├── BERT-BiLSTM-CRF-NER
├── BERT_NER.py
├── README.md
├── __pycache__
│ ├── feature_input.cpython-36.pyc
│ ├── lstm_crf_layer.cpython-36.pyc
│ └── model.cpython-36.pyc
├── bert
│ ├── CONTRIBUTING.md
│ ├── LICENSE
│ ├── README.md
│ ├── __init__.py
│ ├── __pycache__
│ │ ├── __init__.cpython-36.pyc
│ │ ├── modeling.cpython-36.pyc
│ │ ├── optimization.cpython-36.pyc
│ │ └── tokenization.cpython-36.pyc
│ ├── create_pretraining_data.py
│ ├── extract_features.py
│ ├── modeling.py
│ ├── modeling_test.py
│ ├── multilingual.md
│ ├── optimization.py
│ ├── optimization_test.py
│ ├── requirements.txt
│ ├── run_classifier.py
│ ├── run_pretraining.py
│ ├── run_squad.py
│ ├── sample_text.txt
│ ├── tokenization.py
│ └── tokenization_test.py
├── chinese_L-12_H-768_A-12
│ ├── bert_config.json
│ ├── bert_model.ckpt
│ ├── bert_model.ckpt.index
│ ├── bert_model.ckpt.meta
│ └── vocab.txt
├── conlleval.pl
├── conlleval.py
├── data
│ └── data.here
├── data_process_utils.py
├── feature_input.py
├── lstm_crf_layer.py
├── model.py
├── requirement.txt
├── run_test.py
├── stopwords.txt
├── tf_metrics.py
└── vocab.txt
├── BERT-SA
├── README.md
├── bert
│ ├── .gitignore
│ ├── .idea
│ │ ├── bert.iml
│ │ ├── encodings.xml
│ │ ├── misc.xml
│ │ ├── modules.xml
│ │ └── workspace.xml
│ ├── CONTRIBUTING.md
│ ├── LICENSE
│ ├── README.md
│ ├── __init__.py
│ ├── _gitignore.txt
│ ├── create_pretraining_data.py
│ ├── extract_features.py
│ ├── modeling.py
│ ├── modeling_test.py
│ ├── multilingual.md
│ ├── optimization.py
│ ├── optimization_test.py
│ ├── predicting_movie_reviews_with_bert_on_tf_hub.ipynb
│ ├── requirements.txt
│ ├── run_classifier.py
│ ├── run_classifier_with_tfhub.py
│ ├── run_pretraining.py
│ ├── run_squad.py
│ ├── sample_text.txt
│ ├── tokenization.py
│ └── tokenization_test.py
├── input_feature.py
├── model.py
├── processor.py
├── run_classifier.py
└── run_test.py
└── README.md
/BERT-BiLSTM-CRF-NER/README.md:
--------------------------------------------------------------------------------
1 | ### BERT + BiLSTM + CRF
2 | - Only NER
3 | + Input
4 | + Output
5 | * labels => [O N-B N-I]
6 | * (Only Named Entity in labels, and then judge sentiment)
7 | - NER + Sentiment Analyze
8 | + Output
9 | * lables => [O P-B P-I N-B N-I]
10 | * (Positive or Negtive in labels as well)
11 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/__pycache__/feature_input.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/__pycache__/feature_input.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/__pycache__/lstm_crf_layer.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/__pycache__/lstm_crf_layer.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/__pycache__/model.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/__pycache__/model.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # How to Contribute
2 |
3 | BERT needs to maintain permanent compatibility with the pre-trained model files,
4 | so we do not plan to make any major changes to this library (other than what was
5 | promised in the README). However, we can accept small patches related to
6 | re-factoring and documentation. To submit contributes, there are just a few
7 | small guidelines you need to follow.
8 |
9 | ## Contributor License Agreement
10 |
11 | Contributions to this project must be accompanied by a Contributor License
12 | Agreement. You (or your employer) retain the copyright to your contribution;
13 | this simply gives us permission to use and redistribute your contributions as
14 | part of the project. Head over to to see
15 | your current agreements on file or to sign a new one.
16 |
17 | You generally only need to submit a CLA once, so if you've already submitted one
18 | (even if it was for a different project), you probably don't need to do it
19 | again.
20 |
21 | ## Code reviews
22 |
23 | All submissions, including submissions by project members, require review. We
24 | use GitHub pull requests for this purpose. Consult
25 | [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
26 | information on using pull requests.
27 |
28 | ## Community Guidelines
29 |
30 | This project follows
31 | [Google's Open Source Community Guidelines](https://opensource.google.com/conduct/).
32 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/LICENSE:
--------------------------------------------------------------------------------
1 |
2 | Apache License
3 | Version 2.0, January 2004
4 | http://www.apache.org/licenses/
5 |
6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7 |
8 | 1. Definitions.
9 |
10 | "License" shall mean the terms and conditions for use, reproduction,
11 | and distribution as defined by Sections 1 through 9 of this document.
12 |
13 | "Licensor" shall mean the copyright owner or entity authorized by
14 | the copyright owner that is granting the License.
15 |
16 | "Legal Entity" shall mean the union of the acting entity and all
17 | other entities that control, are controlled by, or are under common
18 | control with that entity. For the purposes of this definition,
19 | "control" means (i) the power, direct or indirect, to cause the
20 | direction or management of such entity, whether by contract or
21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
22 | outstanding shares, or (iii) beneficial ownership of such entity.
23 |
24 | "You" (or "Your") shall mean an individual or Legal Entity
25 | exercising permissions granted by this License.
26 |
27 | "Source" form shall mean the preferred form for making modifications,
28 | including but not limited to software source code, documentation
29 | source, and configuration files.
30 |
31 | "Object" form shall mean any form resulting from mechanical
32 | transformation or translation of a Source form, including but
33 | not limited to compiled object code, generated documentation,
34 | and conversions to other media types.
35 |
36 | "Work" shall mean the work of authorship, whether in Source or
37 | Object form, made available under the License, as indicated by a
38 | copyright notice that is included in or attached to the work
39 | (an example is provided in the Appendix below).
40 |
41 | "Derivative Works" shall mean any work, whether in Source or Object
42 | form, that is based on (or derived from) the Work and for which the
43 | editorial revisions, annotations, elaborations, or other modifications
44 | represent, as a whole, an original work of authorship. For the purposes
45 | of this License, Derivative Works shall not include works that remain
46 | separable from, or merely link (or bind by name) to the interfaces of,
47 | the Work and Derivative Works thereof.
48 |
49 | "Contribution" shall mean any work of authorship, including
50 | the original version of the Work and any modifications or additions
51 | to that Work or Derivative Works thereof, that is intentionally
52 | submitted to Licensor for inclusion in the Work by the copyright owner
53 | or by an individual or Legal Entity authorized to submit on behalf of
54 | the copyright owner. For the purposes of this definition, "submitted"
55 | means any form of electronic, verbal, or written communication sent
56 | to the Licensor or its representatives, including but not limited to
57 | communication on electronic mailing lists, source code control systems,
58 | and issue tracking systems that are managed by, or on behalf of, the
59 | Licensor for the purpose of discussing and improving the Work, but
60 | excluding communication that is conspicuously marked or otherwise
61 | designated in writing by the copyright owner as "Not a Contribution."
62 |
63 | "Contributor" shall mean Licensor and any individual or Legal Entity
64 | on behalf of whom a Contribution has been received by Licensor and
65 | subsequently incorporated within the Work.
66 |
67 | 2. Grant of Copyright License. Subject to the terms and conditions of
68 | this License, each Contributor hereby grants to You a perpetual,
69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70 | copyright license to reproduce, prepare Derivative Works of,
71 | publicly display, publicly perform, sublicense, and distribute the
72 | Work and such Derivative Works in Source or Object form.
73 |
74 | 3. Grant of Patent License. Subject to the terms and conditions of
75 | this License, each Contributor hereby grants to You a perpetual,
76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77 | (except as stated in this section) patent license to make, have made,
78 | use, offer to sell, sell, import, and otherwise transfer the Work,
79 | where such license applies only to those patent claims licensable
80 | by such Contributor that are necessarily infringed by their
81 | Contribution(s) alone or by combination of their Contribution(s)
82 | with the Work to which such Contribution(s) was submitted. If You
83 | institute patent litigation against any entity (including a
84 | cross-claim or counterclaim in a lawsuit) alleging that the Work
85 | or a Contribution incorporated within the Work constitutes direct
86 | or contributory patent infringement, then any patent licenses
87 | granted to You under this License for that Work shall terminate
88 | as of the date such litigation is filed.
