├── README.md
├── params.ini
├── params.py
├── lepsmove.py
├── lepspoint.py
├── lepsplots.py
├── lepsgui.py
└── LICENSE.txt
/README.md:
--------------------------------------------------------------------------------
1 | # LepsPy: A Molecular Reaction Dynamics Demonstration
2 | A program to perform classical molecular reaction dynamics for a tri-atomic system using a London-Eyring-Polanyi-Sato (LEPS) potential parameterised for several atoms.
3 |
4 | The first Python version of the code was written by Tristan Mackenzie, based on a Matlab version written by Lee Thompson, which in tern built upon a Fortran code written by Barry Smith.
5 |
6 | ### Running the program
7 |
8 | Python 3.5 or higher is needed to run the program.
9 |
10 | Click on the **Clone or download** button to the right and download the zip archive with all the progeam files. You need to unpack the folder before you can run the program.
11 |
12 | The program is run through a graphical user interface (GUI) which is started by running the file **lepsgui.py**.
13 |
14 | #### On Windows
15 |
16 | Double click on the **lepsgui.py** file to start the GUI.
17 |
18 | #### On Linux and OSX
19 |
20 | In a terminal, change directory to the LepsPy directory and execute "python lepsgui.py".
21 |
22 |
23 | ### Files
24 |
25 | #### [lepsgui.py](./lepsgui.py)
26 |
27 | This is the main program. lepsgui generates the GUI, and drives the calculations.
28 |
29 | #### [params.ini](./params.ini)
30 |
31 | params.ini contains the parameter sets for a number of atom combinations. New atoms and parameters can be added to the program here.
32 |
33 | #### [params.py](./params.py)
34 |
35 | params.py reads params.ini and passes parameters to the lepsgui.
36 |
37 | #### [lepspoint.py](./lepspoint.py)
38 |
39 | lepspoint calculations the energy, first and second energy derivatives for any point on the surface.
40 |
41 | #### [lepsmove.py](./lepsmove.py)
42 |
43 | This file contains several functions related to the displacement of the system and its dynamic state.
44 |
45 |
46 | #### [lepsplots.py](./lepsplots.py)
47 |
48 | This file contains the functions that plot the results of the simulation.
49 |
--------------------------------------------------------------------------------
/params.ini:
--------------------------------------------------------------------------------
1 | #Author: Tristan Mackenzie
2 | #
3 | # This file is part of LepsPy.
4 | #
5 | # LepsPy is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # LepsPy is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with LepsPy. If not, see .
17 |
18 | # This file contains default options of the simulations, and parameters
19 | # for different atoms that can be simulated. To add new atoms, this is
20 | # the only file that needs to be edited.
21 |
22 | [defaults]
23 | # default values to use for Interactive class
24 | # Sato parameter for the potential: 0.18 is the original value JCP 23:2465 (1955)
25 | sato= 0.18
26 |
27 | [atoms]
28 | # Use this section to add atoms
29 | # key = [mass/g.mol^{-1}, VdW/pm, colour]
30 | H=1.0 , 120, cccccc
31 | D=2.0 , 120, c0c0c0
32 | F=19.0 , 147, ffdd00
33 | Cl=35.457, 175, 32d600
34 | I=126.91, 198, de00a0
35 | O=16.0 , 152, ff0000
36 |
37 | [isotopes]
38 | # Use this section to set isotopes that have the
39 | # same potential parameters but different masses
40 | D=H
41 |
42 | [morse]
43 | # Two-body Morse Parameters
44 | # Dr12 : Dissociation energy (in kJ.mol^{-1})
45 | # Brab : Morse Parameter (in pm^{-1})
46 | # lr12 : Equilibrium bond-length (in pm)
47 | # Dr12 , Br12, lr12
48 | HH= 435.1, 0.0199, 74
49 | HF= 560.7, 0.0227, 92
50 | FH= 560.7, 0.0227, 92
51 | HCl= 445.6, 0.0185, 128
52 | ClH= 445.6, 0.0185, 128
53 | FF= 150.6, 0.0160, 142
54 | FCl= 2083.6, 0.0212, 163
55 | ClF= 2083.6, 0.0212, 163
56 | ClCl= 242.7, 0.0203, 199
57 | HI= 309.6, 0.0175, 160
58 | IH= 309.6, 0.0175, 160
59 | II= 150.6, 0.0185, 267
60 | HO= 426.8, 0.0226, 96
61 | OH= 426.8, 0.0226, 96
62 | OO= 221.8, 0.0232, 132
63 |
64 | [limits]
65 | # Plot limits (in pm)
66 | # mina, maxa, minb, maxb
67 | HHH=40, 250, 40, 250
68 | HHF=40, 250, 50, 250
69 | FHH=50, 250, 40, 250
70 | HFH=55, 350, 55, 350
71 | FFH=80, 350, 50, 400
72 | HFF=50, 400, 80, 350
73 | FHF=55, 350, 55, 350
74 | FFF=95, 400, 95, 400
75 | ClHH=90, 400, 35, 350
76 | HHCl=35, 350, 90, 400
77 | HClH=85, 350, 85, 350
78 | HClCl=80, 350, 160, 450
79 | ClClH=160, 450, 80, 350
80 | ClHCl=90, 450, 90, 450
81 | FFCl=60, 350, 120, 550
82 | ClFF=120, 550, 60, 550
83 | FClF=130, 450, 130, 450
84 | ClClF=145, 350, 120, 450
85 | FClCl=120, 450, 145, 350
86 | ClFCl=130, 350, 130, 350
87 | ClClCl=160, 460, 160, 460
88 | HFCl=60, 300, 130, 450
89 | ClFH=130, 450, 60, 300
90 | FHCl=50, 350, 75, 350
91 | ClHF=75, 350, 50, 350
92 | HClF=80, 350, 130, 450
93 | FClH=130, 450, 80, 350
94 | HHI=40, 450, 120, 450
95 | IHH=120, 450, 40, 450
96 | HIH=120, 450, 120, 450
97 | HII=120, 400, 230, 500
98 | IIH=230, 500, 120, 400
99 | IHI=120, 400, 120, 400
100 | III=230, 550, 230, 550
101 | HHO=40, 350, 65, 350
102 | OHH=65, 350, 40, 350
103 | HOH=65, 350, 65, 350
104 | HOO=100, 350, 65, 350
105 | OOH=100, 350, 65, 350
106 | OHO=65, 350, 65, 350
107 | OOO=100, 350, 100, 350
108 |
109 |
--------------------------------------------------------------------------------
/params.py:
--------------------------------------------------------------------------------
1 | #Created on Wed May 17 11:30:28 2017
2 | #
3 | #@author: Tristan Mackenzie
4 | #
5 | # This file is part of LepsPy.
6 | #
7 | # LepsPy is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # LepsPy is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with LepsPy. If not, see .
19 |
20 |
21 | from configparser import ConfigParser
22 | import numpy as np
23 |
24 | def _get_mass(config, key):
25 | '''Get the mass of a given atom from the config file.'''
26 |
27 | try:
28 | d = config['atoms']
29 | l = d[key]
30 | m = float(l.split(',')[0])
31 | except KeyError:
32 | raise KeyError('Mass not available for atom type {}'.format(key))
33 | except:
34 | raise RuntimeError('Parameter file corrupted. Cannot get mass for atom type {}'.format(key))
35 |
36 | return m
37 |
38 | def _get_morse(config, key):
39 | '''Gets parameters for a Morse potential from a config file for a given
40 | combination of 2 atoms.'''
41 |
42 | try:
43 | d = config['morse']
44 | m = d[key]
45 | params = [float(p) for p in m.split(',')]
46 | assert len(params) == 3
47 | except KeyError:
48 | raise KeyError('Morse potential not available for atom pair {}'.format(key))
49 | except:
50 | raise RuntimeError('Parameter file corrupted. Cannot get morse parater for atom pair {}'.format(key))
51 |
52 | return params
53 |
54 | def _get_limits(config, key):
55 | '''Gets plot limits from config file a a given combination of 3 atoms.'''
56 |
57 | try:
58 | d = config['limits']
59 | l = d[key]
60 | limits = [float(p) for p in l.split(',')]
61 | assert len(limits) == 4
62 | except KeyError:
63 | raise KeyError('Limits not available for atoms {}'.format(key))
64 | except:
65 | raise RuntimeError('Parameter file corrupted. Cannot get morse parater for atom pair {}'.format(key))
66 |
67 | return limits
68 |
69 | def params(a,b,c):
70 | '''Gets the parameters for any atom set or returns error message if no
71 | parameters exist.'''
72 |
73 | #Open parameter file
74 | config = ConfigParser(inline_comment_prefixes=(';', '#'))
75 | #The line below allows for dictionary keys with capital letters
76 | config.optionxform = lambda op:op
77 | config.read('params.ini')
78 | try:
79 | isotopes = config['isotopes']
80 | except:
81 | isotopes = {}
82 |
83 | ab = (a + b)
84 | bc = (b + c)
85 | ac = (a + c)
86 | abc = (a + b + c)
87 |
88 | #Replace atoms set by the isotopes section in parameters file
89 | for i, o in isotopes.items():
90 | ab = ab.replace(i, o)
91 | bc = bc.replace(i, o)
92 | ac = ac.replace(i, o)
93 | abc = abc.replace(i, o)
94 |
95 | # Masses
96 | masses = np.array([_get_mass(config, a),_get_mass(config, b),_get_mass(config, c)])
97 |
98 |
99 | # Morse Parameters
100 | morse_params = np.array([_get_morse(config, ab),
101 | _get_morse(config, bc),
102 | _get_morse(config, ac)])
103 |
104 | # Plot Limits
105 | plot_limits = np.reshape(np.array(_get_limits(config, abc)),(2,2))
106 |
107 | return (masses,morse_params,plot_limits)
108 |
--------------------------------------------------------------------------------
/lepsmove.py:
--------------------------------------------------------------------------------
1 | #@author: Tristan Mackenzie
2 | #
3 | # This file is part of LepsPy.
4 | #
5 | # LepsPy is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # LepsPy is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with LepsPy. If not, see .
17 |
18 |
19 | # There are problems with energy conservation when theta is not 180 degrees.
20 | # This might be due to energy transfer into/from rotational motion which is
21 | # not properly described in this treatment (no Coriolis coupling).
22 | # The variation in total energy seems significant, so a bug is not to be rules out.
23 |
24 | import numpy as np
25 | from numpy.linalg.linalg import LinAlgError
26 | from lepspoint import leps_gradient,leps_hessian
27 |
28 |
29 | def _gmat(coord,masses):
30 | '''Calculate the G-matrix of the system.'''
