├── .ipynb_checkpoints
├── tutorial_HLAQCImputation-checkpoint.ipynb
└── tutorial_association-checkpoint.md
├── LICENSE
├── README.md
├── data
├── .DS_Store
├── AA_annotated.bim
├── Tutorial_1KGonly.bgl.phased.vcf.gz
├── genetic_map_chr6_combined_b37.txt
├── hgdp_chr6.bed
├── hgdp_chr6.bim
└── hgdp_chr6.fam
├── data_assoc
├── HLA_DICTIONARY_AA.hg19.imgt3320.AA_tf.in_ref.rds
├── covariates.txt
├── phenotype.txt
└── phenotype_multi.txt
├── images
├── .ipynb_checkpoints
│ ├── hgdp_chr6.final.SNP2HLApy.imputed_allele_ids-checkpoint.png
│ ├── hgdp_chr6.lmiss-checkpoint.png
│ ├── tmpfile.hwe-checkpoint.png
│ └── tmpfile.hwe.freq-checkpoint.png
├── SuppleFig2_MIS_usage.png
├── SuppleFig4_imputation_runtime.png
├── for_web_Overview_v4.png
├── hgdp_all_chr6.hg19.ba.only.GSA.1stSNPQC.1stSampQC.lmiss.png
├── hgdp_all_chr6.hg19.ba.only.GSA.1stSNPQC.1stSampQC.miss.frq.diff.plot.png
├── hgdp_all_chr6.hg19.ba.only.GSA.dedup.ambstrandrem.1stSNPQC.imiss.png
├── hgdp_all_chr6.hg19.ba.only.GSA.dedup.ambstrandrem.1stSNPQC.mind.het.png
├── hgdp_chr6.dedup.ambstrandrem.1stSNPQC.mind.het.genome.png
├── hgdp_chr6.final.SNP2HLApy.imputed.raw.png
├── hgdp_chr6.final.SNP2HLApy.imputed_allele_ids.png
├── hgdp_chr6.final.bim.png
├── hgdp_chr6.imiss.png
├── hgdp_chr6.lmiss.png
├── hgdp_dedup_bim_palindromic.png
├── plink.sexcheck.png
├── tmpfile.chr_pos_allele_freq.png
├── tmpfile.hwe.freq.png
├── tmpfile.hwe.png
└── tmpfile.plot.png
├── script_assoc
├── convert_vcf_allele.py
└── run_omnibus_AAtest.py
├── scripts
├── .DS_Store
├── SNP2HLA.py
├── beagle.jar
├── beagle2linkage.jar
├── beagle2vcf.jar
├── get_duprem_var.py
├── get_remID.py
├── rename_bim.py
└── src
│ ├── ParseDosage.csh
│ └── merge_tables.pl
├── tutorial_HLAQCImputation.ipynb
└── tutorial_association.md
/.ipynb_checkpoints/tutorial_association-checkpoint.md:
--------------------------------------------------------------------------------
1 | # Tutorial for statistical test for HLA association with complex traits
2 |
3 |
4 |
5 | Author: Saori Sakaue (ssakaue@broadinstitute.org)
6 |
7 | Lastly updated: 07/28/2022
8 |
9 |
10 |
11 | ## HLA association and fine-mapping
12 |
13 | This tutorial corresponds to the section "*HLA association and fine-mapping*" in the manuscript.
14 |
15 | We use outputs from the HLA imputation tutorial. Other data are in `data_assoc` directory. Most scripts are in `script_assoc` directory.
16 |
17 |
18 |
19 | **Note!**
20 |
21 | If you use Minimac3 imputation in the above section, you should first convert the allele name (CHR:POS) to the original name (HLA_A*XX:XX) in the output VCF file.
22 |
23 |
24 |
25 | If you use `SNP2HLA.csh`, `SNP2HLA.py` or MIS, you do not have to do this procedure.
26 |
27 |
28 |
29 | ```bash
30 | refVCF="data/Tutorial_1KGonly"
31 | output="hgdp_chr6.final.EAGLE.phased.imputed"
32 |
33 | zcat ${refVCF}.vcf.gz | grep -v "#" | awk '{print $2,$3,$4,$5}' > ${refVCF}.converter
34 |
35 | python script_assoc/convert_vcf_allele.py ${output}.dose.vcf.gz ${refVCF}.converter data_assoc/converted.info | bgzip -c > data_assoc/converted.vcf.gz
36 | ```
37 |
38 |
39 |
40 | `data_assoc/converted.info` provides R2 and AF information embedded in the VCF file.
41 |
42 | `data_assoc/converted.vcf.gz` is the output imputed VCF file with corrected variant names.
43 |
44 |
45 |
46 | ### Single-marker test
47 |
48 | We first convert imputed genotype to dosage txt file by `PLINK2`.
49 |
50 | ```bash
51 | imputed="data_assoc/converted"
52 |
53 | plink2 \
54 | --vcf ${imputed}.vcf.gz dosage=DS \
55 | --make-pgen --out ${imputed}
56 |
57 | # this will create ${imputed}.{pgen,psam,pvar}
58 |
59 | plink2 --pfile ${imputed} \
60 | --pheno data_assoc/phenotype.txt \
61 | --covar data_assoc/covariates.txt \
62 | --pheno-name trait_name \
63 | --glm omit-ref hide-covar cols=chrom,pos,ref,alt,test,nobs,beta,se,ci,tz,p,a1freqcc,a1freq \
64 | --ci 0.95 \
65 | --out single_marker_assoc \
66 | --covar-variance-standardize
67 |
68 | ```
69 |
70 |
71 |
72 | `single_marker_assoc.trait_name.glm.logistic.hybrid` is the output association statistics, and you can extract results for HLA alleles by `grep "HLA_"`, HLA amino acids by `grep "AA_"`, and HLA intragenic SNPs by `grep "SNPS_"`.
73 |
74 |
75 |
76 | You can also do this by using custom R script.
77 |
78 | ```bash
79 | # when you only test for HLA alleles and amino acids (modify as necessry)
80 | cat ${imputed}.pvar | grep -v "#" | grep -E 'HLA_|AA_' | cut -f3 > test_markers.txt
81 | cat ${imputed}.pvar | grep -v "#" | grep -E 'HLA_|AA_' | awk '{print $3,"T"}' > test_markers_alleles.txt # this is to make sure to output the dosages of the "presence" of the allele coded as T, but not the "absence" coded as A.
82 |
83 | plink2 --vcf ${imputed}.vcf.gz dosage=DS --export A --extract test_markers.txt --export-allele test_markers_alleles.txt --out ${imputed}
84 | ```
85 |
86 | `${imputed}.raw` is the table of dosages for HLA alleles and amino acids.
87 |
88 |
89 |
90 | (In `R`)
91 |
92 | ```r
93 | d <- read.table("data_assoc/converted.raw", header=T)
94 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
95 | cov <- read.table("data_assoc/covariates.txt", header=T)
96 |
97 | d <- merge(d, pheno, by = "IID")
98 | d <- merge(d, cov, by = "IID")
99 | d$trait_name <- d$trait_name - 1 # cases to be 1 and controls to be 0
100 |
101 | # if you want to test for HLA_A*01:01
102 | summary(glm(trait_name ~ HLA_A.01.01_T + sex + PC1 + PC2, data = d, family = binomial))
103 |
104 | ```
105 |
106 |
107 |
108 | Then, you can see the same statistics found in PLINK output.
109 |
110 | ```r
111 | Call:
112 | glm(formula = trait_name ~ HLA_A.01.01_T + sex + PC1 + PC2, family = binomial, data = d)
113 |
114 | Deviance Residuals:
115 | Min 1Q Median 3Q Max
116 | -1.0457 -0.8305 -0.7443 1.4218 1.9433
117 |
118 | Coefficients:
119 | Estimate Std. Error z value Pr(>|z|)
120 | (Intercept) -0.39449 0.23453 -1.682 0.0926 .
121 | HLA_A.01.01_T -0.03740 0.21231 -0.176 0.8602
122 | sex -0.38172 0.15030 -2.540 0.0111 *
123 | PC1 0.05466 0.07488 0.730 0.4654
124 | PC2 -0.17217 0.07520 -2.289 0.0221 *
125 | ---
126 | Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
127 |
128 | (Dispersion parameter for binomial family taken to be 1)
129 |
130 | Null deviance: 1068.1 on 906 degrees of freedom
131 | Residual deviance: 1056.0 on 902 degrees of freedom
132 | AIC: 1066
133 |
134 | Number of Fisher Scoring iterations: 4
135 | ```
136 |
137 |
138 |
139 | ### Omnibus test
140 |
141 | First, we extract amino acid polymorphisms from the dosage output and creat `*.raw` file by using `PLINK2`.
142 |
143 | In this example, we also apply QC to extract any amino acid polymorphisms with *Rsq* > 0.7.
144 |
145 | ```bash
146 | sed 1d data_assoc/converted.info | grep "^AA_" | awk '{if($5>0.7)print $1}' > QCed_AA_variants.txt
147 | sed 1d data_assoc/converted.info | grep "^AA_" | awk '{if($5>0.7)print $1,"T"}' > QCed_AA_variants_alleles.txt
148 |
149 | plink2 --pfile ${imputed} \
150 | --extract QCed_AA_variants.txt \
151 | --export-allele QCed_AA_variants_alleles.txt \
152 | --export A \
153 | --out ${imputed}.QCed_AA
154 |
155 | # output amino acid names without "_T" and by converting "-" with "minus" as a workaround in R
156 | head -n1 ${imputed}.QCed_AA.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/-/minus/' > ${imputed}.QCed_AA.allele_name.txt
157 |
158 |
159 | # run omnibus test by using those input files!
160 | python3 script_assoc/run_omnibus_AAtest.py \
161 | --aaraw ${imputed}.QCed_AA.raw \
162 | --out test_output \
163 | --allele ${imputed}.QCed_AA.allele_name.txt \
164 | --pheno data_assoc/phenotype.txt \
165 | --cov data_assoc/covariates.txt \
166 | --phenoname trait_name \
167 | --covname sex PC1 PC2
168 |
169 | ```
170 |
171 |
172 |
173 | In this example, `test_output_omnibus_result.txt` is the output statistics with the tested amino acid positions, deviance explained by including the tested amino acid position into the model, and p value from the ANOVA.
174 |
175 | ```bash
176 | $ head test_output_omnibus_result.txt
177 |
178 | ALLELE_NAME OMNIBUS_DEVIANCE OMNIBUS_PVALUE
179 | AA_A_minus22_29910338_exon1 1.25834923435173 0.533031574597542
180 | AA_A_minus15_29910359_exon1 3.52122377743922 0.171939623712512
181 | AA_A_minus11_29910371_exon1 2.15789903921791 0.339952451524512
182 | AA_A_minus2_29910398_exon1 4.53914553021627 0.103356328081297
183 | AA_A_9_29910558_exon2 5.54515225056707 0.593743388681586
184 | AA_A_12_29910567_exon2 0.0109563791947949 0.916635505963766
185 | AA_A_17_29910582_exon2 0.0188695939268655 0.890740998058756
186 | AA_A_19_29910588_exon2 0.000823349387019334 0.977108589575259
187 | AA_A_43_29910660_exon2 0.523234132611833 0.769805751833586
188 | ```
189 |
190 |
191 |
192 |
193 |
194 | ### Conditional haplotype test
195 |
196 | First, we extract two-field allele dosages from the imputed genotype after QC.
197 |
198 | ```bash
199 | sed 1d data_assoc/converted.info | grep "^HLA_" | cut -f1,5 | grep ":" | awk '{if($2>0.7)print $1}' > QCed_HLA_tf.txt
200 | sed 1d data_assoc/converted.info | grep "^HLA_" | cut -f1,5 | grep ":" | awk '{if($2>0.7)print $1,"T"}' > QCed_HLA_tf_alleles.txt
201 |
202 | plink2 --pfile ${imputed} \
203 | --extract QCed_HLA_tf.txt \
204 | --export-allele QCed_HLA_tf_alleles.txt \
205 | --export A \
206 | --out ${imputed}.QCed_HLA_tf
207 |
208 | # output HLA names without "_T", "*", and ":" as a workaround in R
209 | head -n1 ${imputed}.QCed_HLA_tf.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/*/_/' | sed 's/:/_/' > ${imputed}.QCed_HLA_tf.allele_name.txt
210 |
211 |
212 | ```
213 |
214 |
215 |
216 | We first perform the same omnibus test for single AA position but using the two-fiedl allele information.
217 |
218 | Let's do this for HLA-DRB1 as an example.
219 |
220 | ```r
221 | library(dplyr)
222 | library(data.table)
223 |
224 | # info file summarizes all information on the correspondence between two-field alleles and amino acid residues
225 | info <- readRDS("data_assoc/HLA_DICTIONARY_AA.hg19.imgt3320.AA_tf.in_ref.rds")
226 |
227 | HLA="DRB1"
228 | info <- info[info$gene==HLA,]
229 |
230 | info$tag <- paste0(info$pos,":",info$AA)
231 |
232 | allpos <- sort( unique(info$pos) )
233 |
234 | res <- data.frame()
235 | for( pos in allpos ){
236 | y <- info[ info$pos %in% c(pos), ]
237 | for( k in 1:length( unique( y$tag )) ){
238 | ytag <- unique( y$tag )[ k ]
239 | hap <- ytag
240 | y_4d <- subset(y, tag == ytag )$hla
241 | hap_4d <- y_4d
242 | if( length(hap_4d) > 0 ){
243 | out <- data.frame(hap, hla = hap_4d, pos )
244 | res <- rbind(res, out)
245 | }}}
246 |
247 | # res will be used to group two-field alleles based on amino acid residues at each position.
248 |
249 |
250 | # read imputed two field alleles
251 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.raw", header=T)
252 | dose <- dose[,c(-1,-3:-6)]
253 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.allele_name.txt")$V1)
254 | colnames(dose) <- c("IID",allelenames)
255 |
256 | # read phenotype and covariates
257 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
258 | if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1}
259 | cov <- read.table("data_assoc/covariates.txt", header=T)
260 | dat <- merge(dose, pheno, by = "IID")
261 | dat <- merge(dat, cov, by = "IID")
262 |
263 | pval_list<-NULL
264 | deviance_list<-NULL
265 |
266 | for(thispos in allpos){
267 | thishaps<-as.character(unique(subset(res,pos==thispos)$hap))
268 | adopted<-NULL
269 | for(thishap in thishaps){
270 | hlas<-as.character(subset(res,hap==thishap)$hla) # extracting all two-field alleles explained by this position-AA residue pairs
271 | hlas<-hlas[hlas %in% allelenames] # restrict two-field alleles to those in our QCed data
272 | if(length(hlas)>0){
273 | dat$thishap <- rowSums(dat[hlas])
274 | colnames(dat)[ncol(dat)] <- thishap
275 | adopted<-c(adopted,thishap)
276 | }
277 | }
278 | obj1<-glm(trait_name ~ sex+PC1+PC2,data=dat,family=binomial(link="logit")) # model with covariates
279 | obj2<-glm(trait_name~as.matrix(dat[adopted])+sex+PC1+PC2,data=dat,family=binomial(link="logit")) # model with this AA position
280 | Chisqtest <- anova(obj1,obj2,test="Chisq")
281 | pval<-Chisqtest$`Pr(>Chi)`[2]
282 | deviance<-Chisqtest$Deviance[2]
283 | pval_list<-c(pval_list,pval)
284 | deviance_list<-c(deviance_list,deviance)
285 | }
286 |
287 | summary<-data.frame(POSITION=allpos,OMNIBUS_DEVIANCE=deviance_list,OMNIBUS_PVALUE = pval_list)
288 |
289 | # this summary is a summary for the first round of conditional haplotype test.
290 | head(summary)
291 |
292 | # POSITION OMNIBUS_DEVIANCE OMNIBUS_PVALUE
293 | #1 -25 0.1598153 0.9232016
294 | #2 -24 0.1573953 0.9243193
295 | #3 -17 2.5568379 0.2784772
296 | #4 -16 0.1598153 0.9232016
297 | #5 -1 0.1670549 0.9198658
298 | #6 4 4.4417129 0.1085161
299 | ```
300 |
301 |
302 |
303 | If the strongest association among all the positions was at position 11, we next run similar analyses conditioned on the position 11.
304 |
305 | ```r
306 | # This script is continued from the above R workspace.
307 |
308 | #
309 | res.prev <- res # transfer res information from the previous round into res.prev
310 |
311 | condpos = "11" # this is a position we want to condition on
312 | thishaps<-as.character(unique(subset(res.prev, pos==condpos)$hap))
313 |
314 | thishaps
315 |
316 | adopted.prev<-NULL
317 | for(thishap in thishaps){
318 | hlas<-as.character(subset(res,hap==thishap)$hla)
319 | hlas<-hlas[hlas %in% allelenames]
320 | if(length(hlas)>0){
321 | dat$thishap<-rowSums(dat[hlas])
322 | colnames(dat)[ncol(dat)]<-thishap
323 | adopted.prev<-c(adopted.prev,thishap)
324 | }
325 | }
326 |
327 | adopted.prev
328 | # [1] "11:L" "11:S" "11:V" "11:G" "11:D" "11:P"
329 | # These are the amino acid residues obverved in the data in the previous round at position 11.
330 |
331 | # Let's move on to the next round
332 | allpos <- setdiff(allpos, condpos) # all the other positions to analyse
333 |
334 | res <- data.frame()
335 | for( pos in allpos ){
336 | x <- info[ info$pos %in% c(condpos), ] # haplotype information at the position I want to condition on
337 | y <- info[ info$pos %in% c(pos), ] # haplotype information at the position I want to analyze
338 | for( i in 1:length( unique( x$tag )) ){
339 | for( k in 1:length( unique( y$tag )) ){
340 | xtag <- unique( x$tag )[ i ]
341 | ytag <- unique( y$tag )[ k ]
342 | hap <- paste0(xtag,"_",ytag)
343 | x_4d <- subset(x, tag == xtag )$hla
344 | y_4d <- subset(y, tag == ytag )$hla
345 | hap_4d <- intersect( x_4d, y_4d )
346 | if( length(hap_4d) > 0 ){
347 | out <- data.frame(hap, hla = hap_4d, pos )
348 | res <- rbind(res, out)
349 | }}}}
350 |
351 | head(res)
352 |
353 | # hap hla pos
354 | #1 11:L_-25:K HLA_DRB1_01_01 -25
355 | #2 11:L_-25:K HLA_DRB1_01_02 -25
356 | #3 11:L_-25:K HLA_DRB1_01_03 -25
357 | #4 11:S_-25:R HLA_DRB1_03_01 -25
358 | #5 11:S_-25:R HLA_DRB1_03_02 -25
359 | #6 11:S_-25:R HLA_DRB1_08_01 -25
360 |
361 | # Haplotypes defined by two amino acid positions and their correspondence to the two-field alleles
362 |
363 | pval_list<-NULL
364 | deviance_list<-NULL
365 |
366 | for(thispos in allpos){
367 | thishaps<-as.character(unique(subset(res,pos==thispos)$hap))
368 | adopted<-NULL
369 | for(thishap in thishaps){
370 | hlas<-as.character(subset(res,hap==thishap)$hla)
371 | hlas<-hlas[hlas %in% allelenames]
372 | if(length(hlas)>0){
373 | dat$thishap<-rowSums(dat[hlas])
374 | colnames(dat)[ncol(dat)]<-thishap
375 | adopted<-c(adopted,thishap)
376 | }
377 | }
378 | obj1<-glm(trait_name ~ as.matrix(dat[adopted.prev])+sex+PC1+PC2,data=dat,family=binomial(link="logit")) # a model including groups defined by the previous round (single position)
379 | obj2<-glm(trait_name ~ as.matrix(dat[adopted])+sex+PC1+PC2,data=dat,family=binomial(link="logit")) # a model including groups defined by this round (two positions)
380 | Chisqtest <- anova(obj1,obj2,test="Chisq")
381 | pval<-Chisqtest$`Pr(>Chi)`[2]
382 | deviance<-Chisqtest$Deviance[2]
383 | pval_list<-c(pval_list,pval)
384 | deviance_list<-c(deviance_list,deviance)
385 | }
386 |
387 | summary<-data.frame(POSITION=allpos,OMNIBUS_DEVIANCE=deviance_list,OMNIBUS_PVALUE = pval_list)
388 |
389 |
390 | # this "summary" is a summary for the second round of conditional haplotype test.
391 | head(summary)
392 |
393 | # POSITION OMNIBUS_DEVIANCE OMNIBUS_PVALUE
394 | #1 -25 2.6065100 0.1064257
395 | #2 -24 2.6065100 0.1064257
396 | #3 -17 0.0000000 NA
397 | #4 -16 2.6065100 0.1064257
398 | #5 -1 0.8824553 0.3475301
399 | #6 4 0.0000000 NA
400 |
401 | ```
402 |
403 |
404 |
405 | We continue these procedures until we do not get any significant results (`OMNIBUS_PVALUE`).
406 |
407 |
408 |
409 | - Non-additive association test
410 |
411 | We use the same data to test non-additive effect.
412 |
413 | In this vignette, we generate and use best-guess genotype from the imputation result.
414 |
415 | ```bash
416 | plink2 --vcf ${imputed}.vcf.gz \
417 | --extract QCed_HLA_tf.txt \
418 | --export-allele QCed_HLA_tf_alleles.txt \
419 | --export A \
420 | --out ${imputed}.QCed_HLA_tf.best_guess
421 |
422 | # Here we do not specify dosage and export the data to a amtrix
423 |
424 | # output HLA names without "_T", "*", and ":" as a workaround in R
425 | head -n1 ${imputed}.QCed_HLA_tf.best_guess.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/*/_/' | sed 's/:/_/' > ${imputed}.QCed_HLA_tf.best_guess.allele_name.txt
426 |
427 | ```
428 |
429 |
430 |
431 | Then, in `R`,
432 |
433 | ```r
434 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.best_guess.raw", header=T)
435 | dose <- dose[,c(-1,-3:-6)]
436 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.best_guess.allele_name.txt")$V1)
437 | colnames(dose) <- c("IID",allelenames)
438 |
439 | # read phenotype and covariates
440 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
441 | if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1} # cases to be 1 and controls to be 0
442 |
443 | cov <- read.table("data_assoc/covariates.txt", header=T)
444 | dat <- merge(dose, pheno, by = "IID")
445 | dat <- merge(dat, cov, by = "IID")
446 |
447 | # if you want to test for HLA_A*01:01's non-additive effect
448 |
449 | tested_allele = "HLA_A_01_01"
450 | dat$non_add <- 0
451 | dat[dat[,tested_allele]==1,]$non_add <- 1 # define non-additive term to have 1 if and only if the genotype is heterozygous.
452 |
453 | model.0 <- glm(trait_name ~ as.matrix(dat[,tested_allele]) + sex + PC1 + PC2, data = dat, family = binomial)
454 | model.1 <- glm(trait_name ~ as.matrix(dat[,tested_allele]) + non_add + sex + PC1 + PC2, data = dat, family = binomial)
455 |
456 | Chisqtest <- anova(model.0,model.1,test="Chisq") # assess the improvement of the model by including non-additive term
457 | model.pval<-Chisqtest$`Pr(>Chi)`[2]
458 | model.deviance<-Chisqtest$Deviance[2]
459 | SUMC<-summary(model.1)$coefficients
460 | main.beta<-SUMC[2,1] # we get coefficients of the additive term
461 | main.se<-SUMC[2,2]
462 | main.p<-SUMC[2,4]
463 | non_add.beta<-SUMC[3,1] # we get coefficients of the non-additive term
464 | non_add.se<-SUMC[3,2]
465 | non_add.p<-SUMC[3,4]
466 | out<-data.frame(allele=tested_allele, anova.deviance=model.deviance, anova.p=model.pval, main.beta=main.beta, main.se=main.se, main.p=main.p, non_add.beta=non_add.beta, non_add.se=non_add.se, non_add.p=non_add.p)
467 |
468 | # this "out" summarizes the statistics at this allele (HLA_A*01:01), both additive and non-additive
469 | out
470 |
471 | # allele anova.deviance anova.p main.beta main.se main.p
472 | #1 HLA_A_01_01 0.1587487 0.6903112 -0.2378009 0.5629893 0.6727405
473 | # non_add.beta non_add.se non_add.p
474 | #1 0.2325363 0.6026695 0.6996124
475 | ```
476 |
477 |
478 |
479 |
480 |
481 | ### Interaction test
482 |
483 | Let's test interaction between two HLA alleles of the same gene.
484 |
485 | As we explained in the manuscript, it is sometimes important to restrict the analyses to common alleles. The rare * rare allele combination could yield inflated statistics due to the noisy estimate of the effect sizes for both alleles.
486 |
487 | If we decide to QC based on MAF > 0.05 for this interaction analysis,
488 |
489 | ```bash
490 | plink2 --pfile ${imputed} \
491 | --extract QCed_HLA_tf.txt \
492 | --export-allele QCed_HLA_tf_alleles.txt \
493 | --export A \
494 | --maf 0.05 \
495 | --out ${imputed}.QCed_HLA_tf.MAF
496 |
497 | # output HLA names without "_T", "*", and ":" as a workaround in R
498 | head -n1 ${imputed}.QCed_HLA_tf.MAF.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/*/_/' | sed 's/:/_/' > ${imputed}.QCed_HLA_tf.MAF.allele_name.txt
499 |
500 |
501 | ```
502 |
503 |
504 |
505 | And in `R`
506 |
507 | ```r
508 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.MAF.raw", header=T)
509 | dose <- dose[,c(-1,-3:-6)]
510 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.MAF.allele_name.txt")$V1)
511 | colnames(dose) <- c("IID",allelenames)
512 |
513 | # read phenotype and covariates
514 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
515 | if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1} # cases to be 1 and controls to be 0
516 |
517 | cov <- read.table("data_assoc/covariates.txt", header=T)
518 | dat <- merge(dose, pheno, by = "IID")
519 | dat <- merge(dat, cov, by = "IID")
520 |
521 |
522 | # For example, if you want to test for HLA_DRB1*03:01 and HLA_DRB1*15:01
523 |
524 | first_allele = "HLA_DRB1_03_01"
525 | seconde_allele = "HLA_DRB1_15_01"
526 |
527 | # It is always nice to check the distribution of samples based on these two alleles.
528 |
529 | table(round(dat[,c(first_allele, seconde_allele)]))
530 |
531 | # HLA_DRB1_15_01
532 | #HLA_DRB1_03_01 0 1 2
533 | # 0 624 89 4
534 | # 1 156 14 0
535 | # 2 20 0 0
536 |
537 | # We confirmed that the number of samples based on allelic combination of HLA-DRB1.
538 |
539 | summary(glm(trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + HLA_DRB1_03_01*HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat, family = binomial))
540 |
541 |
542 | ################################
543 | Call:
544 | glm(formula = trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 +
545 | HLA_DRB1_03_01 * HLA_DRB1_15_01 + sex + PC1 + PC2, family = binomial,
546 | data = dat)
547 |
548 | Deviance Residuals:
549 | Min 1Q Median 3Q Max
550 | -1.0787 -0.8305 -0.7422 1.3944 1.9409
551 |
552 | Coefficients:
553 | Estimate Std. Error z value Pr(>|z|)
554 | (Intercept) -0.39243 0.23787 -1.650 0.0990 .
555 | HLA_DRB1_03_01 0.11719 0.16267 0.720 0.4713
556 | HLA_DRB1_15_01 -0.40575 0.27059 -1.500 0.1337
557 | sex -0.37822 0.15060 -2.511 0.0120 *
558 | PC1 0.05676 0.07515 0.755 0.4501
559 | PC2 -0.17298 0.07519 -2.300 0.0214 *
560 | HLA_DRB1_03_01:HLA_DRB1_15_01 0.33678 0.70759 0.476 0.6341
561 | ---
562 | Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
563 |
564 | (Dispersion parameter for binomial family taken to be 1)
565 |
566 | Null deviance: 1068.1 on 906 degrees of freedom
567 | Residual deviance: 1052.7 on 900 degrees of freedom
568 | AIC: 1066.7
569 |
570 | Number of Fisher Scoring iterations: 4
571 | ################################
572 |
573 | # "HLA_DRB1_03_01:HLA_DRB1_15_01" is showing the effect of interaction between two alleles.
574 |
575 | model.0 <- glm(trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat, family = binomial) # a model without an interaction term
576 | model.1 <- glm(trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + HLA_DRB1_03_01*HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat, family = binomial) # a model with an interaction term
577 |
578 | anova(model.0,model.1,test="Chisq")
579 |
580 | ################################
581 | Analysis of Deviance Table
582 |
583 | Model 1: trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + sex + PC1 + PC2
584 | Model 2: trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + HLA_DRB1_03_01 *
585 | HLA_DRB1_15_01 + sex + PC1 + PC2
586 | Resid. Df Resid. Dev Df Deviance Pr(>Chi)
587 | 1 901 1052.9
588 | 2 900 1052.7 1 0.22015 0.6389
589 | ################################
590 | ```
591 |
592 |
593 |
594 | It is also considered to run permutation tests ( by breaking the relationship between phenotype and genotype ) whether the observed interaction effects could happen by random chance.
595 |
596 |
597 |
598 | ### Multi-trait test
599 |
600 | ```r
601 | library(MVLM)
602 |
603 | # Let's use those MAF-QCed HLA alleles in this example.
604 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.MAF.raw", header=T)
605 | dose <- dose[,c(-1,-3:-6)]
606 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.MAF.allele_name.txt")$V1)
607 | colnames(dose) <- c("IID",allelenames)
608 |
609 | # read phenotype of a multiple vector (i.e., a matrix)
610 | pheno <- read.table("data_assoc/phenotype_multi.txt", header=T)
611 |
612 | head(pheno)
613 |
614 | # IID trait.A trait.B trait.C trait.D
615 | #1 HGDP00610 0.47607622 0.2454573 0.219182940 0.05928355
616 | #2 HGDP00982 0.20184835 0.4383009 0.007797759 0.35205303
617 | #3 HGDP00001 0.01328931 0.1882389 0.402212096 0.39625968
618 | #4 HGDP01247 0.33558573 0.2070649 0.268822337 0.18852699
619 | #5 HGDP00309 0.31788202 0.2712361 0.067621683 0.34326023
620 | #6 HGDP00786 0.36187225 0.3786774 0.180634545 0.07881575
621 |
622 | # This is comprised of multiple traits, A, B, C, and D, and...
623 |
624 | all.equal(rowSums(pheno[,2:5]), rep(1,nrow(pheno)))
625 | #[1] TRUE
626 |
627 | # The sum of the traits are (almost) equal to 1 in all samples.
628 | # So we assume this phenotype has 3-degrees of freedom, and thus drop trait.D from the analysis in the subsequent models.
629 |
630 | # read covariates
631 | cov <- read.table("data_assoc/covariates.txt", header=T)
632 | dat <- merge(dose, pheno, by = "IID")
633 | dat <- merge(dat, cov, by = "IID")
634 |
635 | # Let's see the effect of HLA_DRB1*15:01
636 | # We can perform linear regression
637 | model.0 <- lm( cbind(trait.A,trait.B,trait.C) ~ sex + PC1 + PC2, data = dat)
638 | model.1 <- lm( cbind(trait.A,trait.B,trait.C) ~ HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat)
639 |
640 | anova(model.0, model.1)
641 |
642 | ################################
643 | Analysis of Variance Table
644 |
645 | Model 1: cbind(trait.A, trait.B, trait.C) ~ sex + PC1 + PC2
646 | Model 2: cbind(trait.A, trait.B, trait.C) ~ HLA_DRB1_15_01 + sex + PC1 +
647 | PC2
648 | Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
649 | 1 903 0.015147
650 | 2 902 -1 0.015150 0.0028114 0.84579 3 900 0.469
651 | ################################
652 |
653 |
654 | # We can also perform MVLM model
655 | mvlm.res.0 <- mvlm( cbind(trait.A,trait.B,trait.C) ~ sex + PC1 + PC2 , data = dat)
656 |
657 | mvlm.res.1 <- mvlm( cbind(trait.A,trait.B,trait.C) ~ HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat )
658 | mvlm.res.1$pseudo.rsq["Omnibus Effect",1]
659 |
660 | summary(mvlm.res.1)
661 |
662 | ################################
663 | Statistic Numer.DF Pseudo.R.Square p.value
664 | Omnibus Effect 0.90858 4 4.013e-03 0.52003
665 | (Intercept) 315.81910 1 < 1e-20 ***
666 | HLA_DRB1_15_01 0.82089 1 9.064e-04 0.45784
667 | sex 0.07375 1 8.144e-05 0.96786
668 | PC1 1.71025 1 1.888e-03 0.16841
669 | PC2 0.97278 1 1.074e-03 0.38646
670 | ---
671 | Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
672 | ################################
673 |
674 |
675 | # Explained variance by HLA_DRB1_15_01 will be..
