├── DR_CHN_Merging_ZS0_sub.csv └── README.md /DR_CHN_Merging_ZS0_sub.csv: -------------------------------------------------------------------------------- 1 | case_id,track_id,frame_id,timestamp_ms,agent_type,track_to_predict,x1,y1,x2,y2,x3,y3,x4,y4 2 | 1.0,7,11,1100,car,1,1066.6097564409636,948.1653058671276,1075.7713900631054,947.923296484408,1065.2926794694786,972.6745094554176,1069.8846497582224,955.0980370315948 3 | 1.0,7,12,1200,car,1,1079.6733216586479,948.385459782129,1093.5114865703715,955.358974761934,1067.765630196408,967.1524365538015,1085.9040754385214,960.1450633601379 4 | 1.0,7,13,1300,car,1,1073.0489339710564,948.2568899014076,1093.4724836975724,963.2712692532755,1092.7983995615566,959.5888952457184,1083.120872180397,955.7581223332493 5 | 1.0,7,14,1400,car,1,1093.2497421341436,963.2730993875023,1070.1107247266807,966.6865457694937,1081.3968371481462,950.8688651457225,1085.534499645902,946.9873289863192 6 | 1.0,7,15,1500,car,1,1081.8026094788227,953.8575344562289,1065.0822270602464,960.2741927486768,1093.8727043366923,953.2515949842841,1080.4661455923517,966.4326987355453 7 | 1.0,7,16,1600,car,1,1065.7131120034696,951.2549754921945,1070.6073194121836,950.925278210531,1087.1845148226478,964.4704280412928,1075.6271977494498,974.3141806993701 8 | 1.0,7,17,1700,car,1,1071.9573381338432,954.304650000613,1075.0882862903052,956.1654716073374,1086.2068909769434,956.5405913064908,1090.170374774411,957.6641639200731 9 | 1.0,7,18,1800,car,1,1064.0202860016723,968.2288621747101,1065.7084689820224,951.7810566136176,1074.7883611306363,948.0353370369853,1089.7392378611623,948.228943245306 10 | 1.0,7,19,1900,car,1,1086.0759345652468,958.2645945523967,1070.2240974272067,969.8557077049829,1074.7874835345795,967.5615327225416,1070.833061794062,970.6852919183616 11 | 1.0,7,20,2000,car,1,1084.0206228729974,973.4181137461624,1081.8336136794178,965.0254298926858,1077.5722936896664,963.0054407577487,1078.8108893079216,951.1353774363947 12 | 1.0,7,21,2100,car,1,1091.787884750626,950.4150402813722,1070.8043492501615,952.7662129319252,1075.772612075427,970.4882140989148,1065.0605780083627,971.1253674488174 13 | 1.0,7,22,2200,car,1,1077.7650352311225,957.4961395754848,1064.8624610141883,952.4504594848488,1067.4560418473764,959.9365659926209,1069.959546760153,953.1983277017935 14 | 1.0,7,23,2300,car,1,1086.0529010160583,973.5095585754011,1084.8142780689845,969.4981356002611,1085.1201185955476,947.8758354696641,1063.8345843706527,958.4804864343483 15 | 1.0,7,24,2400,car,1,1085.3270720554299,969.9566481693967,1076.3854810632977,967.505614189179,1079.731319395724,951.9533998571695,1085.8374995010024,974.8654557857087 16 | 1.0,7,25,2500,car,1,1072.1518577457496,966.6641306709167,1084.3932150701132,958.2485779533765,1076.496740528112,953.449173601833,1064.2368003061872,948.162346224348 17 | 1.0,7,26,2600,car,1,1091.3003991897856,972.2824046069212,1072.0560875120402,964.8962821994928,1070.0927811825154,948.8603015012824,1085.1350304064724,955.5023699427917 18 | 1.0,7,27,2700,car,1,1071.6764362686786,947.4685496555583,1071.9547762411862,975.0500536385464,1077.6792385833999,957.4282869595587,1085.2092070722706,952.0671154725187 19 | 1.0,7,28,2800,car,1,1085.9023912548498,966.322787692123,1065.1025375028767,948.840942899384,1063.9096364251668,951.0654013951629,1089.4012811999835,957.1847657703026 20 | 1.0,7,29,2900,car,1,1069.751886854188,962.6758673897356,1090.0109055886583,972.0157392892066,1065.8748968501282,962.207299009,1071.871298443218,970.2496919448055 21 | 