31 | # See E. B. Wildon Jr., J. C. Decius and P. C. Cross "Molecular Vibrations", McGraw-Hill (1955), sec. 4-6
32 |
33 | rAB,rBC,theta = coord
34 |
35 | G12 = np.cos(theta)/masses[1]
36 | G13 = -np.sin(theta)/(rBC*masses[1])
37 | G23 = -np.sin(theta)/(rAB*masses[1])
38 |
39 | G=np.array([[np.sum(1/masses[0:2]), G12, G13],
40 | [G12, np.sum(1/masses[1:3]), G23],
41 | [G13, G23,
42 | np.sum(1/(rAB**2 * masses[0:2])) + \
43 | np.sum(1/(rBC**2 * masses[1:3])) - \
44 | 2*np.cos(theta)/(rAB*rBC*masses[1]**2)]])
45 |
46 | return G
47 |
48 |
49 | def kinetic_energy(coord,mom,masses):
50 | '''
51 | Calculate the kineic energy:
52 |
53 | K = 1/2 mom^T G mom
54 |
55 | coord and mom are arrays in internal coordinates.
56 | masses is an array with masses of the 3 atoms.
57 | '''
58 |
59 | G = _gmat(coord,masses)
60 |
61 | return 0.5 * mom.dot(G).dot(mom)
62 |
63 |
64 | def velocities(coord,mom,masses):
65 | '''
66 | Calculate velocities in internal coordinates.
67 | These don't have a simple relation to momenta.
68 | They are calculate from Hamilton's equations by differentiating the kinetic
69 | energy with respect to momenta.
70 | '''
71 |
72 | G = _gmat(coord,masses)
73 |
74 | return mom.dot(G)
75 |
76 |
77 | def velocity_AC(coord,vAB,vBC):
78 | '''
79 | Calculate internuclear velocity between A and C atoms, by doing
80 | the vecor sum of the AB and BC velocities and projecting it onto
81 | the AC axis.
82 | '''
83 | # setup frame vectors
84 | AB_vec=np.array([coord[0],0])
85 | BC_vec=np.array([-np.cos(coord[2]),np.sin(coord[2])])*coord[1]
86 | AC_vec=AB_vec+BC_vec
87 | # normalise frame vectors
88 | AB_nvec=AB_vec/np.linalg.norm(AB_vec)
89 | BC_nvec=BC_vec/np.linalg.norm(BC_vec)
90 | AC_nvec=AC_vec/np.linalg.norm(AC_vec)
91 |
92 | # velocity vectors
93 | AB_vvec=-vAB*AB_nvec
94 | BC_vvec=-vBC*BC_nvec
95 | AC_vvec=AB_vvec+BC_vvec #note this is not along AC_nvec
96 |
97 | return -np.dot(AC_vvec,AC_nvec)
98 |
99 |
100 | def lepsnorm(coord,mom,masses,gradient,hessian,dt):
101 | '''
102 | Updates coordinates and momenta by a time step.
103 |
104 | coord, mom, gradient and hessian are all arrays in internal coordinates rAB,
105 | rBC and theta.
106 | mass is an array with masses of atoms A, B and C.
107 | dt is the size of the timestep.
108 |
109 | The function first converts from internal coordinates into mass-weighted
110 | normal modes, the displacement is calculated in normal modes, and converted
111 | back to internal coordinates.
112 | '''
113 |
114 | # Transform into normal modes and do dynamics in mass-weighted normal modes
115 | # The transformation does not seem so trivial. Has similarities with the Miyazawa
116 | # method described in: S. Caligano "Vibrational States" John Wiley & Sons (1976) sec. 4.6
117 | # but it is not the same
118 |
119 | GM=_gmat(coord,masses)
120 |
121 | GMVal, GMVec = np.linalg.eigh(GM)
122 |
123 | GMVal1 = GMVal ** 0.5
124 | GMVal2 = GMVal ** (-0.5)
125 |
126 | GRR = GMVec.dot(np.diag(GMVal1)).dot(GMVec.T)
127 | GROOT = GMVec.dot(np.diag(GMVal2)).dot(GMVec.T)
128 |
129 | # G-Matrix Weighted Hessian;
130 | mwhessian = GRR.dot(hessian).dot(GRR)
131 | w2, ALT = np.linalg.eigh(mwhessian) #ALT is antisymmetric version in Fort code but that does not give the right G-Matrix!!!!
132 |
133 | # Gradient Vector in mass-weighted normal modes
134 | gradN = ALT.T.dot(GRR).dot(gradient)
135 |
136 | # Momentum Vector in normal modes
137 | momN = ALT.T.dot(GRR).dot(mom)
138 |
139 | # The dynmics algorithm in mass-weighted normal modes follows:
140 | # T. Helgaker, E. Uggerud, H.J. Aa. Jensen, Chem. Phys Lett. 173(2,3):145-150 (1990)
141 |
142 | displacementN = np.zeros(3)
143 |
144 | epsilon = 1e-14
145 |
146 | for i in range(3):
147 | if w2[i] < - epsilon: # negative curvature of the potential
148 | wmod = abs(w2[i]) ** 0.5
149 | displacementN[i]=momN[i] * np.sinh(wmod*dt) / wmod + gradN[i] * (1 - np.cosh(wmod*dt)) / (wmod**2)
150 | momN[i] = momN[i] * np.cosh(wmod*dt) - gradN[i] * np.sinh(wmod*dt) / wmod
151 | elif abs(w2[i]) < epsilon: # no curvature in potential
152 | displacementN[i] = momN[i] * dt - (0.5 * gradN[i] * (dt ** 2))
153 | momN[i] = momN[i] - gradN[i] * dt
154 | else: # positive curvature of the potential
155 | wroot =w2[i] ** 0.5
156 | displacementN[i]=momN[i] * np.sin(wroot*dt) / wroot - gradN[i] * (1 - np.cos(wroot*dt)) / (wroot**2)
157 | momN[i] = momN[i] * np.cos(wroot*dt) - gradN[i] * np.sin(wroot*dt) / wroot
158 |
159 | # update coordinates by first transforming displacementN into internal coordinates
160 | coord = coord + GRR.dot(ALT).dot(displacementN)
161 |
162 | # transform updated momentum back into internal coordinates
163 | mom = GROOT.dot(ALT).dot(momN)
164 |
165 | return (coord,mom)
166 |
167 |
168 | def calc_trajectory(coord_init,mom_init,masses,morse_params,sato,steps,dt,calc_type):
169 | '''
170 | Make the system move. This may be the calculation of a inertial trajectory
171 | (calc_type="Dynamics"), a minimum energy path (calc_type="MEP"), a local
172 | monimum or transitions state search (calc_type="Opt Min" or calc_type="Opt TS").
173 |
174 | The function outputs a trajectory array with position and momenta, and a string
175 | which may contain an error message.
176 | '''
177 |
178 | # Rewrite inputs to avoid side effects
179 | coord=coord_init
180 | mom=mom_init
181 | step_size=dt
182 |
183 | # If not doing Dynamics (MEP, Opt Min or Opt TS), set initial momenta to zero
184 | if calc_type != "Dynamics":
185 | mom=np.zeros(3)
186 |
187 | # If doing a MEP increase step size to compensate absence of inertial term
188 | if calc_type == "MEP":
189 | step_size = 15*dt
190 |
191 | #Initialise outputs
192 | trajectory = [np.column_stack((coord,mom))]
193 | error = ""
194 |
195 | #Flag to stop appending to output in case of a crash
196 | terminate = False
197 |
198 | itcounter = 0
199 | while itcounter < steps and not terminate:
200 | itcounter = itcounter+1
201 |
202 | #Get current gradient, and Hessian
203 | #(array unpacking *coord used below only works for python 3.5 or higher)
204 | gradient = leps_gradient(*coord,morse_params,sato)
205 | hessian = leps_hessian(*coord,morse_params,sato)
206 |
207 | if calc_type in ["Opt Min", "Opt TS"]: #Optimisation calculations
208 |
209 | #Diagonalise Hessian
210 | eigenvalues, eigenvectors = np.linalg.eigh(hessian)
211 |
212 | #Eigenvalue test
213 | neg_eig = [eig for eig in eigenvalues if eig < -1e-14]
214 | if len(neg_eig) == 0 and calc_type == "Opt TS":
215 | error="Eigenvalues Info::No negative curvatures at this geometry"
216 | terminate = True
217 | elif len(neg_eig) > 0 and calc_type == "Opt Min":
218 | error="Eigenvalues Error::Too many negative curvatures at this geometry"
219 | terminate = True
220 | elif len(neg_eig) > 1:
221 | error="Eigenvalues Error::Too many negative curvatures at this geometry"
222 | terminate = True
223 |
224 | #Optimiser
225 | disps = np.zeros(3)
226 | for mode in range(len(eigenvalues)):
227 | e_val = eigenvalues[mode]
228 | e_vec = eigenvectors[:,mode] #eigenvectors are the columns
229 |
230 | #disp is a vector with the same direction as e_vec
231 | disp = np.dot(e_vec, -gradient) * e_vec / e_val
232 | disps += disp
233 |
234 | # update positions
235 | # use dt to scale the step
236 | coord = coord + dt*disps
237 |
238 | else: #Dynamics/MEP
239 |
240 | try:
241 | coord,mom = lepsnorm(coord,mom,masses,gradient,hessian,step_size)
242 | except LinAlgError:
243 | error="Surface Error::Energy could not be evaluated at step {}. Positions might be beyond the validity of the surface. Steps truncated".format(itcounter + 1)
244 | terminate = True
245 |
246 | if calc_type=="MEP":
247 | # reset momenta to zero if doing a MEP
248 | mom=np.zeros(3)
249 |
250 | if not terminate:
251 | # Update records
252 | trajectory.append(np.column_stack((coord,mom)))
253 |
254 | # convert to array and return
255 | return (np.array(trajectory),error)
256 |
--------------------------------------------------------------------------------
/lepspoint.py:
--------------------------------------------------------------------------------
1 | #Created on Wed May 17 10:41:56 2017
2 | #
3 | #@author: Tristan Mackenzie
4 | #
5 | # This file is part of LepsPy.
6 | #
7 | # LepsPy is free software: you can redistribute it and/or modify
8 | # it under the terms of the GNU General Public License as published by
9 | # the Free Software Foundation, either version 3 of the License, or
10 | # (at your option) any later version.
11 | #
12 | # LepsPy is distributed in the hope that it will be useful,
13 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | # GNU General Public License for more details.
16 | #
17 | # You should have received a copy of the GNU General Public License
18 | # along with LepsPy. If not, see .
