├── src ├── requirements.txt ├── README.md ├── parallel.py ├── demo.ipynb ├── metric.py ├── LICENSE ├── sample_gt.json └── sample_pred.json ├── examples ├── PMC1626454_002_00.png ├── PMC2753619_002_00.png ├── PMC2759935_007_01.png ├── PMC2838834_005_00.png ├── PMC3519711_003_00.png ├── PMC3826085_003_00.png ├── PMC3907710_006_00.png ├── PMC4003957_018_00.png ├── PMC4172848_007_00.png ├── PMC4517499_004_00.png ├── PMC4682394_003_00.png ├── PMC4776821_005_00.png ├── PMC4840965_004_00.png ├── PMC5134617_013_00.png ├── PMC5198506_004_00.png ├── PMC5332562_005_00.png ├── PMC5402779_004_00.png ├── PMC5577841_001_00.png ├── PMC5679144_002_01.png ├── PMC5897438_004_00.png └── utils.py ├── ICDAR_SLR_competition ├── example.png └── val_mini.zip ├── LICENSE.md ├── .gitignore ├── README.md └── exploring_PubTabNet_dataset.ipynb /src/requirements.txt: -------------------------------------------------------------------------------- 1 | apted 2 | distance 3 | lxml 4 | tqdm 5 | -------------------------------------------------------------------------------- /examples/PMC1626454_002_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC1626454_002_00.png -------------------------------------------------------------------------------- /examples/PMC2753619_002_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC2753619_002_00.png -------------------------------------------------------------------------------- /examples/PMC2759935_007_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC2759935_007_01.png -------------------------------------------------------------------------------- /examples/PMC2838834_005_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC2838834_005_00.png -------------------------------------------------------------------------------- /examples/PMC3519711_003_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC3519711_003_00.png -------------------------------------------------------------------------------- /examples/PMC3826085_003_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC3826085_003_00.png -------------------------------------------------------------------------------- /examples/PMC3907710_006_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC3907710_006_00.png -------------------------------------------------------------------------------- /examples/PMC4003957_018_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC4003957_018_00.png -------------------------------------------------------------------------------- /examples/PMC4172848_007_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC4172848_007_00.png -------------------------------------------------------------------------------- /examples/PMC4517499_004_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC4517499_004_00.png -------------------------------------------------------------------------------- /examples/PMC4682394_003_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC4682394_003_00.png -------------------------------------------------------------------------------- /examples/PMC4776821_005_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC4776821_005_00.png -------------------------------------------------------------------------------- /examples/PMC4840965_004_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC4840965_004_00.png -------------------------------------------------------------------------------- /examples/PMC5134617_013_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5134617_013_00.png -------------------------------------------------------------------------------- /examples/PMC5198506_004_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5198506_004_00.png -------------------------------------------------------------------------------- /examples/PMC5332562_005_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5332562_005_00.png -------------------------------------------------------------------------------- /examples/PMC5402779_004_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5402779_004_00.png -------------------------------------------------------------------------------- /examples/PMC5577841_001_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5577841_001_00.png -------------------------------------------------------------------------------- /examples/PMC5679144_002_01.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5679144_002_01.png -------------------------------------------------------------------------------- /examples/PMC5897438_004_00.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/examples/PMC5897438_004_00.png -------------------------------------------------------------------------------- /ICDAR_SLR_competition/example.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/ICDAR_SLR_competition/example.png -------------------------------------------------------------------------------- /ICDAR_SLR_competition/val_mini.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ibm-aur-nlp/PubTabNet/HEAD/ICDAR_SLR_competition/val_mini.zip -------------------------------------------------------------------------------- /LICENSE.md: -------------------------------------------------------------------------------- 1 | The annotations in this dataset belong to IBM and are licensed under a [Community Data License Agreement – Permissive – Version 1.0 License](https://cdla.io/permissive-1-0/). 2 | 3 | ## Images 4 | IBM does not own the copyright of the images. Use of the images must abide by the [PMC Open Access Subset Terms of Use](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). 5 | -------------------------------------------------------------------------------- /src/README.md: -------------------------------------------------------------------------------- 1 | # Tree-Edit-Distance-based Similarity (TEDS) 2 | 3 | Evaluation metric for table recognition. This metric measures both the structure similarity and the cell content similarity between the prediction and the ground truth. The score is normalized between 0 and 1, where 1 means perfect matching. 4 | 5 | ## How this metric works 6 | 7 | Please see Section V in [our paper](https://arxiv.org/abs/1911.10683) for the principle of this metric. 8 | 9 | ## How to use the code 10 | 11 | ### Installation 12 | 13 | `pip install -r requirements.txt` 14 | 15 | ### Run the code 16 | 17 | Please see [this demo](demo.ipynb). 18 | 19 | ## Cite us 20 | 21 | ``` 22 | @article{zhong2019image, 23 | title={Image-based table recognition: data, model, and evaluation}, 24 | author={Zhong, Xu and ShafieiBavani, Elaheh and Jimeno Yepes, Antonio}, 25 | journal={arXiv preprint arXiv:1911.10683}, 26 | year={2019} 27 | } 28 | ``` 29 | -------------------------------------------------------------------------------- /examples/utils.py: -------------------------------------------------------------------------------- 1 | import re 2 | from bs4 import BeautifulSoup as bs 3 | 4 | def format_html(img): 5 | ''' Formats HTML code from tokenized annotation of img 6 | ''' 7 | html_string = ''' 8 | 9 | 10 | 16 | 17 | 18 | 19 | %s 20 |
21 | 22 | ''' % ''.join(img['html']['structure']['tokens']) 23 | cell_nodes = list(re.finditer(r'(]*>)()', html_string)) 24 | assert len(cell_nodes) == len(img['html']['cells']), 'Number of cells defined in tags does not match the length of cells' 25 | cells = [''.join(c['tokens']) for c in img['html']['cells']] 26 | offset = 0 27 | for n, cell in zip(cell_nodes, cells): 28 | html_string = html_string[:n.end(1) + offset] + cell + html_string[n.start(2) + offset:] 29 | offset += len(cell) 30 | # prettify the html 31 | soup = bs(html_string) 32 | html_string = soup.prettify() 33 | return html_string 34 | 35 | 36 | if __name__ == '__main__': 37 | import json 38 | import sys 39 | f = sys.argv[1] 40 | with open(f, 'r') as fp: 41 | annotations = json.load(fp) 42 | for img in annotations['images']: 43 | html_string = format_html(img) 44 | print(html_string) 45 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | *.egg-info/ 24 | .installed.cfg 25 | *.egg 26 | MANIFEST 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | .pytest_cache/ 49 | 50 | # Translations 51 | *.mo 52 | *.pot 53 | 54 | # Django stuff: 55 | *.log 56 | local_settings.py 57 | db.sqlite3 58 | 59 | # Flask stuff: 60 | instance/ 61 | .webassets-cache 62 | 63 | # Scrapy stuff: 64 | .scrapy 65 | 66 | # Sphinx documentation 67 | docs/_build/ 68 | 69 | # PyBuilder 70 | target/ 71 | 72 | # Jupyter Notebook 73 | .ipynb_checkpoints 74 | 75 | # pyenv 76 | .python-version 77 | 78 | # celery beat schedule file 79 | celerybeat-schedule 80 | 81 | # SageMath parsed files 82 | *.sage.py 83 | 84 | # Environments 85 | .env 86 | .venv 87 | env/ 88 | venv/ 89 | ENV/ 90 | env.bak/ 91 | venv.bak/ 92 | 93 | # Spyder project settings 94 | .spyderproject 95 | .spyproject 96 | 97 | # Rope project settings 98 | .ropeproject 99 | 100 | # mkdocs documentation 101 | /site 102 | 103 | # mypy 104 | .mypy_cache/ 105 | .DS_Store 106 | examples.tar.gz 107 | ._examples 108 | -------------------------------------------------------------------------------- /src/parallel.py: -------------------------------------------------------------------------------- 1 | from tqdm import tqdm 2 | from concurrent.futures import ProcessPoolExecutor, as_completed 3 | 4 | def parallel_process(array, function, n_jobs=16, use_kwargs=False, front_num=0): 5 | """ 6 | A parallel version of the map function with a progress bar. 7 | 8 | Args: 9 | array (array-like): An array to iterate over. 10 | function (function): A python function to apply to the elements of array 11 | n_jobs (int, default=16): The number of cores to use 12 | use_kwargs (boolean, default=False): Whether to consider the elements of array as dictionaries of 13 | keyword arguments to function 14 | front_num (int, default=3): The number of iterations to run serially before kicking off the parallel job. 15 | Useful for catching bugs 16 | Returns: 17 | [function(array[0]), function(array[1]), ...] 18 | """ 19 | # We run the first few iterations serially to catch bugs 20 | if front_num > 0: 21 | front = [function(**a) if use_kwargs else function(a) for a in array[:front_num]] 22 | else: 23 | front = [] 24 | # If we set n_jobs to 1, just run a list comprehension. This is useful for benchmarking and debugging. 25 | if n_jobs == 1: 26 | return front + [function(**a) if use_kwargs else function(a) for a in tqdm(array[front_num:])] 27 | # Assemble the workers 28 | with ProcessPoolExecutor(max_workers=n_jobs) as pool: 29 | # Pass the elements of array into function 30 | if use_kwargs: 31 | futures = [pool.submit(function, **a) for a in array[front_num:]] 32 | else: 33 | futures = [pool.submit(function, a) for a in array[front_num:]] 34 | kwargs = { 35 | 'total': len(futures), 36 | 'unit': 'it', 37 | 'unit_scale': True, 38 | 'leave': True 39 | } 40 | # Print out the progress as tasks complete 41 | for f in tqdm(as_completed(futures), **kwargs): 42 | pass 43 | out = [] 44 | # Get the results from the futures. 45 | for i, future in tqdm(enumerate(futures)): 46 | try: 47 | out.append(future.result()) 48 | except Exception as e: 49 | out.append(e) 50 | return front + out 51 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # PubTabNet 2 | 3 | PubTabNet is a large dataset for image-based table recognition, containing 568k+ images of tabular data annotated with the corresponding HTML representation of the tables. The table images are extracted from the scientific publications included in the [PubMed Central Open Access Subset (commercial use collection)](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). Table regions are identified by matching the PDF format and the XML format of the articles in the PubMed Central Open Access Subset. More details are available in our paper ["Image-based table recognition: data, model, and evaluation"](https://arxiv.org/abs/1911.10683). 4 | 5 | ## Headlines 6 | 7 | `07/Mar/2022` - Test set and ground truth for the ICDAR 2021 Scientific Literature Parsing competition available [here](https://github.com/ajjimeno/icdar-task-b). 8 | 9 | `04/May/2021` - Report for the ICDAR 2021 Scientific Literature Parsing competition available [here](https://github.com/ibm-aur-nlp/PubLayNet/blob/master/ICDAR_SLR_competition/ICDAR_2021_Scientific_Literature_Parsing.pdf). 10 | 11 | `21/July/2020` - PubTabNet 2.0.0 is released, where the position (bounding box) of non-empty cells is added into the annotation. The annotation file is also changed from `json` format to `jsonl` format to reduce the requirement on large RAM. 12 | 13 | `20/Jul/2020` - PubTabNet is used in [ICDAR 2021 Competition on Scientific Literature Parsing](https://github.com/IBM/ICDAR2021-SLP) ([Task B on Table Recognition](https://aieval.draco.res.ibm.com/challenge/40/overview)) 14 | 15 | `03/July/2020` - `Image-based table recognition: data, model, and evaluation` is accepted by ECCV20. 16 | 17 | `01/July/2020` - Code of **T**ree-**Edit**-**D**istance-based **S**imilarity (TEDS) metric is [released](src). 18 | 19 | ## Updates in progress 20 | 21 | ### Encoder-dual-decoder model 22 | 23 | In our paper, we proposed a new encoder-dual-decoder architecture, which was trained on PubTabNet and can accurately reconstruct the HTML representation of complex tables solely relying on image input. Due to legal constraints, the source code of the model will not be released. 24 | 25 | ### Ground truth of test set 26 | 27 | The ground truth of test will not be release, as we want to keep it for a competition in the future. We will offer a service for people to submit and evaluate their results soon. 28 | 29 | ## Getting data 30 | 31 | PubTabNet is available from: [ajimeno/PubTabNet](https://huggingface.co/datasets/ajimeno/PubTabNet) 32 | 33 | Test set and ground truth for the ICDAR 2021 Scientific Literature Parsing competition available [here](https://github.com/ajjimeno/icdar-task-b). 34 | 35 | ## Annotation structure 36 | 37 | The annotation is in the jsonl (jsonlines) format, where each line contains the annotations on a given sample in the following format: 38 | The structure of the annotation jsonl file is: 39 | 40 | ``` 41 | { 42 | 'filename': str, 43 | 'split': str, 44 | 'imgid': int, 45 | 'html': { 46 | 'structure': {'tokens': [str]}, 47 | 'cell': [ 48 | { 49 | 'tokens': [str], 50 | 'bbox': [x0, y0, x1, y1] # only non-empty cells have this attribute 51 | } 52 | ] 53 | } 54 | } 55 | ``` 56 | 57 | ## Cite us 58 | 59 | ``` 60 | @article{zhong2019image, 61 | title={Image-based table recognition: data, model, and evaluation}, 62 | author={Zhong, Xu and ShafieiBavani, Elaheh and Yepes, Antonio Jimeno}, 63 | journal={arXiv preprint arXiv:1911.10683}, 64 | year={2019} 65 | } 66 | ``` 67 | 68 | ## Examples 69 | 70 | A [Jupyter notebook](./exploring_PubTabNet_dataset.ipynb) is provided to inspect the annotations of 20 sample tables. 71 | 72 | 73 | ## Related links 74 | 75 | [PubLayNet](https://github.com/ibm-aur-nlp/PubLayNet) is a large dataset of document images, of which the layout is annotated with both bounding boxes and polygonal segmentations. The source of the documents is [PubMed Central Open Access Subset (commercial use collection)](https://www.ncbi.nlm.nih.gov/pmc/tools/openftlist/). The annotations are automatically generated by matching the PDF format and the XML format of the articles in the PubMed Central Open Access Subset. More details are available in our paper ["PubLayNet: largest dataset ever for document layout analysis."](https://arxiv.org/abs/1908.07836), which was awarded the [best paper at ICDAR 2019](http://icdar2019.org/award/)! 76 | -------------------------------------------------------------------------------- /src/demo.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## Evaluate a single prediction agains ground truth" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 5, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "# Sample HTML code\n", 17 | "pred = '
Name of algoriNotablefeatures
MACS [23]Uses both a control library and local statistics to minimize bias
SICER [15]Designed for detecting diffusely enriched regions; for example, histone modification
PeakSEQ [24]Corrects for reference genome mappability and local statistics
SISSRs [25]High resolution, precise identification of binding-site location
F-seq [26]Uses kernel density estimation
'\n", 18 | "true = '
Name of algorithmNotable features
MACS [23]Uses both a control library and local statistics to minimize bias
SICER [14]Designed for detecting diffusely enriched regions; for example, histone modification
PeakSeq [24]Corrects for reference genome mappability and local statistics
SISSRs [25]High resolution, precise identification of binding-site location
F-seq [26]Uses kernel density estimation
'" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 10, 24 | "metadata": {}, 25 | "outputs": [ 26 | { 27 | "name": "stdout", 28 | "output_type": "stream", 29 | "text": [ 30 | "TEDS score: 0.9781765018607124\n" 31 | ] 32 | } 33 | ], 34 | "source": [ 35 | "from metric import TEDS\n", 36 | "# Initialize TEDS object\n", 37 | "teds = TEDS()\n", 38 | "# Evaluate\n", 39 | "score = teds.evaluate(pred, true)\n", 40 | "print('TEDS score:', score)" 41 | ] 42 | }, 43 | { 44 | "cell_type": "markdown", 45 | "metadata": {}, 46 | "source": [ 47 | "## Batch evaluation with parallel threads" 48 | ] 49 | }, 50 | { 51 | "cell_type": "code", 52 | "execution_count": 7, 53 | "metadata": {}, 54 | "outputs": [], 55 | "source": [ 56 | "import json\n", 57 | "import pprint\n", 58 | "from metric import TEDS" 59 | ] 60 | }, 61 | { 62 | "cell_type": "code", 63 | "execution_count": 8, 64 | "metadata": {}, 65 | "outputs": [], 66 | "source": [ 67 | "# Load sample ground truth and predictions\n", 68 | "with open('sample_pred.json') as fp:\n", 69 | " pred_json = json.load(fp)\n", 70 | "with open('sample_gt.json') as fp:\n", 71 | " true_json = json.load(fp)" 72 | ] 73 | }, 74 | { 75 | "cell_type": "code", 76 | "execution_count": 9, 77 | "metadata": {}, 78 | "outputs": [ 79 | { 80 | "name": "stderr", 81 | "output_type": "stream", 82 | "text": [ 83 | "100%|██████████| 19.0/19.0 [00:10<00:00, 1.50s/it]\n", 84 | "19it [00:00, 112400.25it/s]" 85 | ] 86 | }, 87 | { 88 | "name": "stdout", 89 | "output_type": "stream", 90 | "text": [ 91 | "{'PMC2094709_004_00.png': 1.0,\n", 92 | " 'PMC2871264_002_00.png': 1.0,\n", 93 | " 'PMC2915972_003_00.png': 0.9298260149130074,\n", 94 | " 'PMC3160368_005_00.png': 0.994615695248351,\n", 95 | " 'PMC3568059_003_00.png': 0.9609420535891124,\n", 96 | " 'PMC3707453_006_00.png': 0.8538903625110521,\n", 97 | " 'PMC3765162_003_01.png': 0.9867342100509474,\n", 98 | " 'PMC3872294_001_00.png': 0.9863636363636363,\n", 99 | " 'PMC4196076_004_00.png': 0.9958653089334908,\n", 100 | " 'PMC4219599_004_00.png': 0.6029978075326913,\n", 101 | " 'PMC4297392_007_00.png': 0.8070175438596492,\n", 102 | " 'PMC4311460_007_00.png': 0.6576923076923077,\n", 103 | " 'PMC4357206_002_00.png': 0.9295181638546892,\n", 104 | " 'PMC4445578_009_01.png': 0.6754965084868096,\n", 105 | " 'PMC4969833_016_01.png': 1.0,\n", 106 | " 'PMC5303243_003_00.png': 0.6494374120956399,\n", 107 | " 'PMC5451934_004_00.png': 0.9978213507625272,\n", 108 | " 'PMC5755158_010_01.png': 1.0,\n", 109 | " 'PMC5849724_006_00.png': 0.9653439200120101,\n", 110 | " 'PMC6022086_007_00.png': 1.0}\n" 111 | ] 112 | }, 113 | { 114 | "name": "stderr", 115 | "output_type": "stream", 116 | "text": [ 117 | "\n" 118 | ] 119 | } 120 | ], 121 | "source": [ 122 | "# Initialize TEDS object, using 4 parallel threads\n", 123 | "teds = TEDS(n_jobs=4)\n", 124 | "# Evaluate\n", 125 | "scores = teds.batch_evaluate(pred_json, true_json)\n", 126 | "# Print results\n", 127 | "pp = pprint.PrettyPrinter()\n", 128 | "pp.pprint(scores)" 129 | ] 130 | } 131 | ], 132 | "metadata": { 133 | "kernelspec": { 134 | "display_name": "Python 3", 135 | "language": "python", 136 | "name": "python3" 137 | }, 138 | "language_info": { 139 | "codemirror_mode": { 140 | "name": "ipython", 141 | "version": 3 142 | }, 143 | "file_extension": ".py", 144 | "mimetype": "text/x-python", 145 | "name": "python", 146 | "nbconvert_exporter": "python", 147 | "pygments_lexer": "ipython3", 148 | "version": "3.6.8" 149 | } 150 | }, 151 | "nbformat": 4, 152 | "nbformat_minor": 2 153 | } 154 | -------------------------------------------------------------------------------- /src/metric.py: -------------------------------------------------------------------------------- 1 | # Copyright 2020 IBM 2 | # Author: peter.zhong@au1.ibm.com 3 | # 4 | # This is free software; you can redistribute it and/or modify 5 | # it under the terms of the Apache 2.0 License. 6 | # 7 | # This software is distributed in the hope that it will be useful, 8 | # but WITHOUT ANY WARRANTY; without even the implied warranty of 9 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 10 | # Apache 2.0 License for more details. 