1.0,7,30,3000,car,1,1074.8022043146564,957.5980230810568,1081.3032342533918,971.1225369750412,1074.1326068715175,945.5299438655138,1076.8643175970685,963.562583693508 22 | 1.0,7,31,3100,car,1,1091.924534922121,970.1111878996048,1084.3812973052666,972.5116533658648,1089.1200110525454,958.207666167721,1088.5148918475309,950.4986209076924 23 | 1.0,7,32,3200,car,1,1092.0924735314609,960.7955363524351,1066.137271543963,973.8057310240144,1078.500331111164,961.3336913434044,1077.651478060242,953.0719799308163 24 | 1.0,7,33,3300,car,1,1077.5253272491948,962.1622084244843,1075.4110484358507,971.2250712026556,1088.0893580195147,955.9504838027486,1082.9426146942546,953.3521766407443 25 | 1.0,7,34,3400,car,1,1087.0026980983134,967.183767385458,1062.9445887667623,947.3081065426679,1091.1877848978445,965.6532307817947,1080.3299292037743,957.5164872372919 26 | 1.0,7,35,3500,car,1,1089.6003032151964,969.4484140453716,1068.213155517756,958.3166017680282,1084.3749692027218,956.901740775288,1087.9183481819045,963.994441111634 27 | 1.0,7,36,3600,car,1,1064.6579767385317,959.7453617284539,1069.8460787000197,971.6089691507219,1071.790735068248,973.6714585228495,1073.9777543778405,951.6909826993431 28 | 1.0,7,37,3700,car,1,1062.3977038426176,963.3591932837244,1090.5271289158277,951.4629470040013,1081.4585493566074,956.9707686440253,1068.5061538135233,969.2939748623992 29 | 1.0,7,38,3800,car,1,1085.2370543015888,971.0970263638166,1078.8198427998193,947.8174743618207,1067.5861971805584,952.9306493717069,1088.1147922225284,966.1478440862063 30 | 1.0,7,39,3900,car,1,1088.8220324093054,951.8190931156444,1080.507309525109,945.8976740417136,1075.5792391989885,970.2553574039739,1070.872294055588,960.7835917832746 31 | 1.0,7,40,4000,car,1,1084.588036756299,946.7874096067884,1089.8627349769595,958.206839941616,1083.5943883117968,954.8563132992766,1070.5405151229465,964.7017820957333 32 | 2.0,7,11,1100,car,1,1070.0797669612011,945.397108928181,1069.2632085806151,949.4823569478101,1057.6924011886276,961.2987600118743,1071.6969011570584,955.8884677799272 33 | 2.0,7,12,1200,car,1,1062.1265733183384,970.517132332493,1077.5719466432793,964.4558251974242,1056.0041295984076,953.4686138252617,1077.8286351232232,969.8782665756272 34 | 2.0,7,13,1300,car,1,1070.2747252671302,971.0315834539322,1061.5947982599787,961.4540176589753,1073.8442494173637,971.7985375985519,1082.1817670690589,951.1039810948596 35 | 2.0,7,14,1400,car,1,1073.1094834102355,959.1445758917062,1064.2905257250866,956.9576122767345,1067.0503649182415,958.9870361760197,1056.3514212087687,961.4057715849344 36 | 2.0,7,15,1500,car,1,1072.618666806862,964.2449107538846,1056.8204505116646,963.3500455565767,1078.4512404535815,961.1373048647972,1062.2110449480576,957.57827951422 37 | 2.0,7,16,1600,car,1,1065.5370846603355,968.8528151362417,1079.1989951519458,968.6052960094188,1060.9162117335638,945.1753213112378,1057.8937879994048,972.7391503915912 38 | 2.0,7,17,1700,car,1,1079.3987190661492,945.6264449760297,1073.3638590747116,968.4767831642679,1070.9965872681892,944.3820152029559,1062.5970200261645,957.4805458946081 39 | 2.0,7,18,1800,car,1,1066.9148624920679,953.5632438690598,1079.4814629486118,957.039877510173,1057.466335227346,952.2580242334238,1078.8584415532653,949.9556264915437 40 | 2.0,7,19,1900,car,1,1076.596964975607,973.6083132104181,1060.2198244105375,951.5909565146884,1082.019407555363,967.2639054494439,1060.2857328283196,959.233185085814 41 | 2.0,7,20,2000,car,1,1054.9336651247968,948.4054264850622,1077.3924781961393,967.4517231239233,1071.0675780371544,972.5106006772182,1077.6871267872964,956.9298717255097 