676 | mvlm.res.1$pseudo.rsq["Omnibus Effect",1] - mvlm.res.0$pseudo.rsq["Omnibus Effect",1]
677 |
678 | ```
679 |
680 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # HLA analyses tutorial
2 | A thorough tutorial on HLA imputation and association, accompanying our manuscript "Tutorial: A statistical genetics guide to identifying HLA alleles driving complex disease"
3 |
4 |
5 |

6 |
7 |
8 | The tutorial consists of two parts:
9 | - #1. [HLA imputation](https://github.com/immunogenomics/HLA_analyses_tutorial/blob/main/tutorial_HLAQCImputation.ipynb) : We introduce protocols to QC genotype, perform haplotype phasing and HLA imputation. We provide useful scripts and example usage, with example genotype and reference datasets.
10 |
11 | - #2. [HLA association and fine-mapping](https://github.com/immunogenomics/HLA_analyses_tutorial/blob/main/tutorial_association.md): We introduce various statistical methods to identify and fine-map disease-associated HLA variations. The HLA imputation results from section #1 will be used. We provide useful scripts with some example phenotype data.
12 |
13 |
14 |
15 | ### Note for Michigan Imputation Server users
16 |
17 | For the amino acid (AA) residue imputation, sometimes the imputed residue is not clear from the post imputation VCF. Please use [this `bim` file](https://github.com/immunogenomics/HLA_analyses_tutorial/blob/main/data/AA_annotated.bim) that summarizes all information about AA residue names (in the 2nd column) that appear on the imputed VCF and the binary allele (residue) difinitions (in the 5th and 6th columns).
18 |
19 | For further naming schemes, please also refer to [this website](https://software.broadinstitute.org/mpg/snp2hla/makereference_manual.html) at the sections of 'Marker Nomenclature'.
20 |
21 |
--------------------------------------------------------------------------------
/data/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/data/.DS_Store
--------------------------------------------------------------------------------
/data/Tutorial_1KGonly.bgl.phased.vcf.gz:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/data/Tutorial_1KGonly.bgl.phased.vcf.gz
--------------------------------------------------------------------------------
/data/hgdp_chr6.bed:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/data/hgdp_chr6.bed
--------------------------------------------------------------------------------
/data/hgdp_chr6.fam:
--------------------------------------------------------------------------------
1 | HGDP00001 HGDP00001 0 0 0 -9
2 | HGDP00003 HGDP00003 0 0 0 -9
3 | HGDP00005 HGDP00005 0 0 0 -9
4 | HGDP00007 HGDP00007 0 0 0 -9
5 | HGDP00009 HGDP00009 0 0 0 -9
6 | HGDP00011 HGDP00011 0 0 0 -9
7 | HGDP00013 HGDP00013 0 0 0 -9
8 | HGDP00015 HGDP00015 0 0 0 -9
9 | HGDP00017 HGDP00017 0 0 0 -9
10 | HGDP00019 HGDP00019 0 0 0 -9
11 | HGDP00021 HGDP00021 0 0 0 -9
12 | HGDP00023 HGDP00023 0 0 0 -9
13 | HGDP00025 HGDP00025 0 0 0 -9
14 | HGDP00027 HGDP00027 0 0 0 -9
15 | HGDP00029 HGDP00029 0 0 0 -9
16 | HGDP00031 HGDP00031 0 0 0 -9
17 | HGDP00033 HGDP00033 0 0 0 -9
18 | HGDP00035 HGDP00035 0 0 0 -9
19 | HGDP00037 HGDP00037 0 0 0 -9
20 | HGDP00039 HGDP00039 0 0 0 -9
21 | HGDP00041 HGDP00041 0 0 0 -9
22 | HGDP00043 HGDP00043 0 0 0 -9
23 | HGDP00045 HGDP00045 0 0 0 -9
24 | HGDP00047 HGDP00047 0 0 0 -9
25 | HGDP00049 HGDP00049 0 0 0 -9
26 | HGDP00052 HGDP00052 0 0 0 -9
27 | HGDP00054 HGDP00054 0 0 0 -9
28 | HGDP00056 HGDP00056 0 0 0 -9
29 | HGDP00057 HGDP00057 0 0 0 -9
30 | HGDP00058 HGDP00058 0 0 0 -9
31 | HGDP00060 HGDP00060 0 0 0 -9
32 | HGDP00062 HGDP00062 0 0 0 -9
33 | HGDP00064 HGDP00064 0 0 0 -9
34 | HGDP00066 HGDP00066 0 0 0 -9
35 | HGDP00068 HGDP00068 0 0 0 -9
36 | HGDP00070 HGDP00070 0 0 0 -9
37 | HGDP00072 HGDP00072 0 0 0 -9
38 | HGDP00074 HGDP00074 0 0 0 -9
39 | HGDP00076 HGDP00076 0 0 0 -9
40 | HGDP00078 HGDP00078 0 0 0 -9
41 | HGDP00080 HGDP00080 0 0 0 -9
42 | HGDP00082 HGDP00082 0 0 0 -9
43 | HGDP00086 HGDP00086 0 0 0 -9
44 | HGDP00088 HGDP00088 0 0 0 -9
45 | HGDP00090 HGDP00090 0 0 0 -9
46 | HGDP00092 HGDP00092 0 0 0 -9
47 | HGDP00094 HGDP00094 0 0 0 -9
48 | HGDP00096 HGDP00096 0 0 0 -9
49 | HGDP00098 HGDP00098 0 0 0 -9
50 | HGDP00099 HGDP00099 0 0 0 -9
51 | HGDP00100 HGDP00100 0 0 0 -9
52 | HGDP00102 HGDP00102 0 0 0 -9
53 | HGDP00103 HGDP00103 0 0 0 -9
54 | HGDP00104 HGDP00104 0 0 0 -9
55 | HGDP00105 HGDP00105 0 0 0 -9
56 | HGDP00106 HGDP00106 0 0 0 -9
57 | HGDP00108 HGDP00108 0 0 0 -9
58 | HGDP00109 HGDP00109 0 0 0 -9
59 | HGDP00110 HGDP00110 0 0 0 -9
60 | HGDP00115 HGDP00115 0 0 0 -9
61 | HGDP00118 HGDP00118 0 0 0 -9
62 | HGDP00120 HGDP00120 0 0 0 -9
63 | HGDP00121 HGDP00121 0 0 0 -9
64 | HGDP00122 HGDP00122 0 0 0 -9
65 | HGDP00124 HGDP00124 0 0 0 -9
66 | HGDP00125 HGDP00125 0 0 0 -9
67 | HGDP00127 HGDP00127 0 0 0 -9
68 | HGDP00129 HGDP00129 0 0 0 -9
69 | HGDP00130 HGDP00130 0 0 0 -9
70 | HGDP00131 HGDP00131 0 0 0 -9
71 | HGDP00133 HGDP00133 0 0 0 -9
72 | HGDP00134 HGDP00134 0 0 0 -9
73 | HGDP00135 HGDP00135 0 0 0 -9
74 | HGDP00136 HGDP00136 0 0 0 -9
75 | HGDP00137 HGDP00137 0 0 0 -9
76 | HGDP00139 HGDP00139 0 0 0 -9
77 | HGDP00140 HGDP00140 0 0 0 -9
78 | HGDP00141 HGDP00141 0 0 0 -9
79 | HGDP00143 HGDP00143 0 0 0 -9
80 | HGDP00144 HGDP00144 0 0 0 -9
81 | HGDP00145 HGDP00145 0 0 0 -9
82 | HGDP00146 HGDP00146 0 0 0 -9
83 | HGDP00148 HGDP00148 0 0 0 -9
84 | HGDP00149 HGDP00149 0 0 0 -9
85 | HGDP00150 HGDP00150 0 0 0 -9
86 | HGDP00151 HGDP00151 0 0 0 -9
87 | HGDP00153 HGDP00153 0 0 0 -9
88 | HGDP00154 HGDP00154 0 0 0 -9
89 | HGDP00155 HGDP00155 0 0 0 -9
90 | HGDP00157 HGDP00157 0 0 0 -9
91 | HGDP00158 HGDP00158 0 0 0 -9
92 | HGDP00160 HGDP00160 0 0 0 -9
93 | HGDP00161 HGDP00161 0 0 0 -9
94 | HGDP00163 HGDP00163 0 0 0 -9
95 | HGDP00165 HGDP00165 0 0 0 -9
96 | HGDP00167 HGDP00167 0 0 0 -9
97 | HGDP00169 HGDP00169 0 0 0 -9
98 | HGDP00171 HGDP00171 0 0 0 -9
99 | HGDP00173 HGDP00173 0 0 0 -9
100 | HGDP00175 HGDP00175 0 0 0 -9
101 | HGDP00177 HGDP00177 0 0 0 -9
102 | HGDP00179 HGDP00179 0 0 0 -9
103 | HGDP00181 HGDP00181 0 0 0 -9
104 | HGDP00183 HGDP00183 0 0 0 -9
105 | HGDP00185 HGDP00185 0 0 0 -9
106 | HGDP00187 HGDP00187 0 0 0 -9
107 | HGDP00189 HGDP00189 0 0 0 -9
108 | HGDP00191 HGDP00191 0 0 0 -9
109 | HGDP00192 HGDP00192 0 0 0 -9
110 | HGDP00195 HGDP00195 0 0 0 -9
111 | HGDP00197 HGDP00197 0 0 0 -9
112 | HGDP00199 HGDP00199 0 0 0 -9
113 | HGDP00201 HGDP00201 0 0 0 -9
114 | HGDP00205 HGDP00205 0 0 0 -9
115 | HGDP00206 HGDP00206 0 0 0 -9
116 | HGDP00208 HGDP00208 0 0 0 -9
117 | HGDP00210 HGDP00210 0 0 0 -9
118 | HGDP00213 HGDP00213 0 0 0 -9
119 | HGDP00214 HGDP00214 0 0 0 -9
120 | HGDP00216 HGDP00216 0 0 0 -9
121 | HGDP00218 HGDP00218 0 0 0 -9
122 | HGDP00222 HGDP00222 0 0 0 -9
123 | HGDP00224 HGDP00224 0 0 0 -9
124 | HGDP00226 HGDP00226 0 0 0 -9
125 | HGDP00228 HGDP00228 0 0 0 -9
126 | HGDP00230 HGDP00230 0 0 0 -9
127 | HGDP00232 HGDP00232 0 0 0 -9
128 | HGDP00234 HGDP00234 0 0 0 -9
129 | HGDP00237 HGDP00237 0 0 0 -9
130 | HGDP00239 HGDP00239 0 0 0 -9
131 | HGDP00241 HGDP00241 0 0 0 -9
132 | HGDP00243 HGDP00243 0 0 0 -9
133 | HGDP00244 HGDP00244 0 0 0 -9
134 | HGDP00247 HGDP00247 0 0 0 -9
135 | HGDP00248 HGDP00248 0 0 0 -9
136 | HGDP00251 HGDP00251 0 0 0 -9
137 | HGDP00254 HGDP00254 0 0 0 -9
138 | HGDP00258 HGDP00258 0 0 0 -9
139 | HGDP00259 HGDP00259 0 0 0 -9
140 | HGDP00262 HGDP00262 0 0 0 -9
141 | HGDP00264 HGDP00264 0 0 0 -9
142 | HGDP00274 HGDP00274 0 0 0 -9
143 | HGDP00277 HGDP00277 0 0 0 -9
144 | HGDP00279 HGDP00279 0 0 0 -9
145 | HGDP00281 HGDP00281 0 0 0 -9
146 | HGDP00285 HGDP00285 0 0 0 -9
147 | HGDP00286 HGDP00286 0 0 0 -9
148 | HGDP00288 HGDP00288 0 0 0 -9
149 | HGDP00290 HGDP00290 0 0 0 -9
150 | HGDP00298 HGDP00298 0 0 0 -9
151 | HGDP00302 HGDP00302 0 0 0 -9
152 | HGDP00304 HGDP00304 0 0 0 -9
153 | HGDP00307 HGDP00307 0 0 0 -9
154 | HGDP00309 HGDP00309 0 0 0 -9
155 | HGDP00311 HGDP00311 0 0 0 -9
156 | HGDP00313 HGDP00313 0 0 0 -9
157 | HGDP00315 HGDP00315 0 0 0 -9
158 | HGDP00319 HGDP00319 0 0 0 -9
159 | HGDP00323 HGDP00323 0 0 0 -9
160 | HGDP00326 HGDP00326 0 0 0 -9
161 | HGDP00328 HGDP00328 0 0 0 -9
162 | HGDP00330 HGDP00330 0 0 0 -9
163 | HGDP00333 HGDP00333 0 0 0 -9
164 | HGDP00338 HGDP00338 0 0 0 -9
165 | HGDP00341 HGDP00341 0 0 0 -9
166 | HGDP00346 HGDP00346 0 0 0 -9
167 | HGDP00351 HGDP00351 0 0 0 -9
168 | HGDP00356 HGDP00356 0 0 0 -9
169 | HGDP00359 HGDP00359 0 0 0 -9
170 | HGDP00364 HGDP00364 0 0 0 -9
171 | HGDP00371 HGDP00371 0 0 0 -9
172 | HGDP00372 HGDP00372 0 0 0 -9
173 | HGDP00376 HGDP00376 0 0 0 -9
174 | HGDP00382 HGDP00382 0 0 0 -9
175 | HGDP00388 HGDP00388 0 0 0 -9
176 | HGDP00392 HGDP00392 0 0 0 -9
177 | HGDP00397 HGDP00397 0 0 0 -9
178 | HGDP00402 HGDP00402 0 0 0 -9
179 | HGDP00407 HGDP00407 0 0 0 -9
180 | HGDP00412 HGDP00412 0 0 0 -9
181 | HGDP00417 HGDP00417 0 0 0 -9
182 | HGDP00423 HGDP00423 0 0 0 -9
183 | HGDP00428 HGDP00428 0 0 0 -9
184 | HGDP00433 HGDP00433 0 0 0 -9
185 | HGDP00438 HGDP00438 0 0 0 -9
186 | HGDP00444 HGDP00444 0 0 0 -9
187 | HGDP00445 HGDP00445 0 0 0 -9
188 | HGDP00449 HGDP00449 0 0 0 -9
189 | HGDP00450 HGDP00450 0 0 0 -9
190 | HGDP00452 HGDP00452 0 0 0 -9
191 | HGDP00453 HGDP00453 0 0 0 -9
192 | HGDP00454 HGDP00454 0 0 0 -9
193 | HGDP00455 HGDP00455 0 0 0 -9
194 | HGDP00456 HGDP00456 0 0 0 -9
195 | HGDP00457 HGDP00457 0 0 0 -9
196 | HGDP00458 HGDP00458 0 0 0 -9
197 | HGDP00459 HGDP00459 0 0 0 -9
198 | HGDP00460 HGDP00460 0 0 0 -9
199 | HGDP00461 HGDP00461 0 0 0 -9
200 | HGDP00462 HGDP00462 0 0 0 -9
201 | HGDP00463 HGDP00463 0 0 0 -9
202 | HGDP00464 HGDP00464 0 0 0 -9
203 | HGDP00466 HGDP00466 0 0 0 -9
204 | HGDP00467 HGDP00467 0 0 0 -9
205 | HGDP00469 HGDP00469 0 0 0 -9
206 | HGDP00470 HGDP00470 0 0 0 -9
207 | HGDP00471 HGDP00471 0 0 0 -9
208 | HGDP00472 HGDP00472 0 0 0 -9
209 | HGDP00473 HGDP00473 0 0 0 -9
210 | HGDP00474 HGDP00474 0 0 0 -9
211 | HGDP00475 HGDP00475 0 0 0 -9
212 | HGDP00476 HGDP00476 0 0 0 -9
213 | HGDP00478 HGDP00478 0 0 0 -9
214 | HGDP00479 HGDP00479 0 0 0 -9
215 | HGDP00491 HGDP00491 0 0 0 -9
216 | HGDP00511 HGDP00511 0 0 0 -9
217 | HGDP00512 HGDP00512 0 0 0 -9
218 | HGDP00513 HGDP00513 0 0 0 -9
219 | HGDP00514 HGDP00514 0 0 0 -9
220 | HGDP00515 HGDP00515 0 0 0 -9
221 | HGDP00516 HGDP00516 0 0 0 -9
222 | HGDP00517 HGDP00517 0 0 0 -9
223 | HGDP00518 HGDP00518 0 0 0 -9
224 | HGDP00519 HGDP00519 0 0 0 -9
225 | HGDP00520 HGDP00520 0 0 0 -9
226 | HGDP00521 HGDP00521 0 0 0 -9
227 | HGDP00522 HGDP00522 0 0 0 -9
228 | HGDP00523 HGDP00523 0 0 0 -9
229 | HGDP00524 HGDP00524 0 0 0 -9
230 | HGDP00525 HGDP00525 0 0 0 -9
231 | HGDP00526 HGDP00526 0 0 0 -9
232 | HGDP00527 HGDP00527 0 0 0 -9
233 | HGDP00528 HGDP00528 0 0 0 -9
234 | HGDP00529 HGDP00529 0 0 0 -9
235 | HGDP00530 HGDP00530 0 0 0 -9
236 | HGDP00531 HGDP00531 0 0 0 -9
237 | HGDP00533 HGDP00533 0 0 0 -9
238 | HGDP00534 HGDP00534 0 0 0 -9
239 | HGDP00535 HGDP00535 0 0 0 -9
240 | HGDP00536 HGDP00536 0 0 0 -9
241 | HGDP00537 HGDP00537 0 0 0 -9
242 | HGDP00538 HGDP00538 0 0 0 -9
243 | HGDP00539 HGDP00539 0 0 0 -9
244 | HGDP00540 HGDP00540 0 0 0 -9
245 | HGDP00541 HGDP00541 0 0 0 -9
246 | HGDP00542 HGDP00542 0 0 0 -9
247 | HGDP00543 HGDP00543 0 0 0 -9
248 | HGDP00544 HGDP00544 0 0 0 -9
249 | HGDP00545 HGDP00545 0 0 0 -9
250 | HGDP00546 HGDP00546 0 0 0 -9
251 | HGDP00547 HGDP00547 0 0 0 -9
252 | HGDP00548 HGDP00548 0 0 0 -9
253 | HGDP00549 HGDP00549 0 0 0 -9
254 | HGDP00550 HGDP00550 0 0 0 -9
255 | HGDP00551 HGDP00551 0 0 0 -9
256 | HGDP00552 HGDP00552 0 0 0 -9
257 | HGDP00553 HGDP00553 0 0 0 -9
258 | HGDP00554 HGDP00554 0 0 0 -9
259 | HGDP00555 HGDP00555 0 0 0 -9
260 | HGDP00556 HGDP00556 0 0 0 -9
261 | HGDP00557 HGDP00557 0 0 0 -9
262 | HGDP00558 HGDP00558 0 0 0 -9
263 | HGDP00559 HGDP00559 0 0 0 -9
264 | HGDP00560 HGDP00560 0 0 0 -9
265 | HGDP00561 HGDP00561 0 0 0 -9
266 | HGDP00562 HGDP00562 0 0 0 -9
267 | HGDP00563 HGDP00563 0 0 0 -9
268 | HGDP00564 HGDP00564 0 0 0 -9
269 | HGDP00565 HGDP00565 0 0 0 -9
270 | HGDP00566 HGDP00566 0 0 0 -9
271 | HGDP00567 HGDP00567 0 0 0 -9
272 | HGDP00568 HGDP00568 0 0 0 -9
273 | HGDP00569 HGDP00569 0 0 0 -9
274 | HGDP00571 HGDP00571 0 0 0 -9
275 | HGDP00572 HGDP00572 0 0 0 -9
276 | HGDP00573 HGDP00573 0 0 0 -9
277 | HGDP00574 HGDP00574 0 0 0 -9
278 | HGDP00575 HGDP00575 0 0 0 -9
279 | HGDP00576 HGDP00576 0 0 0 -9
280 | HGDP00577 HGDP00577 0 0 0 -9
281 | HGDP00578 HGDP00578 0 0 0 -9
282 | HGDP00579 HGDP00579 0 0 0 -9
283 | HGDP00580 HGDP00580 0 0 0 -9
284 | HGDP00581 HGDP00581 0 0 0 -9
285 | HGDP00582 HGDP00582 0 0 0 -9
286 | HGDP00583 HGDP00583 0 0 0 -9
287 | HGDP00584 HGDP00584 0 0 0 -9
288 | HGDP00586 HGDP00586 0 0 0 -9
289 | HGDP00587 HGDP00587 0 0 0 -9
290 | HGDP00588 HGDP00588 0 0 0 -9
291 | HGDP00590 HGDP00590 0 0 0 -9
292 | HGDP00591 HGDP00591 0 0 0 -9
293 | HGDP00594 HGDP00594 0 0 0 -9
294 | HGDP00595 HGDP00595 0 0 0 -9
295 | HGDP00597 HGDP00597 0 0 0 -9
296 | HGDP00598 HGDP00598 0 0 0 -9
297 | HGDP00599 HGDP00599 0 0 0 -9
298 | HGDP00600 HGDP00600 0 0 0 -9
299 | HGDP00601 HGDP00601 0 0 0 -9
300 | HGDP00602 HGDP00602 0 0 0 -9
301 | HGDP00604 HGDP00604 0 0 0 -9
302 | HGDP00606 HGDP00606 0 0 0 -9
303 | HGDP00607 HGDP00607 0 0 0 -9
304 | HGDP00608 HGDP00608 0 0 0 -9
305 | HGDP00609 HGDP00609 0 0 0 -9
306 | HGDP00610 HGDP00610 0 0 0 -9
307 | HGDP00611 HGDP00611 0 0 0 -9
308 | HGDP00612 HGDP00612 0 0 0 -9
309 | HGDP00613 HGDP00613 0 0 0 -9
310 | HGDP00614 HGDP00614 0 0 0 -9
311 | HGDP00615 HGDP00615 0 0 0 -9
312 | HGDP00616 HGDP00616 0 0 0 -9
313 | HGDP00618 HGDP00618 0 0 0 -9
314 | HGDP00619 HGDP00619 0 0 0 -9
315 | HGDP00620 HGDP00620 0 0 0 -9
316 | HGDP00621 HGDP00621 0 0 0 -9
317 | HGDP00622 HGDP00622 0 0 0 -9
318 | HGDP00623 HGDP00623 0 0 0 -9
319 | HGDP00624 HGDP00624 0 0 0 -9
320 | HGDP00625 HGDP00625 0 0 0 -9
321 | HGDP00626 HGDP00626 0 0 0 -9
322 | HGDP00627 HGDP00627 0 0 0 -9
323 | HGDP00628 HGDP00628 0 0 0 -9
324 | HGDP00629 HGDP00629 0 0 0 -9
325 | HGDP00630 HGDP00630 0 0 0 -9
326 | HGDP00631 HGDP00631 0 0 0 -9
327 | HGDP00632 HGDP00632 0 0 0 -9
328 | HGDP00634 HGDP00634 0 0 0 -9
329 | HGDP00635 HGDP00635 0 0 0 -9
330 | HGDP00636 HGDP00636 0 0 0 -9
331 | HGDP00637 HGDP00637 0 0 0 -9
332 | HGDP00638 HGDP00638 0 0 0 -9
333 | HGDP00639 HGDP00639 0 0 0 -9
334 | HGDP00640 HGDP00640 0 0 0 -9
335 | HGDP00641 HGDP00641 0 0 0 -9
336 | HGDP00642 HGDP00642 0 0 0 -9
337 | HGDP00643 HGDP00643 0 0 0 -9
338 | HGDP00644 HGDP00644 0 0 0 -9
339 | HGDP00645 HGDP00645 0 0 0 -9
340 | HGDP00646 HGDP00646 0 0 0 -9
341 | HGDP00647 HGDP00647 0 0 0 -9
342 | HGDP00648 HGDP00648 0 0 0 -9
343 | HGDP00649 HGDP00649 0 0 0 -9
344 | HGDP00650 HGDP00650 0 0 0 -9
345 | HGDP00651 HGDP00651 0 0 0 -9
346 | HGDP00653 HGDP00653 0 0 0 -9
347 | HGDP00654 HGDP00654 0 0 0 -9
348 | HGDP00655 HGDP00655 0 0 0 -9
349 | HGDP00656 HGDP00656 0 0 0 -9
350 | HGDP00660 HGDP00660 0 0 0 -9
351 | HGDP00661 HGDP00661 0 0 0 -9
352 | HGDP00662 HGDP00662 0 0 0 -9
353 | HGDP00663 HGDP00663 0 0 0 -9
354 | HGDP00664 HGDP00664 0 0 0 -9
355 | HGDP00665 HGDP00665 0 0 0 -9
356 | HGDP00666 HGDP00666 0 0 0 -9
357 | HGDP00667 HGDP00667 0 0 0 -9
358 | HGDP00668 HGDP00668 0 0 0 -9
359 | HGDP00669 HGDP00669 0 0 0 -9
360 | HGDP00670 HGDP00670 0 0 0 -9
361 | HGDP00671 HGDP00671 0 0 0 -9
362 | HGDP00672 HGDP00672 0 0 0 -9
363 | HGDP00673 HGDP00673 0 0 0 -9
364 | HGDP00674 HGDP00674 0 0 0 -9
365 | HGDP00675 HGDP00675 0 0 0 -9
366 | HGDP00676 HGDP00676 0 0 0 -9
367 | HGDP00677 HGDP00677 0 0 0 -9
368 | HGDP00678 HGDP00678 0 0 0 -9
369 | HGDP00679 HGDP00679 0 0 0 -9
370 | HGDP00680 HGDP00680 0 0 0 -9
371 | HGDP00682 HGDP00682 0 0 0 -9
372 | HGDP00683 HGDP00683 0 0 0 -9
373 | HGDP00684 HGDP00684 0 0 0 -9
374 | HGDP00685 HGDP00685 0 0 0 -9
375 | HGDP00686 HGDP00686 0 0 0 -9
376 | HGDP00687 HGDP00687 0 0 0 -9
377 | HGDP00688 HGDP00688 0 0 0 -9
378 | HGDP00689 HGDP00689 0 0 0 -9
379 | HGDP00690 HGDP00690 0 0 0 -9
380 | HGDP00691 HGDP00691 0 0 0 -9
381 | HGDP00692 HGDP00692 0 0 0 -9
382 | HGDP00693 HGDP00693 0 0 0 -9
383 | HGDP00694 HGDP00694 0 0 0 -9
384 | HGDP00696 HGDP00696 0 0 0 -9
385 | HGDP00697 HGDP00697 0 0 0 -9
386 | HGDP00698 HGDP00698 0 0 0 -9
387 | HGDP00699 HGDP00699 0 0 0 -9
388 | HGDP00700 HGDP00700 0 0 0 -9
389 | HGDP00701 HGDP00701 0 0 0 -9
390 | HGDP00702 HGDP00702 0 0 0 -9
391 | HGDP00703 HGDP00703 0 0 0 -9
392 | HGDP00704 HGDP00704 0 0 0 -9
393 | HGDP00706 HGDP00706 0 0 0 -9
394 | HGDP00708 HGDP00708 0 0 0 -9
395 | HGDP00710 HGDP00710 0 0 0 -9
396 | HGDP00711 HGDP00711 0 0 0 -9
397 | HGDP00712 HGDP00712 0 0 0 -9
398 | HGDP00713 HGDP00713 0 0 0 -9
399 | HGDP00714 HGDP00714 0 0 0 -9
400 | HGDP00715 HGDP00715 0 0 0 -9
401 | HGDP00716 HGDP00716 0 0 0 -9
402 | HGDP00717 HGDP00717 0 0 0 -9
403 | HGDP00719 HGDP00719 0 0 0 -9
404 | HGDP00721 HGDP00721 0 0 0 -9
405 | HGDP00722 HGDP00722 0 0 0 -9
406 | HGDP00723 HGDP00723 0 0 0 -9
407 | HGDP00724 HGDP00724 0 0 0 -9
408 | HGDP00725 HGDP00725 0 0 0 -9
409 | HGDP00726 HGDP00726 0 0 0 -9
410 | HGDP00727 HGDP00727 0 0 0 -9
411 | HGDP00729 HGDP00729 0 0 0 -9
412 | HGDP00730 HGDP00730 0 0 0 -9
413 | HGDP00731 HGDP00731 0 0 0 -9
414 | HGDP00732 HGDP00732 0 0 0 -9
415 | HGDP00733 HGDP00733 0 0 0 -9
416 | HGDP00734 HGDP00734 0 0 0 -9
417 | HGDP00735 HGDP00735 0 0 0 -9
418 | HGDP00736 HGDP00736 0 0 0 -9
419 | HGDP00737 HGDP00737 0 0 0 -9
420 | HGDP00738 HGDP00738 0 0 0 -9
421 | HGDP00739 HGDP00739 0 0 0 -9
422 | HGDP00740 HGDP00740 0 0 0 -9
423 | HGDP00741 HGDP00741 0 0 0 -9
424 | HGDP00744 HGDP00744 0 0 0 -9
425 | HGDP00745 HGDP00745 0 0 0 -9
426 | HGDP00746 HGDP00746 0 0 0 -9
427 | HGDP00747 HGDP00747 0 0 0 -9
428 | HGDP00748 HGDP00748 0 0 0 -9
429 | HGDP00749 HGDP00749 0 0 0 -9
430 | HGDP00750 HGDP00750 0 0 0 -9
431 | HGDP00751 HGDP00751 0 0 0 -9
432 | HGDP00752 HGDP00752 0 0 0 -9
433 | HGDP00753 HGDP00753 0 0 0 -9
434 | HGDP00754 HGDP00754 0 0 0 -9
435 | HGDP00755 HGDP00755 0 0 0 -9
436 | HGDP00756 HGDP00756 0 0 0 -9
437 | HGDP00757 HGDP00757 0 0 0 -9
438 | HGDP00758 HGDP00758 0 0 0 -9
439 | HGDP00759 HGDP00759 0 0 0 -9
440 | HGDP00760 HGDP00760 0 0 0 -9
441 | HGDP00761 HGDP00761 0 0 0 -9
442 | HGDP00762 HGDP00762 0 0 0 -9
443 | HGDP00764 HGDP00764 0 0 0 -9
444 | HGDP00765 HGDP00765 0 0 0 -9
445 | HGDP00766 HGDP00766 0 0 0 -9
446 | HGDP00767 HGDP00767 0 0 0 -9
447 | HGDP00769 HGDP00769 0 0 0 -9
448 | HGDP00771 HGDP00771 0 0 0 -9
449 | HGDP00772 HGDP00772 0 0 0 -9
450 | HGDP00773 HGDP00773 0 0 0 -9
451 | HGDP00774 HGDP00774 0 0 0 -9
452 | HGDP00775 HGDP00775 0 0 0 -9
453 | HGDP00776 HGDP00776 0 0 0 -9
454 | HGDP00777 HGDP00777 0 0 0 -9
455 | HGDP00778 HGDP00778 0 0 0 -9
456 | HGDP00779 HGDP00779 0 0 0 -9
457 | HGDP00780 HGDP00780 0 0 0 -9
458 | HGDP00781 HGDP00781 0 0 0 -9
459 | HGDP00782 HGDP00782 0 0 0 -9
460 | HGDP00783 HGDP00783 0 0 0 -9
461 | HGDP00784 HGDP00784 0 0 0 -9
462 | HGDP00785 HGDP00785 0 0 0 -9
463 | HGDP00786 HGDP00786 0 0 0 -9
464 | HGDP00787 HGDP00787 0 0 0 -9
465 | HGDP00788 HGDP00788 0 0 0 -9
466 | HGDP00790 HGDP00790 0 0 0 -9
467 | HGDP00791 HGDP00791 0 0 0 -9
468 | HGDP00794 HGDP00794 0 0 0 -9
469 | HGDP00795 HGDP00795 0 0 0 -9
470 | HGDP00796 HGDP00796 0 0 0 -9
471 | HGDP00797 HGDP00797 0 0 0 -9
472 | HGDP00798 HGDP00798 0 0 0 -9
473 | HGDP00799 HGDP00799 0 0 0 -9
474 | HGDP00800 HGDP00800 0 0 0 -9
475 | HGDP00802 HGDP00802 0 0 0 -9
476 | HGDP00803 HGDP00803 0 0 0 -9
477 | HGDP00804 HGDP00804 0 0 0 -9
478 | HGDP00805 HGDP00805 0 0 0 -9
479 | HGDP00806 HGDP00806 0 0 0 -9
480 | HGDP00807 HGDP00807 0 0 0 -9
481 | HGDP00808 HGDP00808 0 0 0 -9
482 | HGDP00810 HGDP00810 0 0 0 -9
483 | HGDP00811 HGDP00811 0 0 0 -9
484 | HGDP00812 HGDP00812 0 0 0 -9
485 | HGDP00813 HGDP00813 0 0 0 -9
486 | HGDP00814 HGDP00814 0 0 0 -9
487 | HGDP00815 HGDP00815 0 0 0 -9
488 | HGDP00817 HGDP00817 0 0 0 -9
489 | HGDP00818 HGDP00818 0 0 0 -9
490 | HGDP00819 HGDP00819 0 0 0 -9
491 | HGDP00820 HGDP00820 0 0 0 -9
492 | HGDP00821 HGDP00821 0 0 0 -9
493 | HGDP00822 HGDP00822 0 0 0 -9
494 | HGDP00828 HGDP00828 0 0 0 -9
495 | HGDP00832 HGDP00832 0 0 0 -9
496 | HGDP00837 HGDP00837 0 0 0 -9
497 | HGDP00838 HGDP00838 0 0 0 -9
498 | HGDP00843 HGDP00843 0 0 0 -9
499 | HGDP00845 HGDP00845 0 0 0 -9
500 | HGDP00846 HGDP00846 0 0 0 -9
501 | HGDP00849 HGDP00849 0 0 0 -9
502 | HGDP00852 HGDP00852 0 0 0 -9
503 | HGDP00854 HGDP00854 0 0 0 -9
504 | HGDP00855 HGDP00855 0 0 0 -9
505 | HGDP00856 HGDP00856 0 0 0 -9
506 | HGDP00857 HGDP00857 0 0 0 -9
507 | HGDP00858 HGDP00858 0 0 0 -9
508 | HGDP00859 HGDP00859 0 0 0 -9
509 | HGDP00860 HGDP00860 0 0 0 -9
510 | HGDP00861 HGDP00861 0 0 0 -9
511 | HGDP00862 HGDP00862 0 0 0 -9
512 | HGDP00863 HGDP00863 0 0 0 -9
513 | HGDP00864 HGDP00864 0 0 0 -9
514 | HGDP00865 HGDP00865 0 0 0 -9
515 | HGDP00868 HGDP00868 0 0 0 -9
516 | HGDP00869 HGDP00869 0 0 0 -9
517 | HGDP00870 HGDP00870 0 0 0 -9
518 | HGDP00871 HGDP00871 0 0 0 -9
519 | HGDP00872 HGDP00872 0 0 0 -9
520 | HGDP00873 HGDP00873 0 0 0 -9
521 | HGDP00875 HGDP00875 0 0 0 -9
522 | HGDP00876 HGDP00876 0 0 0 -9
523 | HGDP00877 HGDP00877 0 0 0 -9
524 | HGDP00879 HGDP00879 0 0 0 -9
525 | HGDP00880 HGDP00880 0 0 0 -9
526 | HGDP00881 HGDP00881 0 0 0 -9
527 | HGDP00882 HGDP00882 0 0 0 -9
528 | HGDP00883 HGDP00883 0 0 0 -9
529 | HGDP00884 HGDP00884 0 0 0 -9
530 | HGDP00885 HGDP00885 0 0 0 -9
531 | HGDP00886 HGDP00886 0 0 0 -9
532 | HGDP00887 HGDP00887 0 0 0 -9
533 | HGDP00888 HGDP00888 0 0 0 -9
534 | HGDP00889 HGDP00889 0 0 0 -9
535 | HGDP00890 HGDP00890 0 0 0 -9
536 | HGDP00891 HGDP00891 0 0 0 -9
537 | HGDP00892 HGDP00892 0 0 0 -9
538 | HGDP00893 HGDP00893 0 0 0 -9
539 | HGDP00894 HGDP00894 0 0 0 -9
540 | HGDP00895 HGDP00895 0 0 0 -9
541 | HGDP00896 HGDP00896 0 0 0 -9
542 | HGDP00897 HGDP00897 0 0 0 -9
543 | HGDP00898 HGDP00898 0 0 0 -9
544 | HGDP00899 HGDP00899 0 0 0 -9
545 | HGDP00900 HGDP00900 0 0 0 -9
546 | HGDP00901 HGDP00901 0 0 0 -9
547 | HGDP00902 HGDP00902 0 0 0 -9
548 | HGDP00903 HGDP00903 0 0 0 -9
549 | HGDP00904 HGDP00904 0 0 0 -9
550 | HGDP00905 HGDP00905 0 0 0 -9
551 | HGDP00906 HGDP00906 0 0 0 -9
552 | HGDP00907 HGDP00907 0 0 0 -9
553 | HGDP00908 HGDP00908 0 0 0 -9
554 | HGDP00909 HGDP00909 0 0 0 -9
555 | HGDP00910 HGDP00910 0 0 0 -9
556 | HGDP00911 HGDP00911 0 0 0 -9
557 | HGDP00912 HGDP00912 0 0 0 -9
558 | HGDP00913 HGDP00913 0 0 0 -9
559 | HGDP00914 HGDP00914 0 0 0 -9
560 | HGDP00915 HGDP00915 0 0 0 -9
561 | HGDP00917 HGDP00917 0 0 0 -9
562 | HGDP00918 HGDP00918 0 0 0 -9
563 | HGDP00920 HGDP00920 0 0 0 -9
564 | HGDP00924 HGDP00924 0 0 0 -9
565 | HGDP00925 HGDP00925 0 0 0 -9
566 | HGDP00926 HGDP00926 0 0 0 -9
567 | HGDP00927 HGDP00927 0 0 0 -9
568 | HGDP00928 HGDP00928 0 0 0 -9
569 | HGDP00929 HGDP00929 0 0 0 -9
570 | HGDP00930 HGDP00930 0 0 0 -9
571 | HGDP00931 HGDP00931 0 0 0 -9
572 | HGDP00932 HGDP00932 0 0 0 -9
573 | HGDP00933 HGDP00933 0 0 0 -9
574 | HGDP00934 HGDP00934 0 0 0 -9
575 | HGDP00935 HGDP00935 0 0 0 -9
576 | HGDP00936 HGDP00936 0 0 0 -9
577 | HGDP00937 HGDP00937 0 0 0 -9
578 | HGDP00938 HGDP00938 0 0 0 -9
579 | HGDP00939 HGDP00939 0 0 0 -9
580 | HGDP00940 HGDP00940 0 0 0 -9