11 | 12 | import distance 13 | from apted import APTED, Config 14 | from apted.helpers import Tree 15 | from lxml import etree, html 16 | from collections import deque 17 | from parallel import parallel_process 18 | from tqdm import tqdm 19 | 20 | class TableTree(Tree): 21 | def __init__(self, tag, colspan=None, rowspan=None, content=None, *children): 22 | self.tag = tag 23 | self.colspan = colspan 24 | self.rowspan = rowspan 25 | self.content = content 26 | self.children = list(children) 27 | 28 | def bracket(self): 29 | """Show tree using brackets notation""" 30 | if self.tag == 'td': 31 | result = '"tag": %s, "colspan": %d, "rowspan": %d, "text": %s' % \ 32 | (self.tag, self.colspan, self.rowspan, self.content) 33 | else: 34 | result = '"tag": %s' % self.tag 35 | for child in self.children: 36 | result += child.bracket() 37 | return "{{{}}}".format(result) 38 | 39 | 40 | class CustomConfig(Config): 41 | @staticmethod 42 | def maximum(*sequences): 43 | """Get maximum possible value 44 | """ 45 | return max(map(len, sequences)) 46 | 47 | def normalized_distance(self, *sequences): 48 | """Get distance from 0 to 1 49 | """ 50 | return float(distance.levenshtein(*sequences)) / self.maximum(*sequences) 51 | 52 | def rename(self, node1, node2): 53 | """Compares attributes of trees""" 54 | if (node1.tag != node2.tag) or (node1.colspan != node2.colspan) or (node1.rowspan != node2.rowspan): 55 | return 1. 56 | if node1.tag == 'td': 57 | if node1.content or node2.content: 58 | return self.normalized_distance(node1.content, node2.content) 59 | return 0. 60 | 61 | 62 | class TEDS(object): 63 | ''' Tree Edit Distance basead Similarity 64 | ''' 65 | def __init__(self, structure_only=False, n_jobs=1, ignore_nodes=None): 66 | assert isinstance(n_jobs, int) and (n_jobs >= 1), 'n_jobs must be an integer greather than 1' 67 | self.structure_only = structure_only 68 | self.n_jobs = n_jobs 69 | self.ignore_nodes = ignore_nodes 70 | self.__tokens__ = [] 71 | 72 | def tokenize(self, node): 73 | ''' Tokenizes table cells 74 | ''' 75 | self.__tokens__.append('<%s>' % node.tag) 76 | if node.text is not None: 77 | self.__tokens__ += list(node.text) 78 | for n in node.getchildren(): 79 | self.tokenize(n) 80 | if node.tag != 'unk': 81 | self.__tokens__.append('' % node.tag) 82 | if node.tag != 'td' and node.tail is not None: 83 | self.__tokens__ += list(node.tail) 84 | 85 | def load_html_tree(self, node, parent=None): 86 | ''' Converts HTML tree to the format required by apted 87 | ''' 88 | global __tokens__ 89 | if node.tag == 'td': 90 | if self.structure_only: 91 | cell = [] 92 | else: 93 | self.__tokens__ = [] 94 | self.tokenize(node) 95 | cell = self.__tokens__[1:-1].copy() 96 | new_node = TableTree(node.tag, 97 | int(node.attrib.get('colspan', '1')), 98 | int(node.attrib.get('rowspan', '1')), 99 | cell, *deque()) 100 | else: 101 | new_node = TableTree(node.tag, None, None, None, *deque()) 102 | if parent is not None: 103 | parent.children.append(new_node) 104 | if node.tag != 'td': 105 | for n in node.getchildren(): 106 | self.load_html_tree(n, new_node) 107 | if parent is None: 108 | return new_node 109 | 110 | def evaluate(self, pred, true): 111 | ''' Computes TEDS score between the prediction and the ground truth of a 112 | given sample 113 | ''' 114 | if (not pred) or (not true): 115 | return 0.0 116 | parser = html.HTMLParser(remove_comments=True, encoding='utf-8') 117 | pred = html.fromstring(pred, parser=parser) 118 | true = html.fromstring(true, parser=parser) 119 | if pred.xpath('body/table') and true.xpath('body/table'): 120 | pred = pred.xpath('body/table')[0] 121 | true = true.xpath('body/table')[0] 122 | if self.ignore_nodes: 123 | etree.strip_tags(pred, *self.ignore_nodes) 124 | etree.strip_tags(true, *self.ignore_nodes) 125 | n_nodes_pred = len(pred.xpath(".//*")) 126 | n_nodes_true = len(true.xpath(".//*")) 127 | n_nodes = max(n_nodes_pred, n_nodes_true) 128 | tree_pred = self.load_html_tree(pred) 129 | tree_true = self.load_html_tree(true) 130 | distance = APTED(tree_pred, tree_true, CustomConfig()).compute_edit_distance() 131 | return 1.0 - (float(distance) / n_nodes) 132 | else: 133 | return 0.0 134 | 135 | def batch_evaluate(self, pred_json, true_json): 136 | ''' Computes TEDS score between the prediction and the ground truth of 137 | a batch of samples 138 | @params pred_json: {'FILENAME': 'HTML CODE', ...} 139 | @params true_json: {'FILENAME': {'html': 'HTML CODE'}, ...} 140 | @output: {'FILENAME': 'TEDS SCORE', ...} 141 | ''' 142 | samples = true_json.keys() 143 | if self.n_jobs == 1: 144 | scores = [self.evaluate(pred_json.get(filename, ''), true_json[filename]['html']) for filename in tqdm(samples)] 145 | else: 146 | inputs = [{'pred': pred_json.get(filename, ''), 'true': true_json[filename]['html']} for filename in samples] 147 | scores = parallel_process(inputs, self.evaluate, use_kwargs=True, n_jobs=self.n_jobs, front_num=1) 148 | scores = dict(zip(samples, scores)) 149 | return scores 150 | 151 | 152 | if __name__ == '__main__': 153 | import json 154 | import pprint 155 | with open('sample_pred.json') as fp: 156 | pred_json = json.load(fp) 157 | with open('sample_gt.json') as fp: 158 | true_json = json.load(fp) 159 | teds = TEDS(n_jobs=4) 160 | scores = teds.batch_evaluate(pred_json, true_json) 161 | pp = pprint.PrettyPrinter() 162 | pp.pprint(scores) 163 | -------------------------------------------------------------------------------- /src/LICENSE: -------------------------------------------------------------------------------- 1 | Apache License 2 | Version 2.0, January 2004 3 | http://www.apache.org/licenses/ 4 | 5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 6 | 7 | 1. Definitions. 8 | 9 | "License" shall mean the terms and conditions for use, reproduction, 10 | and distribution as defined by Sections 1 through 9 of this document. 11 | 12 | "Licensor" shall mean the copyright owner or entity authorized by 13 | the copyright owner that is granting the License. 14 | 15 | "Legal Entity" shall mean the union of the acting entity and all 16 | other entities that control, are controlled by, or are under common 17 | control with that entity. For the purposes of this definition, 18 | "control" means (i) the power, direct or indirect, to cause the 19 | direction or management of such entity, whether by contract or 20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 21 | outstanding shares, or (iii) beneficial ownership of such entity. 22 | 23 | "You" (or "Your") shall mean an individual or Legal Entity 24 | exercising permissions granted by this License. 25 | 26 | "Source" form shall mean the preferred form for making modifications, 27 | including but not limited to software source code, documentation 28 | source, and configuration files. 29 | 30 | "Object" form shall mean any form resulting from mechanical 31 | transformation or translation of a Source form, including but 32 | not limited to compiled object code, generated documentation, 33 | and conversions to other media types. 34 | 35 | "Work" shall mean the work of authorship, whether in Source or 36 | Object form, made available under the License, as indicated by a 37 | copyright notice that is included in or attached to the work 38 | (an example is provided in the Appendix below). 39 | 40 | "Derivative Works" shall mean any work, whether in Source or Object 41 | form, that is based on (or derived from) the Work and for which the 42 | editorial revisions, annotations, elaborations, or other modifications 43 | represent, as a whole, an original work of authorship. For the purposes 44 | of this License, Derivative Works shall not include works that remain 45 | separable from, or merely link (or bind by name) to the interfaces of, 46 | the Work and Derivative Works thereof. 47 | 48 | "Contribution" shall mean any work of authorship, including 49 | the original version of the Work and any modifications or additions 50 | to that Work or Derivative Works thereof, that is intentionally 51 | submitted to Licensor for inclusion in the Work by the copyright owner 52 | or by an individual or Legal Entity authorized to submit on behalf of 53 | the copyright owner. For the purposes of this definition, "submitted" 54 | means any form of electronic, verbal, or written communication sent 55 | to the Licensor or its representatives, including but not limited to 56 | communication on electronic mailing lists, source code control systems, 57 | and issue tracking systems that are managed by, or on behalf of, the 58 | Licensor for the purpose of discussing and improving the Work, but 59 | excluding communication that is conspicuously marked or otherwise 60 | designated in writing by the copyright owner as "Not a Contribution." 61 | 62 | "Contributor" shall mean Licensor and any individual or Legal Entity 63 | on behalf of whom a Contribution has been received by Licensor and 64 | subsequently incorporated within the Work. 65 | 66 | 2. Grant of Copyright License. Subject to the terms and conditions of 67 | this License, each Contributor hereby grants to You a perpetual, 68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 69 | copyright license to reproduce, prepare Derivative Works of, 70 | publicly display, publicly perform, sublicense, and distribute the 71 | Work and such Derivative Works in Source or Object form. 72 | 73 | 3. Grant of Patent License. Subject to the terms and conditions of 74 | this License, each Contributor hereby grants to You a perpetual, 75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 76 | (except as stated in this section) patent license to make, have made, 77 | use, offer to sell, sell, import, and otherwise transfer the Work, 78 | where such license applies only to those patent claims licensable 79 | by such Contributor that are necessarily infringed by their 80 | Contribution(s) alone or by combination of their Contribution(s) 81 | with the Work to which such Contribution(s) was submitted. If You 82 | institute patent litigation against any entity (including a 83 | cross-claim or counterclaim in a lawsuit) alleging that the Work 84 | or a Contribution incorporated within the Work constitutes direct 85 | or contributory patent infringement, then any patent licenses 86 | granted to You under this License for that Work shall terminate 87 | as of the date such litigation is filed. 88 | 89 | 4. Redistribution. You may reproduce and distribute copies of the 90 | Work or Derivative Works thereof in any medium, with or without 91 | modifications, and in Source or Object form, provided that You 92 | meet the following conditions: 93 | 94 | (a) You must give any other recipients of the Work or 95 | Derivative Works a copy of this License; and 96 | 97 | (b) You must cause any modified files to carry prominent notices 98 | stating that You changed the files; and 99 | 100 | (c) You must retain, in the Source form of any Derivative Works 101 | that You distribute, all copyright, patent, trademark, and 102 | attribution notices from the Source form of the Work, 103 | excluding those notices that do not pertain to any part of 104 | the Derivative Works; and 105 | 106 | (d) If the Work includes a "NOTICE" text file as part of its 107 | distribution, then any Derivative Works that You distribute must 108 | include a readable copy of the attribution notices contained 109 | within such NOTICE file, excluding those notices that do not 110 | pertain to any part of the Derivative Works, in at least one 111 | of the following places: within a NOTICE text file distributed 112 | as part of the Derivative Works; within the Source form or 113 | documentation, if provided along with the Derivative Works; or, 114 | within a display generated by the Derivative Works, if and 115 | wherever such third-party notices normally appear. The contents 116 | of the NOTICE file are for informational purposes only and 117 | do not modify the License. You may add Your own attribution 118 | notices within Derivative Works that You distribute, alongside 119 | or as an addendum to the NOTICE text from the Work, provided 120 | that such additional attribution notices cannot be construed 121 | as modifying the License. 122 | 123 | You may add Your own copyright statement to Your modifications and 124 | may provide additional or different license terms and conditions 125 | for use, reproduction, or distribution of Your modifications, or 126 | for any such Derivative Works as a whole, provided Your use, 127 | reproduction, and distribution of the Work otherwise complies with 128 | the conditions stated in this License. 129 | 130 | 5. Submission of Contributions. Unless You explicitly state otherwise, 131 | any Contribution intentionally submitted for inclusion in the Work 132 | by You to the Licensor shall be under the terms and conditions of 133 | this License, without any additional terms or conditions. 134 | Notwithstanding the above, nothing herein shall supersede or modify 135 | the terms of any separate license agreement you may have executed 136 | with Licensor regarding such Contributions. 137 | 138 | 6. Trademarks. This License does not grant permission to use the trade 139 | names, trademarks, service marks, or product names of the Licensor, 140 | except as required for reasonable and customary use in describing the 141 | origin of the Work and reproducing the content of the NOTICE file. 142 | 143 | 7. Disclaimer of Warranty. Unless required by applicable law or 144 | agreed to in writing, Licensor provides the Work (and each 145 | Contributor provides its Contributions) on an "AS IS" BASIS, 146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 147 | implied, including, without limitation, any warranties or conditions 148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 149 | PARTICULAR PURPOSE. You are solely responsible for determining the 150 | appropriateness of using or redistributing the Work and assume any 151 | risks associated with Your exercise of permissions under this License. 152 | 153 | 8. Limitation of Liability. In no event and under no legal theory, 154 | whether in tort (including negligence), contract, or otherwise, 155 | unless required by applicable law (such as deliberate and grossly 156 | negligent acts) or agreed to in writing, shall any Contributor be 157 | liable to You for damages, including any direct, indirect, special, 158 | incidental, or consequential damages of any character arising as a 159 | result of this License or out of the use or inability to use the 160 | Work (including but not limited to damages for loss of goodwill, 161 | work stoppage, computer failure or malfunction, or any and all 162 | other commercial damages or losses), even if such Contributor 163 | has been advised of the possibility of such damages. 164 | 165 | 9. Accepting Warranty or Additional Liability. While redistributing 166 | the Work or Derivative Works thereof, You may choose to offer, 167 | and charge a fee for, acceptance of support, warranty, indemnity, 168 | or other liability obligations and/or rights consistent with this 169 | License. However, in accepting such obligations, You may act only 170 | on Your own behalf and on Your sole responsibility, not on behalf 171 | of any other Contributor, and only if You agree to indemnify, 172 | defend, and hold each Contributor harmless for any liability 173 | incurred by, or claims asserted against, such Contributor by reason 174 | of your accepting any such warranty or additional liability. 175 | 176 | END OF TERMS AND CONDITIONS 177 | 178 | APPENDIX: How to apply the Apache License to your work. 179 | 180 | To apply the Apache License to your work, attach the following 181 | boilerplate notice, with the fields enclosed by brackets "[]" 182 | replaced with your own identifying information. (Don't include 183 | the brackets!) The text should be enclosed in the appropriate 184 | comment syntax for the file format. We also recommend that a 185 | file or class name and description of purpose be included on the 186 | same "printed page" as the copyright notice for easier 187 | identification within third-party archives. 188 | 189 | Copyright [yyyy] [name of copyright owner] 190 | 191 | Licensed under the Apache License, Version 2.0 (the "License"); 192 | you may not use this file except in compliance with the License. 193 | You may obtain a copy of the License at 194 | 195 | http://www.apache.org/licenses/LICENSE-2.0 196 | 197 | Unless required by applicable law or agreed to in writing, software 198 | distributed under the License is distributed on an "AS IS" BASIS, 199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 200 | See the License for the specific language governing permissions and 201 | limitations under the License. 202 | -------------------------------------------------------------------------------- /src/sample_gt.json: -------------------------------------------------------------------------------- 1 | {"PMC5755158_010_01.png": {"html": "
WeaningWeek 15Off-test
Weaning\u2013\u2013\u2013
Week 15\u20130.17 \u00b1 0.080.16 \u00b1 0.03
Off-test\u20130.80 \u00b1 0.240.19 \u00b1 0.09
", "tag_len": 44, "cell_len_max": 11, "width": 238, "height": 59, "type": "simple"}, "PMC4445578_009_01.png": {"html": "
Reactive astroglioisChanges in astrocytes morphologyChanges in molecules expression
Upregulated moleculesUpregulated or downregulated molecules
Mild to moderate astrogliosis\u2022 Hypertrophy of cell body\u2022 Structural elements: GFAP, nestin, vimentin\u2022 Inflammatory cell regulators: cytokines, growth factors, glutathione
\u2022 Astrocytes processes are are numerous and thicker\u2022 Transcriptional regulators: STAT3, NF\u03baB, Rheb-m TOR, cAMP, Olig2, SOX9 [61\u201365].\u2022 Transporters and pumps: AQP4 and Na+/K+ transporters [61, 66\u201369]
\u2022 Glutamate transporter [70\u201373]
\u2022 The non-overlapping domains of individual astrocytes are preserved\u2022 Vascular regulators: PGE, NO [74, 75]
\u2022 Energy provision: lactate [76]
\u2022 Molecules implicated in synapse formation and
Severe astrogliosis and glial scar\u2022 Intense hypertrophy of cell body\u2022 Remodeling: thrombospondin and Complement C1q [77, 78]
\u2022 Significant extension of processes\u2022 Molecules implicated in oxidative stress and providing protection from oxidative stress: NO, NOS, SOD, Glutathione [67, 68, 79]
\u2022 Proliferation
\u2022 Overlapping of individual domains
\u2022 Substantial reorganization of tissue architecture [60]
", "tag_len": 116, "cell_len_max": 129, "width": 486, "height": 248, "type": "complex"}, "PMC2871264_002_00.png": {"html": "
Name of algorithmNotable features
MACS [23]Uses both a control library and local statistics to minimize bias
SICER [14]Designed for detecting diffusely enriched regions; for example, histone modification
PeakSeq [24]Corrects for reference genome mappability and local statistics
SISSRs [25]High resolution, precise identification of binding-site location
F-seq [26]Uses kernel density estimation
", "tag_len": 40, "cell_len_max": 84, "width": 238, "height": 124, "type": "simple"}, "PMC3872294_001_00.png": {"html": "
HC (N = 20)FASD (N = 15)
Age (years)16.3 (2.1)15.3 (2.1)
IQ108 (15)*80 (15)*
Male/female (%male)12/8 (60%)10/5 (67%)
FASD sub diagnosis\u20138 FAS, 7 ARND
", "tag_len": 44, "cell_len_max": 19, "width": 251, "height": 88, "type": "simple"}, "PMC2915972_003_00.png": {"html": "
No of patients
Gender:
Men24
Women26
Age (years):
30-392
40-498
50-5915
60-6916
70-796
\u2265 803
Tumor site:
Bladder4
Breast10
Colorectal4
Esophageal9
Gynecological7
Lung6
Prostate10
Length of interval between baseline and follow-up interview
(median)
< 50 days22
\u2265 50 days28
", "tag_len": 142, "cell_len_max": 59, "width": 238, "height": 287, "type": "complex"}, "PMC4196076_004_00.png": {"html": "
miRNAChange relative to controlsDirection of regulationChromosomemiRNAChange relative to controlsDirection of regulationChromosome
hsa-miR-11812.13Up19hsa-miR-8742.97Up5
hsa-miR-125a-5p5.04Up19hsa-miR-8902.83UpX
hsa-miR-21-3p2.82Up17hsa-miR-9392.59Up8
hsa-miR-29b-1-5p3.12Up7hsa-miR-1290\u22127.56Down1
hsa-miR-3663-3p2.19Up10hsa-miR-1915-3p\u22122.63Down10
hsa-miR-3127-5p2.01Up2hsa-miR-2861\u22123.31Down9
hsa-miR-3663-3p2.03Up10hsa-miR-3665\u22122.37Down13
hsa-miR-371a-5p3.14Up19hsa-miR-4257\u22123.62Down1
hsa-miR-43272.95Up21hsa-miR-452-5p\u22122.54DownX
hsa-miR-584-5p2.31Up5hsa-miR-513a-5p\u22123.15DownX
hsa-miR-6025.74Up9hsa-miR-572\u22125.80Down4
hsa-miR-629-3p2.71Up15hsa-miR-629-3p\u22123.03Down15
hsa-miR-642b-3p2.10Up19hsa-miR-765\u22127.18Down1
hsa-miR-6513.91UpXhsa-miR-875-5p\u22123.91Down8
hsa-miR-7622.84Up16hsa-miR-940\u22122.31Down16
", "tag_len": 292, "cell_len_max": 29, "width": 486, "height": 236, "type": "simple"}, "PMC3160368_005_00.png": {"html": "
Methods (n-mers used)Average Sensitivity of 5-fold cross validation (%)Average Specificity of 5-fold cross validation (%)
FDAFSA(hexamers)84*86*
PromMachine(tetramers)86+81+
", "tag_len": 28, "cell_len_max": 52, "width": 238, "height": 71, "type": "simple"}, "PMC3707453_006_00.png": {"html": "
TFC Layer Thickness [\u03bcm]Star Magnitude 1Star Magnitude 6Saturation Charge [e-]Capacitance Linearity [%]
Signal @ 0.1s integr. [e-]Noise @ 0.1s integr. [e-]S/N at 10 bit A/D [dB]Signal @ 0.1s integr. [e-]Noise @ 0.1s integr. [e-]S/N at 10 bit A/D [dB]
0.51212004984718823581050000099.2
1.01439604265016101991327223298.6
1.51552204185017131471919710998.1
1.81599504185017591301917201897.8
2.01624004195017841221915957597.6
2.21645504205018071151914925497.5
", "tag_len": 160, "cell_len_max": 30, "width": 446, "height": 184, "type": "complex"}, "PMC4311460_007_00.png": {"html": "
NumberPatients
CategoryTypeCHP%(N = 4,560)%
IInflammation6,98711.33,53777.6
IIInfection3,6295.92,45153.8
IIIInjury5,5569.03,40174.6
IVSpecific conditions32,01651.9n.c.
VNeoplasms3,5925.82,461#54
Maligne1,4441,219 (27%)
Other-benign2,1481,758 (39%)
VICongenital4900.8n.c.
