├── README.md
├── 03_Working with Images and Text
├── output
│ ├── menu.jpg
│ └── menu.txt
└── images
│ ├── page1.jpg
│ └── page2.jpg
├── 00_Analysis of Programming Fundamentals with Python Exam Results - May 2023
├── .ipynb_checkpoints
│ └── Untitled-checkpoint.ipynb
└── data
│ ├── midexam_r.csv
│ └── finalexam_r.csv
├── 01_Data Tidying and Cleaning
└── Data Tidying and Cleaning Lab.ipynb
├── 06_Data Science Project Architecture
└── data
│ └── titanic.csv
└── 02_Data Visualization and EDA
└── Data Visualization and EDA Lab.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # data-science
2 | data science
3 |
--------------------------------------------------------------------------------
/03_Working with Images and Text/output/menu.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ip681/data-science/HEAD/03_Working with Images and Text/output/menu.jpg
--------------------------------------------------------------------------------
/03_Working with Images and Text/images/page1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ip681/data-science/HEAD/03_Working with Images and Text/images/page1.jpg
--------------------------------------------------------------------------------
/03_Working with Images and Text/images/page2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ip681/data-science/HEAD/03_Working with Images and Text/images/page2.jpg
--------------------------------------------------------------------------------
/00_Analysis of Programming Fundamentals with Python Exam Results - May 2023/.ipynb_checkpoints/Untitled-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 5
6 | }
7 |
--------------------------------------------------------------------------------
/03_Working with Images and Text/output/menu.txt:
--------------------------------------------------------------------------------
1 | APPETIZERS
2 | Southern Fried Quail with Greens, Huckleberries, Pecans & Blue Cheese 14.00
3 | Park Avenue Cafe Chopped Salad Goat Feta Cheese, Niçoise Olives, Marinated White Anchovies, Aged Balsamic Vinegar 12.75
4 | Smoked Salmon & Pastrami Salmon™ with Blini, Quail Eggs & Horseradish Crème Fraîche 15.50
5 | Artichoke Ravioli Tomato, Citrus, Frisée 12.75
6 | Salad of Mixed Organic Greens with Vine Ripened Tomatoes & Fresh Herbs 9.75
7 | Tasting of Petite Appetizers 16.00
8 | Country Salad with Walnuts & Coach Farms Goat Cheese 12.75
9 | Tuna & Salmon Tartare with Osetra Caviar 14.50
10 | Handmade Cavatelli with Wild Mushrooms & White Truffle Oil 14.50
11 | Caramelized Sweetbread Tartlette with Black Truffles & Onions 12.50
12 | Foie Gras "Hot & Cold" Sautéed with Raisin, Pecan & Oatmeal Tart Chilled with Roasted Beet & Mushroom Salad 17.50
13 | Black & White Bean Soup with Spicy Shrimp Quesadilla 11.50
14 |
15 | SHELLFISH BY THE PIECE
16 | Atlantic Oysters 2.25
17 | Littleneck Clams 2.00
18 | Jumbo Shrimp 4.25
19 | 1 lb Chilled Lobster 14.50
20 | 1/4 1b.Colossal Crab Meat 13.75
21 | Shellfish Platter 21.00
22 |
23 | ENTRÉES
24 | Horseradish Crusted Canadian Salmon Potato Fritters, Marinated Cucumbers Chive Vinaigrette 27.00
25 | Sautéed Prawns with Mushroom Tortellini, Grilled Tomato Vinaigrette & Sweet Corn 29.50
26 | Mustard Crusted Tuna Teriyaki 29.75
27 | Pan Roasted Atlantic Cod with Potato, Leek & Crab Home—fries 29.50
28 | Lobster Steak with Hash—Brown Potatoes Lemon Brown Butter 42.00
29 | Swordchop™ with Tomato Ditalini & Lemon Broth (Market Availability) 34.50
30 | Mrs. Ascher's Steamed Vegetable Torte 19.50
31 | Onion Crusted Roast Organic Chicken with Whipped Potatoes 26.50
32 | Duck, Duck, Duck ! " Breast," "Meatloaf" & "Foie Gras Corn Cake" 29.50
33 | Rack of Lamb with Lamb Shank Ravioli Roasted Tomatoes, Broccoli Rabe, Minted Balsamic Vinegar 30.50
34 | Veal Chop with Wild Mushrooms & Potato Gnocchi 34.50
35 | Grilled Dry Aged Rib Eye Steak 34.50
36 |
37 | SIDE DISHES
38 | French Fries with Truffle Mayonnaise 8.50
39 | Creamed Spinach & Leeks 8.50
40 | Bamboo Steamed Vegetables 8.50
41 | David Burke's Whipped Potatoes 8.50
42 | Wild Mushroom Hash 8.50
43 |
44 | Wine by the Glass
45 | Glass Taste
46 |
47 | Champagne, Taittinger "Cuvee Prestige", Brut NV France 12.75
48 | Wine of the Day 15.00 8.00
49 | Chardonnay, Logan "Sleepy Hollow Vineyard", 1998, Monterey 13.00 7.00
50 | Sauvignon Blanc, Goldwater "Dog Point", 1999, NZ (Wine Spectator Rating 90) 11.50 6.00
51 | Chenin Blane, Foxen, 1999, Santa Barbara 11.00 6.00
52 | Pinot Grigio, 1999, Danzante, Italy (Frescobaldi/Mondavi) 9.00 5.00
53 | Chateau de Pocé, Touraine, 1999, Sauvignon 7.75 4.00
54 | Merlot, Franciscan, Oakville Estate, 1997, Napa 12.75 7.00
55 | Syrah, McDowell, 1998, Mendocino 9.50 5.00
56 | Pinot Noir, David Bruce, 1999, "Central Coast" 13.50 7.00
57 | Zinfandel, Cline "Old Vines", 1999, Contra Costa 12.00 6.00
58 | Cabernet Sauvignon, Farallon, 1997, North Coast 8.75 4.50
59 | Vino Nobile di Montepulciano, Il Faggeto, 1997, Tuscany 13.25 7.00
60 | Chateau, Bel Air, "Haut Médoc", 1997, Bordeaux 9.75 5.00
61 |
62 | Flights
63 | The Bull's Flight 20.00
64 | David Bruce Pinot Noir, Cline "Old Vines"Zinfandel,
65 | Wine of the Day
66 |
67 | The Frog's Flight 16.00
68 | Foxen Chenin Blanc, Logan Chardonnay,
69 | Danzante Pinot Grigio
70 |
71 | Mix & Match Flight 16.00
72 | Franciscan Merlot, McDowell Syrah, Cline "Old Vines" Zinfandel
73 |
74 | 2001 The Vertical Limit 200.10
75 | 1/2 bottle of 95, 96, 97 Opus One (3 1/2 Bottles)
76 |
77 |
--------------------------------------------------------------------------------
/00_Analysis of Programming Fundamentals with Python Exam Results - May 2023/data/midexam_r.csv:
--------------------------------------------------------------------------------
1 | №,User,Name,01. Disneyland Journey,02. Weaponsmith,03. Grocery Shopping,01. Gift Box Coverage,02. Book’s World,03. The Final Quest,01. Spring Vacation,02. Generating Numbers,03. Magic Cards,01. Google Searches,02. Archery Champion,03. Paintings' Numbers,01. Swimming Championship,02. Jeweler,03. Spice Shelf,Total
2 | 1,vasilvasilev1234321,,-,-,-,-,100,-,100,-,-,-,-,-,-,-,100,300
3 | 2,tsvetelina.shishmanova,Tsvetelina Shishmanova,-,-,-,-,100,-,-,-,-,-,-,-,100,-,100,300
4 | 3,Dobata092709,,-,-,-,-,100,-,100,-,-,-,-,100,-,-,-,300
5 | 4,ThundR,,-,-,-,-,-,-,-,-,-,100,100,100,-,-,-,300
6 | 5,sophiaspavlova,Sofia Gospodinova,100,-,-,-,100,-,-,-,-,-,-,100,-,-,-,300
7 | 6,Xristo03,,100,-,-,-,-,-,-,100,-,-,-,100,-,-,-,300
8 | 7,DeanVasilev,,-,-,-,-,-,-,100,-,-,-,-,-,-,100,100,300
9 | 8,Kristiyan0206,Kristiyan Nedelchev,-,-,-,-,-,-,-,100,100,100,-,-,-,-,-,300
10 | 9,mili9,,-,-,-,100,-,-,-,-,-,-,-,-,-,100,100,300
11 | 10,Kolito,,-,-,-,-,100,-,100,-,100,-,-,-,-,-,-,300
12 | 11,KrisKushchev,,100,-,100,-,-,-,-,-,-,-,-,-,-,100,-,300
13 | 12,Rossosin,,100,-,-,-,-,-,-,-,-,-,-,100,-,100,-,300
14 | 13,CvetaTdrv,Tsveta Todorova,-,-,-,-,-,-,-,100,-,100,-,100,-,-,-,300
15 | 14,BlagoiPankovski,Blagoy Pankovski,-,-,-,-,100,100,-,-,-,100,-,-,-,-,-,300
16 | 15,daniel1905,Daniel Gutsov,-,100,-,-,-,-,-,-,-,100,-,100,-,-,-,300
17 | 16,todrusinow,Todor Rusinov,100,-,-,-,-,-,-,-,100,-,-,-,-,100,-,300
18 | 17,blueshero92,Deyan Dimitrov,-,100,-,-,-,-,-,-,100,-,-,-,100,-,-,300
19 | 18,SimeonMinkov1,Simeon Minkov,-,-,-,-,-,-,100,100,-,-,-,100,-,-,-,300
20 | 19,unrxmarkable,Tsvetan Dimitrov,-,100,-,-,-,100,-,-,-,100,-,-,-,-,-,300
21 | 20,Slaycross,Valeri Yordanov,-,100,-,-,-,-,100,-,100,-,-,-,-,-,-,300
22 | 21,VeselinaKSt,Veselina Stancheva,-,-,-,-,100,-,-,-,100,100,-,-,-,-,-,300
23 | 22,AChaush,,100,-,-,-,100,-,-,-,-,-,-,-,-,-,100,300
24 | 23,lmarinova,Lilyana Marinova,-,-,-,100,-,-,-,-,-,-,-,100,-,100,-,300
25 | 24,rumen111,,100,100,-,-,-,100,-,-,-,-,-,-,-,-,-,300
26 | 25,Joro_Karparov,Georgi Karparov,100,-,100,-,-,-,-,-,-,-,-,-,-,100,-,300
27 | 26,krasi_pd_bg,Krasimir Dimitrov,-,100,-,100,-,-,-,-,100,-,-,-,-,-,-,300
28 | 27,itmpr,Mariya Marinova,-,-,-,-,-,-,-,-,100,100,-,-,-,100,-,300
29 | 28,TeodorHinov,Teodor Hinov,-,-,100,-,-,-,-,-,-,100,100,-,-,-,-,300
30 | 29,Tsvetelina_11,Tsvetelina Stoycheva,100,-,100,-,-,-,-,100,-,-,-,-,-,-,-,300
31 | 30,HristoValeriev,Hristo Gospodinov,-,-,-,-,-,-,100,100,-,-,-,100,-,-,-,300
32 | 31,rusty89,Biser Karov,100,-,-,-,-,-,-,-,-,-,-,100,-,100,-,300
33 | 32,gultenmc,,100,-,-,-,100,-,-,-,-,-,-,100,-,-,-,300
34 | 33,NikolShipochanska,,-,-,-,-,-,-,100,-,-,-,-,100,-,100,-,300
35 | 34,WakeUTR,Iliqn Zdravkov,-,-,-,-,-,100,100,-,-,-,-,-,-,100,-,300
36 | 35,Mila.Uzunova,Мила Узунова,-,-,-,-,100,-,100,-,-,-,-,-,-,-,100,300
37 | 36,nikola.nikolov123321,,100,-,-,-,-,-,-,-,-,-,-,100,-,100,-,300
38 | 37,epicvladog,,-,-,-,100,-,100,-,-,-,-,100,-,-,-,-,300
39 | 38,VictorMitev23,,-,100,100,-,-,-,100,-,-,-,-,-,-,-,-,300
40 | 39,bozhidar.aleksandrov,,100,-,-,-,-,-,-,-,100,-,100,-,-,-,-,300
41 | 40,Elllilar,Mihail Iliev,-,-,-,-,-,-,-,100,100,100,-,-,-,-,-,300
42 | 41,tyna_bg,Dimitrina Georgieva,100,-,-,-,-,-,-,-,-,-,100,100,-,-,-,300
43 | 42,petarbuhchev,,-,-,-,100,-,100,-,100,-,-,-,-,-,-,-,300
44 | 43,AtanasIv,Atanas Ivanov,-,-,-,-,100,100,-,-,-,100,-,-,-,-,-,300
45 | 44,pesho.i,Petar Ivanov,-,-,-,-,-,100,-,-,-,100,-,-,-,100,-,300
46 | 45,a_tarkalanova,,-,-,100,-,100,-,100,-,-,-,-,-,-,-,-,300
47 | 46,DanielHrHristov,,-,-,-,-,100,100,100,-,-,-,-,-,-,-,-,300
48 | 47,Niki1911,Nikoleta Karcheva,-,-,-,100,-,-,-,100,-,-,-,100,-,-,-,300
49 | 48,RadiGT,Radi Todorov,-,-,-,-,100,100,-,-,-,100,-,-,-,-,-,300
50 | 49,Stylish,Ilia Dimitrov,-,-,-,100,-,-,-,100,100,-,-,-,-,-,-,300
51 | 50,stefchobgbg,STEFAN RAYKOV,-,100,-,100,-,-,-,-,-,-,-,100,-,-,-,300
52 | 51,kirilmadzharov,Kiril Madzharov,100,-,-,-,-,-,-,-,100,-,100,-,-,-,-,300
53 | 52,DesiWodi,Desislava Vodichenska,100,100,-,-,-,-,-,-,-,-,-,100,-,-,-,300
54 | 53,Nadezhda27,Nadezhda Stoyanova,-,-,-,-,-,-,100,-,100,-,-,-,-,100,-,300
55 | 54,Bayryam1996,Bayryam Bashchoban,-,-,-,-,100,-,-,-,-,-,-,100,100,-,-,300
56 | 55,PtrKplnv,,-,-,-,-,-,-,-,-,100,-,100,-,100,-,-,300
57 | 56,kami_93,,-,-,-,-,-,-,100,100,100,-,-,-,-,-,-,300
58 | 57,George95,Georgi Evtimov,-,-,100,-,-,-,-,100,-,-,-,-,100,-,-,300
59 | 58,aleksas74,,-,-,-,-,-,-,-,100,-,-,-,-,100,-,100,300
60 | 59,nikola.a.n,Nikola Nikolov,-,-,100,-,100,-,-,-,-,-,-,-,100,-,-,300
61 | 60,mariela17,,-,100,-,-,-,100,-,-,-,-,-,-,100,-,-,300
62 | 61,Bojidar26,,-,-,-,100,-,-,-,-,-,-,100,100,-,-,-,300
63 | 62,StilyanaN,Stilyana Nguen,100,100,-,-,-,-,-,-,-,-,-,100,-,-,-,300
64 | 63,ElifSali,,-,-,-,-,-,-,100,-,-,-,-,-,-,100,100,300
65 | 64,Eko96,Ertan Sadkaev,-,-,-,-,-,-,-,100,-,-,-,100,100,-,-,300
66 | 65,Kenny.Stilyan,Stilyan Pavlov,-,-,-,-,-,-,-,-,-,-,100,100,100,-,-,300
67 | 66,MartinI123,Martin Ivanchev,-,-,-,-,-,-,100,-,100,-,-,-,-,100,-,300
68 | 67,GeorgiHristianGeorgievPopov,Georgi-Hristian Popov,-,-,-,-,-,-,100,100,-,-,-,100,-,-,-,300
69 | 68,vs_vasilev,Vasil Vasilev,100,-,-,-,100,-,-,-,100,-,-,-,-,-,-,300
70 | 69,DecXceD,Alexander Isaev,-,-,-,100,-,100,-,100,-,-,-,-,-,-,-,300
71 | 70,Atanas.vasilev1992,Atanas Vasilev,-,-,-,100,-,-,-,-,100,-,-,-,-,100,-,300
72 | 71,GVasko,,-,100,-,-,-,-,-,-,100,100,-,-,-,-,-,300
73 | 72,Iliyan_S11,Iliyan Simeonov,100,-,-,-,100,100,-,-,-,-,-,-,-,-,-,300
74 | 73,Zaganza,,100,-,-,-,-,-,-,-,100,-,-,-,-,100,-,300
75 | 74,Stoyanh,,-,-,-,-,100,-,-,-,100,-,-,-,90,-,-,290
76 | 75,Hranimirov,Daniel Zdravkov,-,-,-,-,100,100,-,-,-,-,-,-,90,-,-,290
77 | 76,Preslav0980,,-,-,-,100,90,100,-,-,-,-,-,-,-,-,-,290
78 | 77,yoana_petkova,Yoana Petkova,-,100,-,-,-,-,-,-,-,-,-,-,90,-,100,290
79 | 78,Kadir.hasan,Kadir Hasan,-,100,88,-,-,-,100,-,-,-,-,-,-,-,-,288
80 | 79,RadostinGospodinov,Radostin Gospodinov,-,100,-,100,-,-,-,-,88,-,-,-,-,-,-,288
81 | 80,tinteto,,-,-,-,-,100,100,88,-,-,-,-,-,-,-,-,288
82 | 81,Saraalkadi,Sara Al-Kadi,-,100,-,-,-,100,88,-,-,-,-,-,-,-,-,288
83 | 82,ValAnVal2006,,-,-,-,-,-,-,100,88,100,-,-,-,-,-,-,288
84 | 83,Zhivko95,,-,-,-,-,-,-,100,88,-,-,-,100,-,-,-,288
85 | 84,martin.jordanov13,Martin Yordanov,-,-,88,-,-,-,-,-,-,100,-,-,-,100,-,288
86 | 85,Ramaxoni,Mario Arzhanov,-,-,88,-,100,-,-,-,-,100,-,-,-,-,-,288
87 | 86,P3t3to,,100,-,-,-,-,-,-,100,88,-,-,-,-,-,-,288
88 | 87,Nikola_Dakov1,Nikola Dakov,-,-,88,-,100,-,-,-,-,100,-,-,-,-,-,288
89 | 88,SubZ3r0,Darko Stoichkov,-,-,-,100,-,100,-,88,-,-,-,-,-,-,-,288
90 | 89,BlagoySpasov,Blagoy Spasov,-,100,88,100,-,-,-,-,-,-,-,-,-,-,-,288
91 | 90,sabri_kz,Sabri Selimov,100,-,100,-,-,-,-,-,-,-,-,-,-,87,-,287
92 | 91,Mert10,,-,-,-,83,-,-,-,-,100,-,-,-,-,100,-,283
93 | 92,nPashov96,Nikolay Pashov,-,-,-,-,-,83,-,100,-,-,-,-,100,-,-,283
94 | 93,IvanPython,Ivan Kamburov,100,-,-,-,-,83,-,-,-,-,-,-,-,100,-,283
95 | 94,MiroslavTs,,-,90,-,-,-,100,-,-,-,-,-,-,90,-,-,280
96 | 95,krasimir89,Krasimir Boyukov,-,-,-,-,-,-,-,-,-,-,100,-,80,-,100,280
97 | 96,brayanm,Brayan Markov,-,-,100,-,100,-,-,-,-,-,-,-,80,-,-,280
98 | 97,KirilKitanov,Kiril Kitanov,100,80,-,-,-,-,-,-,-,-,-,100,-,-,-,280
99 | 98,Dechkoo,Nedelcho Nedelchev,100,80,-,-,-,-,-,-,100,-,-,-,-,-,-,280
100 | 99,Valkoz,Valentin Angelov,-,-,100,-,-,-,-,-,-,-,100,-,80,-,-,280
101 | 100,PetqEva,Petya Kostadinova-Obushtarova,-,-,88,-,-,-,-,-,-,-,-,-,90,100,-,278
102 | 101,StefSpasov,,-,100,88,-,-,-,-,-,-,-,-,-,90,-,-,278
103 | 102,Yavor79,Yavor Iliev,100,90,88,-,-,-,-,-,-,-,-,-,-,-,-,278
104 | 103,Picata,,-,-,-,-,-,-,-,-,88,-,100,-,90,-,-,278
105 | 104,iliana0,Iliana Todorova,-,-,-,-,90,-,88,-,-,-,-,100,-,-,-,278
106 | 105,stefidimitrovaa,,-,-,77,-,100,-,-,-,-,100,-,-,-,-,-,277
107 | 106,jaklinzlatanova,Жаклин Златанова,100,-,-,-,-,-,-,77,100,-,-,-,-,-,-,277
108 | 107,Stanko82,,-,-,-,-,-,-,-,77,-,100,-,100,-,-,-,277
109 | 108,Atanas_Lambov,,100,-,-,-,90,-,-,-,-,-,-,-,-,-,85,275
110 | 109,Bobbyturboto95,,-,100,-,100,-,-,-,-,-,-,-,-,-,-,71,271
111 | 110,Happytoo,Ventsislav Ivanov,-,-,-,-,-,-,-,-,-,100,100,71,-,-,-,271
112 | 111,gabriel.angelov,,-,90,-,-,-,-,-,-,-,-,-,100,80,-,-,270
113 | 112,toni.kavalski,,-,-,88,-,100,-,-,-,-,-,-,-,80,-,-,268
114 | 113,boretore,Boris Dabov,-,-,-,-,-,-,-,-,88,100,80,-,-,-,-,268
115 | 114,IlianaDB,Iliana Bakardzhieva,-,100,-,-,-,-,-,-,77,-,-,-,90,-,-,267
116 | 115,iwanss21,Ivan Hristoforov,-,-,-,66,100,100,-,-,-,-,-,-,-,-,-,266
117 | 116,VladimirVelkov,Vladimir Velkov,-,100,-,66,-,-,-,-,-,-,-,100,-,-,-,266
118 | 117,Momchil2k17,Momchil Yankov,-,-,-,66,-,-,-,100,100,-,-,-,-,-,-,266
119 | 118,yanitsatoncheva,Yanitsa Toncheva,-,-,-,-,-,66,-,100,-,-,-,-,100,-,-,266
120 | 119,MihailxBorisov,Mihail Borisov,-,-,-,-,100,-,66,-,-,-,-,-,-,-,100,266
121 | 120,Ili_Yanski,,-,100,-,66,-,-,-,-,-,-,-,100,-,-,-,266
122 | 121,Croko,Rosen Hristov,-,-,-,66,-,-,-,100,100,-,-,-,-,-,-,266
123 | 122,Ivanivv,Ivan Ivanov,-,100,-,66,-,-,-,-,100,-,-,-,-,-,-,266
124 | 123,Arianitka,Ariana Dzhambazka,-,100,-,66,-,100,-,-,-,-,-,-,-,-,-,266
125 | 124,freeflow,,-,100,-,-,-,-,-,-,-,62,-,-,-,-,100,262
126 | 125,HristoIvanov94,Hristo Ivanov,-,-,-,-,-,-,-,-,100,100,-,-,-,62,-,262
127 | 126,ico1892,,100,-,-,-,-,100,-,-,-,-,-,-,-,62,-,262
128 | 127,krasimiraSt,,-,-,-,-,-,100,-,-,-,100,-,-,-,62,-,262
129 | 128,MihaelaKasheva,Mihaela Kasheva,-,-,-,-,-,-,-,-,100,-,60,-,100,-,-,260
130 | 129,Mincho77,Mincho Nachev,-,-,-,100,-,100,-,-,-,-,60,-,-,-,-,260
131 | 130,LillyJeleva,Lili Hristova,100,-,-,-,-,-,-,-,-,-,60,100,-,-,-,260
132 | 131,mariaburla,Mariya Burla,-,-,100,-,-,-,100,-,-,-,60,-,-,-,-,260
133 | 132,AntonNachev,Anton Nachev,-,100,-,83,-,-,-,-,77,-,-,-,-,-,-,260
134 | 133,Bubanster,Lyubomira Andreeva,-,-,-,-,100,-,88,-,-,-,-,-,-,-,71,259
135 | 134,Valentina_Sto,Valentina Stoyanova,-,-,-,-,-,-,88,100,-,-,-,-,-,-,71,259
136 | 135,Miki2005,Milan Nyagolov,-,90,-,66,-,-,-,-,-,-,-,-,-,-,100,256
137 | 136,Mina19,Mina Cvqtkova,-,90,77,-,-,-,88,-,-,-,-,-,-,-,-,255
138 | 137,ViliK,Vili Kirimova,-,90,-,-,-,100,-,-,-,62,-,-,-,-,-,252
139 | 138,georgi.altanov,Georgi Altanov,-,-,-,-,-,-,-,88,88,75,-,-,-,-,-,251
140 | 139,Irinaisheree,,100,-,-,-,-,-,-,-,-,-,50,100,-,-,-,250
141 | 140,Bozhydara5,Bozhidara Bozhanova,-,-,100,-,-,-,100,-,-,-,50,-,-,-,-,250
142 | 141,petardimitrov55,,-,90,-,-,-,-,-,-,-,-,-,100,60,-,-,250
143 | 142,Ally_kirilova,Alexandra Kirilova,-,-,-,-,-,83,100,66,-,-,-,-,-,-,-,249
144 | 143,DanislavAL,Danislav Lazarov,100,-,-,-,-,83,-,-,-,-,-,-,-,62,-,245
145 | 144,georgidaleev,Georgi Daleev,-,-,-,-,-,-,44,100,100,-,-,-,-,-,-,244
146 | 145,popovag,Galina Popova,-,-,-,-,-,100,-,44,-,-,-,-,100,-,-,244
147 | 146,Vessi.A,Vessela Atanasova,-,-,66,-,-,-,-,-,-,-,-,-,90,87,-,243
148 | 147,peza_86,Petya Doncheva,-,40,-,-,-,-,100,-,100,-,-,-,-,-,-,240
149 | 148,DimitarIvanov08,,-,-,-,-,90,-,-,-,-,-,-,-,90,-,57,237
150 | 149,forexmaster,,-,-,-,66,100,-,-,-,-,-,-,71,-,-,-,237
151 | 150,tedort,Teodor Todorov,-,-,-,-,-,-,-,-,-,-,-,-,90,87,57,234
152 | 151,StilyanaKachakova,Stilyana Kachakova,-,-,100,33,100,-,-,-,-,-,-,-,-,-,-,233
153 | 152,YMOPEH,Radoslav Georgiev,-,-,-,33,100,100,-,-,-,-,-,-,-,-,-,233
154 | 153,galin.todorov,,100,-,100,-,-,-,-,-,-,-,30,-,-,-,-,230
155 | 154,l.boyanovv,,-,100,-,-,-,-,-,-,-,-,-,100,30,-,-,230
156 | 155,Ina.Mihaylova,Ina Mihaylova,100,-,-,-,-,-,-,-,-,-,30,100,-,-,-,230
157 | 156,Raya19,,-,-,-,-,-,100,100,-,-,-,30,-,-,-,-,230
158 | 157,Denitsa125,Denitsa Sarakinova,-,-,-,-,-,-,-,88,-,100,-,-,-,-,42,230
159 | 158,cho4eca,Stefan Stefanov,-,-,-,66,-,-,-,-,-,-,-,100,-,62,-,228
160 | 159,GeorgiTG,,100,-,-,-,-,-,-,-,-,-,70,57,-,-,-,227
161 | 160,Nbalimezov,Nikola Balimezov,-,-,77,50,100,-,-,-,-,-,-,-,-,-,-,227
162 | 161,WikiJes,Виктория Димитрова,25,-,100,-,-,-,-,100,-,-,-,-,-,-,-,225
163 | 162,Gavrailov18,Nikola Gavrailov,-,-,-,-,-,-,-,-,-,-,-,-,90,62,71,223
164 | 163,ivan_gevezov,Ivan Gevezov,-,-,-,-,-,-,22,100,-,-,-,100,-,-,-,222
165 | 164,nevenakoynarcheva,,-,80,88,-,-,-,-,-,-,50,-,-,-,-,-,218
166 | 165,Victoriyaaa,,100,-,88,-,-,-,-,-,-,-,30,-,-,-,-,218
167 | 166,DenizRaim,Deniz Raim,-,-,-,-,-,-,-,-,77,-,50,-,90,-,-,217
168 | 167,Boris6,,-,-,-,-,-,-,-,-,100,75,40,-,-,-,-,215
169 | 168,DasAuge,,-,70,-,-,-,83,-,-,-,62,-,-,-,-,-,215
170 | 169,Stefan_Tsenev,,-,-,-,-,-,-,55,-,-,-,-,-,-,87,71,213
171 | 170,bhoper,Мирослав Дернев,-,100,-,-,-,-,11,-,100,-,-,-,-,-,-,211
172 | 171,Vladimir_Lilov,,-,-,33,-,-,-,-,88,-,-,-,-,90,-,-,211
173 | 172,KonstantinTarasevich,Konstantin Tarasevich,-,-,88,-,-,-,-,-,-,-,20,-,100,-,-,208
174 | 173,DesislavStefanov2003,Desislav Stefanov,-,100,-,-,-,-,-,-,88,-,-,-,20,-,-,208
175 | 174,Radostin_Tasev,,-,-,-,-,-,66,-,-,-,-,-,-,90,50,-,206
176 | 175,Krasss88,KRASIMIR FILIPOV,-,-,100,-,-,-,0,-,-,-,-,-,-,100,-,200
177 | 176,Krasimir0,,100,-,-,-,-,-,-,-,-,-,0,-,-,-,100,200
178 | 177,Grigorov8,Dimitar Grigorov,-,-,-,-,100,-,-,-,-,-,-,100,0,-,-,200
179 | 178,Tatqna123,Tatqna Vasileva,-,-,100,-,-,-,-,0,-,100,-,-,-,-,-,200
180 | 179,mahon,Пламен Михов,-,-,-,-,-,100,100,-,-,-,-,-,-,0,-,200
181 | 180,mbb_31,Martin Bumbarov,-,-,-,-,-,-,-,-,0,-,-,-,100,100,-,200
182 | 181,GerganaKrasimirova,,-,-,100,-,-,-,-,-,-,-,0,-,100,-,-,200
183 | 182,Todor_012,,-,-,-,-,-,-,88,-,-,-,40,-,-,-,71,199
184 | 183,NaskoOvardov,Nasko Ovardov,-,90,-,100,-,-,-,-,0,-,-,-,-,-,-,190
185 | 184,SinanMehmedov,,-,-,100,-,-,-,-,-,-,-,0,-,90,-,-,190
186 | 185,MIROGUMATA,Asen Kalqn,-,90,-,0,-,-,-,-,100,-,-,-,-,-,-,190
187 | 186,Mariopi7,,100,90,0,-,-,-,-,-,-,-,-,-,-,-,-,190
188 | 187,konstantinivanovivanov,Константин Иванов,-,-,100,-,-,-,88,0,-,-,-,-,-,-,-,188
189 | 188,SURCESLAV,Stefan Saev,-,-,88,-,-,-,-,-,-,100,-,-,-,0,-,188
190 | 189,Vasko77,Vasil Tsarvulanov,100,-,88,-,-,-,-,-,-,-,0,-,-,-,-,188
191 | 190,Degos,Gospodin Gospodinov,-,-,100,-,-,-,-,88,-,-,-,-,0,-,-,188
192 | 191,nikola_todorov97,Nikola Todorov,-,-,-,16,-,-,-,100,-,-,-,-,-,-,71,187
193 | 192,YordanKostadinov1,Yordan Kostadinov,-,-,-,-,-,66,-,-,-,100,20,-,-,-,-,186
194 | 193,D.K.Ivanova,Daniela Ivanova,-,-,-,-,-,66,100,-,-,-,20,-,-,-,-,186
195 | 194,VelislavM,Velislav Mutafchiyski,-,-,-,-,-,-,-,-,88,62,30,-,-,-,-,180
196 | 195,Maila,Daniela Georgieva-Ivanova,-,-,-,-,-,-,-,-,100,-,0,-,80,-,-,180
197 | 196,NikolKL,,-,-,-,-,-,-,-,-,-,-,-,28,100,50,-,178
198 | 197,LKrastev,,-,-,77,-,-,-,-,-,-,100,-,-,-,0,-,177
199 | 198,krasigel,Krasimira,-,-,88,-,-,-,88,0,-,-,-,-,-,-,-,176
200 | 199,IvanKonstantinovPravchev,,-,-,-,-,-,-,-,100,-,75,-,-,-,-,0,175
201 | 200,Malina.Dimova,Malina Dimova,-,-,-,33,-,100,-,-,-,-,40,-,-,-,-,173
202 | 201,Vasil_Imenov,,100,-,22,-,-,-,-,-,-,-,-,-,-,50,-,172
203 | 202,Maria36,,-,-,-,-,-,-,-,-,-,-,-,-,60,50,57,167
204 | 203,litek,Atanas Dimitrov,-,-,-,50,-,66,-,-,-,-,50,-,-,-,-,166
205 | 204,Blagoy86,Blagoy Penev,-,-,-,-,-,-,-,-,-,62,-,100,-,0,-,162
206 | 205,chris369,Krasena Kirilova,-,80,-,16,-,66,-,-,-,-,-,-,-,-,-,162
207 | 206,DanielTsochev,,-,60,-,-,-,0,100,-,-,-,-,-,-,-,-,160
208 | 207,belini,,-,-,77,-,0,-,-,-,-,-,-,-,80,-,-,157
209 | 208,bunnyhype,Georgi Ginduzov,-,80,-,-,-,-,77,-,-,-,-,0,-,-,-,157
210 | 209,Lubo45,Lyubomir Vasiliev,-,-,-,-,-,83,-,-,-,62,10,-,-,-,-,155
211 | 210,kari17,Kadrie Ali,-,-,-,-,90,0,-,-,-,62,-,-,-,-,-,152
212 | 211,volokin,Aleksandar Nikolov,100,-,0,-,-,-,-,-,-,-,-,-,-,50,-,150
213 | 212,apetrovefforts,Anton Petrov,0,-,88,-,-,-,-,-,-,-,-,-,-,62,-,150
214 | 213,vasilena.3,Vasilena Palasheva,-,-,-,-,-,-,100,-,-,-,0,-,-,-,42,142
215 | 214,Bobi70707023,,-,70,-,-,-,-,22,-,44,-,-,-,-,-,-,136
216 | 215,Aleksandar_Dochev,,-,-,-,50,-,-,-,44,-,-,-,-,-,-,42,136
217 | 216,Isuf90,Isuf Gorelski,-,-,-,-,-,-,88,-,-,-,-,-,-,12,28,128
218 | 217,mihailg777,Mihail Georgiev,-,-,-,-,-,-,-,-,66,50,-,-,-,12,-,128
219 | 218,NathalieV,Natalia Vasileva,100,-,-,-,-,-,-,-,-,-,0,28,-,-,-,128
220 | 219,Nadezhda.vto,Nadezhda Borislavova,-,-,-,-,-,-,100,-,-,-,0,28,-,-,-,128
221 | 220,Duly1,Ivaylo Radulov,-,-,-,-,-,-,-,-,-,-,0,-,100,-,28,128
222 | 221,Mirellapeychev,Mirella Boneva,-,-,-,-,-,16,-,-,-,87,20,-,-,-,-,123
223 | 222,B_Chovanski,Borislav Chovanski,-,0,-,16,-,100,-,-,-,-,-,-,-,-,-,116
224 | 223,VqraKostadinova,Viara Kostadinova,100,-,0,-,-,-,-,-,-,-,10,-,-,-,-,110
225 | 224,Stefan7323,Стефан Борисов,-,-,-,-,-,0,-,-,-,-,20,-,90,-,-,110
226 | 225,IvelinaPlamenova,Ivelina Gospodinova,-,-,-,-,-,-,-,-,33,50,-,-,-,25,-,108
227 | 226,KaterinaLuleova,Katerina Luleova,-,-,-,0,-,-,-,-,44,-,-,-,-,62,-,106
228 | 227,Alex_pavlova91,,-,-,-,-,-,-,-,-,100,0,-,-,-,0,-,100
229 | 228,Ivelinka,Iva Atanasova,100,-,-,-,-,-,-,-,-,-,-,-,-,0,0,100
230 | 229,a.alexandrova03,,-,-,-,-,-,-,-,-,-,100,0,-,-,-,0,100
231 | 230,marinandreev03,Marin Andreev,-,-,-,-,-,-,-,-,-,-,0,0,100,-,-,100
232 | 231,JordanNaskov,,100,-,-,-,-,-,-,-,-,-,-,0,-,0,-,100
233 | 232,ZdravkoSolakov,Zdravko Solakov,-,-,-,100,-,-,-,0,0,-,-,-,-,-,-,100
234 | 233,strazhakova,,-,-,0,-,0,-,-,-,-,-,-,-,100,-,-,100
235 | 234,Nevena1988,,100,-,-,-,-,-,-,-,0,-,0,-,-,-,-,100
236 | 235,Georgy83,Georgi Lazarov,-,-,-,-,-,-,0,-,66,-,30,-,-,-,-,96
237 | 236,Plamen.G.Petkov,Plamen Petkov,-,0,-,-,-,-,-,-,-,-,-,0,90,-,-,90
238 | 237,Petar.Kostadinov,Petar Kostadinov,-,-,0,-,-,-,88,0,-,-,-,-,-,-,-,88
239 | 238,HIDakov,Hristo Dakov,-,-,-,-,-,-,0,-,-,-,0,85,-,-,-,85
240 | 239,Viktoria8,,-,-,-,-,-,-,33,33,0,-,-,-,-,-,-,66
241 | 240,SimeonKost,Simeon Kostadinov,-,-,0,66,-,-,-,-,-,-,-,-,-,0,-,66
242 | 241,Li0y2,Iliya Ivanovski,-,-,-,-,-,-,-,-,-,62,-,0,-,0,-,62
243 | 242,Davik,Momchil Ivanov,-,-,-,-,-,-,-,-,0,62,0,-,-,-,-,62
244 | 243,E7r6r,Onur Syuleyma,-,-,-,-,-,0,44,-,-,-,-,-,-,0,-,44
245 | 244,AtanasPro,Atanas Profirov,-,-,-,-,-,16,22,-,-,-,0,-,-,-,-,38
246 | 245,Radoslav05,Radoslav Efremov,-,-,0,-,-,-,0,33,-,-,-,-,-,-,-,33
247 | 246,BlagovestBorukov,,-,-,-,33,-,-,-,0,-,-,-,0,-,-,-,33
248 | 247,teri1234b,Tereza Baevska,-,-,-,16,-,-,-,-,-,-,-,14,-,0,-,30
249 | 248,Georgieva_Anna,,25,-,0,-,0,-,-,-,-,-,-,-,-,-,-,25
250 | 249,LemonStefan,Stefan Kasabov,25,-,-,-,0,-,-,-,-,-,-,-,-,-,0,25
251 | 250,Ivaylo772,Ivaylo Petrov,-,-,0,-,-,-,-,-,-,-,0,-,20,-,-,20
252 | 251,D_i_m_i,Dimitar Ivakimov,-,-,-,16,0,-,-,-,-,-,-,-,-,-,0,16
253 | 252,UpstreamRace,,-,-,0,16,-,-,-,-,-,-,-,-,-,0,-,16
254 | 253,VasYord,Vasil Yordanov,-,0,0,16,-,-,-,-,-,-,-,-,-,-,-,16
255 | 254,DimitarStoev120,Dimitar Stoev,-,-,-,-,0,-,0,-,-,-,-,0,-,-,-,0
256 | 255,nadiia.ivanova,,-,-,-,-,-,-,-,0,0,0,-,-,-,-,-,0
257 | 256,Kalevra,Diyan Apostolov,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,0
258 | 257,yuli509,Yuli,-,-,-,0,-,-,-,0,-,-,-,-,-,-,0,0
259 | 258,svilen_banov,Svilen Banov,-,0,0,0,-,-,-,-,-,-,-,-,-,-,-,0
260 | 259,vasilbojilov24,Vasil Bozhilov,-,0,-,-,-,-,0,-,0,-,-,-,-,-,-,0
261 | 260,ivan_bahchevanski_95,Ivan Bahchevanski,-,-,-,-,-,0,0,-,-,-,-,-,-,0,-,0
262 | 261,Dessie007,Desislava Georgieva,-,-,-,0,-,-,-,0,-,-,-,-,-,-,0,0
263 | 262,MiroslawBonchev,Miroslav Bonchev,-,-,-,-,-,-,0,-,-,-,0,-,-,-,0,0
264 | 263,ico2662,,-,-,-,-,-,0,-,-,-,0,-,-,-,0,-,0
265 | 264,epalagacheva,Emilia Palagacheva,-,-,-,-,-,-,0,0,0,-,-,-,-,-,-,0
266 | 265,Viksyto,Viktor Yoshov,-,-,-,-,-,0,-,-,-,0,-,-,-,0,-,0
267 | 266,Stefan_Markov,Stefan Markov,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,0
268 | 267,JayTrad,ZHELYO RADANOV,-,-,-,0,0,0,-,-,-,-,-,-,-,-,-,0
269 | 268,petarpetkov,Petar Petkov,-,-,-,0,-,0,-,0,-,-,-,-,-,-,-,0
270 | 269,YordanDimitrov2,Yordan Dimitrov,-,0,0,-,-,-,-,-,-,0,-,-,-,-,-,0
271 | 270,bardsongg,Yordan Georgiev,-,-,-,-,0,-,0,-,0,-,-,-,-,-,-,0
272 | 271,Beyhan80,,0,-,-,-,-,0,-,0,-,-,-,-,-,-,-,0
273 | 272,IvanRmNikolov,,-,-,-,-,-,-,-,-,-,0,0,0,-,-,-,0
274 | 273,petkoandreev,Petko Andreev,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,0
275 | 274,Ivan_Ivanov98,Ivan Ivanov,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,0
276 | 275,MomchilBorisov,Momchil Borisov,-,-,-,-,0,-,-,-,-,0,-,-,-,-,0,0
277 | 276,VladislavNikolov80,,-,-,0,-,-,-,0,0,-,-,-,-,-,-,-,0
278 | 277,Denis771,Denis Stoyanov,0,-,-,-,-,-,-,-,0,-,-,-,-,0,-,0
279 | 278,UzunovOS,Ognyan Uzunov,-,-,-,-,-,-,0,0,0,-,-,-,-,-,-,0
280 | 279,Muzata,Plamen Timev,-,-,-,0,-,-,-,-,0,-,-,-,-,0,-,0
281 | 280,Ms.MarinaNay,Marina Naydenova,0,-,-,-,-,0,-,-,-,-,0,-,-,-,-,0
282 | 281,DarinaGospodinova,Дарина Господинова,-,0,-,-,-,-,-,-,-,-,-,-,0,-,0,0
283 | 282,Milyana,,-,0,0,0,-,-,-,-,-,-,-,-,-,-,-,0
284 | 283,g_stoichev,Georgi Stoychev,-,-,-,-,0,-,0,-,0,-,-,-,-,-,-,0
285 | 284,StefanGerin,,-,-,0,-,-,-,-,0,-,-,-,-,0,-,-,0
286 |
--------------------------------------------------------------------------------
/00_Analysis of Programming Fundamentals with Python Exam Results - May 2023/data/finalexam_r.csv:
--------------------------------------------------------------------------------
1 | №,User,Name,01. Email Validator,02. Message Encrypter,03. Battle Manager,01. Easter,02. Employees,03. Bakery Shop,01. Registration,02. Registration,03. Monthly Report,02. The Race,03. Concert,03. Shopping,01. Word Developing,01. Warrior's Quest,02. Arriving in Kathmandu,Total
2 | 1,StefSpasov,,100,-,-,-,-,-,-,-,-,-,-,100,-,-,100,300
3 | 2,Victoriyaaa,,100,-,100,-,-,-,-,100,-,-,-,-,-,-,-,300
4 | 3,georgiev1916,,-,-,-,100,-,100,-,-,-,100,-,-,-,-,-,300
5 | 4,Nubris_94,David Dimitrov,-,-,-,-,100,100,-,-,-,-,-,-,-,100,-,300
6 | 5,denislavdd,Denislav Dimitrov,100,-,100,-,-,-,-,100,-,-,-,-,-,-,-,300
7 | 6,Yo_plam,Plamen Zhelev,-,-,-,-,-,-,100,-,-,-,100,-,-,-,100,300
8 | 7,Valentina_Sto,Valentina Stoyanova,-,-,100,-,-,-,100,100,-,-,-,-,-,-,-,300
9 | 8,ptktdrv,Petko Todorov,-,-,-,-,-,-,100,-,100,-,-,-,-,-,100,300
10 | 9,mavroleon,Aleksandar Dzhomakov,-,-,-,100,100,-,-,-,100,-,-,-,-,-,-,300
11 | 10,radi_taf,Radost Tafradzhiyska,100,-,100,-,100,-,-,-,-,-,-,-,-,-,-,300
12 | 11,PreslavStamatov,Preslav Stamatov,-,100,-,-,-,-,100,-,100,-,-,-,-,-,-,300
13 | 12,levvv,,-,-,100,100,-,-,-,100,-,-,-,-,-,-,-,300
14 | 13,lakmus,,-,-,-,-,100,-,-,-,100,-,-,-,100,-,-,300
15 | 14,sklirisalexander,,-,100,-,-,-,-,100,-,100,-,-,-,-,-,-,300
16 | 15,StelianY,Steliyan Yanakiev,-,-,-,-,100,100,-,-,-,-,-,-,100,-,-,300
17 | 16,Simeon0802,Simeon Rachev,-,-,-,-,-,-,-,100,100,-,-,-,100,-,-,300
18 | 17,metodi.shopov,Metodi Shopov,-,-,-,-,-,-,100,100,100,-,-,-,-,-,-,300
19 | 18,Tsvetelina_V.D,,-,100,100,-,-,-,100,-,-,-,-,-,-,-,-,300
20 | 19,lmarinova,Lilyana Marinova,-,-,-,-,100,-,-,-,-,-,100,-,-,100,-,300
21 | 20,Mert10,,100,-,-,-,-,100,-,-,-,100,-,-,-,-,-,300
22 | 21,TodorKrumov,Todor Krumov,100,-,-,-,-,100,-,-,-,100,-,-,-,-,-,300
23 | 22,kostatk,,-,-,-,-,100,100,-,-,-,-,-,-,100,-,-,300
24 | 23,vasko90,Vasko Bozhilov,-,-,-,-,-,100,-,100,-,-,-,-,-,100,-,300
25 | 24,tmnikolov,Tihomir Nikolov,-,-,-,100,-,-,-,-,-,100,100,-,-,-,-,300
26 | 25,niatanasov,Nikolay Atanasov,-,-,-,100,-,-,-,-,-,100,100,-,-,-,-,300
27 | 26,Ognyanat,Ognyana Toteva,-,-,-,-,-,100,100,100,-,-,-,-,-,-,-,300
28 | 27,stratoss,Stanimir Stoyanov,-,-,-,-,-,-,100,-,-,100,100,-,-,-,-,300
29 | 28,nPashov96,Nikolay Pashov,-,-,-,100,-,100,-,100,-,-,-,-,-,-,-,300
30 | 29,Marchety085,Maria Yaneva,-,100,-,-,-,-,-,-,-,-,-,100,100,-,-,300
31 | 30,cool1,,100,100,-,-,-,-,-,-,100,-,-,-,-,-,-,300
32 | 31,MartinRNikolov,Martin Nikolov,-,-,-,-,-,-,100,-,-,100,100,-,-,-,-,300
33 | 32,GerganaGrant,,-,-,-,-,100,100,100,-,-,-,-,-,-,-,-,300
34 | 33,DimityrA,Dimityr Aleksiev,-,-,-,-,-,-,-,-,-,100,100,-,100,-,-,300
35 | 34,vesned,Vesselin Nedialkov,-,-,100,-,-,-,100,100,-,-,-,-,-,-,-,300
36 | 35,BiserLilov,Biser Lilov,-,-,-,-,-,-,-,-,-,100,100,-,-,100,-,300
37 | 36,Arshin,,100,-,100,-,-,-,-,-,-,100,-,-,-,-,-,300
38 | 37,Eliza_Kovacheva,,-,-,-,-,-,-,100,-,-,100,-,100,-,-,-,300
39 | 38,yoana_petkova,Yoana Petkova,-,-,-,-,-,-,100,100,-,-,-,100,-,-,-,300
40 | 39,HristoValeriev,Hristo Gospodinov,100,-,100,-,100,-,-,-,-,-,-,-,-,-,-,300
41 | 40,Dimitar.T,Dimitar Tyanchev,-,-,100,-,-,-,100,-,-,-,-,-,-,-,100,300
42 | 41,Classifield,Peter Zahariev,-,-,-,100,100,-,-,-,-,-,-,100,-,-,-,300
43 | 42,iveta_ll,Iveta Atanasova,-,-,100,100,-,-,-,100,-,-,-,-,-,-,-,300
44 | 43,Ludmil_n1,,100,-,-,-,-,-,-,-,-,100,100,-,-,-,-,300
45 | 44,ahmedmatem,,100,-,100,-,-,-,-,100,-,-,-,-,-,-,-,300
46 | 45,mar.alex,Mariya Aleksandrova,-,-,-,-,-,-,-,-,100,-,-,-,-,100,100,300
