├── .gitignore
├── Auto-RAG
├── __init__.py
├── autorag.py
└── gui.py
├── LICENSE
├── assets
├── autorag.gif
└── results_.png
├── readme.md
└── scripts
├── deploy.sh
├── prepare_retriever.sh
├── run_evaluation.sh
└── run_gui.sh
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .idea
11 | .Python
12 | build/
13 | develop-eggs/
14 | dist/
15 | downloads/
16 | applications/DeepSpeed-Chat/data
17 | eggs/
18 | .eggs/
19 | lib/
20 | lib64/
21 | parts/
22 | sdist/
23 | var/
24 | wheels/
25 | pip-wheel-metadata/
26 | share/python-wheels/
27 | *.egg-info/
28 | .installed.cfg
29 | *.egg
30 | MANIFEST
31 |
32 | # PyInstaller
33 | # Usually these files are written by a python script from a template
34 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
35 | *.manifest
36 | *.spec
37 |
38 | # Installer logs
39 | pip-log.txt
40 | pip-delete-this-directory.txt
41 |
42 | # Unit test / coverage reports
43 | htmlcov/
44 | .tox/
45 | .nox/
46 | .coverage
47 | .coverage.*
48 | .cache
49 | nosetests.xml
50 | coverage.xml
51 | *.cover
52 | *.py,cover
53 | .hypothesis/
54 | .pytest_cache/
55 |
56 | # Translations
57 | *.mo
58 | *.pot
59 |
60 | # Django stuff:
61 | *.log
62 | local_settings.py
63 | db.sqlite3
64 | db.sqlite3-journal
65 |
66 | # Flask stuff:
67 | instance/
68 | .webassets-cache
69 |
70 | # Scrapy stuff:
71 | .scrapy
72 |
73 | # Sphinx documentation
74 | docs/_build/
75 |
76 | # PyBuilder
77 | target/
78 |
79 | # Jupyter Notebook
80 | .ipynb_checkpoints
81 |
82 | # IPython
83 | profile_default/
84 | ipython_config.py
85 |
86 | # pyenv
87 | .python-version
88 |
89 | # pipenv
90 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
91 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
92 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
93 | # install all needed dependencies.
94 | #Pipfile.lock
95 |
96 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow
97 | __pypackages__/
98 |
99 | # Celery stuff
100 | celerybeat-schedule
101 | celerybeat.pid
102 |
103 | # SageMath parsed files
104 | *.sage.py
105 |
106 | # Environments
107 | .env
108 | .venv
109 | env/
110 | venv/
111 | ENV/
112 | env.bak/
113 | venv.bak/
114 |
115 | # Spyder project settings
116 | .spyderproject
117 | .spyproject
118 |
119 | # Rope project settings
120 | .ropeproject
121 |
122 | # mkdocs documentation
123 | /site
124 |
125 | # mypy
126 | .mypy_cache/
127 | .dmypy.json
128 | dmypy.json
129 |
130 | # Pyre type checker
131 | .pyre/
132 |
133 |
134 | # vscode
135 | .vscode
136 |
137 |
138 | # third party models
139 | yala/model/third_party_models
140 |
141 | # aim
142 | .aim
143 |
144 | # test files
145 | _test*.py
146 | _test*.ipynb
147 |
148 | # experimental configs
149 | experimental_configs/
150 |
151 | # hydra logs
152 | outputs/
153 |
154 | # pytest configs
155 | tests/configs/
156 |
157 | # cibuildwheel
158 | wheelhouse/
--------------------------------------------------------------------------------
/Auto-RAG/__init__.py:
--------------------------------------------------------------------------------
1 | from .autorag import AutoRAGAssistant, AutoRAGConfig
2 |
3 | __all__ = ["AutoRAGAssistant", "AutoRAGConfig"]
--------------------------------------------------------------------------------
/Auto-RAG/autorag.py:
--------------------------------------------------------------------------------
1 | from copy import deepcopy
2 | from dataclasses import dataclass
3 | from typing import Any, Optional, Generator
4 |
5 | from omegaconf import MISSING
6 |
7 | from flexrag.assistant import AssistantBase, ASSISTANTS
8 | from flexrag.common_dataclass import RetrievedContext
9 | from flexrag.models import GenerationConfig, OpenAIGenerator, OpenAIGeneratorConfig
10 | from flexrag.prompt import ChatPrompt, ChatTurn
11 | from flexrag.retriever import DenseRetriever, DenseRetrieverConfig
12 |
13 |
14 | Knowledge_Prompt = """
15 | Your task is to generate one corresponding wikipedia document based on the given query to help the LLM answer questions.