19 |
20 |
21 | # This file contains functions that calculate the London-Eyring-Polanyi-Sato (LEPS)
22 | # potential for a set of internal coordinates (2 bond distances and a bond angle),
23 | # as well and the gradient and hessian of the surface with respect to the internal
24 | # coordinates at that point of the surface.
25 |
26 |
27 | import numpy as np
28 |
29 | #this state variable looks strange
30 | state = 1 # 1 for ground state, >1 for excited states
31 |
32 |
33 | def cos_rule(side1,side2,angle):
34 | '''
35 | Use the cos rule to calculate the length of the side of a triangle,
36 | given the other 2 side lengths and the angle between them.
37 | '''
38 |
39 | return (side1**2 + side2**2 - 2*side1*side2*np.cos(angle))**0.5
40 |
41 |
42 | def _morse(r,D,B,re):
43 | '''Morse potential with a dissociation limit at 0.'''
44 |
45 | return D*(np.exp(-2*B*(r-re)) - 2*np.exp(-B*(r-re)))
46 |
47 |
48 | def _morse_deriv1(r,D,B,re):
49 | '''First derivative of the Morse potential with respect to r.'''
50 |
51 | return -2*B*D*(np.exp(-2*B*(r-re)) - np.exp(-B*(r-re)))
52 |
53 |
54 | def _morse_deriv2(r,D,B,re):
55 | '''Second derivative of the Morse potential with respect to r.'''
56 |
57 | return 2 * B**2 * D*(2*np.exp(-2*B*(r-re)) - np.exp(-B*(r-re)))
58 |
59 |
60 | def _anti_morse(r,D,B,re):
61 | '''Potential with functional form similar to Morse, used as the triplet
62 | component of the LEPS potential.'''
63 |
64 | return 0.5*D*(np.exp(-2*B*(r-re)) + 2*np.exp(-B*(r-re)))
65 |
66 |
67 | def _anti_morse_deriv1(r,D,B,re):
68 | '''First derivative of the anti-Morse potential with respect to r.'''
69 |
70 | return -B*D*(np.exp(-2*B*(r-re)) + np.exp(-B*(r-re)))
71 |
72 |
73 | def _anti_morse_deriv2(r,D,B,re):
74 | '''Second derivative of the anti-Morse potential with respect to r.'''
75 |
76 | return B**2 * D*(2*np.exp(-2*B*(r-re)) + np.exp(-B*(r-re)))
77 |
78 |
79 | def _coulomb(morse,anti_morse,k):
80 | '''Calculate Coulomb (Q) integral in the LEPS approximation.
81 | The function is also used to compute the derivatives of Q since it is linear
82 | on the morse and anti_morse components.'''
83 |
84 | return 0.5*(morse + anti_morse + k*(morse - anti_morse))
85 |
86 |
87 | def _exchange(morse,anti_morse,k):
88 | '''Calculate Exchange (J) integral in the LEPS approximation.
89 | The function is also used to compute the derivatives of J since it is linear
90 | on the morse and anti_morse components.'''
91 |
92 | return 0.5*(morse - anti_morse + k*(morse + anti_morse))
93 |
94 |
95 | def leps_energy(rAB,rBC,theta,params,k):
96 | '''Calculate LEPS potential energy for a given point in internal coordinates
97 | int_coord=array([rAB,rBC,theta])
98 | params=array([[D_A,B_A,re_A],
99 | [D_B.B_B,re_B],
100 | [D_C,B_C,re_C]]).'''
101 |
102 | #Build array with distances rAB,rBC and rAC
103 | #moveaxis has no effect for a single point, but allows vectorisation of the function
104 | r=np.moveaxis(np.array([rAB,rBC,cos_rule(rAB,rBC,theta)]),0,-1)
105 |
106 | #Coulomb and Exchange integrals
107 | Q=_coulomb(_morse(r,params[:,0],params[:,1],params[:,2]),
108 | _anti_morse(r,params[:,0],params[:,1],params[:,2]),k)
109 | J=_exchange(_morse(r,params[:,0],params[:,1],params[:,2]),
110 | _anti_morse(r,params[:,0],params[:,1],params[:,2]),k)
111 |
112 | #axis=-1 below allows vectorisation of the function
113 | return 1/(1+k) * (np.sum(Q,axis=-1) - state/2**0.5 *np.linalg.norm(J - np.roll(J,-1,axis=-1),axis=-1))
114 |
115 |
116 | def leps_gradient(rAB,rBC,theta,params,k):
117 | '''Calculates the gradient of LEPS potential for a given point in internal coordinates
118 | int_coord=array([rAB,rBC,theta])
119 | params=array([[D_A,B_A,re_A],
120 | [D_B.B_B,re_B],
121 | [D_C,B_C,re_C]]).
122 | The gradient is given in internal coordinates:
123 | grad=array([dV/drAB,dV/drBC,dV/dtheta]).'''
124 |
125 | #Build array with distances rAB,rBC and rAC
126 | r=np.array([rAB,rBC,cos_rule(rAB,rBC,theta)])
127 |
128 | #Exchange integrals (Coulomb not needed)
129 | J=_exchange(_morse(r,params[:,0],params[:,1],params[:,2]),
130 | _anti_morse(r,params[:,0],params[:,1],params[:,2]),k)
131 |
132 | #Partial derivative of Coulomb and Exchange integrals with respect to inter-atomic distances
133 | #this uses _coulomb() and _exchange() functions because they are linear functions
134 | partial_Q_r=_coulomb(_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),
135 | _anti_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),k)
136 | partial_J_r=_exchange(_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),
137 | _anti_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),k)
138 |
139 | #Note that Q_AC and J_AC depend on rAB and rBC. Calculated eg. dQ_AC/drAB = dQ_AC/drAC * drAC/drAB
140 | #Make array of the derivative of rAC with respect to the internal coordinate
141 | drACdint=np.array([r[0] - r[1]*np.cos(theta),r[1] - r[0]*np.cos(theta),r[0] * r[1]*np.sin(theta)])/r[2]
142 |
143 | #Calculate derivative of the Coulombic part of the potential with respect to the internal coordinates.
144 | #Only Q_AC depends on theta
145 | Qpart_grad_int=np.array([partial_Q_r[0],partial_Q_r[1],0]) + partial_Q_r[2] * drACdint
146 |
147 | #Calculate derivative of the Exchange part of the potential with respect to the internal coordinates.
148 | #Only J_AC depends on theta
149 | Jdiff = J - np.roll(J,-1)
150 |
151 | Jpart_grad_rAB=np.sum(Jdiff*(np.array([1,0,-1])*partial_J_r[0]+np.array([0,-1,1])*partial_J_r[2]*drACdint[0]))
152 | Jpart_grad_rBC=np.sum(Jdiff*(np.array([-1,1,0])*partial_J_r[1]+np.array([0,-1,1])*partial_J_r[2]*drACdint[1]))
153 | Jpart_grad_theta=np.sum(Jdiff*np.array([0,-1,1])*partial_J_r[2]*drACdint[2])
154 |
155 | Jpart_grad_int=-state/(2**0.5 * np.linalg.norm(Jdiff)) * np.array([Jpart_grad_rAB,Jpart_grad_rBC,Jpart_grad_theta])
156 |
157 | return 1/(1+k) * (Qpart_grad_int + Jpart_grad_int)
158 |
159 |
160 | def leps_hessian(rAB,rBC,theta,params,k):
161 | '''Calculates the Hessian of LEPS potential for a given point in internal coordinates
162 | params=array([[D_A,B_A,re_A],
163 | [D_B.B_B,re_B],
164 | [D_C,B_C,re_C]]).
165 | The gradient is given in internal coordinates,'''
166 |
167 | #Build array with distances rAB,rBC and rAC
168 | r=np.array([rAB,rBC,cos_rule(rAB,rBC,theta)])
169 |
170 | #Exchange integrals (Coulomb not needed)
171 | J=_exchange(_morse(r,params[:,0],params[:,1],params[:,2]),
172 | _anti_morse(r,params[:,0],params[:,1],params[:,2]),k)
173 |
174 | #Partial first and second derivatives of Coulomb and Exchange integrals with respect to inter-atomic distances
175 | #this uses _coulomb() and _exchange() functions because they are linear functions
176 | partial_Q_r=_coulomb(_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),
177 | _anti_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),k)
178 | partial_J_r=_exchange(_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),
179 | _anti_morse_deriv1(r,params[:,0],params[:,1],params[:,2]),k)
180 | partial2_Q_r=_coulomb(_morse_deriv2(r,params[:,0],params[:,1],params[:,2]),
181 | _anti_morse_deriv2(r,params[:,0],params[:,1],params[:,2]),k)
182 | partial2_J_r=_exchange(_morse_deriv2(r,params[:,0],params[:,1],params[:,2]),
183 | _anti_morse_deriv2(r,params[:,0],params[:,1],params[:,2]),k)
184 |
185 | #Note that Q_AC and J_AC depend on rAB and rBC.
186 | #Make array of first derivatives of rAC with respect to the internal coordinate
187 | drACdint=np.array([r[0] - r[1]*np.cos(theta),r[1] - r[0]*np.cos(theta),r[0] * r[1]*np.sin(theta)])/r[2]
188 |
189 | #Make matrix of second derivatives of rAC with respect to the internal coordinate
190 | #d2rAC/dint2=array([[d2rAC/drAB2,d2rAC/(drABdrBC),d2rAC/(drABdtheta)],
191 | # [d2rAC/(drABdrBC),d2rAC/drBC2,d2rAC/(drBCdtheta)],
192 | # [d2rAC/(drABdtheta),d2rAC/(drBCdtheta),d2rAC/dtheta2]])
193 | d2rACdint2=np.array([[r[1]**2 * np.sin(theta)**2,-r[0]*r[1]*np.sin(theta)**2,r[1]**2 * np.sin(theta) * (r[1]-r[0]*np.cos(theta))],
194 | [-r[0]*r[1]*np.sin(theta)**2,r[0]**2 * np.sin(theta)**2,r[0]**2 * np.sin(theta) * (r[0]-r[1]*np.cos(theta))],
195 | [r[1]**2 * np.sin(theta) * (r[1]-r[0]*np.cos(theta)),r[0]**2 * np.sin(theta) * (r[0]-r[1]*np.cos(theta)),r[0]*r[1]*r[2]**2*np.cos(theta) - r[0]**2 * r[1]**2 *np.sin(theta)**2]]) / (r[2]**3)
196 |
197 | #Calculate Coulombic contribution to the Hessian
198 | Qpart_hess_int=np.diag(np.array([partial2_Q_r[0],partial2_Q_r[1],0])) + \
199 | partial_Q_r[2] * d2rACdint2 + \
200 | partial2_Q_r[2] * (drACdint * np.expand_dims(drACdint, axis=1)) #this last line is using broadcasting of 2 vectors to give a matrix
201 |
202 | #Calculate Exchange contribution to the Hessian
203 | #Divide into 2 parts.