47 | 46,Shecho,,-,-,-,-,100,-,-,-,100,-,-,-,100,-,-,300
48 | 47,Chelavrov,IVAN CHELAVROV,-,-,100,-,-,-,-,-,-,100,-,-,-,100,-,300
49 | 48,OnqSkonq,Fikri Harlov,-,-,-,-,100,-,-,-,100,-,-,-,100,-,-,300
50 | 49,RuslanKostov,Ruslan Kostov,-,-,100,100,-,-,-,-,-,-,-,-,-,-,100,300
51 | 50,Coldys,Diyan Ivanov,-,-,-,-,-,-,-,-,-,100,100,-,-,100,-,300
52 | 51,todrusinow,Todor Rusinov,-,-,100,100,-,-,-,-,-,-,-,-,-,-,100,300
53 | 52,gerip02,Gergana Popova,-,-,-,100,-,-,-,100,-,-,100,-,-,-,-,300
54 | 53,Bilyana_EGeorgieva,,-,-,-,100,-,-,-,-,-,100,100,-,-,-,-,300
55 | 54,Martin222,,-,-,100,-,-,-,100,-,-,-,-,-,-,-,100,300
56 | 55,tsankoz,Tsanko Zanov,-,100,-,100,-,-,-,-,-,-,-,100,-,-,-,300
57 | 56,nikola.nikolov123321,,-,-,-,100,-,-,-,100,-,-,100,-,-,-,-,300
58 | 57,Plamen_Panayotov,Plamen Panayotov,-,-,-,-,-,100,-,-,-,-,-,-,100,-,100,300
59 | 58,windowpane,Dobromir Tsolyov,-,-,-,-,-,-,100,100,100,-,-,-,-,-,-,300
60 | 59,st.petrov96,,-,-,100,-,100,-,-,-,-,-,-,-,100,-,-,300
61 | 60,paktozi,Ivaylo Vaklinov,-,100,-,-,-,-,100,-,100,-,-,-,-,-,-,300
62 | 61,SvilenIvanov77,Svilen Ivanov,100,-,-,-,-,100,-,100,-,-,-,-,-,-,-,300
63 | 62,Hranimirov,Daniel Zdravkov,-,100,100,-,-,-,-,-,-,-,-,-,100,-,-,300
64 | 63,MitkoM6,Dimitar Mitrev,-,100,-,100,-,-,-,-,-,-,-,100,-,-,-,300
65 | 64,denis237,,-,-,-,-,-,-,100,-,-,-,100,-,-,-,100,300
66 | 65,BlagoiPankovski,Blagoy Pankovski,-,-,-,100,-,-,-,100,-,-,-,100,-,-,-,300
67 | 66,LidiaSimeonova,Lidia Simeonova,100,-,100,-,100,-,-,-,-,-,-,-,-,-,-,300
68 | 67,aardenski,Aleksandar Ardenski,100,-,100,-,-,-,-,-,-,100,-,-,-,-,-,300
69 | 68,valentinvalentinovv,,-,-,-,100,-,-,-,-,100,-,-,-,-,-,100,300
70 | 69,Tihomir_Vodenicharov,Тихомир Воденичаров,-,-,-,100,-,-,-,-,-,100,100,-,-,-,-,300
71 | 70,virgo21,Inna Vatahova,-,100,-,-,-,100,100,-,-,-,-,-,-,-,-,300
72 | 71,KostadinHadzhiyski,,-,-,-,-,100,-,-,-,-,-,100,-,-,100,-,300
73 | 72,lambev_19,Momchil Lambev,-,-,-,-,100,-,-,-,-,-,100,-,100,-,-,300
74 | 73,atanas_kulov,,-,-,-,100,-,-,-,-,100,-,-,-,-,-,100,300
75 | 74,hristoford,,-,-,-,-,-,-,-,-,-,-,100,-,-,100,100,300
76 | 75,Iliyan_S11,Iliyan Simeonov,-,-,-,-,-,-,-,100,100,-,-,-,100,-,-,300
77 | 76,IvayloKartev,Ivaylo Kartev,-,-,100,-,-,-,-,-,-,100,-,-,-,100,-,300
78 | 77,D.Atanasov00,,-,-,-,-,-,-,-,-,-,-,-,100,-,100,100,300
79 | 78,Yavor79,Yavor Iliev,100,-,-,-,100,100,-,-,-,-,-,-,-,-,-,300
80 | 79,VelislavM,Velislav Mutafchiyski,100,100,-,-,-,100,-,-,-,-,-,-,-,-,-,300
81 | 80,BGVilla,Valentin Mitrofanov,-,-,-,100,100,-,-,-,-,-,100,-,-,-,-,300
82 | 81,StanislavVVasilev,Stanislav Vasilev,100,-,-,-,100,-,-,-,100,-,-,-,-,-,-,300
83 | 82,Tatqna123,Tatqna Vasileva,-,-,100,-,-,-,-,90,-,-,-,-,-,100,-,290
84 | 83,nikolay54,,-,-,100,-,-,-,-,-,-,-,-,-,100,-,90,290
85 | 84,IvanKonstantinovPravchev,,-,-,100,-,-,-,100,-,-,-,-,-,-,-,90,290
86 | 85,stefchobgbg,STEFAN RAYKOV,-,-,-,-,-,-,-,-,-,-,100,-,90,-,100,290
87 | 86,Grudijordanov,,-,-,88,-,100,-,-,-,-,-,-,-,-,100,-,288
88 | 87,stoyanharitov,Stoyan Haritov,100,-,88,-,100,-,-,-,-,-,-,-,-,-,-,288
89 | 88,VladimirCh,,100,-,88,-,-,-,-,100,-,-,-,-,-,-,-,288
90 | 89,CvetaTdrv,Tsveta Todorova,-,-,-,-,-,-,-,-,87,-,-,-,100,-,100,287
91 | 90,Andrs5700,Andrey Vishnevskiy,-,-,-,-,-,-,-,100,87,-,-,-,-,100,-,287
92 | 91,Zaganza,,-,-,-,-,-,-,100,-,87,100,-,-,-,-,-,287
93 | 92,invicious,Oktay Osman,-,-,-,100,85,100,-,-,-,-,-,-,-,-,-,285
94 | 93,BlueBG,Viktor Stanimirov,-,-,100,100,-,-,-,-,-,85,-,-,-,-,-,285
95 | 94,V.Dimov,,-,-,-,100,-,-,-,-,100,85,-,-,-,-,-,285
96 | 95,Tugay2002,Tugay Ali,-,85,-,100,-,100,-,-,-,-,-,-,-,-,-,285
97 | 96,SofiSofi,Sofia Altanova,-,100,-,-,-,100,-,-,-,-,-,-,-,85,-,285
98 | 97,rtsvetkov,,-,-,100,-,-,-,-,100,-,-,-,-,-,85,-,285
99 | 98,radiks,Radina Draganova,-,-,-,-,-,-,-,100,-,-,100,-,-,85,-,285
100 | 99,Wrake,Iliya Nikolov,-,100,100,-,-,-,-,-,-,-,-,-,-,85,-,285
101 | 100,misho.st,Mihail Stoyanov,-,-,-,-,-,-,-,-,-,-,100,-,-,85,100,285
102 | 101,YMOPEH,Radoslav Georgiev,-,85,100,100,-,-,-,-,-,-,-,-,-,-,-,285
103 | 102,HristoVanchov,,-,-,-,-,-,-,-,-,100,100,-,-,-,85,-,285
104 | 103,DesiWodi,Desislava Vodichenska,100,-,-,-,85,-,-,-,100,-,-,-,-,-,-,285
105 | 104,Vironika,,100,-,-,-,-,-,-,100,-,-,83,-,-,-,-,283
106 | 105,Makulev,Stanislav Makulev,-,100,-,-,-,-,-,-,-,-,83,-,-,100,-,283
107 | 106,aleksandar_n_d_softuni,,-,-,-,-,-,-,-,-,-,-,83,-,100,-,100,283
108 | 107,KristinaNikolova98,,-,-,-,-,100,-,100,-,-,-,83,-,-,-,-,283
109 | 108,dianaev,,-,-,-,-,-,-,-,-,-,-,100,-,100,-,80,280
110 | 109,Joro_Karparov,Georgi Karparov,100,-,100,-,-,-,-,-,-,-,-,-,-,-,80,280
111 | 110,Gal123,Galin Hristov,-,-,-,-,-,100,-,80,-,-,-,-,100,-,-,280
112 | 111,Valka77,Valentin Georgiev,100,-,88,-,-,-,-,-,-,-,-,-,-,-,90,278
113 | 112,PetyaRiz,Petya Rizova,100,-,-,-,-,-,-,-,87,-,-,-,-,-,90,277
114 | 113,Ili_Yanski,,-,100,-,77,-,100,-,-,-,-,-,-,-,-,-,277
115 | 114,krasi_pd_bg,Krasimir Dimitrov,-,-,-,-,-,-,-,100,87,-,-,-,90,-,-,277
116 | 115,k.manova,Katrin Manova,-,-,-,77,100,-,-,-,-,-,-,100,-,-,-,277
117 | 116,Croko,Rosen Hristov,77,-,-,-,-,-,-,-,-,-,100,-,-,-,100,277
118 | 117,nikola_todorov97,Nikola Todorov,88,-,88,-,-,-,-,-,-,-,-,-,-,-,100,276
119 | 118,GeorgiKirilov05,,-,-,-,-,-,100,-,90,-,-,-,-,-,85,-,275
120 | 119,fany.argirova,,-,-,-,-,100,75,-,-,-,-,-,-,100,-,-,275
121 | 120,Irinaisheree,,-,-,-,-,-,75,100,-,-,-,-,-,-,-,100,275
122 | 121,ivaylomihaylovv,,-,-,100,-,-,-,-,90,-,-,-,-,-,85,-,275
123 | 122,RumenMilenov,Rumen Milenov,100,-,-,-,-,75,-,100,-,-,-,-,-,-,-,275
124 | 123,bogi.ignatov,Bogomil Ignatov,-,-,-,-,-,-,90,-,-,-,83,-,-,-,100,273
125 | 124,dangelova61,Diana Angelova,-,85,88,-,-,-,-,-,-,-,-,-,100,-,-,273
126 | 125,luksan4o,Luka Chalkanov,-,85,88,100,-,-,-,-,-,-,-,-,-,-,-,273
127 | 126,forexmaster,,-,-,-,-,-,-,-,90,-,-,83,-,-,100,-,273
128 | 127,Arianitka,Ariana Dzhambazka,-,-,-,-,-,-,100,-,-,-,83,-,-,-,90,273
129 | 128,Aleks160707,,-,-,-,-,-,87,-,-,-,-,-,-,-,85,100,272
130 | 129,IVakov,Ivan Vakov,-,85,-,-,-,-,100,-,87,-,-,-,-,-,-,272
131 | 130,slowvik,,-,85,-,-,-,-,100,-,87,-,-,-,-,-,-,272
132 | 131,Ahmed03,Ahmed Ahmed,-,-,100,100,71,-,-,-,-,-,-,-,-,-,-,271
133 | 132,GeorgiStefanov99,George Stefanov,88,-,-,-,-,-,-,100,-,-,83,-,-,-,-,271
134 | 133,sophiaspavlova,Sofia Gospodinova,-,-,-,-,-,-,-,-,-,-,-,100,-,100,70,270
135 | 134,Picata,,-,-,-,-,100,-,70,-,100,-,-,-,-,-,-,270
136 | 135,Sando106,Sasan Zodzhnahin,100,-,-,-,-,-,-,-,100,-,-,-,-,-,70,270
137 | 136,yvette.y,Iveta Yancheva,-,-,-,-,-,-,70,-,-,100,100,-,-,-,-,270
138 | 137,Nikolay_Yonchev,,-,-,-,-,-,-,100,-,100,-,-,-,-,-,70,270
139 | 138,Ivan5503,Ivan Statelov,-,85,-,100,-,-,-,-,-,-,83,-,-,-,-,268
140 | 139,rr_sz12jn08,Velina Miteva,-,85,-,-,-,-,-,-,-,-,83,-,100,-,-,268
141 | 140,galski07,Галин Георгиев,100,85,-,-,-,-,-,-,-,-,83,-,-,-,-,268
142 | 141,sv3tlana,,-,-,-,100,-,-,-,-,87,-,-,-,-,-,80,267
143 | 142,petardimitrov55,,100,-,-,-,-,-,-,-,87,-,-,-,-,-,80,267
144 | 143,hparapunov,Hristo Parapunov,-,-,100,66,-,-,-,100,-,-,-,-,-,-,-,266
145 | 144,valentinos_tamenov,Valentino Stamenov,100,-,-,-,-,-,-,-,-,-,-,66,-,-,100,266
146 | 145,NyxK7,,-,-,-,-,-,-,-,100,-,-,66,-,100,-,-,266
147 | 146,tsvetelina.kerefeyna,,-,-,-,-,-,-,90,100,75,-,-,-,-,-,-,265
148 | 147,dobeca7,,-,-,-,-,-,75,-,-,-,-,-,-,100,-,90,265
149 | 148,Borimira,Mihail Velev,-,-,-,-,-,75,-,-,-,-,-,-,100,-,90,265
150 | 149,sterafa,Stefan Rafailov,-,-,-,-,-,-,80,100,-,-,83,-,-,-,-,263
151 | 150,AndreyZarev,Andrey Zarev,-,85,-,-,-,-,100,-,-,-,-,77,-,-,-,262
152 | 151,my_mun,,-,-,-,-,-,-,-,100,-,-,-,77,-,85,-,262
153 | 152,Mirellapeychev,Mirella Boneva,-,85,-,77,-,100,-,-,-,-,-,-,-,-,-,262
154 | 153,Paulina22,,-,85,-,88,-,-,-,-,87,-,-,-,-,-,-,260
155 | 154,StilyanaN,Stilyana Nguen,-,-,-,-,-,75,-,-,-,-,-,-,-,85,100,260
156 | 155,Idimchev,Ivaylo Dimchev,-,85,88,-,-,-,-,-,-,-,-,-,-,85,-,258
157 | 156,marioantonov,Mario Antonov,-,-,-,-,-,-,-,100,87,-,-,-,-,71,-,258
158 | 157,t.tsvetkov1415,Tsvetan Tsvetkov,88,-,-,-,-,-,-,-,100,-,-,-,-,-,70,258
159 | 158,freeflow,,-,-,-,-,-,-,-,100,-,-,100,-,-,57,-,257
160 | 159,SiyanaD,Siyana Danchilova,100,57,-,-,-,100,-,-,-,-,-,-,-,-,-,257
161 | 160,slawi1,Slavi Gatev,-,-,-,-,85,-,-,-,87,-,-,-,-,85,-,257
162 | 161,oksanakney,Oksana Kney,-,-,-,-,-,-,-,100,87,-,-,-,70,-,-,257
163 | 162,Tonsi,Antoniya Georgieva,100,-,-,-,-,-,-,-,-,-,-,77,-,-,80,257
164 | 163,ZhDobrev,Zhelyo Dobrev,-,-,-,-,100,-,-,-,-,-,-,55,100,-,-,255
165 | 164,SiskoN,Stanimir Nikolov,-,-,-,-,-,-,100,-,-,71,83,-,-,-,-,254
166 | 165,GeorgiP27,Georgi Panayotov,-,85,-,-,-,-,-,-,-,-,83,-,-,85,-,253
167 | 166,dzherekarov,,-,-,100,66,-,-,-,-,-,85,-,-,-,-,-,251
168 | 167,P3t3to,,-,-,-,-,-,-,-,100,-,-,-,66,-,85,-,251
169 | 168,Nbalimezov,Nikola Balimezov,-,-,100,100,-,-,-,-,-,-,-,-,-,-,50,250
170 | 169,Passko,,-,-,-,-,-,-,-,-,100,-,-,-,100,-,50,250
171 | 170,Preslav0980,,-,-,100,-,-,-,100,-,-,-,-,-,-,-,50,250
172 | 171,damyankamenov,Damyan Kamenov,-,71,-,-,-,-,-,-,-,-,-,77,100,-,-,248
173 | 172,Aleksandar_Zh,,-,-,-,-,-,-,-,90,-,-,-,55,100,-,-,245
174 | 173,Duly1,Ivaylo Radulov,-,-,88,-,-,-,100,-,-,57,-,-,-,-,-,245
175 | 174,Vanesa5006,Vanesa Vachkova,-,-,-,44,-,100,-,-,-,-,-,-,-,-,100,244
176 | 175,Ayshe180103,Ayshe Dzhemal,-,-,-,-,-,-,100,100,-,-,-,44,-,-,-,244
177 | 176,Hristo123456,,-,85,-,-,-,-,-,-,87,-,-,-,-,71,-,243
178 | 177,Maria.Antoinet,,-,-,77,66,-,-,-,100,-,-,-,-,-,-,-,243
179 | 178,iivanov95,Ivan Ivanov,-,-,100,-,-,-,-,-,-,57,-,-,-,85,-,242
180 | 179,didoncho,Diyan Nikolov,100,-,-,-,-,-,-,-,100,42,-,-,-,-,-,242
181 | 180,T0nka7a,,-,-,-,77,-,75,-,90,-,-,-,-,-,-,-,242
182 | 181,Kolyo2,Kolyo Kolev,-,71,-,66,-,100,-,-,-,-,-,-,-,-,-,237
183 | 182,MAYAKRASS,,-,-,-,-,100,37,-,-,-,-,-,-,100,-,-,237
184 | 183,Zhivko95,,-,-,-,-,-,-,100,-,-,57,-,77,-,-,-,234
185 | 184,DaniDim,Daniela Dimova,33,-,100,-,-,-,-,-,-,100,-,-,-,-,-,233
186 | 185,yulikivanov,Yuliyan Ivanov,-,-,-,-,-,-,-,-,-,-,100,-,100,-,30,230
187 | 186,Ivanivv,Ivan Ivanov,-,-,88,-,-,-,-,100,-,-,-,-,-,42,-,230
188 | 187,evgenimalev,,66,-,-,-,-,62,-,100,-,-,-,-,-,-,-,228
189 | 188,Bobi_ib,,88,-,-,-,-,-,-,90,-,-,50,-,-,-,-,228
190 | 189,ivanski_2,Ivan Ivanov,-,-,-,66,71,87,-,-,-,-,-,-,-,-,-,224
191 | 190,Martin_Ziberov,,-,57,-,88,-,75,-,-,-,-,-,-,-,-,-,220
192 | 191,Spasimir17,,-,-,-,-,-,-,-,-,-,-,-,66,100,-,50,216
193 | 192,LyubomiraK27,,-,-,88,-,-,-,-,-,-,57,-,-,70,-,-,215
194 | 193,DobrinSarakchiev,Dobrin Sarakchiev,-,-,-,-,100,-,80,-,-,-,-,33,-,-,-,213
195 | 194,vesko841,Veselin Ivanov,-,-,-,-,-,100,-,10,-,-,-,-,-,100,-,210
196 | 195,vtudzharska,Victoria Tudzharska,100,-,-,-,-,-,-,-,100,-,-,-,-,-,10,210
197 | 196,Krasimir0,,-,-,100,-,-,-,-,-,-,-,-,-,90,-,20,210
198 | 197,StelaChilikova,Stela Dimitrova,-,-,-,77,57,-,-,-,75,-,-,-,-,-,-,209
199 | 198,bojidara1702,,-,-,-,-,-,-,-,-,87,-,-,-,-,71,50,208
200 | 199,SURCESLAV,Stefan Saev,33,-,-,-,-,75,-,100,-,-,-,-,-,-,-,208
201 | 200,vasilena.3,Vasilena Palasheva,-,-,-,33,-,75,-,100,-,-,-,-,-,-,-,208
202 | 201,ThroatGag,,-,-,-,-,-,-,-,90,-,-,16,-,100,-,-,206
203 | 202,konstantinivanovivanov,Константин Рванов,-,71,66,66,-,-,-,-,-,-,-,-,-,-,-,203
204 | 203,Iskren002,,-,-,-,-,-,12,100,90,-,-,-,-,-,-,-,202
205 | 204,RositsaG,Rositsa Georgieva,100,0,-,-,-,100,-,-,-,-,-,-,-,-,-,200
206 | 205,ralicamanolova,,-,-,-,100,-,-,-,-,-,-,-,0,-,-,100,200
207 | 206,zornitsa_3,,-,-,-,-,-,-,-,-,-,0,100,-,100,-,-,200
208 | 207,Lilly13,Lilyana Kyuchukova,-,-,-,-,-,-,100,-,-,100,-,0,-,-,-,200
209 | 208,megy_r,Margarita Raeva,-,-,-,100,-,-,-,-,-,100,0,-,-,-,-,200
210 | 209,Chikoroto,,100,-,100,-,-,-,-,-,-,0,-,-,-,-,-,200
211 | 210,AlexanderMKolev,Alexander Kolev,-,-,-,100,100,-,-,-,-,-,-,0,-,-,-,200
212 | 211,idamyanov,,-,-,-,100,-,100,-,-,-,0,-,-,-,-,-,200
213 | 212,PavlinGalabov,Pavlin Galabov,-,100,-,100,-,-,-,-,-,-,-,0,-,-,-,200
214 | 213,vido1912,Vidolin Karadzhov,100,-,-,-,-,0,-,100,-,-,-,-,-,-,-,200
215 | 214,Stefan7323,Стефан Борисов,100,-,100,-,-,-,-,0,-,-,-,-,-,-,-,200
216 | 215,JoroCH,,-,-,-,-,-,100,-,-,-,0,-,-,100,-,-,200
217 | 216,HristiyanTsvetanov98,Hristiyan Tsvetanov,-,-,-,100,-,-,-,100,-,-,0,-,-,-,-,200
218 | 217,bobi1202,Boyan Antonov,-,-,-,-,0,-,100,-,100,-,-,-,-,-,-,200
219 | 218,mahon,Пламен Михов,-,100,-,-,-,-,-,-,-,-,-,0,-,100,-,200
220 | 219,mstoyanov38,,-,-,0,100,-,-,-,100,-,-,-,-,-,-,-,200
221 | 220,CeKaTa_Sensei,Tsvetan Velinov,-,0,-,-,-,100,-,-,-,-,-,-,100,-,-,200
222 | 221,BenetoBoyan,Boyan Dimitrov,100,-,-,-,-,100,-,-,-,-,-,-,-,-,0,200
223 | 222,milendimov7,Milen Dimov,100,0,-,-,-,-,-,-,-,-,-,100,-,-,-,200
224 | 223,MilchoS,Milcho Sapundzhiev,-,-,0,-,-,-,100,-,-,100,-,-,-,-,-,200
225 | 224,Nevena1988,,-,-,-,-,0,100,100,-,-,-,-,-,-,-,-,200
226 | 225,iliana0,Iliana Todorova,-,-,-,66,-,-,-,-,62,-,-,-,-,-,70,198
227 | 226,Ognqn123,Ognyan Yordanov,-,-,88,66,-,-,-,-,-,42,-,-,-,-,-,196
228 | 227,ARodopska,Anzhelina Rodopska,-,-,-,-,-,-,-,-,100,-,-,-,0,-,90,190
229 | 228,NikolaiDulgerov,Nikolay Dyulgerov,-,-,-,-,0,100,90,-,-,-,-,-,-,-,-,190
230 | 229,HristoIvanov94,Hristo Ivanov,-,-,-,-,-,-,-,-,-,-,-,88,100,-,0,188
231 | 230,Iliyan_Georgiev,Iliyan Georgiev,88,-,100,-,-,-,-,-,-,0,-,-,-,-,-,188
232 | 231,bojidar8586,,-,-,100,-,0,-,-,-,-,-,-,-,-,85,-,185
233 | 232,isdraganov,Ivan Draganov,-,-,-,-,0,-,-,-,-,-,-,100,-,85,-,185
234 | 233,PetarMilushev,Petar Milushev,-,-,-,-,85,-,-,-,-,-,0,-,100,-,-,185
235 | 234,Stormy_Here,Boris Filev,-,85,-,-,-,-,100,-,-,-,0,-,-,-,-,185
236 | 235,DeDarko,Darin Zhelev,-,-,-,-,-,-,-,10,75,-,-,-,100,-,-,185
237 | 236,gooshys,Georgi Simonov,-,85,-,-,-,100,-,-,-,-,-,-,-,0,-,185
238 | 237,aycha,Aycha Kehaya,-,-,-,-,0,-,-,-,-,-,83,-,100,-,-,183
239 | 238,hr.nay,,-,-,-,100,-,-,-,-,-,0,83,-,-,-,-,183
240 | 239,Marinski98,Marin Nikolov,-,-,-,66,42,75,-,-,-,-,-,-,-,-,-,183
241 | 240,DenisBalabanov,Denis Balabanov,-,-,-,-,-,-,-,-,-,0,83,-,100,-,-,183
242 | 241,staninskidobroslav,,-,-,-,-,-,100,80,-,-,-,-,-,-,-,0,180
243 | 242,DesislavStefanov2003,Desislav Stefanov,-,0,-,100,-,-,-,-,-,-,-,77,-,-,-,177
244 | 243,ElifSali,,100,0,77,-,-,-,-,-,-,-,-,-,-,-,-,177
245 | 244,Ivan3000,,88,-,88,-,-,-,-,-,-,-,-,-,-,-,0,176
246 | 245,IvoVS,Ivailo Vasov,-,-,-,-,-,75,-,-,-,-,-,-,100,-,0,175
247 | 246,DanielTsochev,,100,-,-,-,-,75,-,-,-,-,-,-,-,-,0,175
248 | 247,Vasil_85,Vasil Vasilev,-,-,-,-,71,-,100,-,-,-,-,0,-,-,-,171
249 | 248,MihailxBorisov,Mihail Borisov,-,-,-,-,-,100,-,-,-,-,-,-,-,71,0,171
250 | 249,Petar.Kostadinov,Petar Kostadinov,-,-,-,-,-,0,-,-,-,100,-,-,-,71,-,171
251 | 250,jorko7120,Georgi Georgiev,-,-,-,-,-,-,70,-,-,100,-,0,-,-,-,170
252 | 251,peshobratmi,Victor Evgeniev,-,-,-,-,-,-,70,-,100,0,-,-,-,-,-,170
253 | 252,Zlatin27,Zlatin Dimitrov,-,-,-,66,-,-,-,-,-,71,-,33,-,-,-,170
254 | 253,MimiVracheva,Maria Vracheva,-,0,-,-,-,-,-,-,-,-,83,-,-,85,-,168
255 | 254,WikiJes,Виктория Димитрова,-,-,-,66,-,-,-,-,100,-,-,-,-,-,0,166
256 | 255,DanislavAL,Danislav Lazarov,-,-,100,66,-,-,-,-,-,0,-,-,-,-,-,166
257 | 256,Ivo959595,,-,-,-,66,0,-,-,-,-,-,100,-,-,-,-,166
258 | 257,enio72,,-,-,-,-,-,75,-,0,-,-,-,-,90,-,-,165
259 | 258,Yasena28,Yasena Petrova,-,0,-,-,-,-,-,-,75,-,-,-,90,-,-,165
260 | 259,IvanPython,Ivan Kamburov,-,-,-,-,-,-,-,-,-,-,-,0,-,85,80,165
261 | 260,nizzje,Nikolay Stoychev,-,-,-,88,0,-,-,-,75,-,-,-,-,-,-,163
262 | 261,YanevGeorgi,Georgi Yanev,100,0,-,-,-,62,-,-,-,-,-,-,-,-,-,162
263 | 262,tinteto,,-,-,-,-,0,75,-,-,-,-,-,-,-,85,-,160
264 | 263,Martin112,,-,-,-,-,0,-,60,-,-,-,100,-,-,-,-,160
265 | 264,BoyanYanakiev9312,Boyan Yanakiev,88,71,-,-,-,-,-,-,-,-,-,0,-,-,-,159
266 | 265,Bubanster,Lyubomira Andreeva,100,57,0,-,-,-,-,-,-,-,-,-,-,-,-,157
267 | 266,ValentinTrifonov,,-,-,-,-,0,-,-,-,-,-,100,-,-,57,-,157
268 | 267,aleksas74,,-,-,-,-,-,-,-,0,100,-,-,-,-,57,-,157
269 | 268,navushtanov,Ivo Navushtanov,-,-,-,-,0,-,100,-,-,-,-,55,-,-,-,155
270 | 269,DobriD,Dobri Dobrev,-,-,-,-,-,-,-,50,-,-,-,0,100,-,-,150
271 | 270,nikolai_bojkov,Nikolay Bozhkov,-,-,-,-,-,-,-,-,-,-,0,-,-,57,90,147
272 | 271,Tsvetan911,Tsvetan,-,-,77,-,-,-,70,-,-,-,-,-,-,-,0,147
273 | 272,ldadal,Penko Pirinov,-,0,-,-,-,-,80,-,-,-,-,66,-,-,-,146
274 | 273,Plamen005,,-,-,-,-,0,75,70,-,-,-,-,-,-,-,-,145
275 | 274,Valentin_Dragoev,Valentin Dragoev,-,-,-,44,100,-,-,-,0,-,-,-,-,-,-,144
276 | 275,IvKirin,Рван РљРёСЂРёРЅ,-,-,100,22,-,-,-,20,-,-,-,-,-,-,-,142
277 | 276,BeloslavBelov,,-,71,0,-,-,-,-,-,-,-,-,-,-,71,-,142
278 | 277,kari17,Kadrie Ali,-,42,-,100,-,-,-,-,0,-,-,-,-,-,-,142
279 | 278,KristiyanHristovHristov,,-,-,-,-,0,-,-,-,-,-,83,-,-,57,-,140
280 | 279,dilyanaKas,,-,-,-,-,-,0,-,100,-,-,-,-,40,-,-,140
281 | 280,Shterev9898,,-,-,-,55,0,-,-,-,-,-,83,-,-,-,-,138
282 | 281,yanitsatoncheva,Yanitsa Toncheva,-,-,66,-,-,-,70,-,-,-,-,-,-,-,0,136
283 | 282,RadoslavPeychev,,-,-,-,-,-,-,100,-,-,0,-,33,-,-,-,133
284 | 283,Malina.Dimova,Malina Dimova,-,-,-,100,-,-,-,-,-,-,-,33,-,-,0,133
285 | 284,StilyanaKachakova,Stilyana Kachakova,-,-,33,100,-,-,-,-,-,0,-,-,-,-,-,133
286 | 285,daniel.95,Daniel Nikolov,-,-,-,66,-,-,-,-,-,-,-,66,-,-,0,132
287 | 286,Lyuboslava030,,100,-,-,-,-,-,-,30,-,-,0,-,-,-,-,130
288 | 287,strazhakova,,-,-,88,-,0,-,40,-,-,-,-,-,-,-,-,128
289 | 288,SinanMehmedov,,-,-,-,-,0,100,-,-,-,-,-,-,-,28,-,128
290 | 289,Ppetkow900,Petar Petkov,-,-,-,-,-,-,100,-,-,-,-,22,-,-,0,122
291 | 290,nenki4a,Nenko Kovachev,-,-,-,-,0,-,-,-,-,-,-,77,-,42,-,119
292 | 291,Tsvetelina_11,Tsvetelina Stoycheva,88,-,-,-,-,-,-,-,-,-,-,0,-,-,30,118
293 | 292,qa4life,Ivaylo Vasilev,-,-,-,-,-,-,-,0,-,-,16,-,-,100,-,116
294 | 293,ViktorV777,Viktor Vurgov,-,-,-,-,-,-,-,-,-,-,-,44,-,57,0,101
295 | 294,Belev1926,Georgi Belev,-,-,-,-,-,-,100,-,-,-,-,0,-,-,0,100
296 | 295,VioletaSotirova,,-,-,-,-,-,-,-,-,-,0,0,-,100,-,-,100
297 | 296,sotirova.yulia,Yulia Sotirova,100,0,-,-,-,-,-,-,-,-,0,-,-,-,-,100
298 | 297,HIDakov,Hristo Dakov,100,-,-,-,0,-,-,-,-,-,-,0,-,-,-,100
299 | 298,elisaveta.stoyanovva,,-,0,-,-,-,-,-,-,-,-,100,-,-,0,-,100
300 | 299,amira_amar,Amira Ammar,-,0,-,-,-,-,-,-,-,-,0,-,100,-,-,100
301 | 300,Radostin_Tasev,,-,-,-,-,0,-,-,-,-,-,0,-,-,100,-,100
302 | 301,GertaNn,Veselin Bahchevanski,-,-,-,-,-,-,0,-,-,100,-,0,-,-,-,100
303 | 302,takovataname123,,100,-,-,-,0,-,-,-,-,-,-,0,-,-,-,100
304 | 303,Elf_Dude,,100,-,-,-,-,-,-,-,0,0,-,-,-,-,-,100
305 | 304,stoyan_1,Stoyan Stanev,100,0,-,-,-,-,-,-,-,-,0,-,-,-,-,100
306 | 305,Denis8,,-,0,-,-,-,-,-,-,-,-,-,0,100,-,-,100
307 | 306,Mariopi7,,100,-,0,-,-,-,-,-,-,0,-,-,-,-,-,100
308 | 307,resum,Nayden Naydenov,-,0,-,100,-,-,-,-,-,-,0,-,-,-,-,100
309 | 308,jen40,Elena Маринова,-,0,-,-,-,75,20,-,-,-,-,-,-,-,-,95
310 | 309,NVMARZAKOV,Nikolay Marzakov,-,-,-,-,0,0,90,-,-,-,-,-,-,-,-,90
311 | 310,N1kola,Nikola Nikolov,-,-,-,-,-,-,40,-,-,0,50,-,-,-,-,90
312 | 311,Radomir73,,-,-,88,0,0,-,-,-,-,-,-,-,-,-,-,88
313 | 312,Kremena_Stoyanova,Kremena Stoyanova,-,-,-,88,-,-,-,-,-,-,0,-,-,-,0,88
314 | 313,volokin,Aleksandar Nikolov,-,-,-,-,-,-,-,-,-,-,0,-,-,57,30,87
315 | 314,rusev.r,Radoslav Rusev,-,57,-,-,-,-,-,-,-,-,0,-,-,28,-,85
316 | 315,ilieva.vesela,Vesela Ilieva,-,-,-,-,-,-,-,-,-,-,0,-,-,85,0,85
317 | 316,boretore,Boris Dabov,-,-,-,-,-,-,-,-,-,0,0,-,-,85,-,85
318 | 317,Anton03,Anton Todorov,-,-,-,-,-,-,-,-,-,-,83,-,-,-,-,83
319 | 318,Arto5,,77,-,-,-,-,-,-,-,-,-,-,0,-,-,0,77
320 | 319,Vladislav.Cvetkov,,-,-,77,-,0,-,-,-,-,-,-,-,0,-,-,77
321 | 320,krasimiraSt,,-,0,-,-,-,-,-,-,0,-,-,-,-,71,-,71
322 | 321,DamnBerbatov,,-,71,0,-,-,-,-,-,-,-,-,-,0,-,-,71
323 | 322,Atanas_Lambov,,-,-,0,-,0,-,70,-,-,-,-,-,-,-,-,70
324 | 323,AtanazKrastev,atanas krastev,-,0,-,-,-,-,70,-,-,-,0,-,-,-,-,70
325 | 324,peza_86,Petya Doncheva,-,-,-,66,0,-,-,-,-,-,0,-,-,-,-,66
326 | 325,Ani.nenova,,66,-,-,-,-,-,-,0,-,-,-,0,-,-,-,66
327 | 326,r.seyrekov,Rosen Seyrekov,66,-,-,-,-,0,-,0,-,-,-,-,-,-,-,66
328 | 327,RenettaYordanova,,-,-,-,66,-,0,-,0,-,-,-,-,-,-,-,66
329 | 328,Hristov95,Hristiyan Hristov,-,-,-,66,-,0,-,0,-,-,-,-,-,-,-,66
330 | 329,bkostovldn,Boris Kostov,-,-,-,-,0,-,0,-,-,-,-,66,-,-,-,66
331 | 330,Shogo79,Deyan Kolev,22,42,-,-,-,-,-,-,-,-,-,0,-,-,-,64
332 | 331,IckoIckov,Hristo Hristov,-,-,-,-,-,-,60,-,-,-,0,-,-,-,0,60
333 | 332,teri1234b,Tereza Baevska,-,0,-,-,-,-,-,-,-,-,-,0,60,-,-,60
334 | 333,ruslankaramdzhov,Ruslan Karamdzhov,-,-,-,-,0,-,-,-,0,-,-,-,-,57,-,57
335 | 334,Kanyo,Kanyo Anastasov,-,-,-,55,-,-,-,-,0,0,-,-,-,-,-,55
336 | 335,antoniam07,Antonia Marinova,-,-,0,55,-,-,-,-,-,-,-,-,-,-,0,55
337 | 336,Radutko,Radka Dimitrova,55,-,-,-,0,-,-,-,-,-,0,-,-,-,-,55
338 | 337,Abtikova,Антония Tikova,-,-,55,-,-,-,-,0,-,-,-,-,0,-,-,55
339 | 338,viktor.123,,-,-,-,44,0,-,-,-,-,-,0,-,-,-,-,44
340 | 339,antoniogeshev,,44,-,-,-,-,-,-,0,-,-,-,0,-,-,-,44
341 | 340,Degos,Gospodin Gospodinov,-,0,-,-,-,-,-,-,0,-,-,-,-,42,-,42
342 | 341,frostyy,Stilyan Lilov,-,-,-,-,0,-,40,-,0,-,-,-,-,-,-,40
343 | 342,GerganaKrasimirova,,-,-,-,-,-,0,-,-,-,-,-,-,-,14,20,34
344 | 343,Cvetomir_Hri100dorov,Tsvetomir Hristodorov,-,-,0,33,-,-,-,-,-,0,-,-,-,-,-,33
345 | 344,AChaush,,-,-,-,33,0,-,-,-,-,-,-,0,-,-,-,33
346 | 345,Bobi70707023,,-,0,-,22,-,-,-,-,-,-,0,-,-,-,-,22
347 | 346,Nadezhda.vto,Nadezhda Borislavova,-,0,-,0,-,-,-,-,-,-,16,-,-,-,-,16
348 | 347,IrenaShaleva,,-,-,-,-,-,0,-,-,-,-,-,-,-,14,0,14
349 | 348,Kadir.hasan,Kadir Hasan,-,0,-,-,-,-,-,-,-,-,-,0,-,14,-,14
350 | 349,BlackCrow99,Kaloyan Binev,-,-,-,11,0,-,-,-,-,-,0,-,-,-,-,11
351 | 350,D_i_m_i,Dimitar Ivakimov,-,0,0,-,-,-,-,-,-,-,-,-,10,-,-,10
352 | 351,IlievIvelin,Ivelin Iliev,-,0,-,-,-,-,-,-,-,-,-,0,10,-,-,10
353 | 352,Ivan_Ivanov98,Ivan Ivanov,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,0
354 | 353,Borisslav_Dimitrov,,-,-,-,-,-,-,-,0,-,-,0,-,0,-,-,0
355 | 354,Nasko85,,-,-,-,-,-,-,0,-,-,0,-,0,-,-,-,0
356 | 355,Borismihail,Boris Mihail Ivanov,0,-,0,-,-,-,-,-,-,0,-,-,-,-,-,0
357 | 356,hristomirster,Hristomir Vasilev,-,-,-,-,-,-,0,-,-,-,0,-,-,-,0,0
358 | 357,marina.grebenarova,Marina Grebenarova,-,-,0,-,0,-,-,-,-,-,-,-,-,0,-,0
359 | 358,KaterinaLuleova,Katerina Luleova,-,0,-,0,-,0,-,-,-,-,-,-,-,-,-,0
360 | 359,ico2662,,0,-,-,-,-,0,-,-,-,0,-,-,-,-,-,0
361 | 360,nadiia.ivanova,,0,-,-,-,-,-,-,-,0,0,-,-,-,-,-,0
362 | 361,luchezrkk,,-,-,0,-,0,-,-,-,-,-,-,-,0,-,-,0
363 | 362,Bilyana_EGeorgieva,,-,-,-,-,-,-,-,-,-,0,-,0,-,0,-,0
364 | 363,Kalevra,Diyan Apostolov,-,-,-,-,-,-,-,-,-,-,-,-,-,-,-,0
365 | 364,Park_The_Bus,,-,-,-,-,0,-,-,-,-,-,0,-,-,0,-,0
366 | 365,AleksStankovski,,-,-,-,-,-,-,0,-,0,0,-,-,-,-,-,0
367 | 366,NikolKL,,-,-,-,0,-,-,-,-,0,-,-,-,-,-,0,0
368 | 367,tedialex,,-,0,0,-,-,-,-,-,-,-,-,-,-,0,-,0
369 | 368,IlianaDB,Iliana Bakardzhieva,-,-,-,-,-,-,-,-,-,-,0,-,0,-,0,0
370 | 369,Ivanov_Ivan,,-,-,-,-,-,-,-,0,0,-,-,-,-,0,-,0
371 | 370,toni_7654321,,-,-,-,-,-,-,0,0,-,-,0,-,-,-,-,0
372 | 371,hr1s93,,-,-,-,-,-,0,-,-,-,0,-,-,-,0,-,0
373 | 372,tandautova,Tanya Dautova,-,-,0,-,0,-,0,-,-,-,-,-,-,-,-,0
374 | 373,AlexanderSN,,-,-,-,-,-,0,-,0,-,-,-,-,0,-,-,0
375 | 374,MiroslawBonchev,Miroslav Bonchev,0,-,-,-,-,-,-,-,-,-,-,0,-,-,0,0
376 | 375,v_Venkov,Venelin Venkov,-,-,-,0,-,-,-,-,0,-,-,-,-,-,0,0
377 | 376,Georgieva_Anna,,-,-,-,-,-,0,-,-,-,0,-,-,0,-,-,0
378 | 377,mollov79,Stoyan Mollov,-,-,-,-,-,-,-,-,0,-,-,-,-,0,0,0
379 | 378,Denitsa125,Denitsa Sarakinova,-,-,0,0,-,-,-,-,-,0,-,-,-,-,-,0
380 | 379,mbb_31,Martin Bumbarov,-,-,-,-,-,-,-,-,-,-,-,0,-,0,0,0
381 | 380,BlagoySpasov,Blagoy Spasov,-,-,-,-,-,0,-,-,-,0,-,-,0,-,-,0
382 | 381,Bora2002,,-,-,-,-,-,0,-,-,-,0,-,-,-,0,-,0
383 | 382,Zahariev.Stoyan,Stoyan Zahariev,-,-,-,-,0,0,-,-,-,-,-,-,-,0,-,0
384 | 383,PanoASG,Stanislav Futekov,-,-,-,-,-,-,-,-,0,0,-,-,0,-,-,0
385 | 384,TeodoraTasheva,,0,-,-,-,0,-,-,-,0,-,-,-,-,-,-,0
386 | 385,LKrastev,,0,-,-,-,-,-,-,-,-,0,-,0,-,-,-,0
387 | 386,niki98702,Nikolay Hristov,-,0,-,-,-,0,-,-,-,-,-,-,0,-,-,0
388 | 387,Valya92,Valya Dimitrova,-,0,-,-,-,-,0,-,-,-,0,-,-,-,-,0
389 | 388,vyara_zlatanova,,-,-,-,-,-,-,-,-,0,0,-,-,0,-,-,0
390 | 389,donika_gwd,,-,-,-,-,-,-,0,0,-,-,-,0,-,-,-,0
391 | 390,Stanislava1,Stanislava Dimitrova,-,-,-,-,-,0,0,0,-,-,-,-,-,-,-,0
392 | 391,Niko7,Rumen Nikolaev,-,-,-,-,-,0,-,0,-,-,-,-,0,-,-,0
393 | 392,renetakirilova94,Reneta Kirilova,0,0,-,-,-,-,-,-,-,-,0,-,-,-,-,0
394 |
--------------------------------------------------------------------------------
/01_Data Tidying and Cleaning/Data Tidying and Cleaning Lab.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "import nose.tools\n",
11 | "# Write your imports here"
12 | ]
13 | },
14 | {
15 | "cell_type": "markdown",
16 | "metadata": {},
17 | "source": [
18 | "# Data Tidying and Cleaning Lab\n",
19 | "## Reading, tidying and cleaning data. Preparing data for exploration, mining, analysis and learning"
20 | ]
21 | },
22 | {
23 | "cell_type": "markdown",
24 | "metadata": {
25 | "collapsed": true
26 | },
27 | "source": [
28 | "### Problem 1. Read the dataset (2 points)\n",
29 | "The dataset [here](http://archive.ics.uci.edu/ml/datasets/Auto+MPG) contains information about fuel consumption in different cars.\n",
30 | "\n",
31 | "Click the \"Data Folder\" link and read `auto_mpg.data` into Python. You can download it, if you wish, or you can read it directly from the link.\n",
32 | "\n",
33 | "Give meaningful (and \"Pythonic\") column names, as per the `auto_mpg.names` file:\n",
34 | "1. mpg\n",
35 | "2. cylinders\n",
36 | "3. displacement\n",
37 | "4. horsepower\n",
38 | "5. weight\n",
39 | "6. acceleration\n",
40 | "7. model_year\n",
41 | "8. origin\n",
42 | "9. car_name"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": 2,
48 | "metadata": {
49 | "nbgrader": {
50 | "grade": false,
51 | "grade_id": "read_data",
52 | "locked": false,
53 | "schema_version": 3,
54 | "solution": true
55 | }
56 | },
57 | "outputs": [],
58 | "source": [
59 | "mpg_data = None\n",
60 | "### BEGIN SOLUTION\n",
61 | "mpg_data = pd.read_fwf(\"http://archive.ics.uci.edu/ml/machine-learning-databases/auto-mpg/auto-mpg.data\", header = None)\n",
62 | "mpg_data.columns = [\"mpg\", \"cylinders\", \"displacement\", \"horsepower\", \"weight\", \"acceleration\", \"model_year\", \"origin\", \"car_name\"]\n",
63 | "### END SOLUTION"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": 3,
69 | "metadata": {
70 | "nbgrader": {
71 | "grade": true,
72 | "grade_id": "read_data_tests",
73 | "locked": true,
74 | "points": 2,
75 | "schema_version": 3,
76 | "solution": false
77 | }
78 | },
79 | "outputs": [],
80 | "source": [
81 | "nose.tools.assert_is_not_none(mpg_data)\n",
82 | "### BEGIN HIDDEN TESTS\n",
83 | "nose.tools.assert_equal(mpg_data.shape, (398, 9))\n",
84 | "nose.tools.assert_list_equal(mpg_data.columns.tolist(), [\"mpg\", \"cylinders\", \"displacement\", \"horsepower\", \"weight\", \"acceleration\", \"model_year\", \"origin\", \"car_name\"])\n",
85 | "### END HIDDEN TESTS"
86 | ]
87 | },
88 | {
89 | "cell_type": "markdown",
90 | "metadata": {},
91 | "source": [
92 | "Print the first 4 rows in the dataset to get a feel of what it looks like:"
93 | ]
94 | },
95 | {
96 | "cell_type": "code",
97 | "execution_count": 4,
98 | "metadata": {
99 | "nbgrader": {
100 | "grade": false,
101 | "grade_id": "cell-80f1e6004aaafef8",
102 | "locked": false,
103 | "schema_version": 3,
104 | "solution": true
105 | }
106 | },
107 | "outputs": [
108 | {
109 | "data": {
110 | "text/html": [
111 | "
\n",
112 | "\n",
125 | "
\n",
126 | " \n",
127 | " \n",
128 | " | \n",
129 | " mpg | \n",
130 | " cylinders | \n",
131 | " displacement | \n",
132 | " horsepower | \n",
133 | " weight | \n",
134 | " acceleration | \n",
135 | " model_year | \n",
136 | " origin | \n",
137 | " car_name | \n",
138 | "
\n",
139 | " \n",
140 | " \n",
141 | " \n",
142 | " | 0 | \n",
143 | " 18.0 | \n",
144 | " 8 | \n",
145 | " 307.0 | \n",
146 | " 130.0 | \n",
147 | " 3504.0 | \n",
148 | " 12.0 | \n",
149 | " 70 | \n",
150 | " 1 | \n",
151 | " \"chevrolet chevelle malibu\" | \n",
152 | "
\n",
153 | " \n",
154 | " | 1 | \n",
155 | " 15.0 | \n",
156 | " 8 | \n",
157 | " 350.0 | \n",
158 | " 165.0 | \n",
159 | " 3693.0 | \n",
160 | " 11.5 | \n",
161 | " 70 | \n",
162 | " 1 | \n",
163 | " \"buick skylark 320\" | \n",
164 | "
\n",
165 | " \n",
166 | " | 2 | \n",
167 | " 18.0 | \n",
168 | " 8 | \n",
169 | " 318.0 | \n",
170 | " 150.0 | \n",
171 | " 3436.0 | \n",
172 | " 11.0 | \n",
173 | " 70 | \n",
174 | " 1 | \n",
175 | " \"plymouth satellite\" | \n",
176 | "
\n",
177 | " \n",
178 | " | 3 | \n",
179 | " 16.0 | \n",
180 | " 8 | \n",
181 | " 304.0 | \n",
182 | " 150.0 | \n",
183 | " 3433.0 | \n",
184 | " 12.0 | \n",
185 | " 70 | \n",
186 | " 1 | \n",
187 | " \"amc rebel sst\" | \n",
188 | "
\n",
189 | " \n",
190 | "
\n",
191 | "
"
192 | ],
193 | "text/plain": [
194 | " mpg cylinders displacement horsepower weight acceleration model_year \\\n",
195 | "0 18.0 8 307.0 130.0 3504.0 12.0 70 \n",
196 | "1 15.0 8 350.0 165.0 3693.0 11.5 70 \n",
197 | "2 18.0 8 318.0 150.0 3436.0 11.0 70 \n",
198 | "3 16.0 8 304.0 150.0 3433.0 12.0 70 \n",
199 | "\n",
200 | " origin car_name \n",
201 | "0 1 \"chevrolet chevelle malibu\" \n",
202 | "1 1 \"buick skylark 320\" \n",
203 | "2 1 \"plymouth satellite\" \n",
204 | "3 1 \"amc rebel sst\" "
205 | ]
206 | },
207 | "execution_count": 4,
208 | "metadata": {},
209 | "output_type": "execute_result"
210 | }
211 | ],
212 | "source": [
213 | "### BEGIN SOLUTION\n",
214 | "mpg_data.head(4)\n",
215 | "### END SOLUTION"
216 | ]
217 | },
218 | {
219 | "cell_type": "markdown",
220 | "metadata": {},
221 | "source": [
222 | "### Problem 2. Inspect the dataset (1 point)\n",
223 | "Write a function which accepts a dataset and returns the number of observations and features in it, like so: \n",
224 | "\n",
225 | "``` 10 observations on 15 features```\n",
226 | "\n",
227 | "Where 10 and 15 should be replaced with the real numbers. Test your function with the `auto_mpg` dataset.\n",
228 | "\n",
229 | "Make sure the function works with other datasets (don't worry about \"1 features\" or \"1 observations\", just leave it as it is)."
