├── pandas day 1
├── pandas day 1.ipynb
├── pandas day 2 (1).ipynb
└── pandas day 3 (1).ipynb
/pandas day 1:
--------------------------------------------------------------------------------
1 | data link - https://drive.google.com/drive/folders/1zauEUoewFclurlYCh89FHgDfW9is6Y_r?usp=share_link
2 |
3 | Excel data - https://docs.google.com/spreadsheets/d/1fzzsmqAiC_yoiB2k1inDYVCYQ-Djo4G1/edit?usp=share_link&ouid=111840944180463951908&rtpof=true&sd=true
4 |
5 | Excel Data Airline 1 - https://docs.google.com/spreadsheets/d/1tGh7f3JkPS2TQXLtzdB-JWGCAwRHCxYE/edit?usp=share_link&ouid=111840944180463951908&rtpof=true&sd=true
6 |
7 | git hub data - https://raw.githubusercontent.com/datasciencedojo/datasets/master/titanic.csv
8 |
9 | read from html - https://www.basketball-reference.com/leagues/NBA_2015_totals.html
10 |
--------------------------------------------------------------------------------
/pandas day 3 (1).ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 2,
6 | "id": "2634dd02-5e1b-4bef-9a38-7198b2c1990e",
7 | "metadata": {},
8 | "outputs": [],
9 | "source": [
10 | "d1 = {'key1':[1,2,3,4,5,\"sudh\"],\n",
11 | " 'key2' : [7,8,9,10,11,12],\n",
12 | " 'key3':[13,14,15,16,17,18],\n",
13 | " 'key4':[19,20,21,22,23,24]\n",
14 | "}"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 3,
20 | "id": "098f537b-eeef-4326-8a77-e374e041aac5",
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "import pandas as pd "
25 | ]
26 | },
27 | {
28 | "cell_type": "code",
29 | "execution_count": 4,
30 | "id": "05e765e2-cfa0-49b7-a457-38a983c06b59",
31 | "metadata": {},
32 | "outputs": [],
33 | "source": [
34 | "df1 = pd.DataFrame(d1 )"
35 | ]
36 | },
37 | {
38 | "cell_type": "code",
39 | "execution_count": 5,
40 | "id": "3aaa77ad-bdec-4364-a347-0151d7c0e333",
41 | "metadata": {},
42 | "outputs": [],
43 | "source": [
44 | "d2 = {'key1':[1,2,3,4,5,\"sudh\"],\n",
45 | " 'key2' : [7,8,\"kumar\",10,11,12],\n",
46 | " 'key3':[13,14,15,16,17,18],\n",
47 | " 'key4':[19,20,21,\"ineuron\",\"pwskills\",24]\n",
48 | "}"
49 | ]
50 | },
51 | {
52 | "cell_type": "code",
53 | "execution_count": 6,
54 | "id": "9cca371e-4e10-466c-8608-438e750d2d05",
55 | "metadata": {},
56 | "outputs": [],
57 | "source": [
58 | "df2 = pd.DataFrame(d2)"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": 7,
64 | "id": "a09f3e4d-1ca2-43ac-86eb-b2a74c135044",
65 | "metadata": {},
66 | "outputs": [
67 | {
68 | "data": {
69 | "text/html": [
70 | "
\n",
71 | "\n",
84 | "
\n",
85 | " \n",
86 | " \n",
87 | " | \n",
88 | " key1 | \n",
89 | " key2 | \n",
90 | " key3 | \n",
91 | " key4 | \n",
92 | "
\n",
93 | " \n",
94 | " \n",
95 | " \n",
96 | " 0 | \n",
97 | " 1 | \n",
98 | " 7 | \n",
99 | " 13 | \n",
100 | " 19 | \n",
101 | "
\n",
102 | " \n",
103 | " 1 | \n",
104 | " 2 | \n",
105 | " 8 | \n",
106 | " 14 | \n",
107 | " 20 | \n",
108 | "
\n",
109 | " \n",
110 | " 2 | \n",
111 | " 3 | \n",
112 | " 9 | \n",
113 | " 15 | \n",
114 | " 21 | \n",
115 | "
\n",
116 | " \n",
117 | " 3 | \n",
118 | " 4 | \n",
119 | " 10 | \n",
120 | " 16 | \n",
121 | " 22 | \n",
122 | "
\n",
123 | " \n",
124 | " 4 | \n",
125 | " 5 | \n",
126 | " 11 | \n",
127 | " 17 | \n",
128 | " 23 | \n",
129 | "
\n",
130 | " \n",
131 | " 5 | \n",
132 | " sudh | \n",
133 | " 12 | \n",
134 | " 18 | \n",
135 | " 24 | \n",
136 | "
\n",
137 | " \n",
138 | "
\n",
139 | "
"
140 | ],
141 | "text/plain": [
142 | " key1 key2 key3 key4\n",
143 | "0 1 7 13 19\n",
144 | "1 2 8 14 20\n",
145 | "2 3 9 15 21\n",
146 | "3 4 10 16 22\n",
147 | "4 5 11 17 23\n",
148 | "5 sudh 12 18 24"
149 | ]
150 | },
151 | "execution_count": 7,
152 | "metadata": {},
153 | "output_type": "execute_result"
154 | }
155 | ],
156 | "source": [
157 | "df1"
158 | ]
159 | },
160 | {
161 | "cell_type": "code",
162 | "execution_count": 8,
163 | "id": "afbc9a05-3ce2-484d-8287-8ce28a21cd4e",
164 | "metadata": {},
165 | "outputs": [
166 | {
167 | "data": {
168 | "text/html": [
169 | "\n",
170 | "\n",
183 | "
\n",
184 | " \n",
185 | " \n",
186 | " | \n",
187 | " key1 | \n",
188 | " key2 | \n",
189 | " key3 | \n",
190 | " key4 | \n",
191 | "
\n",
192 | " \n",
193 | " \n",
194 | " \n",
195 | " 0 | \n",
196 | " 1 | \n",
197 | " 7 | \n",
198 | " 13 | \n",
199 | " 19 | \n",
200 | "
\n",
201 | " \n",
202 | " 1 | \n",
203 | " 2 | \n",
204 | " 8 | \n",
205 | " 14 | \n",
206 | " 20 | \n",
207 | "
\n",
208 | " \n",
209 | " 2 | \n",
210 | " 3 | \n",
211 | " kumar | \n",
212 | " 15 | \n",
213 | " 21 | \n",
214 | "
\n",
215 | " \n",
216 | " 3 | \n",
217 | " 4 | \n",
218 | " 10 | \n",
219 | " 16 | \n",
220 | " ineuron | \n",
221 | "
\n",
222 | " \n",
223 | " 4 | \n",
224 | " 5 | \n",
225 | " 11 | \n",
226 | " 17 | \n",
227 | " pwskills | \n",
228 | "
\n",
229 | " \n",
230 | " 5 | \n",
231 | " sudh | \n",
232 | " 12 | \n",
233 | " 18 | \n",
234 | " 24 | \n",
235 | "
\n",
236 | " \n",
237 | "
\n",
238 | "
"
239 | ],
240 | "text/plain": [
241 | " key1 key2 key3 key4\n",
242 | "0 1 7 13 19\n",
243 | "1 2 8 14 20\n",
244 | "2 3 kumar 15 21\n",
245 | "3 4 10 16 ineuron\n",
246 | "4 5 11 17 pwskills\n",
247 | "5 sudh 12 18 24"
248 | ]
249 | },
250 | "execution_count": 8,
251 | "metadata": {},
252 | "output_type": "execute_result"
253 | }
254 | ],
255 | "source": [
256 | "df2"
257 | ]
258 | },
259 | {
260 | "cell_type": "code",
261 | "execution_count": 9,
262 | "id": "6bd5d2bc-99ee-4f10-ab60-b4f3e3e35d4d",
263 | "metadata": {},
264 | "outputs": [
265 | {
266 | "name": "stderr",
267 | "output_type": "stream",
268 | "text": [
269 | "/tmp/ipykernel_1400/1864705398.py:1: FutureWarning: In a future version, the Index constructor will not infer numeric dtypes when passed object-dtype sequences (matching Series behavior)\n",
270 | " pd.merge(df1,df2,how= 'outer',on= ['key4','key1'])\n"
271 | ]
272 | },
273 | {
274 | "data": {
275 | "text/html": [
276 | "\n",
277 | "\n",
290 | "
\n",
291 | " \n",
292 | " \n",
293 | " | \n",
294 | " key1 | \n",
295 | " key2_x | \n",
296 | " key3_x | \n",
297 | " key4 | \n",
298 | " key2_y | \n",
299 | " key3_y | \n",
300 | "
\n",
301 | " \n",
302 | " \n",
303 | " \n",
304 | " 0 | \n",
305 | " 1 | \n",
306 | " 7.0 | \n",
307 | " 13.0 | \n",
308 | " 19.0 | \n",
309 | " 7 | \n",
310 | " 13.0 | \n",
311 | "
\n",
312 | " \n",
313 | " 1 | \n",
314 | " 2 | \n",
315 | " 8.0 | \n",
316 | " 14.0 | \n",
317 | " 20.0 | \n",
318 | " 8 | \n",
319 | " 14.0 | \n",
320 | "
\n",
321 | " \n",
322 | " 2 | \n",
323 | " 3 | \n",
324 | " 9.0 | \n",
325 | " 15.0 | \n",
326 | " 21.0 | \n",
327 | " kumar | \n",
328 | " 15.0 | \n",
329 | "
\n",
330 | " \n",
331 | " 3 | \n",
332 | " 4 | \n",
333 | " 10.0 | \n",
334 | " 16.0 | \n",
335 | " 22.0 | \n",
336 | " NaN | \n",
337 | " NaN | \n",
338 | "
\n",
339 | " \n",
340 | " 4 | \n",
341 | " 5 | \n",
342 | " 11.0 | \n",
343 | " 17.0 | \n",
344 | " 23.0 | \n",
345 | " NaN | \n",
346 | " NaN | \n",
347 | "
\n",
348 | " \n",
349 | " 5 | \n",
350 | " sudh | \n",
351 | " 12.0 | \n",
352 | " 18.0 | \n",
353 | " 24.0 | \n",
354 | " 12 | \n",
355 | " 18.0 | \n",
356 | "
\n",
357 | " \n",
358 | " 6 | \n",
359 | " 4 | \n",
360 | " NaN | \n",
361 | " NaN | \n",
362 | " ineuron | \n",
363 | " 10 | \n",
364 | " 16.0 | \n",
365 | "
\n",
366 | " \n",
367 | " 7 | \n",
368 | " 5 | \n",
369 | " NaN | \n",
370 | " NaN | \n",
371 | " pwskills | \n",
372 | " 11 | \n",
373 | " 17.0 | \n",
374 | "
\n",
375 | " \n",
376 | "
\n",
377 | "
"
378 | ],
379 | "text/plain": [
380 | " key1 key2_x key3_x key4 key2_y key3_y\n",
381 | "0 1 7.0 13.0 19.0 7 13.0\n",
382 | "1 2 8.0 14.0 20.0 8 14.0\n",
383 | "2 3 9.0 15.0 21.0 kumar 15.0\n",
384 | "3 4 10.0 16.0 22.0 NaN NaN\n",
385 | "4 5 11.0 17.0 23.0 NaN NaN\n",
386 | "5 sudh 12.0 18.0 24.0 12 18.0\n",
387 | "6 4 NaN NaN ineuron 10 16.0\n",
388 | "7 5 NaN NaN pwskills 11 17.0"
389 | ]
390 | },
391 | "execution_count": 9,
392 | "metadata": {},
393 | "output_type": "execute_result"
394 | }
395 | ],
396 | "source": [
397 | "pd.merge(df1,df2,how= 'outer',on= ['key4','key1'])"
398 | ]
399 | },
400 | {
401 | "cell_type": "code",
402 | "execution_count": 10,
403 | "id": "1a22191e-8b0c-40f7-97c7-48cefb5d7f60",
404 | "metadata": {},
405 | "outputs": [
406 | {
407 | "data": {
408 | "text/html": [
409 | "\n",
410 | "\n",
423 | "
\n",
424 | " \n",
425 | " \n",
426 | " | \n",
427 | " key1_x | \n",
428 | " key2_x | \n",
429 | " key3_x | \n",
430 | " key4 | \n",
431 | " key1_y | \n",
432 | " key2_y | \n",
433 | " key3_y | \n",
434 | "
\n",
435 | " \n",
436 | " \n",
437 | " \n",
438 | " 0 | \n",
439 | " 1 | \n",
440 | " 7 | \n",
441 | " 13 | \n",
442 | " 19 | \n",
443 | " 1 | \n",
444 | " 7 | \n",
445 | " 13.0 | \n",
446 | "
\n",
447 | " \n",
448 | " 1 | \n",
449 | " 2 | \n",
450 | " 8 | \n",
451 | " 14 | \n",
452 | " 20 | \n",
453 | " 2 | \n",
454 | " 8 | \n",
455 | " 14.0 | \n",
456 | "
\n",
457 | " \n",
458 | " 2 | \n",
459 | " 3 | \n",
460 | " 9 | \n",
461 | " 15 | \n",
462 | " 21 | \n",
463 | " 3 | \n",
464 | " kumar | \n",
465 | " 15.0 | \n",
466 | "
\n",
467 | " \n",
468 | " 3 | \n",
469 | " 4 | \n",
470 | " 10 | \n",
471 | " 16 | \n",
472 | " 22 | \n",
473 | " NaN | \n",
474 | " NaN | \n",
475 | " NaN | \n",
476 | "
\n",
477 | " \n",
478 | " 4 | \n",
479 | " 5 | \n",
480 | " 11 | \n",
481 | " 17 | \n",
482 | " 23 | \n",
483 | " NaN | \n",
484 | " NaN | \n",
485 | " NaN | \n",
486 | "
\n",
487 | " \n",
488 | " 5 | \n",
489 | " sudh | \n",
490 | " 12 | \n",
491 | " 18 | \n",
492 | " 24 | \n",
493 | " sudh | \n",
494 | " 12 | \n",
495 | " 18.0 | \n",
496 | "
\n",
497 | " \n",
498 | "
\n",
499 | "
"
500 | ],
501 | "text/plain": [
502 | " key1_x key2_x key3_x key4 key1_y key2_y key3_y\n",
503 | "0 1 7 13 19 1 7 13.0\n",
504 | "1 2 8 14 20 2 8 14.0\n",
505 | "2 3 9 15 21 3 kumar 15.0\n",
506 | "3 4 10 16 22 NaN NaN NaN\n",
507 | "4 5 11 17 23 NaN NaN NaN\n",
508 | "5 sudh 12 18 24 sudh 12 18.0"
509 | ]
510 | },
511 | "execution_count": 10,
512 | "metadata": {},
513 | "output_type": "execute_result"