89 |
90 | 4. Redistribution. You may reproduce and distribute copies of the
91 | Work or Derivative Works thereof in any medium, with or without
92 | modifications, and in Source or Object form, provided that You
93 | meet the following conditions:
94 |
95 | (a) You must give any other recipients of the Work or
96 | Derivative Works a copy of this License; and
97 |
98 | (b) You must cause any modified files to carry prominent notices
99 | stating that You changed the files; and
100 |
101 | (c) You must retain, in the Source form of any Derivative Works
102 | that You distribute, all copyright, patent, trademark, and
103 | attribution notices from the Source form of the Work,
104 | excluding those notices that do not pertain to any part of
105 | the Derivative Works; and
106 |
107 | (d) If the Work includes a "NOTICE" text file as part of its
108 | distribution, then any Derivative Works that You distribute must
109 | include a readable copy of the attribution notices contained
110 | within such NOTICE file, excluding those notices that do not
111 | pertain to any part of the Derivative Works, in at least one
112 | of the following places: within a NOTICE text file distributed
113 | as part of the Derivative Works; within the Source form or
114 | documentation, if provided along with the Derivative Works; or,
115 | within a display generated by the Derivative Works, if and
116 | wherever such third-party notices normally appear. The contents
117 | of the NOTICE file are for informational purposes only and
118 | do not modify the License. You may add Your own attribution
119 | notices within Derivative Works that You distribute, alongside
120 | or as an addendum to the NOTICE text from the Work, provided
121 | that such additional attribution notices cannot be construed
122 | as modifying the License.
123 |
124 | You may add Your own copyright statement to Your modifications and
125 | may provide additional or different license terms and conditions
126 | for use, reproduction, or distribution of Your modifications, or
127 | for any such Derivative Works as a whole, provided Your use,
128 | reproduction, and distribution of the Work otherwise complies with
129 | the conditions stated in this License.
130 |
131 | 5. Submission of Contributions. Unless You explicitly state otherwise,
132 | any Contribution intentionally submitted for inclusion in the Work
133 | by You to the Licensor shall be under the terms and conditions of
134 | this License, without any additional terms or conditions.
135 | Notwithstanding the above, nothing herein shall supersede or modify
136 | the terms of any separate license agreement you may have executed
137 | with Licensor regarding such Contributions.
138 |
139 | 6. Trademarks. This License does not grant permission to use the trade
140 | names, trademarks, service marks, or product names of the Licensor,
141 | except as required for reasonable and customary use in describing the
142 | origin of the Work and reproducing the content of the NOTICE file.
143 |
144 | 7. Disclaimer of Warranty. Unless required by applicable law or
145 | agreed to in writing, Licensor provides the Work (and each
146 | Contributor provides its Contributions) on an "AS IS" BASIS,
147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148 | implied, including, without limitation, any warranties or conditions
149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150 | PARTICULAR PURPOSE. You are solely responsible for determining the
151 | appropriateness of using or redistributing the Work and assume any
152 | risks associated with Your exercise of permissions under this License.
153 |
154 | 8. Limitation of Liability. In no event and under no legal theory,
155 | whether in tort (including negligence), contract, or otherwise,
156 | unless required by applicable law (such as deliberate and grossly
157 | negligent acts) or agreed to in writing, shall any Contributor be
158 | liable to You for damages, including any direct, indirect, special,
159 | incidental, or consequential damages of any character arising as a
160 | result of this License or out of the use or inability to use the
161 | Work (including but not limited to damages for loss of goodwill,
162 | work stoppage, computer failure or malfunction, or any and all
163 | other commercial damages or losses), even if such Contributor
164 | has been advised of the possibility of such damages.
165 |
166 | 9. Accepting Warranty or Additional Liability. While redistributing
167 | the Work or Derivative Works thereof, You may choose to offer,
168 | and charge a fee for, acceptance of support, warranty, indemnity,
169 | or other liability obligations and/or rights consistent with this
170 | License. However, in accepting such obligations, You may act only
171 | on Your own behalf and on Your sole responsibility, not on behalf
172 | of any other Contributor, and only if You agree to indemnify,
173 | defend, and hold each Contributor harmless for any liability
174 | incurred by, or claims asserted against, such Contributor by reason
175 | of your accepting any such warranty or additional liability.
176 |
177 | END OF TERMS AND CONDITIONS
178 |
179 | APPENDIX: How to apply the Apache License to your work.
180 |
181 | To apply the Apache License to your work, attach the following
182 | boilerplate notice, with the fields enclosed by brackets "[]"
183 | replaced with your own identifying information. (Don't include
184 | the brackets!) The text should be enclosed in the appropriate
185 | comment syntax for the file format. We also recommend that a
186 | file or class name and description of purpose be included on the
187 | same "printed page" as the copyright notice for easier
188 | identification within third-party archives.
189 |
190 | Copyright [yyyy] [name of copyright owner]
191 |
192 | Licensed under the Apache License, Version 2.0 (the "License");
193 | you may not use this file except in compliance with the License.
194 | You may obtain a copy of the License at
195 |
196 | http://www.apache.org/licenses/LICENSE-2.0
197 |
198 | Unless required by applicable law or agreed to in writing, software
199 | distributed under the License is distributed on an "AS IS" BASIS,
200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201 | See the License for the specific language governing permissions and
202 | limitations under the License.
203 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/bert/__init__.py
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/__pycache__/__init__.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/bert/__pycache__/__init__.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/__pycache__/modeling.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/bert/__pycache__/modeling.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/__pycache__/optimization.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/bert/__pycache__/optimization.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/__pycache__/tokenization.cpython-36.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/bert/__pycache__/tokenization.cpython-36.pyc
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/modeling_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import collections
20 | import json
21 | import random
22 | import re
23 |
24 | import modeling
25 | import six
26 | import tensorflow as tf
27 |
28 |
29 | class BertModelTest(tf.test.TestCase):
30 |
31 | class BertModelTester(object):
32 |
33 | def __init__(self,
34 | parent,
35 | batch_size=13,
36 | seq_length=7,
37 | is_training=True,
38 | use_input_mask=True,
39 | use_token_type_ids=True,
40 | vocab_size=99,
41 | hidden_size=32,
42 | num_hidden_layers=5,
43 | num_attention_heads=4,
44 | intermediate_size=37,
45 | hidden_act="gelu",
46 | hidden_dropout_prob=0.1,
47 | attention_probs_dropout_prob=0.1,
48 | max_position_embeddings=512,
49 | type_vocab_size=16,
50 | initializer_range=0.02,
51 | scope=None):
52 | self.parent = parent
53 | self.batch_size = batch_size
54 | self.seq_length = seq_length
55 | self.is_training = is_training
56 | self.use_input_mask = use_input_mask
57 | self.use_token_type_ids = use_token_type_ids
58 | self.vocab_size = vocab_size
59 | self.hidden_size = hidden_size
60 | self.num_hidden_layers = num_hidden_layers
61 | self.num_attention_heads = num_attention_heads
62 | self.intermediate_size = intermediate_size
63 | self.hidden_act = hidden_act
64 | self.hidden_dropout_prob = hidden_dropout_prob
65 | self.attention_probs_dropout_prob = attention_probs_dropout_prob
66 | self.max_position_embeddings = max_position_embeddings
67 | self.type_vocab_size = type_vocab_size
68 | self.initializer_range = initializer_range
69 | self.scope = scope
70 |
71 | def create_model(self):
72 | input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
73 | self.vocab_size)
74 |
75 | input_mask = None
76 | if self.use_input_mask:
77 | input_mask = BertModelTest.ids_tensor(
78 | [self.batch_size, self.seq_length], vocab_size=2)
79 |
80 | token_type_ids = None
81 | if self.use_token_type_ids:
82 | token_type_ids = BertModelTest.ids_tensor(
83 | [self.batch_size, self.seq_length], self.type_vocab_size)
84 |
85 | config = modeling.BertConfig(
86 | vocab_size=self.vocab_size,
87 | hidden_size=self.hidden_size,
88 | num_hidden_layers=self.num_hidden_layers,
89 | num_attention_heads=self.num_attention_heads,
90 | intermediate_size=self.intermediate_size,
91 | hidden_act=self.hidden_act,
92 | hidden_dropout_prob=self.hidden_dropout_prob,
93 | attention_probs_dropout_prob=self.attention_probs_dropout_prob,
94 | max_position_embeddings=self.max_position_embeddings,
95 | type_vocab_size=self.type_vocab_size,
96 | initializer_range=self.initializer_range)
97 |
98 | model = modeling.BertModel(
99 | config=config,
100 | is_training=self.is_training,
101 | input_ids=input_ids,
102 | input_mask=input_mask,
103 | token_type_ids=token_type_ids,
104 | scope=self.scope)
105 |
106 | outputs = {
107 | "embedding_output": model.get_embedding_output(),
108 | "sequence_output": model.get_sequence_output(),
109 | "pooled_output": model.get_pooled_output(),
110 | "all_encoder_layers": model.get_all_encoder_layers(),
111 | }
112 | return outputs
113 |
114 | def check_output(self, result):
115 | self.parent.assertAllEqual(
116 | result["embedding_output"].shape,
117 | [self.batch_size, self.seq_length, self.hidden_size])
118 |
119 | self.parent.assertAllEqual(
120 | result["sequence_output"].shape,
121 | [self.batch_size, self.seq_length, self.hidden_size])
122 |
123 | self.parent.assertAllEqual(result["pooled_output"].shape,
124 | [self.batch_size, self.hidden_size])
125 |
126 | def test_default(self):
127 | self.run_tester(BertModelTest.BertModelTester(self))
128 |
129 | def test_config_to_json_string(self):
130 | config = modeling.BertConfig(vocab_size=99, hidden_size=37)
131 | obj = json.loads(config.to_json_string())
132 | self.assertEqual(obj["vocab_size"], 99)
133 | self.assertEqual(obj["hidden_size"], 37)
134 |
135 | def run_tester(self, tester):
136 | with self.test_session() as sess:
137 | ops = tester.create_model()
138 | init_op = tf.group(tf.global_variables_initializer(),
139 | tf.local_variables_initializer())
140 | sess.run(init_op)
141 | output_result = sess.run(ops)
142 | tester.check_output(output_result)
143 |
144 | self.assert_all_tensors_reachable(sess, [init_op, ops])
145 |
146 | @classmethod
147 | def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
148 | """Creates a random int32 tensor of the shape within the vocab size."""