204 | Jdiff = J - np.roll(J,-1)
205 | Jdiff_norm= np.linalg.norm(Jdiff)
206 |
207 | Jpart1_hess_drAB2=np.sum(Jdiff*(np.array([1,0,-1])*partial_J_r[0]+np.array([0,-1,1])*partial_J_r[2]*drACdint[0]))**2
208 | Jpart1_hess_drABdrBC=np.sum(Jdiff*(np.array([1,0,-1])*partial_J_r[0]+np.array([0,-1,1])*partial_J_r[2]*drACdint[0])) * \
209 | np.sum(Jdiff*(np.array([-1,1,0])*partial_J_r[1]+np.array([0,-1,1])*partial_J_r[2]*drACdint[1]))
210 | Jpart1_hess_drABdtheta=np.sum(Jdiff*(np.array([1,0,-1])*partial_J_r[0]+np.array([0,-1,1])*partial_J_r[2]*drACdint[0])) * \
211 | np.sum(Jdiff*np.array([0,-1,1])*partial_J_r[2]*drACdint[2])
212 | Jpart1_hess_drBC2=np.sum(Jdiff*(np.array([-1,1,0])*partial_J_r[1]+np.array([0,-1,1])*partial_J_r[2]*drACdint[1]))**2
213 | Jpart1_hess_drBCdtheta=np.sum(Jdiff*(np.array([-1,1,0])*partial_J_r[1]+np.array([0,-1,1])*partial_J_r[2]*drACdint[1])) * \
214 | np.sum(Jdiff*np.array([0,-1,1])*partial_J_r[2]*drACdint[2])
215 | Jpart1_hess_dtheta2=np.sum(Jdiff*np.array([0,-1,1])*partial_J_r[2]*drACdint[2])**2
216 |
217 | Jpart1_hess_int=-1/Jdiff_norm**3 * np.array([[Jpart1_hess_drAB2,Jpart1_hess_drABdrBC,Jpart1_hess_drABdtheta],
218 | [Jpart1_hess_drABdrBC,Jpart1_hess_drBC2,Jpart1_hess_drBCdtheta],
219 | [Jpart1_hess_drABdtheta,Jpart1_hess_drBCdtheta,Jpart1_hess_dtheta2]])
220 |
221 | Jpart2_hess_drAB2=np.sum(Jdiff*(np.array([1,0,-1])*partial2_J_r[0]+np.array([0,-1,1])*(partial2_J_r[2]*drACdint[0]**2+partial_J_r[2]*d2rACdint2[0,0]))) + \
222 | 2*(partial_J_r[0]**2+(partial_J_r[2]*drACdint[0])**2-partial_J_r[0]*partial_J_r[2]*drACdint[0])
223 | Jpart2_hess_drABdrBC=np.sum(Jdiff*np.array([0,-1,1])*(partial2_J_r[2]*drACdint[0]*drACdint[1]+partial_J_r[2]*d2rACdint2[0,1])) + \
224 | (-partial_J_r[0]*partial_J_r[1]-partial_J_r[0]*partial_J_r[2]*drACdint[1]-partial_J_r[1]*partial_J_r[2]*drACdint[0] + \
225 | 2*partial_J_r[2]**2*drACdint[0]*drACdint[1])
226 | Jpart2_hess_drABdtheta=np.sum(Jdiff*np.array([0,-1,1])*(partial2_J_r[2]*drACdint[0]*drACdint[2]+partial_J_r[2]*d2rACdint2[0,2])) + \
227 | (-partial_J_r[0]*partial_J_r[2]*drACdint[2] + 2*partial_J_r[2]**2*drACdint[0]*drACdint[2])
228 | Jpart2_hess_drBC2=np.sum(Jdiff*(np.array([-1,1,0])*partial2_J_r[1]+np.array([0,-1,1])*(partial2_J_r[2]*drACdint[1]**2+partial_J_r[2]*d2rACdint2[1,1]))) + \
229 | 2*(partial_J_r[1]**2+(partial_J_r[2]*drACdint[1])**2-partial_J_r[1]*partial_J_r[2]*drACdint[1])
230 | Jpart2_hess_drBCdtheta=np.sum(Jdiff*np.array([0,-1,1])*(partial2_J_r[2]*drACdint[1]*drACdint[2]+partial_J_r[2]*d2rACdint2[1,2])) + \
231 | (-partial_J_r[1]*partial_J_r[2]*drACdint[2] + 2*partial_J_r[2]**2*drACdint[1]*drACdint[2])
232 | Jpart2_hess_dtheta2=np.sum(Jdiff*np.array([0,-1,1])*(partial2_J_r[2]*drACdint[2]**2+partial_J_r[2]*d2rACdint2[2,2])) + \
233 | 2*(partial_J_r[2]*drACdint[2])**2
234 |
235 | Jpart2_hess_int=1/Jdiff_norm * np.array([[Jpart2_hess_drAB2,Jpart2_hess_drABdrBC,Jpart2_hess_drABdtheta],
236 | [Jpart2_hess_drABdrBC,Jpart2_hess_drBC2,Jpart2_hess_drBCdtheta],
237 | [Jpart2_hess_drABdtheta,Jpart2_hess_drBCdtheta,Jpart2_hess_dtheta2]])
238 |
239 | return 1/(1+k)*(Qpart_hess_int + (-state/2**0.5 * (Jpart1_hess_int+Jpart2_hess_int)))
240 |
241 |
--------------------------------------------------------------------------------
/lepsplots.py:
--------------------------------------------------------------------------------
1 | #@author: Tristan Mackenzie
2 | #
3 | # This file is part of LepsPy.
4 | #
5 | # LepsPy is free software: you can redistribute it and/or modify
6 | # it under the terms of the GNU General Public License as published by
7 | # the Free Software Foundation, either version 3 of the License, or
8 | # (at your option) any later version.
9 | #
10 | # LepsPy is distributed in the hope that it will be useful,
11 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | # GNU General Public License for more details.
14 | #
15 | # You should have received a copy of the GNU General Public License
16 | # along with LepsPy. If not, see .
17 |
18 |
19 | from lepspoint import leps_energy,cos_rule
20 | from lepsmove import kinetic_energy,velocities,velocity_AC
21 |
22 | import numpy as np
23 |
24 | import matplotlib.pyplot as plt
25 | import matplotlib.collections as mcoll
26 | from matplotlib.animation import FuncAnimation
27 | from mpl_toolkits.mplot3d import Axes3D
28 |
29 |
30 | def plot_contour(trajectory,x_grid,y_grid,Vmat,cutoff,spacing):
31 | """Contour Plot"""
32 | plt.clf()
33 | ax = plt.gca()
34 | ax.get_xaxis().get_major_formatter().set_useOffset(False)
35 | ax.get_yaxis().get_major_formatter().set_useOffset(False)
36 |
37 | plt.xlabel("AB Distance/pm")
38 | plt.ylabel("BC Distance/pm")
39 |
40 | X, Y = np.meshgrid(x_grid, y_grid)
41 |
42 | levels = np.arange(np.min(Vmat) -1, cutoff, spacing)
43 | plt.contour(X, Y, Vmat, levels = levels)
44 | plt.xlim([min(x_grid),max(x_grid)])
45 | plt.ylim([min(y_grid),max(y_grid)])
46 |
47 | if max(trajectory[:,2,0])-min(trajectory[:,2,0]) < 1e-7:
48 | plt.plot(trajectory[:,0,0], trajectory[:,1,0], linestyle='', marker='o', markersize=1.5, color='black')
49 |
50 | # highlight initial position
51 | plt.plot(trajectory[:1,0,0], trajectory[:1,1,0], marker='x', markersize=6, color="red")
52 |
53 | plt.draw()
54 | plt.pause(0.0001) #This stops matplotlib from blocking
55 |
56 |
57 | def plot_skew(trajectory,masses,x_grid,y_grid,Vmat,cutoff,spacing):
58 | """Skew Plot"""
59 | #
60 | #Taken from:
61 | #Introduction to Quantum Mechanics: A Time-Dependent Perspective
62 | #Chapter 12.3.3
63 | #
64 | #Transform X and Y to Q1 and Q2, where
65 | #Q1 = a*X + b*Y*cos(beta)
66 | #Q2 = b*Y*sin(beta)
67 | #a = ((m_A * (m_B + m_C)) / (m_A + m_B + m_C)) ** 0.5
68 | #b = ((m_C * (m_A + m_B)) / (m_A + m_B + m_C)) ** 0.5
69 | #beta = cos-1(((m_A * m_C) / ((m_B + m_C) * (m_A + m_B))) ** 0.5)
70 | #
71 | #m_i: mass of atom i
72 |
73 | plt.clf()
74 | ax = plt.gca()
75 | ax.get_xaxis().get_major_formatter().set_useOffset(False)
76 | ax.get_yaxis().get_major_formatter().set_useOffset(False)
77 |
78 | plt.xlabel("Q1/$pm.g^{1/2}.mol^{-1/2}$")
79 | plt.ylabel("Q2/$pm.g^{1/2}.mol^{-1/2}$")
80 |
81 | X, Y = np.meshgrid(x_grid, y_grid)
82 |
83 | ma,mb,mc = masses
84 |
85 | a = ((ma * (mb + mc)) / np.sum(masses)) ** 0.5
86 | b = ((mc * (ma + mb)) / np.sum(masses)) ** 0.5
87 | beta = np.arccos(((ma * mc) / ((mb + mc) * (ma + mb))) ** 0.5)
88 |
89 | #Transform grid
90 | Q1 = a * X + b * Y * np.cos(beta)
91 | Q2 = b * Y * np.sin(beta)
92 |
93 | #Plot gridlines every 30pm
94 | splot_grid_x = list(np.arange(x_grid[0], x_grid[-1], 30))+[x_grid[-1]]
95 | splot_grid_y = list(np.arange(y_grid[0], y_grid[-1], 30))+[y_grid[-1]]
96 |
97 | for x in splot_grid_x:
98 | r1 = [x, splot_grid_y[ 0]]
99 | r2 = [x, splot_grid_y[-1]]
100 |
101 | q1 = [a * r1[0] + b * r1[1] * np.cos(beta), b * r1[1] * np.sin(beta)]
102 | q2 = [a * r2[0] + b * r2[1] * np.cos(beta), b * r2[1] * np.sin(beta)]
103 |
104 | plt.plot([q1[0], q2[0]], [q1[1], q2[1]], linewidth=1, color='gray')
105 | plt.text(q2[0], q2[1], str(int(x))) #round label to integer
106 |
107 | for y in splot_grid_y:
108 | r1 = [splot_grid_x[ 0], y]
109 | r2 = [splot_grid_x[-1], y]
110 |
111 | q1 = [a * r1[0] + b * r1[1] * np.cos(beta), b * r1[1] * np.sin(beta)]
112 | q2 = [a * r2[0] + b * r2[1] * np.cos(beta), b * r2[1] * np.sin(beta)]
113 |
114 | plt.plot([q1[0], q2[0]], [q1[1], q2[1]], lw=1, color='gray')
115 | plt.text(q2[0], q2[1], str(int(y))) #round label to integer
116 |
117 | #Plot transformed PES
118 | levels = np.arange(np.min(Vmat) -1, cutoff, spacing)
119 | plt.contour(Q1, Q2, Vmat, levels = levels)
120 | plt.autoscale()
121 | plt.axes().set_aspect('equal')
122 |
123 | srab = a * trajectory[:,0,0] + b * trajectory[:,1,0] * np.cos(beta)
124 | srbc = b * trajectory[:,1,0] * np.sin(beta)
125 |
126 | if max(trajectory[:,2,0])-min(trajectory[:,2,0]) < 1e-7:
127 | #Plot transformed trajectory
128 | plt.plot(srab, srbc, linestyle='', marker='o', markersize=1.5, color='black')
129 |
130 | # highlight initial position
131 | plt.plot(srab[0], srbc[0], marker='x', markersize=6, color="red")
132 |
133 | plt.draw()
134 | plt.pause(0.0001)
135 |
136 |