514 | }
515 | ],
516 | "source": [
517 | "pd.merge(df1,df2,how= 'left',on= 'key4')"
518 | ]
519 | },
520 | {
521 | "cell_type": "code",
522 | "execution_count": 11,
523 | "id": "f588bc63-cf3d-4b9c-9a85-723a9ae9662d",
524 | "metadata": {},
525 | "outputs": [
526 | {
527 | "data": {
528 | "text/html": [
529 | "\n",
530 | "\n",
543 | "
\n",
544 | " \n",
545 | " \n",
546 | " | \n",
547 | " key1_x | \n",
548 | " key2_x | \n",
549 | " key3_x | \n",
550 | " key4 | \n",
551 | " key1_y | \n",
552 | " key2_y | \n",
553 | " key3_y | \n",
554 | "
\n",
555 | " \n",
556 | " \n",
557 | " \n",
558 | " 0 | \n",
559 | " 1 | \n",
560 | " 7 | \n",
561 | " 13 | \n",
562 | " 19 | \n",
563 | " 1 | \n",
564 | " 7 | \n",
565 | " 13 | \n",
566 | "
\n",
567 | " \n",
568 | " 1 | \n",
569 | " 2 | \n",
570 | " 8 | \n",
571 | " 14 | \n",
572 | " 20 | \n",
573 | " 2 | \n",
574 | " 8 | \n",
575 | " 14 | \n",
576 | "
\n",
577 | " \n",
578 | " 2 | \n",
579 | " 3 | \n",
580 | " 9 | \n",
581 | " 15 | \n",
582 | " 21 | \n",
583 | " 3 | \n",
584 | " kumar | \n",
585 | " 15 | \n",
586 | "
\n",
587 | " \n",
588 | " 3 | \n",
589 | " sudh | \n",
590 | " 12 | \n",
591 | " 18 | \n",
592 | " 24 | \n",
593 | " sudh | \n",
594 | " 12 | \n",
595 | " 18 | \n",
596 | "
\n",
597 | " \n",
598 | "
\n",
599 | "
"
600 | ],
601 | "text/plain": [
602 | " key1_x key2_x key3_x key4 key1_y key2_y key3_y\n",
603 | "0 1 7 13 19 1 7 13\n",
604 | "1 2 8 14 20 2 8 14\n",
605 | "2 3 9 15 21 3 kumar 15\n",
606 | "3 sudh 12 18 24 sudh 12 18"
607 | ]
608 | },
609 | "execution_count": 11,
610 | "metadata": {},
611 | "output_type": "execute_result"
612 | }
613 | ],
614 | "source": [
615 | "pd.merge(df1,df2,how= 'inner',on= 'key4')"
616 | ]
617 | },
618 | {
619 | "cell_type": "code",
620 | "execution_count": 12,
621 | "id": "766ab323-a189-4641-a961-514f317cc568",
622 | "metadata": {},
623 | "outputs": [
624 | {
625 | "data": {
626 | "text/html": [
627 | "\n",
628 | "\n",
641 | "
\n",
642 | " \n",
643 | " \n",
644 | " | \n",
645 | " key1 | \n",
646 | " key2_x | \n",
647 | " key3_x | \n",
648 | " key4_x | \n",
649 | " key2_y | \n",
650 | " key3_y | \n",
651 | " key4_y | \n",
652 | "
\n",
653 | " \n",
654 | " \n",
655 | " \n",
656 | " 0 | \n",
657 | " 1 | \n",
658 | " 7 | \n",
659 | " 13 | \n",
660 | " 19 | \n",
661 | " 7 | \n",
662 | " 13 | \n",
663 | " 19 | \n",
664 | "
\n",
665 | " \n",
666 | " 1 | \n",
667 | " 2 | \n",
668 | " 8 | \n",
669 | " 14 | \n",
670 | " 20 | \n",
671 | " 8 | \n",
672 | " 14 | \n",
673 | " 20 | \n",
674 | "
\n",
675 | " \n",
676 | " 2 | \n",
677 | " 3 | \n",
678 | " 9 | \n",
679 | " 15 | \n",
680 | " 21 | \n",
681 | " kumar | \n",
682 | " 15 | \n",
683 | " 21 | \n",
684 | "
\n",
685 | " \n",
686 | " 3 | \n",
687 | " 4 | \n",
688 | " 10 | \n",
689 | " 16 | \n",
690 | " 22 | \n",
691 | " 10 | \n",
692 | " 16 | \n",
693 | " ineuron | \n",
694 | "
\n",
695 | " \n",
696 | " 4 | \n",
697 | " 5 | \n",
698 | " 11 | \n",
699 | " 17 | \n",
700 | " 23 | \n",
701 | " 11 | \n",
702 | " 17 | \n",
703 | " pwskills | \n",
704 | "
\n",
705 | " \n",
706 | " 5 | \n",
707 | " sudh | \n",
708 | " 12 | \n",
709 | " 18 | \n",
710 | " 24 | \n",
711 | " 12 | \n",
712 | " 18 | \n",
713 | " 24 | \n",
714 | "
\n",
715 | " \n",
716 | "
\n",
717 | "
"
718 | ],
719 | "text/plain": [
720 | " key1 key2_x key3_x key4_x key2_y key3_y key4_y\n",
721 | "0 1 7 13 19 7 13 19\n",
722 | "1 2 8 14 20 8 14 20\n",
723 | "2 3 9 15 21 kumar 15 21\n",
724 | "3 4 10 16 22 10 16 ineuron\n",
725 | "4 5 11 17 23 11 17 pwskills\n",
726 | "5 sudh 12 18 24 12 18 24"
727 | ]
728 | },
729 | "execution_count": 12,
730 | "metadata": {},
731 | "output_type": "execute_result"
732 | }
733 | ],
734 | "source": [
735 | "pd.merge(df1,df2,how= 'inner',on= 'key1')"
736 | ]
737 | },
738 | {
739 | "cell_type": "code",
740 | "execution_count": 13,
741 | "id": "7c088acf-ff3b-45ee-8ad9-1d4bde39bb8e",
742 | "metadata": {},
743 | "outputs": [
744 | {
745 | "data": {
746 | "text/html": [
747 | "\n",
748 | "\n",
761 | "
\n",
762 | " \n",
763 | " \n",
764 | " | \n",
765 | " key1 | \n",
766 | " key2 | \n",
767 | " key3 | \n",
768 | " key4 | \n",
769 | "
\n",
770 | " \n",
771 | " \n",
772 | " \n",
773 | " 0 | \n",
774 | " 1 | \n",
775 | " 7 | \n",
776 | " 13 | \n",
777 | " 19 | \n",
778 | "
\n",
779 | " \n",
780 | " 1 | \n",
781 | " 2 | \n",
782 | " 8 | \n",
783 | " 14 | \n",
784 | " 20 | \n",
785 | "
\n",
786 | " \n",
787 | " 2 | \n",
788 | " sudh | \n",
789 | " 12 | \n",
790 | " 18 | \n",
791 | " 24 | \n",
792 | "
\n",
793 | " \n",
794 | "
\n",
795 | "
"
796 | ],
797 | "text/plain": [
798 | " key1 key2 key3 key4\n",
799 | "0 1 7 13 19\n",
800 | "1 2 8 14 20\n",
801 | "2 sudh 12 18 24"
802 | ]
803 | },
804 | "execution_count": 13,
805 | "metadata": {},
806 | "output_type": "execute_result"
807 | }
808 | ],
809 | "source": [
810 | "pd.merge(df1,df2)"
811 | ]
812 | },
813 | {
814 | "cell_type": "code",
815 | "execution_count": 14,
816 | "id": "bad995e3-4559-48a0-a173-eac5322e071e",
817 | "metadata": {},
818 | "outputs": [],
819 | "source": [
820 | "d11 = {'a':[1,2,3,4,5,\"sudh\"],\n",
821 | " 'b' : [7,8,9,10,11,12],\n",
822 | " 'c':[13,14,15,16,17,18],\n",
823 | " 'd':[19,20,21,22,23,24]\n",
824 | "}"
825 | ]
826 | },
827 | {
828 | "cell_type": "code",
829 | "execution_count": 15,
830 | "id": "2b066ac8-f853-454f-b557-bd7f1ab9734e",
831 | "metadata": {},
832 | "outputs": [],
833 | "source": [
834 | "d12 = {'key1':[1,2,3,4,5,\"sudh\"],\n",
835 | " 'key2' : [7,8,\"kumar\",10,11,12],\n",
836 | " 'key3':[13,14,15,16,17,18],\n",
837 | " 'key4':[19,20,21,\"ineuron\",\"pwskills\",24]\n",
838 | "}"
839 | ]
840 | },
841 | {
842 | "cell_type": "code",
843 | "execution_count": 16,
844 | "id": "81b144a3-8f41-469b-94a6-144a117a42d6",
845 | "metadata": {},
846 | "outputs": [],
847 | "source": [
848 | "df11 = pd.DataFrame(d11)"
849 | ]
850 | },
851 | {
852 | "cell_type": "code",
853 | "execution_count": 17,
854 | "id": "9379405d-41cb-4aae-a415-f3c1aab7d4b4",
855 | "metadata": {},
856 | "outputs": [
857 | {
858 | "data": {
859 | "text/html": [
860 | "\n",
861 | "\n",
874 | "
\n",
875 | " \n",
876 | " \n",
877 | " | \n",
878 | " a | \n",
879 | " b | \n",
880 | " c | \n",
881 | " d | \n",
882 | "
\n",
883 | " \n",
884 | " \n",
885 | " \n",
886 | " 0 | \n",
887 | " 1 | \n",
888 | " 7 | \n",
889 | " 13 | \n",
890 | " 19 | \n",
891 | "
\n",
892 | " \n",
893 | " 1 | \n",
894 | " 2 | \n",
895 | " 8 | \n",
896 | " 14 | \n",
897 | " 20 | \n",
898 | "
\n",
899 | " \n",
900 | " 2 | \n",
901 | " 3 | \n",
902 | " 9 | \n",
903 | " 15 | \n",
904 | " 21 | \n",
905 | "
\n",
906 | " \n",
907 | " 3 | \n",
908 | " 4 | \n",
909 | " 10 | \n",
910 | " 16 | \n",
911 | " 22 | \n",
912 | "
\n",
913 | " \n",
914 | " 4 | \n",
915 | " 5 | \n",
916 | " 11 | \n",
917 | " 17 | \n",
918 | " 23 | \n",
919 | "
\n",
920 | " \n",
921 | " 5 | \n",
922 | " sudh | \n",
923 | " 12 | \n",
924 | " 18 | \n",
925 | " 24 | \n",
926 | "
\n",
927 | " \n",
928 | "
\n",
929 | "
"
930 | ],
931 | "text/plain": [
932 | " a b c d\n",
933 | "0 1 7 13 19\n",
934 | "1 2 8 14 20\n",
935 | "2 3 9 15 21\n",
936 | "3 4 10 16 22\n",
937 | "4 5 11 17 23\n",
938 | "5 sudh 12 18 24"
939 | ]
940 | },
941 | "execution_count": 17,
942 | "metadata": {},
943 | "output_type": "execute_result"
944 | }
945 | ],
946 | "source": [
947 | "df11"
948 | ]
949 | },
950 | {
951 | "cell_type": "code",
952 | "execution_count": 18,
953 | "id": "d7538e48-99f0-4d71-9969-51446ca4df48",
954 | "metadata": {},
955 | "outputs": [],
956 | "source": [
957 | "df12 = pd.DataFrame(d12)"
958 | ]
959 | },
960 | {
961 | "cell_type": "code",
962 | "execution_count": 19,
963 | "id": "bb578813-d943-4a8d-a8a1-4f529513f920",
964 | "metadata": {},
965 | "outputs": [
966 | {
967 | "data": {
968 | "text/html": [
969 | "\n",
970 | "\n",
983 | "
\n",
984 | " \n",
985 | " \n",
986 | " | \n",
987 | " key1 | \n",
988 | " key2 | \n",
989 | " key3 | \n",
990 | " key4 | \n",
991 | "
\n",
992 | " \n",
993 | " \n",
994 | " \n",
995 | " 0 | \n",
996 | " 1 | \n",
997 | " 7 | \n",
998 | " 13 | \n",
999 | " 19 | \n",
1000 | "
\n",
1001 | " \n",
1002 | " 1 | \n",
1003 | " 2 | \n",
1004 | " 8 | \n",
1005 | " 14 | \n",
1006 | " 20 | \n",
1007 | "
\n",
1008 | " \n",
1009 | " 2 | \n",
1010 | " 3 | \n",
1011 | " kumar | \n",
1012 | " 15 | \n",
1013 | " 21 | \n",
1014 | "
\n",
1015 | " \n",
1016 | " 3 | \n",
1017 | " 4 | \n",
1018 | " 10 | \n",
1019 | " 16 | \n",
1020 | " ineuron | \n",
1021 | "
\n",
1022 | " \n",
1023 | " 4 | \n",
1024 | " 5 | \n",
1025 | " 11 | \n",
1026 | " 17 | \n",
1027 | " pwskills | \n",
1028 | "
\n",
1029 | " \n",
1030 | " 5 | \n",
1031 | " sudh | \n",
1032 | " 12 | \n",
1033 | " 18 | \n",
1034 | " 24 | \n",
1035 | "
\n",
1036 | " \n",
1037 | "
\n",
1038 | "
"
1039 | ],
1040 | "text/plain": [
1041 | " key1 key2 key3 key4\n",
1042 | "0 1 7 13 19\n",
1043 | "1 2 8 14 20\n",
1044 | "2 3 kumar 15 21\n",
1045 | "3 4 10 16 ineuron\n",
1046 | "4 5 11 17 pwskills\n",
1047 | "5 sudh 12 18 24"
1048 | ]
1049 | },
1050 | "execution_count": 19,
1051 | "metadata": {},
1052 | "output_type": "execute_result"
1053 | }
1054 | ],
1055 | "source": [
1056 | "df12"
1057 | ]
1058 | },
1059 | {
1060 | "cell_type": "code",
1061 | "execution_count": 20,
1062 | "id": "b19a58c6-ccb4-4cdd-8f3f-f2fcd9131408",
1063 | "metadata": {},
1064 | "outputs": [
1065 | {
1066 | "data": {
1067 | "text/html": [
1068 | "\n",
1069 | "\n",
1082 | "
\n",
1083 | " \n",
1084 | " \n",
1085 | " | \n",
1086 | " a | \n",
1087 | " b | \n",
1088 | " c | \n",
1089 | " d | \n",
1090 | " key1 | \n",
1091 | " key2 | \n",
1092 | " key3 | \n",
1093 | " key4 | \n",
1094 | "
\n",
1095 | " \n",
1096 | " \n",
1097 | " \n",
1098 | " 0 | \n",
1099 | " 1 | \n",
1100 | " 7 | \n",
1101 | " 13 | \n",
1102 | " 19 | \n",
1103 | " 1 | \n",
1104 | " 7 | \n",
1105 | " 13 | \n",
1106 | " 19 | \n",
1107 | "
\n",
1108 | " \n",
1109 | " 1 | \n",
1110 | " 2 | \n",
1111 | " 8 | \n",
1112 | " 14 | \n",