149 | if rng is None:
150 | rng = random.Random()
151 |
152 | total_dims = 1
153 | for dim in shape:
154 | total_dims *= dim
155 |
156 | values = []
157 | for _ in range(total_dims):
158 | values.append(rng.randint(0, vocab_size - 1))
159 |
160 | return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
161 |
162 | def assert_all_tensors_reachable(self, sess, outputs):
163 | """Checks that all the tensors in the graph are reachable from outputs."""
164 | graph = sess.graph
165 |
166 | ignore_strings = [
167 | "^.*/assert_less_equal/.*$",
168 | "^.*/dilation_rate$",
169 | "^.*/Tensordot/concat$",
170 | "^.*/Tensordot/concat/axis$",
171 | "^testing/.*$",
172 | ]
173 |
174 | ignore_regexes = [re.compile(x) for x in ignore_strings]
175 |
176 | unreachable = self.get_unreachable_ops(graph, outputs)
177 | filtered_unreachable = []
178 | for x in unreachable:
179 | do_ignore = False
180 | for r in ignore_regexes:
181 | m = r.match(x.name)
182 | if m is not None:
183 | do_ignore = True
184 | if do_ignore:
185 | continue
186 | filtered_unreachable.append(x)
187 | unreachable = filtered_unreachable
188 |
189 | self.assertEqual(
190 | len(unreachable), 0, "The following ops are unreachable: %s" %
191 | (" ".join([x.name for x in unreachable])))
192 |
193 | @classmethod
194 | def get_unreachable_ops(cls, graph, outputs):
195 | """Finds all of the tensors in graph that are unreachable from outputs."""
196 | outputs = cls.flatten_recursive(outputs)
197 | output_to_op = collections.defaultdict(list)
198 | op_to_all = collections.defaultdict(list)
199 | assign_out_to_in = collections.defaultdict(list)
200 |
201 | for op in graph.get_operations():
202 | for x in op.inputs:
203 | op_to_all[op.name].append(x.name)
204 | for y in op.outputs:
205 | output_to_op[y.name].append(op.name)
206 | op_to_all[op.name].append(y.name)
207 | if str(op.type) == "Assign":
208 | for y in op.outputs:
209 | for x in op.inputs:
210 | assign_out_to_in[y.name].append(x.name)
211 |
212 | assign_groups = collections.defaultdict(list)
213 | for out_name in assign_out_to_in.keys():
214 | name_group = assign_out_to_in[out_name]
215 | for n1 in name_group:
216 | assign_groups[n1].append(out_name)
217 | for n2 in name_group:
218 | if n1 != n2:
219 | assign_groups[n1].append(n2)
220 |
221 | seen_tensors = {}
222 | stack = [x.name for x in outputs]
223 | while stack:
224 | name = stack.pop()
225 | if name in seen_tensors:
226 | continue
227 | seen_tensors[name] = True
228 |
229 | if name in output_to_op:
230 | for op_name in output_to_op[name]:
231 | if op_name in op_to_all:
232 | for input_name in op_to_all[op_name]:
233 | if input_name not in stack:
234 | stack.append(input_name)
235 |
236 | expanded_names = []
237 | if name in assign_groups:
238 | for assign_name in assign_groups[name]:
239 | expanded_names.append(assign_name)
240 |
241 | for expanded_name in expanded_names:
242 | if expanded_name not in stack:
243 | stack.append(expanded_name)
244 |
245 | unreachable_ops = []
246 | for op in graph.get_operations():
247 | is_unreachable = False
248 | all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
249 | for name in all_names:
250 | if name not in seen_tensors:
251 | is_unreachable = True
252 | if is_unreachable:
253 | unreachable_ops.append(op)
254 | return unreachable_ops
255 |
256 | @classmethod
257 | def flatten_recursive(cls, item):
258 | """Flattens (potentially nested) a tuple/dictionary/list to a list."""
259 | output = []
260 | if isinstance(item, list):
261 | output.extend(item)
262 | elif isinstance(item, tuple):
263 | output.extend(list(item))
264 | elif isinstance(item, dict):
265 | for (_, v) in six.iteritems(item):
266 | output.append(v)
267 | else:
268 | return [item]
269 |
270 | flat_output = []
271 | for x in output:
272 | flat_output.extend(cls.flatten_recursive(x))
273 | return flat_output
274 |
275 |
276 | if __name__ == "__main__":
277 | tf.test.main()
278 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/multilingual.md:
--------------------------------------------------------------------------------
1 | ## Models
2 |
3 | There are two multilingual models currently available. We do not plan to release
4 | more single-language models, but we may release `BERT-Large` versions of these
5 | two in the future:
6 |
7 | * **[`BERT-Base, Multilingual`](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip)**:
8 | 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
9 | * **[`BERT-Base, Chinese`](https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip)**:
10 | Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M
11 | parameters
12 |
13 | See the [list of languages](#list-of-languages) that the Multilingual model
14 | supports. The Multilingual model does include Chinese (and English), but if your
15 | fine-tuning data is Chinese-only, then the Chinese model will likely produce
16 | better results.
17 |
18 | ## Results
19 |
20 | To evaluate these systems, we use the
21 | [XNLI dataset](https://github.com/facebookresearch/XNLI) dataset, which is a
22 | version of [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) where the
23 | dev and test sets have been translated (by humans) into 15 languages. Note that
24 | the training set was *machine* translated (we used the translations provided by
25 | XNLI, not Google NMT). For clarity, we only report on 6 languages below:
26 |
27 |
28 |
29 | | System | English | Chinese | Spanish | German | Arabic | Urdu |
30 | | ------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- |
31 | | XNLI Baseline - Translate Train | 73.7 | 67.0 | 68.8 | 66.5 | 65.8 | 56.6 |
32 | | XNLI Baseline - Translate Test | 73.7 | 68.3 | 70.7 | 68.7 | 66.8 | 59.3 |
33 | | BERT -Translate Train | **81.4** | **74.2** | **77.3** | **75.2** | **70.5** | 61.7 |
34 | | BERT - Translate Test | 81.4 | 70.1 | 74.9 | 74.4 | 70.4 | **62.1** |
35 | | BERT - Zero Shot | 81.4 | 63.8 | 74.3 | 70.5 | 62.1 | 58.3 |
36 |
37 |
38 |
39 | The first two rows are baselines from the XNLI paper and the last three rows are
40 | our results with BERT.