230 | ]
231 | },
232 | {
233 | "cell_type": "code",
234 | "execution_count": 5,
235 | "metadata": {
236 | "nbgrader": {
237 | "grade": false,
238 | "grade_id": "get_shape_function",
239 | "locked": false,
240 | "schema_version": 3,
241 | "solution": true
242 | }
243 | },
244 | "outputs": [],
245 | "source": [
246 | "def observations_and_features(dataset):\n",
247 | " \"\"\"\n",
248 | " Returns the number of observations and features in the provided dataset\n",
249 | " \"\"\"\n",
250 | " observations = None\n",
251 | " features = None\n",
252 | " ### BEGIN SOLUTION\n",
253 | " observations = dataset.shape[0]\n",
254 | " features = dataset.shape[1]\n",
255 | " ### END SOLUTION\n",
256 | " return \"{} observations on {} features\".format(observations, features)"
257 | ]
258 | },
259 | {
260 | "cell_type": "code",
261 | "execution_count": 6,
262 | "metadata": {
263 | "nbgrader": {
264 | "grade": true,
265 | "grade_id": "get_shape_function_tests",
266 | "locked": true,
267 | "points": 1,
268 | "schema_version": 3,
269 | "solution": false
270 | }
271 | },
272 | "outputs": [
273 | {
274 | "name": "stdout",
275 | "output_type": "stream",
276 | "text": [
277 | "398 observations on 9 features\n"
278 | ]
279 | }
280 | ],
281 | "source": [
282 | "print(observations_and_features(mpg_data))\n",
283 | "### BEGIN HIDDEN TESTS\n",
284 | "nose.tools.assert_equal(observations_and_features(mpg_data), \"398 observations on 9 features\")\n",
285 | "nose.tools.assert_equal(observations_and_features(pd.DataFrame({\"A\": [0, 1], \"B\": [1, 2], \"C\": [5, 10]})), \"2 observations on 3 features\")\n",
286 | "nose.tools.assert_equal(observations_and_features(pd.DataFrame({\"A\": [0, 1]})), \"2 observations on 1 features\")\n",
287 | "nose.tools.assert_equal(observations_and_features(pd.DataFrame({\"A\": [0], \"B\": [1], \"C\": [5]})), \"1 observations on 3 features\")\n",
288 | "nose.tools.assert_equal(observations_and_features(pd.DataFrame({\"A\": [0]})), \"1 observations on 1 features\")\n",
289 | "### END HIDDEN TESTS"
290 | ]
291 | },
292 | {
293 | "cell_type": "markdown",
294 | "metadata": {},
295 | "source": [
296 | "Inspect the data types for each column."
297 | ]
298 | },
299 | {
300 | "cell_type": "code",
301 | "execution_count": 7,
302 | "metadata": {
303 | "nbgrader": {
304 | "grade": false,
305 | "grade_id": "cell-152f652655c53f2a",
306 | "locked": false,
307 | "schema_version": 3,
308 | "solution": true
309 | }
310 | },
311 | "outputs": [
312 | {
313 | "data": {
314 | "text/plain": [
315 | "mpg float64\n",
316 | "cylinders int64\n",
317 | "displacement float64\n",
318 | "horsepower object\n",
319 | "weight float64\n",
320 | "acceleration float64\n",
321 | "model_year int64\n",
322 | "origin int64\n",
323 | "car_name object\n",
324 | "dtype: object"
325 | ]
326 | },
327 | "execution_count": 7,
328 | "metadata": {},
329 | "output_type": "execute_result"
330 | }
331 | ],
332 | "source": [
333 | "### BEGIN SOLUTION\n",
334 | "mpg_data.dtypes\n",
335 | "### END SOLUTION"
336 | ]
337 | },
338 | {
339 | "cell_type": "markdown",
340 | "metadata": {},
341 | "source": [
342 | "### Problem 3. Correct errors (1 point)\n",
343 | "The `horsepower` column looks strange. It's a string but it must be a floating-point number. Find out why this is so and convert it to floating-point number."
344 | ]
345 | },
346 | {
347 | "cell_type": "code",
348 | "execution_count": 8,
349 | "metadata": {
350 | "nbgrader": {
351 | "grade": false,
352 | "grade_id": "convert_to_numeric",
353 | "locked": false,
354 | "schema_version": 3,
355 | "solution": true
356 | }
357 | },
358 | "outputs": [],
359 | "source": [
360 | "### BEGIN SOLUTION\n",
361 | "mpg_data.horsepower = pd.to_numeric(mpg_data.horsepower, errors = \"coerce\")\n",
362 | "### END SOLUTION"
363 | ]
364 | },
365 | {
366 | "cell_type": "code",
367 | "execution_count": 9,
368 | "metadata": {
369 | "nbgrader": {
370 | "grade": true,
371 | "grade_id": "convert_to_numeric_tests",
372 | "locked": true,
373 | "points": 1,
374 | "schema_version": 3,
375 | "solution": false
376 | }
377 | },
378 | "outputs": [],
379 | "source": [
380 | "nose.tools.assert_equal(mpg_data.horsepower.dtype, \"float64\")\n",
381 | "### BEGIN HIDDEN TESTS\n",
382 | "nose.tools.assert_equal(mpg_data.dtypes.horsepower, \"float64\")\n",
383 | "nose.tools.assert_equal(mpg_data.horsepower.isnull().sum(), 6)\n",
384 | "nose.tools.assert_almost_equal(mpg_data.horsepower.mean(), 104.46938775510205, delta = 0.01)\n",
385 | "nose.tools.assert_almost_equal(mpg_data.horsepower.std(), 38.49115993282855, delta = 0.01)\n",
386 | "### END HIDDEN TESTS"
387 | ]
388 | },
389 | {
390 | "cell_type": "markdown",
391 | "metadata": {},
392 | "source": [
393 | "### Problem 4. Missing values: inspection (1 point)\n",
394 | "We saw that the `horsepower` column contained null values. Display the rows which contain those values. Assign the resulting dataframe to the `unknown_hp` variable."
395 | ]
396 | },
397 | {
398 | "cell_type": "code",
399 | "execution_count": 10,
400 | "metadata": {
401 | "nbgrader": {
402 | "grade": false,
403 | "grade_id": "unknown_hp",
404 | "locked": false,
405 | "schema_version": 3,
406 | "solution": true
407 | }
408 | },
409 | "outputs": [],
410 | "source": [
411 | "def get_unknown_hp(dataframe):\n",
412 | " \"\"\"\n",
413 | " Returns the rows in the provided dataframe where the \"horsepower\" column is NaN\n",
414 | " \"\"\"\n",
415 | " unknown_hp = None\n",
416 | " ### BEGIN SOLUTION\n",
417 | " unknown_hp = mpg_data[mpg_data.horsepower.isnull()]\n",
418 | " ### END SOLUTION\n",
419 | " return unknown_hp"
420 | ]
421 | },
422 | {
423 | "cell_type": "code",
424 | "execution_count": 11,
425 | "metadata": {
426 | "nbgrader": {
427 | "grade": true,
428 | "grade_id": "unknown_hp_tests",
429 | "locked": true,
430 | "points": 1,
431 | "schema_version": 3,
432 | "solution": false
433 | }
434 | },
435 | "outputs": [
436 | {
437 | "name": "stdout",
438 | "output_type": "stream",
439 | "text": [
440 | " mpg cylinders displacement horsepower weight acceleration \\\n",
441 | "32 25.0 4 98.0 NaN 2046.0 19.0 \n",
442 | "126 21.0 6 200.0 NaN 2875.0 17.0 \n",
443 | "330 40.9 4 85.0 NaN 1835.0 17.3 \n",
444 | "336 23.6 4 140.0 NaN 2905.0 14.3 \n",
445 | "354 34.5 4 100.0 NaN 2320.0 15.8 \n",
446 | "374 23.0 4 151.0 NaN 3035.0 20.5 \n",
447 | "\n",
448 | " model_year origin car_name \n",
449 | "32 71 1 \"ford pinto\" \n",
450 | "126 74 1 \"ford maverick\" \n",
451 | "330 80 2 \"renault lecar deluxe\" \n",
452 | "336 80 1 \"ford mustang cobra\" \n",
453 | "354 81 2 \"renault 18i\" \n",
454 | "374 82 1 \"amc concord dl\" \n"
455 | ]
456 | }
457 | ],
458 | "source": [
459 | "cars_with_unknown_hp = get_unknown_hp(mpg_data)\n",
460 | "print(cars_with_unknown_hp)\n",
461 | "### BEGIN HIDDEN TESTS\n",
462 | "import math\n",
463 | "nose.tools.assert_equal(cars_with_unknown_hp.shape, (6, 9))\n",
464 | "test_means = cars_with_unknown_hp.mean()\n",
465 | "nose.tools.assert_true(math.isnan(test_means.horsepower))\n",
466 | "nose.tools.assert_true(test_means.displacement, 129)\n",
467 | "### END HIDDEN TESTS"
468 | ]
469 | },
470 | {
471 | "cell_type": "markdown",
472 | "metadata": {},
473 | "source": [
474 | "### Problem 5. Missing data: correction (1 point)\n",
475 | "It seems like the `NaN` values are a small fraction of all values. We can try one of several things:\n",
476 | "* Remove them\n",
477 | "* Replace them (e.g. with the mean power of all cars)\n",
478 | "* Look up the models on the internet and try our best guess on the power\n",
479 | "\n",
480 | "The third one is probably the best but the first one will suffice since these records are too few. Remove those values. Save the dataset in the same `mpg_data` variable. Ensure there are no more `NaN`s."
481 | ]
482 | },
483 | {
484 | "cell_type": "code",
485 | "execution_count": 12,
486 | "metadata": {
487 | "nbgrader": {
488 | "grade": false,
489 | "grade_id": "remove_nulls",
490 | "locked": false,
491 | "schema_version": 3,
492 | "solution": true
493 | }
494 | },
495 | "outputs": [],
496 | "source": [
497 | "### BEGIN SOLUTION\n",
498 | "mpg_data = mpg_data[~mpg_data.horsepower.isnull()]\n",
499 | "### END SOLUTION"
500 | ]
501 | },
502 | {
503 | "cell_type": "code",
504 | "execution_count": 13,
505 | "metadata": {
506 | "nbgrader": {
507 | "grade": true,
508 | "grade_id": "remove_nulls_test",
509 | "locked": true,
510 | "points": 1,
511 | "schema_version": 3,
512 | "solution": false
513 | }
514 | },
515 | "outputs": [],
516 | "source": [
517 | "nose.tools.assert_equal(len(get_unknown_hp(mpg_data)), 0)\n",
518 | "### BEGIN HIDDEN TESTS\n",
519 | "nose.tools.assert_equal(mpg_data.shape, (392, 9))\n",
520 | "nose.tools.assert_equal(mpg_data.isnull().sum().sum(), 0)\n",
521 | "### END HIDDEN TESTS"
522 | ]
523 | },
524 | {
525 | "cell_type": "markdown",
526 | "metadata": {},
527 | "source": [
528 | "### Problem 6. Years of production (1 + 1 points)\n",
529 | "Display all unique model years. Assign them to the variable `model_years`."
530 | ]
531 | },
532 | {
533 | "cell_type": "code",
534 | "execution_count": 14,
535 | "metadata": {
536 | "nbgrader": {
537 | "grade": false,
538 | "grade_id": "model_years",
539 | "locked": false,
540 | "schema_version": 3,
541 | "solution": true
542 | }
543 | },
544 | "outputs": [],
545 | "source": [
546 | "def get_unique_model_years(dataframe):\n",
547 | " \"\"\"\n",
548 | " Returns the unique values of the \"model_year\" column\n",
549 | " of the dataframe\n",
550 | " \"\"\"\n",
551 | " model_years = None\n",
552 | " ### BEGIN SOLUTION\n",
553 | " model_years = mpg_data.model_year.unique()\n",
554 | " ### END SOLUTION\n",
555 | " return model_years"
556 | ]
557 | },
558 | {
559 | "cell_type": "code",
560 | "execution_count": 15,
561 | "metadata": {
562 | "nbgrader": {
563 | "grade": true,
564 | "grade_id": "model_years_test",
565 | "locked": true,
566 | "points": 1,
567 | "schema_version": 3,
568 | "solution": false
569 | }
570 | },
571 | "outputs": [
572 | {
573 | "name": "stdout",
574 | "output_type": "stream",
575 | "text": [
576 | "[70 71 72 73 74 75 76 77 78 79 80 81 82]\n"
577 | ]
578 | }
579 | ],
580 | "source": [
581 | "model_years = get_unique_model_years(mpg_data)\n",
582 | "print(model_years)\n",
583 | "### BEGIN HIDDEN TESTS\n",
584 | "nose.tools.assert_list_equal(model_years.tolist(), [70, 71, 72, 73, 74, 75, 76, 77, 78, 79, 80, 81, 82])\n",
585 | "### END HIDDEN TESTS"
586 | ]
587 | },
588 | {
589 | "cell_type": "markdown",
590 | "metadata": {},
591 | "source": [
592 | "These don't look so good. Convert them to real years, like `70 -> 1970, 71 -> 1971`. Replace the column values in the dataframe."
593 | ]
594 | },
595 | {
596 | "cell_type": "code",
597 | "execution_count": 16,
598 | "metadata": {
599 | "nbgrader": {
600 | "grade": false,
601 | "grade_id": "model_year",
602 | "locked": false,
603 | "schema_version": 3,
604 | "solution": true
605 | }
606 | },
607 | "outputs": [],
608 | "source": [
609 | "### BEGIN SOLUTION\n",
610 | "mpg_data.loc[:, \"model_year\"] = mpg_data.model_year + 1900\n",
611 | "### END SOLUTION"
612 | ]
613 | },
614 | {
615 | "cell_type": "code",
616 | "execution_count": 17,
617 | "metadata": {
618 | "nbgrader": {
619 | "grade": true,
620 | "grade_id": "model_year_test",
621 | "locked": true,
622 | "points": 1,
623 | "schema_version": 3,
624 | "solution": false
625 | }
626 | },
627 | "outputs": [
628 | {
629 | "name": "stdout",
630 | "output_type": "stream",
631 | "text": [
632 | "[1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982]\n"
633 | ]
634 | }
635 | ],
636 | "source": [
637 | "model_years = get_unique_model_years(mpg_data)\n",
638 | "print(model_years)\n",
639 | "### BEGIN HIDDEN TESTS\n",
640 | "nose.tools.assert_list_equal(model_years.tolist(), [1970, 1971, 1972, 1973, 1974, 1975, 1976, 1977, 1978, 1979, 1980,\n",
641 | " 1981, 1982])\n",
642 | "### END HIDDEN TESTS"
643 | ]
644 | },
645 | {
646 | "cell_type": "markdown",
647 | "metadata": {},
648 | "source": [
649 | "### Problem 7. Exploration: low-power cars (1 point)\n",
650 | "The data looks quite good now. Let's try some exploration.\n",
651 | "\n",
652 | "Write a function to find the cars which have the smallest number of cylinders and print their model names. Return a list of car names."
653 | ]
654 | },
655 | {
656 | "cell_type": "code",
657 | "execution_count": 18,
658 | "metadata": {
659 | "nbgrader": {
660 | "grade": false,
661 | "grade_id": "car_names",
662 | "locked": false,
663 | "schema_version": 3,
664 | "solution": true
665 | }
666 | },
667 | "outputs": [],
668 | "source": [
669 | "def get_model_names_smallest_cylinders(dataframe):\n",
670 | " \"\"\"\n",
671 | " Returns the names of the cars with the smallest number of cylinders\n",
672 | " \"\"\"\n",
673 | " car_names = None\n",
674 | " ### BEGIN SOLUTION\n",
675 | " car_names = dataframe[dataframe.cylinders == dataframe.cylinders.min()].car_name\n",
676 | " ### END SOLUTION\n",
677 | " return car_names"
678 | ]
679 | },
680 | {
681 | "cell_type": "code",
682 | "execution_count": 19,
683 | "metadata": {
684 | "nbgrader": {
685 | "grade": true,
686 | "grade_id": "car_names_test",
687 | "locked": true,
688 | "points": 1,
689 | "schema_version": 3,
690 | "solution": false
691 | }
692 | },
693 | "outputs": [
694 | {
695 | "name": "stdout",
696 | "output_type": "stream",
697 | "text": [
698 | "71 \"mazda rx2 coupe\"\n",
699 | "111 \"maxda rx3\"\n",
700 | "243 \"mazda rx-4\"\n",
701 | "334 \"mazda rx-7 gs\"\n",
702 | "Name: car_name, dtype: object\n"
703 | ]
704 | }
705 | ],
706 | "source": [
707 | "car_names = get_model_names_smallest_cylinders(mpg_data)\n",
708 | "print(car_names)\n",
709 | "nose.tools.assert_true(car_names.shape == (4,) or car_names.shape == (4, 1))\n",
710 | "### BEGIN HIDDEN TESTS\n",
711 | "nose.tools.assert_equal(car_names.index.tolist(), [71, 111, 243, 334])\n",
712 | "mpg_data_filtered = mpg_data[mpg_data.cylinders > 3]\n",
713 | "test_car_names = get_model_names_smallest_cylinders(mpg_data_filtered)\n",
714 | "nose.tools.assert_true(test_car_names.shape == (199,) or test_car_names.shape == (199, 1))\n",
715 | "### END HIDDEN TESTS"
716 | ]
717 | },
718 | {
719 | "cell_type": "markdown",
720 | "metadata": {},
721 | "source": [
722 | "### Problem 8. Exploration: correlations (1 point)\n",
723 | "Finally, let's see some connections between variables. These are also called **correlations**.\n",
724 | "\n",
725 | "Find how to calculate correlations between different columns using `pandas`.\n",
726 | "\n",
727 | "**Hint:** The correlation function in `pandas` returns a `DataFrame` by default. You need only one value from it.\n",
728 | "\n",
729 | "Create a function which accepts a dataframe and two columns and prints the correlation coefficient between those two columns."
730 | ]
731 | },
732 | {
733 | "cell_type": "code",
734 | "execution_count": 20,
735 | "metadata": {
736 | "nbgrader": {
737 | "grade": false,
738 | "grade_id": "correlation",
739 | "locked": false,
740 | "schema_version": 3,
741 | "solution": true
742 | }
743 | },
744 | "outputs": [],
745 | "source": [
746 | "def calculate_correlation(dataframe, first_column, second_column):\n",
747 | " \"\"\"\n",
748 | " Calculates and returns the correlation coefficient between the two columns in the dataframe.\n",
749 | " \"\"\"\n",
750 | " correlation = None\n",
751 | " ### BEGIN SOLUTION\n",
752 | " correlation = dataframe[[first_column, second_column]].corr().iloc[0, 1]\n",
753 | " ### END SOLUTION\n",
754 | " return correlation"
755 | ]
756 | },
757 | {
758 | "cell_type": "code",
759 | "execution_count": 21,
760 | "metadata": {
761 | "nbgrader": {
762 | "grade": true,
763 | "grade_id": "cell-457c5946f2350991",
764 | "locked": true,
765 | "points": 1,
766 | "schema_version": 3,
767 | "solution": false
768 | }
769 | },
770 | "outputs": [
771 | {
772 | "name": "stdout",
773 | "output_type": "stream",
774 | "text": [
775 | "Horsepower:Weight correlation coefficient: 0.8645377375741428\n"
776 | ]
777 | }
778 | ],
779 | "source": [
780 | "hp_weight = calculate_correlation(mpg_data, \"horsepower\", \"weight\")\n",
781 | "print(\"Horsepower:Weight correlation coefficient:\", hp_weight)\n",
782 | "nose.tools.assert_almost_equal(hp_weight, 0.864537737574, delta = 0.01)\n",
783 | "\n",
784 | "### BEGIN HIDDEN TESTS\n",
785 | "corr_test = calculate_correlation(mpg_data, \"horsepower\", \"mpg\")\n",
786 | "nose.tools.assert_almost_equal(corr_test, -0.77842678389777509, delta = 0.01)\n",
787 | "corr_test = calculate_correlation(mpg_data, \"mpg\", \"acceleration\")\n",
788 | "nose.tools.assert_almost_equal(corr_test, 0.42332853690278727, delta = 0.01)\n",
789 | "corr_test = calculate_correlation(mpg_data, \"mpg\", \"mpg\")\n",
790 | "nose.tools.assert_equal(corr_test, 1)\n",
791 | "### END HIDDEN TESTS"
792 | ]
793 | }
794 | ],
795 | "metadata": {
796 | "celltoolbar": "Create Assignment",
797 | "kernelspec": {
798 | "display_name": "Python 3 (ipykernel)",
799 | "language": "python",
800 | "name": "python3"
801 | },
802 | "language_info": {
803 | "codemirror_mode": {
804 | "name": "ipython",
805 | "version": 3
806 | },
807 | "file_extension": ".py",
808 | "mimetype": "text/x-python",
809 | "name": "python",
810 | "nbconvert_exporter": "python",
811 | "pygments_lexer": "ipython3",
812 | "version": "3.9.7"
813 | }
814 | },
815 | "nbformat": 4,
816 | "nbformat_minor": 2
817 | }
818 |
--------------------------------------------------------------------------------
/06_Data Science Project Architecture/data/titanic.csv:
--------------------------------------------------------------------------------
1 | PassengerId,Survived,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
2 | 1,0,3,"Braund, Mr. Owen Harris",male,22,1,0,A/5 21171,7.25,,S
3 | 2,1,1,"Cumings, Mrs. John Bradley (Florence Briggs Thayer)",female,38,1,0,PC 17599,71.2833,C85,C
4 | 3,1,3,"Heikkinen, Miss. Laina",female,26,0,0,STON/O2. 3101282,7.925,,S
5 | 4,1,1,"Futrelle, Mrs. Jacques Heath (Lily May Peel)",female,35,1,0,113803,53.1,C123,S
6 | 5,0,3,"Allen, Mr. William Henry",male,35,0,0,373450,8.05,,S
7 | 6,0,3,"Moran, Mr. James",male,,0,0,330877,8.4583,,Q
8 | 7,0,1,"McCarthy, Mr. Timothy J",male,54,0,0,17463,51.8625,E46,S
9 | 8,0,3,"Palsson, Master. Gosta Leonard",male,2,3,1,349909,21.075,,S
10 | 9,1,3,"Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)",female,27,0,2,347742,11.1333,,S
11 | 10,1,2,"Nasser, Mrs. Nicholas (Adele Achem)",female,14,1,0,237736,30.0708,,C
12 | 11,1,3,"Sandstrom, Miss. Marguerite Rut",female,4,1,1,PP 9549,16.7,G6,S
13 | 12,1,1,"Bonnell, Miss. Elizabeth",female,58,0,0,113783,26.55,C103,S
14 | 13,0,3,"Saundercock, Mr. William Henry",male,20,0,0,A/5. 2151,8.05,,S
15 | 14,0,3,"Andersson, Mr. Anders Johan",male,39,1,5,347082,31.275,,S
16 | 15,0,3,"Vestrom, Miss. Hulda Amanda Adolfina",female,14,0,0,350406,7.8542,,S
17 | 16,1,2,"Hewlett, Mrs. (Mary D Kingcome) ",female,55,0,0,248706,16,,S
18 | 17,0,3,"Rice, Master. Eugene",male,2,4,1,382652,29.125,,Q
19 | 18,1,2,"Williams, Mr. Charles Eugene",male,,0,0,244373,13,,S
20 | 19,0,3,"Vander Planke, Mrs. Julius (Emelia Maria Vandemoortele)",female,31,1,0,345763,18,,S
21 | 20,1,3,"Masselmani, Mrs. Fatima",female,,0,0,2649,7.225,,C
22 | 21,0,2,"Fynney, Mr. Joseph J",male,35,0,0,239865,26,,S
23 | 22,1,2,"Beesley, Mr. Lawrence",male,34,0,0,248698,13,D56,S
24 | 23,1,3,"McGowan, Miss. Anna ""Annie""",female,15,0,0,330923,8.0292,,Q
25 | 24,1,1,"Sloper, Mr. William Thompson",male,28,0,0,113788,35.5,A6,S
26 | 25,0,3,"Palsson, Miss. Torborg Danira",female,8,3,1,349909,21.075,,S
27 | 26,1,3,"Asplund, Mrs. Carl Oscar (Selma Augusta Emilia Johansson)",female,38,1,5,347077,31.3875,,S
28 | 27,0,3,"Emir, Mr. Farred Chehab",male,,0,0,2631,7.225,,C
29 | 28,0,1,"Fortune, Mr. Charles Alexander",male,19,3,2,19950,263,C23 C25 C27,S
30 | 29,1,3,"O'Dwyer, Miss. Ellen ""Nellie""",female,,0,0,330959,7.8792,,Q
31 | 30,0,3,"Todoroff, Mr. Lalio",male,,0,0,349216,7.8958,,S
32 | 31,0,1,"Uruchurtu, Don. Manuel E",male,40,0,0,PC 17601,27.7208,,C
33 | 32,1,1,"Spencer, Mrs. William Augustus (Marie Eugenie)",female,,1,0,PC 17569,146.5208,B78,C
34 | 33,1,3,"Glynn, Miss. Mary Agatha",female,,0,0,335677,7.75,,Q
35 | 34,0,2,"Wheadon, Mr. Edward H",male,66,0,0,C.A. 24579,10.5,,S
36 | 35,0,1,"Meyer, Mr. Edgar Joseph",male,28,1,0,PC 17604,82.1708,,C
37 | 36,0,1,"Holverson, Mr. Alexander Oskar",male,42,1,0,113789,52,,S
38 | 37,1,3,"Mamee, Mr. Hanna",male,,0,0,2677,7.2292,,C
39 | 38,0,3,"Cann, Mr. Ernest Charles",male,21,0,0,A./5. 2152,8.05,,S
40 | 39,0,3,"Vander Planke, Miss. Augusta Maria",female,18,2,0,345764,18,,S
41 | 40,1,3,"Nicola-Yarred, Miss. Jamila",female,14,1,0,2651,11.2417,,C
42 | 41,0,3,"Ahlin, Mrs. Johan (Johanna Persdotter Larsson)",female,40,1,0,7546,9.475,,S
43 | 42,0,2,"Turpin, Mrs. William John Robert (Dorothy Ann Wonnacott)",female,27,1,0,11668,21,,S
44 | 43,0,3,"Kraeff, Mr. Theodor",male,,0,0,349253,7.8958,,C
45 | 44,1,2,"Laroche, Miss. Simonne Marie Anne Andree",female,3,1,2,SC/Paris 2123,41.5792,,C
46 | 45,1,3,"Devaney, Miss. Margaret Delia",female,19,0,0,330958,7.8792,,Q
47 | 46,0,3,"Rogers, Mr. William John",male,,0,0,S.C./A.4. 23567,8.05,,S
48 | 47,0,3,"Lennon, Mr. Denis",male,,1,0,370371,15.5,,Q
49 | 48,1,3,"O'Driscoll, Miss. Bridget",female,,0,0,14311,7.75,,Q
50 | 49,0,3,"Samaan, Mr. Youssef",male,,2,0,2662,21.6792,,C
51 | 50,0,3,"Arnold-Franchi, Mrs. Josef (Josefine Franchi)",female,18,1,0,349237,17.8,,S
52 | 51,0,3,"Panula, Master. Juha Niilo",male,7,4,1,3101295,39.6875,,S
53 | 52,0,3,"Nosworthy, Mr. Richard Cater",male,21,0,0,A/4. 39886,7.8,,S
54 | 53,1,1,"Harper, Mrs. Henry Sleeper (Myna Haxtun)",female,49,1,0,PC 17572,76.7292,D33,C
55 | 54,1,2,"Faunthorpe, Mrs. Lizzie (Elizabeth Anne Wilkinson)",female,29,1,0,2926,26,,S
56 | 55,0,1,"Ostby, Mr. Engelhart Cornelius",male,65,0,1,113509,61.9792,B30,C
57 | 56,1,1,"Woolner, Mr. Hugh",male,,0,0,19947,35.5,C52,S
58 | 57,1,2,"Rugg, Miss. Emily",female,21,0,0,C.A. 31026,10.5,,S
59 | 58,0,3,"Novel, Mr. Mansouer",male,28.5,0,0,2697,7.2292,,C
60 | 59,1,2,"West, Miss. Constance Mirium",female,5,1,2,C.A. 34651,27.75,,S
61 | 60,0,3,"Goodwin, Master. William Frederick",male,11,5,2,CA 2144,46.9,,S
62 | 61,0,3,"Sirayanian, Mr. Orsen",male,22,0,0,2669,7.2292,,C
63 | 62,1,1,"Icard, Miss. Amelie",female,38,0,0,113572,80,B28,
64 | 63,0,1,"Harris, Mr. Henry Birkhardt",male,45,1,0,36973,83.475,C83,S
65 | 64,0,3,"Skoog, Master. Harald",male,4,3,2,347088,27.9,,S
66 | 65,0,1,"Stewart, Mr. Albert A",male,,0,0,PC 17605,27.7208,,C
67 | 66,1,3,"Moubarek, Master. Gerios",male,,1,1,2661,15.2458,,C
68 | 67,1,2,"Nye, Mrs. (Elizabeth Ramell)",female,29,0,0,C.A. 29395,10.5,F33,S
69 | 68,0,3,"Crease, Mr. Ernest James",male,19,0,0,S.P. 3464,8.1583,,S
70 | 69,1,3,"Andersson, Miss. Erna Alexandra",female,17,4,2,3101281,7.925,,S
71 | 70,0,3,"Kink, Mr. Vincenz",male,26,2,0,315151,8.6625,,S
72 | 71,0,2,"Jenkin, Mr. Stephen Curnow",male,32,0,0,C.A. 33111,10.5,,S
73 | 72,0,3,"Goodwin, Miss. Lillian Amy",female,16,5,2,CA 2144,46.9,,S
74 | 73,0,2,"Hood, Mr. Ambrose Jr",male,21,0,0,S.O.C. 14879,73.5,,S
75 | 74,0,3,"Chronopoulos, Mr. Apostolos",male,26,1,0,2680,14.4542,,C
76 | 75,1,3,"Bing, Mr. Lee",male,32,0,0,1601,56.4958,,S
77 | 76,0,3,"Moen, Mr. Sigurd Hansen",male,25,0,0,348123,7.65,F G73,S
78 | 77,0,3,"Staneff, Mr. Ivan",male,,0,0,349208,7.8958,,S
79 | 78,0,3,"Moutal, Mr. Rahamin Haim",male,,0,0,374746,8.05,,S
80 | 79,1,2,"Caldwell, Master. Alden Gates",male,0.83,0,2,248738,29,,S
81 | 80,1,3,"Dowdell, Miss. Elizabeth",female,30,0,0,364516,12.475,,S
82 | 81,0,3,"Waelens, Mr. Achille",male,22,0,0,345767,9,,S
83 | 82,1,3,"Sheerlinck, Mr. Jan Baptist",male,29,0,0,345779,9.5,,S
84 | 83,1,3,"McDermott, Miss. Brigdet Delia",female,,0,0,330932,7.7875,,Q
85 | 84,0,1,"Carrau, Mr. Francisco M",male,28,0,0,113059,47.1,,S
86 | 85,1,2,"Ilett, Miss. Bertha",female,17,0,0,SO/C 14885,10.5,,S
87 | 86,1,3,"Backstrom, Mrs. Karl Alfred (Maria Mathilda Gustafsson)",female,33,3,0,3101278,15.85,,S
88 | 87,0,3,"Ford, Mr. William Neal",male,16,1,3,W./C. 6608,34.375,,S
89 | 88,0,3,"Slocovski, Mr. Selman Francis",male,,0,0,SOTON/OQ 392086,8.05,,S
90 | 89,1,1,"Fortune, Miss. Mabel Helen",female,23,3,2,19950,263,C23 C25 C27,S
91 | 90,0,3,"Celotti, Mr. Francesco",male,24,0,0,343275,8.05,,S
92 | 91,0,3,"Christmann, Mr. Emil",male,29,0,0,343276,8.05,,S
93 | 92,0,3,"Andreasson, Mr. Paul Edvin",male,20,0,0,347466,7.8542,,S
94 | 93,0,1,"Chaffee, Mr. Herbert Fuller",male,46,1,0,W.E.P. 5734,61.175,E31,S
95 | 94,0,3,"Dean, Mr. Bertram Frank",male,26,1,2,C.A. 2315,20.575,,S
96 | 95,0,3,"Coxon, Mr. Daniel",male,59,0,0,364500,7.25,,S
97 | 96,0,3,"Shorney, Mr. Charles Joseph",male,,0,0,374910,8.05,,S
98 | 97,0,1,"Goldschmidt, Mr. George B",male,71,0,0,PC 17754,34.6542,A5,C
99 | 98,1,1,"Greenfield, Mr. William Bertram",male,23,0,1,PC 17759,63.3583,D10 D12,C
100 | 99,1,2,"Doling, Mrs. John T (Ada Julia Bone)",female,34,0,1,231919,23,,S
101 | 100,0,2,"Kantor, Mr. Sinai",male,34,1,0,244367,26,,S
102 | 101,0,3,"Petranec, Miss. Matilda",female,28,0,0,349245,7.8958,,S
103 | 102,0,3,"Petroff, Mr. Pastcho (""Pentcho"")",male,,0,0,349215,7.8958,,S
104 | 103,0,1,"White, Mr. Richard Frasar",male,21,0,1,35281,77.2875,D26,S
105 | 104,0,3,"Johansson, Mr. Gustaf Joel",male,33,0,0,7540,8.6542,,S
106 | 105,0,3,"Gustafsson, Mr. Anders Vilhelm",male,37,2,0,3101276,7.925,,S
107 | 106,0,3,"Mionoff, Mr. Stoytcho",male,28,0,0,349207,7.8958,,S
108 | 107,1,3,"Salkjelsvik, Miss. Anna Kristine",female,21,0,0,343120,7.65,,S
109 | 108,1,3,"Moss, Mr. Albert Johan",male,,0,0,312991,7.775,,S
110 | 109,0,3,"Rekic, Mr. Tido",male,38,0,0,349249,7.8958,,S
111 | 110,1,3,"Moran, Miss. Bertha",female,,1,0,371110,24.15,,Q
112 | 111,0,1,"Porter, Mr. Walter Chamberlain",male,47,0,0,110465,52,C110,S
113 | 112,0,3,"Zabour, Miss. Hileni",female,14.5,1,0,2665,14.4542,,C
114 | 113,0,3,"Barton, Mr. David John",male,22,0,0,324669,8.05,,S
115 | 114,0,3,"Jussila, Miss. Katriina",female,20,1,0,4136,9.825,,S
116 | 115,0,3,"Attalah, Miss. Malake",female,17,0,0,2627,14.4583,,C
117 | 116,0,3,"Pekoniemi, Mr. Edvard",male,21,0,0,STON/O 2. 3101294,7.925,,S
118 | 117,0,3,"Connors, Mr. Patrick",male,70.5,0,0,370369,7.75,,Q
119 | 118,0,2,"Turpin, Mr. William John Robert",male,29,1,0,11668,21,,S
120 | 119,0,1,"Baxter, Mr. Quigg Edmond",male,24,0,1,PC 17558,247.5208,B58 B60,C
121 | 120,0,3,"Andersson, Miss. Ellis Anna Maria",female,2,4,2,347082,31.275,,S
122 | 121,0,2,"Hickman, Mr. Stanley George",male,21,2,0,S.O.C. 14879,73.5,,S
123 | 122,0,3,"Moore, Mr. Leonard Charles",male,,0,0,A4. 54510,8.05,,S
124 | 123,0,2,"Nasser, Mr. Nicholas",male,32.5,1,0,237736,30.0708,,C
125 | 124,1,2,"Webber, Miss. Susan",female,32.5,0,0,27267,13,E101,S
126 | 125,0,1,"White, Mr. Percival Wayland",male,54,0,1,35281,77.2875,D26,S
127 | 126,1,3,"Nicola-Yarred, Master. Elias",male,12,1,0,2651,11.2417,,C
128 | 127,0,3,"McMahon, Mr. Martin",male,,0,0,370372,7.75,,Q
129 | 128,1,3,"Madsen, Mr. Fridtjof Arne",male,24,0,0,C 17369,7.1417,,S
130 | 129,1,3,"Peter, Miss. Anna",female,,1,1,2668,22.3583,F E69,C
131 | 130,0,3,"Ekstrom, Mr. Johan",male,45,0,0,347061,6.975,,S
132 | 131,0,3,"Drazenoic, Mr. Jozef",male,33,0,0,349241,7.8958,,C
133 | 132,0,3,"Coelho, Mr. Domingos Fernandeo",male,20,0,0,SOTON/O.Q. 3101307,7.05,,S
134 | 133,0,3,"Robins, Mrs. Alexander A (Grace Charity Laury)",female,47,1,0,A/5. 3337,14.5,,S
135 | 134,1,2,"Weisz, Mrs. Leopold (Mathilde Francoise Pede)",female,29,1,0,228414,26,,S
136 | 135,0,2,"Sobey, Mr. Samuel James Hayden",male,25,0,0,C.A. 29178,13,,S
137 | 136,0,2,"Richard, Mr. Emile",male,23,0,0,SC/PARIS 2133,15.0458,,C
138 | 137,1,1,"Newsom, Miss. Helen Monypeny",female,19,0,2,11752,26.2833,D47,S
139 | 138,0,1,"Futrelle, Mr. Jacques Heath",male,37,1,0,113803,53.1,C123,S
140 | 139,0,3,"Osen, Mr. Olaf Elon",male,16,0,0,7534,9.2167,,S
141 | 140,0,1,"Giglio, Mr. Victor",male,24,0,0,PC 17593,79.2,B86,C
142 | 141,0,3,"Boulos, Mrs. Joseph (Sultana)",female,,0,2,2678,15.2458,,C
143 | 142,1,3,"Nysten, Miss. Anna Sofia",female,22,0,0,347081,7.75,,S
144 | 143,1,3,"Hakkarainen, Mrs. Pekka Pietari (Elin Matilda Dolck)",female,24,1,0,STON/O2. 3101279,15.85,,S
145 | 144,0,3,"Burke, Mr. Jeremiah",male,19,0,0,365222,6.75,,Q
146 | 145,0,2,"Andrew, Mr. Edgardo Samuel",male,18,0,0,231945,11.5,,S
147 | 146,0,2,"Nicholls, Mr. Joseph Charles",male,19,1,1,C.A. 33112,36.75,,S
148 | 147,1,3,"Andersson, Mr. August Edvard (""Wennerstrom"")",male,27,0,0,350043,7.7958,,S
149 | 148,0,3,"Ford, Miss. Robina Maggie ""Ruby""",female,9,2,2,W./C. 6608,34.375,,S
150 | 149,0,2,"Navratil, Mr. Michel (""Louis M Hoffman"")",male,36.5,0,2,230080,26,F2,S
151 | 150,0,2,"Byles, Rev. Thomas Roussel Davids",male,42,0,0,244310,13,,S
152 | 151,0,2,"Bateman, Rev. Robert James",male,51,0,0,S.O.P. 1166,12.525,,S
153 | 152,1,1,"Pears, Mrs. Thomas (Edith Wearne)",female,22,1,0,113776,66.6,C2,S
154 | 153,0,3,"Meo, Mr. Alfonzo",male,55.5,0,0,A.5. 11206,8.05,,S
155 | 154,0,3,"van Billiard, Mr. Austin Blyler",male,40.5,0,2,A/5. 851,14.5,,S
156 | 155,0,3,"Olsen, Mr. Ole Martin",male,,0,0,Fa 265302,7.3125,,S
157 | 156,0,1,"Williams, Mr. Charles Duane",male,51,0,1,PC 17597,61.3792,,C
158 | 157,1,3,"Gilnagh, Miss. Katherine ""Katie""",female,16,0,0,35851,7.7333,,Q
159 | 158,0,3,"Corn, Mr. Harry",male,30,0,0,SOTON/OQ 392090,8.05,,S
160 | 159,0,3,"Smiljanic, Mr. Mile",male,,0,0,315037,8.6625,,S
161 | 160,0,3,"Sage, Master. Thomas Henry",male,,8,2,CA. 2343,69.55,,S
162 | 161,0,3,"Cribb, Mr. John Hatfield",male,44,0,1,371362,16.1,,S
163 | 162,1,2,"Watt, Mrs. James (Elizabeth ""Bessie"" Inglis Milne)",female,40,0,0,C.A. 33595,15.75,,S
164 | 163,0,3,"Bengtsson, Mr. John Viktor",male,26,0,0,347068,7.775,,S
165 | 164,0,3,"Calic, Mr. Jovo",male,17,0,0,315093,8.6625,,S
166 | 165,0,3,"Panula, Master. Eino Viljami",male,1,4,1,3101295,39.6875,,S
167 | 166,1,3,"Goldsmith, Master. Frank John William ""Frankie""",male,9,0,2,363291,20.525,,S
168 | 167,1,1,"Chibnall, Mrs. (Edith Martha Bowerman)",female,,0,1,113505,55,E33,S
169 | 168,0,3,"Skoog, Mrs. William (Anna Bernhardina Karlsson)",female,45,1,4,347088,27.9,,S
170 | 169,0,1,"Baumann, Mr. John D",male,,0,0,PC 17318,25.925,,S
171 | 170,0,3,"Ling, Mr. Lee",male,28,0,0,1601,56.4958,,S
172 | 171,0,1,"Van der hoef, Mr. Wyckoff",male,61,0,0,111240,33.5,B19,S
173 | 172,0,3,"Rice, Master. Arthur",male,4,4,1,382652,29.125,,Q
174 | 173,1,3,"Johnson, Miss. Eleanor Ileen",female,1,1,1,347742,11.1333,,S
175 | 174,0,3,"Sivola, Mr. Antti Wilhelm",male,21,0,0,STON/O 2. 3101280,7.925,,S
176 | 175,0,1,"Smith, Mr. James Clinch",male,56,0,0,17764,30.6958,A7,C
177 | 176,0,3,"Klasen, Mr. Klas Albin",male,18,1,1,350404,7.8542,,S
178 | 177,0,3,"Lefebre, Master. Henry Forbes",male,,3,1,4133,25.4667,,S
179 | 178,0,1,"Isham, Miss. Ann Elizabeth",female,50,0,0,PC 17595,28.7125,C49,C
180 | 179,0,2,"Hale, Mr. Reginald",male,30,0,0,250653,13,,S
181 | 180,0,3,"Leonard, Mr. Lionel",male,36,0,0,LINE,0,,S
182 | 181,0,3,"Sage, Miss. Constance Gladys",female,,8,2,CA. 2343,69.55,,S
183 | 182,0,2,"Pernot, Mr. Rene",male,,0,0,SC/PARIS 2131,15.05,,C
184 | 183,0,3,"Asplund, Master. Clarence Gustaf Hugo",male,9,4,2,347077,31.3875,,S
185 | 184,1,2,"Becker, Master. Richard F",male,1,2,1,230136,39,F4,S
186 | 185,1,3,"Kink-Heilmann, Miss. Luise Gretchen",female,4,0,2,315153,22.025,,S
187 | 186,0,1,"Rood, Mr. Hugh Roscoe",male,,0,0,113767,50,A32,S
188 | 187,1,3,"O'Brien, Mrs. Thomas (Johanna ""Hannah"" Godfrey)",female,,1,0,370365,15.5,,Q
189 | 188,1,1,"Romaine, Mr. Charles Hallace (""Mr C Rolmane"")",male,45,0,0,111428,26.55,,S
190 | 189,0,3,"Bourke, Mr. John",male,40,1,1,364849,15.5,,Q
191 | 190,0,3,"Turcin, Mr. Stjepan",male,36,0,0,349247,7.8958,,S
192 | 191,1,2,"Pinsky, Mrs. (Rosa)",female,32,0,0,234604,13,,S
193 | 192,0,2,"Carbines, Mr. William",male,19,0,0,28424,13,,S
194 | 193,1,3,"Andersen-Jensen, Miss. Carla Christine Nielsine",female,19,1,0,350046,7.8542,,S
195 | 194,1,2,"Navratil, Master. Michel M",male,3,1,1,230080,26,F2,S
196 | 195,1,1,"Brown, Mrs. James Joseph (Margaret Tobin)",female,44,0,0,PC 17610,27.7208,B4,C
197 | 196,1,1,"Lurette, Miss. Elise",female,58,0,0,PC 17569,146.5208,B80,C
198 | 197,0,3,"Mernagh, Mr. Robert",male,,0,0,368703,7.75,,Q