16 |
17 | Demostration:
18 |
19 | Origin Question: How many episodes in a season of vampire diaries?
20 |
21 | Query: The Vampire Diaries episode count
22 |
23 | Document: The Vampire Diaries has a total of 171 episodes over 8 seasons. The show's first season had 22 episodes, the second season had 22 episodes, the third season had 22 episodes, the fourth season had 23 episodes, the fifth season had 22 episodes, the sixth season had 22 episodes, the seventh season had 22 episodes, and the eighth season had 16 episodes.
24 |
25 | ###
26 |
27 | Origin Question: Who developed an explanation for the photoelectric effect?
28 |
29 | Query: Photoelectric Effect Explanation
30 |
31 | Document: To make sense of the fact that light can eject electrons even if its intensity is low, Albert Einstein proposed that a beam of light is not a wave propagating through space, but rather a collection of discrete wave packets (photons), each with energy hν. This shed light on Max Planck's previous discovery of the Planck relation (E = hν) linking energy (E) and frequency (ν) as arising from quantization of energy. The factor h is known as the Planck constant. In 1887, Heinrich Hertz discovered that electrodes illuminated with ultraviolet light create electric sparks more easily. In 1900, while studying black-body radiation, the German physicist Max Planck suggested that the energy carried by electromagnetic waves could only be released
32 |
33 | ###
34 |
35 | Origin Question: District of maharashtra that are part of red corridor?
36 |
37 | Query: Red Corridor in Maharashtra districts
38 |
39 | Document: The Red Corridor in Maharashtra includes the following districts: Chandrapur, Gondia, and Gadchiroli.
40 |
41 | ###
42 |
43 | Origin Question: Who played jason in mighty morphin power rangers?
44 |
45 | Query: Mighty Morphin Power Rangers Jason
46 |
47 | Document: from Dairanger were featured in the second season while only the Kakuranger mecha was featured in the third season, though the Kakuranger costumes were later used for the mini-series Mighty Morphin Alien Rangers. The series was produced by MMPR Productions and distributed by Saban Entertainment, while the show's merchandise was produced and distributed by Bandai Entertainment. The series was well known for its campy tone. In 2010, a re-version of Mighty Morphin Power Rangers, with a revised new look of the original 1993 logo, comic book-referenced graphics, and extra alternative visual effects, was broadcast on ABC Kids, and Bandai produced brand new toys to coincide with the series. Only the first 32 of season one's 60 episodes were remade.
48 |
49 | ###
50 |
51 | Origin Question: {}
52 |
53 | Query: {}
54 |
55 | Document: """
56 |
57 |
58 | @dataclass
59 | class AutoRAGConfig(OpenAIGeneratorConfig, DenseRetrieverConfig):
60 | data_path: str = MISSING
61 | max_iter: int = 10
62 | elicit_max_iter: int = 5
63 | max_passages: int = 2
64 | verbose: bool = False
65 |
66 |
67 | @ASSISTANTS("autorag", config_class=AutoRAGConfig)
68 | class AutoRAGAssistant(AssistantBase):
69 | def __init__(self, cfg: AutoRAGConfig):
70 | self.prompt = ChatPrompt(
71 | system=(
72 | "Answer the question by retrieving external knowledge. "
73 | "Extract useful information from each retrieved document. "
74 | "If the information is insufficient or irrelevant, "
75 | "refine your query and search again until you are able to answer the question."