41 |
42 | **Translate Train** means that the MultiNLI training set was machine translated
43 | from English into the foreign language. So training and evaluation were both
44 | done in the foreign language. Unfortunately, training was done on
45 | machine-translated data, so it is impossible to quantify how much of the lower
46 | accuracy (compared to English) is due to the quality of the machine translation
47 | vs. the quality of the pre-trained model.
48 |
49 | **Translate Test** means that the XNLI test set was machine translated from the
50 | foreign language into English. So training and evaluation were both done on
51 | English. However, test evaluation was done on machine-translated English, so the
52 | accuracy depends on the quality of the machine translation system.
53 |
54 | **Zero Shot** means that the Multilingual BERT system was fine-tuned on English
55 | MultiNLI, and then evaluated on the foreign language XNLI test. In this case,
56 | machine translation was not involved at all in either the pre-training or
57 | fine-tuning.
58 |
59 | Note that the English result is worse than the 84.2 MultiNLI baseline because
60 | this training used Multilingual BERT rather than English-only BERT. This implies
61 | that for high-resource languages, the Multilingual model is somewhat worse than
62 | a single-language model. However, it is not feasible for us to train and
63 | maintain dozens of single-language model. Therefore, if your goal is to maximize
64 | performance with a language other than English or Chinese, you might find it
65 | beneficial to run pre-training for additional steps starting from our
66 | Multilingual model on data from your language of interest.
67 |
68 | Here is a comparison of training Chinese models with the Multilingual
69 | `BERT-Base` and Chinese-only `BERT-Base`:
70 |
71 | System | Chinese
72 | ----------------------- | -------
73 | XNLI Baseline | 67.0
74 | BERT Multilingual Model | 74.2
75 | BERT Chinese-only Model | 77.2
76 |
77 | Similar to English, the single-language model does 3% better than the
78 | Multilingual model.
79 |
80 | ## Fine-tuning Example
81 |
82 | The multilingual model does **not** require any special consideration or API
83 | changes. We did update the implementation of `BasicTokenizer` in
84 | `tokenization.py` to support Chinese character tokenization, so please update if
85 | you forked it. However, we did not change the tokenization API.
86 |
87 | To test the new models, we did modify `run_classifier.py` to add support for the
88 | [XNLI dataset](https://github.com/facebookresearch/XNLI). This is a 15-language
89 | version of MultiNLI where the dev/test sets have been human-translated, and the
90 | training set has been machine-translated.
91 |
92 | To run the fine-tuning code, please download the
93 | [XNLI dev/test set](https://s3.amazonaws.com/xnli/XNLI-1.0.zip) and the
94 | [XNLI machine-translated training set](https://s3.amazonaws.com/xnli/XNLI-MT-1.0.zip)
95 | and then unpack both .zip files into some directory `$XNLI_DIR`.
96 |
97 | To run fine-tuning on XNLI. The language is hard-coded into `run_classifier.py`
98 | (Chinese by default), so please modify `XnliProcessor` if you want to run on
99 | another language.
100 |
101 | This is a large dataset, so this will training will take a few hours on a GPU
102 | (or about 30 minutes on a Cloud TPU). To run an experiment quickly for
103 | debugging, just set `num_train_epochs` to a small value like `0.1`.
104 |
105 | ```shell
106 | export BERT_BASE_DIR=/path/to/bert/chinese_L-12_H-768_A-12 # or multilingual_L-12_H-768_A-12
107 | export XNLI_DIR=/path/to/xnli
108 |
109 | python run_classifier.py \
110 | --task_name=XNLI \
111 | --do_train=true \
112 | --do_eval=true \
113 | --data_dir=$XNLI_DIR \
114 | --vocab_file=$BERT_BASE_DIR/vocab.txt \
115 | --bert_config_file=$BERT_BASE_DIR/bert_config.json \
116 | --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
117 | --max_seq_length=128 \
118 | --train_batch_size=32 \
119 | --learning_rate=5e-5 \
120 | --num_train_epochs=2.0 \
121 | --output_dir=/tmp/xnli_output/
122 | ```
123 |
124 | With the Chinese-only model, the results should look something like this:
125 |
126 | ```
127 | ***** Eval results *****
128 | eval_accuracy = 0.774116
129 | eval_loss = 0.83554
130 | global_step = 24543
131 | loss = 0.74603
132 | ```
133 |
134 | ## Details
135 |
136 | ### Data Source and Sampling
137 |
138 | The languages chosen were the
139 | [top 100 languages with the largest Wikipedias](https://meta.wikimedia.org/wiki/List_of_Wikipedias).
140 | The entire Wikipedia dump for each language (excluding user and talk pages) was
141 | taken as the training data for each language
142 |
143 | However, the size of the Wikipedia for a given language varies greatly, and
144 | therefore low-resource languages may be "under-represented" in terms of the
145 | neural network model (under the assumption that languages are "competing" for
146 | limited model capacity to some extent).
147 |
148 | However, the size of a Wikipedia also correlates with the number of speakers of
149 | a language, and we also don't want to overfit the model by performing thousands
150 | of epochs over a tiny Wikipedia for a particular language.
151 |
152 | To balance these two factors, we performed exponentially smoothed weighting of
153 | the data during pre-training data creation (and WordPiece vocab creation). In
154 | other words, let's say that the probability of a language is *P(L)*, e.g.,
155 | *P(English) = 0.21* means that after concatenating all of the Wikipedias
156 | together, 21% of our data is English. We exponentiate each probability by some
157 | factor *S* and then re-normalize, and sample from that distribution. In our case
158 | we use *S=0.7*. So, high-resource languages like English will be under-sampled,
159 | and low-resource languages like Icelandic will be over-sampled. E.g., in the
160 | original distribution English would be sampled 1000x more than Icelandic, but
161 | after smoothing it's only sampled 100x more.
162 |
163 | ### Tokenization
164 |
165 | For tokenization, we use a 110k shared WordPiece vocabulary. The word counts are
166 | weighted the same way as the data, so low-resource languages are upweighted by
167 | some factor. We intentionally do *not* use any marker to denote the input
168 | language (so that zero-shot training can work).
169 |
170 | Because Chinese does not have whitespace characters, we add spaces around every
171 | character in the
172 | [CJK Unicode range](https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_\(Unicode_block\))
173 | before applying WordPiece. This means that Chinese is effectively
174 | character-tokenized. Note that the CJK Unicode block only includes
175 | Chinese-origin characters and does *not* include Hangul Korean or
176 | Katakana/Hiragana Japanese, which are tokenized with whitespace+WordPiece like
177 | all other languages.
178 |
179 | For all other languages, we apply the
180 | [same recipe as English](https://github.com/google-research/bert#tokenization):
181 | (a) lower casing+accent removal, (b) punctuation splitting, (c) whitespace
182 | tokenization. We understand that accent markers have substantial meaning in some
183 | languages, but felt that the benefits of reducing the effective vocabulary make
184 | up for this. Generally the strong contextual models of BERT should make up for
185 | any ambiguity introduced by stripping accent markers.
