 2733 | ] 2734 | }, 2735 | { 2736 | "cell_type": "code", 2737 | "execution_count": 75, 2738 | "id": "15fa41fa-f81d-42ac-a118-b8bcf0666e56", 2739 | "metadata": {}, 2740 | "outputs": [], 2741 | "source": [ 2742 | "a2 = np.array([[[1,2,3] , [4,.5,6]]])" 2743 | ] 2744 | }, 2745 | { 2746 | "cell_type": "code", 2747 | "execution_count": 76, 2748 | "id": "74ae2bb7-e7aa-43d5-9179-5f5b5948caf8", 2749 | "metadata": {}, 2750 | "outputs": [ 2751 | { 2752 | "data": { 2753 | "text/plain": [ 2754 | "array([[[1. , 2. , 3. ],\n", 2755 | " [4. , 0.5, 6. ]]])" 2756 | ] 2757 | }, 2758 | "execution_count": 76, 2759 | "metadata": {}, 2760 | "output_type": "execute_result" 2761 | } 2762 | ], 2763 | "source": [ 2764 | "a2" 2765 | ] 2766 | }, 2767 | { 2768 | "cell_type": "code", 2769 | "execution_count": 77, 2770 | "id": "4464a24e-0e19-43fa-b730-1993d2a1cfde", 2771 | "metadata": {}, 2772 | "outputs": [ 2773 | { 2774 | "data": { 2775 | "text/plain": [ 2776 | "array([1, 2, 3, 4, 4])" 2777 | ] 2778 | }, 2779 | "execution_count": 77, 2780 | "metadata": {}, 2781 | "output_type": "execute_result" 2782 | } 2783 | ], 2784 | "source": [ 2785 | "a" 2786 | ] 2787 | }, 2788 | { 2789 | "cell_type": "code", 2790 | "execution_count": 78, 2791 | "id": "793d947e-5b3f-4ee5-b352-f70f4bf76ded", 2792 | "metadata": {}, 2793 | "outputs": [ 2794 | { 2795 | "data": { 2796 | "text/plain": [ 2797 | "array([[1, 2, 3],\n", 2798 | " [3, 4, 5]])" 2799 | ] 2800 | }, 2801 | "execution_count": 78, 2802 | "metadata": {}, 2803 | "output_type": "execute_result" 2804 | } 2805 | ], 2806 | "source": [ 2807 | "a1" 2808 | ] 2809 | }, 2810 | { 2811 | "cell_type": "code", 2812 | "execution_count": 79, 2813 | "id": "2f8c9477-257b-458b-bb46-d5348fa84e41", 2814 | "metadata": {}, 2815 | "outputs": [ 2816 | { 2817 | "data": { 2818 | "text/plain": [ 2819 | "array([[[1. , 2. , 3. ],\n", 2820 | " [4. , 0.5, 6. ]]])" 2821 | ] 2822 | }, 2823 | "execution_count": 79, 2824 | "metadata": {}, 2825 | "output_type": "execute_result" 2826 | } 2827 | ], 2828 | "source": [ 2829 | "a2" 2830 | ] 2831 | }, 2832 | { 2833 | "cell_type": "code", 2834 | "execution_count": 80, 2835 | "id": "e3b68bb7-d3e4-44c3-ba3f-8419b7d91d28", 2836 | "metadata": {}, 2837 | "outputs": [ 2838 | { 2839 | "data": { 2840 | "text/plain": [ 2841 | "1" 2842 | ] 2843 | }, 2844 | "execution_count": 80, 2845 | "metadata": {}, 2846 | "output_type": "execute_result" 2847 | } 2848 | ], 2849 | "source": [ 2850 | "a.ndim" 2851 | ] 2852 | }, 2853 | { 2854 | "cell_type": "code", 2855 | "execution_count": 81, 2856 | "id": "0879e33b-5b1a-4f95-b7bf-b286fe4dd453", 2857 | "metadata": {}, 2858 | "outputs": [ 2859 | { 2860 | "data": { 2861 | "text/plain": [ 2862 | "2" 2863 | ] 2864 | }, 2865 | "execution_count": 81, 2866 | "metadata": {}, 2867 | "output_type": "execute_result" 2868 | } 2869 | ], 2870 | "source": [ 2871 | "a1.ndim\n" 2872 | ] 2873 | }, 2874 | { 2875 | "cell_type": "code", 2876 | "execution_count": 82, 2877 | "id": "984ac883-a6e3-487f-bad9-3de78a4170a3", 2878 | "metadata": {}, 2879 | "outputs": [ 2880 | { 2881 | "data": { 2882 | "text/plain": [ 2883 | "3" 2884 | ] 2885 | }, 2886 | "execution_count": 82, 2887 | "metadata": {}, 2888 | "output_type": "execute_result" 2889 | } 2890 | ], 2891 | "source": [ 2892 | "a2.ndim" 2893 | ] 2894 | }, 2895 | { 2896 | "cell_type": "code", 2897 | "execution_count": 83, 2898 | "id": "3a024126-8be3-4bad-b26c-7e4fa51b5fab", 2899 | "metadata": {}, 2900 | "outputs": [], 2901 | "source": [ 2902 | "a3 = np.array([[[1,2,3] , [4,.5,6]],[[1,2,3] , [4,.5,6]],[[1,2,3] , [4,.5,6]]])" 2903 | ] 2904 | }, 2905 | { 2906 | "cell_type": "code", 2907 | "execution_count": 84, 2908 | "id": "83ac298d-c474-4c57-94bf-97befda66e9f", 2909 | "metadata": {}, 2910 | "outputs": [ 2911 | { 2912 | "data": { 2913 | "text/plain": [ 2914 | "array([[[1. , 2. , 3. ],\n", 2915 | " [4. , 0.5, 6. ]],\n", 2916 | "\n", 2917 | " [[1. , 2. , 3. ],\n", 2918 | " [4. , 0.5, 6. ]],\n", 2919 | "\n", 2920 | " [[1. , 2. , 3. ],\n", 2921 | " [4. , 0.5, 6. ]]])" 2922 | ] 2923 | }, 2924 | "execution_count": 84, 2925 | "metadata": {}, 2926 | "output_type": "execute_result" 2927 | } 2928 | ], 2929 | "source": [ 2930 | "a3" 2931 | ] 2932 | }, 2933 | { 2934 | "cell_type": "code", 2935 | "execution_count": 85, 2936 | "id": "a73903e8-ee36-4925-aec1-818e90db861d", 2937 | "metadata": {}, 2938 | "outputs": [ 2939 | { 2940 | "data": { 2941 | "text/plain": [ 2942 | "3" 2943 | ] 2944 | }, 2945 | "execution_count": 85, 2946 | "metadata": {}, 2947 | "output_type": "execute_result" 2948 | } 2949 | ], 2950 | "source": [ 2951 | "a3.ndim" 2952 | ] 2953 | }, 2954 | { 2955 | "cell_type": "code", 2956 | "execution_count": 86, 2957 | "id": "c89ab63e-a4f7-44db-91cd-6c863c452e3d", 2958 | "metadata": {}, 2959 | "outputs": [], 2960 | "source": [ 2961 | "l = [1,2,3,4]" 2962 | ] 2963 | }, 2964 | { 2965 | "cell_type": "code", 2966 | "execution_count": 90, 2967 | "id": "f8904384-5afe-4ca3-b1d9-6ecda7d1fdc1", 2968 | "metadata": {}, 2969 | "outputs": [], 2970 | "source": [ 2971 | "a = np.asarray(l)" 2972 | ] 2973 | }, 2974 | { 2975 | "cell_type": "code", 2976 | "execution_count": 89, 2977 | "id": "cb904727-8761-4abd-a299-8023cb291c90", 2978 | "metadata": {}, 2979 | "outputs": [], 2980 | "source": [ 2981 | "m = np.matrix(l)" 2982 | ] 2983 | }, 2984 | { 2985 | "cell_type": "code", 2986 | "execution_count": 93, 2987 | "id": "5a9db928-647b-429b-b9df-5457e2ee61d8", 2988 | "metadata": {}, 2989 | "outputs": [ 2990 | { 2991 | "data": { 2992 | "text/plain": [ 2993 | "array([1, 2, 3, 4])" 2994 | ] 2995 | }, 2996 | "execution_count": 93, 2997 | "metadata": {}, 2998 | "output_type": "execute_result" 2999 | } 3000 | ], 3001 | "source": [ 3002 | "np.asanyarray(l)" 3003 | ] 3004 | }, 3005 | { 3006 | "cell_type": "code", 3007 | "execution_count": 91, 3008 | "id": "05739d24-0006-4822-8308-0c09c9ad2c91", 3009 | "metadata": {}, 3010 | "outputs": [ 3011 | { 3012 | "data": { 3013 | "text/plain": [ 3014 | "array([1, 2, 3, 4])" 3015 | ] 3016 | }, 3017 | "execution_count": 91, 3018 | "metadata": {}, 3019 | "output_type": "execute_result" 3020 | } 3021 | ], 3022 | "source": [ 3023 | "np.asanyarray(a)" 3024 | ] 3025 | }, 3026 | { 3027 | "cell_type": "code", 3028 | "execution_count": 92, 3029 | "id": "a69c8a25-5fd7-4be4-a539-f556f6d6b23d", 3030 | "metadata": {}, 3031 | "outputs": [ 3032 | { 3033 | "data": { 3034 | "text/plain": [ 3035 | "matrix([[1, 2, 3, 4]])" 3036 | ] 3037 | }, 3038 | "execution_count": 92, 3039 | "metadata": {}, 3040 | "output_type": "execute_result" 3041 | } 3042 | ], 3043 | "source": [ 3044 | "np.asanyarray(m)" 3045 | ] 3046 | }, 3047 | { 3048 | "cell_type": "code", 3049 | "execution_count": 94, 3050 | "id": "7bc1cccf-ab21-4f96-bbea-6055f87211d7", 3051 | "metadata": {}, 3052 | "outputs": [ 3053 | { 3054 | "data": { 3055 | "text/plain": [ 3056 | "array([1, 2, 3, 4])" 3057 | ] 3058 | }, 3059 | "execution_count": 94, 3060 | "metadata": {}, 3061 | "output_type": "execute_result" 3062 | } 3063 | ], 3064 | "source": [ 3065 | "a" 3066 | ] 3067 | }, 3068 | { 3069 | "cell_type": "code", 3070 | "execution_count": 95, 3071 | "id": "e82a186b-49a9-4cc3-98a6-a854a63bd49a", 3072 | "metadata": {}, 3073 | "outputs": [], 3074 | "source": [ 3075 | "a1 = a " 3076 | ] 3077 | }, 3078 | { 