42 | 2.0,7,21,2100,car,1,1069.412698259272,947.6619833552153,1075.6725924340676,960.6403189868198,1065.9836041658293,944.853744747287,1053.470444359504,971.5891701344168 43 | 2.0,7,22,2200,car,1,1051.7739270207767,963.5085710160096,1076.3426847442474,957.3147554829111,1072.3288451413741,961.6424455184003,1059.8238872543868,957.5474969580271 44 | 2.0,7,23,2300,car,1,1056.0987262210356,955.2578331553659,1072.1474147954193,970.7503895708969,1064.461065523305,960.3739809687513,1053.8991190262952,971.5611095894764 45 | 2.0,7,24,2400,car,1,1061.8361944453995,969.0524129135507,1075.6617685749388,955.7066851729293,1071.3240119418376,946.0876590638603,1057.8264826365582,952.9984122521322 46 | 2.0,7,25,2500,car,1,1057.6912474592218,967.2847233012257,1076.0961559847829,955.7190965210818,1063.8947570193657,947.6420754578214,1076.3164529368937,961.0420512502068 47 | 2.0,7,26,2600,car,1,1062.934540436982,947.3344563758467,1066.6781115759613,971.3943130998957,1064.501508297989,963.275736347131,1050.5242361421156,949.8451256050968 48 | 2.0,7,27,2700,car,1,1073.9644460500683,970.0726937236533,1051.9524882620121,963.3195690346547,1057.7215553632816,946.527227810647,1069.5498050453468,963.6581036252763 49 | 2.0,7,28,2800,car,1,1064.9987100561664,955.1606744999649,1064.5741910177198,957.734341931097,1057.1929232200237,943.7329677535588,1062.4983633491142,952.6404502987696 50 | 2.0,7,29,2900,car,1,1050.7243812930078,961.4332899436536,1059.9893991977408,958.6083226460537,1060.0753617333605,959.9370522359691,1068.217403260042,946.4948030263583 51 | 2.0,7,30,3000,car,1,1065.437743422457,951.6716476181277,1072.3713075486203,955.4422692809392,1064.9155844372847,966.571621841918,1064.74275311871,962.8162835115454 52 | 2.0,7,31,3100,car,1,1058.9796190538304,972.2778464400492,1069.8105917267542,968.2189134457877,1049.3004780039466,944.1050083963247,1055.7609956924266,947.0488791493739 53 | 2.0,7,32,3200,car,1,1076.1330637275476,971.868626394173,1073.1858194565748,963.95294354925,1068.9369251426904,945.6061410763327,1064.468219004055,946.8194573889921 54 | 2.0,7,33,3300,car,1,1050.3349824984775,971.005191368032,1071.024719492495,955.9533885964692,1061.5437917977126,959.8604207513079,1074.5109051407487,972.0050054308653 55 | 2.0,7,34,3400,car,1,1068.5352394762217,945.3163158162316,1058.5849329029465,955.5775030181582,1066.2179902042797,950.8497850926972,1056.4014906266088,961.7491276614912 56 | 2.0,7,35,3500,car,1,1070.5801901068703,951.1575586759388,1053.6689039090977,951.108502317092,1062.9878749117208,970.6247131163185,1052.9535853441619,944.678064377496 57 | 2.0,7,36,3600,car,1,1056.040571207291,960.1281835218288,1059.5197556144917,943.5275827419301,1053.6172058683164,945.7704652922143,1074.2992029279449,957.5660177475778 58 | 2.0,7,37,3700,car,1,1072.9730298905913,968.8327829610662,1067.1030458738403,960.4175802669306,1059.4383763775663,949.6765657089223,1063.998051598196,954.9568362041092 59 | 2.0,7,38,3800,car,1,1072.6490918823526,969.5033427561542,1049.1860449568383,946.9629097181898,1052.1392499085093,956.5490312910866,1068.890540082941,948.0840558418762 60 | 2.0,7,39,3900,car,1,1052.5265038717737,944.8482244810717,1059.9585624744916,969.2239187921299,1073.7470772831605,946.7336050350248,1056.8018997629883,966.4649853515167 61 | 2.0,7,40,4000,car,1,1075.631884512515,960.4783283990266,1059.634499414594,967.9638406913531,1065.0001537463918,944.5855848715928,1060.5800810981505,972.5377218155684 62 | 3.0,12,11,1100,car,1,1105.7867359940442,958.336355958374,1111.5519918470584,955.731945147242,1091.7555262217775,958.0353915326742,1112.4245163330547,956.6720900127344 