186 |
187 | ### List of Languages
188 |
189 | The multilingual model supports the following languages. These languages were
190 | chosen because they are the top 100 languages with the largest Wikipedias:
191 |
192 | * Afrikaans
193 | * Albanian
194 | * Arabic
195 | * Aragonese
196 | * Armenian
197 | * Asturian
198 | * Azerbaijani
199 | * Bashkir
200 | * Basque
201 | * Bavarian
202 | * Belarusian
203 | * Bengali
204 | * Bishnupriya Manipuri
205 | * Bosnian
206 | * Breton
207 | * Bulgarian
208 | * Burmese
209 | * Catalan
210 | * Cebuano
211 | * Chechen
212 | * Chinese (Simplified)
213 | * Chinese (Traditional)
214 | * Chuvash
215 | * Croatian
216 | * Czech
217 | * Danish
218 | * Dutch
219 | * English
220 | * Estonian
221 | * Finnish
222 | * French
223 | * Galician
224 | * Georgian
225 | * German
226 | * Greek
227 | * Gujarati
228 | * Haitian
229 | * Hebrew
230 | * Hindi
231 | * Hungarian
232 | * Icelandic
233 | * Ido
234 | * Indonesian
235 | * Irish
236 | * Italian
237 | * Japanese
238 | * Javanese
239 | * Kannada
240 | * Kazakh
241 | * Kirghiz
242 | * Korean
243 | * Latin
244 | * Latvian
245 | * Lithuanian
246 | * Lombard
247 | * Low Saxon
248 | * Luxembourgish
249 | * Macedonian
250 | * Malagasy
251 | * Malay
252 | * Malayalam
253 | * Marathi
254 | * Minangkabau
255 | * Nepali
256 | * Newar
257 | * Norwegian (Bokmal)
258 | * Norwegian (Nynorsk)
259 | * Occitan
260 | * Persian (Farsi)
261 | * Piedmontese
262 | * Polish
263 | * Portuguese
264 | * Punjabi
265 | * Romanian
266 | * Russian
267 | * Scots
268 | * Serbian
269 | * Serbo-Croatian
270 | * Sicilian
271 | * Slovak
272 | * Slovenian
273 | * South Azerbaijani
274 | * Spanish
275 | * Sundanese
276 | * Swahili
277 | * Swedish
278 | * Tagalog
279 | * Tajik
280 | * Tamil
281 | * Tatar
282 | * Telugu
283 | * Turkish
284 | * Ukrainian
285 | * Urdu
286 | * Uzbek
287 | * Vietnamese
288 | * Volapük
289 | * Waray-Waray
290 | * Welsh
291 | * West
292 | * Western Punjabi
293 | * Yoruba
294 |
295 | The only language which we had to unfortunately exclude was Thai, since it is
296 | the only language (other than Chinese) that does not use whitespace to delimit
297 | words, and it has too many characters-per-word to use character-based
298 | tokenization. Our WordPiece algorithm is quadratic with respect to the size of
299 | the input token so very long character strings do not work with it.
300 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/optimization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Functions and classes related to optimization (weight updates)."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import re
22 | import tensorflow as tf
23 |
24 |
25 | def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
26 | """Creates an optimizer training op."""
27 | global_step = tf.train.get_or_create_global_step()
28 |
29 | learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
30 |
31 | # Implements linear decay of the learning rate.
32 | learning_rate = tf.train.polynomial_decay(
33 | learning_rate,
34 | global_step,
35 | num_train_steps,
36 | end_learning_rate=0.0,
37 | power=1.0,
38 | cycle=False)
39 |
40 | # Implements linear warmup. I.e., if global_step < num_warmup_steps, the
41 | # learning rate will be `global_step/num_warmup_steps * init_lr`.
42 | if num_warmup_steps:
43 | global_steps_int = tf.cast(global_step, tf.int32)
44 | warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
45 |
46 | global_steps_float = tf.cast(global_steps_int, tf.float32)
47 | warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
48 |
49 | warmup_percent_done = global_steps_float / warmup_steps_float
50 | warmup_learning_rate = init_lr * warmup_percent_done
51 |
52 | is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
53 | learning_rate = (
54 | (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
55 |
56 | # It is recommended that you use this optimizer for fine tuning, since this
57 | # is how the model was trained (note that the Adam m/v variables are NOT
58 | # loaded from init_checkpoint.)
59 | optimizer = AdamWeightDecayOptimizer(
60 | learning_rate=learning_rate,
61 | weight_decay_rate=0.01,
62 | beta_1=0.9,
63 | beta_2=0.999,
64 | epsilon=1e-6,
65 | exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
66 |
67 | if use_tpu:
68 | optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
69 |
70 | tvars = tf.trainable_variables()
71 | grads = tf.gradients(loss, tvars)
72 |
73 | # This is how the model was pre-trained.
74 | (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
75 |
76 | train_op = optimizer.apply_gradients(
77 | zip(grads, tvars), global_step=global_step)
78 |
79 | new_global_step = global_step + 1
80 | train_op = tf.group(train_op, [global_step.assign(new_global_step)])
81 | return train_op
82 |
83 |
84 | class AdamWeightDecayOptimizer(tf.train.Optimizer):
85 | """A basic Adam optimizer that includes "correct" L2 weight decay."""
86 |
87 | def __init__(self,
88 | learning_rate,
89 | weight_decay_rate=0.0,
90 | beta_1=0.9,
91 | beta_2=0.999,
92 | epsilon=1e-6,
93 | exclude_from_weight_decay=None,
94 | name="AdamWeightDecayOptimizer"):
95 | """Constructs a AdamWeightDecayOptimizer."""
96 | super(AdamWeightDecayOptimizer, self).__init__(False, name)
97 |
98 | self.learning_rate = learning_rate
99 | self.weight_decay_rate = weight_decay_rate
100 | self.beta_1 = beta_1
101 | self.beta_2 = beta_2
102 | self.epsilon = epsilon
103 | self.exclude_from_weight_decay = exclude_from_weight_decay
104 |
105 | def apply_gradients(self, grads_and_vars, global_step=None, name=None):
106 | """See base class."""
107 | assignments = []
108 | for (grad, param) in grads_and_vars:
109 | if grad is None or param is None:
110 | continue
111 |
112 | param_name = self._get_variable_name(param.name)
113 |
114 | m = tf.get_variable(
115 | name=param_name + "/adam_m",
116 | shape=param.shape.as_list(),
117 | dtype=tf.float32,
118 | trainable=False,
119 | initializer=tf.zeros_initializer())
120 | v = tf.get_variable(
121 | name=param_name + "/adam_v",
122 | shape=param.shape.as_list(),
123 | dtype=tf.float32,
124 | trainable=False,
125 | initializer=tf.zeros_initializer())
126 |
127 | # Standard Adam update.
128 | next_m = (
129 | tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
130 | next_v = (
131 | tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
132 | tf.square(grad)))
133 |
134 | update = next_m / (tf.sqrt(next_v) + self.epsilon)
135 |
136 | # Just adding the square of the weights to the loss function is *not*
137 | # the correct way of using L2 regularization/weight decay with Adam,
138 | # since that will interact with the m and v parameters in strange ways.
139 | #
140 | # Instead we want ot decay the weights in a manner that doesn't interact
141 | # with the m/v parameters. This is equivalent to adding the square
142 | # of the weights to the loss with plain (non-momentum) SGD.
143 | if self._do_use_weight_decay(param_name):
144 | update += self.weight_decay_rate * param
145 |
146 | update_with_lr = self.learning_rate * update
147 |
148 | next_param = param - update_with_lr
149 |
150 | assignments.extend(
151 | [param.assign(next_param),
152 | m.assign(next_m),
153 | v.assign(next_v)])
154 | return tf.group(*assignments, name=name)
155 |
156 | def _do_use_weight_decay(self, param_name):
157 | """Whether to use L2 weight decay for `param_name`."""
158 | if not self.weight_decay_rate:
159 | return False
160 | if self.exclude_from_weight_decay:
161 | for r in self.exclude_from_weight_decay:
162 | if re.search(r, param_name) is not None:
163 | return False
164 | return True
165 |
166 | def _get_variable_name(self, param_name):
167 | """Get the variable name from the tensor name."""
168 | m = re.match("^(.*):\\d+$", param_name)
169 | if m is not None:
170 | param_name = m.group(1)
171 | return param_name
172 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/optimization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import optimization
20 | import tensorflow as tf
21 |
22 |
23 | class OptimizationTest(tf.test.TestCase):
24 |
25 | def test_adam(self):
26 | with self.test_session() as sess:
27 | w = tf.get_variable(
28 | "w",
29 | shape=[3],
30 | initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
31 | x = tf.constant([0.4, 0.2, -0.5])
32 | loss = tf.reduce_mean(tf.square(x - w))
33 | tvars = tf.trainable_variables()
34 | grads = tf.gradients(loss, tvars)
35 | global_step = tf.train.get_or_create_global_step()
36 | optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
37 | train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
38 | init_op = tf.group(tf.global_variables_initializer(),
39 | tf.local_variables_initializer())
40 | sess.run(init_op)
41 | for _ in range(100):
42 | sess.run(train_op)
43 | w_np = sess.run(w)
44 | self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
45 |
46 |
47 | if __name__ == "__main__":
48 | tf.test.main()
49 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow >= 1.11.0 # CPU Version of TensorFlow.