581 | HGDP00941 HGDP00941 0 0 0 -9
582 | HGDP00942 HGDP00942 0 0 0 -9
583 | HGDP00943 HGDP00943 0 0 0 -9
584 | HGDP00944 HGDP00944 0 0 0 -9
585 | HGDP00945 HGDP00945 0 0 0 -9
586 | HGDP00946 HGDP00946 0 0 0 -9
587 | HGDP00947 HGDP00947 0 0 0 -9
588 | HGDP00948 HGDP00948 0 0 0 -9
589 | HGDP00949 HGDP00949 0 0 0 -9
590 | HGDP00950 HGDP00950 0 0 0 -9
591 | HGDP00951 HGDP00951 0 0 0 -9
592 | HGDP00952 HGDP00952 0 0 0 -9
593 | HGDP00953 HGDP00953 0 0 0 -9
594 | HGDP00954 HGDP00954 0 0 0 -9
595 | HGDP00955 HGDP00955 0 0 0 -9
596 | HGDP00956 HGDP00956 0 0 0 -9
597 | HGDP00957 HGDP00957 0 0 0 -9
598 | HGDP00958 HGDP00958 0 0 0 -9
599 | HGDP00959 HGDP00959 0 0 0 -9
600 | HGDP00960 HGDP00960 0 0 0 -9
601 | HGDP00961 HGDP00961 0 0 0 -9
602 | HGDP00962 HGDP00962 0 0 0 -9
603 | HGDP00963 HGDP00963 0 0 0 -9
604 | HGDP00964 HGDP00964 0 0 0 -9
605 | HGDP00965 HGDP00965 0 0 0 -9
606 | HGDP00966 HGDP00966 0 0 0 -9
607 | HGDP00967 HGDP00967 0 0 0 -9
608 | HGDP00968 HGDP00968 0 0 0 -9
609 | HGDP00969 HGDP00969 0 0 0 -9
610 | HGDP00970 HGDP00970 0 0 0 -9
611 | HGDP00971 HGDP00971 0 0 0 -9
612 | HGDP00972 HGDP00972 0 0 0 -9
613 | HGDP00973 HGDP00973 0 0 0 -9
614 | HGDP00974 HGDP00974 0 0 0 -9
615 | HGDP00975 HGDP00975 0 0 0 -9
616 | HGDP00976 HGDP00976 0 0 0 -9
617 | HGDP00977 HGDP00977 0 0 0 -9
618 | HGDP00982 HGDP00982 0 0 0 -9
619 | HGDP00984 HGDP00984 0 0 0 -9
620 | HGDP00985 HGDP00985 0 0 0 -9
621 | HGDP00986 HGDP00986 0 0 0 -9
622 | HGDP00987 HGDP00987 0 0 0 -9
623 | HGDP00991 HGDP00991 0 0 0 -9
624 | HGDP00992 HGDP00992 0 0 0 -9
625 | HGDP00993 HGDP00993 0 0 0 -9
626 | HGDP00994 HGDP00994 0 0 0 -9
627 | HGDP00995 HGDP00995 0 0 0 -9
628 | HGDP00998 HGDP00998 0 0 0 -9
629 | HGDP00999 HGDP00999 0 0 0 -9
630 | HGDP01001 HGDP01001 0 0 0 -9
631 | HGDP01009 HGDP01009 0 0 0 -9
632 | HGDP01010 HGDP01010 0 0 0 -9
633 | HGDP01012 HGDP01012 0 0 0 -9
634 | HGDP01013 HGDP01013 0 0 0 -9
635 | HGDP01014 HGDP01014 0 0 0 -9
636 | HGDP01015 HGDP01015 0 0 0 -9
637 | HGDP01018 HGDP01018 0 0 0 -9
638 | HGDP01019 HGDP01019 0 0 0 -9
639 | HGDP01021 HGDP01021 0 0 0 -9
640 | HGDP01023 HGDP01023 0 0 0 -9
641 | HGDP01027 HGDP01027 0 0 0 -9
642 | HGDP01028 HGDP01028 0 0 0 -9
643 | HGDP01029 HGDP01029 0 0 0 -9
644 | HGDP01030 HGDP01030 0 0 0 -9
645 | HGDP01031 HGDP01031 0 0 0 -9
646 | HGDP01032 HGDP01032 0 0 0 -9
647 | HGDP01033 HGDP01033 0 0 0 -9
648 | HGDP01034 HGDP01034 0 0 0 -9
649 | HGDP01035 HGDP01035 0 0 0 -9
650 | HGDP01036 HGDP01036 0 0 0 -9
651 | HGDP01037 HGDP01037 0 0 0 -9
652 | HGDP01041 HGDP01041 0 0 0 -9
653 | HGDP01043 HGDP01043 0 0 0 -9
654 | HGDP01044 HGDP01044 0 0 0 -9
655 | HGDP01047 HGDP01047 0 0 0 -9
656 | HGDP01050 HGDP01050 0 0 0 -9
657 | HGDP01053 HGDP01053 0 0 0 -9
658 | HGDP01055 HGDP01055 0 0 0 -9
659 | HGDP01056 HGDP01056 0 0 0 -9
660 | HGDP01057 HGDP01057 0 0 0 -9
661 | HGDP01058 HGDP01058 0 0 0 -9
662 | HGDP01059 HGDP01059 0 0 0 -9
663 | HGDP01060 HGDP01060 0 0 0 -9
664 | HGDP01062 HGDP01062 0 0 0 -9
665 | HGDP01063 HGDP01063 0 0 0 -9
666 | HGDP01064 HGDP01064 0 0 0 -9
667 | HGDP01065 HGDP01065 0 0 0 -9
668 | HGDP01066 HGDP01066 0 0 0 -9
669 | HGDP01067 HGDP01067 0 0 0 -9
670 | HGDP01068 HGDP01068 0 0 0 -9
671 | HGDP01069 HGDP01069 0 0 0 -9
672 | HGDP01070 HGDP01070 0 0 0 -9
673 | HGDP01071 HGDP01071 0 0 0 -9
674 | HGDP01072 HGDP01072 0 0 0 -9
675 | HGDP01073 HGDP01073 0 0 0 -9
676 | HGDP01074 HGDP01074 0 0 0 -9
677 | HGDP01075 HGDP01075 0 0 0 -9
678 | HGDP01076 HGDP01076 0 0 0 -9
679 | HGDP01077 HGDP01077 0 0 0 -9
680 | HGDP01078 HGDP01078 0 0 0 -9
681 | HGDP01079 HGDP01079 0 0 0 -9
682 | HGDP01081 HGDP01081 0 0 0 -9
683 | HGDP01086 HGDP01086 0 0 0 -9
684 | HGDP01090 HGDP01090 0 0 0 -9
685 | HGDP01094 HGDP01094 0 0 0 -9
686 | HGDP01095 HGDP01095 0 0 0 -9
687 | HGDP01096 HGDP01096 0 0 0 -9
688 | HGDP01098 HGDP01098 0 0 0 -9
689 | HGDP01099 HGDP01099 0 0 0 -9
690 | HGDP01100 HGDP01100 0 0 0 -9
691 | HGDP01101 HGDP01101 0 0 0 -9
692 | HGDP01102 HGDP01102 0 0 0 -9
693 | HGDP01103 HGDP01103 0 0 0 -9
694 | HGDP01104 HGDP01104 0 0 0 -9
695 | HGDP01149 HGDP01149 0 0 0 -9
696 | HGDP01151 HGDP01151 0 0 0 -9
697 | HGDP01152 HGDP01152 0 0 0 -9
698 | HGDP01153 HGDP01153 0 0 0 -9
699 | HGDP01155 HGDP01155 0 0 0 -9
700 | HGDP01156 HGDP01156 0 0 0 -9
701 | HGDP01157 HGDP01157 0 0 0 -9
702 | HGDP01161 HGDP01161 0 0 0 -9
703 | HGDP01162 HGDP01162 0 0 0 -9
704 | HGDP01163 HGDP01163 0 0 0 -9
705 | HGDP01164 HGDP01164 0 0 0 -9
706 | HGDP01166 HGDP01166 0 0 0 -9
707 | HGDP01167 HGDP01167 0 0 0 -9
708 | HGDP01168 HGDP01168 0 0 0 -9
709 | HGDP01169 HGDP01169 0 0 0 -9
710 | HGDP01171 HGDP01171 0 0 0 -9
711 | HGDP01172 HGDP01172 0 0 0 -9
712 | HGDP01173 HGDP01173 0 0 0 -9
713 | HGDP01174 HGDP01174 0 0 0 -9
714 | HGDP01177 HGDP01177 0 0 0 -9
715 | HGDP01179 HGDP01179 0 0 0 -9
716 | HGDP01180 HGDP01180 0 0 0 -9
717 | HGDP01181 HGDP01181 0 0 0 -9
718 | HGDP01182 HGDP01182 0 0 0 -9
719 | HGDP01183 HGDP01183 0 0 0 -9
720 | HGDP01184 HGDP01184 0 0 0 -9
721 | HGDP01185 HGDP01185 0 0 0 -9
722 | HGDP01186 HGDP01186 0 0 0 -9
723 | HGDP01187 HGDP01187 0 0 0 -9
724 | HGDP01188 HGDP01188 0 0 0 -9
725 | HGDP01189 HGDP01189 0 0 0 -9
726 | HGDP01190 HGDP01190 0 0 0 -9
727 | HGDP01191 HGDP01191 0 0 0 -9
728 | HGDP01192 HGDP01192 0 0 0 -9
729 | HGDP01193 HGDP01193 0 0 0 -9
730 | HGDP01194 HGDP01194 0 0 0 -9
731 | HGDP01195 HGDP01195 0 0 0 -9
732 | HGDP01196 HGDP01196 0 0 0 -9
733 | HGDP01197 HGDP01197 0 0 0 -9
734 | HGDP01198 HGDP01198 0 0 0 -9
735 | HGDP01199 HGDP01199 0 0 0 -9
736 | HGDP01200 HGDP01200 0 0 0 -9
737 | HGDP01201 HGDP01201 0 0 0 -9
738 | HGDP01202 HGDP01202 0 0 0 -9
739 | HGDP01203 HGDP01203 0 0 0 -9
740 | HGDP01204 HGDP01204 0 0 0 -9
741 | HGDP01205 HGDP01205 0 0 0 -9
742 | HGDP01206 HGDP01206 0 0 0 -9
743 | HGDP01207 HGDP01207 0 0 0 -9
744 | HGDP01208 HGDP01208 0 0 0 -9
745 | HGDP01209 HGDP01209 0 0 0 -9
746 | HGDP01211 HGDP01211 0 0 0 -9
747 | HGDP01212 HGDP01212 0 0 0 -9
748 | HGDP01213 HGDP01213 0 0 0 -9
749 | HGDP01214 HGDP01214 0 0 0 -9
750 | HGDP01215 HGDP01215 0 0 0 -9
751 | HGDP01216 HGDP01216 0 0 0 -9
752 | HGDP01217 HGDP01217 0 0 0 -9
753 | HGDP01218 HGDP01218 0 0 0 -9
754 | HGDP01220 HGDP01220 0 0 0 -9
755 | HGDP01221 HGDP01221 0 0 0 -9
756 | HGDP01222 HGDP01222 0 0 0 -9
757 | HGDP01223 HGDP01223 0 0 0 -9
758 | HGDP01224 HGDP01224 0 0 0 -9
759 | HGDP01225 HGDP01225 0 0 0 -9
760 | HGDP01227 HGDP01227 0 0 0 -9
761 | HGDP01228 HGDP01228 0 0 0 -9
762 | HGDP01229 HGDP01229 0 0 0 -9
763 | HGDP01230 HGDP01230 0 0 0 -9
764 | HGDP01231 HGDP01231 0 0 0 -9
765 | HGDP01232 HGDP01232 0 0 0 -9
766 | HGDP01233 HGDP01233 0 0 0 -9
767 | HGDP01234 HGDP01234 0 0 0 -9
768 | HGDP01236 HGDP01236 0 0 0 -9
769 | HGDP01237 HGDP01237 0 0 0 -9
770 | HGDP01238 HGDP01238 0 0 0 -9
771 | HGDP01239 HGDP01239 0 0 0 -9
772 | HGDP01240 HGDP01240 0 0 0 -9
773 | HGDP01241 HGDP01241 0 0 0 -9
774 | HGDP01242 HGDP01242 0 0 0 -9
775 | HGDP01243 HGDP01243 0 0 0 -9
776 | HGDP01244 HGDP01244 0 0 0 -9
777 | HGDP01245 HGDP01245 0 0 0 -9
778 | HGDP01246 HGDP01246 0 0 0 -9
779 | HGDP01247 HGDP01247 0 0 0 -9
780 | HGDP01248 HGDP01248 0 0 0 -9
781 | HGDP01249 HGDP01249 0 0 0 -9
782 | HGDP01250 HGDP01250 0 0 0 -9
783 | HGDP01251 HGDP01251 0 0 0 -9
784 | HGDP01253 HGDP01253 0 0 0 -9
785 | HGDP01254 HGDP01254 0 0 0 -9
786 | HGDP01255 HGDP01255 0 0 0 -9
787 | HGDP01256 HGDP01256 0 0 0 -9
788 | HGDP01257 HGDP01257 0 0 0 -9
789 | HGDP01258 HGDP01258 0 0 0 -9
790 | HGDP01259 HGDP01259 0 0 0 -9
791 | HGDP01260 HGDP01260 0 0 0 -9
792 | HGDP01261 HGDP01261 0 0 0 -9
793 | HGDP01262 HGDP01262 0 0 0 -9
794 | HGDP01263 HGDP01263 0 0 0 -9
795 | HGDP01264 HGDP01264 0 0 0 -9
796 | HGDP01265 HGDP01265 0 0 0 -9
797 | HGDP01266 HGDP01266 0 0 0 -9
798 | HGDP01267 HGDP01267 0 0 0 -9
799 | HGDP01268 HGDP01268 0 0 0 -9
800 | HGDP01269 HGDP01269 0 0 0 -9
801 | HGDP01270 HGDP01270 0 0 0 -9
802 | HGDP01271 HGDP01271 0 0 0 -9
803 | HGDP01272 HGDP01272 0 0 0 -9
804 | HGDP01274 HGDP01274 0 0 0 -9
805 | HGDP01275 HGDP01275 0 0 0 -9
806 | HGDP01276 HGDP01276 0 0 0 -9
807 | HGDP01277 HGDP01277 0 0 0 -9
808 | HGDP01279 HGDP01279 0 0 0 -9
809 | HGDP01280 HGDP01280 0 0 0 -9
810 | HGDP01282 HGDP01282 0 0 0 -9
811 | HGDP01283 HGDP01283 0 0 0 -9
812 | HGDP01284 HGDP01284 0 0 0 -9
813 | HGDP01285 HGDP01285 0 0 0 -9
814 | HGDP01286 HGDP01286 0 0 0 -9
815 | HGDP01287 HGDP01287 0 0 0 -9
816 | HGDP01288 HGDP01288 0 0 0 -9
817 | HGDP01289 HGDP01289 0 0 0 -9
818 | HGDP01290 HGDP01290 0 0 0 -9
819 | HGDP01291 HGDP01291 0 0 0 -9
820 | HGDP01292 HGDP01292 0 0 0 -9
821 | HGDP01293 HGDP01293 0 0 0 -9
822 | HGDP01294 HGDP01294 0 0 0 -9
823 | HGDP01295 HGDP01295 0 0 0 -9
824 | HGDP01296 HGDP01296 0 0 0 -9
825 | HGDP01297 HGDP01297 0 0 0 -9
826 | HGDP01298 HGDP01298 0 0 0 -9
827 | HGDP01299 HGDP01299 0 0 0 -9
828 | HGDP01300 HGDP01300 0 0 0 -9
829 | HGDP01301 HGDP01301 0 0 0 -9
830 | HGDP01302 HGDP01302 0 0 0 -9
831 | HGDP01303 HGDP01303 0 0 0 -9
832 | HGDP01304 HGDP01304 0 0 0 -9
833 | HGDP01305 HGDP01305 0 0 0 -9
834 | HGDP01306 HGDP01306 0 0 0 -9
835 | HGDP01307 HGDP01307 0 0 0 -9
836 | HGDP01308 HGDP01308 0 0 0 -9
837 | HGDP01309 HGDP01309 0 0 0 -9
838 | HGDP01310 HGDP01310 0 0 0 -9
839 | HGDP01311 HGDP01311 0 0 0 -9
840 | HGDP01312 HGDP01312 0 0 0 -9
841 | HGDP01313 HGDP01313 0 0 0 -9
842 | HGDP01314 HGDP01314 0 0 0 -9
843 | HGDP01315 HGDP01315 0 0 0 -9
844 | HGDP01317 HGDP01317 0 0 0 -9
845 | HGDP01318 HGDP01318 0 0 0 -9
846 | HGDP01319 HGDP01319 0 0 0 -9
847 | HGDP01320 HGDP01320 0 0 0 -9
848 | HGDP01321 HGDP01321 0 0 0 -9
849 | HGDP01322 HGDP01322 0 0 0 -9
850 | HGDP01323 HGDP01323 0 0 0 -9
851 | HGDP01326 HGDP01326 0 0 0 -9
852 | HGDP01327 HGDP01327 0 0 0 -9
853 | HGDP01328 HGDP01328 0 0 0 -9
854 | HGDP01329 HGDP01329 0 0 0 -9
855 | HGDP01330 HGDP01330 0 0 0 -9
856 | HGDP01331 HGDP01331 0 0 0 -9
857 | HGDP01332 HGDP01332 0 0 0 -9
858 | HGDP01333 HGDP01333 0 0 0 -9
859 | HGDP01334 HGDP01334 0 0 0 -9
860 | HGDP01335 HGDP01335 0 0 0 -9
861 | HGDP01336 HGDP01336 0 0 0 -9
862 | HGDP01337 HGDP01337 0 0 0 -9
863 | HGDP01338 HGDP01338 0 0 0 -9
864 | HGDP01339 HGDP01339 0 0 0 -9
865 | HGDP01340 HGDP01340 0 0 0 -9
866 | HGDP01341 HGDP01341 0 0 0 -9
867 | HGDP01342 HGDP01342 0 0 0 -9
868 | HGDP01345 HGDP01345 0 0 0 -9
869 | HGDP01346 HGDP01346 0 0 0 -9
870 | HGDP01347 HGDP01347 0 0 0 -9
871 | HGDP01348 HGDP01348 0 0 0 -9
872 | HGDP01349 HGDP01349 0 0 0 -9
873 | HGDP01350 HGDP01350 0 0 0 -9
874 | HGDP01351 HGDP01351 0 0 0 -9
875 | HGDP01352 HGDP01352 0 0 0 -9
876 | HGDP01353 HGDP01353 0 0 0 -9
877 | HGDP01354 HGDP01354 0 0 0 -9
878 | HGDP01355 HGDP01355 0 0 0 -9
879 | HGDP01356 HGDP01356 0 0 0 -9
880 | HGDP01357 HGDP01357 0 0 0 -9
881 | HGDP01358 HGDP01358 0 0 0 -9
882 | HGDP01359 HGDP01359 0 0 0 -9
883 | HGDP01360 HGDP01360 0 0 0 -9
884 | HGDP01361 HGDP01361 0 0 0 -9
885 | HGDP01362 HGDP01362 0 0 0 -9
886 | HGDP01363 HGDP01363 0 0 0 -9
887 | HGDP01364 HGDP01364 0 0 0 -9
888 | HGDP01365 HGDP01365 0 0 0 -9
889 | HGDP01366 HGDP01366 0 0 0 -9
890 | HGDP01367 HGDP01367 0 0 0 -9
891 | HGDP01368 HGDP01368 0 0 0 -9
892 | HGDP01369 HGDP01369 0 0 0 -9
893 | HGDP01370 HGDP01370 0 0 0 -9
894 | HGDP01372 HGDP01372 0 0 0 -9
895 | HGDP01373 HGDP01373 0 0 0 -9
896 | HGDP01374 HGDP01374 0 0 0 -9
897 | HGDP01375 HGDP01375 0 0 0 -9
898 | HGDP01376 HGDP01376 0 0 0 -9
899 | HGDP01377 HGDP01377 0 0 0 -9
900 | HGDP01378 HGDP01378 0 0 0 -9
901 | HGDP01379 HGDP01379 0 0 0 -9
902 | HGDP01380 HGDP01380 0 0 0 -9
903 | HGDP01382 HGDP01382 0 0 0 -9
904 | HGDP01383 HGDP01383 0 0 0 -9
905 | HGDP01384 HGDP01384 0 0 0 -9
906 | HGDP01385 HGDP01385 0 0 0 -9
907 | HGDP01386 HGDP01386 0 0 0 -9
908 | HGDP01387 HGDP01387 0 0 0 -9
909 | HGDP01388 HGDP01388 0 0 0 -9
910 | HGDP01396 HGDP01396 0 0 0 -9
911 | HGDP01397 HGDP01397 0 0 0 -9
912 | HGDP01398 HGDP01398 0 0 0 -9
913 | HGDP01399 HGDP01399 0 0 0 -9
914 | HGDP01400 HGDP01400 0 0 0 -9
915 | HGDP01401 HGDP01401 0 0 0 -9
916 | HGDP01402 HGDP01402 0 0 0 -9
917 | HGDP01403 HGDP01403 0 0 0 -9
918 | HGDP01404 HGDP01404 0 0 0 -9
919 | HGDP01405 HGDP01405 0 0 0 -9
920 | HGDP01406 HGDP01406 0 0 0 -9
921 | HGDP01408 HGDP01408 0 0 0 -9
922 | HGDP01411 HGDP01411 0 0 0 -9
923 | HGDP01412 HGDP01412 0 0 0 -9
924 | HGDP01414 HGDP01414 0 0 0 -9
925 | HGDP01415 HGDP01415 0 0 0 -9
926 | HGDP01416 HGDP01416 0 0 0 -9
927 | HGDP01417 HGDP01417 0 0 0 -9
928 | HGDP01418 HGDP01418 0 0 0 -9
929 | HGDP01419 HGDP01419 0 0 0 -9
930 |
--------------------------------------------------------------------------------
/data_assoc/HLA_DICTIONARY_AA.hg19.imgt3320.AA_tf.in_ref.rds:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/data_assoc/HLA_DICTIONARY_AA.hg19.imgt3320.AA_tf.in_ref.rds
--------------------------------------------------------------------------------
/data_assoc/covariates.txt:
--------------------------------------------------------------------------------
1 | IID sex PC1 PC2
2 | HGDP00610 1 0.0280253076423443 1.43168951881555
3 | HGDP00982 1 -1.16387919457715 3.17619209827493
4 | HGDP00001 2 0.763274703437039 0.14745773857431
5 | HGDP01247 2 -0.829658733507506 -0.397620652769166
6 | HGDP00309 2 -0.983021100114437 -0.352155418951275
7 | HGDP00786 1 2.38590445001495 0.453655836266455
8 | HGDP00611 1 0.385811679161009 0.374928028455937
9 | HGDP00003 2 -0.469956063666488 -0.152037376282358
10 | HGDP00984 1 2.01283884161895 2.05694218392547
11 | HGDP00787 2 1.45434939297945 0.269877935143667
12 | HGDP01248 1 -0.276762128475043 -1.6400051310367
13 | HGDP00311 2 -1.52536681992517 -1.38358402383936
14 | HGDP00612 1 -0.66952726029171 -0.421944177492037
15 | HGDP00005 1 -0.173379799800961 0.973457627858389
16 | HGDP00985 1 -0.298839210825947 -1.56333424825607
17 | HGDP00788 1 -0.872412361269459 -1.03614823778432
18 | HGDP00313 1 2.75952289139271 0.391659927037654
19 | HGDP01249 1 -0.66642433934396 -0.234914111721196
20 | HGDP00613 1 -0.100325854229605 -0.939915756201599
21 | HGDP00007 1 0.659901414252751 0.0870655188920164
22 | HGDP00986 1 0.655930124362447 0.133242308462825
23 | HGDP00790 2 0.302208617497355 0.857139536193699
24 | HGDP00315 2 -0.340769526834037 -0.437267576963238
25 | HGDP01250 2 0.658999797898378 0.111968812289482
26 | HGDP00614 2 2.03375175806258 -0.53280229862381
27 | HGDP00009 2 1.31601061947374 0.151974488236448
28 | HGDP00987 2 0.344668559002598 0.80580498878675
29 | HGDP00791 1 -0.0472802298061226 -0.417140954493951
30 | HGDP00319 2 -0.264913508827516 0.268881638182434
31 | HGDP01251 2 -0.397262349784505 -1.07593132798567
32 | HGDP00615 1 -1.89490159372197 1.72287177540517
33 | HGDP00011 2 -1.94085069390858 0.727137346676688
34 | HGDP00991 1 1.55031468588178 -0.471105147875521
35 | HGDP00794 1 1.3110110442676 -1.37310231222898
36 | HGDP00323 2 0.32547968425777 -0.412383878370283
37 | HGDP01253 1 -0.213146726927696 -1.34602316569785
38 | HGDP00616 1 -0.817954269224968 0.416980431329832
39 | HGDP00013 2 0.832446245192119 1.07288893054109
40 | HGDP00992 1 -0.183773512590738 -0.0371787996360008
41 | HGDP00795 1 -1.42992366550021 2.62463890863267
42 | HGDP00326 1 -0.611931471976978 1.1425858507713
43 | HGDP01254 2 -1.23341562857128 -1.54133932585825
44 | HGDP00618 2 -0.650979282284673 -0.115032452041772
45 | HGDP00015 2 0.0436882048215001 0.397331544618964
46 | HGDP00993 1 0.960505549864054 0.440586626439923
47 | HGDP00796 1 0.291499926880451 -1.20061997019538
48 | HGDP00328 2 -2.55996227247002 -0.626906969137827
49 | HGDP01255 2 1.19058348550816 -2.78992178688573
50 | HGDP00619 2 -0.196032161098229 1.04254075763742
51 | HGDP00017 1 0.915320281687423 -0.0791357225419555
52 | HGDP00994 2 -0.167077509514096 -1.39673111118193
53 | HGDP00330 2 -0.0475050871108008 0.649137507153369
54 | HGDP00797 1 -0.195593114415228 -0.664367622849232
55 | HGDP00620 1 -0.71337289281514 -0.120817431732975
56 | HGDP01256 1 -0.370976709687866 0.249573569255806
57 | HGDP00019 1 -1.14051472701652 2.01229277968382
58 | HGDP00333 2 1.49293666729331 -1.32990083110323
59 | HGDP00995 1 -1.29413100981771 -0.335566386524463
60 | HGDP00798 1 1.28421075936102 -0.448509334859634
61 | HGDP00621 2 -0.817692430788452 0.425271614092815
62 | HGDP01257 1 2.26340231809989 -0.432807407812599
63 | HGDP00021 1 2.02480347412319 -1.10184946104227
64 | HGDP00338 2 -1.08307438684604 -1.3474827795206
65 | HGDP00999 2 0.802672432469824 -0.411309666027038
66 | HGDP00799 1 0.350269606359993 -0.187853485787742
67 | HGDP00622 2 0.949452607151921 -0.117432267867688
68 | HGDP01258 2 -0.97723083872131 0.938687536484131
69 | HGDP00023 1 -0.175103518353855 -1.2328078172366
70 | HGDP00341 1 0.661236530677419 -0.24247577008779
71 | HGDP01010 2 -1.48034723045168 -2.14974879915291
72 | HGDP00800 1 -0.680436395985525 1.57843997187057
73 | HGDP00623 1 1.30477809061137 1.29635198046096
74 | HGDP00025 1 -1.79185437335583 -0.00955535840176476
75 | HGDP01259 1 -0.300287635815326 -0.148669321150655
76 | HGDP00346 1 0.551506029651083 0.697665101334371
77 | HGDP01013 2 -1.08119543310999 -0.921983279883504
78 | HGDP00624 1 0.92320117231888 -0.315301668893939
79 | HGDP00802 2 0.360588995037732 -0.862191484961975
80 | HGDP00027 1 -1.18578812705491 1.11573864197924
81 | HGDP01260 2 -0.871628424364129 1.5247009100143
82 | HGDP00351 2 2.0867593091945 -1.99846860239629
83 | HGDP01015 2 0.477768167314321 -0.845808047006653
84 | HGDP00625 1 1.62667178398424 -0.00811911088158597
85 | HGDP00803 1 0.754201358313878 0.157844243269229
86 | HGDP00029 1 -0.437380227928762 -0.568279221648617
87 | HGDP01261 1 -0.273388001988834 -0.00843748034831362
88 | HGDP00356 1 -1.77954788839776 -0.327369348064667
89 | HGDP01021 1 0.472041738634543 -0.614796471705931
90 | HGDP00626 2 -0.682625012858633 -0.584140312878284
91 | HGDP00804 1 0.640984710644621 0.218044464042726
92 | HGDP00031 2 0.405024432217948 -0.320351369246531
93 | HGDP01262 1 -1.48589822607575 -0.553832453307435
94 | HGDP00359 2 3.06304426752499 1.18359140775896
95 | HGDP01023 2 -0.0617278991110892 -1.31167092396435
96 | HGDP00627 2 -0.601062434877994 0.841640287142484
97 | HGDP00805 1 1.17698639160153 -0.607886967927644
98 | HGDP00033 1 -0.398877559834745 0.257856765191873
99 | HGDP01263 2 0.0474367240440786 -1.18557051821439
100 | HGDP00364 2 -1.82738373423494 -1.59921122064091
101 | HGDP01027 1 0.257724976556419 -1.81066689027156
102 | HGDP00628 1 -0.547541129231607 -1.12275350410695
103 | HGDP00806 2 1.47548807475316 -0.910734296185824
104 | HGDP00035 2 -0.916663967361345 0.472512770607675
105 | HGDP01264 1 0.656821358936467 0.526666669903857
106 | HGDP00371 1 0.277025421371361 -1.53984862697493
107 | HGDP01028 2 1.2675171863196 -1.31212951216582
108 | HGDP00629 2 -0.859457543787237 0.743856976973061
109 | HGDP00807 2 1.39911081180625 0.0890567522562573
110 | HGDP00037 1 -1.33367390996991 0.390643705705287
111 | HGDP01265 1 1.14429488384033 -0.236212346965977
112 | HGDP00372 1 1.20334978464259 -1.21998760209354
113 | HGDP01029 2 1.38394805255901 -0.288413320451163
114 | HGDP00630 2 -0.458765540937809 0.0191416084759775
115 | HGDP00808 1 0.601929450394658 -0.706329144990026
116 | HGDP00039 2 0.444777834441528 0.40421238167277
117 | HGDP01266 1 0.335380533718825 1.19527772889729
118 | HGDP00376 1 -0.171907667191729 0.102018763015617
119 | HGDP01030 1 1.47898053544046 0.16656163840374
120 | HGDP00631 2 1.64578717493103 -0.622735881178756
121 | HGDP00041 2 0.667597308334167 -1.79214168528307
122 | HGDP00810 1 -0.206163543158542 -0.188248013601417
123 | HGDP01267 2 -0.252544030091634 2.25513171291401
124 | HGDP00382 1 1.24090805999799 -2.25461861148893
125 | HGDP01031 1 -0.495100826907096 0.618829612161902
126 | HGDP00632 1 -1.71564045412988 -1.00506099295295
127 | HGDP00811 1 -0.752052400086819 -0.0290202919520897
128 | HGDP00043 1 -0.438105297317922 1.21862413644116
129 | HGDP01268 1 -0.44256090190279 0.433923461175316
130 | HGDP00388 1 -0.665400930066813 0.420959369842843
131 | HGDP01032 2 0.103002252735175 1.70062168772827
132 | HGDP00634 2 -0.29384546564911 -0.274586833123327
133 | HGDP00812 2 1.93418314700173 -2.5764292604978
134 | HGDP00045 2 -0.51104850836022 -0.162795340034998
135 | HGDP01269 1 1.43677097204785 0.346688590957371
136 | HGDP00392 2 -0.832268072651696 -1.3973365625873
137 | HGDP01033 2 1.21158953690128 -1.31702135609058
138 | HGDP00635 1 -1.00448531131801 -0.355170829241532
139 | HGDP00813 2 0.873158384838356 -0.378104850804133
140 | HGDP00047 1 1.26902416629621 -1.58698687796773
141 | HGDP01270 1 0.915729936665862 1.80702041777006
142 | HGDP00397 2 0.322024384384559 -1.63816153698649
143 | HGDP01034 1 -0.0275043703717728 -0.748084027653489
144 | HGDP00636 2 -0.370520610904446 -0.660921715404634
145 | HGDP00814 1 0.179050905191376 -0.210519000547359
146 | HGDP00049 2 -1.14471016151313 -0.179071900702896
147 | HGDP00402 1 0.0301140438474852 0.97907927678169
148 | HGDP01271 2 1.28416318647621 -0.766763148982208
149 | HGDP01035 2 -0.512282129328496 0.569326509960892
150 | HGDP00637 2 0.222575896824548 -1.57265856026391
151 | HGDP00815 2 -0.530911593897391 -1.17775397789946
152 | HGDP00052 2 -0.690293591867513 -0.321468933482251
153 | HGDP00407 1 1.84617443388781 1.47520761402088
154 | HGDP01272 1 0.0357576963547988 2.1842197740725
155 | HGDP01036 2 -0.541844174498358 -1.11528183130284
156 | HGDP00638 1 1.34305227853489 -1.04271450286916
157 | HGDP00054 2 0.541070772796146 -0.432284020448313
158 | HGDP00817 1 0.893490537267824 0.0176474457823561
159 | HGDP00412 1 -0.799040847227371 0.0312924968477776
160 | HGDP01274 2 0.774144292506784 1.54859042247932
161 | HGDP01037 2 0.00602780124599756 1.06997046183255
162 | HGDP00639 1 0.633201442248941 -0.220437928833672
163 | HGDP00818 2 0.803525922494659 0.405638999962929
164 | HGDP00056 2 0.282173921748224 -0.467873501575076
165 | HGDP00417 1 -0.204794367660222 1.08808282726215
166 | HGDP01275 1 0.106607834434743 -0.324225331429405
167 | HGDP01041 1 -0.636172872954057 -1.88477345496701
168 | HGDP00640 1 0.56524612360297 0.556122628380942
169 | HGDP00819 1 0.274446864646923 -0.921077502588323
170 | HGDP00057 1 0.31229906256424 0.563287807419133
171 | HGDP00423 2 -1.44222332014959 -0.0174864292718612
172 | HGDP01276 1 -0.00590988491764632 -0.335158281168565
173 | HGDP01044 2 0.838933596454548 -0.660670308953313
174 | HGDP00641 2 -0.809642839179976 2.24599908136561
175 | HGDP00820 1 0.240588607648256 0.167678992379227
176 | HGDP00058 2 2.1592208606803 -2.14441939078324
177 | HGDP00428 2 0.458290220113783 0.16306699031123
178 | HGDP01277 2 -0.577921527164066 -0.127853562348193
179 | HGDP01047 1 0.460723790206759 1.01292465154779
180 | HGDP00821 1 -1.21800076275268 -0.100423513637832
181 | HGDP00642 2 -1.54897262386199 1.2758250626134
182 | HGDP00060 1 0.489830159479463 -0.598435664695175
183 | HGDP00433 1 -0.669843433975237 -0.471800505226307
184 | HGDP01279 2 1.05619145498456 1.08165974646023
185 | HGDP01053 2 -0.0815180188557568 0.104132588765413
186 | HGDP00822 2 0.159600211111372 0.772272512297645
187 | HGDP00643 1 0.605893229092901 -0.506782632940431