1113 | " 20 | \n",
1114 | " 2 | \n",
1115 | " 8 | \n",
1116 | " 14 | \n",
1117 | " 20 | \n",
1118 | "
\n",
1119 | " \n",
1120 | " 2 | \n",
1121 | " 3 | \n",
1122 | " 9 | \n",
1123 | " 15 | \n",
1124 | " 21 | \n",
1125 | " 3 | \n",
1126 | " kumar | \n",
1127 | " 15 | \n",
1128 | " 21 | \n",
1129 | "
\n",
1130 | " \n",
1131 | " 3 | \n",
1132 | " 4 | \n",
1133 | " 10 | \n",
1134 | " 16 | \n",
1135 | " 22 | \n",
1136 | " 4 | \n",
1137 | " 10 | \n",
1138 | " 16 | \n",
1139 | " ineuron | \n",
1140 | "
\n",
1141 | " \n",
1142 | " 4 | \n",
1143 | " 5 | \n",
1144 | " 11 | \n",
1145 | " 17 | \n",
1146 | " 23 | \n",
1147 | " 5 | \n",
1148 | " 11 | \n",
1149 | " 17 | \n",
1150 | " pwskills | \n",
1151 | "
\n",
1152 | " \n",
1153 | " 5 | \n",
1154 | " sudh | \n",
1155 | " 12 | \n",
1156 | " 18 | \n",
1157 | " 24 | \n",
1158 | " sudh | \n",
1159 | " 12 | \n",
1160 | " 18 | \n",
1161 | " 24 | \n",
1162 | "
\n",
1163 | " \n",
1164 | "
\n",
1165 | "
"
1166 | ],
1167 | "text/plain": [
1168 | " a b c d key1 key2 key3 key4\n",
1169 | "0 1 7 13 19 1 7 13 19\n",
1170 | "1 2 8 14 20 2 8 14 20\n",
1171 | "2 3 9 15 21 3 kumar 15 21\n",
1172 | "3 4 10 16 22 4 10 16 ineuron\n",
1173 | "4 5 11 17 23 5 11 17 pwskills\n",
1174 | "5 sudh 12 18 24 sudh 12 18 24"
1175 | ]
1176 | },
1177 | "execution_count": 20,
1178 | "metadata": {},
1179 | "output_type": "execute_result"
1180 | }
1181 | ],
1182 | "source": [
1183 | "pd.merge(df11, df12 , how = 'left' , left_on = 'a' , right_on='key1')"
1184 | ]
1185 | },
1186 | {
1187 | "cell_type": "code",
1188 | "execution_count": 21,
1189 | "id": "b7749074-e054-450b-ae44-f37f54f4a7a0",
1190 | "metadata": {},
1191 | "outputs": [
1192 | {
1193 | "data": {
1194 | "text/html": [
1195 | "\n",
1196 | "\n",
1209 | "
\n",
1210 | " \n",
1211 | " \n",
1212 | " | \n",
1213 | " key1 | \n",
1214 | " key2 | \n",
1215 | " key3 | \n",
1216 | " key4 | \n",
1217 | "
\n",
1218 | " \n",
1219 | " \n",
1220 | " \n",
1221 | " 0 | \n",
1222 | " 1 | \n",
1223 | " 7 | \n",
1224 | " 13 | \n",
1225 | " 19 | \n",
1226 | "
\n",
1227 | " \n",
1228 | " 1 | \n",
1229 | " 2 | \n",
1230 | " 8 | \n",
1231 | " 14 | \n",
1232 | " 20 | \n",
1233 | "
\n",
1234 | " \n",
1235 | " 2 | \n",
1236 | " 3 | \n",
1237 | " 9 | \n",
1238 | " 15 | \n",
1239 | " 21 | \n",
1240 | "
\n",
1241 | " \n",
1242 | " 3 | \n",
1243 | " 4 | \n",
1244 | " 10 | \n",
1245 | " 16 | \n",
1246 | " 22 | \n",
1247 | "
\n",
1248 | " \n",
1249 | " 4 | \n",
1250 | " 5 | \n",
1251 | " 11 | \n",
1252 | " 17 | \n",
1253 | " 23 | \n",
1254 | "
\n",
1255 | " \n",
1256 | " 5 | \n",
1257 | " sudh | \n",
1258 | " 12 | \n",
1259 | " 18 | \n",
1260 | " 24 | \n",
1261 | "
\n",
1262 | " \n",
1263 | "
\n",
1264 | "
"
1265 | ],
1266 | "text/plain": [
1267 | " key1 key2 key3 key4\n",
1268 | "0 1 7 13 19\n",
1269 | "1 2 8 14 20\n",
1270 | "2 3 9 15 21\n",
1271 | "3 4 10 16 22\n",
1272 | "4 5 11 17 23\n",
1273 | "5 sudh 12 18 24"
1274 | ]
1275 | },
1276 | "execution_count": 21,
1277 | "metadata": {},
1278 | "output_type": "execute_result"
1279 | }
1280 | ],
1281 | "source": [
1282 | "df1"
1283 | ]
1284 | },
1285 | {
1286 | "cell_type": "code",
1287 | "execution_count": 22,
1288 | "id": "4233fb06-db78-4dc7-8899-a6d2fa19e0ec",
1289 | "metadata": {},
1290 | "outputs": [
1291 | {
1292 | "data": {
1293 | "text/html": [
1294 | "\n",
1295 | "\n",
1308 | "
\n",
1309 | " \n",
1310 | " \n",
1311 | " | \n",
1312 | " key1 | \n",
1313 | " key2 | \n",
1314 | " key3 | \n",
1315 | " key4 | \n",
1316 | "
\n",
1317 | " \n",
1318 | " \n",
1319 | " \n",
1320 | " 0 | \n",
1321 | " 1 | \n",
1322 | " 7 | \n",
1323 | " 13 | \n",
1324 | " 19 | \n",
1325 | "
\n",
1326 | " \n",
1327 | " 1 | \n",
1328 | " 2 | \n",
1329 | " 8 | \n",
1330 | " 14 | \n",
1331 | " 20 | \n",
1332 | "
\n",
1333 | " \n",
1334 | " 2 | \n",
1335 | " 3 | \n",
1336 | " kumar | \n",
1337 | " 15 | \n",
1338 | " 21 | \n",
1339 | "
\n",
1340 | " \n",
1341 | " 3 | \n",
1342 | " 4 | \n",
1343 | " 10 | \n",
1344 | " 16 | \n",
1345 | " ineuron | \n",
1346 | "
\n",
1347 | " \n",
1348 | " 4 | \n",
1349 | " 5 | \n",
1350 | " 11 | \n",
1351 | " 17 | \n",
1352 | " pwskills | \n",
1353 | "
\n",
1354 | " \n",
1355 | " 5 | \n",
1356 | " sudh | \n",
1357 | " 12 | \n",
1358 | " 18 | \n",
1359 | " 24 | \n",
1360 | "
\n",
1361 | " \n",
1362 | "
\n",
1363 | "
"
1364 | ],
1365 | "text/plain": [
1366 | " key1 key2 key3 key4\n",
1367 | "0 1 7 13 19\n",
1368 | "1 2 8 14 20\n",
1369 | "2 3 kumar 15 21\n",
1370 | "3 4 10 16 ineuron\n",
1371 | "4 5 11 17 pwskills\n",
1372 | "5 sudh 12 18 24"
1373 | ]
1374 | },
1375 | "execution_count": 22,
1376 | "metadata": {},
1377 | "output_type": "execute_result"
1378 | }
1379 | ],
1380 | "source": [
1381 | "df2"
1382 | ]
1383 | },
1384 | {
1385 | "cell_type": "code",
1386 | "execution_count": 35,
1387 | "id": "095467bf-0bd4-4a2b-a170-6f8052d05ebb",
1388 | "metadata": {},
1389 | "outputs": [],
1390 | "source": [
1391 | "d10 = {'key11':[1,2,3,4,5,\"sudh\"],\n",
1392 | " 'key21' : [7,8,9,10,11,12],\n",
1393 | " 'key31':[13,14,15,16,17,18],\n",
1394 | " 'key41':[19,20,21,22,23,24]\n",
1395 | "}"
1396 | ]
1397 | },
1398 | {
1399 | "cell_type": "code",
1400 | "execution_count": 36,
1401 | "id": "e7f0f269-7009-4827-be0a-909c1dc8e8a7",
1402 | "metadata": {},
1403 | "outputs": [],
1404 | "source": [
1405 | "d20 = {'key1':[1,2,3,4,5,\"sudh\"],\n",
1406 | " 'key2' : [7,8,\"kumar\",10,11,12],\n",
1407 | " 'key3':[13,14,15,16,17,18],\n",
1408 | " 'key4':[19,20,21,\"ineuron\",\"pwskills\",24]\n",
1409 | "}"
1410 | ]
1411 | },
1412 | {
1413 | "cell_type": "code",
1414 | "execution_count": 46,
1415 | "id": "d175fbed-f677-4356-82bf-8e29be81ee05",
1416 | "metadata": {},
1417 | "outputs": [],
1418 | "source": [
1419 | "df10 = pd.DataFrame(d10 , index = [1,2,3,4,5,6])"
1420 | ]
1421 | },
1422 | {
1423 | "cell_type": "code",
1424 | "execution_count": 47,
1425 | "id": "bc675706-4ee9-486c-b92c-b362798595d2",
1426 | "metadata": {},
1427 | "outputs": [],
1428 | "source": [
1429 | "df20 = pd.DataFrame(d20, index=[1,2,3,4,5,'sudh'])"
1430 | ]
1431 | },
1432 | {
1433 | "cell_type": "code",
1434 | "execution_count": 48,
1435 | "id": "0992f4f1-09b2-488c-9620-7fdca3edc071",
1436 | "metadata": {},
1437 | "outputs": [
1438 | {
1439 | "data": {
1440 | "text/html": [
1441 | "\n",
1442 | "\n",
1455 | "
\n",
1456 | " \n",
1457 | " \n",
1458 | " | \n",
1459 | " key11 | \n",
1460 | " key21 | \n",
1461 | " key31 | \n",
1462 | " key41 | \n",
1463 | "
\n",
1464 | " \n",
1465 | " \n",
1466 | " \n",
1467 | " 1 | \n",
1468 | " 1 | \n",
1469 | " 7 | \n",
1470 | " 13 | \n",
1471 | " 19 | \n",
1472 | "
\n",
1473 | " \n",
1474 | " 2 | \n",
1475 | " 2 | \n",
1476 | " 8 | \n",
1477 | " 14 | \n",
1478 | " 20 | \n",
1479 | "
\n",
1480 | " \n",
1481 | " 3 | \n",
1482 | " 3 | \n",
1483 | " 9 | \n",
1484 | " 15 | \n",
1485 | " 21 | \n",
1486 | "
\n",
1487 | " \n",
1488 | " 4 | \n",
1489 | " 4 | \n",
1490 | " 10 | \n",
1491 | " 16 | \n",
1492 | " 22 | \n",
1493 | "
\n",
1494 | " \n",
1495 | " 5 | \n",
1496 | " 5 | \n",
1497 | " 11 | \n",
1498 | " 17 | \n",
1499 | " 23 | \n",
1500 | "
\n",
1501 | " \n",
1502 | " 6 | \n",
1503 | " sudh | \n",
1504 | " 12 | \n",
1505 | " 18 | \n",
1506 | " 24 | \n",
1507 | "
\n",
1508 | " \n",
1509 | "
\n",
1510 | "
"
1511 | ],
1512 | "text/plain": [
1513 | " key11 key21 key31 key41\n",
1514 | "1 1 7 13 19\n",
1515 | "2 2 8 14 20\n",
1516 | "3 3 9 15 21\n",
1517 | "4 4 10 16 22\n",
1518 | "5 5 11 17 23\n",
1519 | "6 sudh 12 18 24"
1520 | ]
1521 | },
1522 | "execution_count": 48,
1523 | "metadata": {},
1524 | "output_type": "execute_result"
1525 | }
1526 | ],
1527 | "source": [
1528 | "df10"
1529 | ]
1530 | },
1531 | {
1532 | "cell_type": "code",
1533 | "execution_count": 49,
1534 | "id": "5b61d81a-cdd1-4562-ab68-62bf2b722349",
1535 | "metadata": {},
1536 | "outputs": [
1537 | {
1538 | "data": {
1539 | "text/html": [
1540 | "\n",
1541 | "\n",
1554 | "
\n",
1555 | " \n",
1556 | " \n",
1557 | " | \n",
1558 | " key1 | \n",
1559 | " key2 | \n",
1560 | " key3 | \n",
1561 | " key4 | \n",
1562 | "
\n",
1563 | " \n",
1564 | " \n",
1565 | " \n",
1566 | " 1 | \n",
1567 | " 1 | \n",
1568 | " 7 | \n",
1569 | " 13 | \n",
1570 | " 19 | \n",
1571 | "
\n",
1572 | " \n",
1573 | " 2 | \n",
1574 | " 2 | \n",
1575 | " 8 | \n",
1576 | " 14 | \n",
1577 | " 20 | \n",
1578 | "
\n",
1579 | " \n",
1580 | " 3 | \n",
1581 | " 3 | \n",
1582 | " kumar | \n",
1583 | " 15 | \n",
1584 | " 21 | \n",
1585 | "
\n",
1586 | " \n",
1587 | " 4 | \n",
1588 | " 4 | \n",
1589 | " 10 | \n",
1590 | " 16 | \n",
1591 | " ineuron | \n",
1592 | "
\n",
1593 | " \n",
1594 | " 5 | \n",
1595 | " 5 | \n",
1596 | " 11 | \n",
1597 | " 17 | \n",
1598 | " pwskills | \n",
1599 | "
\n",
1600 | " \n",
1601 | " sudh | \n",
1602 | " sudh | \n",
1603 | " 12 | \n",
1604 | " 18 | \n",
1605 | " 24 | \n",
1606 | "
\n",
1607 | " \n",
1608 | "
\n",
1609 | "
"
1610 | ],
1611 | "text/plain": [
1612 | " key1 key2 key3 key4\n",
1613 | "1 1 7 13 19\n",
1614 | "2 2 8 14 20\n",
1615 | "3 3 kumar 15 21\n",
1616 | "4 4 10 16 ineuron\n",
1617 | "5 5 11 17 pwskills\n",
1618 | "sudh sudh 12 18 24"
1619 | ]
1620 | },
1621 | "execution_count": 49,
1622 | "metadata": {},
1623 | "output_type": "execute_result"
1624 | }
1625 | ],
1626 | "source": [
1627 | "df20"
1628 | ]
1629 | },
1630 | {
1631 | "cell_type": "code",
1632 | "execution_count": 50,
1633 | "id": "9bdca038-b30a-479f-a68e-e0f0b04480f2",
1634 | "metadata": {},
1635 | "outputs": [
1636 | {
1637 | "data": {
1638 | "text/html": [
1639 | "\n",
1640 | "\n",
1653 | "
\n",
1654 | " \n",
1655 | " \n",
1656 | " | \n",
1657 | " key11 | \n",
1658 | " key21 | \n",
1659 | " key31 | \n",
1660 | " key41 | \n",
1661 | " key1 | \n",
1662 | " key2 | \n",
1663 | " key3 | \n",
1664 | " key4 | \n",
1665 | "
\n",
1666 | " \n",
1667 | " \n",
1668 | " \n",
1669 | " 1 | \n",
1670 | " 1 | \n",
1671 | " 7.0 | \n",
1672 | " 13.0 | \n",
1673 | " 19.0 | \n",
1674 | " 1 | \n",
1675 | " 7 | \n",