2 | # tensorflow-gpu >= 1.11.0 # GPU version of TensorFlow.
3 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/sample_text.txt:
--------------------------------------------------------------------------------
1 | This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত
2 | Text should be one-sentence-per-line, with empty lines between documents.
3 | This sample text is public domain and was randomly selected from Project Guttenberg.
4 |
5 | The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors.
6 | Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity.
7 | Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them.
8 | "Cass" Beard had risen early that morning, but not with a view to discovery.
9 | A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets.
10 | The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency.
11 | This was nearly opposite.
12 | Mr. Cassius crossed the highway, and stopped suddenly.
13 | Something glittered in the nearest red pool before him.
14 | Gold, surely!
15 | But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring.
16 | Looking at it more attentively, he saw that it bore the inscription, "May to Cass."
17 | Like most of his fellow gold-seekers, Cass was superstitious.
18 |
19 | The fountain of classic wisdom, Hypatia herself.
20 | As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge.
21 | From my youth I felt in me a soul above the matter-entangled herd.
22 | She revealed to me the glorious fact, that I am a spark of Divinity itself.
23 | A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's.
24 | There is a philosophic pleasure in opening one's treasures to the modest young.
25 | Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street.
26 | Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide;
27 | but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind.
28 | Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now.
29 | His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert;
30 | while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts.
31 | At last they reached the quay at the opposite end of the street;
32 | and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers.
33 | He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him.
34 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/tokenization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Tokenization classes."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import collections
22 | import unicodedata
23 | import six
24 | import tensorflow as tf
25 |
26 |
27 | def convert_to_unicode(text):
28 | """Converts `text` to Unicode (if it's not already), assuming utf-8 input."""
29 | if six.PY3:
30 | if isinstance(text, str):
31 | return text
32 | elif isinstance(text, bytes):
33 | return text.decode("utf-8", "ignore")
34 | else:
35 | raise ValueError("Unsupported string type: %s" % (type(text)))
36 | elif six.PY2:
37 | if isinstance(text, str):
38 | return text.decode("utf-8", "ignore")
39 | elif isinstance(text, unicode):
40 | return text
41 | else:
42 | raise ValueError("Unsupported string type: %s" % (type(text)))
43 | else:
44 | raise ValueError("Not running on Python2 or Python 3?")
45 |
46 |
47 | def printable_text(text):
48 | """Returns text encoded in a way suitable for print or `tf.logging`."""
49 |
50 | # These functions want `str` for both Python2 and Python3, but in one case
51 | # it's a Unicode string and in the other it's a byte string.
52 | if six.PY3:
53 | if isinstance(text, str):
54 | return text
55 | elif isinstance(text, bytes):
56 | return text.decode("utf-8", "ignore")
57 | else:
58 | raise ValueError("Unsupported string type: %s" % (type(text)))
59 | elif six.PY2:
60 | if isinstance(text, str):
61 | return text
62 | elif isinstance(text, unicode):
63 | return text.encode("utf-8")
64 | else:
65 | raise ValueError("Unsupported string type: %s" % (type(text)))
66 | else:
67 | raise ValueError("Not running on Python2 or Python 3?")
68 |
69 |
70 | def load_vocab(vocab_file):
71 | """Loads a vocabulary file into a dictionary."""
72 | vocab = collections.OrderedDict()
73 | index = 0
74 | with tf.gfile.GFile(vocab_file, "r") as reader:
75 | while True:
76 | token = convert_to_unicode(reader.readline())
77 | if not token:
78 | break
79 | token = token.strip()
80 | vocab[token] = index
81 | index += 1
82 | return vocab
83 |
84 |
85 | def convert_by_vocab(vocab, items):
86 | """Converts a sequence of [tokens|ids] using the vocab."""
87 | output = []
88 | for item in items:
89 | #TODO: modify for oov, using [unk] replace, if you using english language do not change this
90 | # output.append(vocab.[item])
91 | output.append(vocab.get(item, 100))
92 | return output
93 |
94 |
95 | def convert_tokens_to_ids(vocab, tokens):
96 | return convert_by_vocab(vocab, tokens)
97 |
98 |
99 | def convert_ids_to_tokens(inv_vocab, ids):
100 | return convert_by_vocab(inv_vocab, ids)
101 |
102 |
103 | def whitespace_tokenize(text):
104 | """Runs basic whitespace cleaning and splitting on a peice of text."""
105 | text = text.strip()
106 | if not text:
107 | return []
108 | tokens = text.split()
109 | return tokens
110 |
111 |
112 | class FullTokenizer(object):
113 | """Runs end-to-end tokenziation."""
114 |
115 | def __init__(self, vocab_file, do_lower_case=True):
116 | self.vocab = load_vocab(vocab_file)
117 | self.inv_vocab = {v: k for k, v in self.vocab.items()}
118 | self.basic_tokenizer = BasicTokenizer(do_lower_case=do_lower_case)
119 | self.wordpiece_tokenizer = WordpieceTokenizer(vocab=self.vocab)
120 |
121 | def tokenize(self, text):
122 | split_tokens = []
123 | for token in self.basic_tokenizer.tokenize(text):
124 | for sub_token in self.wordpiece_tokenizer.tokenize(token):
125 | split_tokens.append(sub_token)
126 |
127 | return split_tokens
128 |
129 | def convert_tokens_to_ids(self, tokens):
130 | return convert_by_vocab(self.vocab, tokens)
131 |
132 | def convert_ids_to_tokens(self, ids):
133 | return convert_by_vocab(self.inv_vocab, ids)
134 |
135 |
136 | class BasicTokenizer(object):
137 | """Runs basic tokenization (punctuation splitting, lower casing, etc.)."""
138 |
139 | def __init__(self, do_lower_case=True):
140 | """Constructs a BasicTokenizer.
141 |
142 | Args:
143 | do_lower_case: Whether to lower case the input.
144 | """
145 | self.do_lower_case = do_lower_case
146 |
147 | def tokenize(self, text):
148 | """Tokenizes a piece of text."""
149 | text = convert_to_unicode(text)
150 | text = self._clean_text(text)
151 |
152 | # This was added on November 1st, 2018 for the multilingual and Chinese
153 | # models. This is also applied to the English models now, but it doesn't
154 | # matter since the English models were not trained on any Chinese data
155 | # and generally don't have any Chinese data in them (there are Chinese
156 | # characters in the vocabulary because Wikipedia does have some Chinese
157 | # words in the English Wikipedia.).
158 | text = self._tokenize_chinese_chars(text)
159 |
160 | orig_tokens = whitespace_tokenize(text)
161 | split_tokens = []
162 | for token in orig_tokens:
163 | if self.do_lower_case:
164 | token = token.lower()
165 | token = self._run_strip_accents(token)
166 | split_tokens.extend(self._run_split_on_punc(token))
167 |
168 | output_tokens = whitespace_tokenize(" ".join(split_tokens))
169 | return output_tokens
170 |
171 | def _run_strip_accents(self, text):
172 | """Strips accents from a piece of text."""
173 | text = unicodedata.normalize("NFD", text)
174 | output = []
175 | for char in text:
176 | cat = unicodedata.category(char)
177 | if cat == "Mn":
178 | continue
179 | output.append(char)
180 | return "".join(output)
181 |
182 | def _run_split_on_punc(self, text):
183 | """Splits punctuation on a piece of text."""
184 | chars = list(text)
185 | i = 0
186 | start_new_word = True
187 | output = []
188 | while i < len(chars):
189 | char = chars[i]
190 | if _is_punctuation(char):
191 | output.append([char])
192 | start_new_word = True
193 | else:
194 | if start_new_word:
195 | output.append([])
196 | start_new_word = False
197 | output[-1].append(char)
198 | i += 1
199 |
200 | return ["".join(x) for x in output]
201 |
202 | def _tokenize_chinese_chars(self, text):
203 | """Adds whitespace around any CJK character."""