188 | HGDP00062 2 0.402332947782486 1.50725761824892
189 | HGDP00438 1 1.66912078025549 1.16303034567263
190 | HGDP01280 1 -0.613416669076803 1.77648047595785
191 | HGDP01055 2 -1.53956913516392 -0.110429484640437
192 | HGDP00644 2 -0.346997727117418 -0.465849619376175
193 | HGDP00828 2 0.916084301734219 0.33270020926694
194 | HGDP00064 1 1.45366472114994 -0.383877362141779
195 | HGDP00444 1 -1.72266313818653 2.07382043572123
196 | HGDP01282 2 0.903096176331677 1.18294445580713
197 | HGDP01056 2 -0.684322573758202 0.0578592489794322
198 | HGDP00645 2 -1.94821688754772 0.0918149721343126
199 | HGDP00832 1 -1.88537716214613 -1.23255188673223
200 | HGDP00066 2 -0.389520338551106 1.06980044252806
201 | HGDP00445 2 0.531584238980834 -0.780656429893473
202 | HGDP01283 2 -0.00562929338322527 0.00424891000888586
203 | HGDP01057 1 -1.3432299647922 1.04613352321535
204 | HGDP00646 2 -0.272843263006323 -2.41225697273122
205 | HGDP00843 1 1.10871311604043 -0.195090672233259
206 | HGDP00068 2 0.827391684826949 0.770738820038597
207 | HGDP00449 2 0.33649845996386 -0.58554482191954
208 | HGDP01285 2 0.389196880261177 1.44671015592115
209 | HGDP01058 1 -0.0617521464693813 -0.322413033705806
210 | HGDP00647 2 -2.16857356790188 0.405590716790052
211 | HGDP00846 2 0.218475858672152 -0.747246196213505
212 | HGDP00070 1 -0.301969740540525 -0.361897166692165
213 | HGDP00450 1 0.941808935978569 1.26247151949461
214 | HGDP01286 2 -1.26293791519047 -0.814391253156896
215 | HGDP01059 2 -0.388160498939909 0.972375658423455
216 | HGDP00648 2 -0.578828509040958 -0.920069595360412
217 | HGDP00849 1 -1.19216456393232 0.417272592393877
218 | HGDP00452 1 1.52641464714056 -0.440826480747027
219 | HGDP00072 1 -0.42691404507169 1.34653289075267
220 | HGDP01287 1 -0.37778868337704 0.604780663590127
221 | HGDP01060 1 -0.207350453942132 0.650757774914374
222 | HGDP00650 2 1.14147527865583 0.686018764941473
223 | HGDP00852 1 -0.291043192243945 -0.983203361682815
224 | HGDP00453 2 0.553069276887795 1.06515737340781
225 | HGDP00074 1 0.252289796717882 -1.12093723987683
226 | HGDP01288 2 0.340842439449744 -0.531734801440545
227 | HGDP01062 2 -0.605871121898494 -0.499838612149235
228 | HGDP00651 2 -2.4951923032692 1.55800195677283
229 | HGDP00854 1 0.109732540818466 1.9168602449148
230 | HGDP00454 2 0.051650472353377 0.834678463783924
231 | HGDP00076 2 0.562896469752711 -0.493452303603529
232 | HGDP01289 2 0.529038961816107 -0.460299348106915
233 | HGDP01063 2 0.325358196861315 1.12632799486245
234 | HGDP00653 1 -0.851632381485907 0.627922899609059
235 | HGDP00455 2 0.451390160403607 0.274618765817231
236 | HGDP00855 1 -1.31188998457374 -1.12114804440428
237 | HGDP00078 2 -1.58992343382994 -0.668141267663694
238 | HGDP01290 2 0.595056539699413 0.684740568993316
239 | HGDP00654 2 0.943747281218484 1.62671282876546
240 | HGDP01064 1 0.830184950553146 0.206838858661544
241 | HGDP00457 1 0.724260305708893 -1.25018137553183
242 | HGDP00856 1 0.302624483039658 -0.777129632460922
243 | HGDP00080 2 -0.440469897367608 -1.52280278516761
244 | HGDP01291 1 1.38855628418662 0.180783983099003
245 | HGDP00655 1 1.13486425993335 0.127240135423031
246 | HGDP00458 2 1.8476313606038 0.342328763065078
247 | HGDP01065 1 -0.491913217730714 0.529144338131914
248 | HGDP00857 1 1.76987865956766 1.09078851255294
249 | HGDP00082 1 0.273376151024318 0.216622473110951
250 | HGDP01292 2 0.80804278574229 -0.944273390622814
251 | HGDP00656 2 -0.936183226585249 -0.117933071172812
252 | HGDP00459 2 -1.02716479031857 1.39914607829357
253 | HGDP01066 2 1.02104326848399 -0.0325356209154599
254 | HGDP00086 2 1.08880459129364 0.56110502504926
255 | HGDP00858 1 -2.41820981058886 -0.794410672337993
256 | HGDP01293 1 -0.18107677354058 0.204048708873704
257 | HGDP00460 1 0.636283754546487 -1.16505017585158
258 | HGDP00661 2 -0.725128432747626 -0.248354162230334
259 | HGDP01067 1 0.312565998610951 -0.386813592598975
260 | HGDP00088 2 -1.71279068978276 1.76076132158541
261 | HGDP00859 2 1.65661424792202 2.30715656008728
262 | HGDP01294 2 0.449173321828807 0.599552933464228
263 | HGDP00461 1 -1.1966657783608 -1.66087746050265
264 | HGDP00662 2 0.435650249986206 -0.795881715050543
265 | HGDP01068 1 -0.424482282525467 0.835946174807375
266 | HGDP00090 2 1.33588411940174 0.561549397873559
267 | HGDP00860 2 0.0717622919419995 -0.501346932110295
268 | HGDP00462 2 1.24459834827546 0.480588355979758
269 | HGDP01295 2 -0.393154120801847 1.26636025662447
270 | HGDP00663 2 0.947552129968948 0.45357706721422
271 | HGDP01069 1 -0.0446457574463257 1.31100790391128
272 | HGDP00092 2 -0.963631755531001 -0.487684456383193
273 | HGDP00861 1 -0.465140870355323 -0.34207524054133
274 | HGDP00463 1 -0.148629357758736 -0.0177279807023327
275 | HGDP01296 1 -0.059989529670667 0.148240632650128
276 | HGDP00664 1 2.8421301825056 -0.93849545573698
277 | HGDP01070 2 -0.895815904121397 0.74134465383418
278 | HGDP00094 1 1.5442056153643 0.498892839492814
279 | HGDP00862 2 -0.771672563080895 -0.909886575734551
280 | HGDP00464 1 0.756727427820458 0.984421127870671
281 | HGDP01297 1 -1.22383186095549 -0.943816855001251
282 | HGDP00666 1 -0.340080014098599 -1.73197212784957
283 | HGDP01071 1 1.0828527995584 0.473764456514691
284 | HGDP00096 2 -0.800943728725872 -0.667895211352111
285 | HGDP00863 2 -0.404404467038976 0.772107922576745
286 | HGDP00466 2 -0.156150227524077 0.361962007509461
287 | HGDP01298 1 -0.0315982920591205 -1.18952487331488
288 | HGDP00667 2 -0.478964014314627 0.134782022627479
289 | HGDP01072 2 0.0205274613344313 1.08608455243335
290 | HGDP00098 1 0.140958422611133 -1.34673219455842
291 | HGDP00864 2 0.150142694918948 -0.328043498568215
292 | HGDP00467 2 1.00933300477386 0.787412520128103
293 | HGDP01299 1 -0.15087389926533 -0.864731307997287
294 | HGDP00668 1 0.574136218407273 0.782825448614355
295 | HGDP01073 2 -0.12168889810302 -0.232200103682519
296 | HGDP00099 1 -1.36420897526109 0.180325863106584
297 | HGDP00469 2 0.197014618228092 -0.660132741386691
298 | HGDP00865 2 -0.0198084115827976 1.76547344800643
299 | HGDP01300 1 -0.697465892118813 -0.818680287621334
300 | HGDP00669 1 -0.726645960091281 -0.371756211533505
301 | HGDP01074 1 1.42363755095127 1.03405754446442
302 | HGDP00868 2 -0.421649120216849 -0.216179117397081
303 | HGDP00100 2 -1.22424095971575 0.639580047245595
304 | HGDP00470 2 1.01388045815611 0.0203201891788521
305 | HGDP00670 2 -0.520448699535588 -0.481882364208751
306 | HGDP01301 2 0.789806401028563 -1.11273616579943
307 | HGDP01075 1 -1.42900161784346 1.26593197312268
308 | HGDP00869 2 1.31347284236759 -0.0663108448049217
309 | HGDP00102 2 -1.3111974968361 -1.11742146991485
310 | HGDP00471 1 -1.2893049015255 -0.531549818668131
311 | HGDP00671 1 0.446564128014565 0.557834826429993
312 | HGDP01302 2 0.248324628577317 1.3347577146858
313 | HGDP01076 2 -1.05185140237024 -0.608114375948785
314 | HGDP00870 2 0.213531142156661 0.149115813147745
315 | HGDP00472 2 0.777985612343511 1.56097065618065
316 | HGDP00103 2 0.766713935920909 0.302619257939871
317 | HGDP00672 1 -0.00516927593639746 0.445679581325786
318 | HGDP01303 1 0.196334982687732 -0.199286037991774
319 | HGDP01077 1 0.00890660159077392 2.09914967199726
320 | HGDP00871 2 -0.538018490951996 0.399251256954332
321 | HGDP00473 2 0.225949125474252 0.502466214357901
322 | HGDP00104 2 -1.20238140364706 -1.35982369550902
323 | HGDP00673 2 -0.644570937133879 0.528814238247816
324 | HGDP01304 2 1.01489647820653 -0.917284860387222
325 | HGDP01078 1 0.0876988105794976 0.559260065411662
326 | HGDP00872 1 0.538345004373748 1.05789715863985
327 | HGDP00474 2 -0.484009862023449 0.99023455369034
328 | HGDP00105 1 -1.53582007512971 1.0296912172037
329 | HGDP00674 2 -1.09545902019485 -0.666792257475643
330 | HGDP01305 2 -1.66025573146786 -0.697040915118611
331 | HGDP01079 1 0.0123169870695713 1.87221281743273
332 | HGDP00475 1 0.123076603132727 0.675922038815166
333 | HGDP00873 2 1.72629278873672 -0.300948053558104
334 | HGDP00106 2 -0.347598031340479 1.03017924708151
335 | HGDP00675 2 -0.514385207058461 0.516782537108288
336 | HGDP01306 1 -0.437255582560218 3.1864144686321
337 | HGDP01081 2 -0.743864245105637 -1.3173273307207
338 | HGDP00476 2 -0.629497601544918 0.822181368611535
339 | HGDP00875 2 -0.468483566351864 0.205237413699294
340 | HGDP00108 2 0.0152948710715959 -1.39350642335383
341 | HGDP00676 1 0.150766001650248 -1.12532180128746
342 | HGDP01307 2 -0.840946807834224 -0.321306254610944
343 | HGDP01086 2 0.477183795082611 -0.309842116908851
344 | HGDP00478 1 -1.22842969673114 0.992689818887604
345 | HGDP00876 1 -1.23193561529495 1.32277781805629
346 | HGDP00109 2 0.732106987384531 0.849280641509797
347 | HGDP00677 1 0.462948111426913 0.295197993295009
348 | HGDP01308 1 0.926711707243407 -0.661549911054653
349 | HGDP00479 1 -1.17772676712567 0.0507662256353227
350 | HGDP01090 2 -0.18721827801648 -0.230139171779637
351 | HGDP00877 1 0.176627386312101 0.682467777512995
352 | HGDP00110 2 -0.362107070119158 -0.612812237096027
353 | HGDP00678 1 -0.31604894079237 0.54170696711729
354 | HGDP01309 1 -1.25064441844698 0.109601572246684
355 | HGDP00491 2 -1.11950889069552 -0.526161686795847
356 | HGDP01094 1 -0.0879871234464083 0.0689389949713384
357 | HGDP00879 2 -1.12787125486303 0.398775080592626
358 | HGDP00115 1 1.3255632118209 -0.0806319858569026
359 | HGDP00679 2 0.269993523183189 0.671331422365642
360 | HGDP01310 2 0.356351997326693 -0.913480482319336
361 | HGDP00511 1 -0.999056161532197 -0.328192838319193
362 | HGDP01095 2 -0.405501702593789 -1.35797875618155
363 | HGDP00880 2 -0.35443296740101 -0.339955194233556
364 | HGDP00118 1 1.50297989577025 -0.101856483341128
365 | HGDP00680 1 0.881288146802202 -1.72367917446453
366 | HGDP00512 2 -1.7343603305357 0.775822116684294
367 | HGDP01311 2 -1.04022935930505 -0.266883336979792
368 | HGDP01096 1 0.968996396912399 0.212520762735019
369 | HGDP00120 2 -1.36131758332345 1.06974943520137
370 | HGDP00881 1 0.561209338308844 0.0732773474774401
371 | HGDP00682 1 -0.547090412747526 -1.15630829086079
372 | HGDP00513 2 0.875945745654088 -0.579218656151579
373 | HGDP01312 2 0.685265087466233 1.2360952419036
374 | HGDP01098 1 0.368916293998345 -0.96022746686625
375 | HGDP00121 2 1.56461194879903 0.853507726121409
376 | HGDP00882 1 1.6703891193486 1.74664025353641
377 | HGDP00683 2 -1.46594816799839 2.88647594802817
378 | HGDP00514 1 0.746080994714525 2.22681516295698
379 | HGDP01313 2 -0.246952585832881 0.180279670185448
380 | HGDP01099 1 -1.26821594434607 -0.9667189091369
381 | HGDP00122 1 0.294288206895886 -0.0925552917355486
382 | HGDP00883 1 -0.141962458825604 1.73119998699994
383 | HGDP00684 1 -1.05752886253207 -0.378497512545905
384 | HGDP00515 1 1.44553463049015 -0.362613376967222
385 | HGDP01314 1 -0.0681449738801745 -0.412525341064963
386 | HGDP01100 2 -0.40700351427234 0.467870318196894
387 | HGDP00124 1 -0.89589621026102 -0.96348091525859
388 | HGDP00685 1 -1.33963228668257 -0.65932829512498
389 | HGDP00884 1 1.101159885911 0.455732679039161
390 | HGDP00516 2 -1.11676558700136 -1.33564683106508
391 | HGDP01317 2 2.38477501033871 1.68926206126622
392 | HGDP00125 1 0.462811759360151 0.569524068171301
393 | HGDP01101 1 0.200217952753312 -0.919331386405993
394 | HGDP00686 2 -0.430031242435317 -2.47166024214017
395 | HGDP00885 2 -0.611311856496058 0.911852847041897
396 | HGDP00517 2 1.66759463038509 0.900695509636198
397 | HGDP01318 1 0.71285382473896 -0.379524525886055
398 | HGDP00127 1 -0.645645971829474 -0.210527684322592
399 | HGDP01102 2 0.18232106522002 -0.828329460173946
400 | HGDP00687 1 -1.72309683405941 -0.558207089446466
401 | HGDP00886 1 1.67756036485253 -1.27859576645036
402 | HGDP00518 2 -1.92049976807242 0.800558428475939
403 | HGDP01319 1 -1.21320552980364 0.673678667976713
404 | HGDP00129 1 -1.2615308268312 0.621861751360999
405 | HGDP01103 2 -0.951132880924486 -1.14534890423371
406 | HGDP00688 2 0.7619521904492 -1.19182404120437
407 | HGDP00887 2 -0.733902289673411 0.0331587250973226
408 | HGDP01320 1 -1.14684630015936 -1.50669008911847
409 | HGDP00519 2 0.141545337162246 -0.415844346714961
410 | HGDP00130 1 1.55959085771672 -0.61674120739923
411 | HGDP01104 1 -0.859932477301544 -0.39455185928936
412 | HGDP00689 1 -1.16158792773218 -0.409439076571967
413 | HGDP00888 2 -0.351739661666156 -0.142042662378077
414 | HGDP00520 1 0.652276427451101 -1.37052424812929
415 | HGDP01321 2 -1.03202872233545 0.837321031536061
416 | HGDP00131 1 0.87643463306788 -0.273391568336366
417 | HGDP01149 1 -0.505849986243009 -0.864224513156887
418 | HGDP00690 1 1.94854638939965 -1.09768128119327
419 | HGDP00889 1 -0.148273248656762 0.599113671870092
420 | HGDP00521 2 -1.57805069302171 0.374607568795651
421 | HGDP01322 2 -0.200181992646757 -0.694170433027751
422 | HGDP00133 2 1.2479695239913 1.34238269662247
423 | HGDP01151 2 0.632485407905028 1.32554565479762
424 | HGDP00691 2 -0.897663952351057 -0.361585025329295
425 | HGDP00890 2 -0.7349504170045 -0.497708582867226
426 | HGDP00522 2 -1.23235042085778 1.54705722584225
427 | HGDP01323 1 -0.586665813402066 1.27798282358316
428 | HGDP00134 1 -0.57132739085223 1.81668112662942
429 | HGDP01152 1 -0.578863325949771 0.985637949162782
430 | HGDP00692 2 0.702015958804214 -0.0778190169745438
431 | HGDP00891 1 -0.987510592929112 1.10267400415478
432 | HGDP00523 2 -0.55566642670018 -0.211699128855019
433 | HGDP01326 1 -0.443897152077351 -0.418272064691887
434 | HGDP00135 1 -0.127027435684875 0.583932537555677
435 | HGDP01153 2 0.458544761305624 -0.972439671466614
436 | HGDP00693 1 -0.527454120508972 -0.588233123790119
437 | HGDP00524 1 -0.26979471078968 1.03139415941639
438 | HGDP00892 2 -0.00458644148507458 -0.651218034356629
439 | HGDP01327 1 1.70536390304641 -1.33032496048428
440 | HGDP00136 1 0.304131553935872 0.32123725161875
441 | HGDP00694 1 1.80267802083295 -0.9433498355887
442 | HGDP01155 1 0.453438517790468 -0.629726629904592
443 | HGDP00525 1 0.374785925137897 0.438761406245391
444 | HGDP00893 1 0.698469778094682 -2.44051050808561
445 | HGDP01328 1 0.750745722425198 0.618931034570214
446 | HGDP00137 1 2.11307823243605 1.42991372296952
447 | HGDP00696 2 0.00525688272143858 -0.496423387004863
448 | HGDP01156 1 0.9822077354321 0.511896416115441
449 | HGDP00526 1 -0.900567929728333 0.603362688096566
450 | HGDP00894 2 -0.958499920909703 -0.751230382244971
451 | HGDP00139 2 0.119854430143838 -0.194135895701091
452 | HGDP01329 1 -0.359652906664183 0.529778110338335
453 | HGDP00697 2 -1.79813526897912 0.796940660453518
454 | HGDP00527 1 -1.85059606221942 1.10479022595244
455 | HGDP01157 2 0.845798032437825 -1.16958563226881
456 | HGDP00895 1 -0.602523624887335 -0.957740296318255
457 | HGDP00140 2 0.314271762602879 0.713462129946685
458 | HGDP01330 1 0.62100640964687 -1.57482315223803
459 | HGDP00698 2 -1.32299407615623 0.226196898827135
460 | HGDP00528 2 1.94942579467396 -0.661390966376999
461 | HGDP00896 1 -1.51278490166578 -0.213978705761156
462 | HGDP01161 1 -1.20736876844719 2.19364901537557
463 | HGDP00141 2 -0.153017419356856 -0.503028138605075
464 | HGDP01331 2 -0.779160494692875 -0.689437158846785
465 | HGDP00699 1 -0.0979813272678787 0.569537248443408
466 | HGDP00529 2 0.730582499292497 1.11038669719569
467 | HGDP00897 2 0.467008219099693 -1.01861080352837
468 | HGDP01162 2 1.04381627385528 0.0693838466192289
469 | HGDP00143 2 0.643339718551586 -0.859416612990281
470 | HGDP01332 1 0.0982879413351071 1.69132564609149
471 | HGDP00700 2 1.0094367051225 0.790356916439171
472 | HGDP00530 1 -0.262648343825966 0.425958260905938
473 | HGDP00898 2 1.8867922662329 -0.253796273509982
474 | HGDP01163 1 -0.822651578886544 -0.64238223139639
475 | HGDP00144 1 2.59628715878239 -0.282320628332909
476 | HGDP01333 1 1.53162910848327 0.0848433308246997
477 | HGDP00701 2 -0.0704778899443241 1.07539572551101
478 | HGDP00531 1 -0.415105877395822 0.0423049222203706
479 | HGDP00899 2 -1.16027957297016 1.05647340486452
480 | HGDP01164 1 0.111110758468947 -0.903129580123977
481 | HGDP00145 2 0.315439703509513 0.703218193957299
482 | HGDP01334 1 -0.404523537524079 -0.744358349046067
483 | HGDP00533 1 0.615653386460359 -0.391417104149271
484 | HGDP00703 1 -1.26992484016054 -0.850885480706998
485 | HGDP00900 2 -1.35699552131406 -0.127865174472646
486 | HGDP01166 2 -0.720869417011125 -0.473567006874326
487 | HGDP01335 2 -0.440820585637511 -0.561349497680916
488 | HGDP00146 2 0.39318719150803 -1.13393947931287
489 | HGDP00534 1 -0.11109585436694 -0.466292263789807
490 | HGDP00704 1 1.37743459605689 -0.230527723362158
491 | HGDP00901 2 -1.4177026255455 0.245348350451779
492 | HGDP01167 1 -0.603914871057882 -0.429202440950095
493 | HGDP00148 2 -0.623243561338751 0.446670038544623
494 | HGDP01336 1 0.769549236670178 1.07850174123657
495 | HGDP00535 1 -0.02562063543591 1.31193049175333
496 | HGDP00706 1 -0.306316454133518 0.188483788675123
497 | HGDP00902 2 0.352946204423492 -0.65455675615934
498 | HGDP01168 1 0.341560074644568 0.752916355125844
499 | HGDP01337 1 1.02898853944699 2.13353124538239
500 | HGDP00149 2 0.27457113501229 0.551402986150657
501 | HGDP00536 2 -0.354434793494798 1.0375697050326
502 | HGDP00710 2 -1.12956943059633 0.257689718772059
503 | HGDP00903 2 0.215372068496709 1.06666310937558
504 | HGDP01169 2 1.13037494879569 1.21525272242616
505 | HGDP01338 1 -1.48621471314954 0.821435180410016
506 | HGDP00150 1 0.263318847021401 -0.955510765975323
507 | HGDP00537 1 -0.431871927534397 0.545425930970175
508 | HGDP00711 2 -1.52108276216847 0.157504006741662
509 | HGDP00904 1 -2.24287271971337 -2.08174295397921
510 | HGDP01171 1 0.122157857988915 -0.740624399692289
511 | HGDP01339 2 -0.147951526114775 -0.228184892235798
512 | HGDP00151 2 -0.649516830593094 -2.3551267580876
513 | HGDP00538 2 0.748345413855676 0.909803724098298
514 | HGDP00712 2 0.939412213234122 -0.790549754831346
515 | HGDP00905 2 1.80192455086031 1.08407544555483
516 | HGDP01340 2 0.792521825332203 0.19751914774367
517 | HGDP01172 2 0.583829399803491 0.506795899761633
518 | HGDP00153 1 1.1298280721347 3.24792091106459
519 | HGDP00539 2 0.169101867188051 1.0590577756078
520 | HGDP00713 1 -1.09533839363934 1.54086729565552
521 | HGDP00906 1 0.375349424491692 0.307808892914531
522 | HGDP01341 2 2.49270597826941 0.12609994283686
523 | HGDP01173 1 -1.57180607112663 1.66272591364831
524 | HGDP00154 2 -0.195303145916462 0.193361619403489
525 | HGDP00540 1 1.17263435423048 -0.914262150348103
526 | HGDP00714 1 0.813803703346774 0.550883379311672
527 | HGDP00907 2 0.335791734314289 0.507237477851945
528 | HGDP01342 2 -0.91160998375583 0.1751621462884
529 | HGDP01174 2 0.843187832497748 0.81872224375882
530 | HGDP00155 2 0.183966558779242 0.916603175284106
531 | HGDP00541 2 0.348620703121479 0.112056645263572
532 | HGDP00715 2 0.773764091801787 -0.763816221860117
533 | HGDP00908 1 -0.803982863411365 -0.131031299526378
534 | HGDP01345 2 -0.619145202404587 0.944938380422273
535 | HGDP00157 2 0.0104732212034452 1.42626429422198
536 | HGDP01177 2 -0.530953461709478 0.316047447520014
537 | HGDP00542 2 -1.24981358565023 -0.939959197815307
538 | HGDP00716 2 -1.54456746209633 -0.152009688967716
539 | HGDP00909 1 -0.478941246373662 0.300276801075327
540 | HGDP01346 2 0.0643702538640958 0.231709673405519
541 | HGDP00158 1 -0.959533094163547 -0.451011135130313
542 | HGDP01179 2 0.435026379709028 0.650423348352312
543 | HGDP00543 2 0.806343390308272 0.856919116634063
544 | HGDP00717 2 0.224288122008924 0.736615685581202
545 | HGDP01347 1 0.269140366712925 -0.132335876843116
546 | HGDP00910 2 -1.45818561905596 0.759159548598431
547 | HGDP00160 1 -0.774437287405925 -1.23512555136504
548 | HGDP00544 1 0.344207875684961 1.00913826515758
549 | HGDP01180 1 -1.73001052367425 0.697115448882445
550 | HGDP00719 2 1.36551632578574 2.08943768682148
551 | HGDP01348 2 -2.39062924254269 -0.0479312717644486
552 | HGDP00161 2 0.0971750576177042 0.680089482445095
553 | HGDP00911 2 -0.214462995651998 -0.939484946869938
554 | HGDP00545 2 0.0851564693353069 0.31714093624246
555 | HGDP01181 1 -0.0416744800514054 1.47821715767042
556 | HGDP00721 2 -0.245485483067515 1.96384663961635
557 | HGDP01349 2 -1.78928647682507 -0.701881746348579
558 | HGDP00912 1 -0.21333720180631 -0.253308617315822
559 | HGDP00163 1 0.888632168125906 -2.02600222952061
560 | HGDP00546 2 -0.249775033290827 -0.363804360852681
561 | HGDP01182 2 1.41001655209669 0.0464280077774555
562 | HGDP00722 1 -1.78640904018393 0.179795725495803
563 | HGDP01350 2 0.826284402677715 0.178905338444681
564 | HGDP00165 1 0.379377955810367 1.45905265210016
565 | HGDP00547 1 0.430714431421847 0.0116146988186159
566 | HGDP00913 2 0.688038778833645 -0.364222810082888
567 | HGDP01183 1 0.519292238549878 -2.35660525387748
568 | HGDP00723 1 0.701829627471912 -0.492608496994863
569 | HGDP01351 2 0.395585899291859 -0.0601070338806346
570 | HGDP00167 1 0.250478571614543 0.105236130055658
571 | HGDP00914 1 -1.19144076189327 0.690971686363715
572 | HGDP00548 2 0.5501806370874 0.259957385614668
573 | HGDP01184 2 -0.57720252784259 0.859815831721359
574 | HGDP00724 2 0.835880252959339 1.54681454265962
575 | HGDP01352 1 -2.01187889946415 -0.772005622872155
576 | HGDP00169 1 0.731141033524535 0.234458076391308
577 | HGDP00549 1 1.72412969067648 0.373176915882183
578 | HGDP00915 1 0.268390241306056 0.590459804157533
579 | HGDP01185 1 -0.181478770202506 0.203117670205852
580 | HGDP00725 1 -0.221369079755586 -0.801327853273133
581 | HGDP01353 1 1.42041367430207 0.554782269846803
582 | HGDP00173 1 0.457287078169175 1.47859876540879
583 | HGDP00550 1 0.0731794859601498 -0.467291668809664
584 | HGDP00917 2 -0.730281799394742 0.476238794103579
585 | HGDP01186 1 -0.241083234210533 -2.38776528852053
586 | HGDP00726 1 -1.06012519266059 -1.30015312532594
587 | HGDP01354 1 -0.504907779442429 -0.281074408481901
588 | HGDP00175 2 0.909729931484196 -0.246941159878858
589 | HGDP00551 1 -0.905657820675867 0.291514276319171
590 | HGDP00918 1 0.430390043063631 -0.0964098804799015
591 | HGDP01187 1 0.858607848117326 -1.56255609388677
592 | HGDP00727 2 -1.99476467776696 -1.78510561380627
593 | HGDP01355 2 -0.111676803965396 -0.638060432662508
594 | HGDP00177 1 -0.00532040116648825 0.769671991042706
595 | HGDP00552 2 0.504008594287424 1.83369719793502
596 | HGDP00920 1 -0.49959734759118 0.796301303021064
597 | HGDP01188 1 -0.390456621137993 -0.0125956663050796
598 | HGDP00729 1 -1.21303648809477 -1.82945075960843
599 | HGDP01356 2 0.0412604852154275 -0.203286962153664
600 | HGDP00179 1 0.476830234155228 0.476698814819727
601 | HGDP00553 1 -0.505515942510525 0.0780761176922851
602 | HGDP00924 2 1.10843327042537 -0.170183713365296
603 | HGDP01189 2 -0.736090040339072 0.757393249176703
604 | HGDP00730 2 -0.736372654679772 -1.38118187653427
605 | HGDP01357 2 -2.19553410256695 0.303071898190312
606 | HGDP00554 1 1.84920724953551 0.665300704628152