199 | 198,0,3,"Olsen, Mr. Karl Siegwart Andreas",male,42,0,1,4579,8.4042,,S
200 | 199,1,3,"Madigan, Miss. Margaret ""Maggie""",female,,0,0,370370,7.75,,Q
201 | 200,0,2,"Yrois, Miss. Henriette (""Mrs Harbeck"")",female,24,0,0,248747,13,,S
202 | 201,0,3,"Vande Walle, Mr. Nestor Cyriel",male,28,0,0,345770,9.5,,S
203 | 202,0,3,"Sage, Mr. Frederick",male,,8,2,CA. 2343,69.55,,S
204 | 203,0,3,"Johanson, Mr. Jakob Alfred",male,34,0,0,3101264,6.4958,,S
205 | 204,0,3,"Youseff, Mr. Gerious",male,45.5,0,0,2628,7.225,,C
206 | 205,1,3,"Cohen, Mr. Gurshon ""Gus""",male,18,0,0,A/5 3540,8.05,,S
207 | 206,0,3,"Strom, Miss. Telma Matilda",female,2,0,1,347054,10.4625,G6,S
208 | 207,0,3,"Backstrom, Mr. Karl Alfred",male,32,1,0,3101278,15.85,,S
209 | 208,1,3,"Albimona, Mr. Nassef Cassem",male,26,0,0,2699,18.7875,,C
210 | 209,1,3,"Carr, Miss. Helen ""Ellen""",female,16,0,0,367231,7.75,,Q
211 | 210,1,1,"Blank, Mr. Henry",male,40,0,0,112277,31,A31,C
212 | 211,0,3,"Ali, Mr. Ahmed",male,24,0,0,SOTON/O.Q. 3101311,7.05,,S
213 | 212,1,2,"Cameron, Miss. Clear Annie",female,35,0,0,F.C.C. 13528,21,,S
214 | 213,0,3,"Perkin, Mr. John Henry",male,22,0,0,A/5 21174,7.25,,S
215 | 214,0,2,"Givard, Mr. Hans Kristensen",male,30,0,0,250646,13,,S
216 | 215,0,3,"Kiernan, Mr. Philip",male,,1,0,367229,7.75,,Q
217 | 216,1,1,"Newell, Miss. Madeleine",female,31,1,0,35273,113.275,D36,C
218 | 217,1,3,"Honkanen, Miss. Eliina",female,27,0,0,STON/O2. 3101283,7.925,,S
219 | 218,0,2,"Jacobsohn, Mr. Sidney Samuel",male,42,1,0,243847,27,,S
220 | 219,1,1,"Bazzani, Miss. Albina",female,32,0,0,11813,76.2917,D15,C
221 | 220,0,2,"Harris, Mr. Walter",male,30,0,0,W/C 14208,10.5,,S
222 | 221,1,3,"Sunderland, Mr. Victor Francis",male,16,0,0,SOTON/OQ 392089,8.05,,S
223 | 222,0,2,"Bracken, Mr. James H",male,27,0,0,220367,13,,S
224 | 223,0,3,"Green, Mr. George Henry",male,51,0,0,21440,8.05,,S
225 | 224,0,3,"Nenkoff, Mr. Christo",male,,0,0,349234,7.8958,,S
226 | 225,1,1,"Hoyt, Mr. Frederick Maxfield",male,38,1,0,19943,90,C93,S
227 | 226,0,3,"Berglund, Mr. Karl Ivar Sven",male,22,0,0,PP 4348,9.35,,S
228 | 227,1,2,"Mellors, Mr. William John",male,19,0,0,SW/PP 751,10.5,,S
229 | 228,0,3,"Lovell, Mr. John Hall (""Henry"")",male,20.5,0,0,A/5 21173,7.25,,S
230 | 229,0,2,"Fahlstrom, Mr. Arne Jonas",male,18,0,0,236171,13,,S
231 | 230,0,3,"Lefebre, Miss. Mathilde",female,,3,1,4133,25.4667,,S
232 | 231,1,1,"Harris, Mrs. Henry Birkhardt (Irene Wallach)",female,35,1,0,36973,83.475,C83,S
233 | 232,0,3,"Larsson, Mr. Bengt Edvin",male,29,0,0,347067,7.775,,S
234 | 233,0,2,"Sjostedt, Mr. Ernst Adolf",male,59,0,0,237442,13.5,,S
235 | 234,1,3,"Asplund, Miss. Lillian Gertrud",female,5,4,2,347077,31.3875,,S
236 | 235,0,2,"Leyson, Mr. Robert William Norman",male,24,0,0,C.A. 29566,10.5,,S
237 | 236,0,3,"Harknett, Miss. Alice Phoebe",female,,0,0,W./C. 6609,7.55,,S
238 | 237,0,2,"Hold, Mr. Stephen",male,44,1,0,26707,26,,S
239 | 238,1,2,"Collyer, Miss. Marjorie ""Lottie""",female,8,0,2,C.A. 31921,26.25,,S
240 | 239,0,2,"Pengelly, Mr. Frederick William",male,19,0,0,28665,10.5,,S
241 | 240,0,2,"Hunt, Mr. George Henry",male,33,0,0,SCO/W 1585,12.275,,S
242 | 241,0,3,"Zabour, Miss. Thamine",female,,1,0,2665,14.4542,,C
243 | 242,1,3,"Murphy, Miss. Katherine ""Kate""",female,,1,0,367230,15.5,,Q
244 | 243,0,2,"Coleridge, Mr. Reginald Charles",male,29,0,0,W./C. 14263,10.5,,S
245 | 244,0,3,"Maenpaa, Mr. Matti Alexanteri",male,22,0,0,STON/O 2. 3101275,7.125,,S
246 | 245,0,3,"Attalah, Mr. Sleiman",male,30,0,0,2694,7.225,,C
247 | 246,0,1,"Minahan, Dr. William Edward",male,44,2,0,19928,90,C78,Q
248 | 247,0,3,"Lindahl, Miss. Agda Thorilda Viktoria",female,25,0,0,347071,7.775,,S
249 | 248,1,2,"Hamalainen, Mrs. William (Anna)",female,24,0,2,250649,14.5,,S
250 | 249,1,1,"Beckwith, Mr. Richard Leonard",male,37,1,1,11751,52.5542,D35,S
251 | 250,0,2,"Carter, Rev. Ernest Courtenay",male,54,1,0,244252,26,,S
252 | 251,0,3,"Reed, Mr. James George",male,,0,0,362316,7.25,,S
253 | 252,0,3,"Strom, Mrs. Wilhelm (Elna Matilda Persson)",female,29,1,1,347054,10.4625,G6,S
254 | 253,0,1,"Stead, Mr. William Thomas",male,62,0,0,113514,26.55,C87,S
255 | 254,0,3,"Lobb, Mr. William Arthur",male,30,1,0,A/5. 3336,16.1,,S
256 | 255,0,3,"Rosblom, Mrs. Viktor (Helena Wilhelmina)",female,41,0,2,370129,20.2125,,S
257 | 256,1,3,"Touma, Mrs. Darwis (Hanne Youssef Razi)",female,29,0,2,2650,15.2458,,C
258 | 257,1,1,"Thorne, Mrs. Gertrude Maybelle",female,,0,0,PC 17585,79.2,,C
259 | 258,1,1,"Cherry, Miss. Gladys",female,30,0,0,110152,86.5,B77,S
260 | 259,1,1,"Ward, Miss. Anna",female,35,0,0,PC 17755,512.3292,,C
261 | 260,1,2,"Parrish, Mrs. (Lutie Davis)",female,50,0,1,230433,26,,S
262 | 261,0,3,"Smith, Mr. Thomas",male,,0,0,384461,7.75,,Q
263 | 262,1,3,"Asplund, Master. Edvin Rojj Felix",male,3,4,2,347077,31.3875,,S
264 | 263,0,1,"Taussig, Mr. Emil",male,52,1,1,110413,79.65,E67,S
265 | 264,0,1,"Harrison, Mr. William",male,40,0,0,112059,0,B94,S
266 | 265,0,3,"Henry, Miss. Delia",female,,0,0,382649,7.75,,Q
267 | 266,0,2,"Reeves, Mr. David",male,36,0,0,C.A. 17248,10.5,,S
268 | 267,0,3,"Panula, Mr. Ernesti Arvid",male,16,4,1,3101295,39.6875,,S
269 | 268,1,3,"Persson, Mr. Ernst Ulrik",male,25,1,0,347083,7.775,,S
270 | 269,1,1,"Graham, Mrs. William Thompson (Edith Junkins)",female,58,0,1,PC 17582,153.4625,C125,S
271 | 270,1,1,"Bissette, Miss. Amelia",female,35,0,0,PC 17760,135.6333,C99,S
272 | 271,0,1,"Cairns, Mr. Alexander",male,,0,0,113798,31,,S
273 | 272,1,3,"Tornquist, Mr. William Henry",male,25,0,0,LINE,0,,S
274 | 273,1,2,"Mellinger, Mrs. (Elizabeth Anne Maidment)",female,41,0,1,250644,19.5,,S
275 | 274,0,1,"Natsch, Mr. Charles H",male,37,0,1,PC 17596,29.7,C118,C
276 | 275,1,3,"Healy, Miss. Hanora ""Nora""",female,,0,0,370375,7.75,,Q
277 | 276,1,1,"Andrews, Miss. Kornelia Theodosia",female,63,1,0,13502,77.9583,D7,S
278 | 277,0,3,"Lindblom, Miss. Augusta Charlotta",female,45,0,0,347073,7.75,,S
279 | 278,0,2,"Parkes, Mr. Francis ""Frank""",male,,0,0,239853,0,,S
280 | 279,0,3,"Rice, Master. Eric",male,7,4,1,382652,29.125,,Q
281 | 280,1,3,"Abbott, Mrs. Stanton (Rosa Hunt)",female,35,1,1,C.A. 2673,20.25,,S
282 | 281,0,3,"Duane, Mr. Frank",male,65,0,0,336439,7.75,,Q
283 | 282,0,3,"Olsson, Mr. Nils Johan Goransson",male,28,0,0,347464,7.8542,,S
284 | 283,0,3,"de Pelsmaeker, Mr. Alfons",male,16,0,0,345778,9.5,,S
285 | 284,1,3,"Dorking, Mr. Edward Arthur",male,19,0,0,A/5. 10482,8.05,,S
286 | 285,0,1,"Smith, Mr. Richard William",male,,0,0,113056,26,A19,S
287 | 286,0,3,"Stankovic, Mr. Ivan",male,33,0,0,349239,8.6625,,C
288 | 287,1,3,"de Mulder, Mr. Theodore",male,30,0,0,345774,9.5,,S
289 | 288,0,3,"Naidenoff, Mr. Penko",male,22,0,0,349206,7.8958,,S
290 | 289,1,2,"Hosono, Mr. Masabumi",male,42,0,0,237798,13,,S
291 | 290,1,3,"Connolly, Miss. Kate",female,22,0,0,370373,7.75,,Q
292 | 291,1,1,"Barber, Miss. Ellen ""Nellie""",female,26,0,0,19877,78.85,,S
293 | 292,1,1,"Bishop, Mrs. Dickinson H (Helen Walton)",female,19,1,0,11967,91.0792,B49,C
294 | 293,0,2,"Levy, Mr. Rene Jacques",male,36,0,0,SC/Paris 2163,12.875,D,C
295 | 294,0,3,"Haas, Miss. Aloisia",female,24,0,0,349236,8.85,,S
296 | 295,0,3,"Mineff, Mr. Ivan",male,24,0,0,349233,7.8958,,S
297 | 296,0,1,"Lewy, Mr. Ervin G",male,,0,0,PC 17612,27.7208,,C
298 | 297,0,3,"Hanna, Mr. Mansour",male,23.5,0,0,2693,7.2292,,C
299 | 298,0,1,"Allison, Miss. Helen Loraine",female,2,1,2,113781,151.55,C22 C26,S
300 | 299,1,1,"Saalfeld, Mr. Adolphe",male,,0,0,19988,30.5,C106,S
301 | 300,1,1,"Baxter, Mrs. James (Helene DeLaudeniere Chaput)",female,50,0,1,PC 17558,247.5208,B58 B60,C
302 | 301,1,3,"Kelly, Miss. Anna Katherine ""Annie Kate""",female,,0,0,9234,7.75,,Q
303 | 302,1,3,"McCoy, Mr. Bernard",male,,2,0,367226,23.25,,Q
304 | 303,0,3,"Johnson, Mr. William Cahoone Jr",male,19,0,0,LINE,0,,S
305 | 304,1,2,"Keane, Miss. Nora A",female,,0,0,226593,12.35,E101,Q
306 | 305,0,3,"Williams, Mr. Howard Hugh ""Harry""",male,,0,0,A/5 2466,8.05,,S
307 | 306,1,1,"Allison, Master. Hudson Trevor",male,0.92,1,2,113781,151.55,C22 C26,S
308 | 307,1,1,"Fleming, Miss. Margaret",female,,0,0,17421,110.8833,,C
309 | 308,1,1,"Penasco y Castellana, Mrs. Victor de Satode (Maria Josefa Perez de Soto y Vallejo)",female,17,1,0,PC 17758,108.9,C65,C
310 | 309,0,2,"Abelson, Mr. Samuel",male,30,1,0,P/PP 3381,24,,C
311 | 310,1,1,"Francatelli, Miss. Laura Mabel",female,30,0,0,PC 17485,56.9292,E36,C
312 | 311,1,1,"Hays, Miss. Margaret Bechstein",female,24,0,0,11767,83.1583,C54,C
313 | 312,1,1,"Ryerson, Miss. Emily Borie",female,18,2,2,PC 17608,262.375,B57 B59 B63 B66,C
314 | 313,0,2,"Lahtinen, Mrs. William (Anna Sylfven)",female,26,1,1,250651,26,,S
315 | 314,0,3,"Hendekovic, Mr. Ignjac",male,28,0,0,349243,7.8958,,S
316 | 315,0,2,"Hart, Mr. Benjamin",male,43,1,1,F.C.C. 13529,26.25,,S
317 | 316,1,3,"Nilsson, Miss. Helmina Josefina",female,26,0,0,347470,7.8542,,S
318 | 317,1,2,"Kantor, Mrs. Sinai (Miriam Sternin)",female,24,1,0,244367,26,,S
319 | 318,0,2,"Moraweck, Dr. Ernest",male,54,0,0,29011,14,,S
320 | 319,1,1,"Wick, Miss. Mary Natalie",female,31,0,2,36928,164.8667,C7,S
321 | 320,1,1,"Spedden, Mrs. Frederic Oakley (Margaretta Corning Stone)",female,40,1,1,16966,134.5,E34,C
322 | 321,0,3,"Dennis, Mr. Samuel",male,22,0,0,A/5 21172,7.25,,S
323 | 322,0,3,"Danoff, Mr. Yoto",male,27,0,0,349219,7.8958,,S
324 | 323,1,2,"Slayter, Miss. Hilda Mary",female,30,0,0,234818,12.35,,Q
325 | 324,1,2,"Caldwell, Mrs. Albert Francis (Sylvia Mae Harbaugh)",female,22,1,1,248738,29,,S
326 | 325,0,3,"Sage, Mr. George John Jr",male,,8,2,CA. 2343,69.55,,S
327 | 326,1,1,"Young, Miss. Marie Grice",female,36,0,0,PC 17760,135.6333,C32,C
328 | 327,0,3,"Nysveen, Mr. Johan Hansen",male,61,0,0,345364,6.2375,,S
329 | 328,1,2,"Ball, Mrs. (Ada E Hall)",female,36,0,0,28551,13,D,S
330 | 329,1,3,"Goldsmith, Mrs. Frank John (Emily Alice Brown)",female,31,1,1,363291,20.525,,S
331 | 330,1,1,"Hippach, Miss. Jean Gertrude",female,16,0,1,111361,57.9792,B18,C
332 | 331,1,3,"McCoy, Miss. Agnes",female,,2,0,367226,23.25,,Q
333 | 332,0,1,"Partner, Mr. Austen",male,45.5,0,0,113043,28.5,C124,S
334 | 333,0,1,"Graham, Mr. George Edward",male,38,0,1,PC 17582,153.4625,C91,S
335 | 334,0,3,"Vander Planke, Mr. Leo Edmondus",male,16,2,0,345764,18,,S
336 | 335,1,1,"Frauenthal, Mrs. Henry William (Clara Heinsheimer)",female,,1,0,PC 17611,133.65,,S
337 | 336,0,3,"Denkoff, Mr. Mitto",male,,0,0,349225,7.8958,,S
338 | 337,0,1,"Pears, Mr. Thomas Clinton",male,29,1,0,113776,66.6,C2,S
339 | 338,1,1,"Burns, Miss. Elizabeth Margaret",female,41,0,0,16966,134.5,E40,C
340 | 339,1,3,"Dahl, Mr. Karl Edwart",male,45,0,0,7598,8.05,,S
341 | 340,0,1,"Blackwell, Mr. Stephen Weart",male,45,0,0,113784,35.5,T,S
342 | 341,1,2,"Navratil, Master. Edmond Roger",male,2,1,1,230080,26,F2,S
343 | 342,1,1,"Fortune, Miss. Alice Elizabeth",female,24,3,2,19950,263,C23 C25 C27,S
344 | 343,0,2,"Collander, Mr. Erik Gustaf",male,28,0,0,248740,13,,S
345 | 344,0,2,"Sedgwick, Mr. Charles Frederick Waddington",male,25,0,0,244361,13,,S
346 | 345,0,2,"Fox, Mr. Stanley Hubert",male,36,0,0,229236,13,,S
347 | 346,1,2,"Brown, Miss. Amelia ""Mildred""",female,24,0,0,248733,13,F33,S
348 | 347,1,2,"Smith, Miss. Marion Elsie",female,40,0,0,31418,13,,S
349 | 348,1,3,"Davison, Mrs. Thomas Henry (Mary E Finck)",female,,1,0,386525,16.1,,S
350 | 349,1,3,"Coutts, Master. William Loch ""William""",male,3,1,1,C.A. 37671,15.9,,S
351 | 350,0,3,"Dimic, Mr. Jovan",male,42,0,0,315088,8.6625,,S
352 | 351,0,3,"Odahl, Mr. Nils Martin",male,23,0,0,7267,9.225,,S
353 | 352,0,1,"Williams-Lambert, Mr. Fletcher Fellows",male,,0,0,113510,35,C128,S
354 | 353,0,3,"Elias, Mr. Tannous",male,15,1,1,2695,7.2292,,C
355 | 354,0,3,"Arnold-Franchi, Mr. Josef",male,25,1,0,349237,17.8,,S
356 | 355,0,3,"Yousif, Mr. Wazli",male,,0,0,2647,7.225,,C
357 | 356,0,3,"Vanden Steen, Mr. Leo Peter",male,28,0,0,345783,9.5,,S
358 | 357,1,1,"Bowerman, Miss. Elsie Edith",female,22,0,1,113505,55,E33,S
359 | 358,0,2,"Funk, Miss. Annie Clemmer",female,38,0,0,237671,13,,S
360 | 359,1,3,"McGovern, Miss. Mary",female,,0,0,330931,7.8792,,Q
361 | 360,1,3,"Mockler, Miss. Helen Mary ""Ellie""",female,,0,0,330980,7.8792,,Q
362 | 361,0,3,"Skoog, Mr. Wilhelm",male,40,1,4,347088,27.9,,S
363 | 362,0,2,"del Carlo, Mr. Sebastiano",male,29,1,0,SC/PARIS 2167,27.7208,,C
364 | 363,0,3,"Barbara, Mrs. (Catherine David)",female,45,0,1,2691,14.4542,,C
365 | 364,0,3,"Asim, Mr. Adola",male,35,0,0,SOTON/O.Q. 3101310,7.05,,S
366 | 365,0,3,"O'Brien, Mr. Thomas",male,,1,0,370365,15.5,,Q
367 | 366,0,3,"Adahl, Mr. Mauritz Nils Martin",male,30,0,0,C 7076,7.25,,S
368 | 367,1,1,"Warren, Mrs. Frank Manley (Anna Sophia Atkinson)",female,60,1,0,110813,75.25,D37,C
369 | 368,1,3,"Moussa, Mrs. (Mantoura Boulos)",female,,0,0,2626,7.2292,,C
370 | 369,1,3,"Jermyn, Miss. Annie",female,,0,0,14313,7.75,,Q
371 | 370,1,1,"Aubart, Mme. Leontine Pauline",female,24,0,0,PC 17477,69.3,B35,C
372 | 371,1,1,"Harder, Mr. George Achilles",male,25,1,0,11765,55.4417,E50,C
373 | 372,0,3,"Wiklund, Mr. Jakob Alfred",male,18,1,0,3101267,6.4958,,S
374 | 373,0,3,"Beavan, Mr. William Thomas",male,19,0,0,323951,8.05,,S
375 | 374,0,1,"Ringhini, Mr. Sante",male,22,0,0,PC 17760,135.6333,,C
376 | 375,0,3,"Palsson, Miss. Stina Viola",female,3,3,1,349909,21.075,,S
377 | 376,1,1,"Meyer, Mrs. Edgar Joseph (Leila Saks)",female,,1,0,PC 17604,82.1708,,C
378 | 377,1,3,"Landergren, Miss. Aurora Adelia",female,22,0,0,C 7077,7.25,,S
379 | 378,0,1,"Widener, Mr. Harry Elkins",male,27,0,2,113503,211.5,C82,C
380 | 379,0,3,"Betros, Mr. Tannous",male,20,0,0,2648,4.0125,,C
381 | 380,0,3,"Gustafsson, Mr. Karl Gideon",male,19,0,0,347069,7.775,,S
382 | 381,1,1,"Bidois, Miss. Rosalie",female,42,0,0,PC 17757,227.525,,C
383 | 382,1,3,"Nakid, Miss. Maria (""Mary"")",female,1,0,2,2653,15.7417,,C
384 | 383,0,3,"Tikkanen, Mr. Juho",male,32,0,0,STON/O 2. 3101293,7.925,,S
385 | 384,1,1,"Holverson, Mrs. Alexander Oskar (Mary Aline Towner)",female,35,1,0,113789,52,,S
386 | 385,0,3,"Plotcharsky, Mr. Vasil",male,,0,0,349227,7.8958,,S
387 | 386,0,2,"Davies, Mr. Charles Henry",male,18,0,0,S.O.C. 14879,73.5,,S
388 | 387,0,3,"Goodwin, Master. Sidney Leonard",male,1,5,2,CA 2144,46.9,,S
389 | 388,1,2,"Buss, Miss. Kate",female,36,0,0,27849,13,,S
390 | 389,0,3,"Sadlier, Mr. Matthew",male,,0,0,367655,7.7292,,Q
391 | 390,1,2,"Lehmann, Miss. Bertha",female,17,0,0,SC 1748,12,,C
392 | 391,1,1,"Carter, Mr. William Ernest",male,36,1,2,113760,120,B96 B98,S
393 | 392,1,3,"Jansson, Mr. Carl Olof",male,21,0,0,350034,7.7958,,S
394 | 393,0,3,"Gustafsson, Mr. Johan Birger",male,28,2,0,3101277,7.925,,S
395 | 394,1,1,"Newell, Miss. Marjorie",female,23,1,0,35273,113.275,D36,C
396 | 395,1,3,"Sandstrom, Mrs. Hjalmar (Agnes Charlotta Bengtsson)",female,24,0,2,PP 9549,16.7,G6,S
397 | 396,0,3,"Johansson, Mr. Erik",male,22,0,0,350052,7.7958,,S
398 | 397,0,3,"Olsson, Miss. Elina",female,31,0,0,350407,7.8542,,S
399 | 398,0,2,"McKane, Mr. Peter David",male,46,0,0,28403,26,,S
400 | 399,0,2,"Pain, Dr. Alfred",male,23,0,0,244278,10.5,,S
401 | 400,1,2,"Trout, Mrs. William H (Jessie L)",female,28,0,0,240929,12.65,,S
402 | 401,1,3,"Niskanen, Mr. Juha",male,39,0,0,STON/O 2. 3101289,7.925,,S
403 | 402,0,3,"Adams, Mr. John",male,26,0,0,341826,8.05,,S
404 | 403,0,3,"Jussila, Miss. Mari Aina",female,21,1,0,4137,9.825,,S
405 | 404,0,3,"Hakkarainen, Mr. Pekka Pietari",male,28,1,0,STON/O2. 3101279,15.85,,S
406 | 405,0,3,"Oreskovic, Miss. Marija",female,20,0,0,315096,8.6625,,S
407 | 406,0,2,"Gale, Mr. Shadrach",male,34,1,0,28664,21,,S
408 | 407,0,3,"Widegren, Mr. Carl/Charles Peter",male,51,0,0,347064,7.75,,S
409 | 408,1,2,"Richards, Master. William Rowe",male,3,1,1,29106,18.75,,S
410 | 409,0,3,"Birkeland, Mr. Hans Martin Monsen",male,21,0,0,312992,7.775,,S
411 | 410,0,3,"Lefebre, Miss. Ida",female,,3,1,4133,25.4667,,S
412 | 411,0,3,"Sdycoff, Mr. Todor",male,,0,0,349222,7.8958,,S
413 | 412,0,3,"Hart, Mr. Henry",male,,0,0,394140,6.8583,,Q
414 | 413,1,1,"Minahan, Miss. Daisy E",female,33,1,0,19928,90,C78,Q
415 | 414,0,2,"Cunningham, Mr. Alfred Fleming",male,,0,0,239853,0,,S
416 | 415,1,3,"Sundman, Mr. Johan Julian",male,44,0,0,STON/O 2. 3101269,7.925,,S
417 | 416,0,3,"Meek, Mrs. Thomas (Annie Louise Rowley)",female,,0,0,343095,8.05,,S
418 | 417,1,2,"Drew, Mrs. James Vivian (Lulu Thorne Christian)",female,34,1,1,28220,32.5,,S
419 | 418,1,2,"Silven, Miss. Lyyli Karoliina",female,18,0,2,250652,13,,S
420 | 419,0,2,"Matthews, Mr. William John",male,30,0,0,28228,13,,S
421 | 420,0,3,"Van Impe, Miss. Catharina",female,10,0,2,345773,24.15,,S
422 | 421,0,3,"Gheorgheff, Mr. Stanio",male,,0,0,349254,7.8958,,C
423 | 422,0,3,"Charters, Mr. David",male,21,0,0,A/5. 13032,7.7333,,Q
424 | 423,0,3,"Zimmerman, Mr. Leo",male,29,0,0,315082,7.875,,S
425 | 424,0,3,"Danbom, Mrs. Ernst Gilbert (Anna Sigrid Maria Brogren)",female,28,1,1,347080,14.4,,S
426 | 425,0,3,"Rosblom, Mr. Viktor Richard",male,18,1,1,370129,20.2125,,S
427 | 426,0,3,"Wiseman, Mr. Phillippe",male,,0,0,A/4. 34244,7.25,,S
428 | 427,1,2,"Clarke, Mrs. Charles V (Ada Maria Winfield)",female,28,1,0,2003,26,,S
429 | 428,1,2,"Phillips, Miss. Kate Florence (""Mrs Kate Louise Phillips Marshall"")",female,19,0,0,250655,26,,S
430 | 429,0,3,"Flynn, Mr. James",male,,0,0,364851,7.75,,Q
431 | 430,1,3,"Pickard, Mr. Berk (Berk Trembisky)",male,32,0,0,SOTON/O.Q. 392078,8.05,E10,S
432 | 431,1,1,"Bjornstrom-Steffansson, Mr. Mauritz Hakan",male,28,0,0,110564,26.55,C52,S
433 | 432,1,3,"Thorneycroft, Mrs. Percival (Florence Kate White)",female,,1,0,376564,16.1,,S
434 | 433,1,2,"Louch, Mrs. Charles Alexander (Alice Adelaide Slow)",female,42,1,0,SC/AH 3085,26,,S
435 | 434,0,3,"Kallio, Mr. Nikolai Erland",male,17,0,0,STON/O 2. 3101274,7.125,,S
436 | 435,0,1,"Silvey, Mr. William Baird",male,50,1,0,13507,55.9,E44,S
437 | 436,1,1,"Carter, Miss. Lucile Polk",female,14,1,2,113760,120,B96 B98,S
438 | 437,0,3,"Ford, Miss. Doolina Margaret ""Daisy""",female,21,2,2,W./C. 6608,34.375,,S
439 | 438,1,2,"Richards, Mrs. Sidney (Emily Hocking)",female,24,2,3,29106,18.75,,S
440 | 439,0,1,"Fortune, Mr. Mark",male,64,1,4,19950,263,C23 C25 C27,S
441 | 440,0,2,"Kvillner, Mr. Johan Henrik Johannesson",male,31,0,0,C.A. 18723,10.5,,S
442 | 441,1,2,"Hart, Mrs. Benjamin (Esther Ada Bloomfield)",female,45,1,1,F.C.C. 13529,26.25,,S
443 | 442,0,3,"Hampe, Mr. Leon",male,20,0,0,345769,9.5,,S
444 | 443,0,3,"Petterson, Mr. Johan Emil",male,25,1,0,347076,7.775,,S
445 | 444,1,2,"Reynaldo, Ms. Encarnacion",female,28,0,0,230434,13,,S
446 | 445,1,3,"Johannesen-Bratthammer, Mr. Bernt",male,,0,0,65306,8.1125,,S
447 | 446,1,1,"Dodge, Master. Washington",male,4,0,2,33638,81.8583,A34,S
448 | 447,1,2,"Mellinger, Miss. Madeleine Violet",female,13,0,1,250644,19.5,,S
449 | 448,1,1,"Seward, Mr. Frederic Kimber",male,34,0,0,113794,26.55,,S
450 | 449,1,3,"Baclini, Miss. Marie Catherine",female,5,2,1,2666,19.2583,,C
451 | 450,1,1,"Peuchen, Major. Arthur Godfrey",male,52,0,0,113786,30.5,C104,S
452 | 451,0,2,"West, Mr. Edwy Arthur",male,36,1,2,C.A. 34651,27.75,,S
453 | 452,0,3,"Hagland, Mr. Ingvald Olai Olsen",male,,1,0,65303,19.9667,,S
454 | 453,0,1,"Foreman, Mr. Benjamin Laventall",male,30,0,0,113051,27.75,C111,C
455 | 454,1,1,"Goldenberg, Mr. Samuel L",male,49,1,0,17453,89.1042,C92,C
456 | 455,0,3,"Peduzzi, Mr. Joseph",male,,0,0,A/5 2817,8.05,,S
457 | 456,1,3,"Jalsevac, Mr. Ivan",male,29,0,0,349240,7.8958,,C
458 | 457,0,1,"Millet, Mr. Francis Davis",male,65,0,0,13509,26.55,E38,S
459 | 458,1,1,"Kenyon, Mrs. Frederick R (Marion)",female,,1,0,17464,51.8625,D21,S
460 | 459,1,2,"Toomey, Miss. Ellen",female,50,0,0,F.C.C. 13531,10.5,,S
461 | 460,0,3,"O'Connor, Mr. Maurice",male,,0,0,371060,7.75,,Q
462 | 461,1,1,"Anderson, Mr. Harry",male,48,0,0,19952,26.55,E12,S
463 | 462,0,3,"Morley, Mr. William",male,34,0,0,364506,8.05,,S
464 | 463,0,1,"Gee, Mr. Arthur H",male,47,0,0,111320,38.5,E63,S
465 | 464,0,2,"Milling, Mr. Jacob Christian",male,48,0,0,234360,13,,S
466 | 465,0,3,"Maisner, Mr. Simon",male,,0,0,A/S 2816,8.05,,S
467 | 466,0,3,"Goncalves, Mr. Manuel Estanslas",male,38,0,0,SOTON/O.Q. 3101306,7.05,,S
468 | 467,0,2,"Campbell, Mr. William",male,,0,0,239853,0,,S
469 | 468,0,1,"Smart, Mr. John Montgomery",male,56,0,0,113792,26.55,,S
470 | 469,0,3,"Scanlan, Mr. James",male,,0,0,36209,7.725,,Q
471 | 470,1,3,"Baclini, Miss. Helene Barbara",female,0.75,2,1,2666,19.2583,,C
472 | 471,0,3,"Keefe, Mr. Arthur",male,,0,0,323592,7.25,,S
473 | 472,0,3,"Cacic, Mr. Luka",male,38,0,0,315089,8.6625,,S
474 | 473,1,2,"West, Mrs. Edwy Arthur (Ada Mary Worth)",female,33,1,2,C.A. 34651,27.75,,S
475 | 474,1,2,"Jerwan, Mrs. Amin S (Marie Marthe Thuillard)",female,23,0,0,SC/AH Basle 541,13.7917,D,C
476 | 475,0,3,"Strandberg, Miss. Ida Sofia",female,22,0,0,7553,9.8375,,S
477 | 476,0,1,"Clifford, Mr. George Quincy",male,,0,0,110465,52,A14,S
478 | 477,0,2,"Renouf, Mr. Peter Henry",male,34,1,0,31027,21,,S
479 | 478,0,3,"Braund, Mr. Lewis Richard",male,29,1,0,3460,7.0458,,S
480 | 479,0,3,"Karlsson, Mr. Nils August",male,22,0,0,350060,7.5208,,S
481 | 480,1,3,"Hirvonen, Miss. Hildur E",female,2,0,1,3101298,12.2875,,S
482 | 481,0,3,"Goodwin, Master. Harold Victor",male,9,5,2,CA 2144,46.9,,S
483 | 482,0,2,"Frost, Mr. Anthony Wood ""Archie""",male,,0,0,239854,0,,S
484 | 483,0,3,"Rouse, Mr. Richard Henry",male,50,0,0,A/5 3594,8.05,,S
485 | 484,1,3,"Turkula, Mrs. (Hedwig)",female,63,0,0,4134,9.5875,,S
486 | 485,1,1,"Bishop, Mr. Dickinson H",male,25,1,0,11967,91.0792,B49,C
487 | 486,0,3,"Lefebre, Miss. Jeannie",female,,3,1,4133,25.4667,,S
488 | 487,1,1,"Hoyt, Mrs. Frederick Maxfield (Jane Anne Forby)",female,35,1,0,19943,90,C93,S
489 | 488,0,1,"Kent, Mr. Edward Austin",male,58,0,0,11771,29.7,B37,C
490 | 489,0,3,"Somerton, Mr. Francis William",male,30,0,0,A.5. 18509,8.05,,S
491 | 490,1,3,"Coutts, Master. Eden Leslie ""Neville""",male,9,1,1,C.A. 37671,15.9,,S
492 | 491,0,3,"Hagland, Mr. Konrad Mathias Reiersen",male,,1,0,65304,19.9667,,S
493 | 492,0,3,"Windelov, Mr. Einar",male,21,0,0,SOTON/OQ 3101317,7.25,,S
494 | 493,0,1,"Molson, Mr. Harry Markland",male,55,0,0,113787,30.5,C30,S
495 | 494,0,1,"Artagaveytia, Mr. Ramon",male,71,0,0,PC 17609,49.5042,,C
496 | 495,0,3,"Stanley, Mr. Edward Roland",male,21,0,0,A/4 45380,8.05,,S
497 | 496,0,3,"Yousseff, Mr. Gerious",male,,0,0,2627,14.4583,,C
498 | 497,1,1,"Eustis, Miss. Elizabeth Mussey",female,54,1,0,36947,78.2667,D20,C
499 | 498,0,3,"Shellard, Mr. Frederick William",male,,0,0,C.A. 6212,15.1,,S
500 | 499,0,1,"Allison, Mrs. Hudson J C (Bessie Waldo Daniels)",female,25,1,2,113781,151.55,C22 C26,S
501 | 500,0,3,"Svensson, Mr. Olof",male,24,0,0,350035,7.7958,,S
502 | 501,0,3,"Calic, Mr. Petar",male,17,0,0,315086,8.6625,,S
503 | 502,0,3,"Canavan, Miss. Mary",female,21,0,0,364846,7.75,,Q
504 | 503,0,3,"O'Sullivan, Miss. Bridget Mary",female,,0,0,330909,7.6292,,Q
505 | 504,0,3,"Laitinen, Miss. Kristina Sofia",female,37,0,0,4135,9.5875,,S
506 | 505,1,1,"Maioni, Miss. Roberta",female,16,0,0,110152,86.5,B79,S
507 | 506,0,1,"Penasco y Castellana, Mr. Victor de Satode",male,18,1,0,PC 17758,108.9,C65,C
508 | 507,1,2,"Quick, Mrs. Frederick Charles (Jane Richards)",female,33,0,2,26360,26,,S
509 | 508,1,1,"Bradley, Mr. George (""George Arthur Brayton"")",male,,0,0,111427,26.55,,S
510 | 509,0,3,"Olsen, Mr. Henry Margido",male,28,0,0,C 4001,22.525,,S
511 | 510,1,3,"Lang, Mr. Fang",male,26,0,0,1601,56.4958,,S
512 | 511,1,3,"Daly, Mr. Eugene Patrick",male,29,0,0,382651,7.75,,Q
513 | 512,0,3,"Webber, Mr. James",male,,0,0,SOTON/OQ 3101316,8.05,,S
514 | 513,1,1,"McGough, Mr. James Robert",male,36,0,0,PC 17473,26.2875,E25,S
515 | 514,1,1,"Rothschild, Mrs. Martin (Elizabeth L. Barrett)",female,54,1,0,PC 17603,59.4,,C
516 | 515,0,3,"Coleff, Mr. Satio",male,24,0,0,349209,7.4958,,S
517 | 516,0,1,"Walker, Mr. William Anderson",male,47,0,0,36967,34.0208,D46,S
518 | 517,1,2,"Lemore, Mrs. (Amelia Milley)",female,34,0,0,C.A. 34260,10.5,F33,S
519 | 518,0,3,"Ryan, Mr. Patrick",male,,0,0,371110,24.15,,Q
520 | 519,1,2,"Angle, Mrs. William A (Florence ""Mary"" Agnes Hughes)",female,36,1,0,226875,26,,S
521 | 520,0,3,"Pavlovic, Mr. Stefo",male,32,0,0,349242,7.8958,,S
522 | 521,1,1,"Perreault, Miss. Anne",female,30,0,0,12749,93.5,B73,S
523 | 522,0,3,"Vovk, Mr. Janko",male,22,0,0,349252,7.8958,,S
524 | 523,0,3,"Lahoud, Mr. Sarkis",male,,0,0,2624,7.225,,C
525 | 524,1,1,"Hippach, Mrs. Louis Albert (Ida Sophia Fischer)",female,44,0,1,111361,57.9792,B18,C
526 | 525,0,3,"Kassem, Mr. Fared",male,,0,0,2700,7.2292,,C
527 | 526,0,3,"Farrell, Mr. James",male,40.5,0,0,367232,7.75,,Q
528 | 527,1,2,"Ridsdale, Miss. Lucy",female,50,0,0,W./C. 14258,10.5,,S
529 | 528,0,1,"Farthing, Mr. John",male,,0,0,PC 17483,221.7792,C95,S
530 | 529,0,3,"Salonen, Mr. Johan Werner",male,39,0,0,3101296,7.925,,S
531 | 530,0,2,"Hocking, Mr. Richard George",male,23,2,1,29104,11.5,,S
532 | 531,1,2,"Quick, Miss. Phyllis May",female,2,1,1,26360,26,,S
533 | 532,0,3,"Toufik, Mr. Nakli",male,,0,0,2641,7.2292,,C
534 | 533,0,3,"Elias, Mr. Joseph Jr",male,17,1,1,2690,7.2292,,C
535 | 534,1,3,"Peter, Mrs. Catherine (Catherine Rizk)",female,,0,2,2668,22.3583,,C
536 | 535,0,3,"Cacic, Miss. Marija",female,30,0,0,315084,8.6625,,S
537 | 536,1,2,"Hart, Miss. Eva Miriam",female,7,0,2,F.C.C. 13529,26.25,,S
538 | 537,0,1,"Butt, Major. Archibald Willingham",male,45,0,0,113050,26.55,B38,S
539 | 538,1,1,"LeRoy, Miss. Bertha",female,30,0,0,PC 17761,106.425,,C
540 | 539,0,3,"Risien, Mr. Samuel Beard",male,,0,0,364498,14.5,,S
541 | 540,1,1,"Frolicher, Miss. Hedwig Margaritha",female,22,0,2,13568,49.5,B39,C
542 | 541,1,1,"Crosby, Miss. Harriet R",female,36,0,2,WE/P 5735,71,B22,S
543 | 542,0,3,"Andersson, Miss. Ingeborg Constanzia",female,9,4,2,347082,31.275,,S
544 | 543,0,3,"Andersson, Miss. Sigrid Elisabeth",female,11,4,2,347082,31.275,,S
545 | 544,1,2,"Beane, Mr. Edward",male,32,1,0,2908,26,,S
546 | 545,0,1,"Douglas, Mr. Walter Donald",male,50,1,0,PC 17761,106.425,C86,C
547 | 546,0,1,"Nicholson, Mr. Arthur Ernest",male,64,0,0,693,26,,S
548 | 547,1,2,"Beane, Mrs. Edward (Ethel Clarke)",female,19,1,0,2908,26,,S
549 | 548,1,2,"Padro y Manent, Mr. Julian",male,,0,0,SC/PARIS 2146,13.8625,,C
550 | 549,0,3,"Goldsmith, Mr. Frank John",male,33,1,1,363291,20.525,,S
551 | 550,1,2,"Davies, Master. John Morgan Jr",male,8,1,1,C.A. 33112,36.75,,S
552 | 551,1,1,"Thayer, Mr. John Borland Jr",male,17,0,2,17421,110.8833,C70,C
553 | 552,0,2,"Sharp, Mr. Percival James R",male,27,0,0,244358,26,,S
554 | 553,0,3,"O'Brien, Mr. Timothy",male,,0,0,330979,7.8292,,Q
555 | 554,1,3,"Leeni, Mr. Fahim (""Philip Zenni"")",male,22,0,0,2620,7.225,,C
556 | 555,1,3,"Ohman, Miss. Velin",female,22,0,0,347085,7.775,,S
557 | 556,0,1,"Wright, Mr. George",male,62,0,0,113807,26.55,,S
558 | 557,1,1,"Duff Gordon, Lady. (Lucille Christiana Sutherland) (""Mrs Morgan"")",female,48,1,0,11755,39.6,A16,C
559 | 558,0,1,"Robbins, Mr. Victor",male,,0,0,PC 17757,227.525,,C
560 | 559,1,1,"Taussig, Mrs. Emil (Tillie Mandelbaum)",female,39,1,1,110413,79.65,E67,S
561 | 560,1,3,"de Messemaeker, Mrs. Guillaume Joseph (Emma)",female,36,1,0,345572,17.4,,S
562 | 561,0,3,"Morrow, Mr. Thomas Rowan",male,,0,0,372622,7.75,,Q
563 | 562,0,3,"Sivic, Mr. Husein",male,40,0,0,349251,7.8958,,S
564 | 563,0,2,"Norman, Mr. Robert Douglas",male,28,0,0,218629,13.5,,S
565 | 564,0,3,"Simmons, Mr. John",male,,0,0,SOTON/OQ 392082,8.05,,S
566 | 565,0,3,"Meanwell, Miss. (Marion Ogden)",female,,0,0,SOTON/O.Q. 392087,8.05,,S
567 | 566,0,3,"Davies, Mr. Alfred J",male,24,2,0,A/4 48871,24.15,,S
568 | 567,0,3,"Stoytcheff, Mr. Ilia",male,19,0,0,349205,7.8958,,S
569 | 568,0,3,"Palsson, Mrs. Nils (Alma Cornelia Berglund)",female,29,0,4,349909,21.075,,S
570 | 569,0,3,"Doharr, Mr. Tannous",male,,0,0,2686,7.2292,,C
571 | 570,1,3,"Jonsson, Mr. Carl",male,32,0,0,350417,7.8542,,S
572 | 571,1,2,"Harris, Mr. George",male,62,0,0,S.W./PP 752,10.5,,S
573 | 572,1,1,"Appleton, Mrs. Edward Dale (Charlotte Lamson)",female,53,2,0,11769,51.4792,C101,S
574 | 573,1,1,"Flynn, Mr. John Irwin (""Irving"")",male,36,0,0,PC 17474,26.3875,E25,S
575 | 574,1,3,"Kelly, Miss. Mary",female,,0,0,14312,7.75,,Q
576 | 575,0,3,"Rush, Mr. Alfred George John",male,16,0,0,A/4. 20589,8.05,,S
577 | 576,0,3,"Patchett, Mr. George",male,19,0,0,358585,14.5,,S
578 | 577,1,2,"Garside, Miss. Ethel",female,34,0,0,243880,13,,S
579 | 578,1,1,"Silvey, Mrs. William Baird (Alice Munger)",female,39,1,0,13507,55.9,E44,S
580 | 579,0,3,"Caram, Mrs. Joseph (Maria Elias)",female,,1,0,2689,14.4583,,C
581 | 580,1,3,"Jussila, Mr. Eiriik",male,32,0,0,STON/O 2. 3101286,7.925,,S
582 | 581,1,2,"Christy, Miss. Julie Rachel",female,25,1,1,237789,30,,S
583 | 582,1,1,"Thayer, Mrs. John Borland (Marian Longstreth Morris)",female,39,1,1,17421,110.8833,C68,C
584 | 583,0,2,"Downton, Mr. William James",male,54,0,0,28403,26,,S
585 | 584,0,1,"Ross, Mr. John Hugo",male,36,0,0,13049,40.125,A10,C
586 | 585,0,3,"Paulner, Mr. Uscher",male,,0,0,3411,8.7125,,C
587 | 586,1,1,"Taussig, Miss. Ruth",female,18,0,2,110413,79.65,E68,S
588 | 587,0,2,"Jarvis, Mr. John Denzil",male,47,0,0,237565,15,,S
589 | 588,1,1,"Frolicher-Stehli, Mr. Maxmillian",male,60,1,1,13567,79.2,B41,C
590 | 589,0,3,"Gilinski, Mr. Eliezer",male,22,0,0,14973,8.05,,S
591 | 590,0,3,"Murdlin, Mr. Joseph",male,,0,0,A./5. 3235,8.05,,S
592 | 591,0,3,"Rintamaki, Mr. Matti",male,35,0,0,STON/O 2. 3101273,7.125,,S
593 | 592,1,1,"Stephenson, Mrs. Walter Bertram (Martha Eustis)",female,52,1,0,36947,78.2667,D20,C
594 | 593,0,3,"Elsbury, Mr. William James",male,47,0,0,A/5 3902,7.25,,S
595 | 594,0,3,"Bourke, Miss. Mary",female,,0,2,364848,7.75,,Q
596 | 595,0,2,"Chapman, Mr. John Henry",male,37,1,0,SC/AH 29037,26,,S
597 | 596,0,3,"Van Impe, Mr. Jean Baptiste",male,36,1,1,345773,24.15,,S
598 | 597,1,2,"Leitch, Miss. Jessie Wills",female,,0,0,248727,33,,S
599 | 598,0,3,"Johnson, Mr. Alfred",male,49,0,0,LINE,0,,S
600 | 599,0,3,"Boulos, Mr. Hanna",male,,0,0,2664,7.225,,C
601 | 600,1,1,"Duff Gordon, Sir. Cosmo Edmund (""Mr Morgan"")",male,49,1,0,PC 17485,56.9292,A20,C
602 | 601,1,2,"Jacobsohn, Mrs. Sidney Samuel (Amy Frances Christy)",female,24,2,1,243847,27,,S
603 | 602,0,3,"Slabenoff, Mr. Petco",male,,0,0,349214,7.8958,,S
604 | 603,0,1,"Harrington, Mr. Charles H",male,,0,0,113796,42.4,,S
605 | 604,0,3,"Torber, Mr. Ernst William",male,44,0,0,364511,8.05,,S
606 | 605,1,1,"Homer, Mr. Harry (""Mr E Haven"")",male,35,0,0,111426,26.55,,C
607 | 606,0,3,"Lindell, Mr. Edvard Bengtsson",male,36,1,0,349910,15.55,,S
608 | 607,0,3,"Karaic, Mr. Milan",male,30,0,0,349246,7.8958,,S
609 | 608,1,1,"Daniel, Mr. Robert Williams",male,27,0,0,113804,30.5,,S
610 | 609,1,2,"Laroche, Mrs. Joseph (Juliette Marie Louise Lafargue)",female,22,1,2,SC/Paris 2123,41.5792,,C
611 | 610,1,1,"Shutes, Miss. Elizabeth W",female,40,0,0,PC 17582,153.4625,C125,S
612 | 611,0,3,"Andersson, Mrs. Anders Johan (Alfrida Konstantia Brogren)",female,39,1,5,347082,31.275,,S
613 | 612,0,3,"Jardin, Mr. Jose Neto",male,,0,0,SOTON/O.Q. 3101305,7.05,,S
614 | 613,1,3,"Murphy, Miss. Margaret Jane",female,,1,0,367230,15.5,,Q
615 | 614,0,3,"Horgan, Mr. John",male,,0,0,370377,7.75,,Q
616 | 615,0,3,"Brocklebank, Mr. William Alfred",male,35,0,0,364512,8.05,,S
617 | 616,1,2,"Herman, Miss. Alice",female,24,1,2,220845,65,,S
618 | 617,0,3,"Danbom, Mr. Ernst Gilbert",male,34,1,1,347080,14.4,,S
619 | 618,0,3,"Lobb, Mrs. William Arthur (Cordelia K Stanlick)",female,26,1,0,A/5. 3336,16.1,,S
620 | 619,1,2,"Becker, Miss. Marion Louise",female,4,2,1,230136,39,F4,S
621 | 620,0,2,"Gavey, Mr. Lawrence",male,26,0,0,31028,10.5,,S
622 | 621,0,3,"Yasbeck, Mr. Antoni",male,27,1,0,2659,14.4542,,C
623 | 622,1,1,"Kimball, Mr. Edwin Nelson Jr",male,42,1,0,11753,52.5542,D19,S
624 | 623,1,3,"Nakid, Mr. Sahid",male,20,1,1,2653,15.7417,,C
625 | 624,0,3,"Hansen, Mr. Henry Damsgaard",male,21,0,0,350029,7.8542,,S
626 | 625,0,3,"Bowen, Mr. David John ""Dai""",male,21,0,0,54636,16.1,,S
627 | 626,0,1,"Sutton, Mr. Frederick",male,61,0,0,36963,32.3208,D50,S
628 | 627,0,2,"Kirkland, Rev. Charles Leonard",male,57,0,0,219533,12.35,,Q
629 | 628,1,1,"Longley, Miss. Gretchen Fiske",female,21,0,0,13502,77.9583,D9,S
630 | 629,0,3,"Bostandyeff, Mr. Guentcho",male,26,0,0,349224,7.8958,,S
631 | 630,0,3,"O'Connell, Mr. Patrick D",male,,0,0,334912,7.7333,,Q
632 | 631,1,1,"Barkworth, Mr. Algernon Henry Wilson",male,80,0,0,27042,30,A23,S
633 | 632,0,3,"Lundahl, Mr. Johan Svensson",male,51,0,0,347743,7.0542,,S