3079 | "cell_type": "code", 3080 | "execution_count": 96, 3081 | "id": "489017ea-102f-4608-8bd0-f309e5a81dc1", 3082 | "metadata": {}, 3083 | "outputs": [ 3084 | { 3085 | "data": { 3086 | "text/plain": [ 3087 | "array([1, 2, 3, 4])" 3088 | ] 3089 | }, 3090 | "execution_count": 96, 3091 | "metadata": {}, 3092 | "output_type": "execute_result" 3093 | } 3094 | ], 3095 | "source": [ 3096 | "a1" 3097 | ] 3098 | }, 3099 | { 3100 | "cell_type": "code", 3101 | "execution_count": 97, 3102 | "id": "d108d7bd-b0e4-4caf-b48a-08717f904e0f", 3103 | "metadata": {}, 3104 | "outputs": [ 3105 | { 3106 | "data": { 3107 | "text/plain": [ 3108 | "array([1, 2, 3, 4])" 3109 | ] 3110 | }, 3111 | "execution_count": 97, 3112 | "metadata": {}, 3113 | "output_type": "execute_result" 3114 | } 3115 | ], 3116 | "source": [ 3117 | "a" 3118 | ] 3119 | }, 3120 | { 3121 | "cell_type": "code", 3122 | "execution_count": 98, 3123 | "id": "3561d72c-753f-45f9-a460-376590750774", 3124 | "metadata": {}, 3125 | "outputs": [ 3126 | { 3127 | "data": { 3128 | "text/plain": [ 3129 | "array([1, 2, 3, 4])" 3130 | ] 3131 | }, 3132 | "execution_count": 98, 3133 | "metadata": {}, 3134 | "output_type": "execute_result" 3135 | } 3136 | ], 3137 | "source": [ 3138 | "a" 3139 | ] 3140 | }, 3141 | { 3142 | "cell_type": "code", 3143 | "execution_count": 100, 3144 | "id": "c95a3e81-3aa2-4f3a-95b7-0050174a706d", 3145 | "metadata": {}, 3146 | "outputs": [], 3147 | "source": [ 3148 | "a[0] = 10" 3149 | ] 3150 | }, 3151 | { 3152 | "cell_type": "code", 3153 | "execution_count": 101, 3154 | "id": "0dca2851-0cee-4fe3-a3b5-6eccc4f11388", 3155 | "metadata": {}, 3156 | "outputs": [ 3157 | { 3158 | "data": { 3159 | "text/plain": [ 3160 | "array([10, 2, 3, 4])" 3161 | ] 3162 | }, 3163 | "execution_count": 101, 3164 | "metadata": {}, 3165 | "output_type": "execute_result" 3166 | } 3167 | ], 3168 | "source": [ 3169 | "a" 3170 | ] 3171 | }, 3172 | { 3173 | "cell_type": "code", 3174 | "execution_count": 102, 3175 | "id": "8c416e48-2de1-4374-930f-f05346205989", 3176 | "metadata": {}, 3177 | "outputs": [ 3178 | { 3179 | "data": { 3180 | "text/plain": [ 3181 | "array([10, 2, 3, 4])" 3182 | ] 3183 | }, 3184 | "execution_count": 102, 3185 | "metadata": {}, 3186 | "output_type": "execute_result" 3187 | } 3188 | ], 3189 | "source": [ 3190 | "a1" 3191 | ] 3192 | }, 3193 | { 3194 | "cell_type": "code", 3195 | "execution_count": 104, 3196 | "id": "2104476a-e1fd-4df9-b08e-b9c559b2a103", 3197 | "metadata": {}, 3198 | "outputs": [], 3199 | "source": [ 3200 | "a1[3] = 50" 3201 | ] 3202 | }, 3203 | { 3204 | "cell_type": "code", 3205 | "execution_count": 105, 3206 | "id": "4c14a0c4-3f70-4251-a113-66fb593b8381", 3207 | "metadata": {}, 3208 | "outputs": [ 3209 | { 3210 | "data": { 3211 | "text/plain": [ 3212 | "array([10, 2, 3, 50])" 3213 | ] 3214 | }, 3215 | "execution_count": 105, 3216 | "metadata": {}, 3217 | "output_type": "execute_result" 3218 | } 3219 | ], 3220 | "source": [ 3221 | "a1" 3222 | ] 3223 | }, 3224 | { 3225 | "cell_type": "code", 3226 | "execution_count": 106, 3227 | "id": "411029ac-9aa6-4429-b4e2-5c6c5ede6e54", 3228 | "metadata": {}, 3229 | "outputs": [ 3230 | { 3231 | "data": { 3232 | "text/plain": [ 3233 | "array([10, 2, 3, 50])" 3234 | ] 3235 | }, 3236 | "execution_count": 106, 3237 | "metadata": {}, 3238 | "output_type": "execute_result" 3239 | } 3240 | ], 3241 | "source": [ 3242 | "a" 3243 | ] 3244 | }, 3245 | { 3246 | "cell_type": "code", 3247 | "execution_count": 107, 3248 | "id": "eb73a9bb-f4a0-42cb-be16-119625194db9", 3249 | "metadata": {}, 3250 | "outputs": [], 3251 | "source": [ 3252 | "a2 = np.copy(a)" 3253 | ] 