204 | output = []
205 | for char in text:
206 | cp = ord(char)
207 | if self._is_chinese_char(cp):
208 | output.append(" ")
209 | output.append(char)
210 | output.append(" ")
211 | else:
212 | output.append(char)
213 | return "".join(output)
214 |
215 | def _is_chinese_char(self, cp):
216 | """Checks whether CP is the codepoint of a CJK character."""
217 | # This defines a "chinese character" as anything in the CJK Unicode block:
218 | # https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_(Unicode_block)
219 | #
220 | # Note that the CJK Unicode block is NOT all Japanese and Korean characters,
221 | # despite its name. The modern Korean Hangul alphabet is a different block,
222 | # as is Japanese Hiragana and Katakana. Those alphabets are used to write
223 | # space-separated words, so they are not treated specially and handled
224 | # like the all of the other languages.
225 | if ((cp >= 0x4E00 and cp <= 0x9FFF) or #
226 | (cp >= 0x3400 and cp <= 0x4DBF) or #
227 | (cp >= 0x20000 and cp <= 0x2A6DF) or #
228 | (cp >= 0x2A700 and cp <= 0x2B73F) or #
229 | (cp >= 0x2B740 and cp <= 0x2B81F) or #
230 | (cp >= 0x2B820 and cp <= 0x2CEAF) or
231 | (cp >= 0xF900 and cp <= 0xFAFF) or #
232 | (cp >= 0x2F800 and cp <= 0x2FA1F)): #
233 | return True
234 |
235 | return False
236 |
237 | def _clean_text(self, text):
238 | """Performs invalid character removal and whitespace cleanup on text."""
239 | output = []
240 | for char in text:
241 | cp = ord(char)
242 | if cp == 0 or cp == 0xfffd or _is_control(char):
243 | continue
244 | if _is_whitespace(char):
245 | output.append(" ")
246 | else:
247 | output.append(char)
248 | return "".join(output)
249 |
250 |
251 | class WordpieceTokenizer(object):
252 | """Runs WordPiece tokenziation."""
253 |
254 | def __init__(self, vocab, unk_token="[UNK]", max_input_chars_per_word=100):
255 | self.vocab = vocab
256 | self.unk_token = unk_token
257 | self.max_input_chars_per_word = max_input_chars_per_word
258 |
259 | def tokenize(self, text):
260 | """Tokenizes a piece of text into its word pieces.
261 |
262 | This uses a greedy longest-match-first algorithm to perform tokenization
263 | using the given vocabulary.
264 |
265 | For example:
266 | input = "unaffable"
267 | output = ["un", "##aff", "##able"]
268 |
269 | Args:
270 | text: A single token or whitespace separated tokens. This should have
271 | already been passed through `BasicTokenizer.
272 |
273 | Returns:
274 | A list of wordpiece tokens.
275 | """
276 |
277 | text = convert_to_unicode(text)
278 |
279 | output_tokens = []
280 | for token in whitespace_tokenize(text):
281 | chars = list(token)
282 | if len(chars) > self.max_input_chars_per_word:
283 | output_tokens.append(self.unk_token)
284 | continue
285 |
286 | is_bad = False
287 | start = 0
288 | sub_tokens = []
289 | while start < len(chars):
290 | end = len(chars)
291 | cur_substr = None
292 | while start < end:
293 | substr = "".join(chars[start:end])
294 | if start > 0:
295 | substr = "##" + substr
296 | if substr in self.vocab:
297 | cur_substr = substr
298 | break
299 | end -= 1
300 | if cur_substr is None:
301 | is_bad = True
302 | break
303 | sub_tokens.append(cur_substr)
304 | start = end
305 |
306 | if is_bad:
307 | output_tokens.append(self.unk_token)
308 | else:
309 | output_tokens.extend(sub_tokens)
310 | return output_tokens
311 |
312 |
313 | def _is_whitespace(char):
314 | """Checks whether `chars` is a whitespace character."""
315 | # \t, \n, and \r are technically contorl characters but we treat them
316 | # as whitespace since they are generally considered as such.
317 | if char == " " or char == "\t" or char == "\n" or char == "\r":
318 | return True
319 | cat = unicodedata.category(char)
320 | if cat == "Zs":
321 | return True
322 | return False
323 |
324 |
325 | def _is_control(char):
326 | """Checks whether `chars` is a control character."""
327 | # These are technically control characters but we count them as whitespace
328 | # characters.
329 | if char == "\t" or char == "\n" or char == "\r":
330 | return False
331 | cat = unicodedata.category(char)
332 | if cat.startswith("C"):
333 | return True
334 | return False
335 |
336 |
337 | def _is_punctuation(char):
338 | """Checks whether `chars` is a punctuation character."""
339 | cp = ord(char)
340 | # We treat all non-letter/number ASCII as punctuation.
341 | # Characters such as "^", "$", and "`" are not in the Unicode
342 | # Punctuation class but we treat them as punctuation anyways, for
343 | # consistency.
344 | if ((cp >= 33 and cp <= 47) or (cp >= 58 and cp <= 64) or
345 | (cp >= 91 and cp <= 96) or (cp >= 123 and cp <= 126)):
346 | return True
347 | cat = unicodedata.category(char)
348 | if cat.startswith("P"):
349 | return True
350 | return False
351 |
352 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/bert/tokenization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import os
20 | import tempfile
21 |
22 | import tokenization
23 | import tensorflow as tf
24 |
25 |
26 | class TokenizationTest(tf.test.TestCase):
27 |
28 | def test_full_tokenizer(self):
29 | vocab_tokens = [
30 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
31 | "##ing", ","
32 | ]
33 | with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
34 | vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
35 |
36 | vocab_file = vocab_writer.name
37 |
38 | tokenizer = tokenization.FullTokenizer(vocab_file)
39 | os.unlink(vocab_file)
40 |
41 | tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
42 | self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
43 |
44 | self.assertAllEqual(
45 | tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
46 |
47 | def test_chinese(self):
48 | tokenizer = tokenization.BasicTokenizer()
49 |
50 | self.assertAllEqual(
51 | tokenizer.tokenize(u"ah\u535A\u63A8zz"),
52 | [u"ah", u"\u535A", u"\u63A8", u"zz"])
53 |
54 | def test_basic_tokenizer_lower(self):
55 | tokenizer = tokenization.BasicTokenizer(do_lower_case=True)
56 |
57 | self.assertAllEqual(
58 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
59 | ["hello", "!", "how", "are", "you", "?"])
60 | self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
61 |
62 | def test_basic_tokenizer_no_lower(self):
63 | tokenizer = tokenization.BasicTokenizer(do_lower_case=False)
64 |
65 | self.assertAllEqual(
66 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
67 | ["HeLLo", "!", "how", "Are", "yoU", "?"])
68 |
69 | def test_wordpiece_tokenizer(self):
70 | vocab_tokens = [
71 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
72 | "##ing"
73 | ]
74 |
75 | vocab = {}
76 | for (i, token) in enumerate(vocab_tokens):
77 | vocab[token] = i
78 | tokenizer = tokenization.WordpieceTokenizer(vocab=vocab)
79 |
80 | self.assertAllEqual(tokenizer.tokenize(""), [])
81 |
82 | self.assertAllEqual(
83 | tokenizer.tokenize("unwanted running"),
84 | ["un", "##want", "##ed", "runn", "##ing"])
85 |
86 | self.assertAllEqual(
87 | tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
88 |
89 | def test_convert_tokens_to_ids(self):
90 | vocab_tokens = [
91 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
92 | "##ing"
93 | ]
94 |
95 | vocab = {}
96 | for (i, token) in enumerate(vocab_tokens):
97 | vocab[token] = i
98 |
99 | self.assertAllEqual(
100 | tokenization.convert_tokens_to_ids(
101 | vocab, ["un", "##want", "##ed", "runn", "##ing"]), [7, 4, 5, 8, 9])
102 |
103 | def test_is_whitespace(self):
104 | self.assertTrue(tokenization._is_whitespace(u" "))
105 | self.assertTrue(tokenization._is_whitespace(u"\t"))
106 | self.assertTrue(tokenization._is_whitespace(u"\r"))
107 | self.assertTrue(tokenization._is_whitespace(u"\n"))
108 | self.assertTrue(tokenization._is_whitespace(u"\u00A0"))
109 |
110 | self.assertFalse(tokenization._is_whitespace(u"A"))
111 | self.assertFalse(tokenization._is_whitespace(u"-"))
112 |
113 | def test_is_control(self):
114 | self.assertTrue(tokenization._is_control(u"\u0005"))
115 |
116 | self.assertFalse(tokenization._is_control(u"A"))
117 | self.assertFalse(tokenization._is_control(u" "))
118 | self.assertFalse(tokenization._is_control(u"\t"))
119 | self.assertFalse(tokenization._is_control(u"\r"))
120 |
121 | def test_is_punctuation(self):
122 | self.assertTrue(tokenization._is_punctuation(u"-"))
123 | self.assertTrue(tokenization._is_punctuation(u"$"))
124 | self.assertTrue(tokenization._is_punctuation(u"`"))
125 | self.assertTrue(tokenization._is_punctuation(u"."))