634 | 633,1,1,"Stahelin-Maeglin, Dr. Max",male,32,0,0,13214,30.5,B50,C
635 | 634,0,1,"Parr, Mr. William Henry Marsh",male,,0,0,112052,0,,S
636 | 635,0,3,"Skoog, Miss. Mabel",female,9,3,2,347088,27.9,,S
637 | 636,1,2,"Davis, Miss. Mary",female,28,0,0,237668,13,,S
638 | 637,0,3,"Leinonen, Mr. Antti Gustaf",male,32,0,0,STON/O 2. 3101292,7.925,,S
639 | 638,0,2,"Collyer, Mr. Harvey",male,31,1,1,C.A. 31921,26.25,,S
640 | 639,0,3,"Panula, Mrs. Juha (Maria Emilia Ojala)",female,41,0,5,3101295,39.6875,,S
641 | 640,0,3,"Thorneycroft, Mr. Percival",male,,1,0,376564,16.1,,S
642 | 641,0,3,"Jensen, Mr. Hans Peder",male,20,0,0,350050,7.8542,,S
643 | 642,1,1,"Sagesser, Mlle. Emma",female,24,0,0,PC 17477,69.3,B35,C
644 | 643,0,3,"Skoog, Miss. Margit Elizabeth",female,2,3,2,347088,27.9,,S
645 | 644,1,3,"Foo, Mr. Choong",male,,0,0,1601,56.4958,,S
646 | 645,1,3,"Baclini, Miss. Eugenie",female,0.75,2,1,2666,19.2583,,C
647 | 646,1,1,"Harper, Mr. Henry Sleeper",male,48,1,0,PC 17572,76.7292,D33,C
648 | 647,0,3,"Cor, Mr. Liudevit",male,19,0,0,349231,7.8958,,S
649 | 648,1,1,"Simonius-Blumer, Col. Oberst Alfons",male,56,0,0,13213,35.5,A26,C
650 | 649,0,3,"Willey, Mr. Edward",male,,0,0,S.O./P.P. 751,7.55,,S
651 | 650,1,3,"Stanley, Miss. Amy Zillah Elsie",female,23,0,0,CA. 2314,7.55,,S
652 | 651,0,3,"Mitkoff, Mr. Mito",male,,0,0,349221,7.8958,,S
653 | 652,1,2,"Doling, Miss. Elsie",female,18,0,1,231919,23,,S
654 | 653,0,3,"Kalvik, Mr. Johannes Halvorsen",male,21,0,0,8475,8.4333,,S
655 | 654,1,3,"O'Leary, Miss. Hanora ""Norah""",female,,0,0,330919,7.8292,,Q
656 | 655,0,3,"Hegarty, Miss. Hanora ""Nora""",female,18,0,0,365226,6.75,,Q
657 | 656,0,2,"Hickman, Mr. Leonard Mark",male,24,2,0,S.O.C. 14879,73.5,,S
658 | 657,0,3,"Radeff, Mr. Alexander",male,,0,0,349223,7.8958,,S
659 | 658,0,3,"Bourke, Mrs. John (Catherine)",female,32,1,1,364849,15.5,,Q
660 | 659,0,2,"Eitemiller, Mr. George Floyd",male,23,0,0,29751,13,,S
661 | 660,0,1,"Newell, Mr. Arthur Webster",male,58,0,2,35273,113.275,D48,C
662 | 661,1,1,"Frauenthal, Dr. Henry William",male,50,2,0,PC 17611,133.65,,S
663 | 662,0,3,"Badt, Mr. Mohamed",male,40,0,0,2623,7.225,,C
664 | 663,0,1,"Colley, Mr. Edward Pomeroy",male,47,0,0,5727,25.5875,E58,S
665 | 664,0,3,"Coleff, Mr. Peju",male,36,0,0,349210,7.4958,,S
666 | 665,1,3,"Lindqvist, Mr. Eino William",male,20,1,0,STON/O 2. 3101285,7.925,,S
667 | 666,0,2,"Hickman, Mr. Lewis",male,32,2,0,S.O.C. 14879,73.5,,S
668 | 667,0,2,"Butler, Mr. Reginald Fenton",male,25,0,0,234686,13,,S
669 | 668,0,3,"Rommetvedt, Mr. Knud Paust",male,,0,0,312993,7.775,,S
670 | 669,0,3,"Cook, Mr. Jacob",male,43,0,0,A/5 3536,8.05,,S
671 | 670,1,1,"Taylor, Mrs. Elmer Zebley (Juliet Cummins Wright)",female,,1,0,19996,52,C126,S
672 | 671,1,2,"Brown, Mrs. Thomas William Solomon (Elizabeth Catherine Ford)",female,40,1,1,29750,39,,S
673 | 672,0,1,"Davidson, Mr. Thornton",male,31,1,0,F.C. 12750,52,B71,S
674 | 673,0,2,"Mitchell, Mr. Henry Michael",male,70,0,0,C.A. 24580,10.5,,S
675 | 674,1,2,"Wilhelms, Mr. Charles",male,31,0,0,244270,13,,S
676 | 675,0,2,"Watson, Mr. Ennis Hastings",male,,0,0,239856,0,,S
677 | 676,0,3,"Edvardsson, Mr. Gustaf Hjalmar",male,18,0,0,349912,7.775,,S
678 | 677,0,3,"Sawyer, Mr. Frederick Charles",male,24.5,0,0,342826,8.05,,S
679 | 678,1,3,"Turja, Miss. Anna Sofia",female,18,0,0,4138,9.8417,,S
680 | 679,0,3,"Goodwin, Mrs. Frederick (Augusta Tyler)",female,43,1,6,CA 2144,46.9,,S
681 | 680,1,1,"Cardeza, Mr. Thomas Drake Martinez",male,36,0,1,PC 17755,512.3292,B51 B53 B55,C
682 | 681,0,3,"Peters, Miss. Katie",female,,0,0,330935,8.1375,,Q
683 | 682,1,1,"Hassab, Mr. Hammad",male,27,0,0,PC 17572,76.7292,D49,C
684 | 683,0,3,"Olsvigen, Mr. Thor Anderson",male,20,0,0,6563,9.225,,S
685 | 684,0,3,"Goodwin, Mr. Charles Edward",male,14,5,2,CA 2144,46.9,,S
686 | 685,0,2,"Brown, Mr. Thomas William Solomon",male,60,1,1,29750,39,,S
687 | 686,0,2,"Laroche, Mr. Joseph Philippe Lemercier",male,25,1,2,SC/Paris 2123,41.5792,,C
688 | 687,0,3,"Panula, Mr. Jaako Arnold",male,14,4,1,3101295,39.6875,,S
689 | 688,0,3,"Dakic, Mr. Branko",male,19,0,0,349228,10.1708,,S
690 | 689,0,3,"Fischer, Mr. Eberhard Thelander",male,18,0,0,350036,7.7958,,S
691 | 690,1,1,"Madill, Miss. Georgette Alexandra",female,15,0,1,24160,211.3375,B5,S
692 | 691,1,1,"Dick, Mr. Albert Adrian",male,31,1,0,17474,57,B20,S
693 | 692,1,3,"Karun, Miss. Manca",female,4,0,1,349256,13.4167,,C
694 | 693,1,3,"Lam, Mr. Ali",male,,0,0,1601,56.4958,,S
695 | 694,0,3,"Saad, Mr. Khalil",male,25,0,0,2672,7.225,,C
696 | 695,0,1,"Weir, Col. John",male,60,0,0,113800,26.55,,S
697 | 696,0,2,"Chapman, Mr. Charles Henry",male,52,0,0,248731,13.5,,S
698 | 697,0,3,"Kelly, Mr. James",male,44,0,0,363592,8.05,,S
699 | 698,1,3,"Mullens, Miss. Katherine ""Katie""",female,,0,0,35852,7.7333,,Q
700 | 699,0,1,"Thayer, Mr. John Borland",male,49,1,1,17421,110.8833,C68,C
701 | 700,0,3,"Humblen, Mr. Adolf Mathias Nicolai Olsen",male,42,0,0,348121,7.65,F G63,S
702 | 701,1,1,"Astor, Mrs. John Jacob (Madeleine Talmadge Force)",female,18,1,0,PC 17757,227.525,C62 C64,C
703 | 702,1,1,"Silverthorne, Mr. Spencer Victor",male,35,0,0,PC 17475,26.2875,E24,S
704 | 703,0,3,"Barbara, Miss. Saiide",female,18,0,1,2691,14.4542,,C
705 | 704,0,3,"Gallagher, Mr. Martin",male,25,0,0,36864,7.7417,,Q
706 | 705,0,3,"Hansen, Mr. Henrik Juul",male,26,1,0,350025,7.8542,,S
707 | 706,0,2,"Morley, Mr. Henry Samuel (""Mr Henry Marshall"")",male,39,0,0,250655,26,,S
708 | 707,1,2,"Kelly, Mrs. Florence ""Fannie""",female,45,0,0,223596,13.5,,S
709 | 708,1,1,"Calderhead, Mr. Edward Pennington",male,42,0,0,PC 17476,26.2875,E24,S
710 | 709,1,1,"Cleaver, Miss. Alice",female,22,0,0,113781,151.55,,S
711 | 710,1,3,"Moubarek, Master. Halim Gonios (""William George"")",male,,1,1,2661,15.2458,,C
712 | 711,1,1,"Mayne, Mlle. Berthe Antonine (""Mrs de Villiers"")",female,24,0,0,PC 17482,49.5042,C90,C
713 | 712,0,1,"Klaber, Mr. Herman",male,,0,0,113028,26.55,C124,S
714 | 713,1,1,"Taylor, Mr. Elmer Zebley",male,48,1,0,19996,52,C126,S
715 | 714,0,3,"Larsson, Mr. August Viktor",male,29,0,0,7545,9.4833,,S
716 | 715,0,2,"Greenberg, Mr. Samuel",male,52,0,0,250647,13,,S
717 | 716,0,3,"Soholt, Mr. Peter Andreas Lauritz Andersen",male,19,0,0,348124,7.65,F G73,S
718 | 717,1,1,"Endres, Miss. Caroline Louise",female,38,0,0,PC 17757,227.525,C45,C
719 | 718,1,2,"Troutt, Miss. Edwina Celia ""Winnie""",female,27,0,0,34218,10.5,E101,S
720 | 719,0,3,"McEvoy, Mr. Michael",male,,0,0,36568,15.5,,Q
721 | 720,0,3,"Johnson, Mr. Malkolm Joackim",male,33,0,0,347062,7.775,,S
722 | 721,1,2,"Harper, Miss. Annie Jessie ""Nina""",female,6,0,1,248727,33,,S
723 | 722,0,3,"Jensen, Mr. Svend Lauritz",male,17,1,0,350048,7.0542,,S
724 | 723,0,2,"Gillespie, Mr. William Henry",male,34,0,0,12233,13,,S
725 | 724,0,2,"Hodges, Mr. Henry Price",male,50,0,0,250643,13,,S
726 | 725,1,1,"Chambers, Mr. Norman Campbell",male,27,1,0,113806,53.1,E8,S
727 | 726,0,3,"Oreskovic, Mr. Luka",male,20,0,0,315094,8.6625,,S
728 | 727,1,2,"Renouf, Mrs. Peter Henry (Lillian Jefferys)",female,30,3,0,31027,21,,S
729 | 728,1,3,"Mannion, Miss. Margareth",female,,0,0,36866,7.7375,,Q
730 | 729,0,2,"Bryhl, Mr. Kurt Arnold Gottfrid",male,25,1,0,236853,26,,S
731 | 730,0,3,"Ilmakangas, Miss. Pieta Sofia",female,25,1,0,STON/O2. 3101271,7.925,,S
732 | 731,1,1,"Allen, Miss. Elisabeth Walton",female,29,0,0,24160,211.3375,B5,S
733 | 732,0,3,"Hassan, Mr. Houssein G N",male,11,0,0,2699,18.7875,,C
734 | 733,0,2,"Knight, Mr. Robert J",male,,0,0,239855,0,,S
735 | 734,0,2,"Berriman, Mr. William John",male,23,0,0,28425,13,,S
736 | 735,0,2,"Troupiansky, Mr. Moses Aaron",male,23,0,0,233639,13,,S
737 | 736,0,3,"Williams, Mr. Leslie",male,28.5,0,0,54636,16.1,,S
738 | 737,0,3,"Ford, Mrs. Edward (Margaret Ann Watson)",female,48,1,3,W./C. 6608,34.375,,S
739 | 738,1,1,"Lesurer, Mr. Gustave J",male,35,0,0,PC 17755,512.3292,B101,C
740 | 739,0,3,"Ivanoff, Mr. Kanio",male,,0,0,349201,7.8958,,S
741 | 740,0,3,"Nankoff, Mr. Minko",male,,0,0,349218,7.8958,,S
742 | 741,1,1,"Hawksford, Mr. Walter James",male,,0,0,16988,30,D45,S
743 | 742,0,1,"Cavendish, Mr. Tyrell William",male,36,1,0,19877,78.85,C46,S
744 | 743,1,1,"Ryerson, Miss. Susan Parker ""Suzette""",female,21,2,2,PC 17608,262.375,B57 B59 B63 B66,C
745 | 744,0,3,"McNamee, Mr. Neal",male,24,1,0,376566,16.1,,S
746 | 745,1,3,"Stranden, Mr. Juho",male,31,0,0,STON/O 2. 3101288,7.925,,S
747 | 746,0,1,"Crosby, Capt. Edward Gifford",male,70,1,1,WE/P 5735,71,B22,S
748 | 747,0,3,"Abbott, Mr. Rossmore Edward",male,16,1,1,C.A. 2673,20.25,,S
749 | 748,1,2,"Sinkkonen, Miss. Anna",female,30,0,0,250648,13,,S
750 | 749,0,1,"Marvin, Mr. Daniel Warner",male,19,1,0,113773,53.1,D30,S
751 | 750,0,3,"Connaghton, Mr. Michael",male,31,0,0,335097,7.75,,Q
752 | 751,1,2,"Wells, Miss. Joan",female,4,1,1,29103,23,,S
753 | 752,1,3,"Moor, Master. Meier",male,6,0,1,392096,12.475,E121,S
754 | 753,0,3,"Vande Velde, Mr. Johannes Joseph",male,33,0,0,345780,9.5,,S
755 | 754,0,3,"Jonkoff, Mr. Lalio",male,23,0,0,349204,7.8958,,S
756 | 755,1,2,"Herman, Mrs. Samuel (Jane Laver)",female,48,1,2,220845,65,,S
757 | 756,1,2,"Hamalainen, Master. Viljo",male,0.67,1,1,250649,14.5,,S
758 | 757,0,3,"Carlsson, Mr. August Sigfrid",male,28,0,0,350042,7.7958,,S
759 | 758,0,2,"Bailey, Mr. Percy Andrew",male,18,0,0,29108,11.5,,S
760 | 759,0,3,"Theobald, Mr. Thomas Leonard",male,34,0,0,363294,8.05,,S
761 | 760,1,1,"Rothes, the Countess. of (Lucy Noel Martha Dyer-Edwards)",female,33,0,0,110152,86.5,B77,S
762 | 761,0,3,"Garfirth, Mr. John",male,,0,0,358585,14.5,,S
763 | 762,0,3,"Nirva, Mr. Iisakki Antino Aijo",male,41,0,0,SOTON/O2 3101272,7.125,,S
764 | 763,1,3,"Barah, Mr. Hanna Assi",male,20,0,0,2663,7.2292,,C
765 | 764,1,1,"Carter, Mrs. William Ernest (Lucile Polk)",female,36,1,2,113760,120,B96 B98,S
766 | 765,0,3,"Eklund, Mr. Hans Linus",male,16,0,0,347074,7.775,,S
767 | 766,1,1,"Hogeboom, Mrs. John C (Anna Andrews)",female,51,1,0,13502,77.9583,D11,S
768 | 767,0,1,"Brewe, Dr. Arthur Jackson",male,,0,0,112379,39.6,,C
769 | 768,0,3,"Mangan, Miss. Mary",female,30.5,0,0,364850,7.75,,Q
770 | 769,0,3,"Moran, Mr. Daniel J",male,,1,0,371110,24.15,,Q
771 | 770,0,3,"Gronnestad, Mr. Daniel Danielsen",male,32,0,0,8471,8.3625,,S
772 | 771,0,3,"Lievens, Mr. Rene Aime",male,24,0,0,345781,9.5,,S
773 | 772,0,3,"Jensen, Mr. Niels Peder",male,48,0,0,350047,7.8542,,S
774 | 773,0,2,"Mack, Mrs. (Mary)",female,57,0,0,S.O./P.P. 3,10.5,E77,S
775 | 774,0,3,"Elias, Mr. Dibo",male,,0,0,2674,7.225,,C
776 | 775,1,2,"Hocking, Mrs. Elizabeth (Eliza Needs)",female,54,1,3,29105,23,,S
777 | 776,0,3,"Myhrman, Mr. Pehr Fabian Oliver Malkolm",male,18,0,0,347078,7.75,,S
778 | 777,0,3,"Tobin, Mr. Roger",male,,0,0,383121,7.75,F38,Q
779 | 778,1,3,"Emanuel, Miss. Virginia Ethel",female,5,0,0,364516,12.475,,S
780 | 779,0,3,"Kilgannon, Mr. Thomas J",male,,0,0,36865,7.7375,,Q
781 | 780,1,1,"Robert, Mrs. Edward Scott (Elisabeth Walton McMillan)",female,43,0,1,24160,211.3375,B3,S
782 | 781,1,3,"Ayoub, Miss. Banoura",female,13,0,0,2687,7.2292,,C
783 | 782,1,1,"Dick, Mrs. Albert Adrian (Vera Gillespie)",female,17,1,0,17474,57,B20,S
784 | 783,0,1,"Long, Mr. Milton Clyde",male,29,0,0,113501,30,D6,S
785 | 784,0,3,"Johnston, Mr. Andrew G",male,,1,2,W./C. 6607,23.45,,S
786 | 785,0,3,"Ali, Mr. William",male,25,0,0,SOTON/O.Q. 3101312,7.05,,S
787 | 786,0,3,"Harmer, Mr. Abraham (David Lishin)",male,25,0,0,374887,7.25,,S
788 | 787,1,3,"Sjoblom, Miss. Anna Sofia",female,18,0,0,3101265,7.4958,,S
789 | 788,0,3,"Rice, Master. George Hugh",male,8,4,1,382652,29.125,,Q
790 | 789,1,3,"Dean, Master. Bertram Vere",male,1,1,2,C.A. 2315,20.575,,S
791 | 790,0,1,"Guggenheim, Mr. Benjamin",male,46,0,0,PC 17593,79.2,B82 B84,C
792 | 791,0,3,"Keane, Mr. Andrew ""Andy""",male,,0,0,12460,7.75,,Q
793 | 792,0,2,"Gaskell, Mr. Alfred",male,16,0,0,239865,26,,S
794 | 793,0,3,"Sage, Miss. Stella Anna",female,,8,2,CA. 2343,69.55,,S
795 | 794,0,1,"Hoyt, Mr. William Fisher",male,,0,0,PC 17600,30.6958,,C
796 | 795,0,3,"Dantcheff, Mr. Ristiu",male,25,0,0,349203,7.8958,,S
797 | 796,0,2,"Otter, Mr. Richard",male,39,0,0,28213,13,,S
798 | 797,1,1,"Leader, Dr. Alice (Farnham)",female,49,0,0,17465,25.9292,D17,S
799 | 798,1,3,"Osman, Mrs. Mara",female,31,0,0,349244,8.6833,,S
800 | 799,0,3,"Ibrahim Shawah, Mr. Yousseff",male,30,0,0,2685,7.2292,,C
801 | 800,0,3,"Van Impe, Mrs. Jean Baptiste (Rosalie Paula Govaert)",female,30,1,1,345773,24.15,,S
802 | 801,0,2,"Ponesell, Mr. Martin",male,34,0,0,250647,13,,S
803 | 802,1,2,"Collyer, Mrs. Harvey (Charlotte Annie Tate)",female,31,1,1,C.A. 31921,26.25,,S
804 | 803,1,1,"Carter, Master. William Thornton II",male,11,1,2,113760,120,B96 B98,S
805 | 804,1,3,"Thomas, Master. Assad Alexander",male,0.42,0,1,2625,8.5167,,C
806 | 805,1,3,"Hedman, Mr. Oskar Arvid",male,27,0,0,347089,6.975,,S
807 | 806,0,3,"Johansson, Mr. Karl Johan",male,31,0,0,347063,7.775,,S
808 | 807,0,1,"Andrews, Mr. Thomas Jr",male,39,0,0,112050,0,A36,S
809 | 808,0,3,"Pettersson, Miss. Ellen Natalia",female,18,0,0,347087,7.775,,S
810 | 809,0,2,"Meyer, Mr. August",male,39,0,0,248723,13,,S
811 | 810,1,1,"Chambers, Mrs. Norman Campbell (Bertha Griggs)",female,33,1,0,113806,53.1,E8,S
812 | 811,0,3,"Alexander, Mr. William",male,26,0,0,3474,7.8875,,S
813 | 812,0,3,"Lester, Mr. James",male,39,0,0,A/4 48871,24.15,,S
814 | 813,0,2,"Slemen, Mr. Richard James",male,35,0,0,28206,10.5,,S
815 | 814,0,3,"Andersson, Miss. Ebba Iris Alfrida",female,6,4,2,347082,31.275,,S
816 | 815,0,3,"Tomlin, Mr. Ernest Portage",male,30.5,0,0,364499,8.05,,S
817 | 816,0,1,"Fry, Mr. Richard",male,,0,0,112058,0,B102,S
818 | 817,0,3,"Heininen, Miss. Wendla Maria",female,23,0,0,STON/O2. 3101290,7.925,,S
819 | 818,0,2,"Mallet, Mr. Albert",male,31,1,1,S.C./PARIS 2079,37.0042,,C
820 | 819,0,3,"Holm, Mr. John Fredrik Alexander",male,43,0,0,C 7075,6.45,,S
821 | 820,0,3,"Skoog, Master. Karl Thorsten",male,10,3,2,347088,27.9,,S
822 | 821,1,1,"Hays, Mrs. Charles Melville (Clara Jennings Gregg)",female,52,1,1,12749,93.5,B69,S
823 | 822,1,3,"Lulic, Mr. Nikola",male,27,0,0,315098,8.6625,,S
824 | 823,0,1,"Reuchlin, Jonkheer. John George",male,38,0,0,19972,0,,S
825 | 824,1,3,"Moor, Mrs. (Beila)",female,27,0,1,392096,12.475,E121,S
826 | 825,0,3,"Panula, Master. Urho Abraham",male,2,4,1,3101295,39.6875,,S
827 | 826,0,3,"Flynn, Mr. John",male,,0,0,368323,6.95,,Q
828 | 827,0,3,"Lam, Mr. Len",male,,0,0,1601,56.4958,,S
829 | 828,1,2,"Mallet, Master. Andre",male,1,0,2,S.C./PARIS 2079,37.0042,,C
830 | 829,1,3,"McCormack, Mr. Thomas Joseph",male,,0,0,367228,7.75,,Q
831 | 830,1,1,"Stone, Mrs. George Nelson (Martha Evelyn)",female,62,0,0,113572,80,B28,
832 | 831,1,3,"Yasbeck, Mrs. Antoni (Selini Alexander)",female,15,1,0,2659,14.4542,,C
833 | 832,1,2,"Richards, Master. George Sibley",male,0.83,1,1,29106,18.75,,S
834 | 833,0,3,"Saad, Mr. Amin",male,,0,0,2671,7.2292,,C
835 | 834,0,3,"Augustsson, Mr. Albert",male,23,0,0,347468,7.8542,,S
836 | 835,0,3,"Allum, Mr. Owen George",male,18,0,0,2223,8.3,,S
837 | 836,1,1,"Compton, Miss. Sara Rebecca",female,39,1,1,PC 17756,83.1583,E49,C
838 | 837,0,3,"Pasic, Mr. Jakob",male,21,0,0,315097,8.6625,,S
839 | 838,0,3,"Sirota, Mr. Maurice",male,,0,0,392092,8.05,,S
840 | 839,1,3,"Chip, Mr. Chang",male,32,0,0,1601,56.4958,,S
841 | 840,1,1,"Marechal, Mr. Pierre",male,,0,0,11774,29.7,C47,C
842 | 841,0,3,"Alhomaki, Mr. Ilmari Rudolf",male,20,0,0,SOTON/O2 3101287,7.925,,S
843 | 842,0,2,"Mudd, Mr. Thomas Charles",male,16,0,0,S.O./P.P. 3,10.5,,S
844 | 843,1,1,"Serepeca, Miss. Augusta",female,30,0,0,113798,31,,C
845 | 844,0,3,"Lemberopolous, Mr. Peter L",male,34.5,0,0,2683,6.4375,,C
846 | 845,0,3,"Culumovic, Mr. Jeso",male,17,0,0,315090,8.6625,,S
847 | 846,0,3,"Abbing, Mr. Anthony",male,42,0,0,C.A. 5547,7.55,,S
848 | 847,0,3,"Sage, Mr. Douglas Bullen",male,,8,2,CA. 2343,69.55,,S
849 | 848,0,3,"Markoff, Mr. Marin",male,35,0,0,349213,7.8958,,C
850 | 849,0,2,"Harper, Rev. John",male,28,0,1,248727,33,,S
851 | 850,1,1,"Goldenberg, Mrs. Samuel L (Edwiga Grabowska)",female,,1,0,17453,89.1042,C92,C
852 | 851,0,3,"Andersson, Master. Sigvard Harald Elias",male,4,4,2,347082,31.275,,S
853 | 852,0,3,"Svensson, Mr. Johan",male,74,0,0,347060,7.775,,S
854 | 853,0,3,"Boulos, Miss. Nourelain",female,9,1,1,2678,15.2458,,C
855 | 854,1,1,"Lines, Miss. Mary Conover",female,16,0,1,PC 17592,39.4,D28,S
856 | 855,0,2,"Carter, Mrs. Ernest Courtenay (Lilian Hughes)",female,44,1,0,244252,26,,S
857 | 856,1,3,"Aks, Mrs. Sam (Leah Rosen)",female,18,0,1,392091,9.35,,S
858 | 857,1,1,"Wick, Mrs. George Dennick (Mary Hitchcock)",female,45,1,1,36928,164.8667,,S
859 | 858,1,1,"Daly, Mr. Peter Denis ",male,51,0,0,113055,26.55,E17,S
860 | 859,1,3,"Baclini, Mrs. Solomon (Latifa Qurban)",female,24,0,3,2666,19.2583,,C
861 | 860,0,3,"Razi, Mr. Raihed",male,,0,0,2629,7.2292,,C
862 | 861,0,3,"Hansen, Mr. Claus Peter",male,41,2,0,350026,14.1083,,S
863 | 862,0,2,"Giles, Mr. Frederick Edward",male,21,1,0,28134,11.5,,S
864 | 863,1,1,"Swift, Mrs. Frederick Joel (Margaret Welles Barron)",female,48,0,0,17466,25.9292,D17,S
865 | 864,0,3,"Sage, Miss. Dorothy Edith ""Dolly""",female,,8,2,CA. 2343,69.55,,S
866 | 865,0,2,"Gill, Mr. John William",male,24,0,0,233866,13,,S
867 | 866,1,2,"Bystrom, Mrs. (Karolina)",female,42,0,0,236852,13,,S
868 | 867,1,2,"Duran y More, Miss. Asuncion",female,27,1,0,SC/PARIS 2149,13.8583,,C
869 | 868,0,1,"Roebling, Mr. Washington Augustus II",male,31,0,0,PC 17590,50.4958,A24,S
870 | 869,0,3,"van Melkebeke, Mr. Philemon",male,,0,0,345777,9.5,,S
871 | 870,1,3,"Johnson, Master. Harold Theodor",male,4,1,1,347742,11.1333,,S
872 | 871,0,3,"Balkic, Mr. Cerin",male,26,0,0,349248,7.8958,,S
873 | 872,1,1,"Beckwith, Mrs. Richard Leonard (Sallie Monypeny)",female,47,1,1,11751,52.5542,D35,S
874 | 873,0,1,"Carlsson, Mr. Frans Olof",male,33,0,0,695,5,B51 B53 B55,S
875 | 874,0,3,"Vander Cruyssen, Mr. Victor",male,47,0,0,345765,9,,S
876 | 875,1,2,"Abelson, Mrs. Samuel (Hannah Wizosky)",female,28,1,0,P/PP 3381,24,,C
877 | 876,1,3,"Najib, Miss. Adele Kiamie ""Jane""",female,15,0,0,2667,7.225,,C
878 | 877,0,3,"Gustafsson, Mr. Alfred Ossian",male,20,0,0,7534,9.8458,,S
879 | 878,0,3,"Petroff, Mr. Nedelio",male,19,0,0,349212,7.8958,,S
880 | 879,0,3,"Laleff, Mr. Kristo",male,,0,0,349217,7.8958,,S
881 | 880,1,1,"Potter, Mrs. Thomas Jr (Lily Alexenia Wilson)",female,56,0,1,11767,83.1583,C50,C
882 | 881,1,2,"Shelley, Mrs. William (Imanita Parrish Hall)",female,25,0,1,230433,26,,S
883 | 882,0,3,"Markun, Mr. Johann",male,33,0,0,349257,7.8958,,S
884 | 883,0,3,"Dahlberg, Miss. Gerda Ulrika",female,22,0,0,7552,10.5167,,S
885 | 884,0,2,"Banfield, Mr. Frederick James",male,28,0,0,C.A./SOTON 34068,10.5,,S
886 | 885,0,3,"Sutehall, Mr. Henry Jr",male,25,0,0,SOTON/OQ 392076,7.05,,S
887 | 886,0,3,"Rice, Mrs. William (Margaret Norton)",female,39,0,5,382652,29.125,,Q
888 | 887,0,2,"Montvila, Rev. Juozas",male,27,0,0,211536,13,,S
889 | 888,1,1,"Graham, Miss. Margaret Edith",female,19,0,0,112053,30,B42,S
890 | 889,0,3,"Johnston, Miss. Catherine Helen ""Carrie""",female,,1,2,W./C. 6607,23.45,,S
891 | 890,1,1,"Behr, Mr. Karl Howell",male,26,0,0,111369,30,C148,C
892 | 891,0,3,"Dooley, Mr. Patrick",male,32,0,0,370376,7.75,,Q
893 |
--------------------------------------------------------------------------------
/02_Data Visualization and EDA/Data Visualization and EDA Lab.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": 1,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "%matplotlib inline"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 2,
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import pandas as pd\n",
19 | "import matplotlib.pyplot as plt\n",
20 | "import nose.tools\n",
21 | "# Write your imports here"
22 | ]
23 | },
24 | {
25 | "cell_type": "markdown",
26 | "metadata": {},
27 | "source": [
28 | "# Data Visualization and Exploratory Data Analysis Lab\n",
29 | "## Visualizing and exploring data. Data mining process as a whole"
30 | ]
31 | },
32 | {
33 | "cell_type": "markdown",
34 | "metadata": {},
35 | "source": [
36 | "### Problem 1. Read the dataset (1 point)\n",
37 | "You'll be exploring data about people's income. Your task is to understand whether there are significant differences in the lifestyle of lower- vs. higher-income groups.\n",
38 | "\n",
39 | "Read the dataset located [here](https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data). The information file is [here](https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.names). Save it into the variable `income_data`. Change the column names to what you like. The last column is related to the income class.\n",
40 | "\n",
41 | "Get acquainted with the information file well before starting work.\n",
42 | "\n",
43 | "You don't need to clean the dataset."
44 | ]
45 | },
46 | {
47 | "cell_type": "code",
48 | "execution_count": 3,
49 | "metadata": {
50 | "nbgrader": {
51 | "grade": false,
52 | "grade_id": "read-dataset",
53 | "locked": false,
54 | "schema_version": 3,
55 | "solution": true
56 | }
57 | },
58 | "outputs": [
59 | {
60 | "name": "stderr",
61 | "output_type": "stream",
62 | "text": [
63 | "C:\\Users\\Yordan\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:3: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n",
64 | " This is separate from the ipykernel package so we can avoid doing imports until\n"
65 | ]
66 | }
67 | ],
68 | "source": [
69 | "income_data = None\n",
70 | "### BEGIN SOLUTION\n",
71 | "income_data = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data\", sep = \", \", header = None)\n",
72 | "income_data.columns = [\"age\", \"workclass\", \"fnlwgt\", \"education\", \"education-num\", \"marital-status\", \"occupation\", \"relationship\", \"race\", \"sex\", \"capital-gain\", \"capital-loss\", \"hours-per-week\", \"native-country\", \"income\"]\n",
73 | "### END SOLUTION"
74 | ]
75 | },
76 | {
77 | "cell_type": "code",
78 | "execution_count": 4,
79 | "metadata": {
80 | "nbgrader": {
81 | "grade": true,
82 | "grade_id": "read-dataset-tests",
83 | "locked": true,
84 | "points": 1,
85 | "schema_version": 3,
86 | "solution": false
87 | }
88 | },
89 | "outputs": [
90 | {
91 | "name": "stderr",
92 | "output_type": "stream",
93 | "text": [
94 | "C:\\Users\\Yordan\\Anaconda3\\lib\\site-packages\\ipykernel_launcher.py:3: ParserWarning: Falling back to the 'python' engine because the 'c' engine does not support regex separators (separators > 1 char and different from '\\s+' are interpreted as regex); you can avoid this warning by specifying engine='python'.\n",
95 | " This is separate from the ipykernel package so we can avoid doing imports until\n"
96 | ]
97 | }
98 | ],
99 | "source": [
100 | "nose.tools.assert_is_not_none(income_data)\n",
101 | "### BEGIN HIDDEN TESTS\n",
102 | "income_data_test = pd.read_csv(\"https://archive.ics.uci.edu/ml/machine-learning-databases/adult/adult.data\", sep = \", \", header = None)\n",
103 | "income_data_test.columns = income_data.columns\n",
104 | "\n",
105 | "nose.tools.assert_equal(income_data.shape, income_data_test.shape)\n",
106 | "### END HIDDEN TESTS"
107 | ]
108 | },
109 | {
110 | "cell_type": "markdown",
111 | "metadata": {},
112 | "source": [
113 | "### Problem 2. High income (1 point)\n",
114 | "How many people have high income (over 50 000 USD per year)? Write a function to return the value. The function should accept the dataframe as a parameter. Work with that parameter."
115 | ]
116 | },
117 | {
118 | "cell_type": "code",
119 | "execution_count": 5,
120 | "metadata": {
121 | "nbgrader": {
122 | "grade": false,
123 | "grade_id": "high-income",
124 | "locked": false,
125 | "schema_version": 3,
126 | "solution": true
127 | }
128 | },
129 | "outputs": [],
130 | "source": [
131 | "def get_num_people_with_high_income(dataframe):\n",
132 | " ### BEGIN SOLUTION\n",
133 | " return len(dataframe[dataframe.income == \">50K\"])\n",
134 | " ### END SOLUTION"
135 | ]
136 | },
137 | {
138 | "cell_type": "code",
139 | "execution_count": 6,
140 | "metadata": {
141 | "nbgrader": {
142 | "grade": true,
143 | "grade_id": "high-income-tests",
144 | "locked": true,
145 | "points": 1,
146 | "schema_version": 3,
147 | "solution": false
148 | }
149 | },
150 | "outputs": [],
151 | "source": [
152 | "# This cell contains hidden tests\n",
153 | "### BEGIN HIDDEN TESTS\n",
154 | "nose.tools.assert_equal(get_num_people_with_high_income(income_data), 7841)\n",
155 | "nose.tools.assert_equal(get_num_people_with_high_income(income_data), get_num_people_with_high_income(income_data_test))\n",
156 | "### END HIDDEN TESTS"
157 | ]
158 | },
159 | {
160 | "cell_type": "markdown",
161 | "metadata": {},
162 | "source": [
163 | "### Problem 3. Capital gain: thresholding (1 point)\n",
164 | "Plot a histogram of the capital gain. You can see that there are many people with relatively low gains and a few people - with very high gains."
165 | ]
166 | },
167 | {
168 | "cell_type": "code",
169 | "execution_count": 7,
170 | "metadata": {
171 | "nbgrader": {
172 | "grade": false,
173 | "grade_id": "high-gain",
174 | "locked": false,
175 | "schema_version": 3,
176 | "solution": true
177 | }
178 | },
179 | "outputs": [
180 | {
181 | "data": {
182 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYcAAAD4CAYAAAAHHSreAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAT2ElEQVR4nO3df6zd9X3f8eerdiBZ0tQmGOTZ1ux01hSnUg2xiLNMUwYdGDrNVCKS0VS8jMlVBlKyVVpN+wdtEqQwrUmFltDQ4cVUaQwj6bCoM8+iTFWlBjANBQzxfAMs3OBhMwOhi5aU7L0/zue2J/6c63t9r/GxfZ8P6eh8v+/v5/v9fj7+HvPy98c5pKqQJGnYT427A5KkM4/hIEnqGA6SpI7hIEnqGA6SpM7icXdgri688MJavXr1uLshSWeVxx9//JWqWjZTu7M2HFavXs3+/fvH3Q1JOqsk+Z+zaedlJUlSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lSx3CQJHUMB0lS56z9hvR8rN7+R2PZ7wuf/cWx7FeSTpZnDpKkjuEgSeoYDpKkjuEgSeoYDpKkjuEgSeoYDpKkzozhkOTtSR5N8hdJDiT5rVZfk+SRJIeS3JvkvFY/v81PtOWrh7Z1S6sfTHLVUH1Tq00k2X7qhylJOhmzOXP4IXB5Vf08sB7YlGQjcDvw+apaC7wK3Nja3wi8WlV/F/h8a0eSdcAW4P3AJuCLSRYlWQR8AbgaWAdc39pKksZkxnCogb9ss29rrwIuB+5v9Z3AtW16c5unLb8iSVp9V1X9sKqeByaAy9proqqeq6ofAbtaW0nSmMzqnkP7F/4TwBFgH/Ad4LWqerM1mQRWtOkVwIsAbfnrwHuG68etM119VD+2JdmfZP/Ro0dn03VJ0hzMKhyq6sdVtR5YyeBf+u8b1ay9Z5plJ1sf1Y+7qmpDVW1YtmzZzB2XJM3JST2tVFWvAf8d2AgsSTL1w30rgZfa9CSwCqAt/xng2HD9uHWmq0uSxmQ2TystS7KkTb8D+AXgWeBh4LrWbCvwQJve3eZpy/+4qqrVt7SnmdYAa4FHgceAte3pp/MY3LTefSoGJ0mam9n8ZPdyYGd7quingPuq6sEkzwC7knwG+BZwd2t/N/D7SSYYnDFsAaiqA0nuA54B3gRuqqofAyS5GdgLLAJ2VNWBUzZCSdJJmzEcqupJ4JIR9ecY3H84vv5/gY9Os63bgNtG1PcAe2bRX0nSaeA3pCVJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktSZMRySrErycJJnkxxI8olW/80k30vyRHtdM7TOLUkmkhxMctVQfVOrTSTZPlRfk+SRJIeS3JvkvFM9UEnS7M3mzOFN4Fer6n3ARuCmJOvass9X1fr22gPQlm0B3g9sAr6YZFGSRcAXgKuBdcD1Q9u5vW1rLfAqcOMpGp8kaQ5mDIeqOlxVf96m3wCeBVacYJXNwK6q+mFVPQ9MAJe110RVPVdVPwJ2AZuTBLgcuL+tvxO4dq4DkiTN30ndc0iyGrgEeKSVbk7yZJIdSZa22grgxaHVJlttuvp7gNeq6s3j6qP2vy3J/iT7jx49ejJdlySdhFmHQ5J3AV8DPllV3wfuBH4WWA8cBn57qumI1WsO9b5YdVdVbaiqDcuWLZtt1yVJJ2nxbBoleRuDYPhKVX0doKpeHlr+e8CDbXYSWDW0+krgpTY9qv4KsCTJ4nb2MNxekjQGs3laKcDdwLNV9bmh+vKhZr8EPN2mdwNbkpyfZA2wFngUeAxY255MOo/BTevdVVXAw8B1bf2twAPzG5YkaT5mc+bwYeCXgaeSPNFqv87gaaP1DC4BvQD8CkBVHUhyH/AMgyedbqqqHwMkuRnYCywCdlTVgba9XwN2JfkM8C0GYSRJGpMZw6Gq/pTR9wX2nGCd24DbRtT3jFqvqp5j8DSTJOkM4DekJUkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEmdGcMhyaokDyd5NsmBJJ9o9QuS7EtyqL0vbfUkuSPJRJInk1w6tK2trf2hJFuH6h9I8lRb544keSsGK0mandmcObwJ/GpVvQ/YCNyUZB2wHXioqtYCD7V5gKuBte21DbgTBmEC3Ap8ELgMuHUqUFqbbUPrbZr/0CRJczVjOFTV4ar68zb9BvAssALYDOxszXYC17bpzcA9NfBNYEmS5cBVwL6qOlZVrwL7gE1t2bur6s+qqoB7hrYlSRqDk7rnkGQ1cAnwCHBxVR2GQYAAF7VmK4AXh1abbLUT1SdH1CVJYzLrcEjyLuBrwCer6vsnajqiVnOoj+rDtiT7k+w/evToTF2WJM3RrMIhydsYBMNXqurrrfxyuyREez/S6pPAqqHVVwIvzVBfOaLeqaq7qmpDVW1YtmzZbLouSZqD2TytFOBu4Nmq+tzQot3A1BNHW4EHhuo3tKeWNgKvt8tOe4ErkyxtN6KvBPa2ZW8k2dj2dcPQtiRJY7B4Fm0+DPwy8FSSJ1rt14HPAvcluRH4LvDRtmwPcA0wAfwA+BhAVR1L8mngsdbuU1V1rE1/HPgy8A7gG+0lSRqTGcOhqv6U0fcFAK4Y0b6Am6bZ1g5gx4j6fuDnZuqLJOn08BvSkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6hgOkqSO4SBJ6swYDkl2JDmS5Omh2m8m+V6SJ9rrmqFltySZSHIwyVVD9U2tNpFk+1B9TZJHkhxKcm+S807lACVJJ282Zw5fBjaNqH++qta31x6AJOuALcD72zpfTLIoySLgC8DVwDrg+tYW4Pa2rbXAq8CN8xmQJGn+ZgyHqvoT4Ngst7cZ2FVVP6yq54EJ4LL2mqiq56rqR8AuYHOSAJcD97f1dwLXnuQYJEmn2HzuOdyc5Ml22Wlpq60AXhxqM9lq09XfA7xWVW8eVx8pybYk+5PsP3r06Dy6Lkk6kbmGw53AzwLrgcPAb7d6RrStOdRHqqq7qmpDVW1YtmzZyfVYkjRri+eyUlW9PDWd5PeAB9vsJLBqqOlK4KU2Par+CrAkyeJ29jDcXpI0JnM6c0iyfGj2l4CpJ5l2A1uSnJ9kDbAWeBR4DFjbnkw6j8FN691VVcDDwHVt/a3AA3PpkyTp1JnxzCHJV4GPABcmmQRuBT6SZD2DS0AvAL8CUFUHktwHPAO8CdxUVT9u27kZ2AssAnZU1YG2i18DdiX5DPAt4O5TNjpJ0pzMGA5Vdf2I8rT/Aa+q24DbRtT3AHtG1J9j8DSTJOkM4TekJUkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1DEcJEkdw0GS1JkxHJLsSHIkydNDtQuS7EtyqL0vbfUkuSPJRJInk1w6tM7W1v5Qkq1D9Q8keaqtc0eSnOpBSpJOzmzOHL4MbDquth14qKrWAg+1eYCrgbXttQ24EwZhAtwKfBC4DLh1KlBam21D6x2/L0nSaTZjOFTVnwDHjitvBna26Z3AtUP1e2rgm8CSJMuBq4B9VXWsql4F9gGb2rJ3V9WfVVUB9wxtS5I0JnO953BxVR0GaO8XtfoK4MWhdpOtdqL65Ij6SEm2JdmfZP/Ro0fn2HVJ0kxO9Q3pUfcLag71karqrqraUFUbli1bNscuSpJmMtdweLldEqK9H2n1SWDVULuVwEsz1FeOqEuSxmiu4bAbmHriaCvwwFD9hvbU0kbg9XbZaS9wZZKl7Ub0lcDetuyNJBvbU0o3DG1LkjQmi2dqkOSrwEeAC5NMMnjq6LPAfUluBL4LfLQ13wNcA0wAPwA+BlBVx5J8GnistftUVU3d5P44gyei3gF8o70kSWM0YzhU1fXTLLpiRNsCbppmOzuAHSPq+4Gfm6kfkqTTx29IS5I6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI6hoMkqWM4SJI68wqHJC8keSrJE0n2t9oFSfYlOdTel7Z6ktyRZCLJk0kuHdrO1tb+UJKt8xuSJGm+TsWZwz+qqvVVtaHNbwceqqq1wENtHuBqYG17bQPuhEGYALcCHwQuA26dChRJ0ni8FZeVNgM72/RO4Nqh+j018E1gSZLlwFXAvqo6VlWvAvuATW9BvyRJszTfcCjgvyV5PMm2Vru4qg4DtPeLWn0F8OLQupOtNl29k2Rbkv1J9h89enSeXZckTWfxPNf/cFW9lOQiYF+Sb5+gbUbU6gT1vlh1F3AXwIYNG0a2kSTN37zOHKrqpfZ+BPhDBvcMXm6Xi2jvR1rzSWDV0OorgZdOUJckjcmcwyHJO5P89NQ0cCXwNLAbmHriaCvwQJveDdzQnlraCLzeLjvtBa5MsrTdiL6y1SRJYzKfy0oXA3+YZGo7f1BV/zXJY8B9SW4Evgt8tLXfA1wDTAA/AD4GUFXHknwaeKy1+1RVHZtHvyRJ8zTncKiq54CfH1H/38AVI+oF3DTNtnYAO+baF0nSqeU3pCVJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJHcNBktQxHCRJncXj7sBCsnr7H41t3y989hfHtm9JZ58z5swhyaYkB5NMJNk+7v5I0kJ2RoRDkkXAF4CrgXXA9UnWjbdXkrRwnSmXlS4DJqrqOYAku4DNwDNj7dU5ZFyXtLycpXPVuf536kwJhxXAi0Pzk8AHj2+UZBuwrc3+ZZKDc9zfhcArc1z3bDWWMef2073Hn+BxPvcttPGS2+c95r8zm0ZnSjhkRK26QtVdwF3z3lmyv6o2zHc7ZxPHvDAstDEvtPHC6RvzGXHPgcGZwqqh+ZXAS2PqiyQteGdKODwGrE2yJsl5wBZg95j7JEkL1hlxWamq3kxyM7AXWATsqKoDb+Eu531p6izkmBeGhTbmhTZeOE1jTlV3aV+StMCdKZeVJElnEMNBktRZUOFwtv9ER5JVSR5O8mySA0k+0eoXJNmX5FB7X9rqSXJHG++TSS4d2tbW1v5Qkq1D9Q8keaqtc0eSUY8Zn1ZJFiX5VpIH2/yaJI+0vt/bHmIgyfltfqItXz20jVta/WCSq4bqZ+RnIsmSJPcn+XY73h86l49zkn/dPtNPJ/lqkrefi8c5yY4kR5I8PVR7y4/rdPs4oapaEC8GN7q/A7wXOA/4C2DduPt1kmNYDlzapn8a+B8Mfm7k3wHbW307cHubvgb4BoPvkWwEHmn1C4Dn2vvSNr20LXsU+FBb5xvA1WfAuP8N8AfAg23+PmBLm/5d4ONt+l8Bv9umtwD3tul17XifD6xpn4NFZ/JnAtgJ/Ms2fR6w5Fw9zgy+BPs88I6h4/vPz8XjDPxD4FLg6aHaW35cp9vHCfs67r8Ep/GgfAjYOzR/C3DLuPs1zzE9APxj4CCwvNWWAwfb9JeA64faH2zLrwe+NFT/UqstB749VP+JdmMa40rgIeBy4MH2oX8FWHz8cWXwtNuH2vTi1i7HH+updmfqZwJ4d/uPZY6rn5PHmb/5hYQL2nF7ELjqXD3OwGp+Mhze8uM63T5O9FpIl5VG/UTHijH1Zd7aqfQlwCPAxVV1GKC9X9SaTTfmE9UnR9TH6XeAfwv8vzb/HuC1qnqzzQ/38a/H1Za/3tqf7J/DuL0XOAr8p3Y57T8meSfn6HGuqu8B/x74LnCYwXF7nHP/OE85Hcd1un1MayGFw6x+ouNskORdwNeAT1bV90/UdESt5lAfiyT/BDhSVY8Pl0c0rRmWnRXjHbKYwaWHO6vqEuD/MLgUMJ2zetzt+vdmBpeC/jbwTga/0Hy8c+04z2Ss41xI4XBO/ERHkrcxCIavVNXXW/nlJMvb8uXAkVafbswnqq8cUR+XDwP/NMkLwC4Gl5Z+B1iSZOoLnMN9/OtxteU/Axzj5P8cxm0SmKyqR9r8/QzC4lw9zr8APF9VR6vqr4CvA3+fc/84Tzkdx3W6fUxrIYXDWf8THe3Jg7uBZ6vqc0OLdgNTTyxsZXAvYqp+Q3vqYSPwejul3AtcmWRp+1fblQyuyR4G3kiyse3rhqFtnXZVdUtVrayq1QyO1x9X1T8DHgaua82OH+/Un8N1rX21+pb2lMsaYC2DG3dn5Geiqv4X8GKSv9dKVzD4+fpz8jgzuJy0Mcnfav2ZGu85fZyHnI7jOt0+pjeumzJjuhF0DYMnfL4D/Ma4+zOH/v8DBqeJTwJPtNc1DK63PgQcau8XtPZh8D9R+g7wFLBhaFv/Aphor48N1TcAT7d1/gPH3RQd49g/wt88rfReBn/pJ4D/DJzf6m9v8xNt+XuH1v+NNqaDDD2Zc6Z+JoD1wP52rP8Lg6dSztnjDPwW8O3Wp99n8MTROXecga8yuK/yVwz+pX/j6Tiu0+3jRC9/PkOS1FlIl5UkSbNkOEiSOoaDJKljOEiSOoaDJKljOEiSOoaDJKnz/wGs3O3c2xhfVAAAAABJRU5ErkJggg==\n",
183 | "text/plain": [
184 | ""
185 | ]
186 | },
187 | "metadata": {
188 | "needs_background": "light"
189 | },
190 | "output_type": "display_data"
191 | }
192 | ],
193 | "source": [
194 | "### BEGIN SOLUTION\n",
195 | "plt.hist(income_data[\"capital-gain\"])\n",
196 | "plt.show()\n",
197 | "### END SOLUTION"
198 | ]
199 | },
200 | {
201 | "cell_type": "markdown",
202 | "metadata": {},
203 | "source": [
204 | "Write a function which accepts a dataframe and a capital gain value (in USD) and returns how many people are there with **greater than or equal to** that threshold gain."