VIIOtherwise9,38315.2n.c.
TotalALL-types61,653100
", "tag_len": 220, "cell_len_max": 19, "width": 486, "height": 170, "type": "complex"}, "PMC5451934_004_00.png": {"html": "
ConditionPre Well-BeingPost Well-BeingPre-Post Change
TP (handler & dog interaction)46.33 \u00b1 7.41 148.69 \u00b1 7.22+2.36
DO (dog only interaction)49.78 \u00b1 7.9151.56 \u00b1 6.99+1.78 **
HO (handler only interaction)47.37 \u00b1 7.5746.43 \u00b1 8.03\u22120.94 **
", "tag_len": 44, "cell_len_max": 30, "width": 389, "height": 56, "type": "simple"}, "PMC5849724_006_00.png": {"html": "
AnalytesGC\u2013HRMSGC\u2013MS/MSGC\u2013MS
LOQ, (ng/CFPa)Estimated LOQ, (ng/cig)LOQ, (ng/CFPa)Estimated LOQ, (ng/cig)LOQ, (ng/CFPa)Estimated LOQ, (ng/cig)
Naphthalene0.510.0261178.7158.94108.175.41
Benzo[c]phenanthrene0.040.002NDND66.803.34
Benzo[a]anthracene0.030.00238.571.9338.111.91
Chrysene0.040.00250.132.5149.612.48
Cyclopenta[c,d]pyrene0.020.00148.842.4460.043.00
5-Methylchrysene0.040.002NDND2.480.12
Benzo[b]fluoranthene0.040.00211.440.575.080.25
Benzo[k]fluoranthene0.050.00312.410.625.070.25
Benzo[j]aceanthrylene0.090.005NDNDNDND
Benzo[a]pyrene0.040.0025.010.253.030.15
Indeno[1,2,3-c,d]pyrene0.020.0015.460.271.540.08
Dibenzo[a,h]anthracene0.070.0040.830.041.480.07
Dibenzo[a,l]pyrene0.050.003NDNDNDND
Dibenzo[a,e]pyrene0.040.0020.800.040.280.01
Dibenzo[a,i]pyrene0.060.0031.330.07NDND
Dibenzo[a,h]pyrene0.070.0042.990.15NDND
", "tag_len": 292, "cell_len_max": 27, "width": 486, "height": 253, "type": "complex"}, "PMC6022086_007_00.png": {"html": "
MethodData TypeMean (m)RMSE (m)P90% (m)PGSD (%)
Improved FCMGaofen-35.775.8910.0794.37
Sentinel-16.305.8314.0380.00
Original FCMGaofen-36.977.6613.8790.70
Sentinel-18.534.8113.1490.00
", "tag_len": 74, "cell_len_max": 12, "width": 409, "height": 77, "type": "complex"}, "PMC4297392_007_00.png": {"html": "
Treatment phaseAdverse eventNo. of patients
T1Swelling1
Itching1
Fever4
Throat infection1
Chest Congestion2
Total9
T2Diarrhea1
Body Pain1
Total2
T3Diarrhea1
Total1
T4Nil-
", "tag_len": 98, "cell_len_max": 17, "width": 238, "height": 185, "type": "complex"}, "PMC2094709_004_00.png": {"html": "
WeekDuration (min)Intensity (% HRR)Intensity (RPE)
12050 \u2013 609 \u2013 11
22050 \u2013 609 \u2013 11
3 \u2013 52560 \u2013 7011
6 \u2013 83060 \u2013 7011
9 \u2013 113070 \u2013 8011 \u2013 13
12 \u2013 143570 \u2013 8011 \u2013 13
15 & 164075 \u2013 8513 \u2013 15
", "tag_len": 84, "cell_len_max": 19, "width": 503, "height": 107, "type": "simple"}, "PMC3568059_003_00.png": {"html": "
Participants during the period;
0 to 3 months3 to 6 months6 to 12 months
Characteristicsn=72n=71n=65
Age, years, median (range)73 (50\u201394)73 (47\u201392)73 (47\u201390)
Patients, n (%)
Female33 (46)27 (38)26 (40)
Male39 (54)44 (62)39 (60)
Stroke classification (TOAST), n (%)
Large vessel disease17 (24)18 (25)17 (26)
Small vessel disease21 (29)21 (30)17 (26)
Cardioembolic stroke15 (21)11 (15)11 (17)
Cryptogenic stroke13 (18)14 (20)12 (19)
Intracerebral haemorrhage6 (8)7 (10)8 (12)
Side of lesion, n (%)
Right side lesion35 (49)32 (45)28 (43)
Left side lesion37 (51)39 (55)37 (57)
Hypertension47 (65)44 (62)41 (63)
Diabetes mellitus17 (24)18 (25)17 (26)
Results from clinical scales 1\u20137 days after stroke onset
BBS median (range) (n)35 (0\u201356) (n=71)41 (0\u201356) (n=70)41 (0\u201356) (n=64)
M-MAS UAS-95 median (range)45 (12\u201355) (n=65)47 (12\u201355) (n=65)50 (16\u201355) (n=59)
", "tag_len": 208, "cell_len_max": 56, "width": 486, "height": 296, "type": "complex"}, "PMC4357206_002_00.png": {"html": "
N = 121
Demographics
Age (yr) - median (IQR)62 (56-73)
Female sex (%)46 (38)
White race (%)112 (93)
Comorbidities (%)
Hypertension64 (53)
Chronic lung disease37 (31)
Active malignancy34 (28)
Diabetes mellitus29 (24)
Chronic kidney disease7 (6)
Congestive heart failure4 (3)
Chronic liver disease2 (2)
Severity of illness
APACHE II score - median (IQR)*14 (10-16)
Charlson Comorbidity Index - median (IQR)\u20202 (1-4)
ICU type
Surgical102 (84)
SICU66 (54)
TICU36 (30)
Nonsurgical19 (16)
CCU11 (9)
MICU8 (7)
Status of procedure (for surgical patients) (%)
Elective41 (34)
Urgent57 (47)
Days in hospital prior to enrollment \u2013 median (IQR)1 (1-3)
", "tag_len": 166, "cell_len_max": 51, "width": 238, "height": 381, "type": "simple"}, "PMC4219599_004_00.png": {"html": "
ORP (n = 9)RALP (n = 24)Total (n = 33)
Anthropometric data
Age (yr)60 (7)63 (6)62 (6)
Height (m)1.76 (0.07)1.75 (0.05)1.75 (0.06)
Weight (kg)92 (12)83 (10)86 (11)
BMI (kg.m-2)29.6 (4.5)27.3 (3.0)27.9 (3.6)
Preoperative factors
PSA (ng/mL)5.8 (4.2)5.0 (2.1)5.2 (2.8)
Preoperative Gleason score
3 + 31 (11%)5 (21%)6 (18%)
3 + 45 (56%)16 (67%)21 (64%)
4 + 33 (33%)2 (9%)5 (15%)
4 + 40 (0%)1 (4%)1 (3%)
Clinical tumour stage
cT14 (44%)13 (54%)17 (52%)
cT25 (56%)11 (46%)16 (48%)
cT30 (0%)0 (0%)0 (0%)
cT40 (0%)0 (0%)0 (0%)
Prostate volume (cc)40.2 (13.4)41.2 (12.5)40.9 (12.6)
Intraoperative factors
Nerve sparing
None3 (33%)3 (13%)6 (18%)
One bundle2 (22%)2 (9%)4 (12%)
Two bundles4 (44%)19 (79%)23 (70%)
Pelvic lymph node dissection7 (78%)2 (9%)a9 (27%)
Bladder neck preservation0 (0%)23 (96%)a23 (70%)
Postoperative factors
Postoperative Gleason score
3 + 31 (11%)3 (13%)4 (12%)
3 + 46 (67%)16 (67%)22 (67%)
4 + 32 (22%)5 (21%)7 (21%)
4 + 40 (0%)0 (0%)0 (0%)
Pathological tumour stage
pT26 (67%)18 (75%)24 (73%)
pT33 (33%)6 (25%)9 (27%)
pT40 (0%)0 (0%)0 (0%)
Positive lymph nodes1/7 (14%)0/2 (0%)1/9 (11%)
Positive margins2 (22%)2 (9%)4 (12%)
Duration of postoperative hospital stay (d)2.9 (0.3)2.0 (0.2)a2.3 (0.5)
Duration of postoperative catheterization (d)10.2 (3.0)8.4 (1.6)8.9 (2.2)
Anastomic structure0 (0%)1 (4%)1 (3%)
", "tag_len": 414, "cell_len_max": 45, "width": 486, "height": 577, "type": "simple"}, "PMC3765162_003_01.png": {"html": "
Men (n = 359)Women (n = 412)
Metabolic syndromeMetabolic syndrome
Baseline characteristicsYes (n = 163)No (n = 196)P valueYes (n = 96)No (n = 316)P value
Age (years)*61.86 (\u00b10.83)60.32 (\u00b10.77)0.1764.96 (\u00b10.88)58.52 (\u00b10.55)<0.001
Sitting Systolic BP (mmHg)*141.34 (\u00b11.27)132.26 (\u00b11.15)<0.001151.82 (\u00b11.16)137.49 (\u00b10.96)<0.001
Sitting Diastolic BP (mmHg)*85.69 (\u00b10.77)80.79 (\u00b10.73)<0.00189.27 (\u00b10.92)82.67 (\u00b10.51)<0.001
Antihypertensive Therapy (%)50.9%28.4%<0.00160.4%29.4%<0.001
Total Cholesterol (mmol/L)*5.61 (\u00b10.08)5.70 (\u00b10.08)0.566.04 (\u00b10.1)5.99 (\u00b10.06)0.67
LDL cholesterol (mmol/L)*3.44 (\u00b10.06)3.49 (\u00b10.06)0.523.58 (\u00b1 0.06)3.54 (\u00b1 0.04)0.66
HDL cholesterol (mmol/L)*1.03 (\u00b10.63)1.27 (\u00b10.02)<0.0011.20 (\u00b1 0.02)1.48 (\u00b10.016)<0.001
Triglycerides (mmol/L)\u20202.10 (1.63; 2.64)1.32 (0.98; 1.57)<0.0012.15 (1.78; 2.83)1.24 (0.97; 1.56)<0.001
Diabetes mellitus (%)30.7%6.3%<0.00133.3%2.3%<0.001
BMI (kg/m2)*29.88 (\u00b10.35)26.06 (\u00b10.2)<0.00132.39 (\u00b10.47)26.95 (\u00b10.25)<0.001
ApoA1 (g/L)*1.29 (\u00b10.013)1.40 (\u00b10.017)<0.0011.44 (\u00b10.02)1.55 (\u00b10.001)<0.001
ApoB (g/L)*1.21 (\u00b10.02)1.19 (\u00b10.02)0.481.23 (\u00b10.02)1.18 (\u00b10.014)0.044
Homa index\u20202.25(1.15; 4.18)0.94(0.51; 1.8)<0.0012.51 (1.67; 3.86)1.14 (0.72; 1.7)<0.001
IMTccMean (mm)*0.79 (\u00b10.15)0.76 (\u00b10.12)0.0840.77 (\u00b10.16)0.69 (\u00b10.13)<0.001
Sum of total plaque area (mm2)\u202053 (25; 103)42 (10;72)0.00216 (1; 44)8 (1;32)0.01
Sum of plaque area carotids (mm2)\u202022 (1; 39)12 (1; 27.5)0.0118.75 (1;25.75)1 (1; 19)0.013
Sum of plaque area femoral (mm2)\u202033(10; 62)23(1; 49)0.0111(1; 17.75)1(1; 6)0.012
", "tag_len": 316, "cell_len_max": 42, "width": 486, "height": 282, "type": "complex"}, "PMC5303243_003_00.png": {"html": "
CharacteristicsTotal (N = 613)MSSA(N = 508)MRSA (N = 105)OR (95%CI)P-value
Age (years)(median, quartiles)72 (66;79)75 (67;81)72 (65;78)N/A0.0048
Gender:Female322 (100.0)214 (82.3)57 (17.7)1.4 (0.93\u20132.16)0.5909
Male291 (100.0)255 (83.5)48 (16.5)
Step aging n (%)0,0849
Young Old311 (100.0)267 (85.9)44 (14.1)1.5 (1.00\u20132.35)
Old Old272 (100.0)219 (80.5)53 (19.5)0.7 (0.49\u20131.13)
Longevity30 (100.0)22 (73.3)8 (26.7)0.6 (0.24\u20131.27)
Disease n (%)<0.0001
PNU47 (100.0)28 (59.6)19 (40.4)0.3 (0.14\u20130.49)
BSI37 (100.0)27 (73.0)10 (27.0)0.5 (0.25\u20131.14)
SSTI416 (100.0)350 (84.1)66 (15.9)1.3 (0.85\u20132.03)
EI62 (100.0)56 (90.3)6 (9.7)1.7 (0.72\u20134.06)
Others51 (100.0)47 (92.2)4 (7.8)2.6 (0.91\u20137.31)
Place of the treatment infections n (%)0.0033
INPATIENTS430 (100.0)352 (81.4)78 (18.1)0.8 (0.49\u20131.26)
LTCF16 (100.0)9 (56.3)7 (43.8)0.3 (0.09\u20130.69)
OUTPATIENTS167 (100.0)147 (88.0)20 (12.0)1.7 (1.03\u20132.92)
Infections treated in hospitals (INPATIENTS N = 430, n (%))
ICU19 (100.0)12 (63.2)7 (36.8)2.8 (1.06\u20137.34)0.014
non-ICU411 (100.0)340 (82.7)71 (17.3)
", "tag_len": 290, "cell_len_max": 63, "width": 486, "height": 316, "type": "complex"}, "PMC4969833_016_01.png": {"html": "
HorizontalNormalVerticalTotal Object
Horizontal383546 (83%)
Normal154762 (87%)
Vertical22111401163 (98%)
", "tag_len": 52, "cell_len_max": 14, "width": 264, "height": 58, "type": "simple"}} -------------------------------------------------------------------------------- /src/sample_pred.json: -------------------------------------------------------------------------------- 1 | {"PMC2094709_004_00.png": "\n \n \n \n \n \n \n \n
WeekDuration (min)Intensity (% HRR)Intensity (RPE)
12050 \u2013 609 \u2013 11
22050 \u2013 609 \u2013 11
3 \u2013 52560 \u2013 7011
6 \u2013 83060 \u2013 7011
9 \u2013 113070 \u2013 8011 \u2013 13
12 \u2013 143570 \u2013 8011 \u2013 13
15 & 164075 \u2013 8513 \u2013 15
\n \n ", "PMC2871264_002_00.png": "\n \n \n \n \n \n \n \n
Name of algorithmNotable features
MACS [23]Uses both a control library and local statistics to minimize bias
SICER [14]Designed for detecting diffusely enriched regions; for example, histone modification
PeakSeq [24]Corrects for reference genome mappability and local statistics
SISSRs [25]High resolution, precise identification of binding-site location
F-seq [26]Uses kernel density estimation
\n \n ", "PMC2915972_003_00.png": "\n \n \n \n \n \n \n \n
No of patients
Gender:
Men24
Women26
Age (years):
30-392
40-498
50-5915
60-6916
70-796
\u2265 803
Tumor site:
Bladder4
Breast10
Colorectal4
Exophageal9
Gynecological7
Lung6
Prostate10
Length of interval between baseline and follow-up interview (median)
< 50 days22
\u2265 50 days28
\n \n ", "PMC3160368_005_00.png": "\n \n \n \n \n \n \n \n
Methods (n-mers used)Average Sensitivity of 5-fold cross validation (%)Average Specificity of 5-fold cross validation (%)
FDAFSA (hexamers)84*86*
PromMachine (tetramers)86+81+
\n \n ", "PMC3568059_003_00.png": "\n \n \n \n \n \n \n \n
Participants during the period;
0 to 3 months3 to 6 months6 to 12 months
Characteristicsn=72n=71n=65
Age, years, median (range)73 (50\u201394)73 (47\u201392)73 (47\u201390)
Patients, n (%)
Female33 (46)27 (38)26 (40)
Male39 (54)44 (62)39 (60)
Stroke classification (TOAST), n (%)
Large vessel disease17 (24)18 (25)17 (26)
Small vessel disease21 (29)21 (30)17 (26)
Cardioembolic stroke15 (21)11 (15)11 (17)
Cryptogenic stroke13 (18)14 (20)12 (19)
Intracerebral haemorrhage6 (8)7 (10)8 (12)
Side of feision, n (%)
Right side lesion35 (49)32 (45)28 (43)
Left side lesion37 (51)39 (53)37 (57)
Hypertension47 (65)44 (62)41 (63)
Diabetes mellitus17 (24)18 (25)17 (26)
Results from clinical scales 1\u20137 days after stroke onset
BBS median (range) (n)35 (0\u201356) (n=71)41 (0\u201356) (n=70)41 (0\u201356) (n=46)
M-MAS UAS-IS median (range)45 (12\u201355) (n=65)47 (12\u201355) (n=65)50 (16\u201355) (n=56)
\n \n ", "PMC3707453_006_00.png": "\n \n \n \n \n \n \n \n
Star Magnitude 1Star Magnitude 6Saturation Charge [%]Capacitanc e Linearity [%]
Noise (g)SN at 10Signal (g)Noise (g)SN at 10 No AD [d]
121200498471882358105000099.2
1439604265016101991327223298.6
1552204185017131471919710998.1
1599504185017591301917201897.8
1624004195017841221915957597.6
164550420501801151914925497.5
\n \n ", "PMC3765162_003_01.png": "\n \n \n \n \n \n \n \n
Men (n = 359)Women (n = 412)
Metabolic syndromeMetabolic syndrome
Baseline characteristicsYes (n = 163)No (n = 196)P-valueYes (n = 96)No (n = 316)P value
Age (years)*61.86 (\u00b10.83)60.32 (\u00b10.77)0.1764.96 (\u00b10.88)58.52 (\u00b10.55)<0.001
Sitting Systolic BP (mmHg)*141.34 (\u00b11.27)132.26 (\u00b11.15)<0.001151.82 (\u00b11.16)137.4( (\u00b10.96)<0.001
Stitting Diastolic BP (mmHg)*85.69 (\u00b10.77)80.79 (\u00b10.73)<0.00189.27 (\u00b10.92)82.67 (\u00b10.51)<0.001
Antitypertensive Therapy (%)50.9%28.4%<0.00160.4%29.4%<0.001
Total Cholesterol (mmol/L)*5.61 (\u00b10.08)5.70 (\u00b10.08)0.566.04 (\u00b10.1)5.99 (\u00b10.06)0.67
LDL cholesterol (mmol/L)*3.44 (\u00b10.06)3.49 (\u00b10.06)0.523.58 (\u00b1 0.06)3.54 (\u00b1 0.04)0.66
HDL cholesterol (mmol/L)*1.03 (\u00b10.63)1.27 (\u00b10.02)<0.0011.20 (\u00b1 0.02)1.48 (\u00b10.016)<0.001
Triglycerides (mmol/L)*2.10 (1.63; 2.64)1.32 (0.98; 1.57)<0.0012.15 (1.78; 2.83)1.24 (0.97; 1.56)<0.001
Diabetes mellitus (%)30.7%6.3%<0.00133.3%2.3%<0.001
BMI (kg/m2)*29.88 (\u00b10.35)26.06 (\u00b10.2)<0.00122.39 (\u00b10.47)26.95 (\u00b10.25)<0.001
ApoA1 Ig/L*1.29 (\u00b10.013)1.40 (\u00b10.017)<0.0011.44 (\u00b10.02)1.55 (\u00b10.001)<0.001
ApoB (g/L)*1.21 (\u00b10.02)1.19 (\u00b10.02)0.481.23 (\u00b10.02)1.18 (\u00b10.014)0.044
Homa index*2.25(1.15; 4.18)0.94(0.51; 1.8)<0.0012.51 (1.67, 3.86)1.14 (0.72; 1.7)<0.001
MITCoffean (mm)*0.79 (\u00b10.15)0.76 (\u00b10.12)0.0840.77 (\u00b10.16)0.69 (\u00b10.13)<0.001
Sum of total plaque area (mm2)*53 (25; 100)42 (10/27)0.00216 (1; 44)8 (1;32)0.01
Sum of plaque area carotids (mm2)*22 (1; 39)12 (1; 27.5)0.0118.75 (1.25.75)1 (1; 19)0.013
Sum of plaque area femoral (mm3)*33(10 6,0)23(1, 49)0.01110 (-17.75)1(1; 6)0.012
\n \n ", "PMC3872294_001_00.png": "\n \n \n \n \n \n \n \n
HC (N = 20)FASD (N = 15)
Age (years)16.3 (2.1)15.3 (2.1)
IQ108 (15)*80 (15)*
Male/female (%male)12/8 (60%)10/5 (67%)
FASD sub diagnosis\u20138 FAS, 7 ARND
\n \n ", "PMC4196076_004_00.png": "\n \n \n \n \n \n \n \n
miRNAChange relative to controlsDirection of regulationChromosomemiRNAChange relative to controlsDirection of regulationChromosome
hsa-miR-11812.13Up19hsa-miR-8742.97Up5
hsa-miR-125a-5p5.04Up19hsa-miR-8902.83UpX
hsa-miR-21-3p2.82Up17hsa-miR-9392.59Up8
hsa-miR-29b-1-pp3.12Up7hsa-miR-1290\u22127.56Down1
hsa-miR-3665-3p2.19Up10hsa-miR-191-3-p\u22122.63Down10
hsa-miR-1327-5p2.01Up2hsa-miR-2861\u22123.31Down9
hsa-miR-3665-3p2.03Up10hsa-miR-3665\u22122.37Down13
hsa-miR-371a-5p3.14Up19hsa-miR-4357\u22123.62Down1
hsa-miR-43272.95Up21hsa-miR-452-5p\u22122.54DownX
hsa-miR-584-5p2.31Up5hsa-miR-513a-5p\u22123.15DownX
hsa-miR-6025.74Up9hsa-miR-572\u22125.80Down4
hsa-miR-629-3p2.71Up15hsa-miR-629-3p\u22123.03Down15
hsa-miR-642b-3p2.10Up19hsa-miR-165\u22127.18Down1
hsa-miR-6513.91UpXhsa-miR-875-5p\u22123.91Down8
hsa-miR-7622.84Up16hsa-miR-940\u22122.31Down16
\n \n ", "PMC4219599_004_00.png": "\n \n \n \n \n \n \n \n
SBE (n = 24)MEA 7n = 24Evele N = 24
Ethnopositive data
Age (yrs)0.1 (0)0.1 (0)43.9 (8)
Male (%)0.3 (0.0)0.1 (0.0)8.1 (10%)
Married0.1 (0.9)0.9 (0%)8.9 (11)
Married29.6 (4.3)27.0 (0.0)27.9 (161)
Preventions Fathers
1 + 11.0 (1%)5 (21%)5.2 (2.8)
1 + 15 (5.9%)1 (1.9%)8 (18%)
4 + 15 (5.9%)11 (5%)21 (69%)
4 + 13 (33%)1 (4%)3 (19%)
41 + 10 (0%)1 (4%)1 (1%)
Others increase stage
CT14 (6.4%)11 (54%)11 (52%)
-715 (5%)0 (0%)0 (0%)
CT25 (5%)0 (0%)0 (0%)
Private wound with schools0 (0%)0 (0%)0 (0%)
Non-sensitive factors40.2 (11.4)41.2 (13.3)45.0 (12.0)
Non-sensitive factors
None1 (11%)1 (13%)6 (18%)
None2 (2.9%)2 (9%)4 (1.7%)
None2 (2.9%)0 (0%)4 (1.9%)
Total survivor0 (0%)0 (0%)0 (0%)
Primary experience8 (9%)23 (80%)*0.0 (0%)
Postoperative followsors
1 + 01 (11%)1 (13%)4 (12%)
1 + 06 (6.7%)15 (57%)21 (61%)
4 + 12 (2%)5 (37%)2 (2%)
4 + 18 (29%)8 (29%)0 (0%)
Pathological survour stage
PT38 (37%)16 (39%)24 (17%)
PT38 (37%)6 (3%)5 (17%)
PT30 (0%)6 (3%)4 (3%)
Positive17 (14%)6 (3%)1 (0.1%)
Positive nempl nodes17 (14%)0.9 (0%)1.0 (1%)
Positive reference in complete hospital stay (n)2.0 (0.4)2.0 (0.2)2.2 (0.3)
Position of pressoreation compression (%)10.5 (10)4.4 (14)8.9 (2.2)
Duration of pressoreation collectivation (%)10.5 (10)8.4 (14)8.9 (9.2)
\n \n ", "PMC4297392_007_00.png": "\n \n \n \n \n \n \n \n
Treatment phaseAdverse eventNo. of patients
T1Swelling1
Itching1
Fever4
Throat infection1
Chest Congestion2
Total9
T2Diarrhea1
Body Pain1
Total2
T3Diarrhea1
Total1
T4Nil-
\n \n ", "PMC4311460_007_00.png": "\n \n \n \n \n \n \n \n
Number PatientsPatients
CategoryType CHP%(N = 4,560)%
IInflammation 6,98711.33,53777.6
IIInfection 3,6295.92,45153.8
IIIInjury 5,5569.03,40174.6
IVSpecific conditions 32,01651.9n.c.