63 | 3.0,12,12,1200,car,1,1106.9440808363918,972.677051759457,1091.795343355066,967.0466020251986,1098.7872235183133,972.2616528762177,1103.5879905057836,957.9115737587622 64 | 3.0,12,13,1300,car,1,1108.4531084456921,976.921883387311,1106.3838048745322,948.6859001114356,1098.9579393008755,971.3860912178499,1090.6471154430103,974.548518697123 65 | 3.0,12,14,1400,car,1,1115.3602684594882,974.3694420917044,1119.4208771965414,947.8444594103877,1114.7158797805143,963.1154703370111,1104.0054993817537,948.7795112254313 66 | 3.0,12,15,1500,car,1,1091.1483540561912,947.681047257055,1106.7329557491337,975.7949551221657,1094.857364999553,954.7500335590988,1108.2732387242156,961.0035418852495 67 | 3.0,12,16,1600,car,1,1094.5003744888036,953.4046117098382,1100.631694181081,952.2317952719271,1096.3031243870314,972.2145179857376,1090.906764302279,959.4952047942991 68 | 3.0,12,17,1700,car,1,1094.0035763754129,969.9407779390037,1092.0182111337865,968.6314308393847,1100.2258419669024,974.6265014600941,1105.8554308293235,957.7558421692128 69 | 3.0,12,18,1800,car,1,1117.046518124492,960.1222569673896,1103.1197450613754,973.7394463525532,1115.3020581792669,957.300655725342,1110.3802115917765,965.9069929272443 70 | 3.0,12,19,1900,car,1,1101.7215365156694,965.7583569937501,1104.8005893218988,967.9605108217181,1110.4977806019065,960.4836860868434,1106.0938230591178,957.7307159224573 71 | 3.0,12,20,2000,car,1,1107.3234598072445,950.3615091726905,1089.948836388423,962.6888761470477,1109.3918119074795,974.4189304232291,1097.1480676767605,955.2077145594758 72 | 3.0,12,21,2100,car,1,1095.3889359645004,964.4849739702273,1095.8889491872383,956.4094547264359,1100.6331854545695,964.0944325909305,1114.4343241005035,956.6291378644709 73 | 3.0,12,22,2200,car,1,1108.6173782801457,968.6882000037887,1113.5408657957803,948.9675632099107,1088.6820020356095,972.8013870642812,1088.5239868032074,956.7391387151741 74 | 3.0,12,23,2300,car,1,1092.169530147106,958.1413815881127,1101.1029990974641,951.8736273085262,1108.5672173377504,948.0559799862605,1104.255277578545,956.6641363438305 75 | 3.0,12,24,2400,car,1,1105.141298561929,960.585738164342,1110.3013599471888,968.7932698747861,1114.4286574649213,958.3358110460225,1097.722743031883,974.8043699670297 76 | 3.0,12,25,2500,car,1,1088.7215077817632,967.0790946710479,1092.0718138393825,950.2527731640732,1104.6411918683943,948.1604715356385,1088.8587186420702,974.5133138509319 77 | 3.0,12,26,2600,car,1,1088.130563556206,960.0656050731267,1090.1204595855925,946.3903916753907,1096.0904692076701,965.0880952794519,1091.4947509719013,969.7133517558372 78 | 3.0,12,27,2700,car,1,1109.092910151697,959.9888057811111,1104.24064405564,958.1806004216935,1090.4427511878127,953.9783996671187,1108.8310224985703,953.5900836742247 79 | 3.0,12,28,2800,car,1,1090.004921428563,967.1983181099126,1100.1347837119913,951.55838076833,1088.8084788855842,950.8009050287114,1085.8953734071188,963.0130306926682 80 | 3.0,12,29,2900,car,1,1101.6411803296621,946.365574718443,1106.3108255969375,947.5397741219087,1102.9236826232577,973.4292675716401,1105.7939824792527,974.3486868388319 81 | 3.0,12,30,3000,car,1,1113.6934074980352,952.6792868585447,1094.387248452493,972.8491125570646,1106.8449978128624,964.2095403653137,1114.4287892636742,947.1979171673585 82 | 3.0,12,31,3100,car,1,1091.8787637696971,953.8331213085,1101.0860706518088,963.0694459137221,1090.1476537724996,972.5653766487744,1111.1839258269513,959.8769836538032 83 | 