607 | HGDP00181 2 -0.321810548343706 1.17707040165822
608 | HGDP00925 2 -1.52857173131693 1.04806720252407
609 | HGDP00731 1 0.651062201968766 -0.147413181958566
610 | HGDP01190 1 -0.0507448170904375 0.867182398277082
611 | HGDP01358 2 2.28716274587103 0.413965558689802
612 | HGDP00555 2 -1.19201502240673 0.377451354590676
613 | HGDP00183 2 1.27212489325947 0.754867695429156
614 | HGDP00926 2 -1.20881234793899 0.140502655271519
615 | HGDP00732 1 -2.45340352867103 -0.405568867433744
616 | HGDP01191 1 0.514111410284321 1.43340782919743
617 | HGDP01359 1 -0.147433390163531 0.591086729184676
618 | HGDP00556 1 0.319816462973018 -1.0505375493334
619 | HGDP00927 1 -0.497341006375058 2.38085984455593
620 | HGDP00185 2 -0.322982110640741 -0.454641801784611
621 | HGDP00733 2 0.43357119882941 0.355689705267268
622 | HGDP01192 2 1.60025845049878 0.861107927178503
623 | HGDP01360 2 0.469179840052223 1.0674516887679
624 | HGDP00557 1 0.652577662025661 -0.317594019965214
625 | HGDP00928 1 0.78865582723519 -0.0662937397972897
626 | HGDP00187 2 0.196453302767436 0.0994106412615003
627 | HGDP00734 2 -0.602251308797549 -0.573872521676188
628 | HGDP01193 2 0.785260712435454 1.40336774792402
629 | HGDP00558 2 0.382213932173637 -1.10189469859912
630 | HGDP01361 1 0.726465995714124 0.468021375148202
631 | HGDP00929 2 0.99819417363197 -0.523601561129403
632 | HGDP00189 1 -1.33749112836546 -1.9155827634725
633 | HGDP00735 2 2.14411890332795 -1.28532936211323
634 | HGDP01194 1 1.68767542443345 1.26279249209356
635 | HGDP00559 1 -0.0181966306268442 -0.562144319244413
636 | HGDP01362 1 0.920052222308015 -1.21938591602102
637 | HGDP00191 1 1.00202536882949 -2.07999766759462
638 | HGDP00930 2 0.883839703967777 -0.49622457177286
639 | HGDP00736 1 0.0506557977879604 0.0730088010657704
640 | HGDP01195 1 1.14061709120381 0.0291731832405443
641 | HGDP00560 1 -0.189690358089728 -1.53977042247816
642 | HGDP01363 2 1.54813440655471 1.06727021863035
643 | HGDP00192 2 -1.94157587037216 0.71274507617732
644 | HGDP00931 1 1.02447802526875 0.42910543048167
645 | HGDP00737 2 -0.422015205896051 -0.659267542416238
646 | HGDP01196 1 0.267520003416697 2.19063706661239
647 | HGDP00561 2 0.783410538220935 -0.15301345980717
648 | HGDP01364 2 0.169412516003061 1.01415400797406
649 | HGDP00195 2 0.233711577312907 -1.36345134666384
650 | HGDP00932 1 0.712318001836866 1.53590668862605
651 | HGDP00738 2 0.309385073410883 -1.36235244042667
652 | HGDP01197 1 1.26502390272279 0.361847229080447
653 | HGDP00562 2 0.331642572386406 -0.118708826111351
654 | HGDP01365 2 0.706844978297925 -0.861328148774043
655 | HGDP00197 1 -1.59540958791005 -1.27426382860306
656 | HGDP00933 1 0.079003666426928 1.15237760336719
657 | HGDP00739 1 -0.799524931857961 1.51256757756155
658 | HGDP01198 2 0.293795431402484 0.10338829399919
659 | HGDP00563 2 -0.134631414504803 -1.39550711591616
660 | HGDP01366 1 -1.43740429497142 -0.299624458619206
661 | HGDP00199 1 -0.71657186092086 1.06571364814383
662 | HGDP00934 1 -0.755308623009203 -1.13375791730432
663 | HGDP00740 2 0.610961668018271 0.481662087672956
664 | HGDP01199 2 -0.0749819301067247 0.135795631461931
665 | HGDP00564 2 -0.906580518053703 -0.15192601902348
666 | HGDP01367 2 0.484647050033304 1.43527285555473
667 | HGDP00201 1 -1.27387875043545 -0.73566702503803
668 | HGDP00935 2 1.09580025930015 -0.923568343400898
669 | HGDP00741 1 0.706679099547821 0.870156647772226
670 | HGDP01200 1 0.431521846174759 0.0973516878288297
671 | HGDP00565 1 -0.390669443037755 1.62089378980111
672 | HGDP01368 2 -0.944728743778485 0.17034270874784
673 | HGDP00205 2 -0.980981030754433 0.293659375099346
674 | HGDP00936 2 -0.3279306528901 -0.508788069026379
675 | HGDP00744 2 -0.295765803335805 -0.471486795759704
676 | HGDP01201 1 -1.85424160662939 -0.252366736593831
677 | HGDP00566 1 -1.25823038879898 0.910499197956298
678 | HGDP00206 2 -0.603078699889266 0.136240764720287
679 | HGDP01369 2 -1.02058392589015 2.00084447956428
680 | HGDP00937 2 -1.82202753172907 1.17021318720287
681 | HGDP00745 2 -0.862412179766505 0.136377940862711
682 | HGDP01202 2 1.97452001693554 -0.0285720750520613
683 | HGDP00567 1 1.83032232319878 -0.0562479658512194
684 | HGDP00208 2 -0.649053359783151 -0.245311977657024
685 | HGDP01370 1 -2.59660539899264 -1.10920960561333
686 | HGDP00938 1 1.39209557174284 -1.58315102468318
687 | HGDP00746 2 0.302129669505088 -0.0771625518607221
688 | HGDP01203 1 0.0101839184605604 1.51253904352865
689 | HGDP00210 1 3.00776673196129 -0.808047135238216
690 | HGDP01372 1 -0.857665949034531 0.134002315651764
691 | HGDP00568 1 -0.437223749742489 -0.0217701494855922
692 | HGDP00939 2 -0.402174354967189 -0.349832097842176
693 | HGDP00747 2 0.887241146837165 0.350899834158401
694 | HGDP01204 1 1.02930283089341 -0.418583357450398
695 | HGDP00213 2 -0.657265798769955 -0.22500631216464
696 | HGDP00569 2 2.04420641045807 0.897287566480274
697 | HGDP01373 2 -0.575914747818531 -0.199017998277205
698 | HGDP00940 1 0.831853002724065 -0.0333970858565892
699 | HGDP00748 1 -1.09657967070438 -0.53074742540973
700 | HGDP01205 1 -0.378866826058421 0.867028854024675
701 | HGDP00214 1 0.785388138958203 -1.3801338285494
702 | HGDP00571 2 0.0539995157569513 0.783481005904721
703 | HGDP01374 1 -0.144133122853283 0.214179760200105
704 | HGDP00941 1 -1.07073115092256 -0.169911082736007
705 | HGDP00749 2 -0.122782644834058 2.42464197289279
706 | HGDP01206 2 1.46021201170559 0.097649719699854
707 | HGDP00216 2 1.09619538012963 -1.88764033698222
708 | HGDP00572 1 1.01806575565539 -0.24111307051119
709 | HGDP01375 1 -1.93542183998054 -0.664813935498651
710 | HGDP00942 2 0.0060554313112697 -0.213603111943862
711 | HGDP00750 2 -0.647465465118369 -0.573355629831948
712 | HGDP01207 2 -0.3538885300846 -1.95651023402366
713 | HGDP00218 1 -0.0926688743787167 0.481528499342438
714 | HGDP00573 2 0.0228914169640972 0.587005809894146
715 | HGDP01376 1 -0.0746588460180577 0.733557570093106
716 | HGDP00943 2 1.6865842595084 0.572068027346411
717 | HGDP00751 1 -1.82601714283097 1.32914998710085
718 | HGDP01208 2 0.87473238333795 2.67646381445704
719 | HGDP00574 1 -0.163855594125615 0.478290483591861
720 | HGDP00222 1 -1.75676466203227 1.54517113298397
721 | HGDP00944 1 0.33252948384499 -0.19423492145524
722 | HGDP01377 1 -3.32160922346031 -0.0694791335307279
723 | HGDP00752 2 -0.250015666838241 1.8438110469258
724 | HGDP01209 2 -1.3442578885356 -0.470454218937133
725 | HGDP00575 2 0.927136083721879 -0.856489883119686
726 | HGDP00224 1 0.571146243145375 0.622977834039102
727 | HGDP00945 2 1.11630227848232 -0.303117149164322
728 | HGDP00753 2 1.71758982712545 1.63471363757142
729 | HGDP01378 1 -0.25920523643976 -0.99489068916135
730 | HGDP01211 2 -0.376025694145489 1.92443328391409
731 | HGDP00576 2 1.52112715361738 1.46979267828464
732 | HGDP00226 1 -1.384103812721 1.39132219555654
733 | HGDP00946 2 -0.403272247564015 0.640433677652196
734 | HGDP00754 1 0.0561928154274793 -0.208076125012973
735 | HGDP01379 1 0.317516792830841 -0.699908300360537
736 | HGDP01212 2 -0.87056774602859 -0.517918521661654
737 | HGDP00577 1 -0.605004529292685 0.706312296637042
738 | HGDP00228 1 -0.589237442996245 0.137427991695162
739 | HGDP00947 2 -0.28957865329216 -0.658647973207844
740 | HGDP00755 2 0.954528843930314 0.858560057206
741 | HGDP01380 1 -0.289701118973607 0.201943965567965
742 | HGDP01213 2 -0.274847231817648 0.661537127227061
743 | HGDP00578 2 -0.735203554700449 0.154378630776304
744 | HGDP00230 1 -0.0103067376182535 -0.707701346381654
745 | HGDP00948 2 -0.468152486306021 -0.162082039254051
746 | HGDP00756 1 -0.210053994948542 1.45757455950665
747 | HGDP01382 1 0.569081128167459 -0.0919430828174044
748 | HGDP01214 1 1.29670117690726 -1.69500985803623
749 | HGDP00579 2 -0.767416632373079 -0.714668610395385
750 | HGDP00232 1 -0.289273281931369 0.25622562341952
751 | HGDP00949 1 0.14874223319545 0.842799729973093
752 | HGDP00757 2 -1.82456986165045 0.758523352530198
753 | HGDP01383 1 -1.02703551456644 -1.24031141620204
754 | HGDP01215 2 1.5593315077901 0.534139101012443
755 | HGDP00580 2 0.120530316948822 -0.981018513365244
756 | HGDP00234 2 -0.421726870587954 -0.91198836216856
757 | HGDP00950 1 -0.873821593543518 -2.17095507571932
758 | HGDP00758 2 0.628214822255778 -0.519819354065303
759 | HGDP01384 1 1.25635187668052 0.129804056969195
760 | HGDP01216 1 0.113595870431391 0.0906188149264491
761 | HGDP00581 1 0.783919483365332 -1.12610490722934
762 | HGDP00237 2 -1.97975759078556 0.618532513857287
763 | HGDP00951 1 1.05464640360191 1.79255256268554
764 | HGDP00759 1 -0.441322731109672 0.50663375246144
765 | HGDP01385 2 2.16213269527795 -0.58032538202588
766 | HGDP01217 2 -2.9911288923289 -0.890241832632456
767 | HGDP00582 1 -1.9828879081866 0.198005178628307
768 | HGDP00239 1 -0.37952060541686 0.996531640298379
769 | HGDP00952 1 1.24174245240481 -0.701304445623166
770 | HGDP00760 1 -1.73560329904133 1.67905193799254
771 | HGDP01386 1 0.120230868773094 -0.37762197392781
772 | HGDP01218 1 0.112199749283979 -0.712787276199767
773 | HGDP00583 1 -0.138630026842948 1.43108751632084
774 | HGDP00241 2 1.04414305012241 -0.538232913723489
775 | HGDP00953 1 -0.121270691284627 -0.222804823230253
776 | HGDP00761 2 -0.527122066325698 1.22038317813869
777 | HGDP01387 1 -0.672571756399321 -0.0357214689854654
778 | HGDP01220 1 -1.00840019346397 -0.973146779091102
779 | HGDP00584 2 -0.508851997604026 -2.15271701356534
780 | HGDP00243 1 -0.0470135382645295 0.481837647650928
781 | HGDP00954 2 -0.105457430751965 -0.503106691622746
782 | HGDP00762 1 0.989720489952972 1.34782077582662
783 | HGDP01388 1 0.81995634873917 0.439307225272753
784 | HGDP01221 1 0.581073745459083 1.27521719850649
785 | HGDP00244 2 1.46507856387399 -0.716572807473232
786 | HGDP00586 1 -0.230688576136916 0.192500396771389
787 | HGDP00955 1 0.79587387308155 -2.06583154799165
788 | HGDP00764 2 0.403745522492329 -0.933054477567334
789 | HGDP01396 2 0.824678310329986 0.360297814364883
790 | HGDP01222 1 1.15367423385034 -0.59495340376504
791 | HGDP00247 2 -0.608089133563411 -0.464763616467842
792 | HGDP00587 1 0.170415643139023 0.960024245561304
793 | HGDP00956 1 1.37618356050853 -0.543157668326597
794 | HGDP00765 2 1.54500378965069 0.667640934251557
795 | HGDP01397 2 0.368111735578541 0.279127033948228
796 | HGDP01223 1 -0.737266990722435 1.09881422067777
797 | HGDP00248 1 -1.78958048731654 0.170727142625734
798 | HGDP00588 1 0.630738544787708 -0.164697489890308
799 | HGDP00957 2 0.842583133225183 -0.312848063815913
800 | HGDP00766 2 0.0724043986991091 2.06293119223321
801 | HGDP01398 2 -1.45020178746166 1.03766266686136
802 | HGDP01224 1 0.222000895617249 -1.40294690034191
803 | HGDP00251 2 0.519823224757196 1.11302325475913
804 | HGDP00590 2 1.88186396118178 -1.93614465512278
805 | HGDP00958 2 -0.324739721824171 -1.13784963397713
806 | HGDP01399 1 -0.615395711254043 0.178341987133094
807 | HGDP00767 1 -0.305499383365401 1.40373301349702
808 | HGDP01225 1 0.285758357947551 -0.144440401323829
809 | HGDP00254 2 -1.92023436865786 -0.702135428534021
810 | HGDP00591 2 0.527806937468664 -1.78449813635148
811 | HGDP00959 1 -0.283999586474282 1.99817357077064
812 | HGDP01400 2 -0.393138152083973 -0.930940501495848
813 | HGDP00769 1 0.556498730043882 -0.0320075035806219
814 | HGDP01227 2 -0.722615710576174 -1.1983794086255
815 | HGDP00258 1 -1.18726361324687 -1.62400934395378
816 | HGDP00594 2 -0.554785476406941 1.42803191136726
817 | HGDP00960 2 1.07424792904717 -1.15854728779701
818 | HGDP01401 1 1.7717009606692 0.456607310024401
819 | HGDP00771 1 0.941623642363817 -0.539265921372859
820 | HGDP01228 1 -0.459909606403737 -0.30080979764925
821 | HGDP00259 2 -0.729316678843739 -0.541674970590516
822 | HGDP00595 2 0.707880803226026 1.59170688647038
823 | HGDP00961 1 -0.561417479086712 2.05855692375497
824 | HGDP01402 2 -0.68968595245719 0.890430546722849
825 | HGDP00772 2 -1.73660362601439 -0.320037809116473
826 | HGDP01229 1 0.935024808447206 1.05593167897811
827 | HGDP00262 1 3.09313228455997 1.56049430490477
828 | HGDP00597 1 0.84055063642359 -0.463864275573152
829 | HGDP00962 2 -0.215140071122916 0.287679143994837
830 | HGDP01403 1 0.475455785899649 -0.497481846981495
831 | HGDP00773 2 1.21856421790748 -0.0756188826643511
832 | HGDP01230 2 -1.66124976417259 -1.33525015373979
833 | HGDP00264 1 -0.835577655475489 -0.0752426399780639
834 | HGDP00598 1 -0.553491519385089 -1.06288923533151
835 | HGDP00963 2 -0.409520713922487 0.857236239474321
836 | HGDP01404 2 0.501592915240537 -0.299209381794673
837 | HGDP00774 2 -0.569693142352863 -0.810630279432887
838 | HGDP01231 2 -0.391598049056211 0.357972169808958
839 | HGDP00274 2 -0.193359427491361 2.09997231884923
840 | HGDP00599 2 -0.153953691685306 0.137018743748803
841 | HGDP00964 1 0.18481759695015 0.183300272956839
842 | HGDP00775 1 0.493030553129206 0.0419589632326065
843 | HGDP01405 2 0.159865122707327 0.242264140463535
844 | HGDP01232 1 0.841970171777274 0.964448274177911
845 | HGDP00277 1 2.00540054342796 -0.464198248602147
846 | HGDP00600 2 -0.629297688897252 -0.0567352686627682
847 | HGDP00965 1 -1.85978084989518 -0.571837942859908
848 | HGDP00776 2 0.59867369384503 -0.565262511636441
849 | HGDP01406 2 0.619698280350884 -0.791646133936933
850 | HGDP01233 1 1.53522352222283 0.804941668305782
851 | HGDP00279 2 -0.99208961746568 1.63432752554245
852 | HGDP00601 1 0.282980330118332 1.2964569079926
853 | HGDP00966 1 -2.01294994062408 -0.0205323035114125
854 | HGDP01408 2 0.361400899588381 -0.198966961382656
855 | HGDP00777 1 -0.184864048975307 -0.663719380372259
856 | HGDP01234 2 -0.889277531738189 0.700582658649551
857 | HGDP00281 1 -1.26365650480697 -0.662881439567875
858 | HGDP00602 1 -1.66099193557519 0.305168453038247
859 | HGDP00967 2 -1.16780666823919 -1.87345855893631
860 | HGDP01411 2 -0.678996487266586 0.807137825922025
861 | HGDP00778 2 -0.164130999814755 0.253476865056066
862 | HGDP01236 2 -0.595377335159298 3.09908913965031
863 | HGDP00285 2 -0.54730786984478 0.0861273092133435
864 | HGDP00604 1 -1.08776017662596 -0.955252484441078
865 | HGDP00968 1 -0.242242395599078 3.1751904111502
866 | HGDP01412 2 -0.571965010983676 -1.49343617967487
867 | HGDP00779 2 -0.88436908830375 -1.45562154622227
868 | HGDP01237 2 -0.535480808765089 0.543598202997538
869 | HGDP00286 1 0.197963779913821 0.00131327288759289
870 | HGDP00606 2 0.431323895399406 0.247092534039071
871 | HGDP00969 2 0.197685274042714 -0.410868371473638
872 | HGDP01414 1 0.726413438474965 -0.131519273869692
873 | HGDP00780 1 0.488627377883011 -0.0644114485489679
874 | HGDP01238 1 -0.397523780010573 0.610361348668073
875 | HGDP00288 2 -0.684345997258538 0.676506007565883
876 | HGDP00607 2 -0.93573810608461 -0.911895639628711
877 | HGDP00970 1 -0.535501713013399 0.237642798428137
878 | HGDP01415 1 1.0177099187885 -1.27142377411241
879 | HGDP00781 2 -0.774458959966244 0.753811747191286
880 | HGDP01239 1 -0.284592466828842 -0.728423464772794
881 | HGDP00290 2 0.517978716264623 -1.15398113567432
882 | HGDP00608 2 -0.0202060843277245 -1.08944220478559
883 | HGDP00971 1 -0.342598115699356 2.11784508336644
884 | HGDP01416 2 -0.96003679211999 -2.12635386295969
885 | HGDP00782 2 -1.28569305900156 0.740694997017381
886 | HGDP01240 1 -0.0806750003695131 -1.09591127072146
887 | HGDP00298 1 0.309836831967528 2.09042540842
888 | HGDP00609 2 -0.0117851169712006 0.235222334430157
889 | HGDP00973 1 0.59576234864581 1.24818402633462
890 | HGDP01417 2 -0.57522775099408 -1.27370410994118
891 | HGDP00783 2 -0.356919642693947 -0.262514649861029
892 | HGDP01241 1 0.639775032212341 -0.152592486588214
893 | HGDP00302 1 0.695416015257341 1.30673402211457
894 | HGDP00974 1 -1.34875852251758 1.27553822544878
895 | HGDP01418 1 -0.202244409926265 -1.57388448913773
896 | HGDP00784 2 -2.02688035224609 -0.0905203322635049
897 | HGDP01242 2 1.17098458457012 -0.712282057260015
898 | HGDP00304 1 -0.544449998568804 1.73365769265558
899 | HGDP00975 2 0.694718305296155 -1.69209529210987
900 | HGDP00785 2 -1.21478683357312 -2.40686675695087
901 | HGDP01419 2 1.28371189000875 -1.98168169924285
902 | HGDP00307 2 0.281031877766293 1.25439614702897
903 | HGDP01243 2 -0.714275440940483 -0.601131607286282
904 | HGDP00976 2 0.35582590350739 0.634522454172437
905 | HGDP01244 1 0.975443193466353 0.821819292059155
906 | HGDP00977 2 1.32393821217214 -0.407844821034771
907 | HGDP01245 2 -0.201248254688505 0.949350187841812
908 | HGDP01246 1 -0.406774220119386 -1.20556269087565
909 |
--------------------------------------------------------------------------------
/data_assoc/phenotype.txt:
--------------------------------------------------------------------------------
1 | IID trait_name
2 | HGDP00610 1
3 | HGDP00982 1
4 | HGDP00001 1
5 | HGDP01247 2
6 | HGDP00309 1
7 | HGDP00786 2
8 | HGDP00611 2
9 | HGDP00003 2
10 | HGDP00984 1
11 | HGDP00787 1
12 | HGDP01248 1
13 | HGDP00311 2
14 | HGDP00612 1
15 | HGDP00005 1
16 | HGDP00985 1
17 | HGDP00788 1
18 | HGDP00313 2
19 | HGDP01249 2
20 | HGDP00613 2
21 | HGDP00007 2
22 | HGDP00986 1
23 | HGDP00790 1
24 | HGDP00315 1
25 | HGDP01250 1
26 | HGDP00614 1
27 | HGDP00009 1
28 | HGDP00987 2
29 | HGDP00791 2
30 | HGDP00319 1
31 | HGDP01251 1
32 | HGDP00615 2
33 | HGDP00011 2
34 | HGDP00991 1
35 | HGDP00794 1
36 | HGDP00323 2
37 | HGDP01253 2
38 | HGDP00616 2
39 | HGDP00013 1
40 | HGDP00992 2
41 | HGDP00795 2
42 | HGDP00326 1
43 | HGDP01254 2
44 | HGDP00618 1
45 | HGDP00015 1
46 | HGDP00993 1
47 | HGDP00796 2
48 | HGDP00328 1
49 | HGDP01255 1
50 | HGDP00619 2
51 | HGDP00017 2
52 | HGDP00994 1
53 | HGDP00330 2
54 | HGDP00797 1
55 | HGDP00620 1
56 | HGDP01256 1
57 | HGDP00019 1
58 | HGDP00333 1
59 | HGDP00995 1
60 | HGDP00798 2
61 | HGDP00621 1
62 | HGDP01257 1
63 | HGDP00021 1
64 | HGDP00338 1
65 | HGDP00999 1
66 | HGDP00799 1
67 | HGDP00622 2
68 | HGDP01258 1
69 | HGDP00023 2
70 | HGDP00341 2
71 | HGDP01010 2
72 | HGDP00800 1
73 | HGDP00623 1
74 | HGDP00025 1
75 | HGDP01259 2
76 | HGDP00346 1
77 | HGDP01013 1
78 | HGDP00624 1
79 | HGDP00802 1
80 | HGDP00027 2
81 | HGDP01260 1
82 | HGDP00351 1
83 | HGDP01015 1
84 | HGDP00625 1
85 | HGDP00803 2
86 | HGDP00029 1
87 | HGDP01261 1
88 | HGDP00356 1
89 | HGDP01021 1
90 | HGDP00626 2
91 | HGDP00804 2
92 | HGDP00031 1
93 | HGDP01262 1
94 | HGDP00359 1
95 | HGDP01023 2
96 | HGDP00627 1
97 | HGDP00805 1
98 | HGDP00033 1
99 | HGDP01263 2
100 | HGDP00364 2
101 | HGDP01027 2
102 | HGDP00628 1
103 | HGDP00806 1
104 | HGDP00035 1
105 | HGDP01264 1
106 | HGDP00371 2
107 | HGDP01028 1
108 | HGDP00629 1
109 | HGDP00807 2
110 | HGDP00037 1
111 | HGDP01265 1
112 | HGDP00372 2
113 | HGDP01029 1
114 | HGDP00630 2
115 | HGDP00808 2
116 | HGDP00039 1
117 | HGDP01266 2
118 | HGDP00376 1
119 | HGDP01030 2
120 | HGDP00631 1
121 | HGDP00041 1
122 | HGDP00810 1
123 | HGDP01267 1
124 | HGDP00382 2
125 | HGDP01031 1
126 | HGDP00632 2
127 | HGDP00811 2
128 | HGDP00043 1
129 | HGDP01268 1
130 | HGDP00388 1
131 | HGDP01032 1
132 | HGDP00634 1
133 | HGDP00812 2
134 | HGDP00045 1
135 | HGDP01269 2
136 | HGDP00392 1
137 | HGDP01033 2
138 | HGDP00635 1
139 | HGDP00813 1
140 | HGDP00047 1
141 | HGDP01270 1
142 | HGDP00397 1
143 | HGDP01034 2
144 | HGDP00636 1
145 | HGDP00814 1
146 | HGDP00049 2
147 | HGDP00402 1
148 | HGDP01271 1
149 | HGDP01035 1
150 | HGDP00637 2
151 | HGDP00815 1
152 | HGDP00052 1
153 | HGDP00407 1
154 | HGDP01272 2
155 | HGDP01036 1
156 | HGDP00638 2
157 | HGDP00054 1
158 | HGDP00817 2
159 | HGDP00412 1
160 | HGDP01274 2
161 | HGDP01037 2
162 | HGDP00639 1
163 | HGDP00818 1
164 | HGDP00056 1
165 | HGDP00417 1
166 | HGDP01275 2
167 | HGDP01041 2
168 | HGDP00640 1
169 | HGDP00819 1
170 | HGDP00057 1
171 | HGDP00423 1
172 | HGDP01276 1
173 | HGDP01044 1
174 | HGDP00641 1
175 | HGDP00820 2
176 | HGDP00058 1
177 | HGDP00428 1
178 | HGDP01277 1
179 | HGDP01047 2
180 | HGDP00821 1
181 | HGDP00642 1
182 | HGDP00060 2
183 | HGDP00433 1
184 | HGDP01279 2
185 | HGDP01053 1
186 | HGDP00822 1
187 | HGDP00643 1
188 | HGDP00062 1
189 | HGDP00438 2
190 | HGDP01280 1
191 | HGDP01055 1
192 | HGDP00644 2
193 | HGDP00828 2
194 | HGDP00064 2
195 | HGDP00444 1
196 | HGDP01282 1
197 | HGDP01056 1
198 | HGDP00645 1
199 | HGDP00832 1
200 | HGDP00066 1
201 | HGDP00445 2
202 | HGDP01283 1
203 | HGDP01057 1
204 | HGDP00646 1
205 | HGDP00843 1
206 | HGDP00068 1
207 | HGDP00449 1
208 | HGDP01285 1
209 | HGDP01058 2
210 | HGDP00647 1
211 | HGDP00846 1
212 | HGDP00070 1
213 | HGDP00450 1
214 | HGDP01286 1
215 | HGDP01059 2
216 | HGDP00648 1
217 | HGDP00849 2
218 | HGDP00452 2
219 | HGDP00072 1
220 | HGDP01287 1
221 | HGDP01060 1
222 | HGDP00650 1
223 | HGDP00852 2
224 | HGDP00453 2
225 | HGDP00074 2
226 | HGDP01288 1
227 | HGDP01062 1
228 | HGDP00651 1
229 | HGDP00854 1
230 | HGDP00454 1
231 | HGDP00076 1
232 | HGDP01289 1
233 | HGDP01063 2
234 | HGDP00653 2
235 | HGDP00455 2
236 | HGDP00855 1
237 | HGDP00078 1
238 | HGDP01290 1
239 | HGDP00654 2
240 | HGDP01064 2
241 | HGDP00457 2
242 | HGDP00856 1
243 | HGDP00080 2
244 | HGDP01291 1
245 | HGDP00655 2
246 | HGDP00458 1
247 | HGDP01065 1
248 | HGDP00857 1
249 | HGDP00082 1
250 | HGDP01292 1
251 | HGDP00656 1
252 | HGDP00459 2
253 | HGDP01066 1
254 | HGDP00086 1
255 | HGDP00858 2
256 | HGDP01293 2
257 | HGDP00460 1
258 | HGDP00661 1
259 | HGDP01067 1
260 | HGDP00088 2
261 | HGDP00859 1
262 | HGDP01294 1
263 | HGDP00461 1
264 | HGDP00662 1
265 | HGDP01068 1
266 | HGDP00090 1
267 | HGDP00860 1
268 | HGDP00462 1
269 | HGDP01295 2
270 | HGDP00663 1
271 | HGDP01069 1
272 | HGDP00092 2
273 | HGDP00861 1
274 | HGDP00463 1
275 | HGDP01296 1
276 | HGDP00664 2
277 | HGDP01070 1
278 | HGDP00094 1
279 | HGDP00862 1
280 | HGDP00464 1
281 | HGDP01297 1
282 | HGDP00666 2
283 | HGDP01071 2
284 | HGDP00096 1
285 | HGDP00863 1
286 | HGDP00466 1
287 | HGDP01298 1
288 | HGDP00667 1
289 | HGDP01072 2
290 | HGDP00098 1
291 | HGDP00864 1
292 | HGDP00467 1
293 | HGDP01299 1
294 | HGDP00668 2
295 | HGDP01073 2
296 | HGDP00099 1
297 | HGDP00469 1
298 | HGDP00865 2
299 | HGDP01300 2
300 | HGDP00669 1
301 | HGDP01074 1
302 | HGDP00868 1
303 | HGDP00100 1
304 | HGDP00470 1
305 | HGDP00670 2
306 | HGDP01301 1
307 | HGDP01075 1
308 | HGDP00869 1
309 | HGDP00102 1
310 | HGDP00471 1
311 | HGDP00671 1
312 | HGDP01302 1
313 | HGDP01076 1
314 | HGDP00870 1
315 | HGDP00472 1
316 | HGDP00103 1
317 | HGDP00672 2
318 | HGDP01303 2
319 | HGDP01077 2
320 | HGDP00871 1
321 | HGDP00473 1
322 | HGDP00104 1
323 | HGDP00673 1
324 | HGDP01304 1
325 | HGDP01078 2
326 | HGDP00872 1
327 | HGDP00474 1
328 | HGDP00105 1
329 | HGDP00674 1
330 | HGDP01305 2
331 | HGDP01079 1
332 | HGDP00475 2
333 | HGDP00873 1
334 | HGDP00106 1
335 | HGDP00675 1
336 | HGDP01306 1
337 | HGDP01081 1
338 | HGDP00476 1
339 | HGDP00875 1
340 | HGDP00108 2
341 | HGDP00676 2
342 | HGDP01307 1
343 | HGDP01086 2
344 | HGDP00478 1
345 | HGDP00876 1