137 | def plot_surface(trajectory,morse_params,sato,x_grid,y_grid,Vmat,cutoff,spacing):
138 | """3d Surface Plot"""
139 |
140 | plt.close('all') #New figure needed for 3D axes
141 | fig_3d = plt.figure('Surface Plot', figsize=(5,5))
142 |
143 | ax = Axes3D(fig_3d)
144 |
145 | plt.xlabel("AB Distance/pm")
146 | plt.ylabel("BC Distance/pm")
147 | ax.set_zlabel("V/$kJ.mol^{-1}$")
148 |
149 | X, Y = np.meshgrid(x_grid, y_grid)
150 | ax.set_xlim3d([min(x_grid),max(x_grid)])
151 | ax.set_ylim3d([min(y_grid),max(y_grid)])
152 |
153 | Z = np.clip(Vmat, -800, cutoff)
154 |
155 | ax.plot_surface(X, Y, Z, rstride=int(spacing)+1, cstride=int(spacing)+1, cmap='jet', alpha=0.3, linewidth=0.25, edgecolor='black')
156 |
157 | levels = np.arange(np.min(Vmat) -1, cutoff, spacing)
158 | ax.contour(X, Y, Z, zdir='z', levels=levels, offset=ax.get_zlim()[0]-1)
159 |
160 | if max(trajectory[:,2,0])-min(trajectory[:,2,0]) < 1e-7:
161 | ax.plot(trajectory[:,0,0], trajectory[:,1,0],
162 | leps_energy(trajectory[:,0,0],trajectory[:,1,0],trajectory[:,2,0],morse_params,sato),
163 | color='black', linestyle='none', marker='o', markersize=2)
164 |
165 | plt.draw()
166 | plt.pause(0.0001)
167 |
168 |
169 | def plot_ind_vs_t(trajectory,dt,calc_type):
170 | """Internuclear Distances VS Time"""
171 | plt.clf()
172 | ax = plt.gca()
173 | ax.get_xaxis().get_major_formatter().set_useOffset(False)
174 | ax.get_yaxis().get_major_formatter().set_useOffset(False)
175 |
176 | if calc_type == "Dynamics":
177 | xaxis=dt*np.arange(len(trajectory))
178 | plt.xlabel("Time/fs")
179 | else:
180 | xaxis=np.arange(len(trajectory))
181 | plt.xlabel("Steps")
182 |
183 | plt.ylabel("Distance/pm")
184 |
185 | plt.plot(xaxis, trajectory[:,0,0], label = "A-B")
186 | plt.plot(xaxis, trajectory[:,1,0], label = "B-C")
187 | plt.plot(xaxis, cos_rule(trajectory[:,0,0],trajectory[:,1,0],trajectory[:,2,0]), label = "A-C")
188 |
189 | plt.legend()
190 |
191 | plt.draw()
192 | plt.pause(0.0001)
193 |
194 |
195 | def plot_inv_vs_t(trajectory,masses,dt,calc_type):
196 | """Internuclear velocities VS time"""
197 | plt.clf()
198 | ax = plt.gca()
199 | ax.get_xaxis().get_major_formatter().set_useOffset(False)
200 | ax.get_yaxis().get_major_formatter().set_useOffset(False)
201 |
202 | # calculate velocities
203 | veloc=[]
204 | for point in trajectory:
205 | # velicities in internal coordinates
206 | internal_veloc=list(velocities(point[:,0],point[:,1],masses))
207 | # calculate magnitude of veloctity between AC
208 | vAC=velocity_AC(point[:,0],*internal_veloc[0:2])
209 | # make list of internuclear velocities
210 | in_veloc=internal_veloc[0:2]+[vAC]
211 |
212 | veloc.append(in_veloc)
213 |
214 | veloc=np.array(veloc)
215 |
216 | if calc_type == "Dynamics":
217 | xaxis=dt*np.arange(len(trajectory))
218 | plt.xlabel("Time/fs")
219 | else:
220 | xaxis=np.arange(len(trajectory))
221 | plt.xlabel("Steps")
222 |
223 | plt.ylabel("$Velocity/pm.fs^{-1}$")
224 |
225 | plt.plot(xaxis, veloc[:,0], label = "A-B")
226 | plt.plot(xaxis, veloc[:,1], label = "B-C")
227 | plt.plot(xaxis, veloc[:,2], label = "A-C")
228 |
229 | plt.legend()
230 |
231 | plt.draw()
232 | plt.pause(0.0001)
233 |
234 |
235 | def plot_momenta_vs_t(trajectory,dt,calc_type):
236 | """Momenta VS Time"""
237 | plt.clf()
238 | ax = plt.gca()
239 | ax.get_xaxis().get_major_formatter().set_useOffset(False)
240 | ax.get_yaxis().get_major_formatter().set_useOffset(False)
241 |
242 | if calc_type == "Dynamics":
243 | xaxis=dt*np.arange(len(trajectory))
244 | plt.xlabel("Time/fs")
245 | else:
246 | xaxis=np.arange(len(trajectory))
247 | plt.xlabel("Steps")
248 |
249 | plt.ylabel("$Momentum/g.mol^{-1}.pm.fs^{-1}$")
250 |
251 | plt.plot(xaxis, trajectory[:,0,1], label = "A-B")
252 | plt.plot(xaxis, trajectory[:,1,1], label = "B-C")
253 | plt.plot(xaxis, trajectory[:,2,1], label = "θ")
254 |
255 | plt.legend()
256 |
257 | plt.draw()
258 | plt.pause(0.0001)
259 |
260 |
261 | def plot_momenta(trajectory):
262 | """AB Momentum VS BC Momentum"""
263 | plt.clf()
264 | ax = plt.gca()
265 |
266 | plt.xlabel("AB Momentum/$g.mol^{-1}.pm.fs^{-1}$")
267 | plt.ylabel("BC Momentum/$g.mol^{-1}.pm.fs^{-1}$")
268 |
269 | lc = colorline(trajectory[:,0,1], trajectory[:,1,1], cmap = plt.get_cmap("jet"), linewidth=1)
270 |
271 | ax.add_collection(lc)
272 | ax.autoscale()
273 | plt.draw()
274 | plt.pause(0.0001)
275 |
276 |
277 | def plot_velocities(trajectory,masses):
278 | """AB Velocity VS BC Velocity"""
279 |
280 | # calculate velocities in internal coordinates
281 | veloc=[]
282 | for point in trajectory:
283 | veloc.append(velocities(point[:,0],point[:,1],masses))
284 | veloc=np.array(veloc)
285 |
286 | plt.clf()
287 | ax = plt.gca()
288 |
289 | plt.xlabel("AB Velocity/$pm.fs^{-1}$")
290 | plt.ylabel("BC Velocity/$pm.fs^{-1}$")
291 |
292 | lc = colorline(veloc[:,0], veloc[:,1], cmap = plt.get_cmap("jet"), linewidth=1)
293 |
294 | ax.add_collection(lc)
295 | ax.autoscale()
296 | plt.draw()
297 | plt.pause(0.0001)
298 |
299 |
300 | def plot_e_vs_t(trajectory,masses,morse_params,sato,dt,calc_type):
301 | """Energy VS Time"""
302 | plt.clf()
303 | ax = plt.gca()
304 | ax.get_xaxis().get_major_formatter().set_useOffset(False)
305 | ax.get_yaxis().get_major_formatter().set_useOffset(False)
306 |
307 | if calc_type == "Dynamics":
308 | xaxis=dt*np.arange(len(trajectory))
309 | plt.xlabel("Time/fs")
310 | else:
311 | xaxis=np.arange(len(trajectory))
312 | plt.xlabel("Steps")
313 |
314 | plt.ylabel("E/$kJ.mol^{-1}$")
315 |
316 | # calculate energies
317 | V=np.zeros(len(trajectory))
318 | K=np.zeros(len(trajectory))
319 | for i,point in enumerate(trajectory):
320 | V[i]=leps_energy(*point[:,0],morse_params,sato)
321 | K[i]=kinetic_energy(point[:,0],point[:,1],masses)
322 |
323 | plt.plot(xaxis, V, label = "Potential Energy")
324 | plt.plot(xaxis, K, label = "Kinetic Energy")
325 | plt.plot(xaxis, V+K, label = "Total Energy")
326 |
327 | plt.legend()
328 |
329 | plt.draw()
330 | plt.pause(0.0001)
331 |
332 |
333 | def animation(trajectory,masses,atom_list,atom_map):
334 | """Animation"""
335 | plt.close('all')
336 | ani_fig = plt.figure('Animation', figsize=(5,5))
337 |
338 | #Positions in space of A, B and C relative to B
339 | frames = len(trajectory)
340 | positions = np.column_stack((- trajectory[:,0,0], np.zeros(frames),
341 | np.zeros(frames), np.zeros(frames),
342 | - np.cos(trajectory[:,2,0]) * trajectory[:,1,0],
343 | np.sin(trajectory[:,2,0]) * trajectory[:,1,0]))
344 | positions = np.reshape(positions,(frames,3,2))
345 |
346 | #Get centre of mass
347 | com = masses.dot(positions[:])/np.sum(masses)
348 |
349 | #Translate to centre of mass (there might be a way to do this only with array operations)
350 | positions = positions - np.reshape(np.column_stack((com,com,com)),(frames,3,2))
351 |
352 | def init():
353 | ap, bp, cp = patches
354 | ax.add_patch(ap)
355 | ax.add_patch(bp)
356 | ax.add_patch(cp)
357 | return ap, bp, cp,
358 |
359 | def update(i):
360 | ap, bp, cp = patches
361 | ap.center = positions[i,0]
362 | bp.center = positions[i,1]
363 | cp.center = positions[i,2]
364 | return ap, bp, cp,
365 |
366 | ax = plt.axes(
367 | xlim = (min(np.ravel(positions[:,:,0])) - 100, max(np.ravel(positions[:,:,0])) + 100),
368 | ylim = (min(np.ravel(positions[:,:,1])) - 100, max(np.ravel(positions[:,:,1])) + 100)
369 | )
370 | ax.set_aspect('equal')
371 |
372 | patches = []
373 |
374 | for i,at_name in enumerate(atom_list):
375 | vdw, col = atom_map[at_name]
376 | patch = plt.Circle(positions[0,i], vdw * 0.25, color = col)
377 | patches.append(patch)
378 |
379 | anim = FuncAnimation(ani_fig, update, init_func=init, frames=len(positions), repeat=True, interval=5)
380 |
381 | # Try to show animation but be cautious about crashes
382 | try:
383 | plt.show()
384 | except:
385 | pass
386 |
387 |
388 | def colorline(x, y, z=None, cmap=plt.get_cmap('copper'), norm=plt.Normalize(0.0, 1.0),
389 | linewidth=3, alpha=1.0):
390 | """
391 | http://nbviewer.ipython.org/github/dpsanders/matplotlib-examples/blob/master/colorline.ipynb
392 | http://matplotlib.org/examples/pylab_examples/multicolored_line.html