VNeoplasms 3,5925.82,461#54
Maligne 1,219 (27%)
O,ther-benign2,148 1,758 (39%)
VICongenital 4900.8n.c.
VIIOtherwise 9,38315.2n.c.
TotalALL-types 100
\n \n ", "PMC4357206_002_00.png": "\n \n \n \n \n \n \n \n
N = 121
Demographics
Age (yr) - median (IQR)62 (56-73)
Female sex (%)46 (38)
White race (%)112 (93)
Comorbidities (%)
Hypertension64 (53)
Chronic lung disease37 (31)
Active malignancy34 (28)
Diabetes mellitus29 (24)
Chronic kidney disease7 (6)
Congestive heart failure4 (3)
Chronic liver disease2 (2)
Severity of illness
APACHE II score - median (IQR)*14 (10-16)
Chanlson Comorbidity Index - median (IQR)\u20202 (1-4)
ICU type
Surgical102 (84)
SICU66 (54)
TICU36 (30)
Nonsurgical19 (16)
CCU11 (9)
MICU8 (7)
Status of procedure (for surgical patients) (%)
Elective41 (34)
Urgent57 (47)
Dops in hospital prior to enrollment \u2013 median (IQR)1 (1-3)
\n \n ", "PMC4445578_009_01.png": "\n \n \n \n \n \n \n \n
Reactive astrogliossChanges in astrocytes morphologyChanges in molecules expression
Upregulated moleculesUpregulated or downregulated molecules
Mild to moderate astroglosis\u2022 Hypertrophy of cell body\u2022 Structural elements GFAP, nestin, virenetin\u2022 Inflammatory cell regulators, cytokines, growth factors, glutathione
\u2022 Astrocytes processes are are numeroca and thicker\u2022 Transcriptional regulators STAT3, NFASI (Pechem 1076, cAnP6 Chiga, SOX9 [61-65].Trassopteres and purprs; AQP4 and No YK+ transporters [26,64-69]
\u2022 Glutamate transporter [76-73]
\u2022 The non-overlapping domains of individual astrocytes are preserved\u2022 Vascular regulators: PGE, NO [74,75]
\u2022 Energy provision: lactate [76]
\u2022 Molecules implicated in synapse formation and
\u2022 Remodeling thrombospondin and Complement C1q [77,78]
- Significant extension of processes\u2022 Molecules implicated in ovidative stress, and providing protection from oxidative stress: NO, NOS, SOX, Glutathione [67,68,79]
\u2022 Proliferation
\u2022 Overlapping of individual domains
\u2022 Substantial reorganization of tissue activitecute [50]
\n \n ", "PMC4969833_016_01.png": "\n \n \n \n \n \n \n \n
HorizontalNormalVerticalTotal Object
Horizontal383546 (83%)
Normal154762 (87%)
Vertical22111401163 (98%)
\n \n ", "PMC5303243_003_00.png": "\n \n \n \n \n \n \n \n
CharacteristicsTotal (N = 613)MSSA (N = 508)MRSA (N = 105)OR (95%CI)P-value
Age (years) (median, quartiles)72 (66,79)75 (6731)72 (67,78)N/A0.0048
Gender322 (100.0)214 (82.3)57 (17.7)1.4 (0.93\u20132.16)0.5909
Male291 (100.0)255 (83.5)48 (16.5)
Step aging n (%)0,0849
Young Old311 (100.0)267 (85.9)44 (14.1)1.5 (1.00\u20132.35)
O6: O&272 (100.0)219 (80.5)53 (19.5)0.7 (0.49\u20131.13)
Longevity30 (100.0)22 (73.3)8 (26.7)0.6 (0.24\u20131.27)
Disease n (%)<0.0001
PNU47 (100.0)28 (59.6)19 (40.4)0.3 (0.14\u20130.49)
BSI37 (100.0)27 (73.0)10 (27.0)0.5 (0.25\u20131.14)
SSTI416 (100.0)350 (84.1)66 (15.9)1.3 (0.85\u20132.03)
EI62 (100.0)56 (90.3)6 (9.7)1.7 (0.72\u20134.06)
Others51 (100.0)47 (92.2)4 (7.8)2.6 (0.91\u20137.31)
Place of the treatment infections n (%)0.0033
INPATBENTS430 (100.0)352 (81.4)78 (18.1)0.8 (0.49\u20131.26)
LTCF16 (100.0)9 (56.3)7 (43.8)0.3 (0.09\u20130.69)
OUTPATIENTS167 (100.0)147 (88.0)20 (12.0)1.7 (1.03\u20132.92)
Infections treated in hospitals (NPATIENTS N = 430, n (%))
ICU19 (100.0)12 (63.2)7 (36.8)2.8 (1.06\u20137.34)0.014
non-ICU411 (100.0)340 (82.7)71 (17.3)
\n \n ", "PMC5451934_004_00.png": "\n \n \n \n \n \n \n \n
ConditionPre Well-BeingPost Well-BeingPre-Post-Change
TP (handler & dog interaction)46.33 \u00b1 7.41 148.69 \u00b1 7.22+2.36
DO (dog only interaction)49.78 \u00b1 7.9151.56 \u00b1 6.99+1.78 **
HO (handler only interaction)47.37 \u00b1 7.5746.43 \u00b1 8.03\u22120.94 **
\n \n ", "PMC5755158_010_01.png": "\n \n \n \n \n \n \n \n
WeaningWeek 15Off-test
Weaning\u2013\u2013\u2013
Week 15\u20130.17 \u00b1 0.080.16 \u00b1 0.03
Off-test\u20130.80 \u00b1 0.240.19 \u00b1 0.09
\n \n ", "PMC5849724_006_00.png": "\n \n \n \n \n \n \n \n
AnalytesGC-HRMSGC-MS/MSGC-MS
LOQ (ng/CIPP)Estimated LOQ, (ng/cig)LOQ, (ng/CPP)Estimated LOQ, (ng/cig)LOQ (ng/CIPP)Estimated LOQ, (ng/cig)
Naphthalene0.510.0261178.7158.94108.175.41
Benzolylphenamthene0.040.002NDND66.803.34
Benzolylanthracene0.030.00238.571.9338.111.91
Chrysene0.040.00250.132.5149.612.48
Cyclopentid,culysyner0.020.00148.842.4460.043.00
S-Methylchrysene0.040.002NDND2.480.12
Benzo[p]Iluonarthene0.040.00211.440.575.080.25
Benzol[Illicuranthene0.050.00312.410.625.070.25
Benzo[[aceanthrylene]0.090.005NDNDNDND
Benzoliglyreene0.040.0025.010.253.030.15
Indeno(1,2,1-cultypnee0.020.0015.460.271.540.08
Dibenodju/lipinthe cere0.070.0040.830.041.480.07
Dibenzolip/lyprene0.050.003NDNDNDND
Dibenzolyadyprene0.040.0020.800.040.280.01
Dibenzolyuloyene0.060.0031.330.07NDND
Dibenzolya/hyperene0.070.0042.990.15NDND
\n \n ", "PMC6022086_007_00.png": "\n \n \n \n \n \n \n \n
MethodData TypeMean (m)RMSE (m)P90% (m)PGSD (%)
Improved FCMGaofen-35.775.8910.0794.37
Sentinel-16.305.8314.0380.00
Original FCMGaofen-36.977.6613.8790.70
Sentinel-18.534.8113.1490.00
\n \n "} -------------------------------------------------------------------------------- /exploring_PubTabNet_dataset.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "collapsed": true 7 | }, 8 | "source": [ 9 | "# PubTabNet Dataset\n", 10 | "\n", 11 | "PubTabNet is a large dataset for image-based table recognition, containing 568k+ images of tabular data annotated with the corresponding HTML representation of the tables.\n", 12 | " \n", 13 | "The dataset is open sourced by IBM Research Australia and is [available to download freely](https://developer.ibm.com/exchanges/data/all/pubtabnet/) on the IBM Developer [Data Asset Exchange](http://ibm.biz/data-exchange). \n", 14 | "\n", 15 | "This notebook can be found on [GitHub](https://github.com/ibm-aur-nlp/PubTabNet) and [Watson Studio](https://dataplatform.cloud.ibm.com/analytics/notebooks/v2/0aa641b0-af25-4470-b9e1-6b33d6b5b66a/view?access_token=b7d5880bb60c253457a72e3ec76f9ab40ccc42c607331acdcbbbe21be4c46bc8)." 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 25, 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "# importing prerequisites\n", 25 | "import sys\n", 26 | "import requests\n", 27 | "import tarfile\n", 28 | "import jsonlines\n", 29 | "import numpy as np\n", 30 | "from os import path\n", 31 | "from PIL import Image\n", 32 | "from PIL import ImageFont, ImageDraw\n", 33 | "from glob import glob\n", 34 | "from matplotlib import pyplot as plt\n", 35 | "%matplotlib inline" 36 | ] 37 | }, 38 | { 39 | "cell_type": "markdown", 40 | "metadata": {}, 41 | "source": [ 42 | "## Download and Extract the Dataset\n", 43 | "\n", 44 | "Since the dataset is large (~12GB), here we will be downloading a small subset of the data and extract it. " 45 | ] 46 | }, 47 | { 48 | "cell_type": "code", 49 | "execution_count": 26, 50 | "metadata": {}, 51 | "outputs": [ 52 | { 53 | "data": { 54 | "text/plain": [ 55 | "376695" 56 | ] 57 | }, 58 | "execution_count": 26, 59 | "metadata": {}, 60 | "output_type": "execute_result" 61 | } 62 | ], 63 | "source": [ 64 | "fname = 'examples.tar.gz'\n", 65 | "url = 'https://dax-cdn.cdn.appdomain.cloud/dax-pubtabnet/2.0.0/' + fname\n", 66 | "r = requests.get(url)\n", 67 | "open(fname , 'wb').write(r.content)" 68 | ] 69 | }, 70 | { 71 | "cell_type": "code", 72 | "execution_count": 27, 73 | "metadata": {}, 74 | "outputs": [], 75 | "source": [ 76 | "# Extracting the dataset\n", 77 | "tar = tarfile.open(fname)\n", 78 | "tar.extractall()\n", 79 | "tar.close()" 80 | ] 81 | }, 82 | { 83 | "cell_type": "code", 84 | "execution_count": 28, 85 | "metadata": {}, 86 | "outputs": [ 87 | { 88 | "data": { 89 | "text/plain": [ 90 | "True" 91 | ] 92 | }, 93 | "execution_count": 28, 94 | "metadata": {}, 95 | "output_type": "execute_result" 96 | } 97 | ], 98 | "source": [ 99 | "# Verifying the file was extracted properly\n", 100 | "data_path = \"examples/\"\n", 101 | "path.exists(data_path)" 102 | ] 103 | }, 104 | { 105 | "cell_type": "markdown", 106 | "metadata": {}, 107 | "source": [ 108 | "## Visualizing the Data\n", 109 | "\n", 110 | "In this section, we visualize the raw image and extract it's HTML annotation from the JSON file. \n", 111 | "We further render the table using Jupyter notebook's inbuilt HTML capabilities. " 112 | ] 113 | }, 114 | { 115 | "cell_type": "code", 116 | "execution_count": 29, 117 | "metadata": {}, 118 | "outputs": [], 119 | "source": [ 120 | "# Helper function to read in tables from the annotations\n", 121 | "from bs4 import BeautifulSoup as bs\n", 122 | "from html import escape\n", 123 | "\n", 124 | "def format_html(img):\n", 125 | " ''' Formats HTML code from tokenized annotation of img\n", 126 | " '''\n", 127 | " html_code = img['html']['structure']['tokens'].copy()\n", 128 | " to_insert = [i for i, tag in enumerate(html_code) if tag in ('', '>')]\n", 129 | " for i, cell in zip(to_insert[::-1], img['html']['cells'][::-1]):\n", 130 | " if cell['tokens']:\n", 131 | " cell = [escape(token) if len(token) == 1 else token for token in cell['tokens']]\n", 132 | " cell = ''.join(cell)\n", 133 | " html_code.insert(i + 1, cell)\n", 134 | " html_code = ''.join(html_code)\n", 135 | " html_code = '''\n", 136 | " \n", 137 | " \n", 138 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " %s\n", 148 | "
\n", 149 | " \n", 150 | " ''' % html_code\n", 151 | "\n", 152 | " # prettify the html\n", 153 | " soup = bs(html_code)\n", 154 | " html_code = soup.prettify()\n", 155 | " return html_code" 156 | ] 157 | }, 158 | { 159 | "cell_type": "code", 160 | "execution_count": 40, 161 | "metadata": { 162 | "scrolled": true 163 | }, 164 | "outputs": [], 165 | "source": [ 166 | "# Loading an example annotation\n", 167 | "with jsonlines.open('examples/PubTabNet_Examples.jsonl', 'r') as reader:\n", 168 | " img = list(reader)[0]" 169 | ] 170 | }, 171 | { 172 | "cell_type": "code", 173 | "execution_count": 41, 174 | "metadata": {}, 175 | "outputs": [ 176 | { 177 | "data": { 178 