3254 | }, 3255 | { 3256 | "cell_type": "code", 3257 | "execution_count": 108, 3258 | "id": "0f8e53b8-3efc-4699-be1c-2309a4a8e48a", 3259 | "metadata": {}, 3260 | "outputs": [ 3261 | { 3262 | "data": { 3263 | "text/plain": [ 3264 | "array([10, 2, 3, 50])" 3265 | ] 3266 | }, 3267 | "execution_count": 108, 3268 | "metadata": {}, 3269 | "output_type": "execute_result" 3270 | } 3271 | ], 3272 | "source": [ 3273 | "a2" 3274 | ] 3275 | }, 3276 | { 3277 | "cell_type": "code", 3278 | "execution_count": 111, 3279 | "id": "f5144950-f06e-4d62-8367-436e51c877ae", 3280 | "metadata": {}, 3281 | "outputs": [], 3282 | "source": [ 3283 | "a2[2] = 30" 3284 | ] 3285 | }, 3286 | { 3287 | "cell_type": "code", 3288 | "execution_count": 112, 3289 | "id": "6235e46a-0ec7-47a1-b61a-49c17d8ec117", 3290 | "metadata": {}, 3291 | "outputs": [ 3292 | { 3293 | "data": { 3294 | "text/plain": [ 3295 | "array([10, 2, 30, 50])" 3296 | ] 3297 | }, 3298 | "execution_count": 112, 3299 | "metadata": {}, 3300 | "output_type": "execute_result" 3301 | } 3302 | ], 3303 | "source": [ 3304 | "a2" 3305 | ] 3306 | }, 3307 | { 3308 | "cell_type": "code", 3309 | "execution_count": 113, 3310 | "id": "47373eeb-80c8-46b7-bbd0-37a66bed9f3d", 3311 | "metadata": {}, 3312 | "outputs": [ 3313 | { 3314 | "data": { 3315 | "text/plain": [ 3316 | "array([10, 2, 3, 50])" 3317 | ] 3318 | }, 3319 | "execution_count": 113, 3320 | "metadata": {}, 3321 | "output_type": "execute_result" 3322 | } 3323 | ], 3324 | "source": [ 3325 | "a" 3326 | ] 3327 | }, 3328 | { 3329 | "cell_type": "code", 3330 | "execution_count": 114, 3331 | "id": "0e7ce447-386a-4c0a-acfa-57ba497e96bc", 3332 | "metadata": {}, 3333 | "outputs": [ 3334 | { 3335 | "data": { 3336 | "text/plain": [ 3337 | "array([[ True, False, False, False],\n", 3338 | " [False, True, False, False],\n", 3339 | " [False, False, True, False]])" 3340 | ] 3341 | }, 3342 | "execution_count": 114, 3343 | "metadata": {}, 3344 | "output_type": "execute_result" 3345 | } 3346 | ], 3347 | "source": [ 3348 | "np.fromfunction(lambda i,j : i==j , (3,4))" 3349 | ] 3350 | }, 3351 | { 3352 | "cell_type": "code", 3353 | "execution_count": 116, 3354 | "id": "fd421eb4-5197-4baf-91f3-3039bd4c6649", 3355 | "metadata": {}, 3356 | "outputs": [ 3357 | { 3358 | "data": { 3359 | "text/plain": [ 3360 | "array([[ True, False, False, False],\n", 3361 | " [False, True, False, False],\n", 3362 | " [False, False, True, False]])" 3363 | ] 3364 | }, 3365 | "execution_count": 116, 3366 | "metadata": {}, 3367 | "output_type": "execute_result" 3368 | } 3369 | ], 3370 | "source": [ 3371 | "np.fromfunction(lambda i,j: i==j, (3,4))" 3372 | ] 3373 | }, 3374 | { 3375 | "cell_type": "code", 3376 | "execution_count": 118, 3377 | "id": "72296cbc-ab35-4cec-ace1-2e601b9b503c", 3378 | "metadata": {}, 3379 | "outputs": [ 3380 | { 3381 | "data": { 3382 | "text/plain": [ 3383 | "array([[[0.8537019 , 0.89559976],\n", 3384 | " [0.69730849, 0.65386202],\n", 3385 | " [0.43384847, 0.47219106]],\n", 3386 | "\n", 3387 | " [[0.11591441, 0.5194264 ],\n", 3388 | " [0.04490197, 0.73227366],\n", 3389 | " [0.2114251 , 0.7732894 ]]])" 3390 | ] 3391 | }, 3392 | "execution_count": 118, 3393 | "metadata": {}, 3394 | "output_type": "execute_result" 3395 | } 3396 | ], 3397 | "source": [ 3398 | "np.random.rand(2,3,2)" 3399 | ] 3400 | }, 3401 | { 3402 | "cell_type": "code", 3403 | "execution_count": 119, 3404 | "id": "ea49e53b-7d14-4e2e-86bd-f70fb5da0ed1", 3405 | "metadata": {}, 3406 | "outputs": [ 3407 | { 3408 | "data": { 3409 | "text/plain": [ 3410 | "array([[[[0.53725569, 0.20683012],\n", 3411 | " [0.86591778, 0.45198326]],\n", 3412 | "\n", 3413 | " [[0.80552188, 0.32802758],\n", 3414 | " [0.21144657, 0.65774064]],\n", 3415 | "\n", 3416 | " [[0.22610232, 0.45318178],\n", 3417 | " [0.60987073, 0.59909623]]],\n", 3418 | "\n", 3419 | "\n", 3420 | " [[[0.28732243, 0.3049974 ],\n", 3421 | " [0.25456288, 0.37661516]],\n", 3422 | "\n", 3423 | " [[0.91435676, 0.30877497],\n", 3424 | " [0.35806469, 0.08779498]],\n", 3425 | "\n", 3426 | " [[0.1470572 , 0.80567483],\n", 3427 | " [0.33217116, 0.97522411]]]])" 3428 | ] 3429 | }, 3430 | "execution_count": 119, 3431 | "metadata": {}, 3432 | "output_type": "execute_result" 3433 | } 3434 | ], 3435 | "source": [ 3436 | "np.random.rand(2,3,2,2)" 3437 | ] 3438 | }, 3439 | { 3440 | "cell_type": "code", 3441 | "execution_count": 123, 3442 | "id": "f34d4a91-f829-45e5-b1b8-4f48da258386", 3443 | "metadata": {}, 3444 | "outputs": [ 3445 | { 3446 | "data": { 3447 | "text/plain": [ 3448 | "array([[[9.09677029e-01, 1.51764787e-01, 5.54673202e-01, 5.20975075e-01,\n", 3449 | " 1.89883414e-01],\n", 3450 | " [7.53923727e-01, 9.40966362e-01, 7.88123405e-01, 9.08953572e-01,\n", 3451 | " 9.64805229e-01],\n", 3452 | " [4.00655124e-01, 1.75199657e-01, 4.57227487e-01, 5.17727882e-01,\n", 3453 | " 2.86751041e-01],\n", 3454 | " [1.30429473e-01, 9.02009153e-01, 9.11345542e-02, 4.89073768e-01,\n", 3455 | " 5.03991486e-02]],\n", 3456 | "\n", 3457 | " [[6.86026889e-01, 2.89092687e-01, 9.89068408e-01, 8.89560944e-04,\n", 3458 | " 3.29450171e-01],\n", 3459 | " [2.90054731e-01, 9.99508005e-01, 9.46035196e-01, 4.19070101e-01,\n", 3460 | " 9.45084024e-01],\n", 3461 | " [4.62420004e-01, 1.88486694e-01, 4.14268952e-01, 7.85958823e-01,\n", 3462 | " 5.25020759e-02],\n", 3463 | " [6.35797430e-01, 8.16778744e-01, 7.61395700e-01, 7.18578055e-01,\n", 3464 | " 2.76044227e-01]],\n", 3465 | "\n", 3466 | " [[1.44572781e-02, 9.19394486e-02, 4.45699994e-01, 7.56659750e-01,\n", 3467 | " 9.02694336e-02],\n", 3468 | " [2.70860822e-01, 1.57507607e-01, 3.84106908e-01, 7.97338456e-01,\n", 3469 | " 5.02090497e-01],\n", 3470 | " [6.54299995e-01, 5.18945152e-01, 5.41727605e-01, 6.34531055e-01,\n", 3471 | " 3.08507114e-01],\n", 3472 | " [2.74715955e-01, 8.49466402e-01, 6.35123288e-01, 7.76779365e-01,\n", 3473 | " 3.27604916e-01]]])" 3474 | ] 3475 | }, 3476 | "execution_count": 123, 3477 | "metadata": {}, 3478 | "output_type": "execute_result" 3479 | } 3480 | ], 3481 | "source": [ 3482 | "np.random.rand(3,4,5)" 3483 | ] 3484 | }, 3485 | { 3486 | "cell_type": "code", 3487 | "execution_count": 130, 3488 | "id": "3152344c-7acf-4b37-bf93-560ddb67010f", 3489 | "metadata": {}, 3490 | "outputs": [], 3491 | "source": [ 3492 | "d = np.random.randn(3,4)" 3493 | ] 3494 | }, 3495 | { 3496 | "cell_type": "code", 3497 | "execution_count": 131, 3498 | "id": "9f752550-0999-4fe1-afab-e89d0b65127b", 3499 | "metadata": {}, 3500 | "outputs": [ 3501 | { 3502 | "data": { 3503 | "text/html": [ 3504 | "
\n", 3505 | "\n", 3518 | "\n", 3519 | " \n", 3520 | " \n", 3521 | " \n", 3522 | " \n", 3523 | " \n", 3524 | " \n", 3525 | " \n", 3526 | " \n", 3527 | " \n", 3528 | " \n", 3529 | " \n", 3530 | " \n", 3531 | " \n", 3532 | " \n", 3533 | " \n", 3534 | " \n", 3535 | " \n", 3536 | " \n", 3537 | " \n", 3538 | " \n", 3539 | " \n", 3540 | " \n", 3541 | " \n", 3542 | " \n", 3543 | " \n", 3544 | " \n", 3545 | " \n", 3546 | " \n", 3547 | " \n", 3548 | " \n", 3549 | " \n", 3550 | " \n", 3551 | "
0123
0-0.976138-0.8059541.007809-0.089897
10.212211-0.893465-0.0055511.240048
20.367181-1.2523731.449878-0.699765
\n", 3552 | "