1676 | " 13 | \n",
1677 | " 19 | \n",
1678 | "
\n",
1679 | " \n",
1680 | " 2 | \n",
1681 | " 2 | \n",
1682 | " 8.0 | \n",
1683 | " 14.0 | \n",
1684 | " 20.0 | \n",
1685 | " 2 | \n",
1686 | " 8 | \n",
1687 | " 14 | \n",
1688 | " 20 | \n",
1689 | "
\n",
1690 | " \n",
1691 | " 3 | \n",
1692 | " 3 | \n",
1693 | " 9.0 | \n",
1694 | " 15.0 | \n",
1695 | " 21.0 | \n",
1696 | " 3 | \n",
1697 | " kumar | \n",
1698 | " 15 | \n",
1699 | " 21 | \n",
1700 | "
\n",
1701 | " \n",
1702 | " 4 | \n",
1703 | " 4 | \n",
1704 | " 10.0 | \n",
1705 | " 16.0 | \n",
1706 | " 22.0 | \n",
1707 | " 4 | \n",
1708 | " 10 | \n",
1709 | " 16 | \n",
1710 | " ineuron | \n",
1711 | "
\n",
1712 | " \n",
1713 | " 5 | \n",
1714 | " 5 | \n",
1715 | " 11.0 | \n",
1716 | " 17.0 | \n",
1717 | " 23.0 | \n",
1718 | " 5 | \n",
1719 | " 11 | \n",
1720 | " 17 | \n",
1721 | " pwskills | \n",
1722 | "
\n",
1723 | " \n",
1724 | " sudh | \n",
1725 | " NaN | \n",
1726 | " NaN | \n",
1727 | " NaN | \n",
1728 | " NaN | \n",
1729 | " sudh | \n",
1730 | " 12 | \n",
1731 | " 18 | \n",
1732 | " 24 | \n",
1733 | "
\n",
1734 | " \n",
1735 | "
\n",
1736 | "
"
1737 | ],
1738 | "text/plain": [
1739 | " key11 key21 key31 key41 key1 key2 key3 key4\n",
1740 | "1 1 7.0 13.0 19.0 1 7 13 19\n",
1741 | "2 2 8.0 14.0 20.0 2 8 14 20\n",
1742 | "3 3 9.0 15.0 21.0 3 kumar 15 21\n",
1743 | "4 4 10.0 16.0 22.0 4 10 16 ineuron\n",
1744 | "5 5 11.0 17.0 23.0 5 11 17 pwskills\n",
1745 | "sudh NaN NaN NaN NaN sudh 12 18 24"
1746 | ]
1747 | },
1748 | "execution_count": 50,
1749 | "metadata": {},
1750 | "output_type": "execute_result"
1751 | }
1752 | ],
1753 | "source": [
1754 | "df10.join(df20,how = 'right')"
1755 | ]
1756 | },
1757 | {
1758 | "cell_type": "code",
1759 | "execution_count": 51,
1760 | "id": "d95eab7a-2a8a-45f8-a355-2d8ec6f01d5d",
1761 | "metadata": {},
1762 | "outputs": [
1763 | {
1764 | "data": {
1765 | "text/html": [
1766 | "\n",
1767 | "\n",
1780 | "
\n",
1781 | " \n",
1782 | " \n",
1783 | " | \n",
1784 | " key11 | \n",
1785 | " key21 | \n",
1786 | " key31 | \n",
1787 | " key41 | \n",
1788 | " key1 | \n",
1789 | " key2 | \n",
1790 | " key3 | \n",
1791 | " key4 | \n",
1792 | "
\n",
1793 | " \n",
1794 | " \n",
1795 | " \n",
1796 | " 1 | \n",
1797 | " 1 | \n",
1798 | " 7 | \n",
1799 | " 13 | \n",
1800 | " 19 | \n",
1801 | " 1 | \n",
1802 | " 7 | \n",
1803 | " 13.0 | \n",
1804 | " 19 | \n",
1805 | "
\n",
1806 | " \n",
1807 | " 2 | \n",
1808 | " 2 | \n",
1809 | " 8 | \n",
1810 | " 14 | \n",
1811 | " 20 | \n",
1812 | " 2 | \n",
1813 | " 8 | \n",
1814 | " 14.0 | \n",
1815 | " 20 | \n",
1816 | "
\n",
1817 | " \n",
1818 | " 3 | \n",
1819 | " 3 | \n",
1820 | " 9 | \n",
1821 | " 15 | \n",
1822 | " 21 | \n",
1823 | " 3 | \n",
1824 | " kumar | \n",
1825 | " 15.0 | \n",
1826 | " 21 | \n",
1827 | "
\n",
1828 | " \n",
1829 | " 4 | \n",
1830 | " 4 | \n",
1831 | " 10 | \n",
1832 | " 16 | \n",
1833 | " 22 | \n",
1834 | " 4 | \n",
1835 | " 10 | \n",
1836 | " 16.0 | \n",
1837 | " ineuron | \n",
1838 | "
\n",
1839 | " \n",
1840 | " 5 | \n",
1841 | " 5 | \n",
1842 | " 11 | \n",
1843 | " 17 | \n",
1844 | " 23 | \n",
1845 | " 5 | \n",
1846 | " 11 | \n",
1847 | " 17.0 | \n",
1848 | " pwskills | \n",
1849 | "
\n",
1850 | " \n",
1851 | " 6 | \n",
1852 | " sudh | \n",
1853 | " 12 | \n",
1854 | " 18 | \n",
1855 | " 24 | \n",
1856 | " NaN | \n",
1857 | " NaN | \n",
1858 | " NaN | \n",
1859 | " NaN | \n",
1860 | "
\n",
1861 | " \n",
1862 | "
\n",
1863 | "
"
1864 | ],
1865 | "text/plain": [
1866 | " key11 key21 key31 key41 key1 key2 key3 key4\n",
1867 | "1 1 7 13 19 1 7 13.0 19\n",
1868 | "2 2 8 14 20 2 8 14.0 20\n",
1869 | "3 3 9 15 21 3 kumar 15.0 21\n",
1870 | "4 4 10 16 22 4 10 16.0 ineuron\n",
1871 | "5 5 11 17 23 5 11 17.0 pwskills\n",
1872 | "6 sudh 12 18 24 NaN NaN NaN NaN"
1873 | ]
1874 | },
1875 | "execution_count": 51,
1876 | "metadata": {},
1877 | "output_type": "execute_result"
1878 | }
1879 | ],
1880 | "source": [
1881 | "df10.join(df20)"
1882 | ]
1883 | },
1884 | {
1885 | "cell_type": "code",
1886 | "execution_count": 52,
1887 | "id": "203ef879-efd1-48f7-a82b-1b603f7cc43d",
1888 | "metadata": {},
1889 | "outputs": [
1890 | {
1891 | "data": {
1892 | "text/html": [
1893 | "\n",
1894 | "\n",
1907 | "
\n",
1908 | " \n",
1909 | " \n",
1910 | " | \n",
1911 | " key11 | \n",
1912 | " key21 | \n",
1913 | " key31 | \n",
1914 | " key41 | \n",
1915 | " key1 | \n",
1916 | " key2 | \n",
1917 | " key3 | \n",
1918 | " key4 | \n",
1919 | "
\n",
1920 | " \n",
1921 | " \n",
1922 | " \n",
1923 | " 1 | \n",
1924 | " 1 | \n",
1925 | " 7.0 | \n",
1926 | " 13.0 | \n",
1927 | " 19.0 | \n",
1928 | " 1 | \n",
1929 | " 7 | \n",
1930 | " 13.0 | \n",
1931 | " 19 | \n",
1932 | "
\n",
1933 | " \n",
1934 | " 2 | \n",
1935 | " 2 | \n",
1936 | " 8.0 | \n",
1937 | " 14.0 | \n",
1938 | " 20.0 | \n",
1939 | " 2 | \n",
1940 | " 8 | \n",
1941 | " 14.0 | \n",
1942 | " 20 | \n",
1943 | "
\n",
1944 | " \n",
1945 | " 3 | \n",
1946 | " 3 | \n",
1947 | " 9.0 | \n",
1948 | " 15.0 | \n",
1949 | " 21.0 | \n",
1950 | " 3 | \n",
1951 | " kumar | \n",
1952 | " 15.0 | \n",
1953 | " 21 | \n",
1954 | "
\n",
1955 | " \n",
1956 | " 4 | \n",
1957 | " 4 | \n",
1958 | " 10.0 | \n",
1959 | " 16.0 | \n",
1960 | " 22.0 | \n",
1961 | " 4 | \n",
1962 | " 10 | \n",
1963 | " 16.0 | \n",
1964 | " ineuron | \n",
1965 | "
\n",
1966 | " \n",
1967 | " 5 | \n",
1968 | " 5 | \n",
1969 | " 11.0 | \n",
1970 | " 17.0 | \n",
1971 | " 23.0 | \n",
1972 | " 5 | \n",
1973 | " 11 | \n",
1974 | " 17.0 | \n",
1975 | " pwskills | \n",
1976 | "
\n",
1977 | " \n",
1978 | " 6 | \n",
1979 | " sudh | \n",
1980 | " 12.0 | \n",
1981 | " 18.0 | \n",
1982 | " 24.0 | \n",
1983 | " NaN | \n",
1984 | " NaN | \n",
1985 | " NaN | \n",
1986 | " NaN | \n",
1987 | "
\n",
1988 | " \n",
1989 | " sudh | \n",
1990 | " NaN | \n",
1991 | " NaN | \n",
1992 | " NaN | \n",
1993 | " NaN | \n",
1994 | " sudh | \n",
1995 | " 12 | \n",
1996 | " 18.0 | \n",
1997 | " 24 | \n",
1998 | "
\n",
1999 | " \n",
2000 | "
\n",
2001 | "
"
2002 | ],
2003 | "text/plain": [
2004 | " key11 key21 key31 key41 key1 key2 key3 key4\n",
2005 | "1 1 7.0 13.0 19.0 1 7 13.0 19\n",
2006 | "2 2 8.0 14.0 20.0 2 8 14.0 20\n",
2007 | "3 3 9.0 15.0 21.0 3 kumar 15.0 21\n",
2008 | "4 4 10.0 16.0 22.0 4 10 16.0 ineuron\n",
2009 | "5 5 11.0 17.0 23.0 5 11 17.0 pwskills\n",
2010 | "6 sudh 12.0 18.0 24.0 NaN NaN NaN NaN\n",
2011 | "sudh NaN NaN NaN NaN sudh 12 18.0 24"
2012 | ]
2013 | },
2014 | "execution_count": 52,
2015 | "metadata": {},
2016 | "output_type": "execute_result"
2017 | }
2018 | ],
2019 | "source": [
2020 | "df10.join(df20 , how = 'outer')"
2021 | ]
2022 | },
2023 | {
2024 | "cell_type": "code",
2025 | "execution_count": 53,
2026 | "id": "f64b7105-48f5-47b2-9362-1e4b231207ed",
2027 | "metadata": {},
2028 | "outputs": [
2029 | {
2030 | "data": {
2031 | "text/html": [
2032 | "\n",
2033 | "\n",
2046 | "
\n",
2047 | " \n",
2048 | " \n",
2049 | " | \n",
2050 | " key11 | \n",
2051 | " key21 | \n",
2052 | " key31 | \n",
2053 | " key41 | \n",
2054 | " key1 | \n",
2055 | " key2 | \n",
2056 | " key3 | \n",
2057 | " key4 | \n",
2058 | "
\n",
2059 | " \n",
2060 | " \n",
2061 | " \n",
2062 | " 1 | \n",
2063 | " 1 | \n",
2064 | " 7 | \n",
2065 | " 13 | \n",
2066 | " 19 | \n",
2067 | " 1 | \n",
2068 | " 7 | \n",
2069 | " 13 | \n",
2070 | " 19 | \n",
2071 | "
\n",
2072 | " \n",
2073 | " 2 | \n",
2074 | " 2 | \n",
2075 | " 8 | \n",
2076 | " 14 | \n",
2077 | " 20 | \n",
2078 | " 2 | \n",
2079 | " 8 | \n",
2080 | " 14 | \n",
2081 | " 20 | \n",
2082 | "
\n",
2083 | " \n",
2084 | " 3 | \n",
2085 | " 3 | \n",
2086 | " 9 | \n",
2087 | " 15 | \n",
2088 | " 21 | \n",
2089 | " 3 | \n",
2090 | " kumar | \n",
2091 | " 15 | \n",
2092 | " 21 | \n",
2093 | "
\n",
2094 | " \n",
2095 | " 4 | \n",
2096 | " 4 | \n",
2097 | " 10 | \n",
2098 | " 16 | \n",
2099 | " 22 | \n",
2100 | " 4 | \n",
2101 | " 10 | \n",
2102 | " 16 | \n",
2103 | " ineuron | \n",
2104 | "
\n",
2105 | " \n",
2106 | " 5 | \n",
2107 | " 5 | \n",
2108 | " 11 | \n",
2109 | " 17 | \n",
2110 | " 23 | \n",
2111 | " 5 | \n",
2112 | " 11 | \n",
2113 | " 17 | \n",
2114 | " pwskills | \n",
2115 | "
\n",
2116 | " \n",
2117 | "
\n",
2118 | "
"
2119 | ],
2120 | "text/plain": [
2121 | " key11 key21 key31 key41 key1 key2 key3 key4\n",
2122 | "1 1 7 13 19 1 7 13 19\n",
2123 | "2 2 8 14 20 2 8 14 20\n",
2124 | "3 3 9 15 21 3 kumar 15 21\n",
2125 | "4 4 10 16 22 4 10 16 ineuron\n",
2126 | "5 5 11 17 23 5 11 17 pwskills"
2127 | ]
2128 | },
2129 | "execution_count": 53,
2130 | "metadata": {},
2131 | "output_type": "execute_result"
2132 | }
2133 | ],
2134 | "source": [
2135 | "df10.join(df20 , how = 'inner')"
2136 | ]
2137 | },
2138 | {
2139 | "cell_type": "code",
2140 | "execution_count": 54,
2141 | "id": "58e349ec-edfa-4fab-aae3-cd4751620a56",
2142 | "metadata": {},
2143 | "outputs": [
2144 | {
2145 | "data": {
2146 | "text/html": [
2147 | "\n",
2148 | "\n",
2161 | "
\n",
2162 | " \n",
2163 | " \n",
2164 | " | \n",
2165 | " key11 | \n",
2166 | " key21 | \n",
2167 | " key31 | \n",
2168 | " key41 | \n",
2169 | "
\n",
2170 | " \n",
2171 | " \n",
2172 | " \n",
2173 | " 1 | \n",
2174 | " 1 | \n",
2175 | " 7 | \n",
2176 | " 13 | \n",
2177 | " 19 | \n",
2178 | "
\n",
2179 | " \n",
2180 | " 2 | \n",
2181 | " 2 | \n",
2182 | " 8 | \n",
2183 | " 14 | \n",
2184 | " 20 | \n",
2185 | "
\n",
2186 | " \n",
2187 | " 3 | \n",
2188 | " 3 | \n",
2189 | " 9 | \n",
2190 | " 15 | \n",
2191 | " 21 | \n",
2192 | "
\n",
2193 | " \n",
2194 | " 4 | \n",
2195 | " 4 | \n",
2196 | " 10 | \n",
2197 | " 16 | \n",
2198 | " 22 | \n",
2199 | "
\n",
2200 | " \n",
2201 | " 5 | \n",
2202 | " 5 | \n",
2203 | " 11 | \n",
2204 | " 17 | \n",
2205 | " 23 | \n",
2206 | "
\n",
2207 | " \n",
2208 | " 6 | \n",
2209 | " sudh | \n",
2210 | " 12 | \n",
2211 | " 18 | \n",
2212 | " 24 | \n",
2213 | "
\n",
2214 | " \n",
2215 | "
\n",
2216 | "
"
2217 | ],
2218 | "text/plain": [
2219 | " key11 key21 key31 key41\n",
2220 | "1 1 7 13 19\n",