76 | )
77 | )
78 | # load model & retriever
79 | self.main_model = OpenAIGenerator(cfg)
80 | self.retriever = DenseRetriever(cfg)
81 |
82 | # set parameters
83 | self.verbose = cfg.verbose
84 | self.elicit_max_iter = cfg.elicit_max_iter
85 | self.max_iter = cfg.max_iter
86 | self.max_passages = cfg.max_passages
87 | return
88 |
89 | def interactive_answer(
90 | self, history: list[dict[str, Any]], show_details: bool
91 | ) -> Generator[tuple[list[dict], None], None, None]:
92 | # store the search history for interacting with the user
93 | question = history[-1]["content"].strip()
94 | if not show_details:
95 | history.append(
96 | {
97 | "role": "assistant",
98 | "content": "Retrieving and reasoning...",
99 | "metadata": {"title": "🤖 Auto-RAG"},
100 | }
101 | )
102 | yield history, []
103 |
104 | queries = [question]
105 | retrieved_ids = []
106 | prompt = deepcopy(self.prompt)
107 | prompt.update(ChatTurn(role="user", content="Question: " + question.strip()))
108 | current_iter = 0
109 | first_model_output = None
110 | max_iter = self.max_iter
111 | # start retrieval iteration
112 | while max_iter > 0:
113 | if self.verbose:
114 | print("input", prompt)
115 |
116 | # generate thought & action
117 | first_model_output = self.main_model.chat(
118 | prompts=[prompt],
119 | generation_config=GenerationConfig(do_sample=False, max_new_tokens=200),
120 | )[0][0].strip()
121 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
122 | history.append(
123 | {
124 | "role": "assistant",
125 | "content": first_model_output,
126 | "metadata": {"title": "🤖 Auto-RAG"},
127 | }
128 | )
129 | if show_details:
130 | yield history, []
131 |
132 | # extract action
133 | if "Query:".lower() in first_model_output.lower():
134 | queries = [first_model_output.split("Query:")[-1].strip()]
135 | current_iter += 1
136 | elif "final answer" in first_model_output.lower():
137 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
138 | break
139 | else:
140 | print("Exception: Follow Failed")
141 | print(prompt)
142 | print(first_model_output)
143 |
144 | # retrieve documents
145 | document = None
146 | queries[0] = queries[0].replace("[Dense]", "").strip()
147 | documents = []
148 | retrieval_results = self.retriever.search(queries[0])[0]
149 |
150 | # process retrieved documents
151 | for result in retrieval_results:
152 | if result.context_id not in retrieved_ids:
153 | retrieved_ids.append(result.context_id)
154 | documents.append(result.data["text"].split("\n")[-1])
155 | if len(documents) >= self.max_passages:
156 | break
157 | document = " ".join(documents)
158 | prompt.update(
159 | ChatTurn(
160 | role="user",
161 | content=f"Retrieved Document_{current_iter}: {document.strip()}",
162 | )
163 | )
164 | history.append(
165 | {
166 | "role": "assistant",
167 | "content": f"Retrieved Document_{current_iter}: {document.strip()}",
168 | "metadata": {"title": "🔍︎ **Dense Retriever**"},
169 | }
170 | )
171 | if show_details:
172 | yield history, []
173 |
174 | max_iter -= 1
175 |
176 | first_model_output = ""
177 | if max_iter == 0:
178 | first_model_output = self.main_model.chat(
179 | prompts=[prompt],
180 | generation_config=GenerationConfig(temperature=0.0, max_new_tokens=150),
181 | )[0][0].strip()
182 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
183 | history.append(
184 | {
185 | "role": "assistant",
186 | "content": first_model_output,
187 | "metadata": {"title": "🤖 Auto-RAG"},
188 | }
189 | )
190 | if show_details:
191 | yield history, []
192 |
193 | max_iter = self.elicit_max_iter
194 |
195 | # try to generate pesudo document for answer the question
196 | while "Refined Query:" in first_model_output and max_iter > 0:
197 | current_iter += 1
198 | query = first_model_output.split("Refined Query:")[-1].strip()
199 |
200 | document_prompt = Knowledge_Prompt.format(question, query)
201 |
202 | document = self.main_model.generate(
203 | prefixes=[document_prompt],
204 | generation_config=GenerationConfig(
205 | temperature=0.0,
206 | max_new_tokens=200,
207 | stop_str=["<|eot_id|>", "\n"],
208 | ),
209 | )[0][0].strip()
210 |
211 | # generate thought & action based on the pseudo document
212 | prompt.update(
213 | ChatTurn(
214 | role="user",
215 | content=f"Retrieved Document_{current_iter}: {document.strip()}",
216 | )
217 | )
218 | history.append(
219 | {
220 | "role": "user",
221 | "content": document.strip(),
222 | "metadata": {"title": "Parametric Knowledge"},