346 | HGDP00109 1
347 | HGDP00677 1
348 | HGDP01308 1
349 | HGDP00479 1
350 | HGDP01090 1
351 | HGDP00877 2
352 | HGDP00110 1
353 | HGDP00678 2
354 | HGDP01309 1
355 | HGDP00491 2
356 | HGDP01094 1
357 | HGDP00879 2
358 | HGDP00115 1
359 | HGDP00679 1
360 | HGDP01310 1
361 | HGDP00511 1
362 | HGDP01095 1
363 | HGDP00880 1
364 | HGDP00118 1
365 | HGDP00680 2
366 | HGDP00512 2
367 | HGDP01311 2
368 | HGDP01096 1
369 | HGDP00120 1
370 | HGDP00881 1
371 | HGDP00682 1
372 | HGDP00513 1
373 | HGDP01312 1
374 | HGDP01098 1
375 | HGDP00121 1
376 | HGDP00882 1
377 | HGDP00683 1
378 | HGDP00514 1
379 | HGDP01313 2
380 | HGDP01099 1
381 | HGDP00122 1
382 | HGDP00883 1
383 | HGDP00684 1
384 | HGDP00515 1
385 | HGDP01314 1
386 | HGDP01100 1
387 | HGDP00124 1
388 | HGDP00685 1
389 | HGDP00884 2
390 | HGDP00516 1
391 | HGDP01317 1
392 | HGDP00125 1
393 | HGDP01101 1
394 | HGDP00686 1
395 | HGDP00885 1
396 | HGDP00517 2
397 | HGDP01318 1
398 | HGDP00127 1
399 | HGDP01102 2
400 | HGDP00687 1
401 | HGDP00886 2
402 | HGDP00518 1
403 | HGDP01319 1
404 | HGDP00129 2
405 | HGDP01103 1
406 | HGDP00688 2
407 | HGDP00887 1
408 | HGDP01320 2
409 | HGDP00519 1
410 | HGDP00130 1
411 | HGDP01104 1
412 | HGDP00689 2
413 | HGDP00888 1
414 | HGDP00520 1
415 | HGDP01321 1
416 | HGDP00131 2
417 | HGDP01149 1
418 | HGDP00690 1
419 | HGDP00889 1
420 | HGDP00521 1
421 | HGDP01322 1
422 | HGDP00133 1
423 | HGDP01151 1
424 | HGDP00691 1
425 | HGDP00890 1
426 | HGDP00522 1
427 | HGDP01323 1
428 | HGDP00134 1
429 | HGDP01152 2
430 | HGDP00692 1
431 | HGDP00891 1
432 | HGDP00523 1
433 | HGDP01326 1
434 | HGDP00135 1
435 | HGDP01153 2
436 | HGDP00693 2
437 | HGDP00524 1
438 | HGDP00892 1
439 | HGDP01327 2
440 | HGDP00136 1
441 | HGDP00694 2
442 | HGDP01155 1
443 | HGDP00525 1
444 | HGDP00893 1
445 | HGDP01328 2
446 | HGDP00137 1
447 | HGDP00696 1
448 | HGDP01156 2
449 | HGDP00526 2
450 | HGDP00894 1
451 | HGDP00139 1
452 | HGDP01329 1
453 | HGDP00697 1
454 | HGDP00527 2
455 | HGDP01157 1
456 | HGDP00895 1
457 | HGDP00140 1
458 | HGDP01330 1
459 | HGDP00698 1
460 | HGDP00528 1
461 | HGDP00896 1
462 | HGDP01161 1
463 | HGDP00141 1
464 | HGDP01331 1
465 | HGDP00699 1
466 | HGDP00529 1
467 | HGDP00897 1
468 | HGDP01162 2
469 | HGDP00143 1
470 | HGDP01332 1
471 | HGDP00700 1
472 | HGDP00530 2
473 | HGDP00898 1
474 | HGDP01163 1
475 | HGDP00144 1
476 | HGDP01333 1
477 | HGDP00701 1
478 | HGDP00531 1
479 | HGDP00899 1
480 | HGDP01164 1
481 | HGDP00145 1
482 | HGDP01334 2
483 | HGDP00533 1
484 | HGDP00703 1
485 | HGDP00900 1
486 | HGDP01166 1
487 | HGDP01335 1
488 | HGDP00146 1
489 | HGDP00534 2
490 | HGDP00704 2
491 | HGDP00901 1
492 | HGDP01167 2
493 | HGDP00148 1
494 | HGDP01336 2
495 | HGDP00535 1
496 | HGDP00706 1
497 | HGDP00902 1
498 | HGDP01168 1
499 | HGDP01337 1
500 | HGDP00149 2
501 | HGDP00536 1
502 | HGDP00710 1
503 | HGDP00903 1
504 | HGDP01169 1
505 | HGDP01338 1
506 | HGDP00150 2
507 | HGDP00537 2
508 | HGDP00711 1
509 | HGDP00904 1
510 | HGDP01171 2
511 | HGDP01339 1
512 | HGDP00151 2
513 | HGDP00538 1
514 | HGDP00712 1
515 | HGDP00905 1
516 | HGDP01340 1
517 | HGDP01172 1
518 | HGDP00153 1
519 | HGDP00539 1
520 | HGDP00713 1
521 | HGDP00906 1
522 | HGDP01341 1
523 | HGDP01173 1
524 | HGDP00154 1
525 | HGDP00540 2
526 | HGDP00714 1
527 | HGDP00907 1
528 | HGDP01342 2
529 | HGDP01174 1
530 | HGDP00155 1
531 | HGDP00541 1
532 | HGDP00715 1
533 | HGDP00908 2
534 | HGDP01345 2
535 | HGDP00157 1
536 | HGDP01177 1
537 | HGDP00542 1
538 | HGDP00716 2
539 | HGDP00909 1
540 | HGDP01346 1
541 | HGDP00158 2
542 | HGDP01179 1
543 | HGDP00543 2
544 | HGDP00717 1
545 | HGDP01347 1
546 | HGDP00910 1
547 | HGDP00160 1
548 | HGDP00544 2
549 | HGDP01180 1
550 | HGDP00719 1
551 | HGDP01348 2
552 | HGDP00161 1
553 | HGDP00911 2
554 | HGDP00545 1
555 | HGDP01181 2
556 | HGDP00721 1
557 | HGDP01349 1
558 | HGDP00912 2
559 | HGDP00163 2
560 | HGDP00546 1
561 | HGDP01182 1
562 | HGDP00722 1
563 | HGDP01350 1
564 | HGDP00165 1
565 | HGDP00547 1
566 | HGDP00913 1
567 | HGDP01183 1
568 | HGDP00723 1
569 | HGDP01351 2
570 | HGDP00167 1
571 | HGDP00914 2
572 | HGDP00548 1
573 | HGDP01184 2
574 | HGDP00724 1
575 | HGDP01352 1
576 | HGDP00169 1
577 | HGDP00549 1
578 | HGDP00915 1
579 | HGDP01185 1
580 | HGDP00725 1
581 | HGDP01353 1
582 | HGDP00173 2
583 | HGDP00550 1
584 | HGDP00917 1
585 | HGDP01186 1
586 | HGDP00726 2
587 | HGDP01354 1
588 | HGDP00175 2
589 | HGDP00551 1
590 | HGDP00918 1
591 | HGDP01187 2
592 | HGDP00727 1
593 | HGDP01355 1
594 | HGDP00177 1
595 | HGDP00552 1
596 | HGDP00920 1
597 | HGDP01188 2
598 | HGDP00729 1
599 | HGDP01356 1
600 | HGDP00179 1
601 | HGDP00553 1
602 | HGDP00924 2
603 | HGDP01189 1
604 | HGDP00730 1
605 | HGDP01357 2
606 | HGDP00554 2
607 | HGDP00181 2
608 | HGDP00925 2
609 | HGDP00731 1
610 | HGDP01190 1
611 | HGDP01358 1
612 | HGDP00555 2
613 | HGDP00183 2
614 | HGDP00926 1
615 | HGDP00732 2
616 | HGDP01191 1
617 | HGDP01359 1
618 | HGDP00556 1
619 | HGDP00927 1
620 | HGDP00185 1
621 | HGDP00733 1
622 | HGDP01192 1
623 | HGDP01360 1
624 | HGDP00557 1
625 | HGDP00928 1
626 | HGDP00187 1
627 | HGDP00734 2
628 | HGDP01193 1
629 | HGDP00558 1
630 | HGDP01361 2
631 | HGDP00929 2
632 | HGDP00189 2
633 | HGDP00735 2
634 | HGDP01194 2
635 | HGDP00559 1
636 | HGDP01362 2
637 | HGDP00191 1
638 | HGDP00930 1
639 | HGDP00736 1
640 | HGDP01195 1
641 | HGDP00560 1
642 | HGDP01363 1
643 | HGDP00192 2
644 | HGDP00931 2
645 | HGDP00737 1
646 | HGDP01196 1
647 | HGDP00561 1
648 | HGDP01364 1
649 | HGDP00195 1
650 | HGDP00932 1
651 | HGDP00738 1
652 | HGDP01197 1
653 | HGDP00562 1
654 | HGDP01365 1
655 | HGDP00197 1
656 | HGDP00933 1
657 | HGDP00739 1
658 | HGDP01198 1
659 | HGDP00563 2
660 | HGDP01366 1
661 | HGDP00199 1
662 | HGDP00934 1
663 | HGDP00740 2
664 | HGDP01199 1
665 | HGDP00564 1
666 | HGDP01367 1
667 | HGDP00201 1
668 | HGDP00935 1
669 | HGDP00741 2
670 | HGDP01200 1
671 | HGDP00565 2
672 | HGDP01368 1
673 | HGDP00205 1
674 | HGDP00936 1
675 | HGDP00744 1
676 | HGDP01201 2
677 | HGDP00566 2
678 | HGDP00206 1
679 | HGDP01369 1
680 | HGDP00937 1
681 | HGDP00745 1
682 | HGDP01202 1
683 | HGDP00567 2
684 | HGDP00208 2
685 | HGDP01370 2
686 | HGDP00938 2
687 | HGDP00746 1
688 | HGDP01203 2
689 | HGDP00210 1
690 | HGDP01372 1
691 | HGDP00568 2
692 | HGDP00939 1
693 | HGDP00747 1
694 | HGDP01204 1
695 | HGDP00213 1
696 | HGDP00569 1
697 | HGDP01373 1
698 | HGDP00940 1
699 | HGDP00748 1
700 | HGDP01205 1
701 | HGDP00214 1
702 | HGDP00571 1
703 | HGDP01374 1
704 | HGDP00941 1
705 | HGDP00749 1
706 | HGDP01206 1
707 | HGDP00216 2
708 | HGDP00572 1
709 | HGDP01375 1
710 | HGDP00942 2
711 | HGDP00750 1
712 | HGDP01207 1
713 | HGDP00218 1
714 | HGDP00573 1
715 | HGDP01376 1
716 | HGDP00943 2
717 | HGDP00751 1
718 | HGDP01208 1
719 | HGDP00574 1
720 | HGDP00222 1
721 | HGDP00944 1
722 | HGDP01377 1
723 | HGDP00752 1
724 | HGDP01209 2
725 | HGDP00575 2
726 | HGDP00224 1
727 | HGDP00945 1
728 | HGDP00753 1
729 | HGDP01378 1
730 | HGDP01211 1
731 | HGDP00576 1
732 | HGDP00226 1
733 | HGDP00946 1
734 | HGDP00754 1
735 | HGDP01379 1
736 | HGDP01212 1
737 | HGDP00577 1
738 | HGDP00228 1
739 | HGDP00947 2
740 | HGDP00755 2
741 | HGDP01380 1
742 | HGDP01213 1
743 | HGDP00578 1
744 | HGDP00230 1
745 | HGDP00948 1
746 | HGDP00756 1
747 | HGDP01382 1
748 | HGDP01214 2
749 | HGDP00579 2
750 | HGDP00232 2
751 | HGDP00949 1
752 | HGDP00757 1
753 | HGDP01383 1
754 | HGDP01215 1
755 | HGDP00580 1
756 | HGDP00234 1
757 | HGDP00950 1
758 | HGDP00758 2
759 | HGDP01384 1
760 | HGDP01216 1
761 | HGDP00581 2
762 | HGDP00237 1
763 | HGDP00951 2
764 | HGDP00759 1
765 | HGDP01385 1
766 | HGDP01217 2
767 | HGDP00582 1
768 | HGDP00239 1
769 | HGDP00952 2
770 | HGDP00760 2
771 | HGDP01386 2
772 | HGDP01218 1
773 | HGDP00583 1
774 | HGDP00241 1
775 | HGDP00953 1
776 | HGDP00761 1
777 | HGDP01387 2
778 | HGDP01220 2
779 | HGDP00584 1
780 | HGDP00243 1
781 | HGDP00954 1
782 | HGDP00762 2
783 | HGDP01388 2
784 | HGDP01221 2
785 | HGDP00244 1
786 | HGDP00586 2
787 | HGDP00955 1
788 | HGDP00764 2
789 | HGDP01396 2
790 | HGDP01222 1
791 | HGDP00247 1
792 | HGDP00587 1
793 | HGDP00956 2
794 | HGDP00765 1
795 | HGDP01397 1
796 | HGDP01223 1
797 | HGDP00248 1
798 | HGDP00588 1
799 | HGDP00957 1
800 | HGDP00766 1
801 | HGDP01398 2
802 | HGDP01224 2
803 | HGDP00251 1
804 | HGDP00590 2
805 | HGDP00958 1
806 | HGDP01399 1
807 | HGDP00767 1
808 | HGDP01225 1
809 | HGDP00254 1
810 | HGDP00591 2
811 | HGDP00959 1
812 | HGDP01400 1
813 | HGDP00769 1
814 | HGDP01227 2
815 | HGDP00258 1
816 | HGDP00594 2
817 | HGDP00960 1
818 | HGDP01401 1
819 | HGDP00771 1
820 | HGDP01228 2
821 | HGDP00259 1
822 | HGDP00595 1
823 | HGDP00961 2
824 | HGDP01402 2
825 | HGDP00772 1
826 | HGDP01229 1
827 | HGDP00262 1
828 | HGDP00597 1
829 | HGDP00962 2
830 | HGDP01403 1
831 | HGDP00773 2
832 | HGDP01230 1
833 | HGDP00264 1
834 | HGDP00598 1
835 | HGDP00963 1
836 | HGDP01404 1
837 | HGDP00774 1
838 | HGDP01231 2
839 | HGDP00274 2
840 | HGDP00599 1
841 | HGDP00964 2
842 | HGDP00775 1
843 | HGDP01405 1
844 | HGDP01232 1
845 | HGDP00277 2
846 | HGDP00600 1
847 | HGDP00965 1
848 | HGDP00776 1
849 | HGDP01406 1
850 | HGDP01233 1
851 | HGDP00279 1
852 | HGDP00601 1
853 | HGDP00966 1
854 | HGDP01408 1
855 | HGDP00777 1
856 | HGDP01234 1
857 | HGDP00281 1
858 | HGDP00602 1
859 | HGDP00967 1
860 | HGDP01411 1
861 | HGDP00778 2
862 | HGDP01236 2
863 | HGDP00285 1
864 | HGDP00604 1
865 | HGDP00968 1
866 | HGDP01412 2
867 | HGDP00779 1
868 | HGDP01237 1
869 | HGDP00286 1
870 | HGDP00606 1
871 | HGDP00969 2
872 | HGDP01414 1
873 | HGDP00780 1
874 | HGDP01238 2
875 | HGDP00288 1
876 | HGDP00607 2
877 | HGDP00970 1
878 | HGDP01415 1
879 | HGDP00781 1
880 | HGDP01239 1
881 | HGDP00290 1
882 | HGDP00608 1
883 | HGDP00971 1
884 | HGDP01416 1
885 | HGDP00782 1
886 | HGDP01240 1
887 | HGDP00298 1
888 | HGDP00609 1
889 | HGDP00973 2
890 | HGDP01417 1
891 | HGDP00783 1
892 | HGDP01241 1
893 | HGDP00302 1
894 | HGDP00974 2
895 | HGDP01418 1
896 | HGDP00784 2
897 | HGDP01242 1
898 | HGDP00304 1
899 | HGDP00975 2
900 | HGDP00785 1
901 | HGDP01419 2
902 | HGDP00307 1
903 | HGDP01243 1
904 | HGDP00976 1
905 | HGDP01244 2
906 | HGDP00977 1
907 | HGDP01245 2
908 | HGDP01246 1
909 |
--------------------------------------------------------------------------------
/images/.ipynb_checkpoints/hgdp_chr6.final.SNP2HLApy.imputed_allele_ids-checkpoint.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/.ipynb_checkpoints/hgdp_chr6.final.SNP2HLApy.imputed_allele_ids-checkpoint.png
--------------------------------------------------------------------------------
/images/.ipynb_checkpoints/hgdp_chr6.lmiss-checkpoint.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/.ipynb_checkpoints/hgdp_chr6.lmiss-checkpoint.png
--------------------------------------------------------------------------------
/images/.ipynb_checkpoints/tmpfile.hwe-checkpoint.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/.ipynb_checkpoints/tmpfile.hwe-checkpoint.png
--------------------------------------------------------------------------------
/images/.ipynb_checkpoints/tmpfile.hwe.freq-checkpoint.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/.ipynb_checkpoints/tmpfile.hwe.freq-checkpoint.png
--------------------------------------------------------------------------------
/images/SuppleFig2_MIS_usage.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/SuppleFig2_MIS_usage.png
--------------------------------------------------------------------------------
/images/SuppleFig4_imputation_runtime.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/SuppleFig4_imputation_runtime.png
--------------------------------------------------------------------------------
/images/for_web_Overview_v4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/for_web_Overview_v4.png
--------------------------------------------------------------------------------
/images/hgdp_all_chr6.hg19.ba.only.GSA.1stSNPQC.1stSampQC.lmiss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_all_chr6.hg19.ba.only.GSA.1stSNPQC.1stSampQC.lmiss.png
--------------------------------------------------------------------------------
/images/hgdp_all_chr6.hg19.ba.only.GSA.1stSNPQC.1stSampQC.miss.frq.diff.plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_all_chr6.hg19.ba.only.GSA.1stSNPQC.1stSampQC.miss.frq.diff.plot.png
--------------------------------------------------------------------------------
/images/hgdp_all_chr6.hg19.ba.only.GSA.dedup.ambstrandrem.1stSNPQC.imiss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_all_chr6.hg19.ba.only.GSA.dedup.ambstrandrem.1stSNPQC.imiss.png
--------------------------------------------------------------------------------
/images/hgdp_all_chr6.hg19.ba.only.GSA.dedup.ambstrandrem.1stSNPQC.mind.het.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_all_chr6.hg19.ba.only.GSA.dedup.ambstrandrem.1stSNPQC.mind.het.png
--------------------------------------------------------------------------------
/images/hgdp_chr6.dedup.ambstrandrem.1stSNPQC.mind.het.genome.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_chr6.dedup.ambstrandrem.1stSNPQC.mind.het.genome.png
--------------------------------------------------------------------------------
/images/hgdp_chr6.final.SNP2HLApy.imputed.raw.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_chr6.final.SNP2HLApy.imputed.raw.png
--------------------------------------------------------------------------------
/images/hgdp_chr6.final.SNP2HLApy.imputed_allele_ids.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_chr6.final.SNP2HLApy.imputed_allele_ids.png
--------------------------------------------------------------------------------
/images/hgdp_chr6.final.bim.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_chr6.final.bim.png
--------------------------------------------------------------------------------
/images/hgdp_chr6.imiss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_chr6.imiss.png
--------------------------------------------------------------------------------
/images/hgdp_chr6.lmiss.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_chr6.lmiss.png
--------------------------------------------------------------------------------
/images/hgdp_dedup_bim_palindromic.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/hgdp_dedup_bim_palindromic.png
--------------------------------------------------------------------------------
/images/plink.sexcheck.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/plink.sexcheck.png
--------------------------------------------------------------------------------
/images/tmpfile.chr_pos_allele_freq.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/tmpfile.chr_pos_allele_freq.png
--------------------------------------------------------------------------------
/images/tmpfile.hwe.freq.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/tmpfile.hwe.freq.png
--------------------------------------------------------------------------------
/images/tmpfile.hwe.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/tmpfile.hwe.png
--------------------------------------------------------------------------------
/images/tmpfile.plot.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/images/tmpfile.plot.png
--------------------------------------------------------------------------------
/script_assoc/convert_vcf_allele.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | import gzip
3 | import sys
4 |
5 | INPUTVCF = sys.argv[1]
6 | CONVERTER = sys.argv[2]
7 | OUTINFOMATRIX =sys.argv[3]
8 | OUT = open(OUTINFOMATRIX, "w")
9 | out = "\t".join(["SNP","CHRPOS","REF","ALT","R2","AF"])
10 | print(out, file = OUT)
11 |
12 | variant_dic = {}
13 | with open(CONVERTER, "r") as f:
14 | for line in f:
15 | line = line.rstrip().split()
16 | POS = line[0]
17 | SNP = line[1]
18 | A1 = line[2]
19 | A2 = line[3]
20 | variant_dic.setdefault(":".join(["6",POS]), []).append([SNP,A1,A2])
21 |
22 | with gzip.open(INPUTVCF, "rt", "utf_8") as f:
23 | for line in f:
24 | line = line.rstrip()
25 | if line.find("#") > -1:
26 | print(line)
27 | else:
28 | line = line.split("\t")
29 | variant =line[2]
30 | info = line[7].split(";")
31 | ref = line[3]
32 | alt = line[4]
33 | converted = "NA"
34 | for cand in variant_dic[variant]:
35 | if (ref == cand[1] and alt == cand[2]) or (ref == cand[2] and alt == cand[1]):
36 | converted = cand[0]
37 | out = "\t".join([line[0],line[1],converted]) + "\t" + "\t".join(line[3:])
38 | print(out)
39 | info = line[7].split(";")
40 | for i in range(len(info)):
41 | if info[i].find("R2") == 0:
42 | R2 = info[i].split("=")[1]
43 | elif info[i].find("AF") == 0:
44 | AF = info[i].split("=")[1]
45 | out = "\t".join([converted,variant,ref,alt,R2,AF])
46 | print(out, file = OUT)
47 | OUT.close()
48 |
49 |
--------------------------------------------------------------------------------
/script_assoc/run_omnibus_AAtest.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | import sys
3 | import argparse
4 | import os
5 |
6 | # parse arguments
7 | parser = argparse.ArgumentParser()
8 | parser.add_argument('--aaraw', '-a', default=None, type=str,
9 | help='Name of the amino acid dosage *.raw file',
10 | required=True)
11 | parser.add_argument('--out', '-o', default=None, type=str,
12 | help='Prefix of the output file',
13 | required=True)
14 | parser.add_argument('--allele', '-l', default=None, type=str,
15 | help='Name of the amino acid allele name file',
16 | required=True)
17 | parser.add_argument('--pheno', '-p', default=None, type=str,
18 | help='Name of the phenotype file',
19 | required=True)
20 | parser.add_argument('--cov', '-c', default=None, type=str,
21 | help='Name of the covariate file',
22 | required=True)
23 | parser.add_argument('--phenoname', '-n', default=None, type=str,
24 | help='Name of the phenotype (2nd column of the phenotype file)',
25 | required=True)
26 |
27 | parser.add_argument('--covname', '-m', default=None, nargs='+',
28 | help='Name of the covariates',
29 | required=True)
30 |
31 | args = parser.parse_args()
32 |
33 | cmd = 'echo "library(data.table)" > ' + args.out + "_runcode.R"
34 | os.system(cmd)
35 | cmd = 'echo \'dose<-fread("' + args.aaraw + '", header=T)\' >> ' + args.out + "_runcode.R"
36 | os.system(cmd)
37 | cmd = 'echo \'dose<-dose[,c(-1,-3:-6)]\' >> ' + args.out + "_runcode.R"
38 | os.system(cmd)
39 | cmd = 'echo \'allelenames<-as.character(read.table("' + args.allele + '")$V1)\' >> ' + args.out + "_runcode.R"
40 | os.system(cmd)
41 | cmd = 'echo \'colnames(dose)<-c("IID",allelenames)\' >> ' + args.out + "_runcode.R"
42 | os.system(cmd)
43 | cmd = 'echo \'pheno <- read.table("' + args.pheno + '", header=T)\' >> ' + args.out + "_runcode.R"
44 | os.system(cmd)
45 | cmd = 'echo \'if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1}\' >> ' + args.out + "_runcode.R"
46 | os.system(cmd)
47 | cmd = 'echo \'cov <- read.table("' + args.cov + '", header=T)\' >> ' + args.out + "_runcode.R"
48 | os.system(cmd)
49 | cmd = 'echo \'d <- merge(dose, pheno, by = "IID")\' >> ' + args.out + "_runcode.R"
50 | os.system(cmd)
51 | cmd = 'echo \'d <- merge(d, cov, by = "IID")\' >> ' + args.out + "_runcode.R"
52 | os.system(cmd)
53 |
54 |
55 | OUT = open(args.out + "_runcode.R", "a")
56 | OUT2 = open(args.out + "_alleles.txt", "w")
57 |
58 | print('pval_list<-NULL', file = OUT)
59 | print('deviance_list<-NULL', file = OUT)
60 |
61 | AA_allele_dic = {}
62 |
63 | with open(args.allele, "r") as f:
64 | for line in f:
65 | line = line.rstrip()
66 | if line.count("_") == 5:
67 | AA = "_".join(line.split("_")[:5])
68 | this_allele = line
69 | AA_allele_dic.setdefault(AA,[]).append(this_allele)
70 | else:
71 | AA = line
72 | this_allele = line
73 | AA_allele_dic.setdefault(AA,[]).append(this_allele)
74 |
75 |
76 | for AA in AA_allele_dic:
77 | num_allele = len(AA_allele_dic[AA])
78 | print('obj1<-glm(' + args.phenoname + '~' + '+'.join(args.covname) + ', data=d,family=binomial)' ,file = OUT)
79 | alleles = '+'.join(AA_allele_dic[AA])
80 | out = 'obj2<-glm(' + args.phenoname + '~' + alleles + '+' + '+'.join(args.covname) + ',data=d,family=binomial(link="logit"))'
81 | print(out, file = OUT)
82 | print('Chisqtest <- anova(obj1, obj2, test="Chisq")', file = OUT)
83 | print('pval <- Chisqtest$`Pr(>Chi)`[2]', file = OUT)
84 | print('deviance <- Chisqtest$Deviance[2]', file = OUT)
85 | print('pval_list <- c(pval_list,pval)', file = OUT)
86 | print('deviance_list <- c(deviance_list,deviance)', file = OUT)
87 | print(AA, file = OUT2)
88 |
89 | OUT.close()
90 | OUT2.close()
91 |
92 | cmd = 'echo \'alleles <- as.character(read.table("' + args.out + '_alleles.txt")$V1)\' >> ' + args.out + "_runcode.R"
93 | os.system(cmd)
94 | cmd = 'echo \'summary <- data.frame(ALLELE_NAME = alleles, OMNIBUS_DEVIANCE = deviance_list, OMNIBUS_PVALUE = pval_list)\' >> ' + args.out + "_runcode.R"
95 | os.system(cmd)
96 | cmd = 'echo \'outfile <- "' + args.out + '_omnibus_result.txt"\' >> ' + args.out + "_runcode.R"
97 | os.system(cmd)
98 | cmd = 'echo \'write.table(summary, outfile, sep="\t", quote=F, row.names=F)\' >> ' + args.out + "_runcode.R"
99 | os.system(cmd)
100 |
101 | cmd = 'Rscript ' + args.out + "_runcode.R > " + args.out + ".log"
102 | os.system(cmd)
103 |
104 |
105 |
--------------------------------------------------------------------------------
/scripts/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/scripts/.DS_Store
--------------------------------------------------------------------------------
/scripts/SNP2HLA.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 |
3 | import os, sys, re
4 | import argparse, textwrap
5 | from platform import platform
6 |
7 |
8 |
9 | ########## < Core Global Variables > ##########
10 |
11 | std_MAIN_PROCESS_NAME = "\n[%s]: " % (os.path.basename(__file__))
12 | std_ERROR_MAIN_PROCESS_NAME = "\n[%s::ERROR]: " % (os.path.basename(__file__))
13 | std_WARNING_MAIN_PROCESS_NAME = "\n[%s::WARNING]: " % (os.path.basename(__file__))
14 |
15 |
16 |
17 | def SNP2HLA(_input, _reference_panel, _out,
18 | _mem = "2000m", _marker_window_size=1000, _tolerated_diff=.15,
19 | _beagle_NTHREADS=1, _beagle_ITER=5, _beagle_MAP=None,
20 | _dependency="./"):
21 |
22 |
23 |
24 | ### Optional Arguments check.
25 |
26 | if not os.path.exists(_dependency):
27 | print(std_ERROR_MAIN_PROCESS_NAME + "The path(folder) of depedency('{}') doesn't exist. Please check it again.".format(_dependency))
28 | sys.exit()
29 |
30 | p_Mb = re.compile(r'\d+m')
31 | p_Gb = re.compile(r'\d+[gG]')
32 |
33 | if p_Mb.match(_mem):
34 | pass # No problem.
35 | elif p_Gb.match(_mem):
36 | _mem = re.sub(r'[gG]', '000m', _mem)
37 | else:
38 | print(std_ERROR_MAIN_PROCESS_NAME + "Given Java memory value('{}') has bizzare representation. Please check it again.".format(_mem))
39 | sys.exit()
40 |
41 |
42 |
43 | ### Check dependencies.