205 | ]
206 | },
207 | {
208 | "cell_type": "code",
209 | "execution_count": 8,
210 | "metadata": {
211 | "nbgrader": {
212 | "grade": false,
213 | "grade_id": "high-gain-fn",
214 | "locked": false,
215 | "schema_version": 3,
216 | "solution": true
217 | }
218 | },
219 | "outputs": [],
220 | "source": [
221 | "def get_num_people_with_higher_gain(dataframe, threshold_gain):\n",
222 | " ### BEGIN SOLUTION\n",
223 | " return len(dataframe[dataframe[\"capital-gain\"] >= threshold_gain])\n",
224 | " ### END SOLUTION"
225 | ]
226 | },
227 | {
228 | "cell_type": "code",
229 | "execution_count": 9,
230 | "metadata": {
231 | "nbgrader": {
232 | "grade": true,
233 | "grade_id": "high-gain-tests",
234 | "locked": true,
235 | "points": 1,
236 | "schema_version": 3,
237 | "solution": false
238 | }
239 | },
240 | "outputs": [],
241 | "source": [
242 | "nose.tools.assert_equal(get_num_people_with_higher_gain(income_data, 60000), 159)\n",
243 | "### BEGIN HIDDEN TESTS\n",
244 | "for threshold, expected_income in [[20000, 253], [30000, 166], [45000, 159], [60000, 159], [1000000000, 0], [0, 32561]]:\n",
245 | " nose.tools.assert_equal(get_num_people_with_higher_gain(income_data, threshold), get_num_people_with_higher_gain(income_data_test, threshold))\n",
246 | " nose.tools.assert_equal(get_num_people_with_higher_gain(income_data, threshold), expected_income)\n",
247 | " ### END HIDDEN TESTS"
248 | ]
249 | },
250 | {
251 | "cell_type": "markdown",
252 | "metadata": {},
253 | "source": [
254 | "Create a pie chart of the number of people by marital status."
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": 10,
260 | "metadata": {
261 | "nbgrader": {
262 | "grade": false,
263 | "grade_id": "cell-1e91969a128f0bd6",
264 | "locked": false,
265 | "schema_version": 3,
266 | "solution": true
267 | }
268 | },
269 | "outputs": [
270 | {
271 | "data": {
272 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWgAAADnCAYAAAAzdMxsAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3deXxU5bnA8d+ThSTs+yIIAUFAOSyyKCKIqftSl9ar16W4VEuNWlv1ltZqW/Wqt7a1eksbbzdGvVpqLbcqdUdA2RGQIKDIJpvse0JIZp77x3sCQ0xIJtuZ5fl+Pvkwc+Ysz4TJc955z3ueV1QVY4wx8Sct6ACMMcZUzhK0McbEKUvQxhgTpyxBG2NMnLIEbYwxccoStDHGxClL0MYYE6csQRtjTJyyBG2MMXHKErQxxsQpS9DGGBOnLEEbY0ycsgRtjDFxyhK0McbEKUvQxhgTpyxBG2NMnLIEbYwxccoStDHGxClL0MYYE6csQRtjTJyyBG2MMXHKErQxxsQpS9DGGBOnLEEbY0ycsgRtjDFxyhK0McbEKUvQxhgTpzKCDsCYhuaFvDSgE9A16ueEqMetgSwg2/83PWpzBQ4AO6r42Q6sAtYUjiuMNMLbMSlEVDXoGIypN17Iaw4MAYb6P6cBJ9PwjZFiYCWwDPjE/1kGrC8cV2h/ZKZWLEGbhOaFvFOAC4DhuGTch/jqutsLzADeA94tHFe4POB4TAKxBG0SihfysoFzgEv8n9xAA4rdZmAa8C4uYW8KOB4TxyxBm7jnhbxOwJW4hJwHNA02onr1EfA88FLhuMJtQQdj4oslaBOX/At7FwC3AZcCmcFG1ODKgHdwyfr/CscVFgccj4kDlqBNXPFCXnfgFuBmoHvA4QRlP/AK8OfCcYUfBB2MCY4laBMXvJB3CZCPazXH00W+oM0F/gv4p40GST2WoE2gvJD3deCnuBEYpmorgCeBFwrHFZYGHYxpHJagTSC8kHcZLjEPDTqWBLMR+DXwP4XjCg8GHYxpWPZV0jQqL+Rd5oW8hcCrWHKujW64BL3GC3m3+hdT652IqIg8H/U8Q0S2i8jrddzvCSLy9xi3mSQi3zzO6/8UkTkVlv1MRDaJyBL/54naxhwkS9CmUXghz/NC3odYYq4vHYE/AvO9kHdmA+z/IDBARHL85+cBMY3ZFpGMis9VdbOqVplsYyUirXHdY61FpGeFl59S1cH+z4T6OmZjivsEnUhn8krWf1hEzo09uuThhbymXsj7BbAIGBV0PEloKPChF/Ke90LeCfW87zdwY88B/h14qfwFERkhIrNFZLH/b19/+U0i8rKIvAa8XcnzXBFZ5q+bLiJPisgCEVkqIt/xl4uI/FZElovIVNzJqCrfAF4D/gpcG8ubE5EuIjLTb2EvE5HR/vIDIvIrEVkkIu+JSAd/+WARmevHOkVE2vjLp4vIMP9xexFZ5z8+VUTm+/tfKiJ9/OU3RC1/VkTSKw2QBEjQJMiZvDKq+pCqvtuQx4hnfj/zcuB+rDBXQxLgBuBTL+T9yAt5WfW0378C14pINjAQmBf12kpgjKoOAR4CHot6bSQwTlXzqnhe7lZgr6oOx92qf5vfCr4S6At4uHHwx/uGUH7ieMl/HO37UV0cF1Sy7XXAW6o6GBgELPGXNwMWqeppuNv0f+ovfw74oaoOBAqjlldlPPC0v/9hwEYR6Q9cA4zyl4eB66vaQSIkaEiAM7mI/IeIFIrIx+X9XeUtbhG5SET+FrXuWD+Oivu42j+TfywiM6Pexz9F5E0R+VREfhq1/g/89ZeJyD3+siPvy39+n4j8zH98t/9elorIX/1lzUTkz/57Xywil8fw/1IpL+R180LeFFx3Ro+67s/UWHNcolzohTyvrjtT1aW4W+n/HfhXhZdbAS/7n7WngFOjXntHVXcd53m584FvicgSXPJvh6ulMgZ4SVXDqlp+a/xXiEgnoDfwoap+BpSJyICoVaK7ON6qZBcLgJv9vw9PVff7yyPAZP/xC8BZItIKaK2qM/zlIT/O45kD/FhEfgj0UNVi4Gu4bz0L/Pf9NaBXVTtIlFbNX4GHxHVrDAT+DIz2Xys/k5eJ6054DPe1B9yZe6Cq7hKRmyo8z43a/5EzuYhkAbNE5G1cVbTyM3knXGvwzxWDE5GLgCuA01W1SETaVljlHeBZEWmmqgdxZ9DJFfeDa4lcoKqbxPWtlRsBDACKcP+xU3FlMG8GTse1oOaJyAxgd+W/QgAmAD1VtSRq/w8A01T1Fn/ZfBF5148zZl7Iuxl4BpcsTDAG4PqmJwDP1HH89KvAL4GxuARa7hHgfVW90v9bmh71WsXPTlWfJQHuqpg8ReRi3OebCstPB571nz6EO3m0AdaKCEBLXDfHTyo9WIXtVfVVERmDa/w9LyJPqupzlWxa3e+vjKON3ewjG6m+KCLz/P2/JSLf9t9zSFV/VM0+gQRpQcf7mRw4F/iLqhb58R5zDFUtA94ELvO7Wy4B/lnJfmYBk0TkNo6tSfyOqu70z8D/AM7yf6ao6kFVPeAvH/2VPR5rKfC/InID7kNV/t4n+O99Ou4DFvMdfH5f8yTcCcySc/Cygd8A//JCXuc67OfPwMOqWlhheSuOdjXeVMt9vwV8V0QyAUTkZBFpBszEda2ki0gXXHEsVHVeVIv4VVw+uFBVc1U1F9cyrbIfuuL2ItID2KaqfwD+xNGx+GlAeffndbgW+l5gt/j91MCNuO4PgHUcvfB9pNtURHoBa1T1GdyJbiCuquE3RaSjv05bP45KJUSC9pWfyV+qsLz8TD4AuIyoMxixn8nL//N6qurb/muVnsmj+ra+7m9f3Vl2MvBvuGI/C1R1v4j8Z/l+AFR1PO7sfyKwRETKWywV963+MSsTfTaHY38flwATcR+mj/yThQDfiHrv3VV1RTXv5Rh+yc8FwLhYtjON4kJgqX89IGaqulFVn67kpV8Aj4vILI5tTMTij7hvpYv8BtazuG/1U3CTIBQCv+doIjzCb7V3x91pWR7rWmCf31KuibG4v7PFuG/d5e/zIHCqiHyE+3t92F8+DnhSRJYCg6OW/xJ3opkNtI/a/zXAMv/vux/wnKoux/2Nv+3v5x2gS1UBxv2NKiJyQFWbi0g3XCJ5WkTGAvep6qUiMgV4QVVf8fuSblLVXL9LY5iq3unvp+LzXOB1VR0gIrcDFwNXq2qpiJyMax1cAHzHf60j7sN0m6oeM/pDRC7EfeU6t7yLw+9GmeQf4+/irtSuxiWyl1X1b1QgIiep6mr/8WJcF8ZgXLfNAFxR+Hm4WhURYBJwBn4XB+6svgzYguuaOYD7cL+J+zB1V9V1fotlo7/Of+C+Gt6lqioiQ1R1cU3/f7yQNw74HclVYS5Z/Q64x+5EPL7ynBN0HJA4fdCo6kaOnuGi/QIIicgPqLoLojp/xHWhLBLXmbUd16c8BXcGLQQ+o5IzuR/bmyIyGFgoIodx3TA/rrBO2O9Dv4mqW5pPihuKI7ivQh/jEvSHuCpnvYEXVXUhuIuQwPzy91CeWEXkYVzCXovrowfXynnBv9ghuAsoe0TkEdxX4aX+e1+Hqx53XF7Iy8G1xm+ubl0TN+4ABngh7xuF4wp3BB2MqV7ct6BTXcWWfzzw6zNPxW44SVRrgcsKxxV+EnQg5vgSqQ/axAEv5PXD9ftZck5UqrmX70p/JHfC1JS+iSoRWAva1JgX8kbhLtZWHEZoEsiZByJvfbxhwuAvadsWuGndE5e8GHRMpnLWgjY14oW8i3BXnC05J7Dcw+GZmzeO7/UlbTvhZql5IXfC1PuCjstUzhK0qZYX8q7BjdvOqW5dE79ahSOLO679ZrNC7dUnarEAT+ZOmJqQ1d6SnSVoc1xeyLsReJHknxMwqWWqrh29btS+9yKnV3Xt4Ie5E6Y+0KhBmWpZgjZV8kLepbg7yexzksBEdec1X/T67KXDl59dzaqP5k6YekejBGVqxP7wTKW8kDca+BsJNFbeVEK15IYvW8/9fdHt59dwi9/mTph6XYPGZGrMErT5Ci/kDcLV2LU+50SmqpfvbvLuH/fcdy5IVaUBKhIglDth6iXVrmkanCVocwwv5J2EuzW8VdCxmLoZcVDenrr1/pGHyYy1PnQG8HLuhKnVldM0DcwStDnCr3r2NlCX6mcmDnQv0RlrN97dbzctazssMgd4LXfCVJttPUCWoA0A/iwcr3Gc4uEmMbQMRxY3XXtD6zV6Ql0nS2gJvJE7YWrX+ojLxM4StCn3FG5aHpPAMlXXeGsvLFqg3qB62mVH4KXcCVNrW1LU1IElaIMX8q4Dvht0HKZuRHXHBesHrn6zNK++J+cdjau7bhqZ1eJIcX6x/fm4iTJNolI9dNWWE94L7f1eQ42+UOCidU9cUtncfqaBWAs6hXkhrxnwdyw5JzZVvWBX8/ee33vXhQ14FAGet/7oxmUJOrX9AegfdBCmbk47kPnWG9vuGxMhraH7iTtg/dGNyhJ0ivJC3i24STdNAutWIjNWbbxn0EFyWjTSIUdzdC4+08CsDzoF+eOdVwCtg47F1F6LsC5qveq2psu1d79GPrQCF6x74pJ3Gvm4Kcda0KnpN1hyTmiZEV3dc+1VZQEkZ3D90QW5E6bGeoeiiZEl6BTjhbyLcdPBmwQlqttHfHHW+lmlp48IMIxeuBnhTQOyLo4U4o/a+ASo6x1mJiiqh87d0nvalL23XRx0KEAx0H/dE5esDzqQZGUt6NTyCJacE5eqnr2z3btT9n77oqBD8eUAvw46iGRmCTpFeCHvNODuoOMwtTfgQM6b72y/J5bSoY3hqtwJU8+LdSMRCYvIEhH5REQ+FpEfiEia/9owEXmm/kONOcafiUig8zVagk4dvwZs/GqCOqEkffqnG78/ooQm2UHHUolncidMjXVKtGJVHayqpwLnARcDPwVQ1YWqWufGhIgk/GQTlqBTgBfyzgWqm+7IxKnmYT4qWXtHj120ahd0LFXoB9xT241VdRtwO3CnOGNF5HURSRORdSJyZMSRiHwuIp1EpIeIvCciS/1/u/uvTxKRX4vI+8B/iUhvEXnXb6UvEpGT/PXuF5EF/vY/j9r/AyLyqYi8C/St7XuqL5agU4MVuklQmRH9vMPq69PXadeeQcdSjYdyJ0ztUtuNVXUNLh91jFoWwc0mfyWAiJwOrFPVrcBvgedUdSDwv0B0l8jJwLmqeq//2kRVHQScCWwRkfOBPsAIYDAwVETGiMhQ4FpgCHAVMLy276e+WIJOcv6wujOCjsPETlS391t/wealYW9w0LHUQHPg/jruo7K+9ckcHRZ6rf8cYCRutnmA54GzorZ5WVXDItIC6KqqUwBU9ZCqFgHn+z+LgUW4bwB9cHdJTlHVIlXdB7xax/dTZ5agk5/dlpuIVIuHbx68aPahvESadur23AlT29dmQxHpBYSBbRVemgP0FpEOwBXAP6rYRfR44YPlu63qcMDjfh/4YFXtrap/qmQ/gbMEncS8kHclMDToOEyMVHXYzm7T3tv37xcEHUqMmgHfi3UjP/kWAL/VCjdm+M+n4C5yr1DVnf5Ls3EtaoDrgQ8r7tdvBW8UkSv842SJSFPgLeAWEWnuL+8qIh2BmcCVIpLjt74vi/W91DdL0EnKC3kC/LzaFU3c6Xug1Rszt9+RaMm53F25E6a2rMF6OeXD7IB3cXNhVvV5nQzcwNHuDXBDRm8WkaXAjVR9YrgRuNtfbzbQWVXfxnWPzBGRQlzJ3Raqusg/xhLgFeCDGryPBmV3EiYpL+RdgJud2ySQjiVN3t+6ZsLQAzStSZKLV/eue+ISu4GlHlgLOnl9J+gATGyahWXhgTV3npzgyRngztwJUy231AP7JSYhL+SdQBz0n5may4iwqunqW5tupWMyzFjSE7g86CCSgSXo5HQrkPB3UaUKUd3edd1Vu9aEe58SdCz1KOaLhearLEEnGS/kpQO3BR2HqSHV4pM3jf54WcmI04MOpZ6dnTthahC1qpOKJejkcxFwYtBBmBpQ1X47+r6/cP+l5wYdSgO5OugAEp0l6OQzPugATM302N/hzYU7bmrImbiDZgm6jmyYXRLxQl574Eusal3ca1eSM+3LNRNGHiIrJ+hYGlj/dU9csjLoIBKVtaCTy6VYco57OWXpC3ev+Z6XAskZrBVdJ5agk4sNrYtzGRE+T1t9R9u9tO4QdCyNxBJ0HViCThJeyMvCVegycUqU7S3X3bDvy0jXXkHH0og8G81Re5agk8c5uJKPJh6pFnfZeMHy9SUDTgs6lABYK7qWLEEnD+veiFeq2m37kBmfHjgnVWe1sQRdS5agk4cl6DjVaV+3t1bsvDaZh9NVx8udMPWEoINIRJagk4AX8gZiN6fEpZaHWry/bvN3vxZ0HHHAZvWpBUvQyWFU0AGYr8oqy1ywe+09Q8rIiHXG62RkCboWLEEnh8AntzTHSo/IqtLVd3cuolnr6tdOCclWa6RRWIJODpag44go2zLXfLtkb6SDdTsdNSx3wlS7iSpGlqATnBfymgL9g47D+JSi5huuWr299KQBQYcSZ5oCA4MOItFYgk58p2G3d8cH1UibbaNmbz44YmTQocQp6+aIkSXoxGfdG3Gi1d4+73yx67JkLR1aH+xCYYwsQSc+S9BxIKe47fubttxyXtBxxDlrQcfIEnTiGxJ0AKkuoyx7we51d5+upNnf0/H1zZ0wtUnQQSQS+0AlMC/kCW6CThOQtEjaZ4dW39O9lOymQceSAARIhklxG40l6MTWBcgKOoiUpWyNrLlDiiOtOwUdSgKxBB0DS9CJzVrPQVGK0r64YcP+0m59gg4lwXQLOoBEYgk6sfUIOoCUpBrJ3Hregr1FA4YFHUoCsgQdA0vQia1L0AGkosy93rRdu7+WqqVD68q6OGJgCTqxWYJuZOnFnafv2nKDjXWuPWtBx8ASdGKzBN2IpKzZ/H3r7jwz6DgSnCXoGFiCTmztgw4gZUQyPju4+gd9ImTYON66sS6OGFiCTmyWLBqDytaSNXdnhSPN2gQdShLoHHQAicQSdGKzBN3QlIMl62/Zdri0o42YqR82eUEMLEEnNvuwNyBVIqVfXrH0cHEfL+hYkknuhKn2ua0hS9CJzVrQDSi8Z8TMQ3vOsNKh9S8j6AAShSXoxGYJuoGEi7rPKP7yqrFBx5GkrAVdQ3YmS2z2Qa9naREtO2/lNdP77BnYpl3aplc7ZKRlt8/q3KxZeouuaSItg44vGRwADTqGRGEJOrFZC7oedd2etubiz+5bn57W9dwyga3aYuiXJQe3l+6ZsTxyeGVG84xWxZ1ycjd2zul5qG1Wl6Y56c16iKR1DDruRNMSIkHHkCgsQSe2sqADSBZXzGk57YSyCe0iGc3OiV4uac06NGl20dna9MLIocPLF64+MCtt9f4lo/G7B3PSm2/rmNNjfZecnkXtsrpmNc1o0S1N0u1mjOOzz20NWYJObLuDDiDRtdmv2+6e2nPJthPvPiWSUXViFZG0jKxTR2RknUokvHtjWfH0zyOlawcUhw90XH/gk47rD3xyZN0madl7OmR3X9slp+e+DtndMptltu6SRnoPEbFrPo4l6BoSVesOSlReyHsHsLoQtXTuosjc85aPOrS21zXDEGke6/aq4cPhksULyw7Nb4YeGnS8ddMl82CH7G5ruuT02t0h+8S0FpltO6ZLRk8RSbXrCIe7PTHaapjXkLWgE9uuoANIRDkluv9n/xteUtTmW+G1vUacjYjUZj8i6U0ysoedmZE9jEjZ1lWlRe9v0fDmwcBXLiaGtbTZl8VrvS+L1x5ZlkZ6SdusLiu7NO25vWN2D1o1ad82Q5r0EpGc2r+7uLezJiuJyFPAelX9jf/8LWCDqn7bf/4rYC9wWFWfqGT7A6oa80k3ViJyEzBMVe9siP1bgk5slqBjNGh1ZOm9U9KbLhn84/SiZp1H19d+0zI69clqeW0f1cMHyg7N/yB8aFFHKOt7vG0ihLN2lGzst6NkYz/4AABBwq2bdPy8c07PrZ1ycstaN+nQqklaTi9JnhEk22u43mzgauA3ftdQe4498Z0J3KOq8+o5vrhiCTqxWYKuofSwlv5gSmTWgC9anTzv9Af3hDOyG6QqnUiT5pk5Z43OzDmLcOn6ZWXFM/ZoeMcwILsm2yuavvvw1t67D2/tvWLv3COLW2S2+6JzTu6mzjm5JW2adG6Rnd6sh4gkYrGsHTVcbxbwlP/4VGAZ0EVE2gBFQH9gkIjcqKp3ikhP4EVcTnuzfCfivh39ArgIN7zvUVWdLCK/A95U1VdFZAqwW1VvEZFbgZ6q+hMRuQG4Gzdaah5wh6qGReRm4EfAFuAzoKT2v47jswSd2OwiYQ302KqrH3k+fLi4aZ+Oc864Ow1JO6Uxjpue2WNAeua30EjRrrLiWfPChz/JhUhtanrI/tKd3feX7uy+at9HRxY2zWi5pVN27oYuTXsWt83qkpOT3uLENEmL9xK022qykqpuFpEyEemOay3PwVXCG4nr2lgKHI7a5Gng96r6nIjkRy2/ChgMDMK1wheIyExgJjAaeNXfb/nv7SzgryLSH7gGGKWqpX5Cv15E3gF+Dgz143gfWBzj76DGLEEnthr156UsVR33XmTmxQt0xIZueYs/P+mqIQTQvytpTdtmNjvv7Iym52qk9NOPyoo/LNPIvmFAel32W1S2r8vaA0u7rD2w9MiyrLSmOzvmdF/fJafX/vbZXZs0zWh1Qhpp3aWW/ewNYGMM687CJeczgV/jEumZuMQ4u8K6o4Bv+I+fB/7Lf3wW8JKqhoGtIjIDGI7rU7pHRE4BlgNtRKQL7gRwNzAOl4QX+L+6HNzJ5XRguqpuBxCRycDJMbynmFiCTmwbgg4gXrXdp1sfnxTe0PogYwoH3D5jR/tBY4OOSUQkvUm/oelN+qHhfVtKi2d8Gin9vB9ovZXgLIkUtdtwcGW7DQdXHlmWKU32dcg+cW3npr32dMg+MaN5RuuO6ZLRS0TqdIKopVg+s7NxCdnDdXFsAO4F9gF/BtpVWL+yIWmVnphUdZPfXXIhrjXdFvg34ICq7vdPaCFV/dExOxO5oorjNAhL0IltedABxKPzP4rMveXtyMmR9Kx+c05/YP6hnHZjg46pIklv2aVJ88u6qEbKwiVL55YdmtMELR5CFQmlLkr1cMvNxasHbS5efWRZumQUt8s6YU2XnF67OuR0p2Vmu/YZktlLRBp6CFwsCXoWLiGv8VvAu0SkNa5P+jbg0grrXgu8AFwftXwm8B0RCeGS8Bjgfv+1OcA9QB4u2f/d/wF4D/iniDylqttEpC3QAtcX/bSItMOdKK4GPo7hPcXEEnQCKxxXuNkLefuoZFhXKso5pPsefiFc2GM7o4qz22+cN/yBHZH0JqcHHdfxiKRlZGQPPiMjezCR8I61ZUXvfxEp2zAIaN2Qxw1rWc62Q1+cuu3QF0euZAhppW2yOn3aJafn9k45uZFWmR1aZ6Zl9ZJajBE/ji9iWLcQ12/8YoVlzVV1R4Vem+8BL4rI94BXopZPwXVbfIxr+f6Hqn7pv/YBcL6qfi4i63EJ/AMAVV0uIj8B3vZHkZQC+ao6V0R+hkvuW4BF1LGr6njsRpUE54W8ubh+sZQ25PPIx/e/EmmXEaHbzranLP3Y++4JSFoijnJAtbQ4fGjhR2WHPmoDh08NOJxIq8wO6zvn5G7plJNb2iarU8ustKY9/ZZszPsCWnR7YnRRfQeZrCxBJzgv5P0FuCnoOIKSEdbD970SmT1ktY4RSFuTe/EH63pcfDoiSVFIKlK2aUVp0fQdGt46FGgadDzlmme03uQXjipum9WlWQ0LR63q9sToBrugloysiyPxrQg6gKDkfqmrH34hXJZdylhFwosG3TVjT5u+ZwcdV31Ky+jaP6vl9Wjk0N6yQ3NmhEuWdoPwSUHHdaBsT9cD+5d0Xb1/yZFl2enNt3XK6fFFl5yeB6soHFXY+JEmNkvQiS/1ErSq3vxO5IMLP9IRAtml6Tl75414cNXhrFZJlZyjSVp2q8ym55yd2fQcwodXLykrnlmkkd3DiaOa4IeqKRzVLLPVB92ot5s3U4J1cSQ4L+SdBHwedByNpd1e3fJ4KLy59UGGAhxs2nnd/GETIpqW2Svo2BqbRg5sLy3+YHnk8MreoF2DjqcGLr138utTgw4ikViCTgJeyNtCCkxnf9GCyJyb3o30F3+Ew7YOQxYtO+XWXtTuglXSUNVI+PAnC8uKZ6WhB08jfqey63jv5NdrWovDYF0cyWI6bgxoUmp6SPc+8nx42Yk7GFW+7LPe35i5ses5ZyKS8p9hV6t6wIiMrAFEwrs3lBVNXx0pWzsAN0QtXqyz5By7lP9wJ4n3SdIEPXRVZMl9r0Q6pKtLzhFJK/1oyL1z97fMHRN0bPEoLb3NiU1aXHmiq1W9aFbZofkt0JKBQceFu8HDxMgSdHJ4P+gA6ltGWA//x8uR2YPWuuFzAIczm+2aN+KhL0ozm9uVpmq4WtXDR2VkDydS9uWq0qLpWzS8eQjubrggJN1ntDFYH3SS8ELeBiAp5sLrtUVX/fyFcCSrjCP1lPc1P3HVR6fdn61p6ScGGVsiUz18oKx43qJwyeJO1dWqbgC5905+fX0jHzPhWYJOEl7Iew64Meg46kRVb30rMvP8xXqGwJGaEJs7nzF/Zd8b+iMSVOsv6YRL1xeWFU3fp5Gdw4j6XTeQlfdOfr1/dSuJyAPAdUAYd9fhdxq7IL9/h+R1qvq7GLf7Ga7Q0i/rMx7r4kge75PACbr9Xt3y+KTwllZFHDOWeUXfG6Zv6XzGGGzC1XqVntnDS281rrxW9dw61KquiTerW0FERuKKH52mqiX+ZAQNcjeoiGSoalUT17YG7gBiStANxT70yeNtGrEMYn26ZH5k9sTfhXNaFXFa+bKIZJTMG/7ArC1dRo615NxwymtVZ7X+XvfMZhd/JGkt5+FasPXptRqs0wXYoaolAKq6wy/aP1REZojIRyLyll+zGRGZLiK/EZHZIrJMREb4y0f4yxb7//b1l98kIi+LyGu4AkjNReQ9EVkkIoUicrkfxxPASSKyRESe9Le9X0QWiMhSEfl5ecAi8oCIfLgmlaUAABKbSURBVCoi7wIN0mVkLegkUTiucJMX8j7AlVNMCM2Kde8jz4c/6baTY6afKmnSatvcEQ9uD2fkjKpqW1O/qqhV3R+0Ux13vRNX8rM6bwMPichnwLvAZFw96P8GLlfV7SJyDfCfwC3+Ns1U9UwRGYOrDz0AWAmMUdUyETkXeIyjhfxHAgNVdZe44ZlXquo+v7U+V0ReBSYAA1R1sP97OR/oA4zAlYJ91T/eQdzIqSG4PLoIODrdTT2xBJ1cXiRBEvTwTyOLfzAl0ildj03Oe1r2WrFoyD2tkfSgq7ilrGNrVX88p+zQ3Gy/VnVtvHbv5Ner6k44QlUPiMhQ3DRU5+AS9KO4pPuOX1o0HVfis9xL/rYzRaSl33/cAgiJSB/cN8roW+HfUdXyeTwFeMxPthHcbC2VnYzO93/Kp7VqjkvYLYApqloE4Cf3emcJOrm8jGtxxE19hooyyrRkwsuRud46HSMVitNv6Dp2zqre3xyESNxUbUtlrlb1kJEZ2UOIhLevLSua/kWkbMNgoFUMu5lS0xX9ovzTgekiUgjkA5+o6siqNqnk+SPA+6p6pYjk+vsrdzDq8fVAB2CoP+fgOiqf2FeAx1X12WMWitxTyfHrnfXtJZHCcYW7qMEFmaCctEVX/eWp8BcD1+nZ0clZQQtP/faMVX2uHmnJOT6lpXfo2aTF1Wdntb6rSUb2yA8hsyaz+ezGdV1US0T6+q3ecoNxhcA6+BcQEZFMEYn+ZnWNv/wsYK+q7sWdPDb5r990nEO2Arb5yfkcoPwC6X6OHSv+FnBL+aQFItJVRDrium2uFJEccaOLLqvJ+4yVtaCTz4s00Iel1lT1tjcjM89dcuzwOYBwWpOi+cN/vLQ4p0PSVqJLJiKZORk5I8/KyBlJpHTjitLi6Ts0vK2qWtUv3Dv59UM13HVz4L/9booyXAGw24H/AZ4RkVa4fPUboLxc3m4RmY2bUai8X/oXuC6OHwDTjnO8/wVeE5GFwBJc3zWqulNEZonIMuANVb3fn+F7jt/NcgC4QVUX+RPGLgHW48/EUt9sHHSS8UJeU2Ar7gMfuI57dNNjk8LbWhbzlT7M4ux2m+YNf+BAJD2rsW+aMPXI1aqevSRcUngihKOrCg68d/LrDVIDWkSmA/ep6sKG2H+8sASdhLyQFwK+FXQcX58bmXX9+5EBUkmf5c42/Qs/HnhHZyStQxCxmYYRPvz5krLimcUa2RO5d/LrZzXUcVIlQVsXR3J6mgATdPNi3fPoc+HlJ+yi0mFya3tc+OHa3EtHJMu0VOao9Ca9B6c36Y1q2biGPI6qjm3I/ccLu0iYhArHFS4ioOI0p6+MLPrD0+HiE3YdO3wOQJHIkoF3zljb87KzLDkntW0iGZODDiIZWAs6eT2JG0/aKDLL9NCP/haZd+r6rw6fAyhLz943b8SDn5ZktbaLgcnv2fyCvJKgg0gG1oJOUoXjCt8AljXGsXpv0k//8lR444D1xw6fK3cwp9P6D0c9sb0kq/XwxojHBOowcVLHIhlYCzq5/RKY1FA7F9XId/4VmXnOUj1Tqihss739wMWFp96ei0ibhorDxJW/5RfkfRl0EMnCEnRyexFXu6DeJxTttFs3PjYpvLPFIcZWtc6qXlfO3HDi12xaqtQRxo1DNvXEujiSWOG4wlLcwP56dcXsyKxnCsItWxxiUGWvRyStbOGQe2du6H7uGEvOKeVP+QV5DTLuOVXZH0/ymwjcBXSv646aF+nu/3wuvLLL7sqHzwGUZjTbPXfEg+tKm7RIiKJNpt7sA34SdBDJxlrQSa5wXGExroRinZy5PPLRH54Jl3TZTVWFa9jfrOvqD898bF9pkxa1rXxmEtej+QV5Nmt3PbM7CVOEF/JmQ9XJtSqZZXrogb+G5/ffwOjKRmiU29JpxIIV/b7VF5GWdQrUJKLVwCn5BXmHgw4k2VgXR+r4HjCP4yTZik7eqCsfejGc2SR8/BrTK0++bsbmLmeOtplPUtb9lpwbhrWgU0hNJ5YV1ch3p0Zmnl2oo+Q4taUjklGycOj9Cw4079ZgNRdM3Hs/vyAvL+ggkpW1oFPLj4CrgGZVrdBpl258PBTe1fw4w+cASpq03D5vxINflmU0teScuiLA94MOIpnZV9IUUjiucBPweFWvf+PDyIfPPBtu1fwQA4+3n70te346a+SjpWUZTb16D9Ikkj/lF+R9HHQQycxa0KnnF7hJNI+MtGhRpLseC4U/67SHalvDG08YM/ezPv/mIVJlK9ykBBtW1wisDzoFeSFvAG4G4iZnfRJZeOdrkRPTtNIJM49Q0E9OuWXmtg6njcGfWsKktG/lF+Q9H3QQyc4SdIo6/dkB9/3w5fBl/TdWPwt4OK1J0fxhP/q4uGnHmIfpmaT0p/yCvG8HHUQqsC6OFDXpqfBTwOXVrVec1XbL/BE/2RNOz7LkbACW4u5MNY3AWtApbEW//j1wk162ruz1Xa1P/mTJoLs6IGkdGzcyE6f2A8PyC/I+CzqQVGGjOFJY/5Ur1gM3V/bauu7nz1oy6O7elpxNlNstOTcua0EbVvTr/0vgXnDTUn3sffeDXe1OtZlPTLTf5xfk3RF0EKmm2ha0iKiIPB/1PENEtovI63U5sIicICJ/j3GbSSLyzbocN16IyNi6/g6r2X+uiFxXw9UnANPK0rP2zz7jkYWWnE0Fi7AbUgJRky6Og8AAEcnxn58HbIrlIFKhJrCIZKjqZlVNimQbp3KBGiXo/itXlAH/NvuMRxaWZLcZ0aBRmUSzF7ja5hgMRk37oN8ALvEf/zvwUvkLIjJCRGaLyGL/377+8ptE5GUReQ14u5LnuSKyzF83XUSeFJEFIrJURL7jLxcR+a2ILBeRqUCl/aEi0kVEZorIEhFZJiKj/eUHRORXIrJIRN4TkQ7+8sEiMtc/1hTxp2MSkekiMsx/3F5E1vmPTxWR+f7+l4pIH3/5DVHLnxWR9EpiyxWRD/wYFolI9GzXLf3jLxeRAhFJ838Xk/z3USgi3/f3c5KIvCkiH/n76+cvnyQiz/i/+zVR3zCeAEb7sVXb+um/csXOssxm44Fd1a1rUsqt+QV5a4IOIlXVNEH/FbhWRLKBgbiqaOVWAmNUdQjwEPBY1GsjgXGqmlfF83K3AntVdTgwHLhNRHoCVwJ9AQ+4DTiTyl0HvKWqg4FBuJEJ4GpOLFLV04AZwE/95c8BP1TVgUBh1PKqjAee9vc/DNgoIv2Ba4BR/vIwcH0l224DzvNjuAZ4Juq1Ebi+Xw84CVcnYzDQVVUHqKoH/MVf93+Au1R1KHAfx07M2QU4C7gUl5jBdVt8oKqDVfWpat4fAP4FoCtxE38a8738grxXgg4ildVoHLSqLhWRXFzr+V8VXm4FhPxWpXJs9bN3VHXXcZ6XOx8YGNX6awX0AcYAL6lqGNgsItOqCHEB8GcRyQT+T1XLE3QEmOw/fgH4h4i0Alqr6gx/eQh4uYr9lpsDPCAi3YB/qOoqEfkaMBRY4N9Yl4NLxhVlAr8VkfIkfnLUa/NVdQ2AiLyES7LvAb1E5L+BqbhvG81xJ6eXo27iy4raz/+pagRYLiLHvSOwOvkFeTMnjp92M+73ZXcMpq778gvynql+NdOQYhlm9ypuluiXKix/BHhfVQcAlwHZUa8drLBuxeflBNc6HOz/9FTVt/3XvjLMRERO97+6LxGRr6vqTFwy3wQ8LyLfquI41Q1ZKePo7+TI+1DVF4GvA8XAWyKS58ccioq5r6r+TESujIptGO7iylZcy34Yx85+XTEeVdXd/rrTgXzgj35Me6KONVhV+0dtF90/WOekml+Q9yJWZyGV/Si/IO9XQQdhYkvQfwYeVtWKk0K24uhFw5tqGcdbwHf9FjAicrK4YjwzcV0r6SLSBTgHQFXnRSWqV0WkB7BNVf8A/Ak4zd9vGlDeKr8O+FBV9wK7y/upcfWRy1vT63CtYqK2Q0R6AWtU9RnciWogrqX7TRHp6K/TVkR6qOqUqNgW+r+fLX4L90Ygup96hIj0FFfo/hrgQxFpD6Sp6ivAg8BpqroPWCsiV/vHEhGpdMLWKPuBFtWsU6X8grzHcOVJTWp5ML8g74nqVzONocYJWlU3qurTlbz0C+BxEZnFscknFn8ElgOL/AuHz+K6X6YAq3D9xL/naCKtaCywREQW4yq1lcd5EDhVRD4C8oCH/eXjgCdFZCmuz7d8+S9xJ4rZQPuo/V8DLBORJUA/4DlVXY5rZb7t7+cdXF9wRb8DxonIXFz3RvS3iDm4PuNlwFr//XYFpvvHmsTRJHk9cKuIfAx8QvW3aS8FykTk45pcJKyM/4f6XVxXkUl+D+cX5D0adBDmqKS+UUVEDqhq86DjSHQTx0+7FndhtcrZVUzCezy/IO/HQQdhjmW3eptq5Rfk/RW4AtcHb5LPLy05x6ekbkGb+jVx/LTRwOuAzdydPH6TX5BndwnGKWtBmxrLL8j7AHehdnvQsZg6C+OG0llyjmPWgjYxmzh+Wl/cRdETg47F1Mpe4Nr8grw3gw7EHJ+1oE3M8gvyPsXdVLMg6FhMzD4DTrfknBgsQZtayS/I+wIYhRsmaMPwEsO/cMn506ADMTVjXRymziaOnzYWeB7oFnAopnJluDH7v8gvyLM/+ARiCdrUi4njp7XF3XB0ZdCxmGNsxPU3zwo6EBM7S9CmXk0cP+124CmgadCxGP4FjMsvyNsRdCCmdixBm3o3cfy0fsCLwJCgY0lRG3FD6CZXu6aJa3aR0NS7/IK8lcAZwK+wC4iN6TDwX0A/S87JwVrQpkFNHD9tEG6kx4VBx5Lk3gLutlm3k4slaNMoJo6fdg6udTc86FiSzHrg+/kFeVOCDsTUP0vQplFNHD/tauA/cTPmmNo7BDyJq0JnRaySlCVo0+gmjp+WAXwbNxdk54DDSTRlwCvAj20y1+RnCdoEZuL4ac1wU4Ldj1XIq84u3MTBv8svyNsQdDCmcViCNoGbOH5ae+B23MztucFGE3eW4WaCf8G6MlKPJWgTNyaOn5aGG+0xHriY2k+hlugiuLrbT+cX5FU1k71JAZagTVyaOH7aibhJiK8H+gYbTaPZh5uc+bf5BXmrgw7GBM8StIl7E8dPGwrcAFxL8l1UXA28gbste7p1Y5holqBNwpg4flo6rg71WGAM7m7FRKv5UYKbnf5fwBt2Y4k5HkvQJmFNHD8tExgKjMYl7FFAm0CDqtw6/IQMTMsvyCsKNhyTKCxBm6Qxcfw0ATyOJuxhQFcgq5FCKMPNWFKIG31RCCzNL8hb20jHN0nGErRJehPHT+uAS9TdKvwb/biVv3oYKMUVHqrq30PABmBt1M8aYF1+Qd7hRnlTJiVYgjaGI90l4fyCPKu+Z+KGJWhjjIlTVg/aGGPilCVoY4yJU5agjalnIqIi8quo5/eJyM8CDKleicjXRWRCjNusE5H2DRVTsrIEbUz9KwGuaqyEJCIZjbVvEclQ1VdV9YmGOqY5qsH+Y41JYWW40qDfBx6IfkFEOgAFQHd/0T3AHNwwvcGqusdf73PcjTeRiuur6iy/RX4CrvrfDuC6qGPcBFyBKzY1ADc3ZBPgRtzJ42JV3SUit+GqCDYBPgduVNUiEZmEK286BFgkIu0qPC8EhqnqnZW9Hz++dsBLQAdgPiC1+UWmOmtBG9MwJgLXi0irCsufBp5S1eHAN4A/qmoE+CdwJYCInA6sU9Wtla0fta+hwOWqeh1fNQCXtEfgZrApUtUhuJPBt/x1/qGqw1V1ELACuDVq+5OBc1X13iqeV/l+/OU/BT70j/kqRxO4iYG1oI1pAKq6T0SeA+4GogsgnQucInKkQdlSRFoAk4GHgL/gikJNrmZ9gFdVtariSu+r6n5gv4jsBV7zlxcCA/3HA0TkUaA10Bw38Wy5l1U1fJzn1b2fMcBV/u9iqojsriJOcxyWoI1pOL8BFuGSbrk0YGTFxCoic4DefpfBFcCj1awPcNB/fCWuxQpuKjFwXRnlIlHPIxz9u58EXKGqH/vdImOjtjlY4b1UfF7d+wGwmyzqyLo4jGkgqroL+BvHdh28DdxZ/kREBvvrKjAF+DWwQlV3Hm/9CseZoqqD/Z+FMYTYAtgiIpm4utu1UVV8M8v3KSIXEZ9FrOKeJWhjGtavgOjRHHcDw0RkqYgsx80eU24yru715BquX1cPAvOAd4CVtdxHVfH9HBgjIouA84Ev6hpsKrJbvY0xJk5ZC9oYY+KUJWhjjIlTlqCNMSZOWYI2xpg4ZQnaGGPilCVoY4yJU5agjTEmTlmCNsaYOGUJ2hhj4pQlaGOMiVOWoI0xJk5ZgjbGmDhlCdoYY+KUJWhjjIlTlqCNMSZOWYI2xpg49f89DCP3zcwzXwAAAABJRU5ErkJggg==\n",
273 | "text/plain": [
274 | ""
275 | ]
276 | },
277 | "metadata": {},
278 | "output_type": "display_data"
279 | }
280 | ],
281 | "source": [
282 | "### BEGIN SOLUTION\n",
283 | "groups = income_data.groupby(\"marital-status\").count()\n",
284 | "plt.pie(groups.income, labels = groups.index)\n",
285 | "plt.gca().set_aspect(\"equal\")\n",
286 | "### END SOLUTION"
287 | ]
288 | },
289 | {
290 | "cell_type": "markdown",
291 | "metadata": {},
292 | "source": [
293 | "### Problem 4. Marital status (2 points)\n",
294 | "Which type of marital status is the most prominent (i.e. has the most people)? How many are there? Write a function that **calculates and returns the two answers**. "
295 | ]
296 | },
297 | {
298 | "cell_type": "code",
299 | "execution_count": 11,
300 | "metadata": {
301 | "nbgrader": {
302 | "grade": false,
303 | "grade_id": "cell-5c9a472102a7b452",
304 | "locked": false,
305 | "schema_version": 3,
306 | "solution": true
307 | }
308 | },
309 | "outputs": [],
310 | "source": [
311 | "def most_prominent_marital_status(dataframe):\n",
312 | " status = \"\"\n",
313 | " num_people = 0\n",
314 | " ### BEGIN SOLUTION\n",
315 | " groups = income_data.groupby(\"marital-status\").count().income\n",
316 | " status = groups.idxmax()\n",
317 | " num_people = groups.max()\n",
318 | " ### END SOLUTION\n",
319 | " return (status, num_people)"
320 | ]
321 | },
322 | {
323 | "cell_type": "code",
324 | "execution_count": 12,
325 | "metadata": {
326 | "nbgrader": {
327 | "grade": true,
328 | "grade_id": "cell-0077a3c8d4339ad7",
329 | "locked": true,
330 | "points": 2,
331 | "schema_version": 3,
332 | "solution": false
333 | }
334 | },
335 | "outputs": [],
336 | "source": [
337 | "(status, num_people) = most_prominent_marital_status(income_data)\n",
338 | "nose.tools.assert_not_equal(status, \"\")\n",
339 | "nose.tools.assert_greater(num_people, 10000)\n",
340 | "### BEGIN HIDDEN TESTS\n",
341 | "(status_test, num_people_test) = most_prominent_marital_status(income_data_test)\n",
342 | "nose.tools.assert_equal(status, \"Married-civ-spouse\")\n",
343 | "nose.tools.assert_equal(num_people, 14976)\n",
344 | "nose.tools.assert_equal(status, status_test)\n",
345 | "nose.tools.assert_equal(num_people, num_people_test)\n",
346 | "### END HIDDEN TESTS"
347 | ]
348 | },
349 | {
350 | "cell_type": "markdown",
351 | "metadata": {},
352 | "source": [
353 | "### Problem 5. Age groups (1 point)\n",
354 | "Create a histogram of all people's ages. Use the default settings. Add the label \"Age\" on the x-axis and \"Count\" on the y-axis."