223 | }
224 | )
225 | if show_details:
226 | yield history, []
227 | first_model_output = self.main_model.chat(
228 | prompts=[prompt],
229 | generation_config=GenerationConfig(
230 | do_sample=False,
231 | max_new_tokens=150,
232 | ),
233 | )[0][0].strip()
234 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
235 | history.append(
236 | {
237 | "role": "assistant",
238 | "content": first_model_output,
239 | "metadata": {"title": "🤖 Auto-RAG"},
240 | }
241 | )
242 | if show_details:
243 | yield history, []
244 | max_iter -= 1
245 |
246 | # Generate the final answer
247 | if not show_details:
248 | backup_history = []
249 | for id in range(len(history)):
250 | print(history[id])
251 | new_item = {}
252 | if type(history[id]) == dict:
253 | new_item["role"] = history[id]["role"]
254 | new_item["content"] = history[id]["content"]
255 | if "metadata" in history[id]:
256 | new_item["metadata"] = history[id]["metadata"]
257 | else:
258 | new_item["role"] = history[id]["role"]
259 | new_item["content"] = history[id]["content"]
260 | if history[id]["metadata"]:
261 | new_item["metadata"] = history[id]["metadata"]
262 | backup_history.append(new_item)
263 | history = [history[0], history[-1]]
264 | history[-1]["content"] = (
265 | history[-1]["content"].split("Final Answer:")[-1].strip()
266 | )
267 | else:
268 | backup_history = []
269 | backup_history.append(history[0])
270 | backup_history.append(
271 | {
272 | "role": history[-1]["role"],
273 | "content": history[-1]["content"]
274 | .split("Final Answer:")[-1]
275 | .strip(),
276 | "metadata": history[-1]["metadata"],
277 | }
278 | )
279 | yield history, backup_history
280 |
281 | def answer(
282 | self, question: str
283 | ) -> tuple[str, Optional[list[RetrievedContext]], Optional[dict]]:
284 | queries = [question]
285 | retrieved_ids = []
286 | prompt = deepcopy(self.prompt)
287 | prompt.update(ChatTurn(role="user", content="Question: " + question.strip()))
288 | current_iter = 0
289 | first_model_output = None
290 | max_iter = self.max_iter
291 | response = ""
292 | # start retrieval iteration
293 | while max_iter > 0:
294 | if self.verbose:
295 | print("input", prompt)
296 |
297 | # generate thought & action
298 | first_model_output = self.main_model.chat(
299 | prompts=[prompt],
300 | generation_config=GenerationConfig(do_sample=False, max_new_tokens=200),
301 | )[0][0].strip()
302 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
303 |
304 | # extract action
305 | if "Query:".lower() in first_model_output.lower():
306 | queries = [first_model_output.split("Query:")[-1].strip()]
307 | current_iter += 1
308 | elif "final answer" in first_model_output.lower():
309 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
310 | response = first_model_output.split("Final Answer: ")[-1].strip()
311 | break
312 | else:
313 | print("Exception: Follow Failed")
314 | print(prompt)
315 | print(first_model_output)
316 |
317 | # retrieve documents
318 | document = None
319 | queries[0] = queries[0].replace("[Dense]", "").strip()
320 | documents = []
321 | retrieval_results = self.retriever.search(queries[0])[0]
322 |
323 | # process retrieved documents
324 | for result in retrieval_results:
325 | if result.context_id not in retrieved_ids:
326 | retrieved_ids.append(result.context_id)
327 | documents.append(result.data["text"].split("\n")[-1])
328 | if len(documents) >= self.max_passages:
329 | break
330 | document = " ".join(documents)
331 | prompt.update(
332 | ChatTurn(
333 | role="user",
334 | content=f"Retrieved Document_{current_iter}: {document.strip()}",
335 | )
336 | )
337 | max_iter -= 1
338 |
339 | first_model_output = ""
340 | if max_iter == 0:
341 | first_model_output = self.main_model.chat(
342 | prompts=[prompt],
343 | generation_config=GenerationConfig(temperature=0.0, max_new_tokens=150),
344 | )[0][0].strip()
345 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
346 |
347 | # try to generate pesudo document for answer the question
348 | max_iter = self.elicit_max_iter
349 | while "Refined Query:" in first_model_output and max_iter > 0:
350 | current_iter += 1
351 | query = first_model_output.split("Refined Query:")[-1].strip()
352 |
353 | document_prompt = Knowledge_Prompt.format(question, query)
354 |
355 | document = self.main_model.generate(
356 | prefixes=[document_prompt],
357 | generation_config=GenerationConfig(
358 | temperature=0.0,
359 | max_new_tokens=200,