2221 | "2 2 8 14 20\n",
2222 | "3 3 9 15 21\n",
2223 | "4 4 10 16 22\n",
2224 | "5 5 11 17 23\n",
2225 | "6 sudh 12 18 24"
2226 | ]
2227 | },
2228 | "execution_count": 54,
2229 | "metadata": {},
2230 | "output_type": "execute_result"
2231 | }
2232 | ],
2233 | "source": [
2234 | "df10"
2235 | ]
2236 | },
2237 | {
2238 | "cell_type": "code",
2239 | "execution_count": 55,
2240 | "id": "4a2fa551-0e0a-4c15-ac25-c3c14a93f202",
2241 | "metadata": {},
2242 | "outputs": [
2243 | {
2244 | "data": {
2245 | "text/html": [
2246 | "\n",
2247 | "\n",
2260 | "
\n",
2261 | " \n",
2262 | " \n",
2263 | " | \n",
2264 | " key1 | \n",
2265 | " key2 | \n",
2266 | " key3 | \n",
2267 | " key4 | \n",
2268 | "
\n",
2269 | " \n",
2270 | " \n",
2271 | " \n",
2272 | " 1 | \n",
2273 | " 1 | \n",
2274 | " 7 | \n",
2275 | " 13 | \n",
2276 | " 19 | \n",
2277 | "
\n",
2278 | " \n",
2279 | " 2 | \n",
2280 | " 2 | \n",
2281 | " 8 | \n",
2282 | " 14 | \n",
2283 | " 20 | \n",
2284 | "
\n",
2285 | " \n",
2286 | " 3 | \n",
2287 | " 3 | \n",
2288 | " kumar | \n",
2289 | " 15 | \n",
2290 | " 21 | \n",
2291 | "
\n",
2292 | " \n",
2293 | " 4 | \n",
2294 | " 4 | \n",
2295 | " 10 | \n",
2296 | " 16 | \n",
2297 | " ineuron | \n",
2298 | "
\n",
2299 | " \n",
2300 | " 5 | \n",
2301 | " 5 | \n",
2302 | " 11 | \n",
2303 | " 17 | \n",
2304 | " pwskills | \n",
2305 | "
\n",
2306 | " \n",
2307 | " sudh | \n",
2308 | " sudh | \n",
2309 | " 12 | \n",
2310 | " 18 | \n",
2311 | " 24 | \n",
2312 | "
\n",
2313 | " \n",
2314 | "
\n",
2315 | "
"
2316 | ],
2317 | "text/plain": [
2318 | " key1 key2 key3 key4\n",
2319 | "1 1 7 13 19\n",
2320 | "2 2 8 14 20\n",
2321 | "3 3 kumar 15 21\n",
2322 | "4 4 10 16 ineuron\n",
2323 | "5 5 11 17 pwskills\n",
2324 | "sudh sudh 12 18 24"
2325 | ]
2326 | },
2327 | "execution_count": 55,
2328 | "metadata": {},
2329 | "output_type": "execute_result"
2330 | }
2331 | ],
2332 | "source": [
2333 | "df20"
2334 | ]
2335 | },
2336 | {
2337 | "cell_type": "code",
2338 | "execution_count": 57,
2339 | "id": "b9954f1a-378b-431e-9f47-47a97db85ab0",
2340 | "metadata": {},
2341 | "outputs": [
2342 | {
2343 | "data": {
2344 | "text/html": [
2345 | "\n",
2346 | "\n",
2359 | "
\n",
2360 | " \n",
2361 | " \n",
2362 | " | \n",
2363 | " key1 | \n",
2364 | " key2 | \n",
2365 | " key3 | \n",
2366 | " key4 | \n",
2367 | "
\n",
2368 | " \n",
2369 | " \n",
2370 | " \n",
2371 | " 0 | \n",
2372 | " 1 | \n",
2373 | " 7 | \n",
2374 | " 13 | \n",
2375 | " 19 | \n",
2376 | "
\n",
2377 | " \n",
2378 | " 1 | \n",
2379 | " 2 | \n",
2380 | " 8 | \n",
2381 | " 14 | \n",
2382 | " 20 | \n",
2383 | "
\n",
2384 | " \n",
2385 | " 2 | \n",
2386 | " 3 | \n",
2387 | " 9 | \n",
2388 | " 15 | \n",
2389 | " 21 | \n",
2390 | "
\n",
2391 | " \n",
2392 | " 3 | \n",
2393 | " 4 | \n",
2394 | " 10 | \n",
2395 | " 16 | \n",
2396 | " 22 | \n",
2397 | "
\n",
2398 | " \n",
2399 | " 4 | \n",
2400 | " 5 | \n",
2401 | " 11 | \n",
2402 | " 17 | \n",
2403 | " 23 | \n",
2404 | "
\n",
2405 | " \n",
2406 | " 5 | \n",
2407 | " sudh | \n",
2408 | " 12 | \n",
2409 | " 18 | \n",
2410 | " 24 | \n",
2411 | "
\n",
2412 | " \n",
2413 | " 0 | \n",
2414 | " 1 | \n",
2415 | " 7 | \n",
2416 | " 13 | \n",
2417 | " 19 | \n",
2418 | "
\n",
2419 | " \n",
2420 | " 1 | \n",
2421 | " 2 | \n",
2422 | " 8 | \n",
2423 | " 14 | \n",
2424 | " 20 | \n",
2425 | "
\n",
2426 | " \n",
2427 | " 2 | \n",
2428 | " 3 | \n",
2429 | " kumar | \n",
2430 | " 15 | \n",
2431 | " 21 | \n",
2432 | "
\n",
2433 | " \n",
2434 | " 3 | \n",
2435 | " 4 | \n",
2436 | " 10 | \n",
2437 | " 16 | \n",
2438 | " ineuron | \n",
2439 | "
\n",
2440 | " \n",
2441 | " 4 | \n",
2442 | " 5 | \n",
2443 | " 11 | \n",
2444 | " 17 | \n",
2445 | " pwskills | \n",
2446 | "
\n",
2447 | " \n",
2448 | " 5 | \n",
2449 | " sudh | \n",
2450 | " 12 | \n",
2451 | " 18 | \n",
2452 | " 24 | \n",
2453 | "
\n",
2454 | " \n",
2455 | "
\n",
2456 | "
"
2457 | ],
2458 | "text/plain": [
2459 | " key1 key2 key3 key4\n",
2460 | "0 1 7 13 19\n",
2461 | "1 2 8 14 20\n",
2462 | "2 3 9 15 21\n",
2463 | "3 4 10 16 22\n",
2464 | "4 5 11 17 23\n",
2465 | "5 sudh 12 18 24\n",
2466 | "0 1 7 13 19\n",
2467 | "1 2 8 14 20\n",
2468 | "2 3 kumar 15 21\n",
2469 | "3 4 10 16 ineuron\n",
2470 | "4 5 11 17 pwskills\n",
2471 | "5 sudh 12 18 24"
2472 | ]
2473 | },
2474 | "execution_count": 57,
2475 | "metadata": {},
2476 | "output_type": "execute_result"
2477 | }
2478 | ],
2479 | "source": [
2480 | "pd.concat([df1,df2] , axis=0)"
2481 | ]
2482 | },
2483 | {
2484 | "cell_type": "code",
2485 | "execution_count": 60,
2486 | "id": "2bab2522-d095-468c-ae5a-fb985bad6db7",
2487 | "metadata": {},
2488 | "outputs": [
2489 | {
2490 | "data": {
2491 | "text/html": [
2492 | "\n",
2493 | "\n",
2506 | "
\n",
2507 | " \n",
2508 | " \n",
2509 | " | \n",
2510 | " key1 | \n",
2511 | " key2 | \n",
2512 | " key3 | \n",
2513 | " key4 | \n",
2514 | " key1 | \n",
2515 | " key2 | \n",
2516 | " key3 | \n",
2517 | " key4 | \n",
2518 | "
\n",
2519 | " \n",
2520 | " \n",
2521 | " \n",
2522 | " 0 | \n",
2523 | " 1 | \n",
2524 | " 7 | \n",
2525 | " 13 | \n",
2526 | " 19 | \n",
2527 | " 1 | \n",
2528 | " 7 | \n",
2529 | " 13 | \n",
2530 | " 19 | \n",
2531 | "
\n",
2532 | " \n",
2533 | " 1 | \n",
2534 | " 2 | \n",
2535 | " 8 | \n",
2536 | " 14 | \n",
2537 | " 20 | \n",
2538 | " 2 | \n",
2539 | " 8 | \n",
2540 | " 14 | \n",
2541 | " 20 | \n",
2542 | "
\n",
2543 | " \n",
2544 | " 2 | \n",
2545 | " 3 | \n",
2546 | " 9 | \n",
2547 | " 15 | \n",
2548 | " 21 | \n",
2549 | " 3 | \n",
2550 | " kumar | \n",
2551 | " 15 | \n",
2552 | " 21 | \n",
2553 | "
\n",
2554 | " \n",
2555 | " 3 | \n",
2556 | " 4 | \n",
2557 | " 10 | \n",
2558 | " 16 | \n",
2559 | " 22 | \n",
2560 | " 4 | \n",
2561 | " 10 | \n",
2562 | " 16 | \n",
2563 | " ineuron | \n",
2564 | "
\n",
2565 | " \n",
2566 | " 4 | \n",
2567 | " 5 | \n",
2568 | " 11 | \n",
2569 | " 17 | \n",
2570 | " 23 | \n",
2571 | " 5 | \n",
2572 | " 11 | \n",
2573 | " 17 | \n",
2574 | " pwskills | \n",
2575 | "
\n",
2576 | " \n",
2577 | " 5 | \n",
2578 | " sudh | \n",
2579 | " 12 | \n",
2580 | " 18 | \n",
2581 | " 24 | \n",
2582 | " sudh | \n",
2583 | " 12 | \n",
2584 | " 18 | \n",
2585 | " 24 | \n",
2586 | "
\n",
2587 | " \n",
2588 | "
\n",
2589 | "
"
2590 | ],
2591 | "text/plain": [
2592 | " key1 key2 key3 key4 key1 key2 key3 key4\n",
2593 | "0 1 7 13 19 1 7 13 19\n",
2594 | "1 2 8 14 20 2 8 14 20\n",
2595 | "2 3 9 15 21 3 kumar 15 21\n",
2596 | "3 4 10 16 22 4 10 16 ineuron\n",
2597 | "4 5 11 17 23 5 11 17 pwskills\n",
2598 | "5 sudh 12 18 24 sudh 12 18 24"
2599 | ]
2600 | },
2601 | "execution_count": 60,
2602 | "metadata": {},
2603 | "output_type": "execute_result"
2604 | }
2605 | ],
2606 | "source": [
2607 | "pd.concat([df1,df2] , axis=1)"
2608 | ]
2609 | },
2610 | {
2611 | "cell_type": "code",
2612 | "execution_count": 61,
2613 | "id": "2f1459e2-3b7e-4820-a836-b81aaef0a9b5",
2614 | "metadata": {},
2615 | "outputs": [],
2616 | "source": [
2617 | "import numpy as np "
2618 | ]
2619 | },
2620 | {
2621 | "cell_type": "code",
2622 | "execution_count": 62,
2623 | "id": "b3a340e3-d856-4f37-9021-aa892653dc5e",
2624 | "metadata": {},
2625 | "outputs": [],
2626 | "source": [
2627 | "l = [1,2,3,4,4]"
2628 | ]
2629 | },
2630 | {
2631 | "cell_type": "code",
2632 | "execution_count": 64,
2633 | "id": "de1f4257-a2a7-4ee4-a4bc-389eb07678e5",
2634 | "metadata": {},
2635 | "outputs": [
2636 | {
2637 | "data": {
2638 | "text/plain": [
2639 | "list"
2640 | ]
2641 | },
2642 | "execution_count": 64,
2643 | "metadata": {},
2644 | "output_type": "execute_result"
2645 | }
2646 | ],
2647 | "source": [
2648 | "type(l)"
2649 | ]
2650 | },
2651 | {
2652 | "cell_type": "code",
2653 | "execution_count": 66,
2654 | "id": "297d9ac3-3769-4947-b3cf-b06d84046fdd",
2655 | "metadata": {},
2656 | "outputs": [],
2657 | "source": [
2658 | "a = np.array(l)"
2659 | ]
2660 | },
2661 | {
2662 | "cell_type": "code",
2663 | "execution_count": 67,
2664 | "id": "f91841fd-f18d-4f2a-b479-715f495dddf6",
2665 | "metadata": {},
2666 | "outputs": [
2667 | {
2668 | "data": {
2669 | "text/plain": [
2670 | "numpy.ndarray"
2671 | ]
2672 | },
2673 | "execution_count": 67,
2674 | "metadata": {},
2675 | "output_type": "execute_result"
2676 | }
2677 | ],
2678 | "source": [
2679 | "type(a)"
2680 | ]
2681 | },
2682 | {
2683 | "cell_type": "code",
2684 | "execution_count": 68,
2685 | "id": "f216ea2d-8ae5-4c3f-b62b-26746d1e9f7a",
2686 | "metadata": {},
2687 | "outputs": [
2688 | {
2689 | "data": {
2690 | "text/plain": [
2691 | "array([1, 2, 3, 4, 4])"
2692 | ]
2693 | },
2694 | "execution_count": 68,
2695 | "metadata": {},
2696 | "output_type": "execute_result"
2697 | }
2698 | ],
2699 | "source": [
2700 | "a"
2701 | ]
2702 | },
2703 | {
2704 | "cell_type": "code",
2705 | "execution_count": 73,
2706 | "id": "6af1eefc-7afd-4dc3-a1ee-9d326c7fcfef",
2707 | "metadata": {},
2708 | "outputs": [],
2709 | "source": [
2710 | "a1 = np.array([[1,2,3] , [3,4,5]])"
2711 | ]
2712 | },
2713 | {
2714 | "cell_type": "code",
2715 | "execution_count": 74,
2716 | "id": "45c4a3a5-d104-4901-819f-24936093ef36",
2717 | "metadata": {},
2718 | "outputs": [
2719 | {
2720 | "data": {
2721 | "text/plain": [
2722 | "array([[1, 2, 3],\n",
2723 | " [3, 4, 5]])"
2724 | ]
2725 | },
2726 | "execution_count": 74,
2727 | "metadata": {},
2728 | "output_type": "execute_result"
2729 | }
2730 | ],
2731 | "source": [
2732 | "a1\n"
2733 | ]
2734 | },
2735 | {
2736 | "cell_type": "code",
2737 | "execution_count": 75,
2738 | "id": "15fa41fa-f81d-42ac-a118-b8bcf0666e56",
2739 | "metadata": {},
2740 | "outputs": [],
2741 | "source": [
2742 | "a2 = np.array([[[1,2,3] , [4,.5,6]]])"
2743 | ]
2744 | },
2745 | {
2746 | "cell_type": "code",
2747 | "execution_count": 76,
2748 | "id": "74ae2bb7-e7aa-43d5-9179-5f5b5948caf8",
2749 | "metadata": {},
2750 | "outputs": [
2751 | {
2752 | "data": {
2753 | "text/plain": [
2754 | "array([[[1. , 2. , 3. ],\n",
2755 | " [4. , 0.5, 6. ]]])"
2756 | ]
2757 | },