3.0,12,32,3200,car,1,1092.0414481216114,958.5400273974215,1109.387765872178,949.5991417446774,1097.8355213051964,964.2714436200823,1084.5264863978396,949.7645145850664 84 | 3.0,12,33,3300,car,1,1094.3491138892912,961.1497148618691,1086.2825928039863,975.0691609618165,1106.687501012596,948.9365593874031,1110.194882349443,965.4590781509206 85 | 3.0,12,34,3400,car,1,1111.799231653941,955.5405797742623,1096.6483573544974,946.3809969985408,1111.8400618313308,967.4499416555544,1083.3978703856635,975.2806927764137 86 | 3.0,12,35,3500,car,1,1111.6420814784874,974.9889447778647,1096.9372448502615,965.9301314749471,1086.3747231429154,959.7525234934263,1102.1649158365042,947.5464229279912 87 | 3.0,12,36,3600,car,1,1091.5654733617278,967.6222811048025,1095.8625216696948,947.2643398815954,1087.7770885297784,957.643637962842,1096.924462646972,968.9906363640512 88 | 3.0,12,37,3700,car,1,1082.9295060173483,963.471658591924,1094.7904226171672,964.2043177434667,1105.1237621380346,960.2095690057307,1111.9626135118554,956.0300503301776 89 | 3.0,12,38,3800,car,1,1088.9148847425147,949.1711576127226,1108.5374003181444,950.5290395532454,1101.637697395492,945.8201783938882,1101.136831722564,961.8339762921375 90 | 3.0,12,39,3900,car,1,1107.0208345732096,966.2925485157805,1084.4568492795795,963.6705133975413,1100.9486467054207,951.0433104929776,1090.709669352556,974.8840488728974 91 | 3.0,12,40,4000,car,1,1088.5313706697004,954.4571451290049,1086.3870906256318,964.7127710412825,1096.1841473779498,970.642683323191,1095.5446001542118,963.8245136884194 92 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | 2 | # INTERPRET Single Agent Prediction and Conditional Single Agent Prediction in the ICCV21 Stage 3 | 4 | In the Sinlge Agent Prediction and Conditional Sinlge Agent Prediction track, the target is to predict one target agents' **coordinates** in the future 3 seconds (30 frames). 5 | 6 | Note that this instruction is for the **ICCV21** Stage of the INTERPRET challenge with the latest version of INTERACTION Dataset (**v1.2**). As for the guidance for the NeurIPS20 stage with the deprecated version of INTERACTION Dataset (v1.1), please check https://github.com/interaction-dataset/INTERPRET_challenge_regular_generalizability_track. However, since the v1.1 version is deprecated, we suggest participants to use the latest version of data and submit to the latest stage of competition. 7 | 8 | ## Submission Policy 9 | The provided training data of the INTERPRET challenge may be used for learning the parameters of the algorithms. The test data should be used strictly for reporting the final results compared to competitors on the INTERPRET website - it must not be used in any way to train or tune the systems, for example by evaluating multiple parameters or feature choices and reporting the best results obtained. We have provided a suggested split between the training and validation sets using the INTERACTION drone dataset, and the participants can choose to use that. The tuned algorithms should then be run only once on the test data. 10 | 11 | The evaluation server may not be used for parameter tuning. We allow participants to upload the results of their algorithm onto the server and perform all other experiments on the training and validation set. 12 | 13 | The trajectory prediction results will be evaluated automatically and participants can decide whether each evaluation result is public in their submission log pages. The default is non-public. 