360 | stop_str=["<|eot_id|>", "\n"],
361 | ),
362 | )[0][0].strip()
363 |
364 | # generate thought & action based on the pseudo document
365 | prompt.update(
366 | ChatTurn(
367 | role="user",
368 | content=f"Retrieved Document_{current_iter}: {document.strip()}",
369 | )
370 | )
371 | first_model_output = self.main_model.chat(
372 | prompts=[prompt],
373 | generation_config=GenerationConfig(
374 | do_sample=False,
375 | max_new_tokens=150,
376 | ),
377 | )[0][0].strip()
378 | prompt.update(ChatTurn(role="assistant", content=first_model_output))
379 | max_iter -= 1
380 | return (
381 | response,
382 | [
383 | RetrievedContext(
384 | retriever="autorag", query=question, data={"text": document}
385 | )
386 | ],
387 | {"prompt": prompt},
388 | )
389 |
--------------------------------------------------------------------------------
/Auto-RAG/gui.py:
--------------------------------------------------------------------------------
1 | import gradio as gr
2 | import hydra
3 | from hydra.core.config_store import ConfigStore
4 |
5 | from autorag import AutoRAGAssistant, AutoRAGConfig
6 |
7 |
8 | def update_details_button(show_details):
9 | new_label = "Hide Details" if show_details else "Show Details"
10 | return gr.update(value=new_label)
11 |
12 |
13 | def update_show_details(show_details):
14 |
15 | show_details = not show_details
16 | return show_details
17 |
18 |
19 | def update_history(history, backup_history):
20 | print(history)
21 | print(backup_history)
22 | tmp = history
23 | history = backup_history
24 | backup_history = tmp
25 | return history, backup_history
26 |
27 |
28 | def user(user_message, history: list):
29 | history.append({"role": "user", "content": user_message})
30 | yield "", history
31 |
32 |
33 | html_output = """
34 |
35 | Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models
36 |
37 |
38 | Authors: Tian Yu, Shaolei Zhang, and Yang Feng
39 |
40 | """
41 |
42 |
43 | cs = ConfigStore.instance()
44 | cs.store(name="default", node=AutoRAGConfig)
45 |
46 |
47 | @hydra.main(version_base="1.3", config_path=None, config_name="default")
48 | def main(config: AutoRAGConfig):
49 | # load assistant
50 | assistant = AutoRAGAssistant(config)
51 |
52 | # run assistant
53 | with gr.Blocks() as demo:
54 | gr.HTML(html_output)
55 | show_details = gr.State(True)
56 | backup_history = gr.State([])
57 |
58 | chatbot = gr.Chatbot(
59 | type="messages",
60 | label="Auto-RAG",
61 | height=500,
62 | placeholder="Ask me anything!",
63 | show_copy_button=True,
64 | bubble_full_width=False,
65 | layout="bubble",
66 | )
67 | msg = gr.Textbox()
68 | with gr.Row():
69 | toggle_button = gr.Button(f"Hide Details")
70 | clear_button = gr.Button("Clear")
71 | toggle_button.click(update_show_details, show_details, show_details).then(
72 | update_details_button, show_details, toggle_button
73 | ).then(update_history, [chatbot, backup_history], [chatbot, backup_history])
74 | msg.submit(user, [msg, chatbot], [msg, chatbot], queue=False).then(
75 | assistant.interactive_answer,
76 | [chatbot, show_details],
77 | [chatbot, backup_history],
78 | )
79 | clear_button.click(lambda x: [], chatbot, chatbot).then(
80 | lambda x: [], backup_history, backup_history
81 | )
82 | demo.launch(server_name="0.0.0.0")
83 |
84 |
85 | if __name__ == "__main__":
86 | main()
87 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/assets/autorag.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ictnlp/Auto-RAG/b487d235b39f9db5dcd0f23cc7c03c22882dab7e/assets/autorag.gif
--------------------------------------------------------------------------------
/assets/results_.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ictnlp/Auto-RAG/b487d235b39f9db5dcd0f23cc7c03c22882dab7e/assets/results_.png
--------------------------------------------------------------------------------
/readme.md:
--------------------------------------------------------------------------------
1 | # Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language models
2 |
3 | > [Tian Yu](https://tianyu0313.github.io/), [Shaolei Zhang](https://zhangshaolei1998.github.io/), [Yang Feng](https://people.ucas.edu.cn/~yangfeng?language=en)*
4 |
5 | [](https://arxiv.org/abs/2411.19443)
6 | [](https://github.com/ictnlp/Auto-RAG)
7 | [](https://huggingface.co/ICTNLP/Auto-RAG)
8 |
9 | Source code for paper "[Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language models](https://arxiv.org/abs/2411.19443)".