2758 | "execution_count": 76,
2759 | "metadata": {},
2760 | "output_type": "execute_result"
2761 | }
2762 | ],
2763 | "source": [
2764 | "a2"
2765 | ]
2766 | },
2767 | {
2768 | "cell_type": "code",
2769 | "execution_count": 77,
2770 | "id": "4464a24e-0e19-43fa-b730-1993d2a1cfde",
2771 | "metadata": {},
2772 | "outputs": [
2773 | {
2774 | "data": {
2775 | "text/plain": [
2776 | "array([1, 2, 3, 4, 4])"
2777 | ]
2778 | },
2779 | "execution_count": 77,
2780 | "metadata": {},
2781 | "output_type": "execute_result"
2782 | }
2783 | ],
2784 | "source": [
2785 | "a"
2786 | ]
2787 | },
2788 | {
2789 | "cell_type": "code",
2790 | "execution_count": 78,
2791 | "id": "793d947e-5b3f-4ee5-b352-f70f4bf76ded",
2792 | "metadata": {},
2793 | "outputs": [
2794 | {
2795 | "data": {
2796 | "text/plain": [
2797 | "array([[1, 2, 3],\n",
2798 | " [3, 4, 5]])"
2799 | ]
2800 | },
2801 | "execution_count": 78,
2802 | "metadata": {},
2803 | "output_type": "execute_result"
2804 | }
2805 | ],
2806 | "source": [
2807 | "a1"
2808 | ]
2809 | },
2810 | {
2811 | "cell_type": "code",
2812 | "execution_count": 79,
2813 | "id": "2f8c9477-257b-458b-bb46-d5348fa84e41",
2814 | "metadata": {},
2815 | "outputs": [
2816 | {
2817 | "data": {
2818 | "text/plain": [
2819 | "array([[[1. , 2. , 3. ],\n",
2820 | " [4. , 0.5, 6. ]]])"
2821 | ]
2822 | },
2823 | "execution_count": 79,
2824 | "metadata": {},
2825 | "output_type": "execute_result"
2826 | }
2827 | ],
2828 | "source": [
2829 | "a2"
2830 | ]
2831 | },
2832 | {
2833 | "cell_type": "code",
2834 | "execution_count": 80,
2835 | "id": "e3b68bb7-d3e4-44c3-ba3f-8419b7d91d28",
2836 | "metadata": {},
2837 | "outputs": [
2838 | {
2839 | "data": {
2840 | "text/plain": [
2841 | "1"
2842 | ]
2843 | },
2844 | "execution_count": 80,
2845 | "metadata": {},
2846 | "output_type": "execute_result"
2847 | }
2848 | ],
2849 | "source": [
2850 | "a.ndim"
2851 | ]
2852 | },
2853 | {
2854 | "cell_type": "code",
2855 | "execution_count": 81,
2856 | "id": "0879e33b-5b1a-4f95-b7bf-b286fe4dd453",
2857 | "metadata": {},
2858 | "outputs": [
2859 | {
2860 | "data": {
2861 | "text/plain": [
2862 | "2"
2863 | ]
2864 | },
2865 | "execution_count": 81,
2866 | "metadata": {},
2867 | "output_type": "execute_result"
2868 | }
2869 | ],
2870 | "source": [
2871 | "a1.ndim\n"
2872 | ]
2873 | },
2874 | {
2875 | "cell_type": "code",
2876 | "execution_count": 82,
2877 | "id": "984ac883-a6e3-487f-bad9-3de78a4170a3",
2878 | "metadata": {},
2879 | "outputs": [
2880 | {
2881 | "data": {
2882 | "text/plain": [
2883 | "3"
2884 | ]
2885 | },
2886 | "execution_count": 82,
2887 | "metadata": {},
2888 | "output_type": "execute_result"
2889 | }
2890 | ],
2891 | "source": [
2892 | "a2.ndim"
2893 | ]
2894 | },
2895 | {
2896 | "cell_type": "code",
2897 | "execution_count": 83,
2898 | "id": "3a024126-8be3-4bad-b26c-7e4fa51b5fab",
2899 | "metadata": {},
2900 | "outputs": [],
2901 | "source": [
2902 | "a3 = np.array([[[1,2,3] , [4,.5,6]],[[1,2,3] , [4,.5,6]],[[1,2,3] , [4,.5,6]]])"
2903 | ]
2904 | },
2905 | {
2906 | "cell_type": "code",
2907 | "execution_count": 84,
2908 | "id": "83ac298d-c474-4c57-94bf-97befda66e9f",
2909 | "metadata": {},
2910 | "outputs": [
2911 | {
2912 | "data": {
2913 | "text/plain": [
2914 | "array([[[1. , 2. , 3. ],\n",
2915 | " [4. , 0.5, 6. ]],\n",
2916 | "\n",
2917 | " [[1. , 2. , 3. ],\n",
2918 | " [4. , 0.5, 6. ]],\n",
2919 | "\n",
2920 | " [[1. , 2. , 3. ],\n",
2921 | " [4. , 0.5, 6. ]]])"
2922 | ]
2923 | },
2924 | "execution_count": 84,
2925 | "metadata": {},
2926 | "output_type": "execute_result"
2927 | }
2928 | ],
2929 | "source": [
2930 | "a3"
2931 | ]
2932 | },
2933 | {
2934 | "cell_type": "code",
2935 | "execution_count": 85,
2936 | "id": "a73903e8-ee36-4925-aec1-818e90db861d",
2937 | "metadata": {},
2938 | "outputs": [
2939 | {
2940 | "data": {
2941 | "text/plain": [
2942 | "3"
2943 | ]
2944 | },
2945 | "execution_count": 85,
2946 | "metadata": {},
2947 | "output_type": "execute_result"
2948 | }
2949 | ],
2950 | "source": [
2951 | "a3.ndim"
2952 | ]
2953 | },
2954 | {
2955 | "cell_type": "code",
2956 | "execution_count": 86,
2957 | "id": "c89ab63e-a4f7-44db-91cd-6c863c452e3d",
2958 | "metadata": {},
2959 | "outputs": [],
2960 | "source": [
2961 | "l = [1,2,3,4]"
2962 | ]
2963 | },
2964 | {
2965 | "cell_type": "code",
2966 | "execution_count": 90,
2967 | "id": "f8904384-5afe-4ca3-b1d9-6ecda7d1fdc1",
2968 | "metadata": {},
2969 | "outputs": [],
2970 | "source": [
2971 | "a = np.asarray(l)"
2972 | ]
2973 | },
2974 | {
2975 | "cell_type": "code",
2976 | "execution_count": 89,
2977 | "id": "cb904727-8761-4abd-a299-8023cb291c90",
2978 | "metadata": {},
2979 | "outputs": [],
2980 | "source": [
2981 | "m = np.matrix(l)"
2982 | ]
2983 | },
2984 | {
2985 | "cell_type": "code",
2986 | "execution_count": 93,
2987 | "id": "5a9db928-647b-429b-b9df-5457e2ee61d8",
2988 | "metadata": {},
2989 | "outputs": [
2990 | {
2991 | "data": {
2992 | "text/plain": [
2993 | "array([1, 2, 3, 4])"
2994 | ]
2995 | },
2996 | "execution_count": 93,
2997 | "metadata": {},
2998 | "output_type": "execute_result"
2999 | }
3000 | ],
3001 | "source": [
3002 | "np.asanyarray(l)"
3003 | ]
3004 | },
3005 | {
3006 | "cell_type": "code",
3007 | "execution_count": 91,
3008 | "id": "05739d24-0006-4822-8308-0c09c9ad2c91",
3009 | "metadata": {},
3010 | "outputs": [
3011 | {
3012 | "data": {
3013 | "text/plain": [
3014 | "array([1, 2, 3, 4])"
3015 | ]
3016 | },
3017 | "execution_count": 91,
3018 | "metadata": {},
3019 | "output_type": "execute_result"
3020 | }
3021 | ],
3022 | "source": [
3023 | "np.asanyarray(a)"
3024 | ]
3025 | },
3026 | {
3027 | "cell_type": "code",
3028 | "execution_count": 92,
3029 | "id": "a69c8a25-5fd7-4be4-a539-f556f6d6b23d",
3030 | "metadata": {},
3031 | "outputs": [
3032 | {
3033 | "data": {
3034 | "text/plain": [
3035 | "matrix([[1, 2, 3, 4]])"
3036 | ]
3037 | },
3038 | "execution_count": 92,
3039 | "metadata": {},
3040 | "output_type": "execute_result"
3041 | }
3042 | ],
3043 | "source": [
3044 | "np.asanyarray(m)"
3045 | ]
3046 | },
3047 | {
3048 | "cell_type": "code",
3049 | "execution_count": 94,
3050 | "id": "7bc1cccf-ab21-4f96-bbea-6055f87211d7",
3051 | "metadata": {},
3052 | "outputs": [
3053 | {
3054 | "data": {
3055 | "text/plain": [
3056 | "array([1, 2, 3, 4])"
3057 | ]
3058 | },
3059 | "execution_count": 94,
3060 | "metadata": {},
3061 | "output_type": "execute_result"
3062 | }
3063 | ],
3064 | "source": [
3065 | "a"
3066 | ]
3067 | },
3068 | {
3069 | "cell_type": "code",
3070 | "execution_count": 95,
3071 | "id": "e82a186b-49a9-4cc3-98a6-a854a63bd49a",
3072 | "metadata": {},
3073 | "outputs": [],
3074 | "source": [
3075 | "a1 = a "
3076 | ]
3077 | },
3078 | {
3079 | "cell_type": "code",
3080 | "execution_count": 96,
3081 | "id": "489017ea-102f-4608-8bd0-f309e5a81dc1",
3082 | "metadata": {},
3083 | "outputs": [
3084 | {
3085 | "data": {
3086 | "text/plain": [
3087 | "array([1, 2, 3, 4])"
3088 | ]
3089 | },
3090 | "execution_count": 96,
3091 | "metadata": {},
3092 | "output_type": "execute_result"
3093 | }
3094 | ],
3095 | "source": [
3096 | "a1"
3097 | ]
3098 | },
3099 | {
3100 | "cell_type": "code",
3101 | "execution_count": 97,
3102 | "id": "d108d7bd-b0e4-4caf-b48a-08717f904e0f",
3103 | "metadata": {},
3104 | "outputs": [
3105 | {
3106 | "data": {
3107 | "text/plain": [
3108 | "array([1, 2, 3, 4])"
3109 | ]
3110 | },
3111 | "execution_count": 97,
3112 | "metadata": {},
3113 | "output_type": "execute_result"
3114 | }
3115 | ],
3116 | "source": [
3117 | "a"
3118 | ]
3119 | },
3120 | {
3121 | "cell_type": "code",
3122 | "execution_count": 98,
3123 | "id": "3561d72c-753f-45f9-a460-376590750774",
3124 | "metadata": {},
3125 | "outputs": [
3126 | {
3127 | "data": {
3128 | "text/plain": [
3129 | "array([1, 2, 3, 4])"
3130 | ]
3131 | },
3132 | "execution_count": 98,
3133 | "metadata": {},
3134 | "output_type": "execute_result"
3135 | }
3136 | ],
3137 | "source": [
3138 | "a"
3139 | ]
3140 | },
3141 | {
3142 | "cell_type": "code",
3143 | "execution_count": 100,
3144 | "id": "c95a3e81-3aa2-4f3a-95b7-0050174a706d",
3145 | "metadata": {},
3146 | "outputs": [],
3147 | "source": [
3148 | "a[0] = 10"
3149 | ]
3150 | },
3151 | {
3152 | "cell_type": "code",
3153 | "execution_count": 101,
3154 | "id": "0dca2851-0cee-4fe3-a3b5-6eccc4f11388",
3155 | "metadata": {},
3156 | "outputs": [
3157 | {
3158 | "data": {
3159 | "text/plain": [
3160 | "array([10, 2, 3, 4])"
3161 | ]
3162 | },
3163 | "execution_count": 101,
3164 | "metadata": {},
3165 | "output_type": "execute_result"
3166 | }
3167 | ],
3168 | "source": [
3169 | "a"
3170 | ]
3171 | },
3172 | {
3173 | "cell_type": "code",
3174 | "execution_count": 102,
3175 | "id": "8c416e48-2de1-4374-930f-f05346205989",
3176 | "metadata": {},
3177 | "outputs": [
3178 | {
3179 | "data": {
3180 | "text/plain": [
3181 | "array([10, 2, 3, 4])"
3182 | ]
3183 | },
3184 | "execution_count": 102,
3185 | "metadata": {},
3186 | "output_type": "execute_result"
3187 | }
3188 | ],
3189 | "source": [
3190 | "a1"
3191 | ]
3192 | },
3193 | {
3194 | "cell_type": "code",
3195 | "execution_count": 104,
3196 | "id": "2104476a-e1fd-4df9-b08e-b9c559b2a103",
3197 | "metadata": {},
3198 | "outputs": [],
3199 | "source": [
3200 | "a1[3] = 50"
3201 | ]
3202 | },
3203 | {
3204 | "cell_type": "code",
3205 | "execution_count": 105,
3206 | "id": "4c14a0c4-3f70-4251-a113-66fb593b8381",
3207 | "metadata": {},
3208 | "outputs": [
3209 | {
3210 | "data": {
3211 | "text/plain": [
3212 | "array([10, 2, 3, 50])"
3213 | ]
3214 | },
3215 | "execution_count": 105,
3216 | "metadata": {},
3217 | "output_type": "execute_result"
3218 | }
3219 | ],
3220 | "source": [
3221 | "a1"
3222 | ]
3223 | },
3224 | {
3225 | "cell_type": "code",
3226 | "execution_count": 106,
3227 | "id": "411029ac-9aa6-4429-b4e2-5c6c5ede6e54",
3228 | "metadata": {},
3229 | "outputs": [
3230 | {
3231 | "data": {
3232 | "text/plain": [
3233 | "array([10, 2, 3, 50])"