44 |
45 | _plink = os.path.join(_dependency, "plink_mac" if not bool(re.search(pattern="Linux", string=platform())) else "plink") #plink v1.9
46 | _beagle = os.path.join(_dependency, "beagle.jar") # Beagle(v4.1)
47 | #_linkage2beagle = os.path.join(_dependency, "linkage2beagle.jar")
48 | #_beagle2linkage = os.path.join(_dependency, "beagle2linkage.jar")
49 | _vcf2gprobs = os.path.join(_dependency, "vcf2gprobs.jar")
50 | _merge_table = os.path.join("src/merge_tables.pl")
51 | _parse_dosage = os.path.join("src/ParseDosage.csh")
52 |
53 |
54 | if not os.path.exists(_plink):
55 | print(std_ERROR_MAIN_PROCESS_NAME + "Please prepare PLINK(v1.90) in 'dependency/' folder.")
56 | sys.exit()
57 | if not os.path.exists(_beagle):
58 | print(std_ERROR_MAIN_PROCESS_NAME + "Please prepare Beagle(v4.1) in 'dependency/' folder.")
59 | sys.exit()
60 | #if not os.path.exists(_linkage2beagle):
61 | # print(std_ERROR_MAIN_PROCESS_NAME + "Please prepare 'linkage2beagle.jar' in 'dependency/' folder.")
62 | # sys.exit()
63 | #if not os.path.exists(_beagle2linkage):
64 | # print(std_ERROR_MAIN_PROCESS_NAME + "Please prepare 'beagle2linkage.jar' in 'dependency/' folder.")
65 | # sys.exit()
66 | if not os.path.exists(_merge_table):
67 | print(std_ERROR_MAIN_PROCESS_NAME + "Please prepare 'merge_tables.pl' in 'src/' folder.")
68 | sys.exit()
69 | if not os.path.exists(_parse_dosage):
70 | print(std_ERROR_MAIN_PROCESS_NAME + "Please prepare 'ParseDosage.csh' in 'src/' folder.")
71 | sys.exit()
72 |
73 |
74 |
75 | ### Intermediate path.
76 |
77 | OUTPUT = _out if not _out.endswith('/') else _out.rstrip('/')
78 | if bool(os.path.dirname(OUTPUT)):
79 | INTERMEDIATE_PATH = os.path.dirname(OUTPUT)
80 | os.makedirs(INTERMEDIATE_PATH, exist_ok=True)
81 | else:
82 | # If `os.path.dirname(OUTPUT)` doesn't exist, then it means the output of MakeReference should be genrated in current directory.
83 | INTERMEDIATE_PATH = "./"
84 |
85 |
86 | JAVATMP = _out+".javatmpdir"
87 | os.system("mkdir -p " + JAVATMP)
88 |
89 |
90 |
91 | ### Setting commands
92 |
93 | PLINK = ' '.join([_plink, "--silent", "--allow-no-sex"]) # "--noweb" won't be included because it is Plink1.9
94 | BEAGLE = ' '.join(["java", "-Djava.io.tmpdir="+JAVATMP, "-Xmx"+_mem, "-jar", _beagle])
95 | #LINKAGE2BEAGLE = ' '.join(["java", "-Djava.io.tmpdir="+JAVATMP, "-Xss5M -Xmx"+_mem, "-jar", _linkage2beagle])
96 | #BEAGLE2LINKAGE = ' '.join(["java", "-Djava.io.tmpdir="+JAVATMP, "-Xmx"+_mem, "-jar", _beagle2linkage])
97 |
98 | # MERGE = ' '.join(["perl", _merge_table])
99 | MERGE = _merge_table
100 | PARSEDOSAGE = _parse_dosage
101 |
102 |
103 |
104 | ### Control Flags
105 | EXTRACT_MHC = 1
106 | FLIP = 1
107 | IMPUTE = 1
108 |
109 |
110 | print("SNP2HLA: Performing HLA imputation for dataset {}".format(_input))
111 | print("- Java memory = {}(Mb)".format(_mem))
112 | print("- Beagle(v4.1) window size = \"{}\" markers".format(_marker_window_size))
113 |
114 |
115 | index= 1
116 | __MHC__ = _out+".MHC"
117 |
118 |
119 | if EXTRACT_MHC:
120 |
121 | print("[{}] Extracting SNPs from the MHC.".format(index)); index += 1
122 | #MAF >1% as imputation threshold
123 | command = ' '.join([PLINK, "--bfile", _input, "--chr 6", "--from-mb 28 --to-mb 34", "--maf 0.01", "--make-bed", "--out", __MHC__])
124 | print(command)
125 | os.system(command)
126 |
127 |
128 | if FLIP:
129 |
130 | print("[{}] Performing SNP quality control.".format(index)); index += 1
131 |
132 | ### Identifying non-A/T non-C/G SNPs to flip
133 | command = ' '.join(["echo", "SNP POS A1 A2", ">", OUTPUT+".tmp1"])
134 | print(command)
135 | os.system(command)
136 | command = ' '.join(["cut", "-f2,4-", __MHC__+".bim", ">>", OUTPUT+".tmp1"])
137 | print(command)
138 | os.system(command)
139 |
140 | command = ' '.join(["echo", "SNP POSR A1R A2R", ">", OUTPUT+".tmp2"])
141 | print(command)
142 | os.system(command)
143 | command = ' '.join(["cut", "-f2,4-", _reference_panel+".bim", ">>", OUTPUT+".tmp2"])
144 | print(command)
145 | os.system(command)
146 |
147 | command = ' '.join([MERGE, OUTPUT+".tmp2", OUTPUT+".tmp1", "SNP", "|", "grep -v -w NA", ">", OUTPUT+".SNPS.alleles"])
148 | print(command)
149 | os.system(command)
150 |
151 |
152 |
153 | ### < Major flip 1 > ###
154 |
155 | command = ' '.join(["awk", "'{if ($3 != $6 && $3 != $7){print $1}}'", OUTPUT+".SNPS.alleles", ">", OUTPUT+".SNPS.toflip1"])
156 | print(command)
157 | os.system(command)
158 |
159 | command = ' '.join([PLINK, "--bfile", __MHC__, "--flip", OUTPUT+".SNPS.toflip1", "--make-bed", "--out", __MHC__+".FLP"])
160 | print(command)
161 | os.system(command)
162 |
163 | ## Calculating allele freqeuncy
164 | command = ' '.join([PLINK, "--bfile", __MHC__+".FLP", "--freq", "--out", __MHC__+".FLP.FRQ"])
165 | print(command)
166 | os.system(command)
167 |
168 |
169 | command = ' '.join(["sed 's/A1/A1I/g'", __MHC__+".FLP.FRQ.frq", "|", "sed 's/A2/A2I/g'", "|", "sed 's/MAF/MAF_I/g'", ">", OUTPUT+".tmp"])
170 | print(command)
171 | os.system(command)
172 |
173 |
174 |
175 | command = ' '.join(["mv", OUTPUT+".tmp", __MHC__+".FLP.FRQ"])
176 | print(command)
177 | os.system(command)
178 |
179 | command = ' '.join([MERGE, _reference_panel+".FRQ.frq", __MHC__+".FLP.FRQ.frq", "SNP", "|", "grep -v -w NA", ">", OUTPUT+".SNPS.frq"])
180 | print(command)
181 | os.system(command)
182 |
183 |
184 |
185 |
186 | ### < Major flip 2 > ### (*.parsed file)
187 | command = ' '.join(["sed 's/ /\t/g'", OUTPUT+".SNPS.frq", "|",
188 | 'awk \'{if ($3 != $8){print $2 "\t" $3 "\t" $4 "\t" $5 "\t" $9 "\t" $8 "\t" 1-$10 "\t*"}else{print $2 "\t" $3 "\t" $4 "\t" $5 "\t" $8 "\t" $9 "\t" $10 "\t."}}\'',
189 | ">", OUTPUT+".SNPS.frq.parsed"])
190 | print(command)
191 | os.system(command)
192 |
193 |
194 |
195 | ### < Major flip 3 > ###
196 | # Finding A/T and C/G SNPs
197 | command = ' '.join(['awk \'{if (($2 == "A" && $3 == "T") || ($2 == "T" && $3 == "A") || ($2 == "C" && $3 == "G") || ($2 == "G" && $3 == "C")){if ($4 > $7){diff=$4 - $7; if ($4 > 1-$7){corrected=$4-(1-$7)}else{corrected=(1-$7)-$4}}else{diff=$7-$4;if($7 > (1-$4)){corrected=$7-(1-$4)}else{corrected=(1-$4)-$7}};print $1 "\t" $2 "\t" $3 "\t" $4 "\t" $5 "\t" $6 "\t" $7 "\t" $8 "\t" diff "\t" corrected}}\'',
198 | OUTPUT+".SNPS.frq.parsed", ">", OUTPUT+".SNPS.ATCG.frq"])
199 | print(command)
200 | os.system(command)
201 |
202 |
203 |
204 | ### < Major flip 4 > ###
205 |
206 | # Identifying A/T and C/G SNPs to flip or remove
207 | command = ' '.join(["awk '{if ($10 < $9 && $10 < ", str(_tolerated_diff) ,"){print $1}}'", OUTPUT+".SNPS.ATCG.frq", ">", OUTPUT+".SNPS.toflip2"]) # modified by Saori
208 | print(command)
209 | os.system(command)
210 |
211 | command = ' '.join(["awk '{if ($4 > 0.5){print $1}}'", OUTPUT+".SNPS.ATCG.frq", ">", OUTPUT+".SNPS.toremove"]) # increased from 0.4 by Saori
212 | print(command)
213 | os.system(command)
214 |
215 |
216 | ## Identifying non A/T and non C/G SNPs to remove
217 | command = ' '.join(['awk \'{if (!(($2 == "A" && $3 == "T") || ($2 == "T" && $3 == "A") || ($2 == "C" && $3 == "G") || ($2 == "G" && $3 == "C"))){if ($4 > $7){diff=$4 - $7;}else{diff=$7-$4}; if (diff > \'%f\'){print $1}}}\''%(_tolerated_diff),
218 | OUTPUT+".SNPS.frq.parsed", ">>", OUTPUT+".SNPS.toremove"])
219 | print(command)
220 | os.system(command)
221 |
222 |
223 | command = ' '.join(['awk \'{if (($2 != "A" && $2 != "C" && $2 != "G" && $2 != "T") || ($3 != "A" && $3 != "C" && $3 != "G" && $3 != "T")){print $1}}\'',
224 | OUTPUT+".SNPS.frq.parsed", ">>", OUTPUT+".SNPS.toremove"])
225 | print(command)
226 | os.system(command)
227 |
228 | command = ' '.join(['awk \'{if (($2 == $5 && $3 != $6) || ($3 == $6 && $2 != $5)){print $1}}\'',
229 | OUTPUT+".SNPS.frq.parsed", ">>", OUTPUT+".SNPS.toremove"])
230 | print(command)
231 | os.system(command)
232 |
233 | command = ' '.join(["sort", OUTPUT+".SNPS.toremove", "|","uniq > temp" ])
234 | print(command)
235 | os.system(command)
236 |
237 | command = ' '.join(['mv temp',OUTPUT+".SNPS.toremove" ] )
238 | print(command)
239 | os.system(command)
240 |
241 | ## Making QCd SNP file
242 | command = ' '.join([PLINK, "--bfile", __MHC__+".FLP", "--geno 0.2", "--exclude", OUTPUT+".SNPS.toremove", "--flip", OUTPUT+".SNPS.toflip2", "--make-bed", "--out", __MHC__+".QC"])
243 | print(command)
244 | os.system(command)
245 |
246 | command = ' '.join([PLINK, "--bfile", __MHC__+".QC", "--freq", "--out", __MHC__+".QC.FRQ"])
247 | print(command)
248 | os.system(command)
249 |
250 | command = ' '.join(["sed 's/A1/A1I/g'", __MHC__+".QC.FRQ.frq", "|", "sed 's/A2/A2I/g'", "|", "sed 's/MAF/MAF_I/g'", ">", OUTPUT+".tmp"])
251 | print(command)
252 | os.system(command)
253 |
254 | command = ' '.join(["mv", OUTPUT+".tmp", __MHC__+".QC.FRQ.frq"])
255 | print(command)
256 | os.system(command)
257 |
258 | command = ' '.join([MERGE, _reference_panel+".FRQ.frq", __MHC__+".QC.FRQ.frq", "SNP", "|", "grep -v -w NA", ">", OUTPUT+".SNPS.QC.frq"])
259 | print(command)
260 | os.system(command)
261 |
262 |
263 | command = ' '.join(["cut -f2", OUTPUT+".SNPS.QC.frq", "|", "awk '{if (NR > 1){print $1}}'", ">", OUTPUT+".SNPS.toinclude"])
264 | print(command)
265 | os.system(command)
266 |
267 | command = ' '.join(['echo "SNP POS A1 A2"', ">", OUTPUT+".tmp1"])
268 | print(command)
269 | os.system(command)
270 |
271 | command = ' '.join(["cut -f2,4-", __MHC__+".QC.bim", ">>", OUTPUT+".tmp1"])
272 | print(command)
273 | os.system(command)
274 |
275 | command = ' '.join([MERGE, OUTPUT+".tmp2", OUTPUT+".tmp1", "SNP", "|", 'awk \'{if (NR > 1){if ($5 != "NA"){pos=$5}else{pos=$2}; print "6\t" $1 "\t0\t" pos "\t" $3 "\t" $4}}\'',
276 | ">", __MHC__+".QC.bim"])
277 | print(command)
278 | os.system(command)
279 |
280 |
281 |
282 | ### < Making *.vcf file for imputation (Beagle v4.x.x.) > ###
283 |
284 | """
285 | # Extracting SNPs and recoding QC'd file as vcf
286 | plink --bfile $MHC.QC --extract $OUTPUT.SNPS.toinclude --make-bed --out $MHC.QC.reorder
287 | plink --bfile $MHC.QC.reorder --recode vcf-iid --a1-allele $REFERENCE.markers 4 1 --out $MHC.QC
288 |
289 | """
290 |
291 | # Extracting SNPs and recoding QC'd file as vcf
292 | command = ' '.join([PLINK, "--bfile", __MHC__+".QC", "--extract", OUTPUT+".SNPS.toinclude", "--make-bed --out", __MHC__+".QC.reorder" ])
293 | print(command)
294 | os.system(command)
295 |
296 | command = ' '.join([PLINK, "--bfile", __MHC__+".QC.reorder", "--recode vcf-iid --a1-allele", _reference_panel+".markers 4 1", "--out", __MHC__+".QC" ])
297 | print(command)
298 | os.system(command)
299 |
300 |
301 | # Just in case of storage problem.
302 | command = ' '.join(["gzip -f", __MHC__+".QC.vcf"])
303 | print(command)
304 | os.system(command)
305 |
306 |
307 |
308 | ## Remove temporary files.
309 | os.system(' '.join(["rm ", OUTPUT+".tmp{1,2}"]))
310 | os.system(' '.join(["rm ", __MHC__+".FLP.*"]))
311 | os.system(' '.join(["rm ", __MHC__+".QC.{ped,map}"]))
312 | os.system(' '.join(["rm ", OUTPUT+".SNPS.*"]))
313 |
314 | # Beagle v4.x.x.
315 | os.system(' '.join(["rm ", __MHC__+".{bed,bim,fam,log}"]))
316 | os.system(' '.join(["rm ", __MHC__+".QC.reorder.*"]))
317 | os.system(' '.join(["rm ", __MHC__+".QC.{bed,bim,fam,log}"]))
318 | os.system(' '.join(["rm ", __MHC__+".QC.FRQ.{frq,log}"]))
319 |
320 |
321 |
322 |
323 | if IMPUTE:
324 |
325 | """
326 | if ($#argv >= 8) then
327 | beagle ref=$REFERENCE.bgl.vcf.gz gt=$MHC.QC.vcf impute=true gprobs=true nthreads=$THREAD chrom=6 niterations=$ITER lowmem=true out=$OUTPUT.bgl map=$MAP
328 | else
329 | beagle ref=$REFERENCE.bgl.vcf.gz gt=$MHC.QC.vcf impute=true gprobs=true nthreads=$THREAD chrom=6 niterations=$ITER lowmem=true out=$OUTPUT.bgl
330 | """
331 |
332 | print("[{}] Performing HLA imputation.".format(index)); index += 1
333 |
334 | ## new beagle (>v4), assuming 4 threads and 10 interations
335 | command=' '.join([BEAGLE,
336 | "gt=" + __MHC__+".QC.vcf.gz",
337 | 'ref='+_reference_panel+".bgl.phased.vcf.gz",
338 | 'impute=true',
339 | 'gprobs=true',
340 | 'nthreads={}'.format(_beagle_NTHREADS),
341 | 'chrom=6',
342 | 'niterations={}'.format(_beagle_ITER),
343 | 'lowmem=true',
344 | ('map={}'.format(_beagle_MAP) if bool(_beagle_MAP) else ''),
345 | 'out='+ OUTPUT+".bgl.phased"])
346 |
347 | print(command)
348 | os.system(command)
349 |
350 | __IMPUTED__ = OUTPUT+".bgl.phased.vcf.gz"
351 |
352 |
353 |
354 | """
355 | (1) Imputation result in *.vcf.gz file
356 | (2) Imputation result in *.{bed,bim,fam} files (*.vcf.gz => *.{bed,bim,fam})
357 | (2) Dosage file (*.gprobs => *.dosage)
358 | """
359 |
360 |
361 | # (2) Imputation result in *.{bed,bim,fam} files (*.vcf.gz => *.{bed,bim,fam})
362 | command = ' '.join([PLINK, "--make-bed", "--vcf", __IMPUTED__, "--a1-allele {} 4 1".format(_reference_panel+".markers"), "--out", OUTPUT])
363 | #print(command)
364 | #os.system(command)
365 |
366 |
367 | # (3) Dosage file
368 | command = ' '.join(["gunzip -c", __IMPUTED__, "|", "cat", "|", "java -jar {} > {}".format(_vcf2gprobs, OUTPUT+".bgl.gprobs")])
369 | #print(command)
370 | #os.system(command)
371 |
372 | __gprobs__ = OUTPUT+".bgl.gprobs"
373 |
374 |
375 | command = ' '.join(["tail -n +2 {}".format(__gprobs__), "|",
376 | PARSEDOSAGE, "- > {}".format(OUTPUT+".dosage")])
377 | #print(command)
378 | #os.system(command)
379 |
380 |
381 |
382 | os.system(' '.join(["rm ", __MHC__+".QC.vcf.gz"]))
383 | os.system(' '.join(["rm -rf", JAVATMP]))
384 |
385 |
386 |
387 |
388 | print("Done\n")
389 |
390 | return 0
391 |
392 |
393 |
394 | if __name__ == "__main__" :
395 |
396 | parser = argparse.ArgumentParser(formatter_class=argparse.RawTextHelpFormatter,
397 | description=textwrap.dedent('''\
398 | #################################################################################################
399 |
400 | < SNP2HLA.py >
401 |
402 | SNP2HLA: Imputation of HLA amino acids and classical alleles from SNP genotypes
403 |
404 | Author: Sherman Jia (xiaomingjia@gmail.com)
405 | + Small modifications by Buhm Han (buhmhan@broadinstitute.org): 8/7/12
406 | + Extensive modifications by Phil Stuart (pstuart@umich.edu) on 4/19/16 to allow use of Beagle 4.1:
407 | verified to work with 22Feb16, 15Apr16, and 03May16 versions of Beagle.
408 | + Small modifications by Yang Luo (yangluo@broadinstitute.org): 09/30/16: verfiied working with Bealge 4.1 27Jun16.
409 | + Recoded to Python and updated by Wanson Choi(wschoi.bhlab@gmail.com) : 2019/02/06
410 |
411 |
412 | DESCRIPTION: This script runs imputation of HLA amino acids and classical alleles using SNP data.
413 |
414 | INPUTS:
415 | 1. Plink dataset (*.bed/bim/fam)
416 | 2. Reference dataset (*.bgl.phased.vcf.gz(Beagle 4.1), *.markers(Beagle 3.0.4); *.fam/.bim/.FRQ.frq in PLINK format)
417 |
418 | DEPENDENCIES: (download and place in the same folder as this script)
419 | 1. PLINK (1.9) (Will not work with older Plink 1.07)
420 | 2. Beagle (4.1) (Need to rename java executable as beagle.jar)
421 | 3. vcf2gprobs.jar (Beagle utility for generating a Beagle v3 genotypes probability file from a Beagle 4.1 vcf file with GT field data)
422 | 4. [Optional] If genetic_map_file argument is specified, PLINK format genetic map on cM scale
423 | (plink.chr6.GRCh36.map, downloaded from http://bochet.gcc.biostat.washington.edu/beagle/genetic_maps/)
424 |
425 | USAGE:
426 | python3 SNP2HLA.py
427 | --input `DATA (.bed/.bim/.fam)`
428 | --reference `REFERENCE (.bgl.phased.vcf.gz/.markers/.fam/.bim/.bed/.FRQ.frq)`
429 | --out `OUTPUT`
430 |
431 | (ex1)
432 | python3 SNP2HLA.py
433 | --input data/1958BC
434 | --reference data/Reference_Panel_bglv4/HM_CEU_REF.hg18.imgt3320.bglv4
435 | --out TEST_ex1_SNP2HLA
436 |
437 | (ex2)
438 | python3 SNP2HLA.py
439 | --input data/1958BC
440 | --reference data/Reference_Panel_bglv4/HM_CEU_REF.hg18.imgt3320.bglv4
441 | --out TEST_ex2_SNP2HLA
442 | --dependency dependency/
443 | --java-mem 10G
444 | --nthreads 4
445 | --iter 10
446 |
447 | #################################################################################################
448 | '''),
449 | add_help=False)
450 |
451 |
452 | parser._optionals.title = "OPTIONS"
453 |
454 | parser.add_argument("-h", "--help", help="\nShow this help message and exit\n\n", action='help')
455 |
456 | parser.add_argument("--input", "-i", help="\nInput Plink data file prefix(.bed/.bim/.fam)\n\n", required=True)
457 | parser.add_argument("--out", "-o", help="\nOutput file prefix\n\n", required=True)
458 | parser.add_argument("--reference", "-rf", help="\nThe file prefix of reference panel for imputation.\n\n", required=True)
459 |
460 | parser.add_argument("--tolerated-diff", help="\nTolerated diff (default : 0.15).\n\n", default=0.15)
461 | parser.add_argument("--dependency", help="\nPath(folder) to dependecy software.\n\n", default="./") # Default : the folder where SNP2HLA.py is implemented.
462 |
463 | # Beagle(v4).
464 | parser.add_argument("--java-mem", "-mem", help="\nJava memory allocation(ex. '2000m', '2g', or '2G').\n\n", default='2000m')
465 | parser.add_argument("--marker-window", help="\n(Beagle4.1) Marker window size for imputation (default: 1000).\n\n", default=1000)
466 | parser.add_argument("--nthreads", help="\n(Beagle4.1) The number of threads to be used in imputation. (default: 1)\n\n", default=1)
467 | parser.add_argument("--iter", help="\n(Beagle4.1) The number of iteration in imputation (default: 5).\n\n", default=5)
468 | parser.add_argument("--plink-genetic-map", help="\n(Beagle4.1) Plink genetic map file to be utilized in imputation (default: None).\n\n", default=None)
469 |
470 |
471 | ##### #####
472 |
473 |
474 | ##### #####
475 |
476 | args = parser.parse_args()
477 | print(args)
478 |
479 |
480 |
481 | SNP2HLA(args.input, args.reference, args.out,
482 | _mem=args.java_mem, _marker_window_size=args.marker_window, _tolerated_diff=float(args.tolerated_diff),
483 | _beagle_NTHREADS=args.nthreads, _beagle_ITER=args.iter, _beagle_MAP=args.plink_genetic_map,
484 | _dependency=args.dependency)
485 |
--------------------------------------------------------------------------------
/scripts/beagle.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/scripts/beagle.jar
--------------------------------------------------------------------------------
/scripts/beagle2linkage.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/scripts/beagle2linkage.jar
--------------------------------------------------------------------------------
/scripts/beagle2vcf.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/immunogenomics/HLA_analyses_tutorial/afddd62b022f503f7c5806298edcfe195aae1343/scripts/beagle2vcf.jar
--------------------------------------------------------------------------------
/scripts/get_duprem_var.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | import sys
3 | INPUT = sys.argv[1]
4 |
5 | RS_missing = {}
6 |
7 | with open(INPUT + ".lmiss") as f:
8 | for line in f:
9 | if line.find("CHR") == -1:
10 | line = line.rstrip().split()
11 | RS_missing[line[1]] = float(line[4])
12 |
13 |
14 | OUT = open(INPUT + ".remdup.snp","w")
15 |
16 | pos_snp_dic = {}
17 |
18 | with open(INPUT + ".bim") as f:
19 | for line in f:
20 | line = line.rstrip().split()
21 | pos_snp_dic.setdefault((line[0],line[3],line[4],line[5]),[]).append(line[1])
22 |
23 | for pos in pos_snp_dic:
24 | if len(pos_snp_dic[pos]) > 1:
25 | snp_list = pos_snp_dic[pos]
26 | missings = {}
27 | for snp in snp_list:
28 | missings[snp] = RS_missing[snp]
29 | name, min_mis = min(missings.items(), key = lambda x: x[1])
30 | for snp in snp_list:
31 | if snp != name:
32 | print(snp, file = OUT)
33 |
34 | OUT.close()
35 |
--------------------------------------------------------------------------------
/scripts/get_remID.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python
2 | import sys
3 | missfile = sys.argv[1]
4 | ibdfile = sys.argv[2]
5 | outfile = sys.argv[3]
6 |
7 | missing={}
8 | with open(missfile) as f:
9 | for line in f:
10 | line=line.rstrip().split()
11 | if line[0] != "FID":
12 | missing[(line[0],line[1])]=float(line[5])
13 |
14 | REMOVE=open(outfile,"w")
15 |
16 | rem_list=[]
17 | with open(ibdfile) as f:
18 | for line in f:
19 | line=line.rstrip().split()
20 | if line[0] != "FID1":
21 | if missing[(line[0],line[1])] >= missing[(line[2],line[3])]:
22 | print(line[0]+"\t"+line[1],file=REMOVE)
23 | rem_list.append(line[0])
24 | elif missing[(line[0],line[1])] < missing[(line[2],line[3])]:
25 | print(line[2]+"\t"+line[3],file=REMOVE)
26 | rem_list.append(line[1])
27 |
28 | REMOVE.close()
--------------------------------------------------------------------------------
/scripts/rename_bim.py:
--------------------------------------------------------------------------------
1 | #!/use/bin/env python
2 | import sys
3 | REFBIMFILE = sys.argv[1]
4 | OUTBIMFILE = sys.argv[2]
5 |
6 | REF = {}
7 | with open(REFBIMFILE) as f:
8 | for line in f:
9 | line = line.rstrip().split()
10 | CHRPOS = ":".join([line[0],line[3]])
11 | VARNAME = line[1]
12 | A1 = line[4]
13 | A2 = line[5]
14 | REF.setdefault(CHRPOS,[]).append([VARNAME,A1,A2])
15 | OUT = open(OUTBIMFILE, "w")
16 | with open(OUTBIMFILE + ".old") as f:
17 | for line in f:
18 | line = line.rstrip().split()
19 | CHRPOS = ":".join([line[0],line[3]])
20 | VARNAME = line[1]
21 | A1 = line[4]
22 | A2 = line[5]
23 | if CHRPOS in REF:
24 | for candidate in REF[CHRPOS]:
25 | if (A1 == candidate[1] and A2 == candidate[2]) or (A1 == candidate[2] and A2 == candidate[1]):
26 | VARNAME = candidate[0]
27 | out = " ".join([line[0], VARNAME, line[2], line[3], line[4], line[5]])
28 | print(out, file = OUT)
29 | OUT.close()
30 |
--------------------------------------------------------------------------------
/scripts/src/ParseDosage.csh:
--------------------------------------------------------------------------------
1 | #!/bin/csh -f
2 |
3 | ###############################################################
4 | #
5 | # Convert .gprobs to .dos file
6 | # Usage: ./ParseDosage.csh file.gprobs > file.dos
7 | #
8 | ###############################################################
9 |
10 | set INPUT=$1
11 | awk '{printf("%s\t%s\t%s",$1,$2,$3); for (f = 4; f <= NF; f+=3){printf("\t%.3f",$f*2+$(f+1));} printf("\n");}' $INPUT
12 |
--------------------------------------------------------------------------------
/scripts/src/merge_tables.pl:
--------------------------------------------------------------------------------
1 | #!/usr/bin/perl
2 | #
3 |
4 | use strict;
5 |
6 | my $Table1 = $ARGV[0];
7 | my $Table2 = $ARGV[1];
8 | my $IndexStr = $ARGV[2];
9 |
10 | if (scalar(@ARGV) != 3) {
11 | print "usage: %>merge_tables.pl datafile_1 datafile_2 index_string\n";
12 | print "prints all rows of datafile_2, followed by corresponding rows (if available) from datafile_1\n";
13 | exit();
14 | }
15 |
16 |
17 | my @headers1 = ();
18 | my %data1 = ();
19 | open(T1,$Table1);
20 |
21 | my $linecount = 0;
22 | my $IndexCol = -1;
23 |
24 | while(my $c = ) {
25 | $c=~s/\s+$//;
26 | $c=~s/^\s+//;
27 | my @line = split /\s+/, $c;
28 |
29 | if ( $linecount == 0 ) {
30 | for (my $i=0; $i<=$#line; $i++) {
31 | if ( $line[$i] eq $IndexStr ) {
32 | if ( $IndexCol >= 0 ) {
33 | die "Duplicate column label $line[$i] in $Table1 - exiting.\n";
34 | }
35 | $IndexCol = $i;
36 | }
37 | $headers1[$i] = $line[$i];
38 | }
39 | }
40 | else {
41 | if ( $IndexCol == -1 ) {
42 | die "Did not find label $IndexStr in $Table1 - exiting.\n";
43 | }
44 |
45 | for (my $i=0; $i<=$#line; $i++) {
46 | if ( $line[$IndexCol] ne "NA" ) {
47 | $data1{$line[$IndexCol]}{$headers1[$i]} = $line[$i];
48 | }
49 | }
50 | }
51 |
52 | $linecount++;
53 | }
54 | close(T1);
55 |
56 | #print STDERR "read $linecount lines from $Table1\n";
57 |
58 | open(T2,$Table2);
59 |
60 | $linecount = 0;
61 | $IndexCol = -1;
62 |
63 | while(my $c = ) {
64 | $c=~s/\s+$//;
65 | $c=~s/^\s+//;
66 | my @line = split /\s+/, $c;
67 |
68 | if ( $linecount == 0 ) {
69 | for (my $i=0; $i<=$#line; $i++) {
70 | if ( $line[$i] eq $IndexStr ) {
71 | if ( $IndexCol >= 0 ) {
72 | die "Duplicate column label $line[$i] in $Table2 - exiting.\n";
73 | }
74 | $IndexCol = $i;
75 | }
76 | print "$line[$i]\t";
77 | }
78 | foreach my $header (@headers1) {
79 | if ( $header ne $IndexStr ) {
80 | print "$header\t";
81 | }
82 | }
83 | print "\n";
84 | }
85 | else {
86 | if ( $IndexCol == -1 ) {
87 | die "Did not find label $IndexStr in $Table2 - exiting.\n";
88 | }
89 |
90 | for (my $i=0; $i<=$#line; $i++) {
91 | print "$line[$i]\t";
92 | }
93 | foreach my $header (@headers1) {
94 | if ( $header ne $IndexStr ) {
95 | if ( exists($data1{$line[$IndexCol]}{$header}) ) {
96 | print "$data1{$line[$IndexCol]}{$header}\t";
97 | } else {
98 | print "NA ";
99 | }
100 | }
101 | }
102 | print "\n";
103 | }
104 |
105 | $linecount++;
106 | }
107 | close(T2);
108 |
109 | #print STDERR "read $linecount lines from $Table2\n";
110 |
111 |
112 |
--------------------------------------------------------------------------------
/tutorial_association.md:
--------------------------------------------------------------------------------
1 | # Tutorial for statistical test for HLA association with complex traits
2 |
3 |
4 |
5 | Author: Saori Sakaue (ssakaue@broadinstitute.org)
6 |
7 | Lastly updated: 11/08/2022
8 |
9 |
10 |
11 | ## HLA association and fine-mapping
12 |
13 | This tutorial corresponds to the section "*HLA association and fine-mapping*" in the manuscript.
14 |
15 | We use outputs from the HLA imputation tutorial. Other data are in `data_assoc` directory. Most scripts are in `script_assoc` directory.
16 |
17 |
18 |
19 | **Note!**
20 |
21 | If you use Minimac3 imputation in the above section, you should first convert the allele name (CHR:POS) to the original name (HLA_A*XX:XX) in the output VCF file.
22 |
23 |
24 |
25 | If you use `SNP2HLA.csh`, `SNP2HLA.py` or MIS, you do not have to do this procedure.
26 |
27 |
28 |
29 | ```bash
30 | refVCF="data/Tutorial_1KGonly.bgl.phased"
31 | output="hgdp_chr6.final.EAGLE.phased.imputed"
32 |
33 | # first, we create a correspondence file between position and the allele name in the reference VCF.