" 3553 | ], 3554 | "text/plain": [ 3555 | " 0 1 2 3\n", 3556 | "0 -0.976138 -0.805954 1.007809 -0.089897\n", 3557 | "1 0.212211 -0.893465 -0.005551 1.240048\n", 3558 | "2 0.367181 -1.252373 1.449878 -0.699765" 3559 | ] 3560 | }, 3561 | "execution_count": 131, 3562 | "metadata": {}, 3563 | "output_type": "execute_result" 3564 | } 3565 | ], 3566 | "source": [ 3567 | "pd.DataFrame(d)" 3568 | ] 3569 | }, 3570 | { 3571 | "cell_type": "code", 3572 | "execution_count": 132, 3573 | "id": "859bdc07-eb8e-4310-9e74-0a9c05092cdb", 3574 | "metadata": {}, 3575 | "outputs": [], 3576 | "source": [ 3577 | "d1=np.random.randint(0,10,(4,4,2))" 3578 | ] 3579 | }, 3580 | { 3581 | "cell_type": "code", 3582 | "execution_count": 133, 3583 | "id": "cf911994-4b2b-45a0-a30f-29978c842ef5", 3584 | "metadata": {}, 3585 | "outputs": [ 3586 | { 3587 | "data": { 3588 | "text/plain": [ 3589 | "array([[[0, 3],\n", 3590 | " [2, 4],\n", 3591 | " [2, 1],\n", 3592 | " [2, 4]],\n", 3593 | "\n", 3594 | " [[9, 5],\n", 3595 | " [0, 7],\n", 3596 | " [9, 7],\n", 3597 | " [4, 1]],\n", 3598 | "\n", 3599 | " [[6, 6],\n", 3600 | " [6, 3],\n", 3601 | " [8, 8],\n", 3602 | " [5, 4]],\n", 3603 | "\n", 3604 | " [[7, 9],\n", 3605 | " [5, 1],\n", 3606 | " [0, 8],\n", 3607 | " [4, 4]]])" 3608 | ] 3609 | }, 3610 | "execution_count": 133, 3611 | "metadata": {}, 3612 | "output_type": "execute_result" 3613 | } 3614 | ], 3615 | "source": [ 3616 | "d1" 3617 | ] 3618 | }, 3619 | { 3620 | "cell_type": "code", 3621 | "execution_count": 135, 3622 | "id": "d88bf048-418e-43ae-82f8-b6a5c23c3670", 3623 | "metadata": {}, 3624 | "outputs": [ 3625 | { 3626 | "data": { 3627 | "text/plain": [ 3628 | "array([[0, 3],\n", 3629 | " [2, 4],\n", 3630 | " [2, 1],\n", 3631 | " [2, 4],\n", 3632 | " [9, 5],\n", 3633 | " [0, 7],\n", 3634 | " [9, 7],\n", 3635 | " [4, 1],\n", 3636 | " [6, 6],\n", 3637 | " [6, 3],\n", 3638 | " [8, 8],\n", 3639 | " [5, 4],\n", 3640 | " [7, 9],\n", 3641 | " [5, 1],\n", 3642 | " [0, 8],\n", 3643 | " [4, 4]])" 3644 | ] 3645 | }, 3646 | "execution_count": 135, 3647 | "metadata": {}, 3648 | "output_type": "execute_result" 3649 | } 3650 | ], 3651 | "source": [ 3652 | "d1.reshape(16,2)" 3653 | ] 3654 | }, 3655 | { 3656 | "cell_type": "code", 3657 | "execution_count": 136, 3658 | "id": "3c4d6088-f66a-4f35-a7e3-6e73b8fda110", 3659 | "metadata": {}, 3660 | "outputs": [ 3661 | { 3662 | "data": { 3663 | "text/plain": [ 3664 | "array([[0, 3, 2, 4],\n", 3665 | " [2, 1, 2, 4],\n", 3666 | " [9, 5, 0, 7],\n", 3667 | " [9, 7, 4, 1],\n", 3668 | " [6, 6, 6, 3],\n", 3669 | " [8, 8, 5, 4],\n", 3670 | " [7, 9, 5, 1],\n", 3671 | " [0, 8, 4, 4]])" 3672 | ] 3673 | }, 3674 | "execution_count": 136, 3675 | "metadata": {}, 3676 | "output_type": "execute_result" 3677 | } 3678 | ], 3679 | "source": [ 3680 | "d1.reshape(8,4)" 3681 | ] 3682 | }, 3683 | { 3684 | "cell_type": "code", 3685 | "execution_count": 145, 3686 | "id": "a99c725b-0fda-4af9-b1cb-2d37d301982e", 3687 | "metadata": {}, 3688 | "outputs": [ 3689 | { 3690 | "data": { 3691 | "text/html": [ 3692 | "
\n", 3693 | "\n", 3706 | "\n", 3707 | " \n", 3708 | " \n", 3709 | " \n", 3710 | " \n", 3711 | " \n", 3712 | " \n", 3713 | " \n", 3714 | " \n", 3715 | " \n", 3716 | " \n", 3717 | " \n", 3718 | " \n", 3719 | " \n", 3720 | " \n", 3721 | " \n", 3722 | " \n", 3723 | " \n", 3724 | " \n", 3725 | " \n", 3726 | " \n", 3727 | " \n", 3728 | " \n", 3729 | " \n", 3730 | " \n", 3731 | " \n", 3732 | " \n", 3733 | " \n", 3734 | " \n", 3735 | " \n", 3736 | " \n", 3737 | " \n", 3738 | " \n", 3739 | " \n", 3740 | " \n", 3741 | " \n", 3742 | " \n", 3743 | " \n", 3744 | " \n", 3745 | " \n", 3746 | " \n", 3747 | " \n", 3748 | " \n", 3749 | " \n", 3750 | " \n", 3751 | " \n", 3752 | " \n", 3753 | " \n", 3754 | " \n", 