14 | 15 | 16 | ## Data Format 17 | 18 | For each csv file in the released "train" and "val" folder, the csv's name represents the scene name. Each csv file includes multiple cases and each case includes all agents' states in 4 seconds. Note that some agents may not be fully visible in the 4 seconds. In the csv file, each row represents a agent's state at a timestamp of a case and each columns means: 19 | 20 | case id: the id of the case under this driving scenario. 21 | 22 | track_id: the agent id. 23 | 24 | frame_id: the id of the current frame. 25 | 26 | timestamp_ms: the time instant of the corresponding frame in ms. 27 | 28 | agent_type: the type of the agent. It is either "car" or "pedestrian/bicycle". 29 | 30 | x: the x position of the agent. Unit: m. The coordinate system of the agent is a relative coordinate system with respect to some predefined points in our recorded scenes. 31 | 32 | y: the x position of the agent. Unit: m. The coordinate system of the agent is a relative coordinate system with respect to some predefined points in our recorded scenes. 33 | 34 | vx: the velocity in the x-direction of the agent. Unit: m/s. 35 | 36 | vy: the velocity in the y-direction of the agent. Unit: m/s. 37 | 38 | psi_rad: the yaw angle of the agent if the agent is a vehicle. If the agent is a pedestrian, then this column is empty. Unit: rad. 39 | 40 | length: the length(size) of the agent if the agent is a vehicle. If the agent is a pedestrian, then this column is empty. Unit: m. 41 | 42 | width: the width(size) of the agent if the agent is a vehicle. If the agent is a pedestrian, then this column is empty. Unit: m. 43 | 44 | 45 | For each csv file in the released "test_single-agent" and "test_conditional-single-agent" folder, since they are the input data of the competition, there are the following differences: 46 | 47 | 1. There are only 1 second observation of each case. The future 3 seconds is the prediction horizon. 48 | 49 | 2. Additional columns: "interesting agent" indicates whether a vehicle is the ego agent of the case where 0 means no and 1 means yes. Each case only has one "interesting agent". "track_to_predict" indicates whether a vehicle is a target agent for the trajectory prediction. All target agents are guaranteed to be fully observable in the 1+3 seconds of the raw data. Only vehicles are selected as the ego agent or the target agent. Regarding how the columns are labeled please check the [main page of the competition](http://challenge.interaction-dataset.com/prediction-challenge/intro). Participants are free to decide the strategy of setting "interesting agent" and "track_to_predict" in the train/val data. 50 | 51 | ## Submission for Sinlge Agent Prediction and Conditional Sinlge Agent Prediction in the ICCV21 Stage 52 | 53 | 54 | For each scenario X like (DR_CHN_Merging_ZS0), there should be a single file 'X_sub.csv'. The following columns would be used during the evaluation: case_id, track_id, frame_id, timestamp_ms, x1, y1, x2, y2, x3, y3, x4, y4, x5, y5, x6, y6. Other columns would be ignored. The order of rows and columns could be arbitrary. 'xi, yi' represents the predicted coordinate for the vehicle 'track_id' at 'timestamp_ms' in the modality i. Up to 6 modalities would be taken into consideration. Participants could submit less than 6 modalities (like only x1, y1). Each submission could contain up to 6 modalities where the modality with higher confidence should has smaller index. In other words, modalaity 1 has the highest confidence and modality 6 has the lowest. 55 | 56 | Csv files for all scenarios of a track should be packed into **a single zip** file for submission. 