34 | zcat ${refVCF}.vcf.gz | grep -v "#" | awk '{print $2,$3,$4,$5}' > ${refVCF}.converter
35 |
36 | head ${refVCF}.converter
37 | #27970031 rs149946 G T
38 | #27976200 rs9380032 G T
39 | #27979188 rs4141691 A G
40 | #27979625 rs10484402 A G
41 | #27981673 rs9368540 G A
42 |
43 | python script_assoc/convert_vcf_allele.py ${output}.dose.vcf.gz ${refVCF}.converter data_assoc/converted.info | bgzip -c > data_assoc/converted.vcf.gz
44 | ```
45 |
46 |
47 |
48 | `data_assoc/converted.info` provides R2 and AF information embedded in the VCF file.
49 |
50 | ```bash
51 | head data_assoc/converted.info
52 |
53 | #SNP CHRPOS REF ALT R2 AF
54 | #rs149946 6:27970031 G T 0.85845 0.20976
55 | #rs9380032 6:27976200 G T 0.83970 0.07228
56 | #rs4141691 6:27979188 A G 0.92693 0.12770
57 | #rs10484402 6:27979625 A G 0.76467 0.10351
58 |
59 | ```
60 |
61 | `data_assoc/converted.vcf.gz` is the output imputed VCF file with corrected variant names.
62 |
63 | ```bash
64 | zcat data_assoc/converted.vcf.gz | less -S
65 |
66 | ##fileformat=VCFv4.1
67 | ##filedate=2022.7.18
68 | ##source=Minimac3
69 | ##contig=
70 | ##FORMAT=
71 | ##FORMAT=
72 | ##INFO=
73 | ##INFO=
74 | ##INFO=
75 | ##INFO=
76 | #CHROM POS ID REF ALT QUAL FILTER INFO FORMAT HGDP00309
77 | 6 27970031 rs149946 G T . PASS AF=0.20976;MAF=0.20976;R2=0.85845
78 | 6 27976200 rs9380032 G T . PASS AF=0.07228;MAF=0.07228;R2=0.83970
79 | 6 27979188 rs4141691 A G . PASS AF=0.12770;MAF=0.12770;R2=0.92693
80 | 6 27979625 rs10484402 A G . PASS AF=0.10351;MAF=0.10351;R2=0.76467
81 | 6 27981673 rs9368540 G A . PASS AF=0.08438;MAF=0.08438;R2=0.82351
82 | 6 27984726 rs74505854 A C . PASS AF=0.03692;MAF=0.03692;R2=0.91953
83 | ```
84 |
85 |
86 |
87 |
88 |
89 | ### Single-marker test
90 |
91 | We first convert imputed genotype to dosage txt file by `PLINK2`.
92 |
93 | ```bash
94 | imputed="data_assoc/converted"
95 |
96 | plink2 \
97 | --vcf ${imputed}.vcf.gz dosage=DS \
98 | --make-pgen --out ${imputed}
99 |
100 | # this will create ${imputed}.{pgen,psam,pvar}
101 |
102 | plink2 --pfile ${imputed} \
103 | --pheno data_assoc/phenotype.txt \
104 | --covar data_assoc/covariates.txt \
105 | --pheno-name trait_name \
106 | --glm omit-ref hide-covar cols=chrom,pos,ref,alt,test,nobs,beta,se,ci,tz,p,a1freqcc,a1freq \
107 | --ci 0.95 \
108 | --out single_marker_assoc \
109 | --covar-variance-standardize
110 |
111 | ```
112 |
113 |
114 |
115 | `single_marker_assoc.trait_name.glm.logistic.hybrid` is the output association statistics, and you can extract results for HLA alleles by `grep "HLA_"`, HLA amino acids by `grep "AA_"`, and HLA intragenic SNPs by `grep "SNPS_"`.
116 |
117 |
118 |
119 | You can also do this by using custom R script.
120 |
121 | ```bash
122 | # when you only test for HLA alleles and amino acids (modify as necessry)
123 | cat ${imputed}.pvar | grep -v "#" | grep -E 'HLA_|AA_' | cut -f3 > test_markers.txt
124 | cat ${imputed}.pvar | grep -v "#" | grep -E 'HLA_|AA_' | awk '{print $3,"T"}' > test_markers_alleles.txt # this is to make sure to output the dosages of the "presence" of the allele coded as T, but not the "absence" coded as A.
125 |
126 | plink2 --vcf ${imputed}.vcf.gz dosage=DS --export A --extract test_markers.txt --export-allele test_markers_alleles.txt --out ${imputed}
127 | ```
128 |
129 | `${imputed}.raw` is the table of dosages for HLA alleles and amino acids.
130 |
131 |
132 |
133 | (In `R`)
134 |
135 | ```r
136 | d <- read.table("data_assoc/converted.raw", header=T)
137 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
138 | cov <- read.table("data_assoc/covariates.txt", header=T)
139 |
140 | d <- merge(d, pheno, by = "IID")
141 | d <- merge(d, cov, by = "IID")
142 | d$trait_name <- d$trait_name - 1 # cases should be coded as 1 and controls should be coded as 0
143 |
144 | # if you want to test for HLA_A*01:01
145 | summary(glm(trait_name ~ HLA_A.01.01_T + sex + PC1 + PC2, data = d, family = binomial))
146 |
147 | ```
148 |
149 |
150 |
151 | Then, you can see the same statistics found in PLINK output.
152 |
153 | ```r
154 | Call:
155 | glm(formula = trait_name ~ HLA_A.01.01_T + sex + PC1 + PC2, family = binomial, data = d)
156 |
157 | Deviance Residuals:
158 | Min 1Q Median 3Q Max
159 | -1.0457 -0.8305 -0.7443 1.4218 1.9433
160 |
161 | Coefficients:
162 | Estimate Std. Error z value Pr(>|z|)
163 | (Intercept) -0.39449 0.23453 -1.682 0.0926 .
164 | HLA_A.01.01_T -0.03740 0.21231 -0.176 0.8602
165 | sex -0.38172 0.15030 -2.540 0.0111 *
166 | PC1 0.05466 0.07488 0.730 0.4654
167 | PC2 -0.17217 0.07520 -2.289 0.0221 *
168 | ---
169 | Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
170 |
171 | (Dispersion parameter for binomial family taken to be 1)
172 |
173 | Null deviance: 1068.1 on 906 degrees of freedom
174 | Residual deviance: 1056.0 on 902 degrees of freedom
175 | AIC: 1066
176 |
177 | Number of Fisher Scoring iterations: 4
178 | ```
179 |
180 |
181 |
182 | ### Omnibus test
183 |
184 | First, we extract amino acid polymorphisms from the dosage output and creat `*.raw` file by using `PLINK2`.
185 |
186 | In this example, we also apply QC to extract any amino acid polymorphisms with *Rsq* > 0.7.
187 |
188 | ```bash
189 | sed 1d data_assoc/converted.info | grep "^AA_" | awk '{if($5>0.7)print $1}' > QCed_AA_variants.txt
190 | sed 1d data_assoc/converted.info | grep "^AA_" | awk '{if($5>0.7)print $1,"T"}' > QCed_AA_variants_alleles.txt
191 |
192 | # an extracted variant list for AAs
193 | head QCed_AA_variants.txt
194 | #AA_A_-22_29910338_exon1_I
195 | #AA_A_-22_29910338_exon1_V
196 | #AA_A_-15_29910359_exon1_L
197 | #AA_A_-15_29910359_exon1_V
198 | #AA_A_-11_29910371_exon1_L
199 |
200 | # We want to create a table of dosage for "presence" = "T" allele of these AAs
201 | head QCed_AA_variants_alleles.txt
202 | #AA_A_-22_29910338_exon1_I T
203 | #AA_A_-22_29910338_exon1_V T
204 | #AA_A_-15_29910359_exon1_L T
205 | #AA_A_-15_29910359_exon1_V T
206 | #AA_A_-11_29910371_exon1_L T
207 |
208 | plink2 --pfile ${imputed} \
209 | --extract QCed_AA_variants.txt \
210 | --export-allele QCed_AA_variants_alleles.txt \
211 | --export A \
212 | --out ${imputed}.QCed_AA
213 |
214 | # output amino acid names without "_T" and by converting "-" with "minus" as a workaround in R
215 | head -n1 ${imputed}.QCed_AA.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/-/minus/' > ${imputed}.QCed_AA.allele_name.txt
216 |
217 |
218 | # run omnibus test by using those input files!
219 | python3 script_assoc/run_omnibus_AAtest.py \
220 | --aaraw ${imputed}.QCed_AA.raw \
221 | --out test_output \
222 | --allele ${imputed}.QCed_AA.allele_name.txt \
223 | --pheno data_assoc/phenotype.txt \
224 | --cov data_assoc/covariates.txt \
225 | --phenoname trait_name \
226 | --covname sex PC1 PC2
227 |
228 | ```
229 |
230 |
231 |
232 | In this example, `test_output_omnibus_result.txt` is the output statistics with the tested amino acid positions, deviance explained by including the tested amino acid position into the model, and p value from the ANOVA.
233 |
234 | ```bash
235 | $ head test_output_omnibus_result.txt
236 |
237 | ALLELE_NAME OMNIBUS_DEVIANCE OMNIBUS_PVALUE
238 | AA_A_minus22_29910338_exon1 1.25834923435173 0.533031574597542
239 | AA_A_minus15_29910359_exon1 3.52122377743922 0.171939623712512
240 | AA_A_minus11_29910371_exon1 2.15789903921791 0.339952451524512
241 | AA_A_minus2_29910398_exon1 4.53914553021627 0.103356328081297
242 | AA_A_9_29910558_exon2 5.54515225056707 0.593743388681586
243 | AA_A_12_29910567_exon2 0.0109563791947949 0.916635505963766
244 | AA_A_17_29910582_exon2 0.0188695939268655 0.890740998058756
245 | AA_A_19_29910588_exon2 0.000823349387019334 0.977108589575259
246 | AA_A_43_29910660_exon2 0.523234132611833 0.769805751833586
247 | ```
248 |
249 |
250 |
251 |
252 |
253 | ### Conditional haplotype test
254 |
255 | First, we extract two-field allele dosages from the imputed genotype after QC.
256 |
257 | We convert the imputed dosages into a table (`.raw` file, rows are samples and columns are alleles ) for these alleles by `plink2`. Please note that we use some tricks to avoid having special characters in the alleles such as "*" and ":" by replacing them with "_" (underscore) with `sed` command as shown below.
258 |
259 | e.g., `HLA_DRB1*04:01` will be converted to `HLA_DRB1_04_01`
260 |
261 |
262 |
263 | ```bash
264 | sed 1d data_assoc/converted.info | grep "^HLA_" | cut -f1,5 | grep ":" | awk '{if($2>0.7)print $1}' > QCed_HLA_tf.txt
265 | sed 1d data_assoc/converted.info | grep "^HLA_" | cut -f1,5 | grep ":" | awk '{if($2>0.7)print $1,"T"}' > QCed_HLA_tf_alleles.txt
266 |
267 | plink2 --pfile ${imputed} \
268 | --extract QCed_HLA_tf.txt \
269 | --export-allele QCed_HLA_tf_alleles.txt \
270 | --export A \
271 | --out ${imputed}.QCed_HLA_tf
272 |
273 | # output HLA names without "_T", "*", and ":" as a workaround in R
274 | head -n1 ${imputed}.QCed_HLA_tf.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/*/_/' | sed 's/:/_/' > ${imputed}.QCed_HLA_tf.allele_name.txt
275 |
276 |
277 | ```
278 |
279 |
280 |
281 | We first perform the same omnibus test for single AA position but using the two-fiedl allele information.
282 |
283 | Let's do this for HLA-DRB1 as an example.
284 |
285 | ```r
286 | library(dplyr)
287 | library(data.table)
288 |
289 | # info file summarizes all information on the correspondence between two-field alleles and amino acid residues
290 | info <- readRDS("data_assoc/HLA_DICTIONARY_AA.hg19.imgt3320.AA_tf.in_ref.rds")
291 |
292 | HLA="DRB1"
293 | info <- info[info$gene==HLA,]
294 |
295 | info$tag <- paste0(info$pos,":",info$AA)
296 |
297 | allpos <- sort( unique(info$pos) )
298 |
299 | res <- data.frame()
300 | for( pos in allpos ){
301 | y <- info[ info$pos %in% c(pos), ]
302 | for( k in 1:length( unique( y$tag )) ){
303 | ytag <- unique( y$tag )[ k ]
304 | hap <- ytag
305 | y_4d <- subset(y, tag == ytag )$hla
306 | hap_4d <- y_4d
307 | if( length(hap_4d) > 0 ){
308 | out <- data.frame(hap, hla = hap_4d, pos )
309 | res <- rbind(res, out)
310 | }}}
311 |
312 | # res will be used to group two-field alleles based on amino acid residues at each position.
313 |
314 |
315 | # read imputed two field alleles
316 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.raw", header=T)
317 | dose <- dose[,c(-1,-3:-6)]
318 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.allele_name.txt")$V1)
319 | colnames(dose) <- c("IID",allelenames)
320 |
321 | # read phenotype and covariates
322 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
323 | if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1}
324 | cov <- read.table("data_assoc/covariates.txt", header=T)
325 | dat <- merge(dose, pheno, by = "IID")
326 | dat <- merge(dat, cov, by = "IID")
327 |
328 | pval_list<-NULL
329 | deviance_list<-NULL
330 |
331 | for(thispos in allpos){
332 | thishaps<-as.character(unique(subset(res,pos==thispos)$hap))
333 | adopted<-NULL
334 | for(thishap in thishaps){
335 | hlas<-as.character(subset(res,hap==thishap)$hla) # extracting all two-field alleles explained by this position-AA residue pairs
336 | hlas<-hlas[hlas %in% allelenames] # restrict two-field alleles to those in our QCed data
337 | if(length(hlas)>0){
338 | dat$thishap <- rowSums(dat[hlas])
339 | colnames(dat)[ncol(dat)] <- thishap
340 | adopted<-c(adopted,thishap)
341 | }
342 | }
343 | obj1<-glm(trait_name ~ sex+PC1+PC2,data=dat,family=binomial(link="logit")) # model with covariates
344 | obj2<-glm(trait_name~as.matrix(dat[adopted])+sex+PC1+PC2,data=dat,family=binomial(link="logit")) # model with this AA position
345 | Chisqtest <- anova(obj1,obj2,test="Chisq")
346 | pval<-Chisqtest$`Pr(>Chi)`[2]
347 | deviance<-Chisqtest$Deviance[2]
348 | pval_list<-c(pval_list,pval)
349 | deviance_list<-c(deviance_list,deviance)
350 | }
351 |
352 | summary<-data.frame(POSITION=allpos,OMNIBUS_DEVIANCE=deviance_list,OMNIBUS_PVALUE = pval_list)
353 |
354 | # this summary is a summary for the first round of conditional haplotype test.
355 | head(summary)
356 |
357 | # POSITION OMNIBUS_DEVIANCE OMNIBUS_PVALUE
358 | #1 -25 0.1598153 0.9232016
359 | #2 -24 0.1573953 0.9243193
360 | #3 -17 2.5568379 0.2784772
361 | #4 -16 0.1598153 0.9232016
362 | #5 -1 0.1670549 0.9198658
363 | #6 4 4.4417129 0.1085161
364 | ```
365 |
366 |
367 |
368 | If the strongest association among all the positions was at position 11, we next run similar analyses conditioned on the position 11.
369 |
370 | ```r
371 | # This script is continued from the above R workspace.
372 |
373 | #
374 | res.prev <- res # transfer res information from the previous round into res.prev
375 |
376 | condpos = "11" # this is a position we want to condition on
377 | thishaps<-as.character(unique(subset(res.prev, pos==condpos)$hap))
378 |
379 | thishaps
380 |
381 | adopted.prev<-NULL
382 | for(thishap in thishaps){
383 | hlas<-as.character(subset(res,hap==thishap)$hla)
384 | hlas<-hlas[hlas %in% allelenames]
385 | if(length(hlas)>0){
386 | dat$thishap<-rowSums(dat[hlas])
387 | colnames(dat)[ncol(dat)]<-thishap
388 | adopted.prev<-c(adopted.prev,thishap)
389 | }
390 | }
391 |
392 | adopted.prev
393 | # [1] "11:L" "11:S" "11:V" "11:G" "11:D" "11:P"
394 | # These are the amino acid residues obverved in the data in the previous round at position 11.
395 |
396 | # Let's move on to the next round
397 | allpos <- setdiff(allpos, condpos) # all the other positions to analyse
398 |
399 | res <- data.frame()
400 | for( pos in allpos ){
401 | x <- info[ info$pos %in% c(condpos), ] # haplotype information at the position I want to condition on
402 | y <- info[ info$pos %in% c(pos), ] # haplotype information at the position I want to analyze
403 | for( i in 1:length( unique( x$tag )) ){
404 | for( k in 1:length( unique( y$tag )) ){
405 | xtag <- unique( x$tag )[ i ]
406 | ytag <- unique( y$tag )[ k ]
407 | hap <- paste0(xtag,"_",ytag)
408 | x_4d <- subset(x, tag == xtag )$hla
409 | y_4d <- subset(y, tag == ytag )$hla
410 | hap_4d <- intersect( x_4d, y_4d )
411 | if( length(hap_4d) > 0 ){
412 | out <- data.frame(hap, hla = hap_4d, pos )
413 | res <- rbind(res, out)
414 | }}}}
415 |
416 | head(res)
417 |
418 | # hap hla pos
419 | #1 11:L_-25:K HLA_DRB1_01_01 -25
420 | #2 11:L_-25:K HLA_DRB1_01_02 -25
421 | #3 11:L_-25:K HLA_DRB1_01_03 -25
422 | #4 11:S_-25:R HLA_DRB1_03_01 -25
423 | #5 11:S_-25:R HLA_DRB1_03_02 -25
424 | #6 11:S_-25:R HLA_DRB1_08_01 -25
425 |
426 | # Haplotypes defined by two amino acid positions and their correspondence to the two-field alleles
427 |
428 | pval_list<-NULL
429 | deviance_list<-NULL
430 |
431 | for(thispos in allpos){
432 | thishaps<-as.character(unique(subset(res,pos==thispos)$hap))
433 | adopted<-NULL
434 | for(thishap in thishaps){
435 | hlas<-as.character(subset(res,hap==thishap)$hla)
436 | hlas<-hlas[hlas %in% allelenames]
437 | if(length(hlas)>0){
438 | dat$thishap<-rowSums(dat[hlas])
439 | colnames(dat)[ncol(dat)]<-thishap
440 | adopted<-c(adopted,thishap)
441 | }
442 | }
443 | obj1<-glm(trait_name ~ as.matrix(dat[adopted.prev])+sex+PC1+PC2,data=dat,family=binomial(link="logit")) # a model including groups defined by the previous round (single position)
444 | obj2<-glm(trait_name ~ as.matrix(dat[adopted])+sex+PC1+PC2,data=dat,family=binomial(link="logit")) # a model including groups defined by this round (two positions)
445 | Chisqtest <- anova(obj1,obj2,test="Chisq")
446 | pval<-Chisqtest$`Pr(>Chi)`[2]
447 | deviance<-Chisqtest$Deviance[2]
448 | pval_list<-c(pval_list,pval)
449 | deviance_list<-c(deviance_list,deviance)
450 | }
451 |
452 | summary<-data.frame(POSITION=allpos,OMNIBUS_DEVIANCE=deviance_list,OMNIBUS_PVALUE = pval_list)
453 |
454 |
455 | # this "summary" is a summary for the second round of conditional haplotype test.
456 | head(summary)
457 |
458 | # POSITION OMNIBUS_DEVIANCE OMNIBUS_PVALUE
459 | #1 -25 2.6065100 0.1064257
460 | #2 -24 2.6065100 0.1064257
461 | #3 -17 0.0000000 NA
462 | #4 -16 2.6065100 0.1064257
463 | #5 -1 0.8824553 0.3475301
464 | #6 4 0.0000000 NA
465 |
466 | ```
467 |
468 |
469 |
470 | We continue these procedures until we do not get any significant results (`OMNIBUS_PVALUE`).
471 |
472 |
473 |
474 | - Non-additive association test
475 |
476 | We use the same data to test non-additive effect.
477 |
478 | In this vignette, we generate and use best-guess genotype from the imputation result.
479 |
480 | ```bash
481 | plink2 --vcf ${imputed}.vcf.gz \
482 | --extract QCed_HLA_tf.txt \
483 | --export-allele QCed_HLA_tf_alleles.txt \
484 | --export A \
485 | --out ${imputed}.QCed_HLA_tf.best_guess
486 |
487 | # Here we do not specify dosage and rather use best-guess genotype to export the data to a matrix
488 |
489 | # output HLA names without "_T", "*", and ":" as a workaround in R
490 | head -n1 ${imputed}.QCed_HLA_tf.best_guess.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/*/_/' | sed 's/:/_/' > ${imputed}.QCed_HLA_tf.best_guess.allele_name.txt
491 |
492 | ```
493 |
494 |
495 |
496 | Then, in `R`,
497 |
498 | ```r
499 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.best_guess.raw", header=T)
500 | dose <- dose[,c(-1,-3:-6)]
501 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.best_guess.allele_name.txt")$V1)
502 | colnames(dose) <- c("IID",allelenames)
503 |
504 | # read phenotype and covariates
505 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
506 | if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1} # cases to be 1 and controls to be 0
507 |
508 | cov <- read.table("data_assoc/covariates.txt", header=T)
509 | dat <- merge(dose, pheno, by = "IID")
510 | dat <- merge(dat, cov, by = "IID")
511 |
512 | # if you want to test for HLA_A*01:01's non-additive effect
513 |
514 | tested_allele = "HLA_A_01_01"
515 | dat$non_add <- 0
516 | dat[dat[,tested_allele]==1,]$non_add <- 1 # define non-additive term to have 1 if and only if the genotype is heterozygous.
517 |
518 | model.0 <- glm(trait_name ~ as.matrix(dat[,tested_allele]) + sex + PC1 + PC2, data = dat, family = binomial)
519 | model.1 <- glm(trait_name ~ as.matrix(dat[,tested_allele]) + non_add + sex + PC1 + PC2, data = dat, family = binomial)
520 |
521 | Chisqtest <- anova(model.0,model.1,test="Chisq") # assess the improvement of the model by including non-additive term
522 | model.pval<-Chisqtest$`Pr(>Chi)`[2]
523 | model.deviance<-Chisqtest$Deviance[2]
524 | SUMC<-summary(model.1)$coefficients
525 | main.beta<-SUMC[2,1] # we get coefficients of the additive term
526 | main.se<-SUMC[2,2]
527 | main.p<-SUMC[2,4]
528 | non_add.beta<-SUMC[3,1] # we get coefficients of the non-additive term
529 | non_add.se<-SUMC[3,2]
530 | non_add.p<-SUMC[3,4]
531 | out<-data.frame(allele=tested_allele, anova.deviance=model.deviance, anova.p=model.pval, main.beta=main.beta, main.se=main.se, main.p=main.p, non_add.beta=non_add.beta, non_add.se=non_add.se, non_add.p=non_add.p)
532 |
533 | # this "out" summarizes the statistics at this allele (HLA_A*01:01), both additive and non-additive
534 | out
535 |
536 | # allele anova.deviance anova.p main.beta main.se main.p
537 | #1 HLA_A_01_01 0.1587487 0.6903112 -0.2378009 0.5629893 0.6727405
538 | # non_add.beta non_add.se non_add.p
539 | #1 0.2325363 0.6026695 0.6996124
540 | ```
541 |
542 |
543 |
544 |
545 |
546 | ### Interaction test
547 |
548 | Let's test interaction between two HLA alleles of the same gene.
549 |
550 | As we explained in the manuscript, it is sometimes important to restrict the analyses to common alleles. The rare x rare allele combination could yield inflated statistics due to the noisy estimate of the effect sizes for both alleles.
551 |
552 | If we decide to QC based on MAF > 0.05 for this interaction analysis,
553 |
554 | ```bash
555 | plink2 --pfile ${imputed} \
556 | --extract QCed_HLA_tf.txt \
557 | --export-allele QCed_HLA_tf_alleles.txt \
558 | --export A \
559 | --maf 0.05 \
560 | --out ${imputed}.QCed_HLA_tf.MAF
561 |
562 | # output HLA names without "_T", "*", and ":" as a workaround in R
563 | head -n1 ${imputed}.QCed_HLA_tf.MAF.raw | cut -f7- | tr "\t" "\n" | sed -e "s/_T$//" | sed 's/*/_/' | sed 's/:/_/' > ${imputed}.QCed_HLA_tf.MAF.allele_name.txt
564 |
565 | ```
566 |
567 |
568 |
569 | And in `R`
570 |
571 | ```r
572 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.MAF.raw", header=T)
573 | dose <- dose[,c(-1,-3:-6)]
574 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.MAF.allele_name.txt")$V1)
575 | colnames(dose) <- c("IID",allelenames)
576 |
577 | # read phenotype and covariates
578 | pheno <- read.table("data_assoc/phenotype.txt", header=T)
579 | if(max(pheno[,2])==2){pheno[,2]<-pheno[,2] - 1} # cases to be 1 and controls to be 0
580 |
581 | cov <- read.table("data_assoc/covariates.txt", header=T)
582 | dat <- merge(dose, pheno, by = "IID")
583 | dat <- merge(dat, cov, by = "IID")
584 |
585 |
586 | # For example, if you want to test for HLA_DRB1*03:01 and HLA_DRB1*15:01
587 |
588 | first_allele = "HLA_DRB1_03_01"
589 | seconde_allele = "HLA_DRB1_15_01"
590 |
591 | # It is always nice to check the distribution of samples based on these two alleles.
592 |
593 | table(round(dat[,c(first_allele, seconde_allele)]))
594 |
595 | # HLA_DRB1_15_01
596 | #HLA_DRB1_03_01 0 1 2
597 | # 0 624 89 4
598 | # 1 156 14 0
599 | # 2 20 0 0
600 |
601 | # We confirmed that the number of samples based on allelic combination of HLA-DRB1.
602 |
603 | summary(glm(trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + HLA_DRB1_03_01*HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat, family = binomial))
604 |
605 |
606 | ################################
607 | Call:
608 | glm(formula = trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 +
609 | HLA_DRB1_03_01 * HLA_DRB1_15_01 + sex + PC1 + PC2, family = binomial,
610 | data = dat)
611 |
612 | Deviance Residuals:
613 | Min 1Q Median 3Q Max
614 | -1.0787 -0.8305 -0.7422 1.3944 1.9409
615 |
616 | Coefficients:
617 | Estimate Std. Error z value Pr(>|z|)
618 | (Intercept) -0.39243 0.23787 -1.650 0.0990 .
619 | HLA_DRB1_03_01 0.11719 0.16267 0.720 0.4713
620 | HLA_DRB1_15_01 -0.40575 0.27059 -1.500 0.1337
621 | sex -0.37822 0.15060 -2.511 0.0120 *
622 | PC1 0.05676 0.07515 0.755 0.4501
623 | PC2 -0.17298 0.07519 -2.300 0.0214 *
624 | HLA_DRB1_03_01:HLA_DRB1_15_01 0.33678 0.70759 0.476 0.6341
625 | ---
626 | Signif. codes: 0 ‘***’ 0.001 ‘**’ 0.01 ‘*’ 0.05 ‘.’ 0.1 ‘ ’ 1
627 |
628 | (Dispersion parameter for binomial family taken to be 1)
629 |
630 | Null deviance: 1068.1 on 906 degrees of freedom
631 | Residual deviance: 1052.7 on 900 degrees of freedom
632 | AIC: 1066.7
633 |
634 | Number of Fisher Scoring iterations: 4
635 | ################################
636 |
637 | # "HLA_DRB1_03_01:HLA_DRB1_15_01" is showing the effect of interaction between two alleles.
638 |
639 | model.0 <- glm(trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat, family = binomial) # a model without an interaction term
640 | model.1 <- glm(trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + HLA_DRB1_03_01*HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat, family = binomial) # a model with an interaction term
641 |
642 | anova(model.0,model.1,test="Chisq")
643 |
644 | ################################
645 | Analysis of Deviance Table
646 |
647 | Model 1: trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + sex + PC1 + PC2
648 | Model 2: trait_name ~ HLA_DRB1_03_01 + HLA_DRB1_15_01 + HLA_DRB1_03_01 *
649 | HLA_DRB1_15_01 + sex + PC1 + PC2
650 | Resid. Df Resid. Dev Df Deviance Pr(>Chi)
651 | 1 901 1052.9
652 | 2 900 1052.7 1 0.22015 0.6389
653 | ################################
654 | ```
655 |
656 |
657 |
658 | It is also considered to run permutation tests ( by breaking the relationship between phenotype and genotype ) whether the observed interaction effects could happen by random chance.
659 |
660 |
661 |
662 | ### Multi-trait test
663 |
664 | ```r
665 | library(MVLM)
666 |
667 | # Let's use those MAF-QCed HLA alleles in this example.
668 | dose <- read.table("data_assoc/converted.QCed_HLA_tf.MAF.raw", header=T)
669 | dose <- dose[,c(-1,-3:-6)]
670 | allelenames <- as.character(read.table("data_assoc/converted.QCed_HLA_tf.MAF.allele_name.txt")$V1)
671 | colnames(dose) <- c("IID",allelenames)
672 |
673 | # read phenotype of a multiple vector (i.e., a matrix)
674 | pheno <- read.table("data_assoc/phenotype_multi.txt", header=T)
675 |
676 | head(pheno)
677 |
678 | # IID trait.A trait.B trait.C trait.D
679 | #1 HGDP00610 0.47607622 0.2454573 0.219182940 0.05928355
680 | #2 HGDP00982 0.20184835 0.4383009 0.007797759 0.35205303
681 | #3 HGDP00001 0.01328931 0.1882389 0.402212096 0.39625968
682 | #4 HGDP01247 0.33558573 0.2070649 0.268822337 0.18852699
683 | #5 HGDP00309 0.31788202 0.2712361 0.067621683 0.34326023
684 | #6 HGDP00786 0.36187225 0.3786774 0.180634545 0.07881575
685 |
686 | # This is comprised of multiple traits, A, B, C, and D, and...
687 |
688 | all.equal(rowSums(pheno[,2:5]), rep(1,nrow(pheno)))
689 | #[1] TRUE
690 |
691 | # The sum of the traits are (almost) equal to 1 in all samples.
692 | # So we assume this phenotype has 3-degrees of freedom, and thus drop trait.D from the analysis in the subsequent models.
693 |
694 | # read covariates
695 | cov <- read.table("data_assoc/covariates.txt", header=T)
696 | dat <- merge(dose, pheno, by = "IID")
697 | dat <- merge(dat, cov, by = "IID")
698 |
699 | # Let's see the effect of HLA_DRB1*15:01
700 | # We can perform linear regression
701 | model.0 <- lm( cbind(trait.A,trait.B,trait.C) ~ sex + PC1 + PC2, data = dat)
702 | model.1 <- lm( cbind(trait.A,trait.B,trait.C) ~ HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat)
703 |
704 | anova(model.0, model.1)
705 |
706 | ################################
707 | Analysis of Variance Table
708 |
709 | Model 1: cbind(trait.A, trait.B, trait.C) ~ sex + PC1 + PC2
710 | Model 2: cbind(trait.A, trait.B, trait.C) ~ HLA_DRB1_15_01 + sex + PC1 +
711 | PC2
712 | Res.Df Df Gen.var. Pillai approx F num Df den Df Pr(>F)
713 | 1 903 0.015147
714 | 2 902 -1 0.015150 0.0028114 0.84579 3 900 0.469
715 | ################################
716 |
717 |
718 | # We can also perform MVLM model
719 | mvlm.res.0 <- mvlm( cbind(trait.A,trait.B,trait.C) ~ sex + PC1 + PC2 , data = dat)
720 |
721 | mvlm.res.1 <- mvlm( cbind(trait.A,trait.B,trait.C) ~ HLA_DRB1_15_01 + sex + PC1 + PC2, data = dat )
722 | mvlm.res.1$pseudo.rsq["Omnibus Effect",1]
723 |
724 | summary(mvlm.res.1)
725 |
726 | ################################
727 | Statistic Numer.DF Pseudo.R.Square p.value
728 | Omnibus Effect 0.90858 4 4.013e-03 0.52003
729 | (Intercept) 315.81910 1 < 1e-20 ***
730 | HLA_DRB1_15_01 0.82089 1 9.064e-04 0.45784
731 | sex 0.07375 1 8.144e-05 0.96786
732 | PC1 1.71025 1 1.888e-03 0.16841
733 | PC2 0.97278 1 1.074e-03 0.38646
734 | ---
735 | Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
736 | ################################
737 |
738 |
739 | # Explained variance by HLA_DRB1_15_01 will be..
740 | mvlm.res.1$pseudo.rsq["Omnibus Effect",1] - mvlm.res.0$pseudo.rsq["Omnibus Effect",1]
741 |
742 | ```
743 |
744 |
--------------------------------------------------------------------------------