3234 | ]
3235 | },
3236 | "execution_count": 106,
3237 | "metadata": {},
3238 | "output_type": "execute_result"
3239 | }
3240 | ],
3241 | "source": [
3242 | "a"
3243 | ]
3244 | },
3245 | {
3246 | "cell_type": "code",
3247 | "execution_count": 107,
3248 | "id": "eb73a9bb-f4a0-42cb-be16-119625194db9",
3249 | "metadata": {},
3250 | "outputs": [],
3251 | "source": [
3252 | "a2 = np.copy(a)"
3253 | ]
3254 | },
3255 | {
3256 | "cell_type": "code",
3257 | "execution_count": 108,
3258 | "id": "0f8e53b8-3efc-4699-be1c-2309a4a8e48a",
3259 | "metadata": {},
3260 | "outputs": [
3261 | {
3262 | "data": {
3263 | "text/plain": [
3264 | "array([10, 2, 3, 50])"
3265 | ]
3266 | },
3267 | "execution_count": 108,
3268 | "metadata": {},
3269 | "output_type": "execute_result"
3270 | }
3271 | ],
3272 | "source": [
3273 | "a2"
3274 | ]
3275 | },
3276 | {
3277 | "cell_type": "code",
3278 | "execution_count": 111,
3279 | "id": "f5144950-f06e-4d62-8367-436e51c877ae",
3280 | "metadata": {},
3281 | "outputs": [],
3282 | "source": [
3283 | "a2[2] = 30"
3284 | ]
3285 | },
3286 | {
3287 | "cell_type": "code",
3288 | "execution_count": 112,
3289 | "id": "6235e46a-0ec7-47a1-b61a-49c17d8ec117",
3290 | "metadata": {},
3291 | "outputs": [
3292 | {
3293 | "data": {
3294 | "text/plain": [
3295 | "array([10, 2, 30, 50])"
3296 | ]
3297 | },
3298 | "execution_count": 112,
3299 | "metadata": {},
3300 | "output_type": "execute_result"
3301 | }
3302 | ],
3303 | "source": [
3304 | "a2"
3305 | ]
3306 | },
3307 | {
3308 | "cell_type": "code",
3309 | "execution_count": 113,
3310 | "id": "47373eeb-80c8-46b7-bbd0-37a66bed9f3d",
3311 | "metadata": {},
3312 | "outputs": [
3313 | {
3314 | "data": {
3315 | "text/plain": [
3316 | "array([10, 2, 3, 50])"
3317 | ]
3318 | },
3319 | "execution_count": 113,
3320 | "metadata": {},
3321 | "output_type": "execute_result"
3322 | }
3323 | ],
3324 | "source": [
3325 | "a"
3326 | ]
3327 | },
3328 | {
3329 | "cell_type": "code",
3330 | "execution_count": 114,
3331 | "id": "0e7ce447-386a-4c0a-acfa-57ba497e96bc",
3332 | "metadata": {},
3333 | "outputs": [
3334 | {
3335 | "data": {
3336 | "text/plain": [
3337 | "array([[ True, False, False, False],\n",
3338 | " [False, True, False, False],\n",
3339 | " [False, False, True, False]])"
3340 | ]
3341 | },
3342 | "execution_count": 114,
3343 | "metadata": {},
3344 | "output_type": "execute_result"
3345 | }
3346 | ],
3347 | "source": [
3348 | "np.fromfunction(lambda i,j : i==j , (3,4))"
3349 | ]
3350 | },
3351 | {
3352 | "cell_type": "code",
3353 | "execution_count": 116,
3354 | "id": "fd421eb4-5197-4baf-91f3-3039bd4c6649",
3355 | "metadata": {},
3356 | "outputs": [
3357 | {
3358 | "data": {
3359 | "text/plain": [
3360 | "array([[ True, False, False, False],\n",
3361 | " [False, True, False, False],\n",
3362 | " [False, False, True, False]])"
3363 | ]
3364 | },
3365 | "execution_count": 116,
3366 | "metadata": {},
3367 | "output_type": "execute_result"
3368 | }
3369 | ],
3370 | "source": [
3371 | "np.fromfunction(lambda i,j: i==j, (3,4))"
3372 | ]
3373 | },
3374 | {
3375 | "cell_type": "code",
3376 | "execution_count": 118,
3377 | "id": "72296cbc-ab35-4cec-ace1-2e601b9b503c",
3378 | "metadata": {},
3379 | "outputs": [
3380 | {
3381 | "data": {
3382 | "text/plain": [
3383 | "array([[[0.8537019 , 0.89559976],\n",
3384 | " [0.69730849, 0.65386202],\n",
3385 | " [0.43384847, 0.47219106]],\n",
3386 | "\n",
3387 | " [[0.11591441, 0.5194264 ],\n",
3388 | " [0.04490197, 0.73227366],\n",
3389 | " [0.2114251 , 0.7732894 ]]])"
3390 | ]
3391 | },
3392 | "execution_count": 118,
3393 | "metadata": {},
3394 | "output_type": "execute_result"
3395 | }
3396 | ],
3397 | "source": [
3398 | "np.random.rand(2,3,2)"
3399 | ]
3400 | },
3401 | {
3402 | "cell_type": "code",
3403 | "execution_count": 119,
3404 | "id": "ea49e53b-7d14-4e2e-86bd-f70fb5da0ed1",
3405 | "metadata": {},
3406 | "outputs": [
3407 | {
3408 | "data": {
3409 | "text/plain": [
3410 | "array([[[[0.53725569, 0.20683012],\n",
3411 | " [0.86591778, 0.45198326]],\n",
3412 | "\n",
3413 | " [[0.80552188, 0.32802758],\n",
3414 | " [0.21144657, 0.65774064]],\n",
3415 | "\n",
3416 | " [[0.22610232, 0.45318178],\n",
3417 | " [0.60987073, 0.59909623]]],\n",
3418 | "\n",
3419 | "\n",
3420 | " [[[0.28732243, 0.3049974 ],\n",
3421 | " [0.25456288, 0.37661516]],\n",
3422 | "\n",
3423 | " [[0.91435676, 0.30877497],\n",
3424 | " [0.35806469, 0.08779498]],\n",
3425 | "\n",
3426 | " [[0.1470572 , 0.80567483],\n",
3427 | " [0.33217116, 0.97522411]]]])"
3428 | ]
3429 | },
3430 | "execution_count": 119,
3431 | "metadata": {},
3432 | "output_type": "execute_result"
3433 | }
3434 | ],
3435 | "source": [
3436 | "np.random.rand(2,3,2,2)"
3437 | ]
3438 | },
3439 | {
3440 | "cell_type": "code",
3441 | "execution_count": 123,
3442 | "id": "f34d4a91-f829-45e5-b1b8-4f48da258386",
3443 | "metadata": {},
3444 | "outputs": [
3445 | {
3446 | "data": {
3447 | "text/plain": [
3448 | "array([[[9.09677029e-01, 1.51764787e-01, 5.54673202e-01, 5.20975075e-01,\n",
3449 | " 1.89883414e-01],\n",
3450 | " [7.53923727e-01, 9.40966362e-01, 7.88123405e-01, 9.08953572e-01,\n",
3451 | " 9.64805229e-01],\n",
3452 | " [4.00655124e-01, 1.75199657e-01, 4.57227487e-01, 5.17727882e-01,\n",
3453 | " 2.86751041e-01],\n",
3454 | " [1.30429473e-01, 9.02009153e-01, 9.11345542e-02, 4.89073768e-01,\n",
3455 | " 5.03991486e-02]],\n",
3456 | "\n",
3457 | " [[6.86026889e-01, 2.89092687e-01, 9.89068408e-01, 8.89560944e-04,\n",
3458 | " 3.29450171e-01],\n",
3459 | " [2.90054731e-01, 9.99508005e-01, 9.46035196e-01, 4.19070101e-01,\n",
3460 | " 9.45084024e-01],\n",
3461 | " [4.62420004e-01, 1.88486694e-01, 4.14268952e-01, 7.85958823e-01,\n",
3462 | " 5.25020759e-02],\n",
3463 | " [6.35797430e-01, 8.16778744e-01, 7.61395700e-01, 7.18578055e-01,\n",
3464 | " 2.76044227e-01]],\n",
3465 | "\n",
3466 | " [[1.44572781e-02, 9.19394486e-02, 4.45699994e-01, 7.56659750e-01,\n",
3467 | " 9.02694336e-02],\n",
3468 | " [2.70860822e-01, 1.57507607e-01, 3.84106908e-01, 7.97338456e-01,\n",
3469 | " 5.02090497e-01],\n",
3470 | " [6.54299995e-01, 5.18945152e-01, 5.41727605e-01, 6.34531055e-01,\n",
3471 | " 3.08507114e-01],\n",
3472 | " [2.74715955e-01, 8.49466402e-01, 6.35123288e-01, 7.76779365e-01,\n",
3473 | " 3.27604916e-01]]])"
3474 | ]
3475 | },
3476 | "execution_count": 123,
3477 | "metadata": {},
3478 | "output_type": "execute_result"
3479 | }
3480 | ],
3481 | "source": [
3482 | "np.random.rand(3,4,5)"
3483 | ]
3484 | },
3485 | {
3486 | "cell_type": "code",
3487 | "execution_count": 130,
3488 | "id": "3152344c-7acf-4b37-bf93-560ddb67010f",
3489 | "metadata": {},
3490 | "outputs": [],
3491 | "source": [
3492 | "d = np.random.randn(3,4)"
3493 | ]
3494 | },
3495 | {
3496 | "cell_type": "code",
3497 | "execution_count": 131,
3498 | "id": "9f752550-0999-4fe1-afab-e89d0b65127b",
3499 | "metadata": {},
3500 | "outputs": [
3501 | {
3502 | "data": {
3503 | "text/html": [
3504 | "\n",
3505 | "\n",
3518 | "
\n",
3519 | " \n",
3520 | " \n",
3521 | " | \n",
3522 | " 0 | \n",
3523 | " 1 | \n",
3524 | " 2 | \n",
3525 | " 3 | \n",
3526 | "
\n",
3527 | " \n",
3528 | " \n",
3529 | " \n",
3530 | " 0 | \n",
3531 | " -0.976138 | \n",
3532 | " -0.805954 | \n",
3533 | " 1.007809 | \n",
3534 | " -0.089897 | \n",
3535 | "
\n",
3536 | " \n",
3537 | " 1 | \n",
3538 | " 0.212211 | \n",
3539 | " -0.893465 | \n",
3540 | " -0.005551 | \n",
3541 | " 1.240048 | \n",
3542 | "
\n",
3543 | " \n",
3544 | " 2 | \n",
3545 | " 0.367181 | \n",
3546 | " -1.252373 | \n",
3547 | " 1.449878 | \n",
3548 | " -0.699765 | \n",
3549 | "
\n",
3550 | " \n",
3551 | "
\n",
3552 | "
"
3553 | ],
3554 | "text/plain": [
3555 | " 0 1 2 3\n",
3556 | "0 -0.976138 -0.805954 1.007809 -0.089897\n",
3557 | "1 0.212211 -0.893465 -0.005551 1.240048\n",
3558 | "2 0.367181 -1.252373 1.449878 -0.699765"
3559 | ]
3560 | },
3561 | "execution_count": 131,
3562 | "metadata": {},
3563 | "output_type": "execute_result"
3564 | }
3565 | ],
3566 | "source": [
3567 | "pd.DataFrame(d)"
3568 | ]
3569 | },
3570 | {
3571 | "cell_type": "code",
3572 | "execution_count": 132,
3573 | "id": "859bdc07-eb8e-4310-9e74-0a9c05092cdb",
3574 | "metadata": {},
3575 | "outputs": [],
3576 | "source": [
3577 | "d1=np.random.randint(0,10,(4,4,2))"
3578 | ]
3579 | },
3580 | {
3581 | "cell_type": "code",
3582 | "execution_count": 133,
3583 | "id": "cf911994-4b2b-45a0-a30f-29978c842ef5",
3584 | "metadata": {},
3585 | "outputs": [
3586 | {
3587 | "data": {
3588 | "text/plain": [
3589 | "array([[[0, 3],\n",
3590 | " [2, 4],\n",
3591 | " [2, 1],\n",
3592 | " [2, 4]],\n",
3593 | "\n",
3594 | " [[9, 5],\n",
3595 | " [0, 7],\n",
3596 | " [9, 7],\n",
3597 | " [4, 1]],\n",
3598 | "\n",
3599 | " [[6, 6],\n",
3600 | " [6, 3],\n",
3601 | " [8, 8],\n",
3602 | " [5, 4]],\n",
3603 | "\n",
3604 | " [[7, 9],\n",
3605 | " [5, 1],\n",
3606 | " [0, 8],\n",
3607 | " [4, 4]]])"
3608 | ]
3609 | },
3610 | "execution_count": 133,
3611 | "metadata": {},
3612 | "output_type": "execute_result"
3613 | }
3614 | ],
3615 | "source": [
3616 | "d1"
3617 | ]
3618 | },
3619 | {
3620 | "cell_type": "code",
3621 | "execution_count": 135,
3622 | "id": "d88bf048-418e-43ae-82f8-b6a5c23c3670",
3623 | "metadata": {},
3624 | "outputs": [
3625 | {
3626 | "data": {
3627 | "text/plain": [
3628 | "array([[0, 3],\n",
3629 | " [2, 4],\n",
3630 | " [2, 1],\n",
3631 | " [2, 4],\n",
3632 | " [9, 5],\n",
3633 | " [0, 7],\n",
3634 | " [9, 7],\n",
3635 | " [4, 1],\n",
3636 | " [6, 6],\n",
3637 | " [6, 3],\n",
3638 | " [8, 8],\n",
3639 | " [5, 4],\n",
3640 | " [7, 9],\n",
3641 | " [5, 1],\n",
3642 | " [0, 8],\n",
3643 | " [4, 4]])"
3644 | ]
3645 | },
3646 | "execution_count": 135,
3647 | "metadata": {},
3648 | "output_type": "execute_result"
3649 | }
3650 | ],
3651 | "source": [
3652 | "d1.reshape(16,2)"
3653 | ]
3654 | },
3655 | {
3656 | "cell_type": "code",
3657 | "execution_count": 136,
3658 | "id": "3c4d6088-f66a-4f35-a7e3-6e73b8fda110",