355 | ]
356 | },
357 | {
358 | "cell_type": "code",
359 | "execution_count": 13,
360 | "metadata": {
361 | "nbgrader": {
362 | "grade": false,
363 | "grade_id": "cell-3ba52bf669280861",
364 | "locked": false,
365 | "schema_version": 3,
366 | "solution": true
367 | }
368 | },
369 | "outputs": [
370 | {
371 | "data": {
372 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYsAAAEGCAYAAACUzrmNAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAV3klEQVR4nO3df7DddX3n8edLIv5WggSGTdheHDP+3AUxRZSOo9Dlp2NoFzowzhIdtvlj2a62nbZxO11GrTM406nWzsouI2nBcVVEXVJgpJmI7nZnBYL8EIhsUkW4C5KrQaxlqou+94/zuXISbu7nJt5zz7nk+Zg5c873/f18z3nfc0548f1xvt9UFZIkzec5425AkjT5DAtJUpdhIUnqMiwkSV2GhSSpa8W4GxiFo446qqampsbdhiQtK3fcccf3q2rVXPOelWExNTXF9u3bx92GJC0rSb67v3luhpIkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHU9K3/BreVjatONY3ndBy8/dyyvKy1XrllIkrpGGhZJjkhyXZJvJdmR5M1JjkyyNcnOdr+yjU2SjyfZleSeJCcNPc+GNn5nkg2j7FmS9EyjXrP4C+DLVfVq4ARgB7AJ2FZVa4FtbRrgbGBtu20ErgBIciRwGfAm4GTgstmAkSQtjZHts0jyUuCtwLsBquqnwE+TrAfe1oZdDXwV+CNgPXBNVRXw9bZWcmwbu7Wq9rTn3QqcBXxmVL0fasa130DS8jHKNYtXADPAXyW5M8knk7wIOKaqHgVo90e38auBh4eWn261/dX3kmRjku1Jts/MzCz+XyNJh7BRhsUK4CTgiqp6A/CPPL3JaS6Zo1bz1PcuVF1ZVeuqat2qVXNeu0OSdJBGGRbTwHRV3dqmr2MQHo+1zUu0+91D448bWn4N8Mg8dUnSEhlZWFTV94CHk7yqlU4H7ge2ALNHNG0Arm+PtwAXt6OiTgGeaJupbgbOSLKy7dg+o9UkSUtk1D/K+x3g00kOB74NvIdBQF2b5BLgIeCCNvYm4BxgF/BkG0tV7UnyIeD2Nu6Dszu7n23c0SxpUo00LKrqLmDdHLNOn2NsAZfu53k2A5sXtztJ0kL5C25JUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKX1+Ceg6fdkKS9uWYhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSukYaFkkeTPLNJHcl2d5qRybZmmRnu1/Z6kny8SS7ktyT5KSh59nQxu9MsmGUPUuSnmkp1izeXlUnVtW6Nr0J2FZVa4FtbRrgbGBtu20EroBBuACXAW8CTgYumw0YSdLSGMdmqPXA1e3x1cB5Q/VrauDrwBFJjgXOBLZW1Z6qehzYCpy11E1L0qFs1GFRwN8muSPJxlY7pqoeBWj3R7f6auDhoWWnW21/9b0k2Zhke5LtMzMzi/xnSNKhbdTX4D61qh5JcjSwNcm35hmbOWo1T33vQtWVwJUA69ate8Z8SdLBG+maRVU90u53A19isM/hsbZ5iXa/uw2fBo4bWnwN8Mg8dUnSEhlZWCR5UZKXzD4GzgDuBbYAs0c0bQCub4+3ABe3o6JOAZ5om6luBs5IsrLt2D6j1SRJS2SUm6GOAb6UZPZ1/ltVfTnJ7cC1SS4BHgIuaONvAs4BdgFPAu8BqKo9ST4E3N7GfbCq9oywb0nSPkYWFlX1beCEOeo/AE6fo17Apft5rs3A5sXuUZK0MP6CW5LUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpK6Rh0WSw5LcmeSGNn18kluT7EzyuSSHt/rz2vSuNn9q6Dne3+oPJDlz1D1Lkva2FGsW7wV2DE1/BPhoVa0FHgcuafVLgMer6pXAR9s4krwWuBB4HXAW8Ikkhy1B35KkZqRhkWQNcC7wyTYd4DTgujbkauC89nh9m6bNP72NXw98tqp+UlXfAXYBJ4+yb0nS3ka9ZvEx4A+Bn7fplwM/rKqn2vQ0sLo9Xg08DNDmP9HG/6I+xzK/kGRjku1Jts/MzCz23yFJh7SRhUWSdwC7q+qO4fIcQ6szb75lni5UXVlV66pq3apVqw64X0nS/q0Y4XOfCrwzyTnA84GXMljTOCLJirb2sAZ4pI2fBo4DppOsAF4G7BmqzxpeRjooU5tuHNtrP3j5uWN7belgjWzNoqreX1VrqmqKwQ7qr1TVu4BbgPPbsA3A9e3xljZNm/+VqqpWv7AdLXU8sBa4bVR9S5KeaZRrFvvzR8Bnk/wpcCdwVatfBXwqyS4GaxQXAlTVfUmuBe4HngIuraqfLX3bknToWpKwqKqvAl9tj7/NHEczVdU/ARfsZ/kPAx8eXYeSpPn4C25JUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSuhYUFklOXUhNkvTstNA1i79cYE2S9Cw07+k+krwZeAuwKsnvDc16KeDV6iTpENE7N9ThwIvbuJcM1X/E02eOlSQ9y80bFlX1NeBrSf66qr67RD1JkibMQs86+7wkVwJTw8tU1WmjaEqSNFkWGhafB/4L8EnAa0lI0iFmoWHxVFVdMdJOJEkTa6GHzv5Nkn+X5NgkR87eRtqZJGliLHTNYvba2H8wVCvgFYvbjiRpEi0oLKrq+FE3IkmaXAsKiyQXz1WvqmsWtx1J0iRa6GaoXx16/HzgdOAbgGEhSYeAhW6G+p3h6SQvAz41ko4kSRPnYE9R/iSwdjEbkSRNroXus/gbBkc/weAEgq8Brh1VU5KkybLQfRZ/NvT4KeC7VTU9gn4kSRNoQZuh2gkFv8XgzLMrgZ/2lkny/CS3Jbk7yX1JPtDqxye5NcnOJJ9LcnirP69N72rzp4ae6/2t/kCSMw/8z5Qk/TIWeqW83wJuAy4Afgu4NUnvFOU/AU6rqhOAE4GzkpwCfAT4aFWtBR4HLmnjLwEer6pXAh9t40jyWuBC4HXAWcAnkngtDUlaQgvdwf3HwK9W1Yaquhg4GfiT+RaogR+3yee2WwGnAde1+tXAee3x+jZNm396krT6Z6vqJ1X1HWBXe31J0hJZaFg8p6p2D03/YCHLJjksyV3AbmAr8PfAD6vqqTZkGljdHq8GHgZo858AXj5cn2OZ4dfamGR7ku0zMzML/LMkSQux0LD4cpKbk7w7ybuBG4GbegtV1c+q6kRgDYO1gdfMNazdZz/z9lff97WurKp1VbVu1apVvdYkSQegdw3uVwLHVNUfJPlN4NcY/Mf7fwOfXuiLVNUPk3wVOAU4IsmKtvawBnikDZsGjgOmk6wAXgbsGarPGl5GkrQEemsWHwP+AaCqvlhVv1dVv8tgreJj8y2YZFWSI9rjFwC/DuwAbuHp63dvAK5vj7fw9Nltzwe+UlXV6he2o6WOZ/BjwNsW/idKkn5Zvd9ZTFXVPfsWq2r78KGt+3EscHU7cuk5wLVVdUOS+4HPJvlT4E7gqjb+KuBTSXYxWKO4sL3WfUmuBe5n8BuPS6vKq/VJ0hLqhcXz55n3gvkWbCHzhjnq32aOo5mq6p8YHJo713N9GPjwvJ1Kkkamtxnq9iS/vW8xySXAHaNpSZI0aXprFu8DvpTkXTwdDuuAw4HfGGVjkqTJMW9YVNVjwFuSvB14fSvfWFVfGXlnkqSJsdDrWdzC4CgmSdIh6GCvZyFJOoQYFpKkLsNCktRlWEiSuhZ6pTxJi2Rq041jed0HLz93LK+rZwfXLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVLXyMIiyXFJbkmyI8l9Sd7b6kcm2ZpkZ7tf2epJ8vEku5Lck+Skoefa0MbvTLJhVD1LkuY2yjWLp4Dfr6rXAKcAlyZ5LbAJ2FZVa4FtbRrgbGBtu20EroBBuACXAW8CTgYumw0YSdLSGFlYVNWjVfWN9vgfgB3AamA9cHUbdjVwXnu8HrimBr4OHJHkWOBMYGtV7amqx4GtwFmj6luS9ExLss8iyRTwBuBW4JiqehQGgQIc3YatBh4eWmy61fZXlyQtkZGHRZIXA18A3ldVP5pv6By1mqe+7+tsTLI9yfaZmZmDa1aSNKeRhkWS5zIIik9X1Rdb+bG2eYl2v7vVp4HjhhZfAzwyT30vVXVlVa2rqnWrVq1a3D9Ekg5xozwaKsBVwI6q+vOhWVuA2SOaNgDXD9UvbkdFnQI80TZT3QyckWRl27F9RqtJkpbIihE+96nAvwG+meSuVvuPwOXAtUkuAR4CLmjzbgLOAXYBTwLvAaiqPUk+BNzexn2wqvaMsG9J0j5GFhZV9XfMvb8B4PQ5xhdw6X6eazOwefG6kyQdCH/BLUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSugwLSVLXKH/BLWmCTG26cWyv/eDl547ttbU4XLOQJHUZFpKkLsNCktRlWEiSugwLSVKXYSFJ6jIsJEldhoUkqcuwkCR1GRaSpC7DQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKlrZGGRZHOS3UnuHaodmWRrkp3tfmWrJ8nHk+xKck+Sk4aW2dDG70yyYVT9SpL2b5RrFn8NnLVPbROwrarWAtvaNMDZwNp22whcAYNwAS4D3gScDFw2GzCSpKUzsrCoqv8B7NmnvB64uj2+GjhvqH5NDXwdOCLJscCZwNaq2lNVjwNbeWYASZJGbKn3WRxTVY8CtPujW3018PDQuOlW21/9GZJsTLI9yfaZmZlFb1ySDmWTsoM7c9Rqnvozi1VXVtW6qlq3atWqRW1Okg51Sx0Wj7XNS7T73a0+DRw3NG4N8Mg8dUnSElrqsNgCzB7RtAG4fqh+cTsq6hTgibaZ6mbgjCQr247tM1pNkrSEVozqiZN8BngbcFSSaQZHNV0OXJvkEuAh4II2/CbgHGAX8CTwHoCq2pPkQ8DtbdwHq2rfneaSpBEbWVhU1UX7mXX6HGMLuHQ/z7MZ2LyIrUmSDtCk7OCWJE0ww0KS1GVYSJK6DAtJUpdhIUnqMiwkSV2GhSSpy7CQJHUZFpKkLsNCktRlWEiSukZ2bihJmjW16caxvO6Dl587ltd9NnLNQpLUZVhIkroMC0lSl2EhSeoyLCRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSJK6PN2HpGctTzOyeFyzkCR1GRaSpK5lExZJzkryQJJdSTaNux9JOpQsi30WSQ4D/jPwr4Bp4PYkW6rq/vF2JknPNK59JTC6/SXLZc3iZGBXVX27qn4KfBZYP+aeJOmQsSzWLIDVwMND09PAm4YHJNkIbGyTP07ywBL1BnAU8P0lfL2DtRz6XA49gn0utuXQ53LokXzkl+rzV/Y3Y7mEReao1V4TVVcCVy5NO3tLsr2q1o3jtQ/EcuhzOfQI9rnYlkOfy6FHGF2fy2Uz1DRw3ND0GuCRMfUiSYec5RIWtwNrkxyf5HDgQmDLmHuSpEPGstgMVVVPJfn3wM3AYcDmqrpvzG0NG8vmr4OwHPpcDj2CfS625dDncugRRtRnqqo/SpJ0SFsum6EkSWNkWEiSugyLA5DkuCS3JNmR5L4k7231I5NsTbKz3a8cc5/PT3Jbkrtbnx9o9eOT3Nr6/Fw7WGDskhyW5M4kN7TpieszyYNJvpnkriTbW23SPvcjklyX5FvtO/rmCezxVe09nL39KMn7Jq3P1uvvtn8/9yb5TPt3NVHfzSTvbf3dl+R9rTaS99KwODBPAb9fVa8BTgEuTfJaYBOwrarWAtva9Dj9BDitqk4ATgTOSnIK8BHgo63Px4FLxtjjsPcCO4amJ7XPt1fViUPHsE/a5/4XwJer6tXACQze04nqsaoeaO/hicAbgSeBLzFhfSZZDfwHYF1VvZ7BgTUXMkHfzSSvB36bwRkuTgDekWQto3ovq8rbQd6A6xmcr+oB4NhWOxZ4YNy9DfX4QuAbDH7x/n1gRau/Gbh5Avpb077QpwE3MPgB5iT2+SBw1D61ifncgZcC36EdtDKJPc7R8xnA/5rEPnn6rBFHMjhq9AbgzEn6bgIXAJ8cmv4T4A9H9V66ZnGQkkwBbwBuBY6pqkcB2v3R4+tsoG3auQvYDWwF/h74YVU91YZMM/gHMW4fY/AF/3mbfjmT2WcBf5vkjnZqGZisz/0VwAzwV22T3ieTvGjCetzXhcBn2uOJ6rOq/i/wZ8BDwKPAE8AdTNZ3817grUlenuSFwDkMfrw8kvfSsDgISV4MfAF4X1X9aNz9zKWqflaDVf01DFZTXzPXsKXtam9J3gHsrqo7hstzDJ2E47tPraqTgLMZbH5867gb2scK4CTgiqp6A/CPjH+z2H61bf3vBD4/7l7m0rbzrweOB/4Z8CIGn/2+xvbdrKodDDaLbQW+DNzNYFP5SBgWByjJcxkExaer6out/FiSY9v8Yxn83/xEqKofAl9lsI/liCSzP8SchFOmnAq8M8mDDM4kfBqDNY1J65OqeqTd72awjf1kJutznwamq+rWNn0dg/CYpB6HnQ18o6oea9OT1uevA9+pqpmq+n/AF4G3MGHfzaq6qqpOqqq3AnuAnYzovTQsDkCSAFcBO6rqz4dmbQE2tMcbGOzLGJskq5Ic0R6/gMEXfwdwC3B+Gzb2Pqvq/VW1pqqmGGyS+EpVvYsJ6zPJi5K8ZPYxg23t9zJBn3tVfQ94OMmrWul04H4mqMd9XMTTm6Bg8vp8CDglyQvbv/vZ93PSvptHt/t/Dvwmg/d0NO/lOHciLbcb8GsMVjvvAe5qt3MYbGffxiDVtwFHjrnPfwnc2fq8F/hPrf4K4DZgF4PV/+eN+z0d6vltwA2T2Gfr5+52uw/441aftM/9RGB7+9z/O7By0npsfb4Q+AHwsqHaJPb5AeBb7d/Qp4DnTeB3838yCLG7gdNH+V56ug9JUpeboSRJXYaFJKnLsJAkdRkWkqQuw0KS1GVYSIssyW8kqSSvHncv0mIxLKTFdxHwdwx+aCg9KxgW0iJq5w07lcGpqy9steck+US75sANSW5Kcn6b98YkX2snKLx59jQN0qQxLKTFdR6Da0r8H2BPkpMYnIZhCvgXwL9lcGrr2fOM/SVwflW9EdgMfHgcTUs9K/pDJB2AixicDBEGJ0e8CHgu8Pmq+jnwvSS3tPmvAl4PbB2cfojDGJwOW5o4hoW0SJK8nMGZc1+fpBj8x78YnKV2zkWA+6rqzUvUonTQ3AwlLZ7zgWuq6leqaqqqjmNw9brvA/+67bs4hsFJE2FwRbNVSX6xWSrJ68bRuNRjWEiL5yKeuRbxBQYXz5lmcPbS/8rg6opPVNVPGQTMR5LczeAsxm9ZunalhfOss9ISSPLiqvpx21R1G4Mr731v3H1JC+U+C2lp3NAuSHU48CGDQsuNaxaSpC73WUiSugwLSVKXYSFJ6jIsJEldhoUkqev/A7U/EsV7VBBHAAAAAElFTkSuQmCC\n",
373 | "text/plain": [
374 | ""
375 | ]
376 | },
377 | "metadata": {
378 | "needs_background": "light"
379 | },
380 | "output_type": "display_data"
381 | }
382 | ],
383 | "source": [
384 | "### BEGIN SOLUTION\n",
385 | "plt.hist(income_data.age)\n",
386 | "plt.xlabel(\"Age\")\n",
387 | "plt.ylabel(\"Count\")\n",
388 | "plt.show()\n",
389 | "### END SOLUTION"
390 | ]
391 | },
392 | {
393 | "cell_type": "markdown",
394 | "metadata": {},
395 | "source": [
396 | "Let's get another view of the data. Split the ages into three:\n",
397 | "1. Young people: $\\text{age} \\le 30$\n",
398 | "2. Middle-aged people: $30 < \\text{age} \\le 60$\n",
399 | "3. Old people: $60 < \\text{age}$\n",
400 | "\n",
401 | "Return the counts in the following function. Which age group has the most people? How many are there?"
402 | ]
403 | },
404 | {
405 | "cell_type": "code",
406 | "execution_count": 14,
407 | "metadata": {
408 | "nbgrader": {
409 | "grade": false,
410 | "grade_id": "cell-b8a6cda122bf0fb3",
411 | "locked": false,
412 | "schema_version": 3,
413 | "solution": true
414 | }
415 | },
416 | "outputs": [],
417 | "source": [
418 | "def get_num_people_by_age_category(dataframe):\n",
419 | " young, middle_aged, old = (0, 0, 0)\n",
420 | " ### BEGIN SOLUTION\n",
421 | " young = len(dataframe[dataframe.age <= 30])\n",
422 | " middle_aged = len(dataframe[(dataframe.age > 30) & (dataframe.age <= 60)])\n",
423 | " old = len(dataframe[dataframe.age > 60])\n",
424 | " ### END SOLUTION\n",
425 | " return young, middle_aged, old"
426 | ]
427 | },
428 | {
429 | "cell_type": "code",
430 | "execution_count": 15,
431 | "metadata": {
432 | "nbgrader": {
433 | "grade": true,
434 | "grade_id": "cell-17898d5f42dd42d5",
435 | "locked": true,
436 | "points": 1,
437 | "schema_version": 3,
438 | "solution": false
439 | }
440 | },
441 | "outputs": [],
442 | "source": [
443 | "young, middle_aged, old = get_num_people_by_age_category(income_data)\n",
444 | "nose.tools.assert_greater(young, 0)\n",
445 | "nose.tools.assert_greater(middle_aged, 0)\n",
446 | "nose.tools.assert_greater(old, 0)\n",
447 | "### BEGIN HIDDEN TESTS\n",
448 | "test_young, test_middle_aged, test_old = get_num_people_by_age_category(income_data_test)\n",
449 | "nose.tools.assert_equal(young, test_young)\n",
450 | "nose.tools.assert_equal(middle_aged, test_middle_aged)\n",
451 | "nose.tools.assert_equal(old, test_old)\n",
452 | "nose.tools.assert_equal(young, 10572)\n",
453 | "nose.tools.assert_equal(middle_aged, 19657)\n",
454 | "nose.tools.assert_equal(old, 2332)\n",
455 | "### END HIDDEN TESTS"
456 | ]
457 | },
458 | {
459 | "cell_type": "markdown",
460 | "metadata": {},
461 | "source": [
462 | "Now we can create a bar chart. Execute the code below to see it."
463 | ]
464 | },
465 | {
466 | "cell_type": "code",
467 | "execution_count": 16,
468 | "metadata": {},
469 | "outputs": [
470 | {
471 | "data": {
472 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAZEAAAEICAYAAACeSMncAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nO3de5wcVZ338c/XINdwCTBgSIAECCiwGiBcFPGJghBADahAsigBWSMIroj6EC/7gCgaV/DCLqJBsxCEcBFYwk0MkYvsQyATiAEEzAABhoRkIMhV0eBv/zinSTHpnplUprszzPf9etWrq3/n1KlT0z396zpVXaWIwMzMrIy3NbsDZmbWdzmJmJlZaU4iZmZWmpOImZmV5iRiZmalOYmYmVlpTiL9mKSfSfq3XmprG0kvSxqQn98m6V96o+3c3k2SJvRWe6uw3u9IelbSM41edy2SjpV0Z8lle/V1MVur2R2w+pC0ENgSWA68DvwRmAZMiYh/AETECavQ1r9ExC216kTEk8DA1ev1G+s7A9ghIj5VaP/g3mh7FfuxNfBlYNuIWNro9Zv1Bd4TeWv7aERsCGwLTAZOA37Z2yuR9Fb9MrIt8JwTSN/xFn4vrrGcRPqBiHghImYARwETJO0KIOlCSd/J85tLul7SnyUtk/R7SW+TdDGwDXBdHq76v5KGSQpJx0t6EvhdIVb8J95e0j2SXpB0raRN87pGS2ov9lHSQkkHSBoDfB04Kq/vD7n8jWGY3K9vSnpC0lJJ0yRtnMsq/Zgg6ck8FPWNWn8bSRvn5Ttye9/M7R8AzAS2yv24sMqyoyW1S/p6Xs9CSUcXyteRdHbux5I8fLheofyzktry33uGpK0KZSHpXyU9ltv+gaSq/6+S3ilpZm7nEUlH1trebl6XGyR9oVPb8yUdVmO9V0p6Jrdzh6RdCmWbSbpO0ouS5uRhwTsL5T3us6Thuf2XJN0i6TxJv8pl1d6LXb0/ar738vwZkn4t6fK8vnslvadQ9zRJT+eyRyTt383f+q0vIjy9BSdgIXBAlfiTwIl5/kLgO3n+e8DPgLfnaT9A1doChgFBGh7bAFivEFsr17kNeBrYNde5CvhVLhsNtNfqL3BGpW6h/DbSkBrAZ4A2YDvSENrVwMWd+nZB7td7gNeAd9X4O00DrgU2zMv+CTi+Vj87LTuaNFz4Q2Ad4P8ArwA75fIfAzOATXP71wHfy2UfAp4Fds/L/gdwR6HtAG7Ny26T+1XZ/mOBO/P8BsBTwHGk4endc7u71OhzV6/LkcDdhbrvAZ4D1q7R1mfydq2Tt3VeoeyyPK0P7Jz7WLbPdwFnA2sD7wdeLPS58noX34tdvT9Wek1Z+b33d+CTpP+DrwCP5/mdcr+3Kqx7+2b/rzd7anoHPNXpha2dRGYD38jzF7IiiZxJ+jDdobu2Cv+421WJFZPI5EL5zsDfgAE9/EfuKonMAj5fKNsp/+OvVejH0EL5PcC4Kts1gJRgdi7EPgfcludX6men5UeTksgGhdgVwL8BIiWU7Qtl7wUez/O/BP69UDYwb8Ow/DyAMYXyzwOz8vyxrPhAPgr4fad+/Rw4vUafu3pd1gGWASNy2dnAT3v4ftsk93nj3Nbfyck0l3+nTJ9JCXQ5sH4h9itWTiLF92JX74+evPdmF8reBiwmfanaAVgKHAC8vdH/02vq5OGs/mcI6YOisx+Qvr39Ng+hTOpBW0+tQvkTpG9zm/eol13bKrdXbHst0okEFcWzqV6l+kH/zUnfbju3NWQV+vJ8RLzSafmtgBbSt/C5SkOEfwZ+k+MrbUNEvEz61l9cd+e/31asbFtg78o68nqOBt7RRZ+rvi4R8RopCX4qD52NBy6u1oCkAZImS3pU0oukD2JIf9MW0utRXE9xflX6vBWwLCJerdFWtVhP3h9deaOtSCehtJP2PtqAU0iJZqmky4pDkP2Vk0g/ImlP0ofUSqeHRsRLEfHliNgO+ChwamG8t9alnru7BPTWhfltSN8GnyV9Q1+/0K8BrPhw7Um7i0gfRMW2lwNLulmus2dznzq39fQqtDFI0gadll+U2/4LaYhmkzxtHBGVZPambchtbNZp3Z3/fouqrP8p4PbCOjaJiIERcWIXfa71ugBcRPpA3x94NSLuqtHGPwNjSd/KNybtEUDaA+sgvR5Da6xzVfq8GNhU0vqF2NZV6hXfM129P7p7772p/ZxMh+Y2iYhLI+L9uf0Avl+lL/2Kk0g/IGkjSR8hjVH/KiLur1LnI5J2kCTSmPPreYL0z7ddiVV/StLO+QPgTODXEfE6aXx/XUmHSno78E3SUErFEmBYrQPJwHTgS/mA60Dgu8DlEbF8VTqX+3IFcJakDSVtC5xKGi5ZFd+StLak/YCPAFfmb7AXAD+StAWApCGSDsrLXAocJ2mkpHXyNtwdEQsL7X5V0iClU42/CFxeZd3XAztK+rSkt+dpT0nv6qK/tV4XctL4B3AONfZCsg1JQ4HPkT6Uv1spyG1dDZwhaX1J7wSOKdPniHgCaM1trS3pvaQvOV3p6v3R3XsPYA9JH1c6SeSUvJ2zJe0k6UP59for6UvC6/RzTiJvbddJeon0ze8bpAPAx9WoOwK4BXiZdCDzpxFxWy77HvDNPPTwlVVY/8Wk4y7PAOsC/wrpbDHSGP8vSN+8XyENGVRcmR+fk3RvlXan5rbvIB30/CvwhSr1euILef2PkfbQLs3t99QzwPOkb6qXACdExMO57DTSEOHsPORzC2l8noiYRTp2chXp2/b2wLhObV8LzAXmATdQ5fTsiHgJODAvuyj35/us/MFYVPV1KZgG/BNdJ9NppGGip0m/QZrdqfxk0h7KM3l900kfxmX6fDTpeNJzpGMrl1faqqHm+6MH7z1If/ejSK/rp4GPR8Tfc/8mk/bangG2IJ1J2K9Vzr4xs1UkaTRpz25od3VLtB2kA9xtvd12D9Z9DDAxD9v0VpvfB94REat91QFJlwMPR8Tpq9+zldo+g04/dLWueU/EzN6Qh7g+D0xZzXbeKendSvYCjgeuKdnWnpK2z7//GEM6FvPfq9M/6z1OImYGQD5e00E6JnXpaja3Iem4yCuk407nkIaJyngH6dTkl4FzSb9zum81+2e9xMNZZmZWmvdEzMystH53sbLNN988hg0b1uxumJn1KXPnzn02Ijr/pqb/JZFhw4bR2tra7G6YmfUpkp6oFvdwlpmZleYkYmZmpdUtiUjaWtKtkh6S9KCkL+b4pkr3EViQHwfluCSdq3R/hfmSdi+0NSHXX6DCLVIl7SHp/rzMufmSHWZm1iD13BNZDnw5It4F7AOcJGlnYBLpktYjSJdsrlwt9mDSpTdGABOB8yElHeB0YG9gL+D0SuLJdSYWlhtTx+0xM7NO6pZEImJxRNyb518CHiJdQXYs6Uqh5MfKXdPGAtMimQ1sImkwcBAwMyKWRcTzpLvNjcllG0XEXZF+7DKt0JaZmTVAQ46JSBoG7AbcDWwZEYshJRrSRcwgJZjiPQHac6yreHuVeLX1T5TUKqm1o6NjdTfHzMyyuieRfCnmq4BTIuLFrqpWiUWJ+MrBiCkRMSoiRrW0rHSas5mZlVTXJJKv138VcElEXJ3DS/JQFPlxaY638+abzVRuBNNVfGiVuJmZNUg9z84S6f4HD0XEDwtFM4DKGVYTWHFRthnAMfksrX2AF/Jw183AgfnmPINI9yG4OZe9JGmfvK5jKH+BNzMzK6Gev1jfl3RDl/slzcuxr5Nu6nKFpOOBJ4EjctmNwCGkm/i8Sr55UkQsk/RtYE6ud2ZEVO4RfiLp5jrrATflyewNwybd0OwuvGUtnHxos7tga4C6JZGIuJPqxy0g3b+5c/0ATqrR1lSq3G0uIlqBXVejm2Zmthr8i3UzMyvNScTMzEpzEjEzs9KcRMzMrDQnETMzK81JxMzMSnMSMTOz0pxEzMysNCcRMzMrzUnEzMxKcxIxM7PSnETMzKw0JxEzMyvNScTMzEpzEjEzs9KcRMzMrDQnETMzK62e91ifKmmppAcKscslzcvTwsptcyUNk/SXQtnPCsvsIel+SW2Szs33U0fSppJmSlqQHwfVa1vMzKy6eu6JXAiMKQYi4qiIGBkRI4GrgKsLxY9WyiLihEL8fGAiMCJPlTYnAbMiYgQwKz83M7MGqlsSiYg7gGXVyvLexJHA9K7akDQY2Cgi7sr3YJ8GHJaLxwIX5fmLCnEzM2uQZh0T2Q9YEhELCrHhku6TdLuk/XJsCNBeqNOeYwBbRsRigPy4Ra2VSZooqVVSa0dHR+9thZlZP9esJDKeN++FLAa2iYjdgFOBSyVtBKjKsrGqK4uIKRExKiJGtbS0lOqwmZmtbK1Gr1DSWsDHgT0qsYh4DXgtz8+V9CiwI2nPY2hh8aHAojy/RNLgiFich72WNqL/Zma2QjP2RA4AHo6IN4apJLVIGpDntyMdQH8sD1O9JGmffBzlGODavNgMYEKen1CIm5lZg9TzFN/pwF3ATpLaJR2fi8ax8gH1DwDzJf0B+DVwQkRUDsqfCPwCaAMeBW7K8cnAhyUtAD6cn5uZWQPVbTgrIsbXiB9bJXYV6ZTfavVbgV2rxJ8D9l+9XpqZ2erwL9bNzKw0JxEzMyvNScTMzEpzEjEzs9KcRMzMrDQnETMzK81JxMzMSnMSMTOz0pxEzMysNCcRMzMrzUnEzMxKcxIxM7PSnETMzKw0JxEzMyvNScTMzEpzEjEzs9KcRMzMrDQnETMzK62e91ifKmmppAcKsTMkPS1pXp4OKZR9TVKbpEckHVSIj8mxNkmTCvHhku6WtEDS5ZLWrte2mJlZdfXcE7kQGFMl/qOIGJmnGwEk7QyMA3bJy/xU0gBJA4DzgIOBnYHxuS7A93NbI4DngePruC1mZlZF3ZJIRNwBLOth9bHAZRHxWkQ8DrQBe+WpLSIei4i/AZcBYyUJ+BDw67z8RcBhvboBZmbWrWYcEzlZ0vw83DUox4YATxXqtOdYrfhmwJ8jYnmneFWSJkpqldTa0dHRW9thZtbvNTqJnA9sD4wEFgPn5Liq1I0S8aoiYkpEjIqIUS0tLavWYzMzq2mtRq4sIpZU5iVdAFyfn7YDWxeqDgUW5flq8WeBTSStlfdGivXNzKxBGronImlw4enhQOXMrRnAOEnrSBoOjADuAeYAI/KZWGuTDr7PiIgAbgU+mZefAFzbiG0wM7MV6rYnImk6MBrYXFI7cDowWtJI0tDTQuBzABHxoKQrgD8Cy4GTIuL13M7JwM3AAGBqRDyYV3EacJmk7wD3Ab+s17aYmVl1dUsiETG+SrjmB31EnAWcVSV+I3BjlfhjpLO3zMysSfyLdTMzK81JxMzMSnMSMTOz0pxEzMysNCcRMzMrzUnEzMxKcxIxM7PSnETMzKw0JxEzMyvNScTMzEpzEjEzs9KcRMzMrDQnETMzK81JxMzMSnMSMTOz0pxEzMysNCcRMzMrrW5JRNJUSUslPVCI/UDSw5LmS7pG0iY5PkzSXyTNy9PPCsvsIel+SW2SzpWkHN9U0kxJC/LjoHpti5mZVVfPPZELgTGdYjOBXSPi3cCfgK8Vyh6NiJF5OqEQPx+YCIzIU6XNScCsiBgBzMrPzcysgeqWRCLiDmBZp9hvI2J5fjobGNpVG5IGAxtFxF0REcA04LBcPBa4KM9fVIibmVmDNPOYyGeAmwrPh0u6T9LtkvbLsSFAe6FOe44BbBkRiwHy4xa1ViRpoqRWSa0dHR29twVmZv1cU5KIpG8Ay4FLcmgxsE1E7AacClwqaSNAVRaPVV1fREyJiFERMaqlpaVst83MrJO1Gr1CSROAjwD75yEqIuI14LU8P1fSo8COpD2P4pDXUGBRnl8iaXBELM7DXksbtQ1mZpY0dE9E0hjgNOBjEfFqId4iaUCe3450AP2xPEz1kqR98llZxwDX5sVmABPy/IRC3MzMGqRueyKSpgOjgc0ltQOnk87GWgeYmc/UnZ3PxPoAcKak5cDrwAkRUTkofyLpTK/1SMdQKsdRJgNXSDoeeBI4ol7bYmZm1dUtiUTE+CrhX9aoexVwVY2yVmDXKvHngP1Xp49mZrZ6/It1MzMrzUnEzMxKcxIxM7PSnETMzKw0JxEzMyutR0lE0r49iZmZWf/S0z2R/+hhzMzM+pEufyci6b3A+4AWSacWijYCBtSzY2Zmtubr7seGawMDc70NC/EXgU/Wq1NmZtY3dJlEIuJ24HZJF0bEEw3qk5mZ9RE9vezJOpKmAMOKy0TEh+rRKTMz6xt6mkSuBH4G/IJ0gUQzM7MeJ5HlEXF+XXtiZmZ9Tk9P8b1O0uclDZa0aWWqa8/MzGyN19M9kcrNn75aiAWwXe92Z802bNINze7CW9bCyYc2uwtmVkKPkkhEDK93R8zMrO/pURKRdEy1eERM693umJlZX9LTYyJ7Fqb9gDOAj3W3kKSpkpZKeqAQ21TSTEkL8uOgHJekcyW1SZovaffCMhNy/QWSJhTie0i6Py9zbr4Pu5mZNUiPkkhEfKEwfRbYjfRr9u5cCIzpFJsEzIqIEcCs/BzgYGBEniYC50NKOqT7s+8N7AWcXkk8uc7EwnKd12VmZnVU9lLwr5I+tLsUEXcAyzqFxwIX5fmLgMMK8WmRzAY2kTQYOAiYGRHLIuJ5YCYwJpdtFBF3RUQA0wptmZlZA/T0mMh1pLOxIF148V3AFSXXuWVELAaIiMWStsjxIcBThXrtOdZVvL1KvFr/J5L2WNhmm21KdtvMzDrr6Sm+ZxfmlwNPRER7rcolVTueESXiKwcjpgBTAEaNGlW1jpmZrbqeHhO5HXiYdCXfQcDfVmOdS/JQFPlxaY63A1sX6g0FFnUTH1olbmZmDdLTOxseCdwDHAEcCdwtqeyl4Gew4seLE4BrC/Fj8lla+wAv5GGvm4EDJQ3KB9QPBG7OZS9J2ieflXVMoS0zM2uAng5nfQPYMyKWAkhqAW4Bft3VQpKmA6OBzSW1k86ymgxcIel44ElSYgK4ETgEaCMduD8OICKWSfo2MCfXOzMiKgfrTySdAbYecFOezMysQXqaRN5WSSDZc/RgLyYixtco2r9K3QBOqtHOVGBqlXgrsGt3/TAzs/roaRL5jaSbgen5+VGkPQczM+vHurvH+g6kU3K/KunjwPtJZ0XdBVzSgP6ZmdkarLshqR8DLwFExNURcWpEfIm0F/LjenfOzMzWbN0lkWERMb9zMB+LGFaXHpmZWZ/RXRJZt4uy9XqzI2Zm1vd0l0TmSPps52A+PXdufbpkZmZ9RXdnZ50CXCPpaFYkjVGkK/geXs+OmZnZmq/LJBIRS4D3SfogK36PcUNE/K7uPTMzszVeT2+Peytwa537YmZmfUzZ+4mYmZk5iZiZWXlOImZmVpqTiJmZleYkYmZmpTmJmJlZaU4iZmZWmpOImZmV5iRiZmalNTyJSNpJ0rzC9KKkUySdIenpQvyQwjJfk9Qm6RFJBxXiY3KsTdKkRm+LmVl/19Pb4/aaiHgEGAkgaQDwNHANcBzwo4g4u1hf0s7AOGAXYCvgFkk75uLzgA8D7aQrDs+IiD82ZEPMzKzxSaST/YFHI+IJSbXqjAUui4jXgMcltQF75bK2iHgMQNJlua6TiJlZgzT7mMg4YHrh+cmS5kuaKmlQjg0BnirUac+xWvGVSJooqVVSa0dHR+/13sysn2taEpG0NvAx4MocOh/YnjTUtRg4p1K1yuLRRXzlYMSUiBgVEaNaWlpWq99mZrZCM4ezDgbuzfcsqdy7BABJFwDX56ftwNaF5YYCi/J8rbiZmTVAM4ezxlMYypI0uFB2OPBAnp8BjJO0jqThwAjgHmAOMELS8LxXMy7XNTOzBmnKnoik9UlnVX2uEP53SSNJQ1ILK2UR8aCkK0gHzJcDJ0XE67mdk4GbgQHA1Ih4sGEbYWZmzUkiEfEqsFmn2Ke7qH8WcFaV+I3Ajb3eQTMz65Fmn51lZmZ9mJOImZmV5iRiZmalOYmYmVlpTiJmZlaak4iZmZXmJGJmZqU5iZiZWWlOImZmVpqTiJmZleYkYmZmpTmJmJlZaU4iZmZWmpOImZmV5iRiZmalOYmYmVlpTiJmZlZa05KIpIWS7pc0T1Jrjm0qaaakBflxUI5L0rmS2iTNl7R7oZ0Juf4CSROatT1mZv1Rs/dEPhgRIyNiVH4+CZgVESOAWfk5wMHAiDxNBM6HlHSA04G9gb2A0yuJx8zM6q/ZSaSzscBFef4i4LBCfFoks4FNJA0GDgJmRsSyiHgemAmMaXSnzcz6q2YmkQB+K2mupIk5tmVELAbIj1vk+BDgqcKy7TlWK/4mkiZKapXU2tHR0cubYWbWf63VxHXvGxGLJG0BzJT0cBd1VSUWXcTfHIiYAkwBGDVq1ErlZmZWTtP2RCJiUX5cClxDOqaxJA9TkR+X5urtwNaFxYcCi7qIm5lZAzQliUjaQNKGlXngQOABYAZQOcNqAnBtnp8BHJPP0toHeCEPd90MHChpUD6gfmCOmZlZAzRrOGtL4BpJlT5cGhG/kTQHuELS8cCTwBG5/o3AIUAb8CpwHEBELJP0bWBOrndmRCxr3GaYmfVvTUkiEfEY8J4q8eeA/avEAzipRltTgam93UczM+vemnaKr5mZ9SFOImZmVpqTiJmZleYkYmZmpTmJmJlZaU4iZmZWmpOImZmV5iRiZmalOYmYmVlpTiJmZlaak4iZmZXmJGJmZqU5iZiZWWlOImZmVpqTiJmZleYkYmZmpTmJmJlZaQ1PIpK2lnSrpIckPSjpizl+hqSnJc3L0yGFZb4mqU3SI5IOKsTH5FibpEmN3hYzs/6uGbfHXQ58OSLulbQhMFfSzFz2o4g4u1hZ0s7AOGAXYCvgFkk75uLzgA8D7cAcSTMi4o8N2QozM2t8EomIxcDiPP+SpIeAIV0sMha4LCJeAx6X1Abslcva8v3akXRZruskYmbWIE09JiJpGLAbcHcOnSxpvqSpkgbl2BDgqcJi7TlWK15tPRMltUpq7ejo6MUtMDPr35qWRCQNBK4CTomIF4Hzge2BkaQ9lXMqVassHl3EVw5GTImIURExqqWlZbX7bmZmSTOOiSDp7aQEcklEXA0QEUsK5RcA1+en7cDWhcWHAovyfK24mfVBwybd0OwuvGUtnHxoXdptxtlZAn4JPBQRPyzEBxeqHQ48kOdnAOMkrSNpODACuAeYA4yQNFzS2qSD7zMasQ1mZpY0Y09kX+DTwP2S5uXY14HxkkaShqQWAp8DiIgHJV1BOmC+HDgpIl4HkHQycDMwAJgaEQ82ckPMzPq7ZpyddSfVj2fc2MUyZwFnVYnf2NVyZmZWX/7FupmZleYkYmZmpTmJmJlZaU4iZmZWmpOImZmV5iRiZmalOYmYmVlpTiJmZlaak4iZmZXmJGJmZqU5iZiZWWlOImZmVpqTiJmZleYkYmZmpTmJmJlZaU4iZmZWmpOImZmV5iRiZmal9fkkImmMpEcktUma1Oz+mJn1J306iUgaAJwHHAzsDIyXtHNze2Vm1n/06SQC7AW0RcRjEfE34DJgbJP7ZGbWb6zV7A6spiHAU4Xn7cDenStJmghMzE9flvRIA/q2JtgceLbZnegJfb/ZPVgj9JnXC/yaZX3mNeuF12vbasG+nkRUJRYrBSKmAFPq3501i6TWiBjV7H5Yz/j16nv8mvX94ax2YOvC86HAoib1xcys3+nrSWQOMELScElrA+OAGU3uk5lZv9Gnh7MiYrmkk4GbgQHA1Ih4sMndWpP0uyG8Ps6vV9/T718zRax0CMHMzKxH+vpwlpmZNZGTiJmZleYksoZTcqekgwuxIyX9ppn9eiuTFJIuLjxfS1KHpOvz84/VusSOpJdrxC+U9Mk8f5ukNeK00Fr9tRUkDZV0raQFkh6V9BNJa0saXXlPVFlmoaTNG93XZnASWcNFOmh1AvBDSetK2gA4CzipuT17S3sF2FXSevn5h4GnK4URMSMiJjelZ9ZQkgRcDfx3RIwAdgQGkv4HDSeRPiEiHgCuA04DTgd+BZwjab6k2ZLeDSDpDElfqSwn6QFJw/L0kKQLJD0o6beVD0hJe+Z27pL0A0kPNGET10Q3AYfm+fHA9EqBpGMl/WeeH57/dnMkfbtQR5L+U9IfJd0AbFFtJZIOzMvfK+lKSQOr1BkoaVauc7+ksYWyf5P0sKSZkqZXXn9J20v6jaS5kn4v6Z1d9ddq+hDw14j4L4CIeB34EvAZYP1KJUmb5f+r+yT9nOo/hH5LchLpO74F/DPpYpPvAO6LiHcDXwem9WD5EcB5EbEL8GfgEzn+X8AJEfFe4PVe73XfdRkwTtK6wLuBu2vU+wlwfkTsCTxTiB8O7AT8E/BZ4H2dF8zDHd8EDoiI3YFW4NQq6/grcHiu80HSFwjlIbFPALsBHweKQ2RTgC9ExB7AV4CfdtNfq24XYG4xEBEvAk8COxTCpwN3RsRupN+qbdOwHjZZn/6dSH8SEa9Iuhx4mfTN+BM5/rv8LWjjbpp4PCLm5fm5wDBJmwAbRsT/z/FLgY/Uoft9TkTMlzSM9Le+sYuq+7IiIV8MVK5Q9AFgev7mukjS76osuw/p6tP/k0ZNWBu4q0o9Ad+V9AHgH6Rrxm0JvB+4NiL+AiDpuvw4kJS0rsztAqzTTX+tOlHlUkpV4h8gJXIi4gZJzzegb2sEJ5G+5R95qnXNsOW8ee9y3cL8a4X514H1arRjK8wAzgZGA5t1Ua/Wj626+xGWgJkRMf5NQWlv4Of56f8DNgVagD0i4u+SFpJe21qv39uAP0fEyJL9shUeZEXSBUDSRqTLLT3aqW6//Lt6OKtvugM4GkDSaODZvIu9ENg9x3cHhnfVSEQ8D7wkaZ8cGlen/vZVU4EzI+L+Lur8Dyv+bkcX4neQhsMGSBpMGobqbDawr6QdACStL2nHiLg7IkbmaQawMbA0J5APsuJqqncCH80nXAwkH8PJ74XHJR2R25Wk93TTX6tuFrC+pGPgjXsYnQNcCLxaqFf8nzwYGNTYbjaPk0jfdAYwStJ8YDIwIcevAjaVNA84EfhTD9o6Hpgi6S7SN9sXer+7fVNEtEfET7qp9kXgJC/ZuYgAAADPSURBVElzSB/2FdcAC4D7gfOB26u03wEcC0zPr+Vs4J1V1nEJ6fVuJX1QPZyXn0PaW/oD6QyiVla8fkcDx0v6A+nbdOVgfK3+WhX57MjDgSMkLSD9T/2VdCyy6FvAByTdCxxIOmbSL/iyJ/2cpIER8XKenwQMjogvNrlb1kOV10/S+qRvwxMj4t5m98v6Dx8TsUMlfY30XniC9M3Y+o4pSreEXhe4yAnEGs17ImZmVpqPiZiZWWlOImZmVpqTiJmZleYkYmZmpTmJmJlZaf8L9+EH3mH8J2gAAAAASUVORK5CYII=\n",
473 | "text/plain": [
474 | ""
475 | ]
476 | },
477 | "metadata": {
478 | "needs_background": "light"
479 | },
480 | "output_type": "display_data"
481 | }
482 | ],
483 | "source": [
484 | "plt.title(\"Distribution of people by age groups\")\n",
485 | "plt.bar(range(3), [young, middle_aged, old])\n",
486 | "plt.xticks(range(3), [\"Young\", \"Middle-aged\", \"Old\"])\n",
487 | "plt.ylabel(\"Count\")\n",
488 | "plt.show()"
489 | ]
490 | },
491 | {
492 | "cell_type": "markdown",
493 | "metadata": {},
494 | "source": [
495 | "### Problem 6. Native country (2 points)\n",
496 | "Have a look at the native country of the people. The highest number of people are, as expected, from the US. What country makes for **the second highest** number of people? How many are they? Write a function to **calculate** and return the answer given a dataframe. DO NOT hardcode the answer, e.g. `return \"Germany\"`."
497 | ]
498 | },
499 | {
500 | "cell_type": "code",
501 | "execution_count": 17,
502 | "metadata": {
503 | "nbgrader": {
504 | "grade": false,
505 | "grade_id": "cell-96faf6efe52dd3d0",
506 | "locked": false,
507 | "schema_version": 3,
508 | "solution": true
509 | }
510 | },
511 | "outputs": [],
512 | "source": [
513 | "def get_second_highest_num_people(dataframe):\n",
514 | " num_people, country = 0, \"\"\n",
515 | " ### BEGIN SOLUTION\n",
516 | " people = income_data.groupby(\"native-country\").count().income.nlargest(2)\n",
517 | " num_people = people.min()\n",
518 | " country = people.idxmin()\n",
519 | " ### END SOLUTION\n",
520 | " return num_people, country"
521 | ]
522 | },
523 | {
524 | "cell_type": "code",
525 | "execution_count": 18,
526 | "metadata": {
527 | "nbgrader": {
528 | "grade": true,
529 | "grade_id": "cell-923d941301d6acc8",
530 | "locked": true,
531 | "points": 2,
532 | "schema_version": 3,
533 | "solution": false
534 | }
535 | },
536 | "outputs": [],
537 | "source": [
538 | "num_people, country = get_second_highest_num_people(income_data)\n",
539 | "nose.tools.assert_greater(num_people, 0)\n",
540 | "nose.tools.assert_not_equal(country, \"\")\n",
541 | "### BEGIN HIDDEN TESTS\n",
542 | "nose.tools.assert_equal(num_people, 643)\n",
543 | "nose.tools.assert_equal(country, \"Mexico\")\n",
544 | "test_num_people, test_country = get_second_highest_num_people(income_data_test)\n",
545 | "nose.tools.assert_equal(num_people, test_num_people)\n",
546 | "nose.tools.assert_equal(country, test_country)\n",
547 | "### END HIDDEN TESTS"
548 | ]
549 | },
550 | {
551 | "cell_type": "markdown",
552 | "metadata": {},
553 | "source": [
554 | "### Problem 7. Busiest occupations (2 points)\n",
555 | "Which people are most overworked? Group all data by occupation and calculate the mean hours per week for each group.\n",
556 | "\n",
557 | "Write a function that **calculates and returns** all mean hours per week as a `Series`. Sort the results in descending order (most hours to fewest hours)."
558 | ]
559 | },
560 | {
561 | "cell_type": "code",
562 | "execution_count": 19,
563 | "metadata": {
564 | "nbgrader": {
565 | "grade": false,
566 | "grade_id": "cell-f93bf9800cb3bc46",
567 | "locked": false,
568 | "schema_version": 3,
569 | "solution": true
570 | }
571 | },
572 | "outputs": [],
573 | "source": [
574 | "def get_mean_working_hours_by_occupation(dataframe):\n",
575 | " ### BEGIN SOLUTION\n",
576 | " groups = income_data.groupby(\"occupation\").mean()[\"hours-per-week\"]\n",
577 | " return groups.sort_values(ascending = False)\n",
578 | " ### END SOLUTION"
579 | ]
580 | },
581 | {
582 | "cell_type": "code",
583 | "execution_count": 20,
584 | "metadata": {
585 | "nbgrader": {
586 | "grade": true,
587 | "grade_id": "cell-69cd7b7f6076b0ed",
588 | "locked": true,
589 | "points": 2,
590 | "schema_version": 3,
591 | "solution": false
592 | }
593 | },
594 | "outputs": [
595 | {
596 | "name": "stdout",
597 | "output_type": "stream",
598 | "text": [
599 | "occupation\n",
600 | "Farming-fishing 46.989940\n",
601 | "Exec-managerial 44.987703\n",
602 | "Transport-moving 44.656230\n",
603 | "Protective-serv 42.870570\n",
604 | "Prof-specialty 42.386715\n",
605 | "Craft-repair 42.304221\n",
606 | "Sales 40.781096\n",
607 | "Machine-op-inspct 40.755744\n",
608 | "Armed-Forces 40.666667\n",
609 | "Tech-support 39.432112\n",
610 | "Handlers-cleaners 37.947445\n",
611 | "Adm-clerical 37.558355\n",
612 | "Other-service 34.701669\n",
613 | "Priv-house-serv 32.885906\n",
614 | "? 31.906131\n",
615 | "Name: hours-per-week, dtype: float64\n"
616 | ]
617 | }
618 | ],
619 | "source": [
620 | "hours = get_mean_working_hours_by_occupation(income_data)\n",
621 | "print(hours)\n",
622 | "nose.tools.assert_almost_equal(hours[\"Handlers-cleaners\"], 37.95, delta = 0.01)\n",
623 | "### BEGIN HIDDEN TESTS\n",
624 | "nose.tools.assert_almost_equal(hours[\"Prof-specialty\"], 42.38, delta = 0.01)\n",
625 | "nose.tools.assert_almost_equal(hours[\"Farming-fishing\"], 46.99, delta = 0.01)\n",
626 | "nose.tools.assert_almost_equal(hours[\"?\"], 31.91, delta = 0.01)\n",
627 | "### END HIDDEN TESTS"
628 | ]
629 | },
630 | {
631 | "cell_type": "markdown",
632 | "metadata": {},
633 | "source": [
634 | "Finally, let's plot a bar chart. Check the values carefully. If your do not match, feel free to edit the chart generation code below."