393 | Plot a colored line with coordinates x and y
394 | Optionally specify colors in the array z
395 | Optionally specify a colormap, a norm function and a line width
396 | """
397 |
398 | # Default colors equally spaced on [0,1]:
399 | if z is None:
400 | z = np.linspace(0.0, 1.0, len(x))
401 |
402 | # Special case if a single number:
403 | if not hasattr(z, "__iter__"): # to check for numerical input -- this is a hack
404 | z = np.array([z])
405 |
406 | z = np.asarray(z)
407 |
408 | segments = make_segments(x, y)
409 | lc = mcoll.LineCollection(segments, array=z, cmap=cmap, norm=norm,
410 | linewidth=linewidth, alpha=alpha)
411 |
412 | return lc
413 |
414 |
415 | def make_segments(x, y):
416 | """
417 | Create list of line segments from x and y coordinates, in the correct format
418 | for LineCollection: an array of the form numlines x (points per line) x 2 (x
419 | and y) array
420 | """
421 |
422 | points = np.array([x, y]).T.reshape(-1, 1, 2)
423 | segments = np.concatenate([points[:-1], points[1:]], axis=1)
424 | return segments
425 |
--------------------------------------------------------------------------------
/lepsgui.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python3
2 |
3 | #Created on Mon May 22 16:59:17 2017
4 | #
5 | #@author: Tristan Mackenzie
6 | #
7 | # This file is part of LepsPy.
8 | #
9 | # LepsPy is free software: you can redistribute it and/or modify
10 | # it under the terms of the GNU General Public License as published by
11 | # the Free Software Foundation, either version 3 of the License, or
12 | # (at your option) any later version.
13 | #
14 | # LepsPy is distributed in the hope that it will be useful,
15 | # but WITHOUT ANY WARRANTY; without even the implied warranty of
16 | # MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
17 | # GNU General Public License for more details.
18 | #
19 | # You should have received a copy of the GNU General Public License
20 | # along with LepsPy. If not, see .
21 |
22 |
23 | import numpy as np
24 |
25 | from matplotlib import use as mpl_use
26 | mpl_use("TkAgg") # might need to be changed on different operating systems
27 |
28 | import matplotlib.pyplot as plt
29 | import warnings
30 |
31 | import tkinter as tk
32 | import tkinter.messagebox as msgbox
33 | from tkinter.filedialog import asksaveasfilename
34 |
35 | from configparser import ConfigParser
36 | from argparse import ArgumentParser
37 |
38 | from params import params
39 | from lepspoint import leps_energy,leps_gradient,leps_hessian,cos_rule
40 | from lepsmove import calc_trajectory,kinetic_energy,velocities,velocity_AC
41 | from lepsplots import plot_contour,plot_skew,plot_surface,plot_ind_vs_t,plot_inv_vs_t,plot_momenta_vs_t,plot_momenta,plot_velocities,plot_e_vs_t,animation
42 |
43 |
44 | class Interactive():
45 |
46 | def __init__(self, advanced=False): #Initialise Class
47 |
48 | ###Initialise tkinter###
49 | self.root = tk.Tk()
50 | self.root.title("LEPS GUI")
51 | self.root.resizable(False,False)
52 |
53 | ###Initialise defaults###
54 |
55 | config = ConfigParser(inline_comment_prefixes=(';', '#'))
56 | # The line below allows for dictionary keys with capital letters
57 | config.optionxform = lambda op:op
58 | config.read('params.ini')
59 |
60 | #Atom: [Index, VdW radius, colour]
61 | #VdW radius - used for animation
62 | #Colour - used for animation
63 | atom_map = {}
64 | atoms = config['atoms']
65 | self.atoms_list = []
66 | for element, l in atoms.items():
67 | mass, vdw, colour = l.split(',')
68 | atom_map[element] = [
69 | float(vdw),
70 | '#' + colour.strip()
71 | ]
72 | self.atoms_list.append(element)
73 | self.atom_map = atom_map
74 |
75 | defaults = config['defaults']
76 | self.sato = float(defaults['sato']) #Surface parameter
77 |
78 | self.Vmat = None #Array where potential is stored for each gridpoint
79 | self.surf_params = None #Variable used to prevent surface being recalculated
80 | self.traj_params = None #Variable used to prevent trajectory being recalculated
81 |
82 | self.entries = {} #Dictionary of entries to be read on refresh (user input)
83 | self.defaults = { #Defaults for each entry
84 | #Key : Default value , type , processing function
85 | "a" : ["H" , str , None ],
86 | "b" : ["H" , str , None ],
87 | "c" : ["H" , str , None ],
88 | "xrabi" : ["230" , float, None ],
89 | "xrbci" : ["74" , float, None ],
90 | "prabi" : ["-5.1" , float, None ],
91 | "prbci" : ["-3.1" , float, None ],
92 | "steps" : ["500" , int , lambda x: max(1, x) ],
93 | "dt" : ["0.1" , float, lambda x: max(1e-5,x) ],
94 | "cutoff" : ["-80" , float, None ],
95 | "spacing" : ["10" , int , None ],
96 | "calc_type": ["Dynamics" , str , None ],
97 | "theta" : ["180" , float, lambda x:np.deg2rad(x) ],
98 | "plot_type": ["Contour Plot", str , None ]
99 | }
100 |
101 | #Store variable as class attributes
102 | for key, l in self.defaults.items():
103 | val, vtype, procfunc = l
104 | val = vtype(val)
105 | if procfunc: #Check whether processing is needed
106 | val = procfunc(val)
107 | setattr(self, key, val)
108 |
109 | ###GUI###
110 |
111 | #Default frame format
112 | sunken = dict(height = 2, bd = 1, relief = "sunken")
113 | def gk(string):
114 | '''From a string generates a dictionary with the properties
115 | of the grid of different elements of the GUI'''
116 |
117 | grid = "".join([s for s in string if s.isdigit()])
118 | sticky = "".join([s for s in string if s in "news"])
119 | grid = grid.ljust(6, '0')
120 | r,c,rs,cs,px,py = [int(s) for s in grid]
121 | g = {"row": r, "column": c}
122 | if rs: g["rowspan"] = rs
123 | if cs: g["columnspan"] = cs
124 | if px: g["padx"] = px
125 | if py: g["pady"] = py
126 |
127 | if sticky: g["sticky"] = sticky
128 |
129 | return g
130 |
131 | #Atoms Selection Frame
132 | selection_frame = self._add_frame(dict(master=self.root, text="Atoms", **sunken), gk('000055news'))
133 |
134 | self._add_label(selection_frame, {"text": "A:"}, gk('00'))
135 | self._add_label(selection_frame, {"text": "B:"}, gk('02'))
136 | self._add_label(selection_frame, {"text": "C:"}, gk('04'))
137 |
138 | self._add_optionmenu(selection_frame, "a", self.atoms_list, {}, gk('01'))
139 | self._add_optionmenu(selection_frame, "b", self.atoms_list, {}, gk('03'))
140 | self._add_optionmenu(selection_frame, "c", self.atoms_list, {}, gk('05'))
141 |
142 | #Initial Conditions Frame
143 | values_frame = self._add_frame(dict(master=self.root, text="Initial Conditions", **sunken), gk('103055nsew'))
144 |
145 | self._add_label(values_frame, {"text": "Distance /\npm"}, gk('01ew'))
146 | self._add_label(values_frame, {"text": "Momentum /\ng.mol⁻¹.pm.fs⁻¹"}, gk('02ew'))
147 |
148 | self._add_label(values_frame, {"text": "AB"}, gk('10'))
149 | self._add_entry(values_frame, "xrabi", {}, gk('11'), {"width":10}, self.update_geometry_info)
150 | self._add_entry(values_frame, "prabi", {}, gk('12'), {"width":10}, self.update_geometry_info)
151 |
152 | self._add_label(values_frame, {"text": "BC"}, gk('20'))
153 | self._add_entry(values_frame, "xrbci", {}, gk('21'), {"width":10}, self.update_geometry_info)
154 | self._add_entry(values_frame, "prbci", {}, gk('22'), {"width":10}, self.update_geometry_info)
155 |
156 | #Angle Frame
157 | angle_frame = self._add_frame(dict(master=self.root, text="Collision Angle /ᴼ", **sunken), gk('400055news'))
158 |
159 | self._add_scale(angle_frame, "theta", {"from_":0, "to":180, "orient":"horizontal"}, gk('00'), {"length":200})
160 |
161 | #Update and Export
162 | update_frame = self._add_frame(dict(master=self.root), gk('500355news'))
163 | self._add_button(update_frame, {"text": "Update Plot"} , gk('000055'), {"": self.update_plot })
164 | self._add_button(update_frame, {"text": "Get Last Geometry"}, gk('010055'), {"": self.get_last_geo})
165 | self._add_button(update_frame, {"text": "Export Data"} , gk('020055'), {"": self.export })
166 |
167 | #Calculation Type Frame
168 | calc_type_frame = self._add_frame(dict(master=self.root, text="Calculation Type", **sunken), gk('010055news'))
169 |
170 | if advanced:
171 | calc_types = [ "Dynamics", "MEP", "Opt TS", "Opt Min"]
172 | else:
173 | calc_types = [ "Dynamics", "MEP"]