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAeYAAAGLCAIAAACdm6YcAABez0lEQVR4nO3daVRUZ7ro8aeKKmpgKpG5ikEQRVRUDAoKzuCMUSCJJnY3NzHJze2zzlp9+/Q6/Sm3v9zc9Lm5vdKrPdEYtDGKM5OFCo0giqAIaBEVKAGZZ6ooaqCoad8Pb3qfnUIZDEM2PL8PWTXsvXlrV/Gy2Wb/4VAUBQghhNiABwArlofP9jAQQgiN5emz5wDAwaNshBBiC+5sDwAhhNBEcQGgrq6Ovs+8Tevo6GDeLSwspG+XlJSYzeZpGx6ajwwGQ3t7O7n94sWLya7O/Hy+jt1Her4xGo3l5eXDw8MAUFdXV1VV1dXVRT/74sULrVYLACqVymKxMFdUKpXZ2dnZ2dnM9wj9TGN/Yuvr62tra+m7XADQ6XTV1dUA0Nvbq1QqR68zMDDAvNvS0kLfbm9vt9lsP3PECDGp1epnz56R22VlZZNdnfn5HO3+/fsw6iM936SnpwcHB6elpQHAnTt3JBKJUCgkT/X19bW0tBQVFQFAWVkZj8ej1youLlar1W+//XZiYiLzPUI/0xif2O7u7qysrOzs7JcvX5JHeADw1ltvnTp1KjIysqCg4J133ikoKOjr6wsPD/f09Lxw4cLOnTuVSmVoaGh+fn5nZ+fRo0e1Wm1mZqZer1+6dCnZSllZWVdXl0qlSk1NZb7HCL0Zq9VqtVoBwGazDQ8P05+9kpISi8Xy7Nmzo0ePVldXDwwMfPjhh19++eWqVavc3Nza29v1er3JZKK3Q54KDw8nC+/cufPy5cs2m62npyciIiIzM9Nms/X29h47dozP58/ey51RfX19UqnU29vb399fpVJpNJoFCxYsWLCAPNvc3BwaGlpRUfH06dOQkJCRkRGBQECeevHixccffwwAXC6eUJ2Qv/zlL8HBwe3t7f/jf/wPAPjhhx/4fH5YWFhmZubu3bvpTzVZ+OrVq8nJyaWlpaGhoWVlZRwOx2QyvfPOO0uWLDEYDIsWLSKL/WTXWywWR0fHjRs3hoaG3r17FwB8fX0jIiI0Go1IJNqwYYOnp2d5ebnFYjl06NDRo0cfP35MVszPz5dIJHw+v7S0dOb2B5q7Kisrb926devWrYGBAeZnb9++fRwO5ze/+U1AQEBERERDQ8PIyAhFUbt27aqtrU1JSTl69CiZ6wnyFL2wp6dnZGRkXFycRqNRqVQcDic5Ofmdd96Ry+Wz+GJnmIeHR21t7e3bt0tLS8Vi8ZEjR4qKisj3OwCsWrWqqKjIwcHh5cuXZWVl2dnZ9IocDmd2RsxOWq3WZrMdOHDAxcWF/F8eK1eufPDggc1mMxqNzE81WV6j0QCAXq/v7++vqalxcXGprKw0m80HDx58//336c3+OGWvWbPmypUry5cvHxwcPHfu3Nq1a8ViMYfD8fT0JAuUlJQolcrY2Fiz2SwWi8mDjo6O5IaPj090dHRKSkpcXNyM7A00x61fv37v3r179+719PRkfvZqamoWLFgglUrT09MdHR0jIiIsFgv5lJITdBwOh3kMSJ5iLkw/NTIyQs4GiEQiuzO2cxuHw/n973//1ltvRURECIVCf3//5OTkpqYm8qyjo2Nqaqq7u/vatWv9/Pz8/f27u7vJU/ivVpOiUCgOHToEAFarlf5p5+joePv27R07djA/1eQp8rm1Wq3Dw8OrV6+Ojo7+/PPP+Xw+h8Nh/rD88cP91ltvFRYWRkVFWSwWrVYrl8t1Oh3zy5tMpu7u7lu3blmtVr1ef/78+czMTPpYXSaT5efnFxUV4c9hNOXoz57BYPjb3/6mVqsLCwvNZvOzZ88qKiroY2p3d/esrKyTJ0+KRCK7LTAXNplMCoUCAHx9fV++fHnjxo20tLS9e/fO9KuaVdXV1enp6XFxcc3NzXl5eWfOnNm0aRP97PDwsMlk8vPza2trq6ur8/LyIo8nJCQcP35cLpdnZWXN0sDZ5OnTpzU1NRkZGTExMfSD27dvv3v3rpeXF3NGJU9ZrVa5XF5eXu7t7d3d3V1SUlJZWTl6s6/4/7JHRka4XO7oU3t6vZ4cegOAzWYzm830SS4AMJlMXC4XT2Sj6cD87NG0Wq2LiwvzEYPBIBQKX3mmlbmw0Wik/7VNr9c7OTlNz6h/uQwGA/27sl6vF4lEzJ1mMpl4PB6XyyWTg91uH708eqWMjIz9+/fbfUSZRn+qmZ/S4eFhoVA4+iAYL6VBCKGpV1lZ+dZbb035ZnHKRggh1sDfbhBCiDUwC4UQQixAslBc+hZCCKFfODyXjRBCrPFf57KVSiVpwUxERUXFBJckxZMxKjyPHj2a4KYQQohFVCpVVVUVua3T6aqqqqqqqkh6z2az0dcoAcCzZ8+MRuNEtvlfU/adO3du3rw5kXUePnzo4eExwUGT4skYFZ7h4eG2trYJbg0hhFhBp9NlZmaKxeIrV64AAJ/P9/DwWLhwYXFxMQAUFhbm5OQAgMViOXnyJEVR9MXkY/vxyhe9Xu/m5kYucrdarenp6a6urtXV1f/7f//vrKwsOlBCFlYqlevXr09PT1+wYEFXV5ePj09vb+/ixYvj4uLOnTvn7Ozs5eW1cePG9PR0iURSWlr64Ycf2oWlsrKynJycenp6kpKSYmNjMzIyPvjgg+nYawghNCtu3bqVkpLi5uZ27949ABAIBIGBgXfv3t2zZw8AJCQkpKenA0Bubu7SpUs7OztXrFgxkc3+eJSdk5Pj4eExODjY0dFx48aNxMTE5ORkX19flUrFDJSQhUnMYWhoKDExMS4uzsXF5dixY0qlUi6Xu7i4LFiwoLi4+MaNG/v37z906NDq1asBwC4spVark5KSPvnkk4KCAryMCiE096jVajc3NwBgXhPe0tISGBjIXKyhoSE0NHTp0qUZGRkT2eyP29LpdJs3b16yZElRUZGjoyNdaTAYDCRQEh0dTV/CTq6hJBe8CgQCctm6UCg0GAwJCQlkas7MzHR2dgYABwcHslZJSYmDg0NsbGx1dTX9FOlk4j+BIoTmGD8/v56eHm9vb3p+q6ioiIqKslvMy8tLKpUCQEFBwUQ2ywOA7u5uf39/sprZbE5KSvruu+/8/f2fPXv2L//yL3l5eSUlJU5OTps3bybrCASCkZGR0dvav3//mTNnli5dKpVK9+3b980334SEhJA/ngAAJpNJo9G8ePFi4cKFzLXa29v9/f0nviMQQuiXLz4+/uuvvw4KCgoLC5PL5aQP/Otf/9pusZUrV2ZkZHA4nPXr109ks2P9T37nzp0jp5jtAiUGg+HmzZtJSUmvXIvu7FAUZTAYmM2dV8Z96K+CEEJzCUVRJpNJIBBYLJYxknlms5nD4UywqfeKKdtms12+fFkoFIaHhy9ZsuRnDRkhhNDUwUtpEEKINfD/1kAIIdbAKRshhFgDp2yEEGINnLIRQog1cMpGCCHWmOiUXVxcrFKpAMBqtT558gQAjEZjeXn58PDw9A0OzVt2nTOTyfTw4UNyARezjtbU1NTY2Dg7Q0RoNowzZZtMpvPnz3/++eccDsfd3b21tfX777/39PQEgPT09ODg4LS0tBkZJ5pf6M4Zcfr0aalUmpaWxqyjPXr0qK2trb6+XqFQzOJQEZpJ40zZqampPB7vT3/605YtWwCgqKjIx8enr6+vr69PKpV6e3v7+/sPDQ3NxEjRfJKQkCAUCsnt/v5+Pz8/mUwmEony8vJSUlKWLVumVqtramo2b968Z8+ehw8fzu5oEZox40zZ586dc3Jy+vzzz2/fvg0AtbW1mzdvbm5u7uvrq62tvX37dmlpKd2QQmg69PT0kF/sJBJJd3c3XUcjRUn4aSkNobltnCmbw+Hs27fvT3/6E5/PV6lUy5YtI6G+Fy9e/P73v3/rrbciIiLowh9C08Hf35/8VSO1Wh0SEtLT0wMAFEWRbK/NZsN+L5o/xjk8+c///E+1Wk1ur1y5UiKR5Obmtra2pqamVldX379/PzExcfoHieYvkkBTqVS5ublisTghIYGuo3l4eJw6dcpms+GHEM0fk26MDA8PkzMhBoOBJLMRmj50Ao3+4NF1NAAwmUw8Hg+PstH8gVkohBBiDTw8QQgh1sApGyGEWAOnbIQQYg2cshFCiDVwykYIIdbAKRshhFhj0lN2Z2dnV1cXAPT19VVUVEzDkBD6Sa4PAPR6/b179/R6PQA8f/68pqaGPP7ixYv6+vrZGSKbMcuIAKDVaktLS+lYELnWFEa9C7TKysrm5mb6bmNjY3V1NX332bNnRqMRAGpra58/fz49r2D+GmfKtks+Xb16taGhwd3dvaenp7i42NPT8/z589M5PDQfMXN95JFz586Fh4efOnXKYDBQFKVSqYqKikpKSrRabV9f371792Z3wKxDlxHJ3ba2ttDQ0BMnTgDAkydPTp8+Da96F4impqaFCxc+ePCgoaEBAPR6/eDgoIODQ2ZmpsViOXnyJEVRjo6ORUVFFotFpVLdvXt3xl/fXDbOlF1aWnr58mX6Zyb5brHZbHfv3t2zZ8+iRYvoNA9CU+XWrVt0ro88YjAYRCIRl8sVi8XLly+nKMrb27upqSkyMjI2NpZ5xIfGxSwjms1mAAgPDxeJRN7e3gCwevXqgIAAeNW7QAQHBy9atGjdunXkYNzJyWnt2rWrVq3SaDS5ublLly7t7Ozkcrlms9lqtQKAo6PjLLzIuWucxsiePXtMJlNeXp6rq2tHR0d4eHh4ePi3336blJR09uzZkJCQlpaWmRkomj/UajWd6yOP+Pj4HD9+PCwsDADKy8tra2t9fX39/f2zsrIcHBwMBsNsDpdtmGVEvV4vkUi0Wu2VK1fo2i3BfBcaGhrIWSknJ6fFixcDwL179z744AN64du3b2/btu3SpUvvv/++xWLJyMiIjY29evUqRVHMxdDPN/657ObmZpPJFBgYyOPxIiIixGKxWCyWyWTHjh1bt25daGjoDIwSzSt+fn50rg8Auru7XVxc/u3f/k2j0ZjN5piYmM8+++zOnTs7duzYsWPHkiVLIiIiZnvIbMIsI5JJ2cXF5cMPP6QoiszLBPNdcHZ2lkgkEonE2dkZAPLy8rZs2eLg4ECWrKmpEQgEgYGBXl5eUqk0MDBQr9fn5+f/7ne/+5//83/euHFjFl7k3DXOUfbFixcXL1787rvvAoCnp+fJkyeDgoL8/PwAID8/v7Gx8dNPP52JYaL5JD4+ns71yeXybdu2NTQ0yOVylUrV3d395MkTg8Gwdu3aoaEhuVwOAEeOHJntIbOJq6srXUZUKpUURb18+ZLD4ej1eicnJ3ox5rvg4+NDP37x4sX29naLxWIymerr64OCgs6cObNly5by8vKVK1dmZGRwOJz169d3dHTk5OSQYvNsvMo5a3JZKIqijEYjCarRZTWEphyd66NLfjqdjhziGQwGoVDI5XItFgtFUZhrfzPk+5f8WxSHwzEYDMz5mmBGE1+JfndoZrOZw+GQB41Go4ODA75BUwtLfgghxBp4KQ1CCLEGTtkIIcQaOGUjhBBr4JSNEEKsgVM2QgixBk7ZCCHEGv81ZVdVVWVmZhYVFY27Tmtrq1KpnM5RIYQQ69mlEG02W3d3N31Xr9eTfJNdGXFsP07Z58+fd3FxOXTo0KZNm8ZdR6vV2pViEEIIMY1OIRYWFubk5NALfPHFF42NjXZlxHHxAECj0Tg6Oi5ZsgT+GeLJysricDgmkykuLu7ChQtBQUFWqzUlJSUzM5PD4Tx9+jQhIaGlpaWsrGxkZGTr1q3379/X6XQff/zx1L9uhBBiIZJCdHNzo+PACQkJ6enp5HZ2dvbGjRsBIDg4GAAoimprayPJrbFxAaC7u9vLywsAnjx58pe//KW/v7+mpsbFxaWyspIEoQ4dOqTT6QYHBzkczsGDBxMSEgAgKyvLy8tLJpPl5OS0trbifI0QQrTRQUra8+fPPT09SayJuHfvXmxs7EQ2ywWA4ODguro6AFi9erWXl5der1+9enV0dPTnn3/O4/FI2MFms+l0OrFYDACk4CUWi6Ojo2NiYj799FPSckQIIUTYBSmZOjo6+vv7i4uL79y5A6PKiGPjAQCfz1++fPl3333n6+vb0NDw3nvv3bp1q6SkhG7jEjKZLCsry2QyKRSK7du3r1u37tq1a56enpGRkVP1IhFCaG6wC1Lu2rWLPtyOj48HAIVCwePxmGXEibSsf5KFGhkZoatdw8PDQqGQw+HYrUAH1QDAZrOZTCa7MjpCCCF4VZDy58OSH0IIsQZeSoMQQqyBUzZCCLEGTtkIIcQaOGUjhBBr4JSNEEKsgVM2QgixxjhTdkVFxStvA8DAwMDjx4+nZVBo3rNrnplMpocPH46MjMBP62hNTU2NjY2zM0SEZsM4U/b169efPn0KABaL5auvvmI+ZTQae3t7p3FoaB6za56dPn1aKpWmpaUx62iPHj1qa2urr69XKBSzOFSEZtI4U/ayZcvKysoA4B//+MfGjRttNlt1dXVmZmZubi5ZoKWl5cKFC3//+99bWlqmfbBo3khISKCvqu3v7/fz85PJZCKRKC8vLyUlZdmyZWq1uqamZvPmzXv27Hn48OHsjhahGTPOlG21WjkcjtVq7e3tDQkJGRoaioiICA0Nra6uJgswe37TP1o0H/X09JDumEQi6e7uputoNpuNLDBVlwIj9Ms3zpRNUVR8fPylS5ekUqlEIlGr1X/729+Cg4OlUilZgNnzm/7RovnI39+/o6MDANRqdUhICF1H43K5AGCz2cgNhOaD8afsoKCgR48ebdu2jUzZRqOxtLSU/gMKpOd39+5d/Ds1aDrI5XKxWKxSqXJzc8VicUJCwtmzZ69cuRIWFhYbG3vq1KlTp07t3LlztoeJ0AyZdBbKZrMZjUYSzqYfwZ4fmiZ0Am14eFgkEgGjjgYAJpOJx+PhUTaaP7DkhxBCrIGHJwghxBo4ZSOEEGvglI0QQqyBUzZCCLEGTtkIIcQaOGUjhBBrjDNly+XynJycO3fuTHyLWPhDPx8z10cbGBgAgMbGRrqXAADPnj0zGo0zOjj2Y5YRic7OTnKjo6OjqqpKqVTCqF1N02q1Wq2WvsvMLr548aK+vp7cxs7idBhnyu7p6Tlw4MCWLVsmvkUs/KGfiZnrox/Mzs6+fv26Xq8fHBx0cHDIzMy0WCwnT56kKMrR0XEWR8tGdBmR3O3q6vrzn/9stVoBoLCwUCKRODs7M3c1c12bzZaRkcFMMdPZxZKSEq1W29fXd+/ePewsTpOJ9nQsFsu5c+ecnZ29vLyGhoZsNptGo3F0dCQXQ6amphYUFPT19YWHh3t5eQFAWVlZV1eXSqVKTU3Fag+alFu3bqWkpLi5ud27d4888vTpUw8PD71e7+TktHbtWgCorq7Ozc1dunRpZ2fnihUrZnW8LMMsI5rNZj6f7+vrGxUVRZ4dHBzk8Xh+fn4AQO9q5upcLnffvn11dXX0IwkJCenp6QDQ1NSUmpoKAN9//73JZPrwww8B4Ntvv121atVMvbi5b5yjbKVSmZOT8/jxY7lc7uLismDBguLiYo1GExcXd/To0d7e3sOHD5tMJgDYuHFjaGjo3bt3yYr5+fkSiYTP55eWlk77i0Bzi1qtpnN9AKDX62tqamJjY+kFbt++vW3btoaGhtDQ0KVLl2ZkZMzaWFmIWUbU6/V2z7777rvt7e1kCgbGrlYoFAqFgo4LvZK/v39WVlZubq7BYMDO4jQZZ8pesmTJgQMH1qxZYzAYNm/eHB0d/Yc//AEASGPE1dUVAIRC4eDg4Llz59auXUu3R3x8fKKjo1NSUuLi4qb5JaC5xs/Pj871AUBjY6NAIMjJyamsrCSZbIFAEBgY6OXlJZVKAwMDR887aAzMMiL50cjk4+OzceNGsufpXe3s7CyRSMgJkzG2vGPHjh07dixZsiQiIgI7i9Nkoj8A9+/ff+bMmaVLl9LZVSaLxaLVauVyuU6nI4/IZLL8/Hw+n793794pGyyaH+Lj47/++uugoKCwsDC5XL5r166IiAgA0Ol03d3dZ86c2bJlS3l5+cqVKzMyMjgczvr162d7yGzi6upKlxGVSiVFUWFhYeQpo9GYl5fH4XACAwNra2vpXR0TE/PKTZF3hz6OHhoaksvlAHDkyBF3d/dTp07ZbLbExMSZeV3zxOSyUORk4iufGhkZ4XK5fD6ffsRkMnG5XPy1CL0BOtdHl/xeyWw2czgc/Iy9AVJGJKcvmAfC5DznBP9F1+7dsVgsFEXRkwB2FqcDlvwQQog18AcgQgixBk7ZCCHEGjhlI4QQa+CUjRBCrIFTNkIIsQZO2QghxBo8AFAoFM3NzUajUSgUrl+/3sfH5w02VFZW1tPTc/DgwakeIUIIsZJKpXr58iVJtdjdtdlsvb29ZLJtamqiKCokJGQi2+QCwKpVqw4cOKDT6Q4cOPBm8zUAKJVKnK8RQoiwC1La3aXzh5NNHtpfNnblypWkpCQul3v16tXh4WEOh0NR1JIlS3x8fMrKykZGRrZu3RoYGAgAVqv1zJkzEonEbDbHxsZWVlZGRkaSC4vv3bvX0dGxZs2aH374ITk5GQCuXr0qFov7+vp2795dVlZms9k6Ozs3btw4PDxMB/+++uqrVatWaTQaEqZpa2t73WWyCCH0C2cXpLS7S+cPa2pqJpU8tD+XHRUVVVhYWF5eHhER0dnZ+f777x89evTx48dZWVleXl4ymYz8ZAAAuVx+4MCB5ORkkUgkEonWrFlD5msAMBgMISEhS5cu1Wg05BGNRqNSqbZv304uhD106ND69etNJhMz+EdR1K5duzgcjlqtLi4uXrdu3ZTsOIQQmnl2QUq7u7TJJg/tFwoKCiooKHB1dY2JiXFxceFwOAAgEAi4XG50dDQAbNq0iSw5PDxMun0kBMHcyM6dO6urq69duyYQCEiQ12q1cjgcT09PlUrFzBeQ4F90dLRQKCR/wGL//v1Xr17l8/kODg4T3jkIIfTLQoKU3t7eJApid5c22eThK+Z1Hx8fkUgEAAMDA+fOnROJRIsWLZJIJNeuXfP09IyMjPT29gaAffv2ffPNN+Hh4V1dXbt372Zuoaqqqq+vz8XFJSoq6sSJEzKZTKPRkJ6Ur6/vzZs3MzMza2trd+/ePTr4JxKJOjo6fvWrX73BPkIIoV8IuyDltm3bjh8/Tu4yF4uNjZ1U8vAVWajz58+/++67PB4vLS0tNTXVbDYLBAIAsNlsJpNJKBQyF35l24/OsAGA0Wjk8Xijj/nlcnlcXJybm5td8I+iqO+//x6nbIQQ29kFKZkTI9Okkof2M+mTJ0/Wrl1LJtDw8HAul0t/AS6XazdfA8ArW6wcDodea/QqBQUFBoPBw8ODnNmxyzzevHnzwIEDExk6Qgj9ktEzIZlRmRMj06T+eCnGVxFCiDXw6keEEGINnLIRQog1cMpGCCHWwCkbIYRYA6dshBBijXGm7Pr6+mn98j09PXZXTk4Jo9E4MDAw5ZtFM8Zms3V3d9N3TSbTw4cPR0ZGAEClUlVVVZHHm5qayEWzCM0T40zZpaWlU/Jl7t+//8rHNRrN1E7Zra2t7e3tIyMjOp1uCjeLZhjdOSNOnz4tlUrT0tKYObTJJtAQmgMmFCKBn3b7IiMjLRbLsmXLvvzyyz/+8Y9yuTwhIYH83+AFBQV9fX3h4eEdHR0mk2lkZCQwMFAsFl++fNnd3V2tVtt1+8xmc1BQUGZmJqnHHjt27MqVKzqd7uOPPyZf98svv1y1apWrqyu9YmZmJgDEx8ffuXOHw+GYTKZ33nnn5s2ber1+4cKF9fX1JpNpx44dKpWKx+MVFBQIBAKZTBYaGnrhwoWgoCCr1ZqSkjJNexNNFbpzBgD9/f1+fn4ymUwkEuXl5dE5tKGhoUkl0BCaAyZ6LpvZ7XN3d6+uri4tLfX09NRoNBqNhr56Z+PGjaGhoXfv3tVoNJs3bz58+HB9ff3q1asjIyOXLVs2uts3NDQ0MDDA4XCSk5PfeecduVze2tpKz9cAQBZjrmgwGDZs2EBRVE1NjYuLS2VlZW9vr8FgSE5O3rp1a1RU1Pbt293c3PR6/c2bN1NTU48cOVJfX2+z2QIDAw8dOoRH36zT09Pj6ekJABKJpLu7m86hTTaBhtAcMNHPOrPbZ7VauVxuV1fX+++/n52d7eLiQpYZHBy8dOnSRx99RH5RdXZ2BkZaEF7V7QMAulsiEoksFgv55qSRu8wVt2zZcunSpYULF65evZo8ODg4yLwsnr6ek2QI4Z/f0qPHg1jB39+/oKAAANRqdUhICJ1Dm2wCDaE5YJzPulKpzMnJuXHjBun23bhxo7Oz08fHh9T+RCLR8+fPt27dSha2WCxarVYul48+ku3q6mprayPdvqKiInoyBQAfH5+XL1/euHEjLS2N7vnZYa5YWFgIAAEBAd3d3SUlJZWVlVKptLm5OTc3t7S01NfXt7i4mAxg7dq1p0+fzszMfOM/tYNmnVwuF4vFKpUqNzdXLBYnJCScPXv2ypUrYWFhJIF26tSpnTt3zvYwEZohk2uMvLLbxzQyMsLlcvl8vt3jVqvVZrPx+Xy7bt/Et0yvaDabuVwuqWkPDw8LhULyA4C+PTIy4ujoSB60Wq0Wi+WVKRbECiSBBgDDw8OkCczMoU0qgYbQHIBZKIQQYg08PEEIIdbAKRshhFgDp2yEEGINnLIRQog1cMpGCCHWwCkbIYRYY/wpW6lUarVaABgYGHj8+LHds62trUqlctyNdHR0vNn4YDJZPnKVzc+BCcBfiOfPn9fU1DAfYX6E9Hq90WgELPm9KWYZkXj06FFvby+5Te/qvr6+ioqK0atrtVoyJ8BP34Kurq6qqqqqqiqyhcrKyubmZgAYGhoij0/X65lPxp+y79y5c/PmTQAwGo30m0rTarVqtXrcjfyceXDiWb6WlpY3/iqYAPzlMBgMFEWpVKqioiLyyJMnT06fPk0v8MUXXzQ2NmLJ743RZURy98KFCz4+PtevX1er1fSu7unpKS4u9vT0PH/+PHNdm82WkZFBpnK7t0AsFnt4eABAVVVVU1PTwoULHzx40NDQkJ+f7+bmJpFIZvhlzknjNEb0er2bm5tGoyF3S0tLR0ZGOjo6Pv3006ysLA6H8/Tp04SEhI6ODmYz7+LFi4sXL+7v73d1da2rq/vjH/+oVCo9PT2ZLT1mve/ixYscDoeiqCVLlvj4+JSVlY2MjGzduvX+/fs6ne7AgQNtbW0lJSVOTk49PT1JSUlGo5FehsPhVFdXDwwMkKgbDROA7CUWi5cvX15cXOzt7U0eWb16NT0vZ2dnb9y4EQBqamqw5PcGmGVEs9nM5/ONRqO/v39ycnJJSUliYiLZ1Xfv3t2zZ4+zs7NdgZnL5e7bt6+urg5GvQVubm5ubm6lpaWHDx8ml6RSFNXW1qbT6UZGRpYtWzYbL3euGecoOycnx8PDY3BwkPyms3z58sTExK1bt968eZPD4Rw8eDAhIQEA7Jp5QUFB+/fv1+l0SUlJ0dHRTU1NGo2G2dJTqVTMel9nZ+f7779/9OjRx48fZ2VleXl5yWSynJwcUvWzWCx6vV6tViclJX3yyScFBQXMZQICAiIiIhoaGpi/5QEmAFmuvLy8traWZAmYnj9/7unp6efnB4zCF5b8JoVZRtTr9QDA4XD+8Y9/XLp0iXkgHBMTc/bs2fz8/JaWloaGBoVCoVAoGhoamJsa/RYMDQ05OzvTCYF79+7Fxsa+/fbbXC73z3/+8/S/uLlvnM+6TqfbvHnzkiVLioqKtm3bRmJ+YrF4aGhowYIFAODg4GC1Wu2aeWQxV1dXAPDw8CAfC2C09EZGRpj1PhcXF7IFgUDA5XKjo6MBYNOmTd9//z09ErKug4ODyWQSi8X0Munp6du3b4+IiLD7UwmYAGS1mJiYmJiYEydOhIWFMR/v6OgwGAyPHj3i8/nkvcOS32Qxy4ikZPub3/xmcHBQr9evWbOGXkwmkx07dkyn0w0ODjo7O5NwkF2uZ3RMMS8vLzk5mb69ZcsWBweHBQsWLFiw4NGjRxRFMZNw6A2MNWV3d3f7+/tLpVIAMJvNFoulrKyMy+W2tLR88skn33zzjclkUigU27dvJ808iUQywWaer69vVlbWjRs3GhoaPvroo6+++urcuXMikWjRokUSieTatWuenp6RkZGvW33dunX0Mmaz+dmzZxUVFa+sAJIEIJ/P37t3L50ALC4uJqdZNm/enJ2dnZub6+7uHhwcfO3aNfJLw2RfDppabW1tT548MRgMa9eulcvlu3btog/i4uPjAUChUPB4PB6Pd+rUKZvNlpiYOKvjZRlXV1e6jKhUKimKEgqFBQUF4eHhdEiZyM/Pb2xs/PTTT18XViMxRfIWZGdn79y5k8fjkcn94sWL7e3tFovFZDK9ePECAHg8Hs7XP9+ks1B0UA0AdDodOQKFN2rm0fW+tLS01NRUs9lMVrfZbHRE+3WYy2i1WruPGhMmANnIYDAIhUIul0uX/F4JS35vjHwjk98dTSaTo6Pj6N3I/GZ/HfotGOOdstlsw8PDY6c60QT9Ikp+5eXlMTExsz0KhBD6pftFTNkIIYQmAn+jRAgh1sApGyGEWAOnbIQQYg2cshFCiDVwykYIIdbgAYBCoWhubjYajUKhcP369W98/UhhYeGOHTsmuLDRaCRxjzf7Wggh9AunUqlevny5du1aANDpdPX19QDg5OQUFhZGCktksm1qaqIoKiQkZCLb5ALAqlWrDhw4QAJMP+d6vwmG9O7fvw+T6fMhhBDr6HS6zMxMsVh85coVAODz+R4eHgsXLiwuLgaAwsLCnJwcGFVDHJf91Uqtra09PT1RUVFXr15NTk7+j//4j7CwMLVaLRQKX758+cEHHwAAXbkLDg6+cOHCzp07IyIi6C0wE31Pnz5VKpVcLnfv3r0FBQWdnZ0pKSmXL1/u7+9fv359W1sbNvMQQnPSrVu3UlJS3Nzc7t27BwACgSAwMJD0EQEgISEhPT0dJh+ktJ+yzWazwWAAABJcFQqF+/fvP3HixJEjRywWy+XLl00m00cffQQAp06dCg4O9vX1Zc7XdKKvv79fLpcPDAyQhQFgw4YNJSUljx8/joyMPHDgQEdHB2nm0VsLCQkhzbwzZ85MwQ5DCKHZQ1e3mNfxt7S0bNq0ibnYZIOU9v/8KBAITCYTAFitVvhnk08kEvF4PKFQyAxxkcgLCebR7BJ9ZCMAUFJSolQqY2NjzWYzc3ls5iGE5iQ/P7+enh5gJEIrKiqioqLsFhtdQxyb/bwulUrPnTtnMple9+fBxq7c2SX6CgsLL1y44OLiIhAINBrNixcvFi5c6O7ufuvWrZUrV467NYQQYqn4+Pivv/46KCgoLCyMBClra2t//etf2y3GrCFOZLOvaIxYrdaRkRFyfP1K41bu6EQfAJjNZg6Hw+Px9Hq9WCwmh9Xk/06Z4NYQQoiNKIoymUwCgWAKg5SYhUIIIdbAS2kQQog1cMpGCCHWwCkbIYRYA6dshBBiDZyyEUKINXDKRggh1hhnyibpKeYNhGaAzWbr7u6m75pMpocPH46MjACASqWqqqoijzc1NTU2Ns7OEBGaDeNM2aWlpXY3phap+iFkh+6cEadPn5ZKpWlpacw62mQTaAjNARMKkdD+z//5PyEhIf39/YcOHXrw4MHIyAi5Yuftt98+d+6cs7Ozl5eXTqfr6+vbvXu3l5cXAGRkZOh0up07d5aVlY2MjGzdulUkEuXn54tEosWLF1++fNlms/X09CQnJ5tMpvz8fA6HY7PZNBqNo6OjzWYzGo2pqanT8tLRLxjdOQOA/v5+Pz8/mUwmEony8vLoOtrQ0NCkEmgIzQHjHGWPvjYyJSXlk08+ycnJ0Wq1GzZsSE5O1mq12dnZLi4uCxYsKC4uVqlU27dvJ/M1ALS2tn788cdZWVleXl4ymSwnJyc3N/fo0aPJycmrV6+OjIyMi4sj1UCKooaGhjQaTVxc3NGjR3t7ew8fPkwaVWg+6+npIfUxiUTS3d1N19Emm0BDaA4YZ8qmS3vkhqurKwBwuVw+n8/hcMhdgUBgMBg2b94cHR39hz/8wS7vR26LxeLo6OiYmJhPP/2Uzvv91yC4XPhnOxD+mQ8kG6dTJGje8vf37+joAAC1Wh0SEkLX0SabQENoDhjn8EQmk125coXD4ZA/clNTU5OVlUWOo+/fv//9998HBgYCwMGDB8+cObN06VKpVPrK7axbt+7atWuenp6RkZHR0dEnT54MCAiIiooymUwKhcLPz+/KlSt2XVaEAIAk0FQqVW5urlgsTkhIoOtoHh4ek0qgITQHjJ+FIies+Xw+AKSlpX3wwQd8Pp/L5Z4/fz4pKYmiKJFIRJZkBvxGs9lsJpOJHDVTFEWXtUnVT6fTOTk50Qf1CBF0Am14eJh80ug6GkwygYbQHDD+SUBmFjU8PJy+u2TJEh6PxzyNOMZ8DQBcLpc+y8HhcOjb5Ab54wYI2aE/YPSRAYfDoT+Ejo6OszMshGYJxlcRQog18DdKhBBiDZyyEUKINXDKRggh1sApGyGEWAOnbIQQYo1xpuyKigq72+Q6NKK1tVWpVNJ3CwsLS0pK8IoY9PPZlfz6+/vv379Pf7Q6Ozu7urq6urqqqqqqqqqYn0k0EcwyIgBotdrS0tKhoSEA0Ov19+7d0+v1MOpdYOrv76dvNzY2VldX05vSarUAYLVaHzx40NbWNq0vZB4aZ8q+fv3606dPAcBisXz11VcAMDAwQD+r1WrVajV9t6Wlpb29nS4/TBz2/JAdu5KfUqkMCAg4deoUAFy9erWhocHd3V0sFnt4eAAA3WJFE0SXEcndtra20NDQEydOAMC5c+fCw8PJrrZ7F2harfZ3v/sdua3X6wcHBx0cHDIzM202W0ZGBn1s5+/vn5mZSX4SoKkyzqU0y5YtKysrW7FixT/+8Y+NGzfabDalUhkREZGZmcnhcJ4+fZqQkFBeXt7e3q7X6+mLG8vKyrq6ulQqVWpqKrkU4saNG319ffHx8QUFBST4FxYW9sqeHwBcvXpVKBRiz28+Y5b8AGDDhg0AIBKJamtrKYpSqVQ2m83Nzc3Nza20tPTw4cOzN1L2YZYRzWYzn88PDw8fGhry9vYGAIPBIBKJyAWldu8C7eLFi9u3bye3nZyc1q5dCwDV1dVcLnffvn11dXUAEBAQYLFYnJycSDIITZVxjrKtViuHw7Farb29vSEhIaS0Nzg4yOFwDh48mJCQAAC1tbUpKSlHjx6lu075+fkSiYTP59OVbZIlqaiooIN/r+v5AYBGo8GeH7LT2toqk8kePXq0aNGihISEb7/9FgCGhoacnZ3xgvVJYZYRyQkQrVZ75coVcnTl4+Nz/PjxRYsWMVdpaGhQKBQKhaKhoeH69ev79u2zqyfevn1727Ztdl8oJyfHYDDQp1/QlBg/vhofH3/p0iWpVCqRSMhpEJ1OR35yOjg4AAA5E8LhcOjvHB8fn+jo6JSUlLi4OPIIyfsxg3+je34CgYCcrCRPYc8P0QYGBsrLy+Pj43k8XkREhFgsJh+PvLy8PXv2zPboWIZZRiQlWxcXlw8//JCiqKamJhcXl3/7t3/TaDTMf5RydnaWSCQSicTZ2Vmn01VUVFRWVpaXl5Nna2pqBAIBKcQxJSUlHTp06M6dOzP0wuaHcU6MUBQVFBT09ddff/XVV7W1tWTKlslkWVlZJMK3fft2d3f3rKys7u5uugIhk8ny8/P5fP7evXuZW9u/fz8d/Bvd89u0adOJEydkMplGoxk7V4LmD7lcvnnz5n//93/fu3fv9evX9+7de/LkyaCgID8/v+HhYR6PR4JlaOJcXV3pMqJSqaQo6uXLlxwOR6/Xy2Sy3NxcuVyuUqmYO9bHx4e+TU5D6XS6mJgYuVweFBR05syZLVu2lJeXx8TE0ItVVlb29/c3NTXhaaup9eaNEZ1OR7ecDAaDUChk/n5qMpm4XO4r2/N08G90z89oNNqlptA8R5f8aBRFGY1G+vgAvRlSRqR/RTYYDPRxEvNbe2yj3x2miW8HTRxmoRBCiDXw320QQog1cMpGCCHWwCkbIYRYA6dshBBiDZyyEUKINXDKRggh1hhnyq6vr5+ZcSDEZNeQq/oniqLsnnr27JnRaJyNMbKYXcmPoON8dBmxr6+P2fIkRgcUVSoVXeaqrKxsbm6mF8Z3Z8qNM2XTkZApgcU+NEF2DTkPDw8PD4+7d+9yOBz6KYvFcvLkSYqi8O+sT5ZdyQ8Aampq/vrXvwLAkydPTp8+DQA9PT3FxcWenp7nz59nrmsXUNTpdJmZmWKx+MqVK01NTQsXLnzw4EFDQwO+O9NkotcZWq3WM2fOSCQSs9kcGRlpsViWLVv25Zdf/vGPf5TL5QkJCeSN+fLLL1etWuXq6kqX/H744QelUsnlckmxz93d/dmzZ8nJyaWlpaGhobdu3VqwYEFXV5ePj09vb+/ixYu3bt06na8XsYNdQy4wMHBwcDA0NJT5VG5u7tKlSzs7O1esWDFrA2Wh0SU/nU73ww8/LF26FABWr16tUCgA4O7du3v27HF2drY7brMLKN66dSslJcXNze3evXvBwcEAQFFUW1tbTU0NvjvTYaLnsuVy+YEDB5KTk0Uikbu7e3V1dWlpqaenJ6nu0T9IKYratWsXs+RXVVX17rvvpqSkrFmzJjIyctmyZaTYp9frLRbL0NBQYmJiXFyci4vLsWPHmH8wASGmGzdu7N69m/lIQ0NDaGjo0qVLMzIyZmtUbDS65Hfp0qX33nvPbrGYmJizZ8/m5+e3tLQwS37w04Ai3Zair1y/d+9ebGwsvjvTZKJT9vDwMGmnCQQCq9XK5XK7urref//9GzduuLi40IuRjwKz5De62EfeaWauTyAQCAQCwGIfeg29Xi8UCkk5kubl5SWVSgMDA8m8gybIruQ3ODjo6Ogol8srKytfvHhBLyaTyY4dO7Zu3brQ0FBmyQ9+GlD08/Pr6ekBAJK+yMvL27Jli4ODA74702ScEyNKpTInJ4fP5+/bt++bb74JDw/v6uravXu3j4+PXq8XiUTPnz//wx/+YLcWs+Tn6+t74cIFFxeXffv2dXV1tbW1Wa1WuVz+8OHDlStXTtvrQnOEXC7ftWvX9evXDx48aPfUypUrMzIyOBzO+vXrZ2VsLDW65Hf06FEA0Ol05NQTLT8/v7Gx8dNPPyVHVAQzoCiXy7dt23b8+PGgoKCwsLCLFy+2t7dbLBaTyYTvzjSZXBaKjvCNi1nyM5vNHA6Hx+NZrVabzcbn87VaLfPYHKHXGbsVR3+0ZnJIcwOz5Pe6vxFBlhljI+TdoSjKZDIxp3UC353pgCU/hBBiDbyUBiGEWAOnbIQQYg2cshFCiDVwykYIIdbAKRshhFgDp2yEEGKN/5qyq6qqMjMzi4qKxli6tbV1IteUZ2dn2xWgyIo9PT0Wi6WsrCwrK6u5ufnixYsqlWqyI6b7YUxky5PdFEIITR9m4xB+WkZ8/vx5TU0N/dTEk4c/Ttnnz593cXE5dOjQpk2bxlhaq9Wq1eqxtzgyMmI0Gjdu3Dh6RY1GY7FYlErlwYMH79y5895777m7u09klADQ2tra3t4OAAMDA8zHyc8GsuUJbgohhKYbs3EIPy0jGgwGiqJUKlVRUdFkk4c8ACBdpyVLlsA/2y4kyOfl5dXc3Mzj8RITEzMzMzkcztOnTxMSEsrKyuhQH1m+o6OjoKBAIBDIZDKKompqajZt2uTn5wcAzBXr6+t5PF5lZeXy5csrKysDAgKEQiG9qa+++mrVqlXLli0rKysbGRnZunVrSUmJk5NTT09PUlLSjRs3TCbT4cOHlUqlRCKprq4eGBh4//33L1++3N/fz+FwgoKCHjx40NzcrNPp4uPjf/jhB5PJNDIyEhgYuGHDhul7YxBCaDRm4xB+WkYUi8XLly8vLi729vaebJCSCwDd3d1eXl4A8OTJk7/85S82m40E+SIiIkJDQ6urqwcHBzkczsGDBxMSEgCAGeojW7l582ZqauqRI0fq6+tXrFixfv16Ml/brTg0NCSVStesWRMVFbVmzZpt27YxN0W+aFZWlpeXl0wmy8nJUavVSUlJn3zySUFBQVRU1Pbt20k7MCAgICIioqGhgcPhREZGHjhwQKvVUhT19OnT995776OPPiooKNBoNJs3bz58+DD+lQaE0Myzaxwyy4gAUF5eXltb6+DgMNnkIRcAgoOD6+rqAGD16tVeXl4URZEg39/+9rfg4GCpVKrT6Uhyj6TUmKE+shUOh0Nu2PUE7FYcjbkp8kXFYnF0dHRMTMynn35KsmEODg4mkwn+mQoDgPT0dEdHx4iICLuTIXbDIKuTigJCCM0ku8Yhs4wIADExMZ999tmdO3cmmzzkAQCfz1++fPl3333n6+tLeriE0WgsLS1taGiQyWRZWVkmk0mhUGzfvp0Z6iNLrl279vTp0xKJxMfHh7l1uxVHf/nRm1q3bt21a9c8PT0jIyOZS/r6+l67di0wMBAAzGbzs2fPKioq9u7d6+7ufuvWLbKMh4fHtWvXtFrtunXrnjx5MpHXjxBC0yE+Pv7rr78mjUMSpKTLiG1tbU+ePDEYDGvXruVyuZNKHv4kCzUyMsLMcdlsNqPRSA6TAUCn05HjVvhpqI+wWq0Wi2V0zctuxdFGb8pms5lMptHt7JGREUdHR3IozWwBGo1GemGj0ejo6Pi6MhlCCM0YunFIkofMMqLBYBAKhWSmmlTyEEt+CCHEGng0ihBCrIFTNkIIsQZO2QghxBo4ZSOEEGvglI0QQqyBUzZCCLHG+FO2XeHvlSE9hKaWzWbr7u6m75pMpocPH46MjMBP62hNTU2NjY2zM0SEZsM4U7Zd4e/JkyenT5+ekYGhea2wsDAnJ4e+e/r0aalUmpaWxqyjPXr0qK2trb6+XqFQzOJQEZpJY03Zowt/q1evDggImKGhoXksISGBvqK1v7/fz89PJpOJRKK8vLyUlJRly5ap1eqamprNmzfv2bPn4cOHsztahGbMWFP26MLfTI0Kof/S09NDkmESiaS7u5uuo9EfyAle6YvQHDDWlD268DdTo0Lov/j7+5N/QVGr1SEhIXQdjfQZbDYbJmXQ/DHW4cnrCn8IzRiSQFOpVLm5uWKxOCEhga6jeXh4nDp1ymazJSYmzvYwEZohE8pC2RX+EJoxJIEGAHQFja6jAYDJZOLxeHiUjeYPLPkhhBBr4OEJQgixBk7ZCCHEGjhlI4QQa+CUjRBCrIFTNkIIsQZO2QghxBqTK/n19/ffv3/fbDZP/8DQvGZX8jMajeXl5cPDwwDw/PnzmpoaALBarQ8ePGhra5u1UbIWs4xI6+/vJzeYtc7Ozs6uri7mYq/c7Xq93mg0AkBlZWVzc/PrFkM/3+RKfkqlMiAg4NSpUzMyNjR/2ZX80tPTg4OD09LSDAYDRVEqlaqoqKijo8Pf3z8zM3NoaGgWh8pGdBmRfqSmpuavf/0r/LTWefXq1YaGBnd3d+a6r9ztX3zxRWNjY1NT08KFCx88eNDQ0IDvzjSZXMlvw4YN/v7+5CI0hKYPs+TX19cnlUq9vb39/f0tFsvy5cspivL29g4ICPD29nZychKLxbM7WnZhlhHJb8w6ne6HH35YunQpMGqdtbW15KejXQ9u9G7Pzs7euHEjAAQHBy9atGjdunUdHR347kyTSZf8WltbZTLZDI0OIQAPD4/a2trbt2+XlpaKRKLy8vLa2loHBwcAyMnJMRgMdr/go7Exy4h6vR4ALl269N5779kt9ujRo0WLFiUkJHz77bcNDQ0KhUKhUJDWEHO3P3/+3NPT08/Pj17x3r17sbGxgO/O9JhcyW9gYKC8vDw+Pn6mhocQcDic3//+92+99VZERASfz4+Jifnss8/u3LkDAElJSYcOHSK30QQxy4hubm6Dg4OOjo5yubyysvLFixf0YjweLyIiQiwWi8ViZ2dniUQikUicnZ3hp7u9o6Ojv7+/uLiY3M3Ly9uyZQv5gYrvznSYRMlveHj43//93/fu3Xv9+vX9+/fP2BDRfEZKfgqF4v79+4mJiW1tbU+ePDEYDGvXrq2srOzv729qajp8+PBsD5NNXF1d6TKiUqmkKOro0aMAoNPpQkND6cX27t178uTJoKAgPz8/Hx8f+nHmbifvDo/HUygUPB7v4sWL7e3tFovFZDJpNBp8d6YDlvzQLxop+RkMBvqUqMFgEAqFpN6n0+nIcR+aLFJGJGc7X5dCpCjKaDSO/rcrerfTncVXwndnOmDJDyGEWAMvpUEIIdbAKRshhFgDp2yEEGINnLIRQog1cMpGCCHWwCkbIYRYY3Ilv87Ozvv379s1BxCacnYlP2Dk5ZhPvXjxor6+fqYHx36jS36dnZ30DfI9rtPpqqqqqqqqyCXQTHa7nX5HmPW+rq4usjqzC4h+vsmV/Hp6eqRSKZb80HSzK/kx83L0UyUlJVqttq+v7969e7MzStayK/l1dXX9+c9/tlqtwPge5/P5Hh4eCxcuLC4uZq47erfT7wiz3icWiz08PACgqqpqRl/bXDe5kt+aNWsoipJKpTM0OjRfMUt+wMjLMZ9qamqKjIyMjY0lgWY0QaNLfr6+vlFRUeRZ+ntcIBAEBga2trbu2bOHufro3U6/I8x6n5ubW2BgYF1d3b59+2b05c11YzVGmCW/4uLif/3Xf21ubr59+/aiRYtmangIvZa/v39WVpaDg4PBYJjtsbCJXclPIpEwn21qamJ+j7e0tGzatKmhoYE0/5ycnMbe7XS9j8fjDQ0NOTs7v+5qePRmJlfyCw4OPnbsGAkwIjS7duzYsWPHjiVLlkRERMz2WNjEruRn9yzze7yiooIcfTNLfmPvdma9Ly8vz+4IHf18kyj5mc3mzMxMoVDo6+s7Y+ND8xzdihv91NDQkFwuB4AjR47M+LhYbHTJLywsjDxlNpuzs7Pp7/Ha2tpf//rXAMAs+TF3u927w4z8DQ8P83g8Pp8/0y9vrptcyc9isVitVqz6oRkzRivOYrFQFIWTwpt5Xclv3O9x5m4f/e5gvW+6YckPIYRYA/9lACGEWAOnbIQQYg2cshFCiDVwykYIIdbAKRshhFgDp2yEEGKNH6dsusv14sULYFTTXqewsHCMZ3t6eiwWy1QMDyGE2EqlUjGrWI2NjdXV1eR2X19fRUUFuT2pIOWPU3ZpaSm5UVZWBgADAwPMhe7fv2+3WktLyxgb1Wg0r5yyR28HIYTmJJ1Ol5mZKRaLr1y5AgB6vX5wcNDBwSEzM7Onp6e4uNjT0/P8+fOTDVL+eOWSzWYj6UXyX6VS6eXllZ2dvXz5chcXl8uXL7u7u9fW1tpstt7e3mPHjpG1MjMz6Ueqq6ubm5uNRqOLiwufzw8KCnr8+LFSqeRyucnJyRwOp729/fLlyzabrbOz8913321vb29rayspKQkJCenv7z906FBjY2NXV5dKpUpNTX3dBW8IIcQKt27dSklJcXNzI3Oxk5PT2rVrAaC6uvru3bt79uxxdnYuLS1tampKTU0FgO+//z4uLm7czf44MzY1Nd26dQv+eWJEo9GQyTc2NpbD4URGRnp7e9fV1SUnJ/f395PCgEql4nA49CODg4Opqak2m+3EiRNubm4URVVVVX300Uf0V5LJZJGRkXFxcZcvX1ar1cXFxUeOHCkpKUlJSbHZbN99911HR8emTZu0Wm1paemWLVumfA8ihNCMoatbzAPQ27dvb9u2zcHB4ezZsyEhIS0tLdHR0ZMKUv64rcWLF+/duxcA+vv7ySNBQUECgeD48eO//e1vAWBkZIQkcUUiETnpYffI6D9VQw7YR9u/f//Vq1f5fL6Dg4OrqysAcLlcPp/v4+MTHR0dHR3NDCUjhBAb+fn59fT0eHt701GQmpoaUiEHgGPHjul0usHBwR07dmi12o6ODlLEHddr/4+RlpaWJ0+euLu7A0BXV5fFYnn58uWNGzfS0tLI5O7r68t8RCqVXrx4MSMjw9HRkWzB19f3woUL5JCcMJlMCoVCJBKRA2ryGrKystLS0rZu3SqTyfLz84uKijgczhvuJIQQ+mWIj48/e/bslStXwsLC5HL506dPz5w5MzAwUF5eDgD5+flnz559++23h4aGrl+/Xl1dHRMTM5HNjpWFMhqN5IDXarXabDY+n6/X652cnJjL2D3S29v75MmThIQEctdsNnM4HObvBUajUSAQfP/997/61a8AIC0t7YMPPuDz+aQlZjKZuFwunshGCM0BFEWZTCaBQDA6eUhKijD5IOWUlfweP3788uVLBweHAwcOjL3kjRs3Nm7cSM7ylJeXT/BnC0IIIYyvIoQQa+DVjwghxBo4ZSOEEGvglI0QQqyBUzZCCLEGTtkIIcQa40/ZSqVSq9UyHxk74/cGxg0HovnGZrN1d3fTd00m08OHD0dGRuCndbSmpqbGxsbZGSJCs2H8KfvOnTs3b95kPjJ2xu8N2IUDESosLMzJyaHvnj59WiqVpqWlMetojx49amtrq6+vVygUszhUhGbSONcZ6vV6Nzc3jUYDAFarNT09XSKRlJaWfvjhh1lZWRwOx2QyvfPOO3/+85+XLFnS2dn53//7f3/48GFzc7NOp4uPjxeJRPn5+SKRaN26ddXV1Z2dnUePHr1+/bpOpzt27Ni5c+fEYvHSpUuVSqWnp+eFCxeCgoKsVmtKSgqzEZiRkbFgwYKuri4fH5/e3t7FixdHR0fn5+eTrbm4uMzIjkIzKiEhIT09ndzu7+/38/OTyWQikSgvL4+uow0NDX344YcA8O23365atWpWx4vQDBnnKDsnJ8fDw2NwcLCjo+PGjRv79+8/dOjQ6tWrVSpVTU2Ni4tLZWWl2WwWCARvv/32ihUrXr58+fTp0/fee++jjz4qKCjIzc09evRocnJyQEDAhg0bPD09y8vLW1tbP/7447y8vPj4+KSkpBUrVmg0GpvNFhgYeOjQIZ1ORzcC33nnHblcPjQ0lJiYGBcX5+LicuzYMaVSKRKJ6K3NzG5Cs6inp4cUcyQSSXd3N11Ho0tkWDhA88c4n3WdTrd58+YlS5YUFRVxuVxnZ2cAIJ3A1atXk/Aen88njzs5OWm1WjrqxOPxTCYTuV1SUuLg4BAbG1tdXU2+/YaGhshaNHLXZrPZNQLFYjEACAQCgUAAAEKhkLm1Kd0b6JfI39+/oKAAANRqdUhICF1HI10am81GbiA0H4w1ZXd3d/v7+0ulUgAwm81JSUnffPNNSEhIdXX1b3/727y8vJKSEicnp82bNzPX8vDwuHbtmlarXbduncViOXnyZEBAgF6vB4AXL14sXLiQLJaYmPjNN9+sWLEiKCjI7uv6+vpmZWXduHGjoaHho48+unDhgt0CJpNJo9Ewt4bmKrlcvmvXLpVKlZubKxaLExISvv7666CgoLCwMA8Pj1OnTtlstsTExNkeJkIzZHKNEYqiDAYDne4bHh4WCoWjW6lGo9HR0ZEc+1AURY6a9Xq9WCy2W9hgMJCD6NFGVwPtnh29NTT30Ak0unxG19EAwGQy8Xg8PMpG8wdmoRBCiDXw8AQhhFgDp2yEEGINnLIRQog1cMpGCCHWwCkbIYRYA6dshBBijTlb8uvp6bFYLOR2SUmJ2Wx+4039nOGVlZVlZWW98erzFjPXBwCdnZ33798nV6h3dXWVl5eT/zlVq9XafTjRRDDLiER1dTWpsxmNxvLy8uHhYfJ4Z2dnV1eX3ep2u72urq6qqoosZvdUf3//9L2K+WnOlvw0Go3FYrl//z4AtLe30z2KN/BzhqdUKg8ePPjKp1pbW9vb2994y3MYM9dHHunp6ZFKpadOnerr67t7965MJvv73/9us9kyMjIqKipmd7RsRJcRyd0rV664urpmZGSMjIykp6cHBweTp65evdrQ0ODu7s5cd/Ruv3PnjkQiEQqFdk9ptdrf/e53M/Wa5os5UvLLzs5OTExsaGhQKBRkdT6f7+Pjc/ny5f7+foqi5HK5Xq8PDg6OjY0lLy09Pd1us6RfERUVdfXq1aSkJObwIiIiXvcaHz16lJycDABXr16NjY3Nzs5evnx5XFwcALS1tVVWVkZGRjY2NpJ9tX//fnrkN27cMJlMcXFxFouFfNHk5OQvv/xy1apVrq6uXV1dKpUqNTU1MzMTAOLj4xcsWDCtH4Vfjlu3btG5PvLImjVrXr58KZVKyfW3IpGIw+Fwudx9+/bV1dXN7mhZh1lGNJvNfD5/aGho8eLFu3fvzsvLk0ql3t7e/v7+jx49oihKpVLZHe7Y7XaLxaLRaBYsWEA+n8ynLl68uH379hl+dXPeHCn5hYeHV1RUVFdXm81mEpYaGhoSCASRkZEHDhzgcDjbtm371a9+pVQq6Zc2erNms9lgMACARqOxGx4AvO41kmfJWkaj0cXFhf6p4O/vv2bNGplMRu8rHo9HjzwqKmr79u2urq70FwUAiqJ27dqVn58vkUj4fH5paanBYNiwYcP8ma8BQK1W07k+8khTU1NhYaFQKHR1dR0cHDx79uyaNWtmdYwsxiwjkvgPmZQXLlzI4XBqa2tv375dWlr69OnTRYsWJSQkfPvtt+RgSKFQNDQ02G2Nw+EcOXKkqKjo7t27zMevX7++b98+jCxOuTlS8luyZMn58+d5PF5gYODFixc3b958584d5sbJRphX54/erEAgIAO2Wq2vG97o18jn88mhitVqDQoKEggEx48f/+1vf0uvyNxXZWVlzJFTFMX8ogBAdo6Pjw9ZXigUbtmy5dKlS+Hh4StXrhz7zZoz/Pz86FwfeSQ4ODg4OPjEiRMqleq//bf/5ubmdvr0aWxkvxlmGZH8aCSRltbW1oCAgLfffntoaKizs9PBwSEiIsLR0VEsFjs7O/P5fAAg3yxMDg4O/v7+/v7+f//73zdt2kQ/rtPpKioqKisrg4ODY2JiZu7lzXVzp+TX39+/f//+RYsWXbly5ciRI+RBd3f3W7duTXBfSKXSc+fOmUwmpVL5v/7X/3rd8Oxeo4uLy4kTJ2QymUajaWlpef78ud25P5lMRu8r5sh9fX2vXbv261//uqqqinxR5ir5+fl8Pn/v3r3kH3tHf6vMYfHx8XSuTy6Xb9++XS6XC4VCX1/fZcuWXbt2zdXVFf+0xRtzdXWly4hKpZKiKF9f36tXr3Z1df3Lv/xLVVXV/fv3ExMTFyxYcPLkyaCgID8/Px8fn1duSi6XL1u2rK6urre3124eOHz4MADodDqcr6fW3C/5GY1Gcsw+EVardWRkhB7SGMNjvkaj0cjj8cjvgK/7cvS+Yo58ZGTE0dGR/GJh94VMJhOXy+XxeGazmcvlOjg4TPAlzA10ro+U/CwWi9VqJT+3bDab0Wh83fuCJoiUEckpES6XS4cSmZ95iqKMRiN5/JXIu6PX60UiEfYUZwaW/BBCiDXwByNCCLEGTtkIIcQaOGUjhBBr4JSNEEKsgVM2QgixBk7ZCCHEGj9O2Tdv3rx27do//vEPcg3e2AYGBh4/fjz2MtnZ2STJNCUm29KbjjQgQghNil2Qsq+vj25mNTY20pdAV1VVVVVV6XS6iWzzxym7s7MzKSlpzZo1/+///b8xZm0SnzMajb29vWNsdGRkxGg0bty4kdz9+XP3ZFt605EGRAihibMLUvb09BQXF3t6ep4/f16v1w8ODjo4OGRmZra3tzc3N0skkgn2WH6ykIeHxzvvvHPnzh2RSESX5P7v//2/ISEh/f39hw4dIvG5LVu2PHz4cHBwEADeffddsm5HR0dBQYFAIJDJZBRF1dTUbNq0yc/Pz2g0kpyeyWRKSUkBgKtXr27cuPHixYuLFy/u7+93dXWtq6v74x//WFFRQefxnj171tfXt3v3bi8vLwCwS/2FhYXx+fywsLDMzMzdu3fTbTwSiY2Pj1cqlcuXLz9z5oxEIjGbzYcPH2Z2+CZyzSRCCP0cdkHKu3fv7tmzx9nZubS01MnJae3atQBQXV3d2Njo6uoqlUoneJG2/blsV1dXjUbDLMkBQEpKyieffJKTk0PicwsXLly5cuW7775LyiHEzZs3U1NTjxw5Ul9fv2LFivXr1/v5+QGAUCgkOb2hoSGyJOn2BQUF7d+/X6fTJSUlRUdHNzU1MfN4KpVq+/btZL6mV6FTfytXrnzw4AG5cJlZ9aOjdxqNRi6XHzhwIDk5WSQS9ff3Mzt8P/etQAih8dgFKWNiYs6ePZufn0//vYHbt29v27YtKioqNDT0+PHjEzw3YH8ofu/evXXr1vX09NAluefPnwMAl8slKS9ygfvoMB4zbvfKryQQCOjiHb0FV1dXAPDw8NDr9cwtcDgc0rRjolN/AODo6Hj79u0dO3Ywq36/+c1vSPQOAIaHh+lWn8ViYXb4JrJfEELo57ALUspksmPHjul0OnJ+oqamRiAQBAYGAoCTk1NiYmJdXR19MnkMP06vDQ0N5I8AeHt7y2QyZkmupqYmKyuLHPY6Ojpeu3YtISFh9IbWrl17+vRpiUQyOvpFcnqbNm2ii3evHAozj/fkyZOxx719+/a//e1v8fHxCoWCbuMxo3f79u375ptvwsPDu7q6du/ePe6OQAihKWQXpCQd/MbGxk8//bS2tvbMmTNbtmwpLy93cHBQq9UNDQ3Hjh2byGZ/zEJZLBaKoshxNEGX5NLS0j744AM+n09KXSQ+98rTwVar1WKxvDITSvp2zOLdKzHzeBNHt/FGR+/GzgEihND0sQtS0rlEO1qtduIx4fFLfuXl5Vi8RQihXwKMryKEEGvg1Y8IIcQaOGUjhBBr4JSNEEKsgVM2QgixBk7ZCCHEGmOFSBQKRXNzM/lfqtevX69SqSwWS0RExIwNDs1bNputt7eXvizLZDI9fvx49erVAoFApVK9fPmSJBqampooigoJCZnVwSI0c8Y6yl61atWBAwd0Ot2BAwdcXV0pilKpVEVFRTM2ODRvFRYW5uTk0HdPnz4tlUrT0tKYdbRHjx61tbXV19crFIpZHCpCM2miJ0bEYvHy5cspivL29p7WASEEAAkJCXTYrL+/38/PTyaTiUSivLy8lJSUZcuWqdXqmpqazZs379mz5+HDh7M7WoRmzCTOZZeXl9fW1jIvB0doBvT09JBGmEQi6e7uputoJBAGry+RITT3TGLKjomJ+eyzz+7cuTNtg0HoFfz9/cmfGVKr1SEhIT09PQBAURRp0dhstslGaRBir4kenrS1tT158sRgMJB/9kFoZpAEmkqlys3NFYvFCQkJdB3Nw8Pj1KlTNpstMTFxtoeJ0AyZRGPEYDAIhUI8okEziSTQAICuoNF1NAAwmUw8Hg8/k2j+wCwUQgixBh6eIIQQa+CUjRBCrIFTNkIIsQZO2QghxBo4ZSOEEGvglI0QQqwxiZKfj4+PXq93cHCg4w8ITRNmrg8AjEYjKfmJRCJm5O/Fixc2m23p0qWzOlj2YZYRAUCr1SoUioiICFdXVwDo6OiQSqVkyc7OTg6H4+vry1y9srLSw8MjKCiIfoQsRm4AgI+Pj4+Pz6NHj6RSqb+//0y9rHlhoiU/8h3yxRdfNDY2ztTY0DzFzPWRR9LT04ODg9PS0oAR+SspKdFqtX19fffu3ZvN4bIQXUYkd9va2kJDQ0+cOAEAT548OX36NHn86tWrDQ0N7u7uzHWbmpoWLlz44MGDhoYGu8XEYrGHhwcAVFVVdXR0+Pv7Z2ZmDg0NzdwLmwcmcWIkOzt748aNANDa2pqdnU2/3whNrVu3btG5PgDo6+uTSqXe3t7+/v5DQ0N05K+pqSkyMjI2Nra5uXmWR8wqzDKi2WwGgPDwcJFIRCKdq1evDggIAIDa2lrSW6bzW0RwcPCiRYvWrVtHwi/Mxdzc3AIDA+vq6vbt2xcQEODt7e3k5CQWi2fjVc5ZE52ynz9/7unp6efnBwABAQERERENDQ0jIyPTOTY0T6nVajrXBwAeHh61tbW3b98uLS0l16wT/v7+WVlZubm5BoNh1sbKQswyol6vBwCtVnvlyhW7IOKjR48WLVqUkJDw7bffNjQ0KBQKhUJBH1nfu3cvNjbWbjEAGBoacnZ2JgmBnJwcg8GAs8TUmmgWqqOjw2AwPHr0iM/nV1ZWbt++PSIiwmKxkHNhCE0hPz+/np4eb29vUlPgcDi///3vh4aGOjs7+Xw+vdiOHTu0Wm1HRweZgNAE+fv7FxQUAONHo4uLy4cffnju3Dm9Xu/k5EQW4/F4ERERjo6OYrHY2dmZ7Hny/Z6Xl7dlyxbSYWYuRp5KTk4mW0hKSmpvb79z587evXtn44XOTROdsuPj4wFAoVDweLzy8vJnz55VVFTgO4GmQ3x8PJ3rIyU/hUJx//59u2Lf0NCQXC4HgCNHjszSSFnJ1dWVLiMqlUqKol6+fMnhcJjzNQDs3bv35MmTQUFBfn5+9F90A4CLFy+2t7dbLBaTyVRfX79z5056seHhYR6PRyb3ysrK/v7+pqamw4cPz8KLnLveMAul1WpdXFymfDQIEXSuj5T8DAbD6FOiFouFoijmcTeaOFJGJOepORyOwWBgztcERVFGo5F5MsoOeXdet5hOp3N2dp7ykc9zWPJDCCHWwEtpEEKINXDKRggh1sApGyGEWAOnbIQQYg2cshFCiDVwykYIIdZ4k5Lfw4cPN2zYgP8/LJo+diW/qqoqciMyMpJc9OHg4CAQCKqrqwFg6dKl+P//TopdyQ8AOjs7SY6Cuaubmpo0Gk1kZCRzXavVapfoa2xspBejI3+jF0NT4k1Kfu3t7XalGISm0OiSn4eHh4eHx927d0nhk/4cNjc3SyQSuzgGGpddya+rq+vPf/6z1WoFxq42GAyDg4MODg6ZmZnMde0SfXq9nl6MGfnDkt80mcRnnS75AUBubq6DgwNFUUlJSdMzMDR/kZKfm5sbXVUNDAwcHBwMDQ0FxuewsbHR1dVVKpViwH1S7Ep+fD7f19c3KiqKPEvvaicnJ/JbDvlVhhYQEGCxWOhEH3Ox4OBgAKAoqq2tbfPmzczF0FR5k5IfAMTFxR06dGhoaMhkMk3b2NA8ZVfyI27cuLF7927m5zAqKio0NPT48eMDAwOzNlYWGl3ys0N2Nbl9+/btbdu22ZX8Rif6yGLkNh35w5LfdJjolN3R0dHf319cXHznzh0AID85BQIBXu+Ophwp+QEA/enS6/VCodDBwYH5OXRycgoKCkpMTKyrq5vV8bKMv78/SV3TPxqZ6F0NADU1NQKBIDAw0NnZWSKRSCQS8m8GSUlJhw4dIlMBczH4aeTPbjE0Jd6k5KdQKC5fvkzObmN8FU250SW/69evHzx4EH76OayoqFCr1Q0NDceOHZvtIbPJ6JJfWFgY/Sy9q2tra8+cObNly5by8vKYmBh6AWaiTy6XBwUF0Yu1tLTQkT+NRoMlv+nw5lkoUgKb2tEgRNiV/F63GBYl3xiz5Ef+IsHE0Ym+sd8dLPlNByz5IYQQa+ClNAghxBo4ZSOEEGvglI0QQqyBUzZCCLEGTtkIIcQaOGUjhBBr8OBVxb6fudGOjg6pVDoVw0MIIbayC1I+f/7cYrFERETAT/OHL168sNlsS5cuncg2ufCqYt/PhM0HhNA8ZxekNBgMFEWpVKqioiJm/rCkpESr1fb19dERtLHZX7nU2tra09MTFRV19erV5OTk//iP/wgLC1Or1UKh8OXLlx988AEAFBQUCAQCmUwWHBx84cKFnTt3kp8bly9fBoD4+HilUhkQEFBSUqLT6SiKcnJy4nA4JpPpnXfemeK9ghBCv0h2QUqxWLx8+fLi4mJvb29m/lCj0aSmpgLA999/HxcXN+5m7c9lm81mg8EAABqNBgCEQuH+/fsNBsOhQ4f+9V//9fbt2zdv3kxNTT1y5Eh9fT0A+Pr6kvkaAAwGw4YNGxYsWKDRaCQSyYEDB/R6fUJCQk1NjYuLS2VlpdlsnspdghBCv1Sjg5Tl5eW1tbWkmQX/zB/6+/tnZWXl5uaSiXdc9kfZAoGA9FRJ75wU+0QiEY/H4/F4FEWRxjwZB4fDIRVH4je/+c2lS5fCw8PJ3czMzH379plMptWrV0dHR0dHR+MfskEIzRMkSOnt7U1HQWJiYmJiYk6cOBEWFkbnDwMDA7VabUdHB3MuHYP9lC2VSs+dO2cymZRK5StXWLt27enTpyUSyeiz3oWFhfDPtt8PP/zw4MEDBweHwMDA7u7ukpISJyenzZs3T+o1I4QQS9kFKZcvX/706VODwbB27VpmJXH58uVyuRwAjhw5MpHNviILZbVaR0ZGxvhbElar1WKxjM6ums1mLpdLH/YzDQ8PC4VC+ggdIYTmPLsgpcFgEAqFdt1Ei8VCUdTEz0BgyQ8hhFgDL6VBCCHWwCkbIYRYA6dshBBiDZyyEUKINXDKRggh1sApGyGEWGOiU3ZxcbFKpSK3+/v7p208CAEA2Gy27u5u+q7JZHr48OHIyAgAqFSqqqoq8nhTU1NjY+PsDBGh2TDOlG0ymc6fP//5559zOBx3d3cAqKmp+etf/zojY0PzV2FhYU5ODn339OnTUqk0LS2NWUd79OhRW1tbfX29QqGYxaEiNJPsL1i3k5qampiY+Kc//Ync1el0P/zwA7Pr2tvbm5+fLxKJNm3alJ6ebpf9w2o2ejMJCQnp6enkdn9/v5+fn0wmE4lEeXl5dB1taGjoww8/BIBvv/121apVszpehGbIOEfZ586dc3Jy+vzzz2/fvg0Aly5deu+995gL5ObmHj16NDk52cvLa3T2bxoHjuaNnp4eUsyRSCTd3d10Hc1ms5EF6FIaQnPeOFM2h8PZt2/fn/70Jz6f//LlS0dHR7lcXllZ+eLFC7IACf4RzOyfUCjES+HRlPD39+/o6AAAtVodEhLS09MDABRFkVaDzWazizYgNIeNc3jyn//5n2q1mtz+7LPPjh49CgA6nS40NJQ8GB0dffLkyYCAgKioqGkdKJqf5HL5rl27VCpVbm6uWCxOSEig62geHh6nTp2y2WyJiYmzPUyEZsgUZKEoihoZGREKhVMyIISYSAINAIaHh0UiETDqaABgMpl4PB4eZaP5A0t+CCHEGnh4ghBCrIFTNkIIsQZO2QghxBo4ZSOEEGvglI0QQqyBUzZCCLHGpKdsvV5vNBqnYygI0Zi5PgDo6OioqqpSKpUA0NfXV1FRQT+FXck3wCwjAoDRaCwrK6MvmiPXmhKv/H7XarVarZb5SGdnZ1dXF0VRVVVVVVVVOp3ulYuhn2+cKXtoaMjukS+++AJzl2haMXN95JHCwkKJROLs7NzT01NcXOzp6Xn+/HkA0Gq1v/vd72Z1sKxElxHJ3bq6uqCgoO+++46iqCdPnpw+fZpecvT3u81my8jIYP7UvHr1akNDg7u7e3t7e3Nzs0QiIQUYu8XQlBjngvXS0lKdTpeYmEgubszOzt64cSNzgZs3b+r1+oULF+r1epvNptFoHB0dbTab0WhMTU2dxoGjuevWrVt0ro88Mjg4yOPx/Pz8rly5smfPHmdn59LSUgC4ePHi9u3bZ3Ww7MMsI5rNZj6fv3r1agDw9fW1Wq2rV6+mY7ajv98BgMvl7tu3r66ujtytra2lKEqlUtlstsbGRldXV6lUSqYL5mJoqoxzlL1nz56333775s2bt2/ffv78uaenp5+fH/2sWq02GAzJyclbt27VaDRxcXFHjx7t7e09fPiwyWSa5pGjOUutVtO5PvLIu+++297enp6eHhMTc/bs2fz8/JaWluvXr+/btw8zfpPFLCPq9XryoNlspiiKuTOZ3+8NDQ0KhUKhUDQ0NNht7dGjR4sWLUpISPj222+joqJCQ0OPHz8+MDAwU69m3hn/XHZzc7PJZAoMDOzo6Ojv7y8uLr5z5w55ymAwMNMipOTn6uoKAJgcQW/Mz8+PzvWRR3x8fDZu3EhRlEwmO3bs2Lp160JDQ3U6XUVFRWVlZXl5+ayOl2WYZUTyo9Fms507d+7dd99lLsb8fnd2dpZIJOTclN3WeDxeRESEWCwWi8VOTk5BQUGJiYl4cD19xjlCuXjx4uLFi8l7uXjxYgBQKBT0j2KpVJqdnZ2bm0v+YA1CUyI+Pp7O9cnl8i1btuTn53M4nMDAQADIz89vbGz89NNPSRlKp9PFxMTM9pDZxNXVlS4jKpVKiqLOnj27fPnymzdvbtq0acGCBWSx+Ph4+Of3u4+Pzys3JZfLd+7cefLkyaCgID8/v4qKCrVa3dDQcOzYsZl7PfPMFGShhoeHhUIhh8OZkgEhBIxcHyn5kfNsjo6OwEj6oZ+D7EbyZyLeOIVI3h2KooxGI3lTtFqti4vLVA4U/RSW/BBCiDXwUhqEEGINnLIRQog1cMpGCCHW4AHAiuXhsz0MhBBCY3n67DmQo2xyCyGE0C/cLPwfI/QfYEUIITQp/x9zAmObqQXoLAAAAABJRU5ErkJggg==\n", 179 | "text/plain": [ 180 | "" 181 | ] 182 | }, 183 | "execution_count": 41, 184 | "metadata": {}, 185 | "output_type": "execute_result" 186 | } 187 | ], 188 | "source": [ 189 | "# Showing the raw image\n", 190 | "from IPython.display import Image as displayImage\n", 191 | "filename = img['filename']\n", 192 | "displayImage(\"examples/\"+filename)" 193 | ] 194 | }, 195 | { 196 | "cell_type": "code", 197 | "execution_count": 42, 198 | "metadata": {}, 199 | "outputs": [ 200 | { 201 | "name": "stdout", 202 | "output_type": "stream", 203 | "text": [ 204 | "\n", 205 | " \n", 206 | " \n", 207 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 223 | " \n", 228 | " \n", 233 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 248 | " \n", 250 | " \n", 252 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 260 | " \n", 263 | " \n", 265 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 272 | " \n", 275 | " \n", 278 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 285 | " \n", 287 | " \n", 289 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 297 | " \n", 300 | " \n", 302 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 309 | " \n", 312 | " \n", 315 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 322 | " \n", 324 | " \n", 326 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 334 | " \n", 337 | " \n", 339 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 346 | " \n", 349 | " \n", 352 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 359 | " \n", 361 | " \n", 363 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 371 | " \n", 374 | " \n", 376 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 383 | " \n", 386 | " \n", 389 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 396 | " \n", 399 | " \n", 402 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 409 | " \n", 411 | " \n", 413 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 421 | " \n", 424 | " \n", 426 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 433 | " \n", 436 | " \n", 439 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 446 | " \n", 449 | " \n", 452 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 459 | " \n", 461 | " \n", 463 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 471 | " \n", 474 | " \n", 476 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 483 | " \n", 486 | " \n", 489 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 496 | " \n", 498 | " \n", 500 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 508 | " \n", 511 | " \n", 513 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 520 | " \n", 523 | " \n", 526 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 533 | " \n", 536 | " \n", 539 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 546 | " \n", 548 | " \n", 550 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 558 | " \n", 561 | " \n", 563 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 570 | " \n", 573 | " \n", 576 | " \n", 578 | " \n", 579 | " \n", 580 | "