3755 | " \n", 3756 | " \n", 3757 | " \n", 3758 | " \n", 3759 | " \n", 3760 | " \n", 3761 | " \n", 3762 | " \n", 3763 | " \n", 3764 | " \n", 3765 | " \n", 3766 | " \n", 3767 | " \n", 3768 | " \n", 3769 | " \n", 3770 | " \n", 3771 | " \n", 3772 | " \n", 3773 | " \n", 3774 | " \n", 3775 | " \n", 3776 | " \n", 3777 | " \n", 3778 | " \n", 3779 | " \n", 3780 | " \n", 3781 | " \n", 3782 | " \n", 3783 | " \n", 3784 | " \n", 3785 | " \n", 3786 | " \n", 3787 | " \n", 3788 | " \n", 3789 | " \n", 3790 | " \n", 3791 | " \n", 3792 | " \n", 3793 | " \n", 3794 | " \n", 3795 | " \n", 3796 | " \n", 3797 | " \n", 3798 | " \n", 3799 | " \n", 3800 | " \n", 3801 | " \n", 3802 | " \n", 3803 | " \n", 3804 | " \n", 3805 | " \n", 3806 | " \n", 3807 | " \n", 3808 | " \n", 3809 | " \n", 3810 | " \n", 3811 | " \n", 3812 | " \n", 3813 | " \n", 3814 | " \n", 3815 | " \n", 3816 | " \n", 3817 | " \n", 3818 | " \n", 3819 | " \n", 3820 | " \n", 3821 | " \n", 3822 | " \n", 3823 | " \n", 3824 | " \n", 3825 | " \n", 3826 | " \n", 3827 | " \n", 3828 | " \n", 3829 | " \n", 3830 | " \n", 3831 | " \n", 3832 | " \n", 3833 | " \n", 3834 | " \n", 3835 | " \n", 3836 | " \n", 3837 | " \n", 3838 | " \n", 3839 | " \n", 3840 | " \n", 3841 | " \n", 3842 | " \n", 3843 | "
0
00
13
22
34
42
51
62
74
89
95
100
117
129
137
144
151
166
176
186
193
208
218
225
234
247
259
265
271
280
298
304
314
\n", 3844 | "
" 3845 | ], 3846 | "text/plain": [ 3847 | " 0\n", 3848 | "0 0\n", 3849 | "1 3\n", 3850 | "2 2\n", 3851 | "3 4\n", 3852 | "4 2\n", 3853 | "5 1\n", 3854 | "6 2\n", 3855 | "7 4\n", 3856 | "8 9\n", 3857 | "9 5\n", 3858 | "10 0\n", 3859 | "11 7\n", 3860 | "12 9\n", 3861 | "13 7\n", 3862 | "14 4\n", 3863 | "15 1\n", 3864 | "16 6\n", 3865 | "17 6\n", 3866 | "18 6\n", 3867 | "19 3\n", 3868 | "20 8\n", 3869 | "21 8\n", 3870 | "22 5\n", 3871 | "23 4\n", 3872 | "24 7\n", 3873 | "25 9\n", 3874 | "26 5\n", 3875 | "27 1\n", 3876 | "28 0\n", 3877 | "29 8\n", 3878 | "30 4\n", 3879 | "31 4" 3880 | ] 3881 | }, 3882 | "execution_count": 145, 3883 | "metadata": {}, 3884 | "output_type": "execute_result" 3885 | } 3886 | ], 3887 | "source": [ 3888 | "pd.DataFrame(d1.reshape(32,-1987987))" 3889 | ] 3890 | }, 3891 | { 3892 | "cell_type": "code", 3893 | "execution_count": 134, 3894 | "id": "b53d211c-3ae5-4e8a-9f4d-ce0b9a4ea4c9", 3895 | "metadata": {}, 3896 | "outputs": [ 3897 | { 3898 | "ename": "ValueError", 3899 | "evalue": "Must pass 2-d input. shape=(4, 4, 2)", 3900 | "output_type": "error", 3901 | "traceback": [ 3902 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m", 3903 | "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)", 3904 | "Cell \u001b[0;32mIn [134], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m(\u001b[49m\u001b[43md1\u001b[49m\u001b[43m)\u001b[49m\n", 3905 | "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/pandas/core/frame.py:720\u001b[0m, in \u001b[0;36mDataFrame.__init__\u001b[0;34m(self, data, index, columns, dtype, copy)\u001b[0m\n\u001b[1;32m 710\u001b[0m mgr \u001b[38;5;241m=\u001b[39m dict_to_mgr(\n\u001b[1;32m 711\u001b[0m \u001b[38;5;66;03m# error: Item \"ndarray\" of \"Union[ndarray, Series, Index]\" has no\u001b[39;00m\n\u001b[1;32m 712\u001b[0m \u001b[38;5;66;03m# attribute \"name\"\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 717\u001b[0m typ\u001b[38;5;241m=\u001b[39mmanager,\n\u001b[1;32m 718\u001b[0m )\n\u001b[1;32m 719\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 720\u001b[0m mgr \u001b[38;5;241m=\u001b[39m \u001b[43mndarray_to_mgr\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 721\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 