10 |
11 | If you find this project useful, feel free to ⭐️ it and give it a [citation](#citation)!
12 |
13 |
14 | ## Overview
15 |
16 | **Auto-RAG** is an autonomous iterative retrieval model centered on the LLM's powerful decision-making capabilities. Auto-RAG models the interaction between the LLM and the retriever through multi-turn dialogue, employs iterative reasoning to determine when and what to retrieve, ceasing the iteration when sufficient external knowledge is available, and subsequently providing the answer to the user.
17 |
18 | - **GUI interaction**: We provide a deployable user interaction interface. After inputting a question, Auto-RAG autonomously engages in interaction with the retriever without any human intervention. Users have the option to decide whether to display the details of the interaction between Auto-RAG and the retriever.
19 |
20 |
21 |

22 |
23 |
24 |
25 | - To interact with Auto-RAG in your browser, follow the guide for [GUI interaction](#gui-interaction).
26 |
27 |
28 | ## Models Download
29 |
30 | We provide trained Auto-RAG models using the synthetic data. Please refer to https://huggingface.co/ICTNLP/Auto-RAG-Llama-3-8B-Instruct.
31 |
32 | ## Installation
33 | - Environment requirements: Python 3.12, [FlexRAG](https://github.com/ictnlp/flexrag).
34 |
35 | ```bash
36 | conda env create autorag python=3.12
37 |
38 | pip install flexrag==0.2.0
39 | ```
40 |
41 | - Clone Auto-RAG's repo.
42 |
43 | ```bash
44 | git clone https://github.com/ictnlp/Auto-RAG.git
45 | cd Auto-RAG
46 | ```
47 |
48 | - Download corpus and prepare the retriever
49 |
50 | We use the wiki corpus provided by [DPR](https://github.com/facebookresearch/DPR) project. You can prepare the dense retriever by runing the following command:
51 |
52 | ```bash
53 | bash scripts/prepare_retriever.sh
54 | ```
55 |
56 |
57 | ## Model deployment
58 |
59 | We use vLLM to deploy the model for inference. You can update the parameters in deploy.sh to adjust the GPU and model path configuration, then execute:
60 |
61 | ```bash
62 | bash scripts/deploy.sh
63 | ```
64 |
65 |
66 | ## GUI Interaction
67 |
68 | To interact with Auto-RAG in your browser, run the following command:
69 |
70 | ```bash
71 | bash scripts/run_gui.sh
72 | ```
73 |
74 | > [!Tip]
75 | > The interaction process between Auto-RAG and the retriever can be optionally displayed by adjusting a toggle.
76 |
77 | ## Run as a FlexRAG Assistant
78 | You can also run Auto-RAG as a FlexRAG assistant. To do this, execute the following command:
79 |
80 | ```bash
81 | ENCODER_PATH='intfloat/e5-base-v2'
82 | MODEL_NAME=""
83 | BASE_URL="http://127.0.0.1:8000/v1"
84 |
85 |
86 | python -m flexrag.entrypoints.run_assistant \
87 | user_module=Auto-RAG \
88 | name=nq \
89 | split=test \
90 | assistant_type=autorag \
91 | autorag_config.model_name=$MODEL_NAME \
92 | autorag_config.base_url=$BASE_URL \
93 | autorag_config.database_path=wiki \
94 | autorag_config.index_type=faiss \
95 | autorag_config.query_encoder_config.encoder_type=hf \
96 | autorag_config.query_encoder_config.hf_config.model_path=$ENCODER_PATH \
97 | eval_config.metrics_type=[retrieval_success_rate,generation_f1,generation_em] \
98 | eval_config.retrieval_success_rate_config.eval_field=text \
99 | eval_config.response_preprocess.processor_type=[simplify_answer] \
100 | log_interval=10
101 | ```
102 |
103 | ## Experimental Results
104 | > [!Note]
105 | > Experimental results show that Auto-RAG outperforms all baselines across six benchmarks.