174 |
175 | self._add_optionmenu(calc_type_frame, "calc_type", calc_types, {}, gk('00'), {"width":20})
176 | #Steps Frame
177 | steps_frame = self._add_frame(dict(master=self.root, text="Steps", **sunken), gk('110055news'))
178 | self._add_label(steps_frame, {"text": "number"}, gk('00'))
179 | self._add_entry(steps_frame, "steps", {}, gk('01'), {"width":5})
180 | self._add_label(steps_frame, {"text": "size (fs)"}, gk('02'))
181 | self._add_entry(steps_frame, "dt", {}, gk('03'), {"width":5})
182 |
183 | #Plot Type Frame
184 | type_frame = self._add_frame(dict(master=self.root, text="Plot Type", **sunken), gk('210055news'))
185 |
186 | if advanced:
187 | plot_types = ["Contour Plot", "Skew Plot", "Surface Plot", "Internuclear Distances vs Time", "Internuclear Velocities vs Time",
188 | "Momenta vs Time", "Energy vs Time", "p(AB) vs p(BC)", "v(AB) vs v(BC)", "Animation"]
189 | else:
190 | plot_types = ["Contour Plot", "Skew Plot", "Surface Plot", "Internuclear Distances vs Time", "Internuclear Velocities vs Time",
191 | "Momenta vs Time", "Energy vs Time", "Animation"]
192 |
193 | self._add_optionmenu(type_frame, "plot_type", plot_types , {}, gk('00'), {"width":20})
194 |
195 | #Energy contours Frame
196 | energycont_frame = self._add_frame(dict(master=self.root, text="Energy contours /kJ.mol⁻¹", **sunken), gk('312055news'))
197 | self._add_label(energycont_frame, {"text": "cutoff"}, gk('00nw'))
198 | self._add_scale(energycont_frame, "cutoff",{"from_":0, "to":-400, "resolution":5, "orient":"vertical"}, gk('01'), {"length":100})
199 |
200 | self._add_label(energycont_frame, {"text": "spacing"}, gk('02ne'))
201 | self._add_scale(energycont_frame, "spacing", {"from_":20, "to":1, "resolution":1, "orient":"vertical"}, gk('03'), {"length":100})
202 |
203 | #Geometry Info Frame
204 | geometry_frame = self._add_frame(dict(master=self.root, text="Initial Geometry Information", **sunken), gk('025055news'))
205 |
206 | self._add_button(geometry_frame, {"text": "Refresh"}, gk('000055'), {"": self.update_geometry_info})
207 |
208 | energy_frame = self._add_frame(dict(master=geometry_frame, text="Energy /kJ.mol⁻¹", **sunken), gk('100055news'))
209 | self._add_label(energy_frame, {"text": "Kinetic"}, gk('00'), {"width":8})
210 | self._add_label(energy_frame, {"text": "Potential"}, gk('01'), {"width":8})
211 | self._add_label(energy_frame, {"text": "Total"}, gk('02'), {"width":8})
212 |
213 | self.i_ke = self._add_label(energy_frame, {"text": ""}, gk('10'))
214 | self.i_pe = self._add_label(energy_frame, {"text": ""}, gk('11'))
215 | self.i_etot = self._add_label(energy_frame, {"text": ""}, gk('12'))
216 |
217 | forces_frame = self._add_frame(dict(master=geometry_frame, text="Forces /kJ.mol⁻¹.pm⁻¹", **sunken), gk('200055news'))
218 | self._add_label(forces_frame, {"text": "along AB: "}, gk('00'))
219 | self._add_label(forces_frame, {"text": "along BC: "}, gk('10'))
220 |
221 | self.i_fab = self._add_label(forces_frame, {"text": ""}, gk('01'))
222 | self.i_fbc = self._add_label(forces_frame, {"text": ""}, gk('11'))
223 |
224 | hessian_frame = self._add_frame(dict(master=geometry_frame, text="Hessian eigenvalues/vectors", **sunken), gk('300055news'))
225 | self._add_label(hessian_frame, {"text": "ω² /\nkJ.mol⁻¹.pm⁻²"}, gk('00'))
226 | self._add_label(hessian_frame, {"text": "AB direction:"}, gk('10'))
227 | self._add_label(hessian_frame, {"text": "BC direction:"}, gk('20'))
228 |
229 | self.i_eval1 = self._add_label(hessian_frame, {"text": ""}, gk('01'))
230 | self.i_eval2 = self._add_label(hessian_frame, {"text": ""}, gk('02'))
231 |
232 | self.i_evec11 = self._add_label(hessian_frame, {"text": ""}, gk('11'))
233 | self.i_evec12 = self._add_label(hessian_frame, {"text": ""}, gk('12'))
234 | self.i_evec21 = self._add_label(hessian_frame, {"text": ""}, gk('21'))
235 | self.i_evec22 = self._add_label(hessian_frame, {"text": ""}, gk('22'))
236 |
237 | self._add_button(geometry_frame, {"text": "Plot eigenvectors"}, gk('400055'), {"": self.plot_eigen})
238 |
239 |
240 | #Plot
241 | warnings.filterwarnings("ignore")
242 | self.fig = plt.figure('Plot', figsize=(5,5))
243 | self.update_plot()
244 |
245 | #Make sure all plots are closed on exit
246 | def cl():
247 | plt.close('all')
248 | self.root.destroy()
249 |
250 | self.root.protocol("WM_DELETE_WINDOW", cl)
251 | self.root.mainloop()
252 |
253 | def _read_entries(self):
254 | """Read entries from GUI, process and set attributes"""
255 | for key, l in self.entries.items():
256 | entry, type, procfunc = l
257 | try:
258 | val = self._cast(entry, type)
259 | if procfunc:
260 | val = procfunc(val)
261 | setattr(self, key, val)
262 | except:
263 | pass
264 |
265 | def _cast(self, entry, type):
266 | """Read entry and cast to type"""
267 | val = type(entry.get())
268 | return val
269 |
270 | def _add_frame(self, frame_kwargs={}, grid_kwargs={}):
271 | """Insert a frame (box) into parent.
272 | With text, a labelled frame is used"""
273 |
274 | if "text" in frame_kwargs:
275 | frame = tk.LabelFrame(**frame_kwargs)
276 | else:
277 | frame = tk.Frame(**frame_kwargs)
278 |
279 | frame.grid(**grid_kwargs)
280 | return frame
281 |
282 | def _add_label(self, frame, text_kwargs={}, grid_kwargs={}, config_kwargs={}):
283 | """Insert a label"""
284 | label = tk.Label(frame, **text_kwargs)
285 | label.grid(**grid_kwargs)
286 | label.config(**config_kwargs)
287 | return label
288 |
289 | def _add_scale(self, frame, key, scale_kwargs={}, grid_kwargs={}, config_kwargs={}):
290 | """Insert a scrollable bar"""
291 | val, vtype, procfunc = self.defaults[key]
292 | variable = tk.StringVar()
293 | variable.set(val)
294 |
295 | scale = tk.Scale(frame, **scale_kwargs)
296 | scale.set(variable.get())
297 | scale.grid(**grid_kwargs)
298 | scale.config(**config_kwargs)
299 | scale.grid_columnconfigure(0, weight = 1)
300 |
301 | self.entries[key] = [scale, vtype, procfunc]
302 |
303 | def _add_button(self, frame, button_kwargs={}, grid_kwargs={}, bind_kwargs={}, config_kwargs={}):
304 | "Insert a button"""
305 | button = tk.Button(frame, **button_kwargs)
306 | button.grid(**grid_kwargs)
307 | for k, v in bind_kwargs.items():
308 | button.bind(k, v)
309 | button.config(**config_kwargs)
310 |
311 | def _add_entry(self, frame, key, entry_kwargs={}, grid_kwargs={}, config_kwargs={}, attach_func=None):
312 | """Add a text entry"""
313 | val, vtype, procfunc = self.defaults[key]
314 | variable = tk.StringVar()
315 | variable.set(val)
316 | if attach_func:
317 | variable.trace("w", attach_func)
318 |
319 | entry = tk.Entry(frame, textvariable=variable, **entry_kwargs)
320 | entry.grid(**grid_kwargs)
321 | entry.config(**config_kwargs)
322 |
323 | self.entries[key] = [entry, vtype, procfunc]
324 |
325 | def _add_optionmenu(self, frame, key, items, optionmenu_kwargs={}, grid_kwargs={}, config_kwargs={}):
326 | """Add a dropdown menu"""
327 | val, vtype, procfunc = self.defaults[key]
328 | variable = tk.StringVar()
329 | variable.set(val)
330 |
331 | optionmenu = tk.OptionMenu(frame, variable, *items, **optionmenu_kwargs)
332 | optionmenu.grid(**grid_kwargs)
333 | optionmenu.config(**config_kwargs)
334 |
335 | self.entries[key] = [variable, vtype, procfunc]
336 |
337 | def _add_radio(self, frame, key, radio_kwargs={}, grid_kwargs={}, config_kwargs={}, variable=None):
338 | """Add a radio button"""
339 | val, vtype, procfunc = self.defaults[key]
340 | if variable is None:
341 | variable = tk.StringVar()
342 | variable.set(val)
343 |
344 | radio = tk.Radiobutton(frame, variable=variable, **radio_kwargs)
345 | radio.grid(**grid_kwargs)
346 | radio.config(**config_kwargs)
347 |
348 | self.entries[key] = [radio, vtype, procfunc]
349 |
350 | def get_params(self):
351 | """Gets parameters for a given set of atoms"""
352 | try:
353 | self.masses,self.morse_params,self.plot_limits = params(self.a,self.b,self.c)
354 | except Exception:
355 | msgbox.showerror("Error", "Parameters for this atom combination not available!")
356 | raise
357 |
358 | def get_surface(self):
359 | """Get the full potential energy surface (Vmat) at specified grid points or rAB and rBC."""