635 | ]
636 | },
637 | {
638 | "cell_type": "code",
639 | "execution_count": 21,
640 | "metadata": {},
641 | "outputs": [
642 | {
643 | "data": {
644 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAp8AAAF1CAYAAACu34FxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjIsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+WH4yJAAAgAElEQVR4nOzdebxd873/8ddbEEMkLkKPXJV7iSrBKSnXHKq0lHJxTS2hpG4HdVv1SydVbVVnpddtU23TKhVjmzZKVBFDkUGSE0rdGtqGW2NjDuL9+2N9T23bmTLts3fyfj4e+3HW/o6fteKPj+93rbVlm4iIiIiIRlipvwOIiIiIiBVHks+IiIiIaJgknxERERHRMEk+IyIiIqJhknxGRERERMMk+YyIiIiIhknyGRHRBUmWtOmi1vUy5gRJX1ry6JYuSQ9K2qu/4+hvkj4t6fz+jiNieZfkMyJahqRPSbqqruy+bsoOb2x00UokjZb019oy22faPr6/YopYUST5jIhWMhXYWdIAAElvAlYBtq0r27S0XSFJWrm/Y4iI6E6Sz4hoJdOoks328n034Hrg3rqyP9l+WNIQST+U9IikeZK+1JmkAkg6TtIfJD0l6RpJG3c1qaRdJP1F0h515W+X9LfaZE/SwZJm9XAO/yRpsqRnJN0uaZOavjtJmiZpfvm7U03d67bGJZ0u6WfleHi5FeADkv4M/E7SapJ+JukJSX8v423QQ1xvl3R3uRY/lrRaGXuupP1r5l1F0uOS2rsaRNIJkv5X0pOSJknasKZuS0nXlrq/Sfp0KR9Qtrz/VK7LDEkb1ZxX7fW9QdLx5XiMpFsknVuu2T2S3lHT9tjy7/uMpPslfbCUrwn8BthQ0rPls2HtNS3tDpB0V7l+N0h6a92/xymS5pS5J3Zes4joWZLPiGgZtl8CbqdKMCl/bwJurivrXPX8CfAK1Uro24C9gc7E5UDg08C/A0PLOD+vn1PSPqX8YNvX18UzDXgCeGdN8fuAC3o4jSOALwD/BPwv8OUyzzrAZOAcYF3gW8BkSev2MFa93YG3AvsAxwBDgI3KeCcCL/TQ96jSbxNgM+Czpfyn5Zw67Qs8YvsNCbakPYGvAP8BtAEPAReXurWA3wJXAxtS/ZtcV7p+nOq67AsMBo4Dnu/jOe8A3A+sB3weuKJcS4BHgfeUMY8Fvi1pW9vPAe8GHrY9qHwerjuXzaj+3U+m+u/jKuBXklatafYfwLuAfwG2Bsb0MeaIFVqSz4hoNTfyWqK5K1XSeFNd2Y1lle/dwMm2n7P9KPBtoPNe0A8CX7H9B9uvAGcC7XWrn4cC44F9bd/RTTw/oSRnJenZB7ioh/ivsH1HmfNCXlux3Q+4z/YFtl+x/XPgHmD/7gbqwunlXF8AXqZKOje1vdD2DNtP99D3u7b/YvtJqoT4iFL+M2BfSYPL9/fTfXJ9FPAj2zNtLwA+BewoaThVEvh/tr9p+0Xbz9i+vfQ7Hvis7XtdmW37iT6e86PA2bZftj2RahV8PwDbk23/qYx5IzCF6r+PvjgMmGz7WtsvA98AVgd2qmlzju2HyzX7Fa/9W0ZED5J8RkSrmQrsIumfgKG27wNuBXYqZSNLm42ptugfKdumfwe+D6xfxtkY+E5N3ZOAgGE1c50MXGK7o4d4fgbsL2kQ1UrYTbYf6aH9/9UcPw8MKscbUq0U1nqoLp7e/KXm+ALgGuBiSQ9L+pqkVfrY96ESD2VF8BbgYElrUyX0F3YzxuvOwfazVCvDw6hWYP/UTb+e6nozz7a7il3SuyXdVrb5/061srpeH8etP5dXqa5R7b9Hd/+WEdGDJJ8R0Wp+T7WdPJYqKaKs6D1cyh62/QBVorAAWM/22uUz2PaWZZy/AB+sqVvb9uq2b62Z61DgQEkndxeM7XklpoPoeVWwNw9TJcS13gzMK8fPAWvU1L2pq3Bq4nrZ9hdsb0G1Wvce4Oge5t+obt7abejO1d1Dgd+Xc+71HMq9leuWc/gL1ZZ+V7qre6787em8h0lSfeySBgKXU61YbmB7baqt8862pmf15yKqa9TduUdEHyX5jIiWUraUp1PdJ3hTTdXNpWxqafcI1TbrNyUNlrSSpE0k7V7afw/4lKQtAVQ9nHRo3XQPA+8ATpL0oR7C+ilwKrAVcOVintpVwGaSjpS0sqTDgC2AX5f6WcDh5YGfUcAhPQ0maQ9JW6l6wOppqm34hT10+bCkfy63DnwamFhT9wtgW+BjVOfanYuAYyW1l+TvTOB22w+W83iTpJMlDZS0lqQdSr/zgS9KGqHK1pLWtf0YVbL3vvJQ0nG8MUldn+rfZ5Xy7/dWqmu5KjAQeAx4RdK7qe757fQ3YF1JQ7o5l0uA/SS9o6wYf4Lqf2Zu7aZ9RPRRks+IaEU3UiUdN9eU3VTKal+xdDRVEnI38BRwGdWDMNi+Evgq1bb008Bcqi3l17H9Z6oE9P91PmXdhSupVsmuLA+zLLJyj+N7qJKcJ6iS2ffYfrw0+RxV4vUU1QNLPd1XCtUK4WVUiecfqK7Zz3pofxFVsn5/+fzjZfgl4b+c6sGaK3o4h+tKnJcDj5R4Dy91z1A9mLU/1Xb1fUDn2wO+RZXsTSnx/pDq/kqAE4BPUl2TLXlj8nc7MAJ4nOpe1UNsP1HmO6mM+xRwJDCpJtZ7qB4our/cerFh7aC276Va7T23jL0/sH956C0iloBef6tMREQsDkl/otrG/21/x7IsSDoN2Mz2+3pt3CCSxgDH296lv2OJiL7Li4gjIpaQpIOp7iH8XX/HsiyUrfgPUN3TGhGxRLLtHhGxBCTdAPwP8OHyRPRyRdIJVA8E/cb2CvurURGx9GTbPSIiIiIaJiufEREREdEwST4jIiIiomHywFGLWG+99Tx8+PD+DiMiIiKiVzNmzHjc9tCu6pJ8tojhw4czffr0/g4jIiIioleS6n8u+B+y7R4RERERDZPkMyIiIiIaJslnRERERDRMks+IiIiIaJgknxERERHRMEk+IyIiIqJhknxGRERERMMk+YyIiIiIhknyGRERERENk+QzIiIiIhomyWdERERENEySz4iIiIhomJX7O4Dom4558xk+bnJ/hxEREV148Kz9+juEiJaRlc+IiIiIaJgknxERERHRMEk+IyIiIqJhknxGRERERMMk+ewnkjaXdKukDkk3Slqvv2OKiIiIWNaSfPav99neCrgVOLG/g4mIiIhY1vKqpX5i+56ar6sBT/RXLBERERGNkuSzn0naB3gXsGMXdWOBsQADBg9tcGQRERERS1+23fuRpJWAHwIH2P57fb3t8bZH2R41YI0hjQ8wIiIiYilL8tm/NgTm276vvwOJiIiIaIQkn/3rKeAT/R1ERERERKMk+exfQ4Dj+zuIiIiIiEbJA0f9yPbDwCH9HUdEREREo2TlMyIiIiIaJslnRERERDRMtt1bxFbDhjD9rP36O4yIiIiIJZKVz4iIiIhomCSfEREREdEwST4jIiIiomFyz2eL6Jg3n+HjJvd3GBERsYQezP37sYLLymdERERENEySz4iIiIhomCSfEREREdEwST4jIiIiomGWafIpaaGkWZLmSrpU0hrdtLt1Ecd9dulEGBERERGNtKxXPl+w3W57JPAScGJtpaQBALZ3WsZxNJXO846IiIhY0TRy2/0mYFNJoyVdL+kioANeW8mUNFHSvp0dJE2QdHBXg0n6sqTZkm6TtEEp21jSdZLmlL9vrhnnkJq+nfO1SZpaszq7aynfW9LvJc0sK7aDuph/kfpKelDSaZJuBk6VdEfNWMMlzVmiqxsRERHRAhqSfEpaGXg3JdkEtgc+Y3uLuqYXA4eVPqsC7wCu6mLINYHbbG8DTAVOKOXfBX5qe2vgQuCcXkI7ErjGdjuwDTBL0nrAZ4G9bG8LTAc+vpT6vmh7F9tfAVaV9K+l/DDgkl5ijYiIiGh5y/ol86tLmlWObwJ+COwE3GH7gS7a/wY4R9JA4F3AVNsvdNHuJeDX5XgG8M5yvCPw7+X4AuBrvcQ3DfiRpFWAX9ieJWl3YAvgFkkAqwK/X0p9J9YcXwL8B3AWVfJ5WP0EksYCYwEGDB7ay6lERERENL9lnXy+UFYG/6EkZc911dj2i5JuAPahSsZ+Xu6PnFGaTLJ9GvCybZeyhXR/Hp1tXqGs8qoKYNUy31RJuwH7ARdI+jrwFHCt7SPq4t4B+H75eprtSX3tW6P2vCcCl0q6ogrF93VxPcYD4wEGto1wfX1EREREq2nGVy1dDBwL7Eq1rb2wPLTUXhLPntwKHF6OjwJuLscPAtuV4/cCq0B1jyjwqO0fUK3KbgvcBuwsadPSZg1Jm9m+vSaOSYvSt6tAbf+JKnH+HK9fEY2IiIhYbjXjb7tPAX5Ktcr50iL2PYlqK/yTwGNUSSzAD4Bflod8ruO1FcjRwCclvQw8Cxxt+zFJY6hWXQeWdp8F/lg315L07TQR+DrwL4t4nhEREREtSa/tXkczG9g2wm3HnN3fYURExBJ68Kz9+juEiGVO0gzbo7qqa8Zt94iIiIhYTiX5jIiIiIiGSfIZEREREQ3TjA8cRRe2GjaE6blPKCIiIlpcVj4jIiIiomGSfEZEREREwyT5jIiIiIiGyT2fLaJj3nyGj5vc32FERESTyXtDo9Vk5TMiIiIiGibJZ0REREQ0TJLPiIiIiGiYpkg+Jf2zpF9Kuk/SnyR9R9Kqktol7VvT7nRJp/RnrL2RdICkcf0dR0REREQz6vfkU5KAK4Bf2B4BbAYMAr4MtAP79tB9UecasJTG6fZBLduTbJ+1NOaJiIiIWN70e/IJ7Am8aPvHALYXAv8FHA98DThM0ixJh5X2W0i6QdL9kk7qHETS+yTdUdp+vzPRlPSspDMk3Q7sWDuxpLMk3S1pjqRvlLKhki6XNK18di7lp0saL2kK8FNJt0vasmasGyRtJ2mMpO+Wsg0kXSlpdvns1FOsEREREcu7Zkg+twRm1BbYfhp4EPgSMNF2u+2JpXpzYB9ge+DzklaR9FbgMGBn2+3AQuCo0n5NYK7tHWzf3DmHpHWAg4AtbW9d5gL4DvBt228HDgbOrwltO+C9to8ELgb+o4zVBmxo+3XnAZwD3Gh7G2Bb4K5eYo2IiIhYrjXDez4FeBHKJ9teACyQ9CiwAfAOqsRwWrWLz+rAo6X9QuDyLsZ5GngROF/SZODXpXwvqtXVznaDJa1VjifZfqEcXwJcC3yeKgm9tIs59gSOhn+s6M6X9P4eYn39BZDGAmMBBgwe2lWTiIiIiJbSDMnnXVQrjP8gaTCwEVXiWG9BzfFCqnMQ8BPbn+qi/Ysl8UPSNVTJ6nTbx0vanipxPRz4CFWyuBKwY02S2RkTwHOd323Pk/SEpK2pVjI/2Mfz7SnW17E9HhgPMLBtRFeJeERERERLaYZt9+uANSQdDf94KOibwATgb8Ba3Xd93RiHSFq/jLGOpI3rG9nep2zhHy9pEDDE9lXAyVQPNwFMoUpEKWO1149T42Lg1DJORzdx/WfneZWkuk+xRkRERCyP+j35tG2qey8PlXQf8Eeq7fBPA9dTbYHXPnDU1Rh3A58FpkiaQ7Ud3tbL1GsBvy7tb6R6yAngJGBUeQjpbuDEHsa4jGrV9JJu6j8G7CGpg+q+1i0XM9aIiIiI5YKq3C+a3cC2EW475uz+DiMiIppMfts9mpGkGbZHdVXX7yufEREREbHiSPIZEREREQ2T5DMiIiIiGqYZXrUUfbDVsCFMz309ERER0eKy8hkRERERDZPkMyIiIiIaJslnRERERDRM7vlsER3z5jN83OT+DiMiIuIN8q7RWBRZ+YyIiIiIhknyGRERERENk+QzIiIiIhqmqZNPSQdJsqTNu6m/QVKXvxu6BHMOlzR3MfrdupjznS7plMXpGxEREdFqmjr5BI4AbgYO7+9AuiNpAIDtnfo7loiIiIhm17TJp6RBwM7AByjJp6TVJV0saY6kicDqNe2flfRVSTMk/VbS9mVl9H5JB3Qzx6al7WxJMyVtUlc/QNLXJU0rc36wlI+WdL2ki4COzvlr+p0qqaOMe1YpO6GMM1vS5ZLWWKoXLCIiIqIFNPOrlg4Errb9R0lPStoWGA08b3trSVsDM2varwncYPv/SboS+BLwTmAL4CfApC7muBA4y/aVklajSsbXr6n/ADDf9tslDQRukTSl1G0PjLT9QO2Akt5dYt/B9vOS1ilVV9j+QWnzpTL2uYtzYSIiIiJaVTMnn0cAZ5fji8v3EcA5ALbnSJpT0/4l4Opy3AEssP2ypA5geP3gktYChtm+soz3YimvbbY3sLWkQ8r3ISWGl4A76hPPYi/gx7afL+M+WcpHlqRzbWAQcE1vF0DSWGAswIDBQ3trHhEREdH0mjL5lLQusCdVwmZgAGDgzvK3Ky/b7qx7FVgAYPtVSSuXcX8MvA14mL7dRyrgo7ZflyhKGg0810OfrmKcABxoe7akMVSruD2yPR4YDzCwbUR35x0RERHRMpr1ns9DgJ/a3tj2cNsbAQ9QbbMfBSBpJLD1ogxq+1jb7bb3tf008FdJB5bxBnZxH+Y1wH9KWqW02UzSmr1MMwU4rnOsmm33tYBHylhHLUrcEREREcuLplz5pNpiP6uu7HKqVcvVy3b7LOCOJZzn/cD3JZ0BvAwcSrVq2ul8qi37mar24x+jup+zW7avltQOTJf0EnAV8Gngc8DtwENUtwWstYSxR0RERLQcvbZTHc1sYNsItx1zdu8NIyIiGiy/7R71JM2w3eW72Jt12z0iIiIilkNJPiMiIiKiYZJ8RkRERETDNOsDR1Fnq2FDmJ57aiIiIqLFZeUzIiIiIhomyWdERERENEySz4iIiIhomNzz2SI65s1n+LjJ/R1GREREr/Lez+hJVj4jIiIiomGSfEZEREREwyT5jIiIiIiG6VPyKenZuu9jJH13aQQg6XRJp5TjCZIOWRrj9mHe4ZLmNmKuiIiIiKi09MqnpJZ8YKpV446IiIhYUkucfEraX9Ltku6U9FtJG5Ty0yX9SNINku6XdFJNn89IulfSb4G3dDPudpJulDRD0jWS2kr5DZLOlHQj8DFJh0qaK2m2pKndjLVpiW22pJmSNqmrHyDp65KmSZoj6YOlfJCk60qfDknvLeXDJf1B0g8k3SVpiqTVS90mkq4ucd8kafNSPkHStyRdD3xV0u6SZpXPnZLWWsJ/ioiIiIim19cVuNUlzar5vg4wqRzfDPybbUs6HjgV+ESp2xzYA1gLuFfS/wBbA4cDbyvzzwRm1E4maRXgXOC9th+TdBjwZeC40mRt27uXth3APrbnSVq7m/gvBM6yfaWk1aiS7vVr6j8AzLf9dkkDgVskTQH+Ahxk+2lJ6wG3Seo87xHAEbZPkHQJcDDwM2A8cKLt+yTtAJwH7Fn6bAbsZXuhpF8BH7Z9i6RBwIvdxB4RERGx3Ohr8vmC7fbOL5LGAKPK138GJpaVyVWBB2r6Tba9AFgg6VFgA2BX4Erbz5exJvFGbwFGAtdKAhgAPFJTP7Hm+BZgQkkAr6gfqKwoDrN9JYDtF0t5bbO9ga1r7jcdQpVc/hU4U9JuwKvAsHIOAA/Y7kzIZwDDSxK5E3BpzfgDa+a51PbCmri/JelC4Arbf+0i9rHAWIABg4fWV0dERES0nKVx7+G5wLdsT5I0Gji9pm5BzfHCmvncy5gC7rK9Yzf1z3Ue2D6xrDDuB8yS1A58g2pl9WGqVdbeCPio7WteV1gl2UOB7Wy/LOlBYLVSXX9uq1OtqP69NlHvIe6zJE0G9qVaUd3L9j21jW2Pp1pJZWDbiN6uWURERETTWxoPHA0B5pXjY/rQfipwkKTVy6rk/l20uRcYKmlHqLbhJW3Z1WCSNrF9u+3TgMeBjWwfa7vd9r62nwb+KunA0n6gpDXqhrkG+M+y3Y+kzSStWc7t0ZJ47gFs3NOJlbkekHRoGUeStukh7g7bXwWmU92iEBEREbFcWxrJ5+lU28w3USV/PbI9k2rbfBZwOXBTF21eAg6hejBndmm7UzdDfr08DDSXKrGd3UWb9wMnSZoD3Aq8qa7+fOBuYGYZ5/tUq7QXAqMkTQeOAu6hd0cBHyhx3wW8t5t2J3c+KAW8APymD2NHREREtDTZ2c1tBQPbRrjtmLP7O4yIiIhe5bfdQ9IM26O6qmvp93xGRERERGtJ8hkRERERDZPkMyIiIiIaJj/z2CK2GjaE6bmHJiIiIlpcVj4jIiIiomGSfEZEREREwyT5jIiIiIiGyT2fLaJj3nyGj5vc32FEREQ0RN4VuvzKymdERERENEySz4iIiIhomCSfEREREdEwTZV8SlpX0qzy+T9J82q+r9qH/qMl/boRsS4tkj7d3zFERERENEpTPXBk+wmgHUDS6cCztr/Rr0EtI5IECPg0cGY/hxMRERHREE218tkVSdtJulHSDEnXSGor5ZtK+q2k2ZJmStqkdBkk6TJJ90i6sCR59WO2SZpaVlTnStq1lD9b0+YQSRPK8QRJ35N0k6Q/SnpPKR8j6ZeSrpZ0r6TP1/T/eBl7rqSTS9lwSX+QdB4wE/ghsHqJ48JlcgEjIiIimkhTrXx2QcC5wHttPybpMODLwHHAhcBZtq+UtBpVIr0R8DZgS+Bh4BZgZ+DmunGPBK6x/WVJA4A1+hDLcGB3YBPgekmblvLtgZHA88A0SZMBA8cCO5RzuF3SjcBTwFuAY21/CEDSobbbF+2yRERERLSmZk8+B1IldteWBcwBwCOS1gKG2b4SwPaLAKXNHbb/Wr7Pokoa65PPacCPJK0C/ML2rD7EcontV4H7JN0PbF7Kry23CyDpCmAXquTzStvP1ZTvCkwCHrJ9W19OXtJYYCzAgMFD+9IlIiIioqk1+7a7gLtst5fPVrb3LuXdWVBzvBBYWdIONQ8uHWB7KrAbMA+4QNLRpb1r+q5WN667+d5VeU/xPddD3esHssfbHmV71IA1hvS1W0RERETTavbkcwEwVNKOAJJWkbSl7aeBv0o6sJQPlNTt1rnt22sS2EmSNgYetf0Dqvsuty1N/ybprZJWAg6qG+ZQSSuVe0v/Fbi3lL9T0jqSVgcOpNrqnwocKGkNSWuWsW7qJryXywpsRERExHKv2bfdXwUOAc6RNIQq3rOBu4D3A9+XdAbwMnDoIow7GvikpJeBZ4HOlc9xwK+BvwBzgUE1fe4FbgQ2AE60/WLZ5r8ZuADYFLjI9nSoHlIC7ih9z7d9p6ThXcQyHpgjaabtoxbhHCIiIiJajuz6XeOoVxLJX9u+rK58DDDK9keWdQwD20a47Zizl/U0ERERTSG/7d7aJM2wPaqrumbfdo+IiIiI5Uizb7s3BdtjuimfAExoZCwRERERrSwrnxERERHRMFn5bBFbDRvC9Nz/EhERES0uK58RERER0TBJPiMiIiKiYZJ8RkRERETD5J7PFtExbz7Dx03u7zAiIiKaWt4P2vyy8hkRERERDZPkMyIiIiIaJslnRERERDRMvyefkg6SZEmbN2i+ByWt10X5GEmPSZpVPj9tRDwRERERK5J+Tz6BI4CbgcPrKyQNaHAsE223l8/RfemgSjNcx4iIiIim169Jk6RBwM7AByjJp6TRkq6XdBHQUb7fKOkSSX+UdJakoyTdIalD0ial31BJl0uaVj47l/J1JU2RdKek7wNaxBg/Lmlu+ZxcyoZL+oOk84CZwEaSTi3xzJZ0Vmm3iaSrJc2QdFPn6q6kQ8t4syVNXSoXMyIiIqIF9Perlg4Errb9R0lPStq2lG8PjLT9gKTRwDbAW4EngfuB821vL+ljwEeBk4HvAN+2fbOkNwPXlD6fB262fYak/YCxPcRzmKRdyvF3gDnAscAOVEnr7ZJuBJ4C3gIca/tDkt5dzmUH289LWqeMMR440fZ9knYAzgP2BE4D9rE9T9Lai3/5IiIiIlpLfyefRwBnl+OLy/fJwB22H6hpN832IwCS/gRMKeUdwB7leC9gC+kfC5uDJa0F7Ab8O4DtyZKe6iGeibY/0vmlJLdX2n6ufL8C2BWYBDxk+7aauX9s+/kyz5NlVXcn4NKamAaWv7cAEyRdAlzRXTCSxlKS5QGDh/YQdkRERERr6LfkU9K6VKuAIyUZGAAYuAp4rq75gprjV2u+v8pr57ASsKPtF+rmoYxbP/+HgRPK1327C7OHU6iNUV3MsRLwd9vt9R1tn1hWQvcDZklqt/1EF+3GU62eMrBtxBvOISIiIqLV9Oc9n4cAP7W9se3htjcCHgB26aVfd6YAtauWnUnfVOCoUvZu4J8AbP93zcNFD3cz5lTgQElrSFoTOAi4qZu5j5O0RplnHdtPAw9IOrSUSdI25XgT27fbPg14HNhoMc85IiIioqX0Z/J5BHBlXdnlwJGLOd5JwChJcyTdDZxYyr8A7CZpJrA38Oe+Dmh7JjABuAO4nepe0zu7aHc11Vb8dEmzgFNK1VHAByTNBu4C3lvKv14eTppLleDOXqQzjYiIiGhRsrOb2woGto1w2zFn994wIiJiBZbfdm8OkmbYHtVVXd5PGRERERENk+QzIiIiIhomyWdERERENEx/v+cz+mirYUOYnvtYIiIiosVl5TMiIiIiGibJZ0REREQ0TJLPiIiIiGiY3PPZIjrmzWf4uMn9HUZERETTy7s+m1tWPiMiIiKiYZJ8RkRERETDJPmMiIiIiIbpNfmUZEkX1HxfWdJjkn69OBNKelDSel2UHyBp3OKMubQ1KhZJwyUduazniYiIiGgWfVn5fA4YKWn18v2dwLylHYjtSbbPWtrjLo4GxjIcSPIZERERK4y+brv/Buh8dOwI4OedFZK2l3SrpDvL37eU8gGSviGpQ9IcSR+tGe+jkmaWus1L+zGSvluOJ0g6p4x3v6RDaub7pKRpZcwvdBWspNUk/biMf6ekPWrm+KWkqyXdK+nz3fTvNRZJbZKmSpolaa6kXUv5s5K+Wc7vOklDS/mmkn4raXap2wQ4C9i1jPFfffy3iIiIiGhZfU0+LwYOl7QasDVwe03dPcButt8GnAacWcrHAv8CvM321sCFNX0et70t8D/AKd3M2QbsAryHKklD0t7ACGB7oB3YTtJuXfT9MIDtraiS5cB9mGgAAB9hSURBVJ+U2Cl9jyr9D5U0qg/n/4ZYqFYsr7HdDmwDzCrlawIzy/ndCHQmuBcC/217G2An4BFgHHCT7Xbb3+5DHBEREREtrU/v+bQ9R9JwqkTuqrrqIVTJ3QjAwCqlfC/ge7ZfKWM8WdPnivJ3BvDv3Uz7C9uvAndL2qCU7V0+d5bvg6iS0al1fXcBzi3z3iPpIWCzUnet7ScAJF1R2k7v9uS7j2Ua8CNJq5T6zuTzVWBiOf4ZcIWktYBhtq8sMb1Y5u9xUkljqZJ4Bgwe2kuIEREREc1vUZ52nwR8g5ot9+KLwPW2RwL7A50rjKJKRruyoPxdSPcJ8IKaY9X8/UpZKWy3vantH0r6cNm6niVpw5r2XamPyV307zUW21OB3ajuf71A0tE9zNdzltldR3u87VG2Rw1YY8jiDBERERHRVBYl+fwRcIbtjrryIbz2ANKYmvIpwImSVgaQtM7iBlnjGuA4SYPKmMMkrW/7v2sS0oepVkKPKm02A94M3FvGeKekdcoDVAcCt3TRv1eSNgYetf0D4IfAtqVqJaDzHtUjgZttPw38VdKBpe9ASWsAzwBrLckFiYiIiGglfU4+bf/V9ne6qPoa8BVJtwADasrPB/4MzJE0m6XwVLftKcBFwO8ldQCX0XXydh4woLSZCIyx3bl6eTNwAdU9mpfb7m3LvTujgVmS7gQOBjqvzXPAlpJmAHsCZ5Ty9wMnSZoD3Aq8CZgDvFIeQsoDRxEREbHck93dzvjyR9IYYJTtjyzDOZ61PWhpjzuwbYTbjjl7aQ8bERGx3Mlvu/c/STNsd/lQd37hKCIiIiIapk9Puy8vbE8AJizjOZb6qmdERETE8iIrnxERERHRMCvUymcr22rYEKbnHpaIiIhocVn5jIiIiIiGSfIZEREREQ2T5DMiIiIiGib3fLaIjnnzGT5ucn+HERER0fTyns/mlpXPiIiIiGiYJJ8RERER0TBJPiMiIiKiYZJ89pGkz0i6S9IcSbMk7dBD2wmSDmlkfBERERGtIA8c9YGkHYH3ANvaXiBpPWDVfg4rIiIiouVk5bNv2oDHbS8AsP247YclnSZpmqS5ksZLUn1HSdtJulHSDEnXSGor5SdJuruspF7c4POJiIiI6BdJPvtmCrCRpD9KOk/S7qX8u7bfbnsksDrV6ug/SFoFOBc4xPZ2wI+AL5fqccDbbG8NnNiQs4iIiIjoZ9l27wPbz0raDtgV2AOYKGkc8IykU4E1gHWAu4Bf1XR9CzASuLYsig4AHil1c4ALJf0C+EVX80oaC4wFGDB46NI+rYiIiIiGS/LZR7YXAjcAN0jqAD4IbA2Msv0XSacDq9V1E3CX7R27GHI/YDfgAOBzkra0/UrdnOOB8QAD20Z4KZ5ORERERL/ItnsfSHqLpBE1Re3AveX4cUmDgK6ebr8XGFoeWELSKpK2lLQSsJHt64FTgbWBQcvuDCIiIiKaQ1Y++2YQcK6ktYFXgP+l2g7/O9ABPAhMq+9k+6XyyqVzJA2hut5nA38EflbKBHzb9t8bcSIRERER/SnJZx/YngHs1EXVZ8unvv2YmuNZVNvr9XZZWvFFREREtIpsu0dEREREwyT5jIiIiIiGSfIZEREREQ2Tez5bxFbDhjD9rP36O4yIiIiIJZKVz4iIiIhomCSfEREREdEwST4jIiIiomFyz2eL6Jg3n+HjJvd3GBERESuEB/OcxTKTlc+IiIiIaJgknxERERHRMEk+IyIiIqJhWir5lPQmSRdL+pOkuyVdJWmzReh/qKQ/SLpe0mhJXf1e+zIl6URJRzd63oiIiIhm0DLJpyQBVwI32N7E9hbAp4ENatoM6GWYDwAfsr0HMBroU/LZh3H7zPb3bP+0izny8FdEREQs91om+QT2AF62/b3OAtuzgAFlJfMioANA0i8kzZB0l6Sxpew0YBfge5IuBU4E/kvSLEm71k8m6VlJZ0i6HdhR0vsk3VHaf78zIS3tvilppqTrJA0t5SdImiZptqTLJa1Ryk+XdEo5vkHSmZJuBD62zK5cRERERJNopeRzJDCjm7rtgc+U1VCA42xvB4wCTpK0ru0zgOnAUbYPBb4HfNt2u+2buhhzTWCu7R2AJ4DDgJ1ttwMLgaNq2s20vS1wI/D5Un6F7bfb3gb4A9Wqa1fWtr277W/26SpEREREtLDlZav3DtsP1Hw/SdJB5XgjYARVArkoFgKXl+N3ANsB06rdf1YHHi11rwITy/HPgCvK8UhJXwLWBgYB13Qzz8RuyimrtmMBBgweuojhR0RERDSfVko+7wIO6abuuc4DSaOBvYAdbT8v6QZgtZ4GLlvonauqk2yfBrxoe2FnE+Antj/Vhzhd/k4ADrQ9W9IYqntMe4z9DQPZ44HxAAPbRri7dhERERGtopW23X8HDJR0QmeBpLcDu9e1GwI8VRLPzYF/62a8Z4C1AGwvLNvv7SXxrHcdcIik9cu860jauNStxGtJ8ZHAzeV4LeARSavw2hZ9RERExAqtZZJP2wYOAt5ZXrV0F3A68HBd06uBlSXNAb4I3NbNkL8CDurugaO6ue8GPgtMKeNeC7SV6ueALSXNAPYEzijlnwNuL23v6fOJRkRERCzHVOV0sbgkPWt70LKeZ2DbCLcdc/ayniYiIiLIb7svKUkzbI/qqq5lVj4jIiIiovUl+VxCjVj1jIiIiFheJPmMiIiIiIZppVctrdC2GjaE6bn/JCIiIlpcVj4jIiIiomGSfEZEREREwyT5jIiIiIiGyT2fLaJj3nyGj5vc32FERESsMPKuz2UjK58RERER0TBJPiMiIiKiYZJ8RkRERETDNEXyKWmhpFmS5kq6VNIai9j/55LmSPqvZRVjF3MeIGlcL23GSPpuOT5Q0haNiS4iIiKiOTVF8gm8YLvd9kjgJeDE2kpJA7rrKOlNwE62t7b97WUc5z/YnmT7rEXociCQ5DMiIiJWaM2SfNa6CdhU0mhJ10u6COiQtJqkH0vqkHSnpD1K+ynA+mXldNfagSQdWlZTZ0uaWsrGSPqlpKsl3Svp8zXt3yfpjjLW9zuTXknvkjSzjHNdzTidq5r7S7q9xPVbSRvUxbETcADw9TL2JpJm1tSPkDRjaV/IiIiIiGbTVK9akrQy8G7g6lK0PTDS9gOSPgFgeytJmwNTJG1GldT92nZ7F0OeBuxje56ktWvKtwdGAs8D0yRNBp4DDgN2tv2ypPOAoyT9BvgBsFuJY50u5rkZ+DfblnQ8cCrwic5K27dKmlTivKyc63xJ7bZnAccCExb5gkVERES0mGZJPleXNKsc3wT8ENgJuMP2A6V8F+BcANv3SHoI2Ax4uodxbwEmSLoEuKKm/FrbTwBIuqKM/QqwHVUyCrA68Cjwb8DUzjhsP9nFPP8MTJTUBqwKPNBFm3rnA8dK+jhV0rt9fQNJY4GxAAMGD+3DkBERERHNrVmSzxfqVy5LAvhcbVFvg0j6MrAfQLmH9ERJO5SyWZI653BdV5fxf2L7U3VjHtBF+3rnAt+yPUnSaOD03mIFLgc+D/wOmNGZDL8uKHs8MB5gYNuI3mKIiIiIaHrNeM9nd6YCRwGU7fY3A/fWNrD9mZJ0tpd2m9i+3fZpwOPARqXpOyWtI2l1qgeBbgGuAw6RtH7pu46kjYHfA7tL+pfO8i5iGwLMK8fHdBP/M8BaNbG+CFwD/A/w475fhoiIiIjW1UrJ53nAAEkdwERgjO0FvfT5enlAaS5V8jq7lN8MXADMAi63Pd323cBnqe4lnQNcC7TZfoxq6/sKSbPL3PVOBy6VdBNVktuVi4FPloeSNillF1Ktqk7p7eQjIiIilgeyV6zdXEljgFG2P9IEsZwCDLH9ud7aDmwb4bZjzm5AVBEREQH5bfclIWmG7VFd1TXLPZ8rHElXApsAe/Z3LBERERGNssIln7Yn0ASvNbJ9UH/HEBEREdForXTPZ0RERES0uBVu5bNVbTVsCNNz70lERES0uKx8RkRERETDJPmMiIiIiIZJ8hkRERERDZN7PltEx7z5DB83ub/DiIiIWOHl/Z9LJiufEREREdEwST4jIiIiomGSfEZEREREwzQk+ZS0UNIsSXMlXSppjUXo2y5p3yWY++Ta+SRdJWntxR0vIiIiIhZfo1Y+X7Ddbnsk8BJwYm2lpAE99G0HFjv5BE4G/pF82t7X9t+XYLwlokpWnCMiImKF1B9J0E3AppJGS7pe0kVAh6TVJP1YUoekOyXtIWlV4AzgsLJyepikNSX9SNK00u69UCWwkr5R+s+R9FFJJwEbAtdLur60e1DSepK+KulDnUFJOl3SJ8rxJ8v4cyR9oauTkLR7iWlWiWOt7vpKGi7pD5LOA2YCn5P0tZqxxkg6d+lf6oiIiIjm0tBXLUlaGXg3cHUp2h4YafuBzsTP9laSNgemAJsBpwGjbH+kjHEm8Dvbx5Xt8zsk/RY4GvgX4G22X5G0ju0nJX0c2MP243XhXAycDZxXvv8H8C5JewMjSmwCJknazfbUuv6nAB+2fYukQcCL3fUF/gy8BTjW9ockDQV+D5xaxjoM+PJiXdSIiIiIFtKolc/VJc0CplMlYj8s5XfYfqAc7wJcAGD7HuAhquSz3t7AuDLeDcBqwJuBvYDv2X6ljPFkTwHZvhNYX9KGkrYBnrL95zL+3sCdVKuUm1MllPVuAb5VVlfXLvP21Pch27eVuR8D7pf0b5LWpUpMb6mfQNJYSdMlTV/4/PyeTiciIiKiJTRq5fMF2+21BZIAnqst6uNYAg62fW/deAK8iHFdBhwCvIlqJbRz/K/Y/n7d+B8GTihf97V9lqTJVPej3iZprx76Duf15wowkWq19R7gSttviN32eGA8wMC2EYt6bhERERFNp5kefJkKHAUgaTOq1cx7gWeAtWraXQN8tCSbSHpbKZ8CnFi29pG0Timv71/rYuBwqgT0sprxjytb6UgaJml92/9dHppqt/2wpE1sd9j+KtWK7ubd9e1m7iuAA4EjqBLRiIiIiOVeMyWf5wEDJHVQJWNjbC8Arge26HzgCPgisAowR9Lc8h3gfKot/TmSZgNHlvLxwG86HziqZfsuqsR0nu1HStkU4CLg9yWWy+g6eT25vDpqNvAC8JtF6Ivtp4C7gY1t39H3yxQRERHRutTFbm80oYFtI9x2zNn9HUZERMQKL7/t3jtJM2yP6qqumVY+IyIiImI5l+QzIiIiIhomyWdERERENExDXzIfi2+rYUOYnntMIiIiosVl5TMiIiIiGibJZ0REREQ0TJLPiIiIiGiY3PPZIjrmzWf4uMn9HUZEREQsZSvae0Oz8hkRERERDZPkMyIiIiIaJslnRERERDTMIiWfktaVNKt8/k/SvJrvqy6rIBeHpHZJ+zZ4zlGSzmnknBERERGtZJEeOLL9BNAOIOl04Fnb3+isl7Sy7VeWaoSLQdLKVHGOAq5q1Ly2pwPTGzVfRERERKtZ4m13SRMkfUvS9cBXJW0v6VZJd5a/byntxki6QtLVku6T9LVSPqCMMVdSh6T/KuU3SDq7jDFX0valfB1Jv5A0R9JtkrYu5adLGi9pCvBT4AzgsLIqe1gXcT8o6UxJv5c0XdK2kq6R9CdJJ5Y2kvT1mtgOK+UTa1dVS/wHSxot6dc18fyonMf9kk6qaf85SfdIulbSzyWdsqT/DhERERGtYGm9amkzYC/bCyUNBnaz/YqkvYAzgYNLu3bgbcAC4F5J5wLrA8NsjwSQtHbNuGva3knSbsCPgJHAF4A7bR8oaU+qRLO9tN8O2MX2C5LGAKNsf6SHuP9ie0dJ3wYmADsDqwF3Ad8D/r2MvQ2wHjBN0lTgYuAw4Kpyu8E7gP8Edqgbf3NgD2Ctcr7/U8Y6uFyHlYGZwIweYoyIiIhYbiyt5PNS2wvL8RDgJ5JGAAZWqWl3ne35AJLuBjamSvT+tSSik4EpNe1/DmB7qqTBJTHdhZLM2v5duQ91SGk/yfYLixD3pPK3Axhk+xngGUkv1sz183Juf5N0I/B24DfAOZIGAu8CppaEt378ybYXAAskPQpsUMb8ZWeckn7VXXCSxgJjAQYMHroIpxURERHRnJbW0+7P1Rx/Ebi+rGTuT7WS2GlBzfFCYGXbT1GtBt4AfBg4v6aN6+Yx8IYMr6bdc13UAVC21GdJqh2/M55X62J7lSox72oubL9Y4t2HagX04m6mfcP5djdmN/OMtz3K9qgBawzpvUNEREREk1sWr1oaAswrx2N6ayxpPWAl25cDnwO2ranuvMdyF2B+WTWdChxVykcDj9t+uouhn6Ha7gbA9j62220fvwjnMpXqvtEBkoYCuwF3lLqLgWOBXYFrFmHMm4H9Ja0maRCwYv2sQURERKzQlsXPa36Natv948Dv+tB+GPBjSZ2J8Kdq6p6SdCswGDiulJ1e2s8BngeO6Wbc64FxkmYBX7E9cdFOA4ArgR2B2VSrq6fa/r9S1/lg0yTbL/V1QNvTJE0qYz5E9XT8/MWILSIiIqLlyK7f2W4Okm4ATimvL1quSBpk+1lJa1Ctro61PbOnPgPbRrjtmLMbE2BEREQ0zPL42+6SZtge1VXdslj5jN6Nl7QF1f2wP+kt8YyIiIhYXjRt8ml7dH/HsKzYPrK/Y4iIiIjoD/lt94iIiIhomKZd+YzX22rYEKYvh/eERERExIolK58RERER0TBJPiMiIiKiYZJ8RkRERETD5J7PFtExbz7Dx03u7zAiIiJiGVse3/tZKyufEREREdEwST4jIiIiomGSfEZEREREwyxx8ilpoaRZNZ9xSyOw5YWkW/vQ5tlGxBIRERHR35bGA0cv2G5fCuMsVyQNsL3Q9k79HUtEREREs1gm2+6Shki6V9JbyvefSzqhHH9S0jRJcyR9oabP0aVstqQLuhn3WUlflTRD0m8lbS/pBkn3SzqgtBku6SZJM8tnp1I+urS9TNI9ki6UpFJ3WolprqTxNeVvLzH9XtLXJc0t5QPK987z+GDNHNdLugjo6Iy5/B0k6boSU4ek9y6Lax8RERHRzJZG8rl63bb7YbbnAx8BJkg6HPgn2z+QtDcwAtgeaAe2k7SbpC2BzwB72t4G+Fg3c60J3GD7/7d3/7F213cdx58vLj+3jiJQSFOQQtYJKKNIQRRcytwWHIQfCrIJ2ikO54xsiwvpptlwuqkxClkAM8ZwS6wbE8zsmIEgghubK7RQKV1BJjBXx6hkg7UEC7Rv/zifG44397a3t73fc8/l+UhOzvf7+X6+3+/7ez/pve9+fpxzMrAZ+BPgrcAFwMdanU3AW6vqp4GLgU/2nX8S8H7geOAY4PRWfm1VnVJVPwUcAJzTyv8GeE9V/Sywre86lwHPVdUpwCnAu5Mc3Y6dCvxBVR0/Jvb/BS5ocZ0J/OVokitJkvRqMW3D7lV1Z5KLgOuAE1vx29rrwbY/h14yeiJwS1U90879wQT3ehG4vW2vA7ZW1UtJ1gELW/k+wLVJFtNLGN/Qd/59VbURIMnads69wJlJrgReAxwMrE/yNeB1VTU6Z/PveCUpfRvwxiQXtv257TlebPd4YpzYA3wiyZuA7cAC4HDg+xM8K0kuBy4HGDlw3kTVJEmShsa0fch8kr2A44AX6CV0G+klYH9aVZ8aU/cKoMaUjQBr2u7KqvoI8FJVjdbbDmwFqKrtSUaf5QPA0/QS2r3o9TiO2tq3vQ3YO8n+wPXAkqr6bpKrgP1brBM+HvB7VXXHmJiXAs9PcM4lwDzg5JYwP9nuM6GqugG4AWC/+YtqR3UlSZKGwXR+1NIHgA3AO4GbkuwD3AH8ZpI5AEkWJDkMuAv4lSSHtPKD22Kdxe31kV2471zgqaraDvwaMLKT+qMJ4DMtrgsBquqHwOYkp7Xj7+g75w7gd9ozkeQNSV47ibg2tcTzTOCoST+RJEnSLLEnej4PaEPYo24HbgJ+Czi1qjYn+Srwh1X10STHAf/WpjtuAS6tqvVJPg78a5Jt9Ibl3zXFeK4Hbm1D/nczcU8kAFX1bJJP0xvGfxK4v+/wZcCnkzwP3AM818pvpDdk/0Cbt/k/wPk7iWsF8OUkq4G1wCOTfyRJkqTZIa+MYmusJHOqanS1+nJgflVNtBhqWu03f1HNX3bNIG4tSZI6NBu+2z3JmqpaMt6xaZvzOUucneRD9H5O32HqvbGSJEnC5HOHqupm4OZBxyFJkjRb+N3ukiRJ6ow9n0PihAVzWT0L5oBIkqRXN3s+JUmS1BmTT0mSJHXG5FOSJEmdcc7nkFj338+xcPlXBh2GJEkaUjPl80Pt+ZQkSVJnTD4lSZLUGZNPSZIkdcbkU5IkSZ2ZtuQzybYka/teC/fw9c9NsnwPXu8vkqxv7+9J8us7qHtVkg9OcOwbeyomSZKk2WY6V7u/UFWLd+WEJAFSVdt3VreqVgIrpxrcOH4bmFdVW3fnIlX1c3soHkmSpFmns2H3JHOS3JXkgSTrkpzXyhcm2ZDkeuAB4OeTPJLkxiQPJ1mR5C1Jvp7ksSSntvPeleTatv3ZJJ9M8o0kjye5sJXvleT61qN5W5J/Gj02JraVwGuBVUku7u/ZTHJFkm8leSjJF/pOOz7JPe1+V/Rda0t7X9qO39KeZ0VLrkny9lZ2b4v7tmn4kUuSJM0409nzeUCStW37CeAi4IKq+lGSQ4FvtqQP4CeA36iq97bh+de3+pcD9wO/CpwBnAt8GDh/nPvNb3WOpdcjegvwS8BC4ATgMGADcNPYE6vq3CRbRntqk1zVd3g5cHRVbU1yUF/5scCZwOuAR5P8dVW9NObSJwE/CXwP+DpwepLVwKeAN1XVE0k+P86z0OK4vP0MGDlw3kTVJEmShsZ09ny+UFWL2+sCIMAnkjwE/DOwADi81f1OVX2z79wnqmpdG35fD9xVVQWso5dMjudLVbW9qr7Vd90zgL9v5d8H7p7CczwErEhyKfByX/lXqmprVT0DbOq7Z7/7qmpje461LfZjgcer6olWZ8Lks6puqKolVbVk5DVzpxC6JEnSzNLlavdLgHnAya2H8Wlg/3bs+TF1++ddbu/b387EvbX952TM+/+T5Gf6FkKdu5O4zwauA04G1iQZvX///bZNENd4dcaNSZIk6dWgy+RzLrCpql5KciZwVAf3vBf45Tb383BgKUBVrerrlZ1w0VKSvYAjq+pu4ErgIGDObsb0CHBM3+r/i3fzepIkSUOjy+92XwF8uc15XEsvCZtutwK/ADwM/AewCnhuF84fAf42yVx6PZZXV9Wzbd3QlFTVC0neC9ye5BngvilfTJIkacikN5Vy9koyp6q2JDmEXqJ3epv/ORNiCr0h/ceq6uodnbPf/EU1f9k13QQoSZJmnSf/7OzO7pVkTVUtGe9Ylz2fg3JbW6W+L/DHg048m3cnWUYvpgfprX6XJEma9WZ98llVSwcdw1itl3OHPZ2SJEmz0axPPmeLExbMZXWH3eWSJEnTocvV7pIkSXqVM/mUJElSZ0w+JUmS1BmTT0mSJHXG5FOSJEmdMfmUJElSZ0w+JUmS1BmTT0mSJHXG5FOSJEmdMfmUJElSZ0w+JUmS1BmTT0mSJHXG5FOSJEmdMfmUJElSZ1JVg45Bk5BkM/DooOPQbjkUeGbQQWi32IbDzzYcfrbhcDiqquaNd2DvriPRlD1aVUsGHYSmLslq23C42YbDzzYcfrbh8HPYXZIkSZ0x+ZQkSVJnTD6Hxw2DDkC7zTYcfrbh8LMNh59tOORccCRJkqTO2PMpSZKkzph8znBJzkryaJJvJ1k+6Hg0OUluSrIpycN9ZQcnuTPJY+39xwYZo3YsyZFJ7k6yIcn6JO9r5bbjkEiyf5L7kvx7a8M/auVHJ1nV2vDmJPsOOlbtWJKRJA8mua3t24ZDzORzBksyAlwH/CJwPPDOJMcPNipN0meBs8aULQfuqqpFwF1tXzPXy8DvV9VxwGnA77Z/f7bj8NgKvLmqTgQWA2clOQ34c+Dq1oY/BC4bYIyanPcBG/r2bcMhZvI5s50KfLuqHq+qF4EvAOcNOCZNQlV9FfjBmOLzgM+17c8B53calHZJVT1VVQ+07c30/vAtwHYcGtWzpe3u014FvBm4pZXbhjNckiOAs4Eb236wDYeayefMtgD4bt/+xlam4XR4VT0FvcQGOGzA8WiSkiwETgJWYTsOlTZcuxbYBNwJ/CfwbFW93Kr4e3Xmuwa4Etje9g/BNhxqJp8zW8Yp8+MJpA4lmQPcCry/qn406Hi0a6pqW1UtBo6gN5p03HjVuo1Kk5XkHGBTVa3pLx6nqm04RPx6zZltI3Bk3/4RwPcGFIt239NJ5lfVU0nm0+uJ0QyWZB96ieeKqvqHVmw7DqGqejbJPfTm7x6UZO/Wc+bv1ZntdODcJG8H9gcOpNcTahsOMXs+Z7b7gUVtVd++wDuAlQOOSVO3EljWtpcB/zjAWLQTbV7ZZ4ANVfVXfYdsxyGRZF6Sg9r2AcBb6M3dvRu4sFWzDWewqvpQVR1RVQvp/Q38l6q6BNtwqPkh8zNc+9/eNcAIcFNVfXzAIWkSknweWAocCjwNfBT4EvBF4MeB/wIuqqqxi5I0QyQ5A/gasI5X5pp9mN68T9txCCR5I73FKCP0Olu+WFUfS3IMvQWcBwMPApdW1dbBRarJSLIU+GBVnWMbDjeTT0mSJHXGYXdJkiR1xuRTkiRJnTH5lCRJUmdMPiVJktQZk09JkiR1xuRTkiRJnTH5lCRJUmdMPiVJktSZ/wOhxJPwKYe2fQAAAABJRU5ErkJggg==\n",
645 | "text/plain": [
646 | ""
647 | ]
648 | },
649 | "metadata": {
650 | "needs_background": "light"
651 | },
652 | "output_type": "display_data"
653 | }
654 | ],
655 | "source": [
656 | "plt.figure(figsize = (10, 6))\n",
657 | "plt.title(\"Weekly hours by occupation\")\n",
658 | "plt.barh(range(len(hours)), hours)\n",
659 | "plt.yticks(list(range(len(hours))), hours.index)\n",
660 | "plt.show()"
661 | ]
662 | }
663 | ],
664 | "metadata": {
665 | "celltoolbar": "Create Assignment",
666 | "kernelspec": {
667 | "display_name": "Python 3",
668 | "language": "python",
669 | "name": "python3"
670 | },
671 | "language_info": {
672 | "codemirror_mode": {
673 | "name": "ipython",
674 | "version": 3
675 | },
676 | "file_extension": ".py",
677 | "mimetype": "text/x-python",
678 | "name": "python",
679 | "nbconvert_exporter": "python",
680 | "pygments_lexer": "ipython3",
681 | "version": "3.7.3"
682 | }
683 | },
684 | "nbformat": 4,
685 | "nbformat_minor": 2
686 | }
687 |
--------------------------------------------------------------------------------