3659 | "metadata": {},
3660 | "outputs": [
3661 | {
3662 | "data": {
3663 | "text/plain": [
3664 | "array([[0, 3, 2, 4],\n",
3665 | " [2, 1, 2, 4],\n",
3666 | " [9, 5, 0, 7],\n",
3667 | " [9, 7, 4, 1],\n",
3668 | " [6, 6, 6, 3],\n",
3669 | " [8, 8, 5, 4],\n",
3670 | " [7, 9, 5, 1],\n",
3671 | " [0, 8, 4, 4]])"
3672 | ]
3673 | },
3674 | "execution_count": 136,
3675 | "metadata": {},
3676 | "output_type": "execute_result"
3677 | }
3678 | ],
3679 | "source": [
3680 | "d1.reshape(8,4)"
3681 | ]
3682 | },
3683 | {
3684 | "cell_type": "code",
3685 | "execution_count": 145,
3686 | "id": "a99c725b-0fda-4af9-b1cb-2d37d301982e",
3687 | "metadata": {},
3688 | "outputs": [
3689 | {
3690 | "data": {
3691 | "text/html": [
3692 | "\n",
3693 | "\n",
3706 | "
\n",
3707 | " \n",
3708 | " \n",
3709 | " | \n",
3710 | " 0 | \n",
3711 | "
\n",
3712 | " \n",
3713 | " \n",
3714 | " \n",
3715 | " 0 | \n",
3716 | " 0 | \n",
3717 | "
\n",
3718 | " \n",
3719 | " 1 | \n",
3720 | " 3 | \n",
3721 | "
\n",
3722 | " \n",
3723 | " 2 | \n",
3724 | " 2 | \n",
3725 | "
\n",
3726 | " \n",
3727 | " 3 | \n",
3728 | " 4 | \n",
3729 | "
\n",
3730 | " \n",
3731 | " 4 | \n",
3732 | " 2 | \n",
3733 | "
\n",
3734 | " \n",
3735 | " 5 | \n",
3736 | " 1 | \n",
3737 | "
\n",
3738 | " \n",
3739 | " 6 | \n",
3740 | " 2 | \n",
3741 | "
\n",
3742 | " \n",
3743 | " 7 | \n",
3744 | " 4 | \n",
3745 | "
\n",
3746 | " \n",
3747 | " 8 | \n",
3748 | " 9 | \n",
3749 | "
\n",
3750 | " \n",
3751 | " 9 | \n",
3752 | " 5 | \n",
3753 | "
\n",
3754 | " \n",
3755 | " 10 | \n",
3756 | " 0 | \n",
3757 | "
\n",
3758 | " \n",
3759 | " 11 | \n",
3760 | " 7 | \n",
3761 | "
\n",
3762 | " \n",
3763 | " 12 | \n",
3764 | " 9 | \n",
3765 | "
\n",
3766 | " \n",
3767 | " 13 | \n",
3768 | " 7 | \n",
3769 | "
\n",
3770 | " \n",
3771 | " 14 | \n",
3772 | " 4 | \n",
3773 | "
\n",
3774 | " \n",
3775 | " 15 | \n",
3776 | " 1 | \n",
3777 | "
\n",
3778 | " \n",
3779 | " 16 | \n",
3780 | " 6 | \n",
3781 | "
\n",
3782 | " \n",
3783 | " 17 | \n",
3784 | " 6 | \n",
3785 | "
\n",
3786 | " \n",
3787 | " 18 | \n",
3788 | " 6 | \n",
3789 | "
\n",
3790 | " \n",
3791 | " 19 | \n",
3792 | " 3 | \n",
3793 | "
\n",
3794 | " \n",
3795 | " 20 | \n",
3796 | " 8 | \n",
3797 | "
\n",
3798 | " \n",
3799 | " 21 | \n",
3800 | " 8 | \n",
3801 | "
\n",
3802 | " \n",
3803 | " 22 | \n",
3804 | " 5 | \n",
3805 | "
\n",
3806 | " \n",
3807 | " 23 | \n",
3808 | " 4 | \n",
3809 | "
\n",
3810 | " \n",
3811 | " 24 | \n",
3812 | " 7 | \n",
3813 | "
\n",
3814 | " \n",
3815 | " 25 | \n",
3816 | " 9 | \n",
3817 | "
\n",
3818 | " \n",
3819 | " 26 | \n",
3820 | " 5 | \n",
3821 | "
\n",
3822 | " \n",
3823 | " 27 | \n",
3824 | " 1 | \n",
3825 | "
\n",
3826 | " \n",
3827 | " 28 | \n",
3828 | " 0 | \n",
3829 | "
\n",
3830 | " \n",
3831 | " 29 | \n",
3832 | " 8 | \n",
3833 | "
\n",
3834 | " \n",
3835 | " 30 | \n",
3836 | " 4 | \n",
3837 | "
\n",
3838 | " \n",
3839 | " 31 | \n",
3840 | " 4 | \n",
3841 | "
\n",
3842 | " \n",
3843 | "
\n",
3844 | "
"
3845 | ],
3846 | "text/plain": [
3847 | " 0\n",
3848 | "0 0\n",
3849 | "1 3\n",
3850 | "2 2\n",
3851 | "3 4\n",
3852 | "4 2\n",
3853 | "5 1\n",
3854 | "6 2\n",
3855 | "7 4\n",
3856 | "8 9\n",
3857 | "9 5\n",
3858 | "10 0\n",
3859 | "11 7\n",
3860 | "12 9\n",
3861 | "13 7\n",
3862 | "14 4\n",
3863 | "15 1\n",
3864 | "16 6\n",
3865 | "17 6\n",
3866 | "18 6\n",
3867 | "19 3\n",
3868 | "20 8\n",
3869 | "21 8\n",
3870 | "22 5\n",
3871 | "23 4\n",
3872 | "24 7\n",
3873 | "25 9\n",
3874 | "26 5\n",
3875 | "27 1\n",
3876 | "28 0\n",
3877 | "29 8\n",
3878 | "30 4\n",
3879 | "31 4"
3880 | ]
3881 | },
3882 | "execution_count": 145,
3883 | "metadata": {},
3884 | "output_type": "execute_result"
3885 | }
3886 | ],
3887 | "source": [
3888 | "pd.DataFrame(d1.reshape(32,-1987987))"
3889 | ]
3890 | },
3891 | {
3892 | "cell_type": "code",
3893 | "execution_count": 134,
3894 | "id": "b53d211c-3ae5-4e8a-9f4d-ce0b9a4ea4c9",
3895 | "metadata": {},
3896 | "outputs": [
3897 | {
3898 | "ename": "ValueError",
3899 | "evalue": "Must pass 2-d input. shape=(4, 4, 2)",
3900 | "output_type": "error",
3901 | "traceback": [
3902 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
3903 | "\u001b[0;31mValueError\u001b[0m Traceback (most recent call last)",
3904 | "Cell \u001b[0;32mIn [134], line 1\u001b[0m\n\u001b[0;32m----> 1\u001b[0m \u001b[43mpd\u001b[49m\u001b[38;5;241;43m.\u001b[39;49m\u001b[43mDataFrame\u001b[49m\u001b[43m(\u001b[49m\u001b[43md1\u001b[49m\u001b[43m)\u001b[49m\n",
3905 | "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/pandas/core/frame.py:720\u001b[0m, in \u001b[0;36mDataFrame.__init__\u001b[0;34m(self, data, index, columns, dtype, copy)\u001b[0m\n\u001b[1;32m 710\u001b[0m mgr \u001b[38;5;241m=\u001b[39m dict_to_mgr(\n\u001b[1;32m 711\u001b[0m \u001b[38;5;66;03m# error: Item \"ndarray\" of \"Union[ndarray, Series, Index]\" has no\u001b[39;00m\n\u001b[1;32m 712\u001b[0m \u001b[38;5;66;03m# attribute \"name\"\u001b[39;00m\n\u001b[0;32m (...)\u001b[0m\n\u001b[1;32m 717\u001b[0m typ\u001b[38;5;241m=\u001b[39mmanager,\n\u001b[1;32m 718\u001b[0m )\n\u001b[1;32m 719\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[0;32m--> 720\u001b[0m mgr \u001b[38;5;241m=\u001b[39m \u001b[43mndarray_to_mgr\u001b[49m\u001b[43m(\u001b[49m\n\u001b[1;32m 721\u001b[0m \u001b[43m \u001b[49m\u001b[43mdata\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 722\u001b[0m \u001b[43m \u001b[49m\u001b[43mindex\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 723\u001b[0m \u001b[43m \u001b[49m\u001b[43mcolumns\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 724\u001b[0m \u001b[43m \u001b[49m\u001b[43mdtype\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mdtype\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 725\u001b[0m \u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 726\u001b[0m \u001b[43m \u001b[49m\u001b[43mtyp\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mmanager\u001b[49m\u001b[43m,\u001b[49m\n\u001b[1;32m 727\u001b[0m \u001b[43m \u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 729\u001b[0m \u001b[38;5;66;03m# For data is list-like, or Iterable (will consume into list)\u001b[39;00m\n\u001b[1;32m 730\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m is_list_like(data):\n",
3906 | "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/pandas/core/internals/construction.py:329\u001b[0m, in \u001b[0;36mndarray_to_mgr\u001b[0;34m(values, index, columns, dtype, copy, typ)\u001b[0m\n\u001b[1;32m 324\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mreshape(\u001b[38;5;241m-\u001b[39m\u001b[38;5;241m1\u001b[39m, \u001b[38;5;241m1\u001b[39m)\n\u001b[1;32m 326\u001b[0m \u001b[38;5;28;01melse\u001b[39;00m:\n\u001b[1;32m 327\u001b[0m \u001b[38;5;66;03m# by definition an array here\u001b[39;00m\n\u001b[1;32m 328\u001b[0m \u001b[38;5;66;03m# the dtypes will be coerced to a single dtype\u001b[39;00m\n\u001b[0;32m--> 329\u001b[0m values \u001b[38;5;241m=\u001b[39m \u001b[43m_prep_ndarraylike\u001b[49m\u001b[43m(\u001b[49m\u001b[43mvalues\u001b[49m\u001b[43m,\u001b[49m\u001b[43m \u001b[49m\u001b[43mcopy\u001b[49m\u001b[38;5;241;43m=\u001b[39;49m\u001b[43mcopy_on_sanitize\u001b[49m\u001b[43m)\u001b[49m\n\u001b[1;32m 331\u001b[0m \u001b[38;5;28;01mif\u001b[39;00m dtype \u001b[38;5;129;01mis\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m \u001b[38;5;28;01mNone\u001b[39;00m \u001b[38;5;129;01mand\u001b[39;00m \u001b[38;5;129;01mnot\u001b[39;00m is_dtype_equal(values\u001b[38;5;241m.\u001b[39mdtype, dtype):\n\u001b[1;32m 332\u001b[0m \u001b[38;5;66;03m# GH#40110 see similar check inside sanitize_array\u001b[39;00m\n\u001b[1;32m 333\u001b[0m rcf \u001b[38;5;241m=\u001b[39m \u001b[38;5;129;01mnot\u001b[39;00m (is_integer_dtype(dtype) \u001b[38;5;129;01mand\u001b[39;00m values\u001b[38;5;241m.\u001b[39mdtype\u001b[38;5;241m.\u001b[39mkind \u001b[38;5;241m==\u001b[39m \u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m)\n",
3907 | "File \u001b[0;32m/opt/conda/lib/python3.10/site-packages/pandas/core/internals/construction.py:583\u001b[0m, in \u001b[0;36m_prep_ndarraylike\u001b[0;34m(values, copy)\u001b[0m\n\u001b[1;32m 581\u001b[0m values \u001b[38;5;241m=\u001b[39m values\u001b[38;5;241m.\u001b[39mreshape((values\u001b[38;5;241m.\u001b[39mshape[\u001b[38;5;241m0\u001b[39m], \u001b[38;5;241m1\u001b[39m))\n\u001b[1;32m 582\u001b[0m \u001b[38;5;28;01melif\u001b[39;00m values\u001b[38;5;241m.\u001b[39mndim \u001b[38;5;241m!=\u001b[39m \u001b[38;5;241m2\u001b[39m:\n\u001b[0;32m--> 583\u001b[0m \u001b[38;5;28;01mraise\u001b[39;00m \u001b[38;5;167;01mValueError\u001b[39;00m(\u001b[38;5;124mf\u001b[39m\u001b[38;5;124m\"\u001b[39m\u001b[38;5;124mMust pass 2-d input. shape=\u001b[39m\u001b[38;5;132;01m{\u001b[39;00mvalues\u001b[38;5;241m.\u001b[39mshape\u001b[38;5;132;01m}\u001b[39;00m\u001b[38;5;124m\"\u001b[39m)\n\u001b[1;32m 585\u001b[0m \u001b[38;5;28;01mreturn\u001b[39;00m values\n",
3908 | "\u001b[0;31mValueError\u001b[0m: Must pass 2-d input. shape=(4, 4, 2)"
3909 | ]
3910 | }
3911 | ],
3912 | "source": [
3913 | "pd.DataFrame(d1)"
3914 | ]
3915 | },
3916 | {
3917 | "cell_type": "code",
3918 | "execution_count": null,
3919 | "id": "11cdb3c9-bf4c-4568-b7be-a5935031a5d3",
3920 | "metadata": {},
3921 | "outputs": [],
3922 | "source": []
3923 | }
3924 | ],
3925 | "metadata": {
3926 | "kernelspec": {
3927 | "display_name": "Python 3 (ipykernel)",
3928 | "language": "python",
3929 | "name": "python3"
3930 | },
3931 | "language_info": {
3932 | "codemirror_mode": {
3933 | "name": "ipython",
3934 | "version": 3
3935 | },
3936 | "file_extension": ".py",
3937 | "mimetype": "text/x-python",
3938 | "name": "python",
3939 | "nbconvert_exporter": "python",
3940 | "pygments_lexer": "ipython3",
3941 | "version": "3.10.6"
3942 | }
3943 | },
3944 | "nbformat": 4,
3945 | "nbformat_minor": 5
3946 | }
3947 |
--------------------------------------------------------------------------------