360 |
361 | resl = 2 #Resolution
362 |
363 | #Get grid
364 | self.x = np.arange(self.plot_limits[0,0],self.plot_limits[0,1],resl)
365 | self.y = np.arange(self.plot_limits[1,0],self.plot_limits[1,1],resl)
366 |
367 | X,Y=np.meshgrid(self.x,self.y)
368 |
369 | self.Vmat=leps_energy(X,Y,self.theta,self.morse_params,self.sato)
370 |
371 | def get_last_geo(self, *args):
372 | """Copy last geometry and momenta"""
373 | self.entries["xrabi"][0].delete(0, tk.END)
374 | self.entries["xrabi"][0].insert(0, self.trajectory[-1,0,0])
375 |
376 | self.entries["xrbci"][0].delete(0, tk.END)
377 | self.entries["xrbci"][0].insert(0, self.trajectory[-1,1,0])
378 |
379 | self.entries["prabi"][0].delete(0, tk.END)
380 | self.entries["prabi"][0].insert(0, self.trajectory[-1,0,1])
381 |
382 | self.entries["prbci"][0].delete(0, tk.END)
383 | self.entries["prbci"][0].insert(0, self.trajectory[-1,1,1])
384 |
385 | def export(self, *args):
386 | """Run calculation and print output in CSV format"""
387 | self._read_entries()
388 |
389 | coord_init=np.array([self.xrabi,self.xrbci,self.theta])
390 | # Set initial momenta (theta component = 0)
391 | mom_init=np.array([self.prabi,self.prbci,0])
392 |
393 | self.trajectory,error=calc_trajectory(coord_init,mom_init,self.masses,self.morse_params,self.sato,self.steps,self.dt,self.calc_type)
394 | if error!='':
395 | msgbox.showerror(*error.split('::'))
396 |
397 | filename = asksaveasfilename(defaultextension=".csv")
398 | if not filename:
399 | return
400 |
401 | if self.calc_type == "Dynamics":
402 | header1="Time"
403 | first_column=self.dt*np.arange(len(self.trajectory))
404 | else:
405 | header1="Step"
406 | first_column=np.arange(len(self.trajectory))
407 |
408 | line1=header1+",AB distance,AB momentum,BC distance,BC momentum,theta,theta momentum,V energy,K energy,Tot energy"
409 |
410 | # calculate energies
411 | V=np.zeros(len(self.trajectory))
412 | K=np.zeros(len(self.trajectory))
413 | for i,point in enumerate(self.trajectory):
414 | V[i]=leps_energy(*point[:,0],self.morse_params,self.sato)
415 | K[i]=kinetic_energy(point[:,0],point[:,1],self.masses)
416 |
417 | data=np.column_stack((first_column,np.reshape(self.trajectory,(len(self.trajectory),6))
418 | ,V,K,V+K))
419 |
420 | np.savetxt(filename,data,delimiter=',',header=line1)
421 |
422 | def update_plot(self, *args):
423 | """Generate plot based on what type has been selected"""
424 |
425 | # Besides setting up information about initial position
426 | # this also reads GUI entries and gets relevant parameters
427 | # as it calls _read_entries() and get_params()
428 | self.update_geometry_info()
429 |
430 | # Check if atom types and collision angle have changed
431 | new_surf_params = (self.a, self.b, self.c, self.theta)
432 | if self.surf_params != new_surf_params:
433 | self.get_surface()
434 |
435 | # Check if need to calculate new trajectory
436 | coord_init=(self.xrabi,self.xrbci,self.theta)
437 | mom_init=(self.prabi,self.prbci,0) #Set initial momenta (theta component = 0)
438 | new_traj_params=(coord_init,mom_init,self.steps,self.dt,self.calc_type)
439 | if self.surf_params!=new_surf_params or self.traj_params!=new_traj_params:
440 | self.trajectory,error=calc_trajectory(np.array(coord_init),np.array(mom_init),self.masses,
441 | self.morse_params,self.sato,self.steps,self.dt,self.calc_type)
442 | if error!='':
443 | msgbox.showerror(*error.split('::'))
444 |
445 | self.surf_params=new_surf_params
446 | self.traj_params=new_traj_params
447 |
448 | # Set message to show when trajectory not shown
449 | warnmessage="The angle between bonds is changing along the simulation. \
450 | Likely the initial collision angle is not 180°. \
451 | Potential energy surfaces will change with time: surface at time 0 shown. \
452 | The trajectory is not drawn in this plot."
453 |
454 | if self.plot_type == "Contour Plot":
455 | plot_contour(self.trajectory,self.x,self.y,self.Vmat,self.cutoff,self.spacing)
456 | if max(self.trajectory[:,2,0])-min(self.trajectory[:,2,0]) > 1e-7:
457 | msgbox.showinfo("Changing energy surfaces", warnmessage)
458 |
459 | elif self.plot_type == "Surface Plot":
460 | plot_surface(self.trajectory,self.morse_params,self.sato,self.x,self.y,self.Vmat,self.cutoff,self.spacing)
461 | if max(self.trajectory[:,2,0])-min(self.trajectory[:,2,0]) > 1e-7:
462 | msgbox.showinfo("Changing energy surfaces", warnmessage)
463 |
464 | elif self.plot_type == "Skew Plot":
465 | plot_skew(self.trajectory,self.masses,self.x,self.y,self.Vmat,self.cutoff,self.spacing)
466 | if max(self.trajectory[:,2,0])-min(self.trajectory[:,2,0]) > 1e-7:
467 | msgbox.showinfo("Changing energy surfaces", warnmessage)
468 |
469 | elif self.plot_type == "Internuclear Distances vs Time":
470 | plot_ind_vs_t(self.trajectory,self.dt,self.calc_type)
471 |
472 | elif self.plot_type == "Internuclear Velocities vs Time":
473 | plot_inv_vs_t(self.trajectory,self.masses,self.dt,self.calc_type)
474 |
475 | elif self.plot_type == "Momenta vs Time":
476 | plot_momenta_vs_t(self.trajectory,self.dt,self.calc_type)
477 |
478 | elif self.plot_type == "Energy vs Time":
479 | plot_e_vs_t(self.trajectory,self.masses,self.morse_params,self.sato,self.dt,self.calc_type)
480 |
481 | elif self.plot_type == "p(AB) vs p(BC)":
482 | plot_momenta(self.trajectory)
483 |
484 | elif self.plot_type == "v(AB) vs v(BC)":
485 | plot_velocities(self.trajectory,self.masses)
486 |
487 | elif self.plot_type == "Animation":
488 | animation(self.trajectory,self.masses,[self.a,self.b,self.c],self.atom_map)
489 |
490 | def get_first(self):
491 | """Gather information about the initial state."""
492 |
493 | coord=np.array([self.xrabi,self.xrbci,self.theta])
494 | mom=np.array([self.prabi,self.prbci,0])
495 |
496 | V = leps_energy(*coord,self.morse_params,self.sato)
497 | gradient = leps_gradient(*coord,self.morse_params,self.sato)
498 | hessian = leps_hessian(*coord,self.morse_params,self.sato)
499 | K = kinetic_energy(coord,mom,self.masses)
500 |
501 | return (V,gradient,hessian,K)
502 |
503 | def update_geometry_info(self, *args):
504 | """Updates the info pane"""
505 | self._read_entries()
506 | self.get_params()
507 |
508 | try:
509 | V,gradient,hessian,K = self.get_first()
510 | eigenvalues, eigenvectors = np.linalg.eig(hessian)
511 |
512 | self.init_point_curvature = eigenvalues
513 | self.init_point_nmodes = eigenvectors
514 |
515 | ke = "{:+7.3f}".format(K)
516 | pe = "{:+7.3f}".format(V)
517 | etot = "{:+7.3f}".format(V + K)
518 | fab = "{:+7.3f}".format(-gradient[0])
519 | fbc = "{:+7.3f}".format(-gradient[1])
520 |
521 | eval1 = "{:+7.3f}".format(eigenvalues[0])
522 | eval2 = "{:+7.3f}".format(eigenvalues[1])
523 |
524 | evec11 = "{:+7.3f}".format(eigenvectors[0,0])
525 | evec12 = "{:+7.3f}".format(eigenvectors[0,1])
526 | evec21 = "{:+7.3f}".format(eigenvectors[1,0])
527 | evec22 = "{:+7.3f}".format(eigenvectors[1,1])
528 |
529 | except:
530 | ke = " "
531 | pe = " "
532 | etot = " "
533 | fab = " "
534 | fbc = " "
535 | eval1 = " "
536 | eval2 = " "
537 | evec11 = " "
538 | evec12 = " "
539 | evec21 = " "
540 | evec22 = " "
541 |
542 | self.i_ke["text"] = ke
543 | self.i_pe["text"] = pe
544 | self.i_etot["text"] = etot
545 |
546 | self.i_fab["text"] = fab
547 | self.i_fbc["text"] = fbc
548 |
549 | self.i_eval1["text"] = eval1
550 | self.i_eval2["text"] = eval2
551 |
552 | self.i_evec11["text"] = evec11
553 | self.i_evec12["text"] = evec12
554 |
555 | self.i_evec21["text"] = evec21
556 | self.i_evec22["text"] = evec22
557 |
558 | def plot_eigen(self, *args):
559 | """Plot eigenvectors and eigenvalues of the hessian on contour plot"""
560 | if not self.plot_type == "Contour Plot":
561 | return
562 |
563 | evecs=self.init_point_nmodes #columns are eigenvectors/nmodes
564 | evals=self.init_point_curvature
565 |
566 | plt.arrow(self.trajectory[0,0,0], self.trajectory[0,1,0],
567 | evecs[0,0] * 20, evecs[1,0] * 20,
568 | color = "blue" if evals[0] > 0 else "red",
569 | label = "{:+7.3f}".format(evals[0]))
570 |
571 | plt.arrow(self.trajectory[0,0,0], self.trajectory[0,1,0],
572 | evecs[1,0] * 20, evecs[1,1] * 20,
573 | color = "blue" if evals[1] > 0 else "red",
574 | label = "{:+7.3f}".format(evals[1]))
575 |
576 | plt.draw()
577 | plt.pause(0.0001)
578 |
579 |
580 | if __name__ == "__main__":
581 |
582 | parser = ArgumentParser(description="Starts the Triatomic LEPS GUI")
583 | parser.add_argument("-a", "--advanced", action="store_true", help="Include additional features in the GUI")
584 |
585 | args = parser.parse_args()
586 | interactive = Interactive(advanced = args.advanced)
587 |
588 |
--------------------------------------------------------------------------------
/LICENSE.txt:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
676 |
--------------------------------------------------------------------------------