722\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 723\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 724\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 725\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 726\u001b[0m \u001b[43m \u001b[49m\u001b[43mtyp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmanager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 727\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 729\u001b[0m \u001b[38;5;66;03m# For data is list-like, or Iterable (will consume into list)\u001b[39;00m\n\u001b[1;32m 730\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_list_like(data):\n", 3906 | "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/pandas/core/internals/construction.py:329\u001b[0m, in \u001b[0;36mndarray_to_mgr\u001b[0;34m(values, index, columns, dtype, copy, typ)\u001b[0m\n\u001b[1;32m 324\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mreshape(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 327\u001b[0m \u001b[38;5;66;03m# by definition an array here\u001b[39;00m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;66;03m# the dtypes will be coerced to a single dtype\u001b[39;00m\n\u001b[0;32m--> 329\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43m_prep_ndarraylike\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy_on_sanitize\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 331\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_dtype_equal(values\u001b[38;5;241m.\u001b[39mdtype, dtype):\n\u001b[1;32m 332\u001b[0m \u001b[38;5;66;03m# GH#40110 see similar check inside sanitize_array\u001b[39;00m\n\u001b[1;32m 333\u001b[0m rcf \u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m (is_integer_dtype(dtype) \u001b[38;5;129;01mand\u001b[39;00m values\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mkind \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n", 3907 | "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/pandas/core/internals/construction.py:583\u001b[0m, in \u001b[0;36m_prep_ndarraylike\u001b[0;34m(values, copy)\u001b[0m\n\u001b[1;32m 581\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mreshape((values\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 582\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m values\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[0;32m--> 583\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMust pass 2-d input. shape=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvalues\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 585\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m values\n", 3908 | "\u001b[0;31mValueError\u001b[0m: Must pass 2-d input. shape=(4, 4, 2)" 3909 | ] 3910 | } 3911 | ], 3912 | "source": [ 3913 | "pd.DataFrame(d1)" 3914 | ] 3915 | }, 3916 | { 3917 | "cell_type": "code", 3918 | "execution_count": null, 3919 | "id": "11cdb3c9-bf4c-4568-b7be-a5935031a5d3", 3920 | "metadata": {}, 3921 | "outputs": [], 3922 | "source": [] 3923 | } 3924 | ], 3925 | "metadata": { 3926 | "kernelspec": { 3927 | "display_name": "Python 3 (ipykernel)", 3928 | "language": "python", 3929 | "name": "python3" 3930 | }, 3931 | "language_info": { 3932 | "codemirror_mode": { 3933 | "name": "ipython", 3934 | "version": 3 3935 | }, 3936 | "file_extension": ".py", 3937 | "mimetype": "text/x-python", 3938 | "name": "python", 3939 | "nbconvert_exporter": "python", 3940 | "pygments_lexer": "ipython3", 3941 | "version": "3.10.6" 3942 | } 3943 | }, 3944 | "nbformat": 4, 3945 | "nbformat_minor": 5 3946 | } 3947 | --------------------------------------------------------------------------------