106 |
107 |
108 |

109 |
110 |
111 |
112 |
113 |
114 |
115 | ## Licence
116 | This project is licensed under the Apache License, Version 2.0. See [LICENSE](LICENSE) for the full license text.
117 |
118 | ## Citation
119 |
120 | If this repository is useful for you, please cite as:
121 |
122 | ```
123 | @article{yu2024autorag,
124 | title={Auto-RAG: Autonomous Retrieval-Augmented Generation for Large Language Models},
125 | author={Tian Yu and Shaolei Zhang and Yang Feng},
126 | year={2024},
127 | eprint={2411.19443},
128 | archivePrefix={arXiv},
129 | primaryClass={cs.CL},
130 | url={https://arxiv.org/abs/2411.19443},
131 | }
132 | ```
133 |
134 | If you have any questions, feel free to contact `yutian23s@ict.ac.cn`.
135 |
--------------------------------------------------------------------------------
/scripts/deploy.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 |
4 | MODEL_PATH=""
5 |
6 | CUDA_VISIBLE_DEVICES=0,1,2,3 python -m vllm.entrypoints.openai.api_server \
7 | --model $MODEL_PATH \
8 | --gpu-memory-utilization 0.9 \
9 | --tensor-parallel 4 \
10 | --max-model-len 8192 \
11 | --port 8888 \
12 | --host 0.0.0.0
13 |
--------------------------------------------------------------------------------
/scripts/prepare_retriever.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | set -euo pipefail
4 |
5 | DEVICE_ID='[0,1,2,3]'
6 | ENCODER_PATH='intfloat/e5-base-v2'
7 |
8 | wget https://dl.fbaipublicfiles.com/dpr/wikipedia_split/psgs_w100.tsv.gz
9 | gunzip psgs_w100.tsv.gz
10 |
11 | python -m flexrag.entrypoints.prepare_index \
12 | retriever_type=dense \
13 | file_paths=[psgs_w100.tsv] \
14 | id_field='id' \
15 | saving_fields=[title,text] \
16 | dense_config.database_path=wiki \
17 | dense_config.encode_fields=[text] \
18 | dense_config.passage_encoder_config.encoder_type=hf \
19 | dense_config.passage_encoder_config.hf_config.model_path=$ENCODER_PATH \
20 | dense_config.passage_encoder_config.hf_config.prompt='query: ' \
21 | dense_config.passage_encoder_config.hf_config.normalize=True \
22 | dense_config.passage_encoder_config.hf_config.device_id=$DEVICE_ID \
23 | dense_config.index_type=faiss \
24 | dense_config.faiss_config.batch_size=12288 \
25 | dense_config.faiss_config.log_interval=100000 \
26 | dense_config.batch_size=1024 \
27 | dense_config.log_interval=100000
28 |
--------------------------------------------------------------------------------
/scripts/run_evaluation.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | ENCODER_PATH='intfloat/e5-base-v2'
4 | MODEL_NAME=""
5 | BASE_URL="http://127.0.0.1:8000/v1"
6 |
7 |
8 | python -m flexrag.entrypoints.run_assistant \
9 | user_module=Auto-RAG \
10 | name=nq \
11 | split=test \
12 | assistant_type=autorag \
13 | autorag_config.model_name=$MODEL_NAME \
14 | autorag_config.base_url=$BASE_URL \
15 | autorag_config.database_path=wiki \
16 | autorag_config.index_type=faiss \
17 | autorag_config.query_encoder_config.encoder_type=hf \
18 | autorag_config.query_encoder_config.hf_config.model_path=$ENCODER_PATH \
19 | eval_config.metrics_type=[retrieval_success_rate,generation_f1,generation_em] \
20 | eval_config.retrieval_success_rate_config.eval_field=text \
21 | eval_config.response_preprocess.processor_type=[simplify_answer] \
22 | log_interval=10
--------------------------------------------------------------------------------
/scripts/run_gui.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | MODEL_NAME=""
3 | BASE_URL=""
4 | ENCODER_PATH='intfloat/e5-base-v2'
5 |
6 |
7 | CUDA_VISIBLE_DEVICES=4 python Auto-RAG/gui.py \
8 | model_name=$MODEL_NAME \
9 | base_url=$BASE_URL \
10 | database_path=wiki \
11 | index_type=faiss \
12 | query_encoder_config.encoder_type=hf \
13 | query_encoder_config.hf_config.model_path=$ENCODER_PATH
14 |
--------------------------------------------------------------------------------