57 | 58 | [DR_CHN_Merging_ZS0_sub.csv](https://github.com/interaction-dataset/INTERPRET_challenge_single-agent/blob/main/DR_CHN_Merging_ZS0_sub.csv) is an example for submission for the scenario DR_CHN_Merging_ZS0. Note that this example file only contains the first 3 cases with 4 modalities in each case and the input is random number. 59 | 60 | 61 | 62 | 63 | ## Metrics for Sinlge Agent Prediction and Conditional Sinlge Agent Prediction in the ICCV21 Stage 64 | 65 | All metrics are averaged over all cases of all scenarios. The ranking of the single agent prediction is based on **MR**. 66 | 67 | ### minADE 68 | Minimum Average Displacement Error (minADE) represents the minimum value of the euclid distance averaged by time between the ground truth and modality with the lowest value. The minADE of a single case is calculated as: 69 | 70 | ![](http://latex.codecogs.com/gif.latex?\\text{minADE}=\\min\\limits_{k\\in\\{1,...,K\\}}\\frac1{T}\\sum\\limits_{t}\\sqrt{(\\hat{x}_{t}-x_{t}^k)^2+(\\hat{y}_{t}-y_{t}^k)^2}) 71 | where T is the number of predicted timestamps which is 30 in this challenge, K is the number of modalities in this challenge, $\hat{x}$ and $\hat{y}$ means the ground truth. The final value is averaged over all cases. 72 | 73 | ### minFDE 74 | 75 | Minimum Final Displacement Error (minFDE) represents the minimum value of the euclid distance at the last predicted timestamps between the ground truth and modality with the lowest value. The minFDE of a single case is calculated as: 76 | 77 | ![](http://latex.codecogs.com/gif.latex?\\text{minFDE}=\\min\\limits_{k\\in\\{1,...,K\\}}\\sqrt{(\\hat{x}_{T}-x_{T}^k)^2+(\\hat{y}_{T}-y_{T}^k)^2}) 78 | 79 | where T is the number of predicted timestamps which is 30 in this challenge, K is the number of modalities in this challenge, $\hat{x}$ and $\hat{y}$ means the ground truth. The final value is averaged over all cases. 80 | 81 | 82 | ### MR 83 | 84 | For a vehicle in a modality of a case, if its prediction at the final timestamp T=30 is out of a given lateral or longitudinal threshold of the ground truth, it is considered as 'miss'. Specifically, we first rotate the groud truth and the prediction according to the ground truth yaw angle at T=30 so that the x-axis is the longitudinal direction and the y-axis is the lateral direction. The lateral threshold is set as 1 meter and the longitudinal is set as a piecewise function based on the velocity v of the ego agent's ground truth at T=30. For the high-speed scenario, the funcition gives a larger longitudinal threshold. 85 | 86 | 87 | 88 | 89 | If the lateral or longitudinal distance between the prediction and ground truth at the last timestamp is larger than the cooresponding threshold, this vehicle in this modality of this case is considered as 'miss' - 1. If all modalities of a case are 'miss', we consider the case as 'miss' - 1. Miss Rate (miss rate) calculates the ratio of 'miss' cases over all cases. 90 | 91 | # Note 92 | For guidance of **INTERPRET Multi-Agent Prediction and Conditional Multi-Agent Prediction in the ICCV21 Stage**, please visit https://github.com/interaction-dataset/INTERPRET_challenge_multi-agent. 93 | 94 | 95 | ## Acknowledgement 96 | Some metrics are inspired by the [Waymo Open Dataset - Motion Prediction Challenge](https://waymo.com/open/challenges/2021/motion-prediction/) and [Argoverse Motion Forecasting Competition](https://eval.ai/web/challenges/challenge-page/454/overview). 97 | --------------------------------------------------------------------------------