\n", 219 | " \n", 220 | " Variable\n", 221 | " \n", 222 | " \n", 224 | " \n", 225 | " Hazard ratio\n", 226 | " \n", 227 | " \n", 229 | " \n", 230 | " 95 % CI\n", 231 | " \n", 232 | " \n", 234 | " \n", 235 | " \n", 236 | " p\n", 237 | " \n", 238 | " value*\n", 239 | " \n", 240 | "
\n", 246 | " Age (median)\n", 247 | " \n", 249 | " \n", 251 | " \n", 253 | " 0.716\n", 254 | "
\n", 258 | " ≤69\n", 259 | " \n", 261 | " 1.000\n", 262 | " \n", 264 | " \n", 266 | "
\n", 270 | " >69\n", 271 | " \n", 273 | " 0.839\n", 274 | " \n", 276 | " 0.310–2.268\n", 277 | " \n", 279 | "
\n", 283 | " Gender\n", 284 | " \n", 286 | " \n", 288 | " \n", 290 | " 0.142\n", 291 | "
\n", 295 | " Male\n", 296 | " \n", 298 | " 1.000\n", 299 | " \n", 301 | " \n", 303 | "
\n", 307 | " Female\n", 308 | " \n", 310 | " 0.426\n", 311 | " \n", 313 | " 0.152–1.190\n", 314 | " \n", 316 | "
\n", 320 | " Type of surgery\n", 321 | " \n", 323 | " \n", 325 | " \n", 327 | " 0.010\n", 328 | "
\n", 332 | " Low anterior resection\n", 333 | " \n", 335 | " 1.000\n", 336 | " \n", 338 | " \n", 340 | "
\n", 344 | " Abdominoperineal resection\n", 345 | " \n", 347 | " 3.140\n", 348 | " \n", 350 | " 0.919–10.725\n", 351 | " \n", 353 | "
\n", 357 | " Tumor location\n", 358 | " \n", 360 | " \n", 362 | " \n", 364 | " 0.710\n", 365 | "
\n", 369 | " Upper rectum\n", 370 | " \n", 372 | " 1.000\n", 373 | " \n", 375 | " \n", 377 | "
\n", 381 | " Middle rectum\n", 382 | " \n", 384 | " 1.267\n", 385 | " \n", 387 | " 0.381–4.213\n", 388 | " \n", 390 | "
\n", 394 | " Low rectum\n", 395 | " \n", 397 | " 1.716\n", 398 | " \n", 400 | " 0.419–7.026\n", 401 | " \n", 403 | "
\n", 407 | " Grade of differentiation\n", 408 | " \n", 410 | " \n", 412 | " \n", 414 | " 0.936\n", 415 | "
\n", 419 | " G1\n", 420 | " \n", 422 | " 1.000\n", 423 | " \n", 425 | " \n", 427 | "
\n", 431 | " G2\n", 432 | " \n", 434 | " 1.933\n", 435 | " \n", 437 | " 0.416–3.423\n", 438 | " \n", 440 | "
\n", 444 | " G3\n", 445 | " \n", 447 | " 1.119\n", 448 | " \n", 450 | " 0.137–9.137\n", 451 | " \n", 453 | "
\n", 457 | " Histologic type\n", 458 | " \n", 460 | " \n", 462 | " \n", 464 | " 0.299\n", 465 | "
\n", 469 | " Adenocarcinoma\n", 470 | " \n", 472 | " 1.000\n", 473 | " \n", 475 | " \n", 477 | "
\n", 481 | " Adenocarcinoma with mucinous features\n", 482 | " \n", 484 | " 0.381\n", 485 | " \n", 487 | " 0.096–1.514\n", 488 | " \n", 490 | "
\n", 494 | " Depth of tumor invasion\n", 495 | " \n", 497 | " \n", 499 | " \n", 501 | " 0.925\n", 502 | "
\n", 506 | " T3\n", 507 | " \n", 509 | " 1.000\n", 510 | " \n", 512 | " \n", 514 | "
\n", 518 | " T4a\n", 519 | " \n", 521 | " 0.919\n", 522 | " \n", 524 | " 0.316–2.673\n", 525 | " \n", 527 | "
\n", 531 | " T4b\n", 532 | " \n", 534 | " 0.745\n", 535 | " \n", 537 | " 0.172–3.223\n", 538 | " \n", 540 | "
\n", 544 | " Tumor size\n", 545 | " \n", 547 | " \n", 549 | " \n", 551 | " 0.329\n", 552 | "
\n", 556 | " ≤4 cm\n", 557 | " \n", 559 | " 1.000\n", 560 | " \n", 562 | " \n", 564 | "
\n", 568 | " >4 cm\n", 569 | " \n", 571 | " 0.594\n", 572 | " \n", 574 | " 0.214–1.651\n", 575 | " \n", 577 | "
\n", 581 | " \n", 582 | "\n" 583 | ] 584 | } 585 | ], 586 | "source": [ 587 | "# Extracting the HTML for the table from the annotation\n", 588 | "html_string = format_html(img)\n", 589 | "print(html_string)" 590 | ] 591 | }, 592 | { 593 | "cell_type": "code", 594 | "execution_count": 43, 595 | "metadata": {}, 596 | "outputs": [ 597 | { 598 | "data": { 599 | "text/html": [ 600 | "\n", 601 | " \n", 602 | " \n", 603 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 619 | " \n", 624 | " \n", 629 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 644 | " \n", 646 | " \n", 648 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 656 | " \n", 659 | " \n", 661 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 668 | " \n", 671 | " \n", 674 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 681 | " \n", 683 | " \n", 685 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 693 | " \n", 696 | " \n", 698 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 705 | " \n", 708 | " \n", 711 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 718 | " \n", 720 | " \n", 722 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 730 | " \n", 733 | " \n", 735 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 742 | " \n", 745 | " \n", 748 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 755 | " \n", 757 | " \n", 759 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 767 | " \n", 770 | " \n", 772 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 779 | " \n", 782 | " \n", 785 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 792 | " \n", 795 | " \n", 798 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 805 | " \n", 807 | " \n", 809 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 817 | " \n", 820 | " \n", 822 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 829 | " \n", 832 | " \n", 835 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 842 | " \n", 845 | " \n", 848 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 855 | " \n", 857 | " \n", 859 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 867 | " \n", 870 | " \n", 872 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 879 | " \n", 882 | " \n", 885 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 892 | " \n", 894 | " \n", 896 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 904 | " \n", 907 | " \n", 909 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 916 | " \n", 919 | " \n", 922 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 929 | " \n", 932 | " \n", 935 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 942 | " \n", 944 | " \n", 946 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 954 | " \n", 957 | " \n", 959 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 966 | " \n", 969 | " \n", 972 | " \n", 974 | " \n", 975 | " \n", 976 | "
\n", 615 | " \n", 616 | " Variable\n", 617 | " \n", 618 | " \n", 620 | " \n", 621 | " Hazard ratio\n", 622 | " \n", 623 | " \n", 625 | " \n", 626 | " 95 % CI\n", 627 | " \n", 628 | " \n", 630 | " \n", 631 | " \n", 632 | " p\n", 633 | " \n", 634 | " value*\n", 635 | " \n", 636 | "
\n", 642 | " Age (median)\n", 643 | " \n", 645 | " \n", 647 | " \n", 649 | " 0.716\n", 650 | "
\n", 654 | " ≤69\n", 655 | " \n", 657 | " 1.000\n", 658 | " \n", 660 | " \n", 662 | "
\n", 666 | " >69\n", 667 | " \n", 669 | " 0.839\n", 670 | " \n", 672 | " 0.310–2.268\n", 673 | " \n", 675 | "
\n", 679 | " Gender\n", 680 | " \n", 682 | " \n", 684 | " \n", 686 | " 0.142\n", 687 | "
\n", 691 | " Male\n", 692 | " \n", 694 | " 1.000\n", 695 | " \n", 697 | " \n", 699 | "
\n", 703 | " Female\n", 704 | " \n", 706 | " 0.426\n", 707 | " \n", 709 | " 0.152–1.190\n", 710 | " \n", 712 | "
\n", 716 | " Type of surgery\n", 717 | " \n", 719 | " \n", 721 | " \n", 723 | " 0.010\n", 724 | "
\n", 728 | " Low anterior resection\n", 729 | " \n", 731 | " 1.000\n", 732 | " \n", 734 | " \n", 736 | "
\n", 740 | " Abdominoperineal resection\n", 741 | " \n", 743 | " 3.140\n", 744 | " \n", 746 | " 0.919–10.725\n", 747 | " \n", 749 | "
\n", 753 | " Tumor location\n", 754 | " \n", 756 | " \n", 758 | " \n", 760 | " 0.710\n", 761 | "
\n", 765 | " Upper rectum\n", 766 | " \n", 768 | " 1.000\n", 769 | " \n", 771 | " \n", 773 | "
\n", 777 | " Middle rectum\n", 778 | " \n", 780 | " 1.267\n", 781 | " \n", 783 | " 0.381–4.213\n", 784 | " \n", 786 | "
\n", 790 | " Low rectum\n", 791 | " \n", 793 | " 1.716\n", 794 | " \n", 796 | " 0.419–7.026\n", 797 | " \n", 799 | "
\n", 803 | " Grade of differentiation\n", 804 | " \n", 806 | " \n", 808 | " \n", 810 | " 0.936\n", 811 | "
\n", 815 | " G1\n", 816 | " \n", 818 | " 1.000\n", 819 | " \n", 821 | " \n", 823 | "
\n", 827 | " G2\n", 828 | " \n", 830 | " 1.933\n", 831 | " \n", 833 | " 0.416–3.423\n", 834 | " \n", 836 | "
\n", 840 | " G3\n", 841 | " \n", 843 | " 1.119\n", 844 | " \n", 846 | " 0.137–9.137\n", 847 | " \n", 849 | "
\n", 853 | " Histologic type\n", 854 | " \n", 856 | " \n", 858 | " \n", 860 | " 0.299\n", 861 | "
\n", 865 | " Adenocarcinoma\n", 866 | " \n", 868 | " 1.000\n", 869 | " \n", 871 | " \n", 873 | "
\n", 877 | " Adenocarcinoma with mucinous features\n", 878 | " \n", 880 | " 0.381\n", 881 | " \n", 883 | " 0.096–1.514\n", 884 | " \n", 886 | "
\n", 890 | " Depth of tumor invasion\n", 891 | " \n", 893 | " \n", 895 | " \n", 897 | " 0.925\n", 898 | "
\n", 902 | " T3\n", 903 | " \n", 905 | " 1.000\n", 906 | " \n", 908 | " \n", 910 | "
\n", 914 | " T4a\n", 915 | " \n", 917 | " 0.919\n", 918 | " \n", 920 | " 0.316–2.673\n", 921 | " \n", 923 | "
\n", 927 | " T4b\n", 928 | " \n", 930 | " 0.745\n", 931 | " \n", 933 | " 0.172–3.223\n", 934 | " \n", 936 | "
\n", 940 | " Tumor size\n", 941 | " \n", 943 | " \n", 945 | " \n", 947 | " 0.329\n", 948 | "
\n", 952 | " ≤4 cm\n", 953 | " \n", 955 | " 1.000\n", 956 | " \n", 958 | " \n", 960 | "
\n", 964 | " >4 cm\n", 965 | " \n", 967 | " 0.594\n", 968 | " \n", 970 | " 0.214–1.651\n", 971 | " \n", 973 | "
\n", 977 | " \n", 978 | "" 979 | ], 980 | "text/plain": [ 981 | "" 982 | ] 983 | }, 984 | "metadata": {}, 985 | "output_type": "display_data" 986 | } 987 | ], 988 | "source": [ 989 | "# Rendering the above HTML in Jupyter Notebook for a more readable format\n", 990 | "from IPython.core.display import display, HTML\n", 991 | "display(HTML(html_string))" 992 | ] 993 | } 994 | ], 995 | "metadata": { 996 | "kernelspec": { 997 | "display_name": "Python 3", 998 | "language": "python", 999 | "name": "python3" 1000 | }, 1001 | "language_info": { 1002 | "codemirror_mode": { 1003 | "name": "ipython", 1004 | "version": 3 1005 | }, 1006 | "file_extension": ".py", 1007 | "mimetype": "text/x-python", 1008 | "name": "python", 1009 | "nbconvert_exporter": "python", 1010 | "pygments_lexer": "ipython3", 1011 | "version": "3.6.8" 1012 | } 1013 | }, 1014 | "nbformat": 4, 1015 | "nbformat_minor": 1 1016 | } 1017 | --------------------------------------------------------------------------------