126 |
127 | self.assertFalse(tokenization._is_punctuation(u"A"))
128 | self.assertFalse(tokenization._is_punctuation(u" "))
129 |
130 |
131 | if __name__ == "__main__":
132 | tf.test.main()
133 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/chinese_L-12_H-768_A-12/bert_config.json:
--------------------------------------------------------------------------------
1 | {
2 | "attention_probs_dropout_prob": 0.1,
3 | "directionality": "bidi",
4 | "hidden_act": "gelu",
5 | "hidden_dropout_prob": 0.1,
6 | "hidden_size": 768,
7 | "initializer_range": 0.02,
8 | "intermediate_size": 3072,
9 | "max_position_embeddings": 512,
10 | "num_attention_heads": 12,
11 | "num_hidden_layers": 12,
12 | "pooler_fc_size": 768,
13 | "pooler_num_attention_heads": 12,
14 | "pooler_num_fc_layers": 3,
15 | "pooler_size_per_head": 128,
16 | "pooler_type": "first_token_transform",
17 | "type_vocab_size": 2,
18 | "vocab_size": 21128
19 | }
20 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/chinese_L-12_H-768_A-12/bert_model.ckpt:
--------------------------------------------------------------------------------
1 | bert_model.ckpt here.
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/chinese_L-12_H-768_A-12/bert_model.ckpt.index:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/chinese_L-12_H-768_A-12/bert_model.ckpt.index
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/chinese_L-12_H-768_A-12/bert_model.ckpt.meta:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/iseesaw/CoreEntityEmotionClassify/ff239f6b459710eaee75a9b9ecd6f1987649e42c/BERT-BiLSTM-CRF-NER/chinese_L-12_H-768_A-12/bert_model.ckpt.meta
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/conlleval.py:
--------------------------------------------------------------------------------
1 | # Python version of the evaluation script from CoNLL'00-
2 | # Originates from: https://github.com/spyysalo/conlleval.py
3 |
4 |
5 | # Intentional differences:
6 | # - accept any space as delimiter by default
7 | # - optional file argument (default STDIN)
8 | # - option to set boundary (-b argument)
9 | # - LaTeX output (-l argument) not supported
10 | # - raw tags (-r argument) not supported
11 |
12 | # add function :evaluate(predicted_label, ori_label): which will not read from file
13 |
14 | import sys
15 | import re
16 | import codecs
17 | from collections import defaultdict, namedtuple
18 |
19 | ANY_SPACE = ''
20 |
21 |
22 | class FormatError(Exception):
23 | pass
24 |
25 | Metrics = namedtuple('Metrics', 'tp fp fn prec rec fscore')
26 |
27 |
28 | class EvalCounts(object):
29 | def __init__(self):
30 | self.correct_chunk = 0 # number of correctly identified chunks
31 | self.correct_tags = 0 # number of correct chunk tags
32 | self.found_correct = 0 # number of chunks in corpus
33 | self.found_guessed = 0 # number of identified chunks
34 | self.token_counter = 0 # token counter (ignores sentence breaks)
35 |
36 | # counts by type
37 | self.t_correct_chunk = defaultdict(int)
38 | self.t_found_correct = defaultdict(int)
39 | self.t_found_guessed = defaultdict(int)
40 |
41 |
42 | def parse_args(argv):
43 | import argparse
44 | parser = argparse.ArgumentParser(
45 | description='evaluate tagging results using CoNLL criteria',
46 | formatter_class=argparse.ArgumentDefaultsHelpFormatter
47 | )
48 | arg = parser.add_argument
49 | arg('-b', '--boundary', metavar='STR', default='-X-',
50 | help='sentence boundary')
51 | arg('-d', '--delimiter', metavar='CHAR', default=ANY_SPACE,
52 | help='character delimiting items in input')
53 | arg('-o', '--otag', metavar='CHAR', default='O',
54 | help='alternative outside tag')
55 | arg('file', nargs='?', default=None)
56 | return parser.parse_args(argv)
57 |
58 |
59 | def parse_tag(t):
60 | m = re.match(r'^([^-]*)-(.*)$', t)
61 | return m.groups() if m else (t, '')
62 |
63 |
64 | def evaluate(iterable, options=None):
65 | if options is None:
66 | options = parse_args([]) # use defaults
67 |
68 | counts = EvalCounts()
69 | num_features = None # number of features per line
70 | in_correct = False # currently processed chunks is correct until now
71 | last_correct = 'O' # previous chunk tag in corpus
72 | last_correct_type = '' # type of previously identified chunk tag
73 | last_guessed = 'O' # previously identified chunk tag
74 | last_guessed_type = '' # type of previous chunk tag in corpus
75 |
76 | for line in iterable:
77 | line = line.rstrip('\r\n')
78 |
79 | if options.delimiter == ANY_SPACE:
80 | features = line.split()
81 | else:
82 | features = line.split(options.delimiter)
83 |
84 | if num_features is None:
85 | num_features = len(features)
86 | elif num_features != len(features) and len(features) != 0:
87 | raise FormatError('unexpected number of features: %d (%d)' %
88 | (len(features), num_features))
89 |
90 | if len(features) == 0 or features[0] == options.boundary:
91 | features = [options.boundary, 'O', 'O']
92 | if len(features) < 3:
93 | raise FormatError('unexpected number of features in line %s' % line)
94 |
95 | guessed, guessed_type = parse_tag(features.pop())
96 | correct, correct_type = parse_tag(features.pop())
97 | first_item = features.pop(0)
98 |
99 | if first_item == options.boundary:
100 | guessed = 'O'
101 |
102 | end_correct = end_of_chunk(last_correct, correct,
103 | last_correct_type, correct_type)
104 | end_guessed = end_of_chunk(last_guessed, guessed,
105 | last_guessed_type, guessed_type)
106 | start_correct = start_of_chunk(last_correct, correct,
107 | last_correct_type, correct_type)
108 | start_guessed = start_of_chunk(last_guessed, guessed,
109 | last_guessed_type, guessed_type)
110 |
111 | if in_correct:
112 | if (end_correct and end_guessed and
113 | last_guessed_type == last_correct_type):
114 | in_correct = False
115 | counts.correct_chunk += 1
116 | counts.t_correct_chunk[last_correct_type] += 1
117 | elif (end_correct != end_guessed or guessed_type != correct_type):
118 | in_correct = False
119 |
120 | if start_correct and start_guessed and guessed_type == correct_type:
121 | in_correct = True
122 |
123 | if start_correct:
124 | counts.found_correct += 1
125 | counts.t_found_correct[correct_type] += 1
126 | if start_guessed:
127 | counts.found_guessed += 1
128 | counts.t_found_guessed[guessed_type] += 1
129 | if first_item != options.boundary:
130 | if correct == guessed and guessed_type == correct_type:
131 | counts.correct_tags += 1
132 | counts.token_counter += 1
133 |
134 | last_guessed = guessed
135 | last_correct = correct
136 | last_guessed_type = guessed_type
137 | last_correct_type = correct_type
138 |
139 | if in_correct:
140 | counts.correct_chunk += 1
141 | counts.t_correct_chunk[last_correct_type] += 1
142 |
143 | return counts
144 |
145 |
146 |
147 | def uniq(iterable):
148 | seen = set()
149 | return [i for i in iterable if not (i in seen or seen.add(i))]
150 |
151 |
152 | def calculate_metrics(correct, guessed, total):
153 | tp, fp, fn = correct, guessed-correct, total-correct
154 | p = 0 if tp + fp == 0 else 1.*tp / (tp + fp)
155 | r = 0 if tp + fn == 0 else 1.*tp / (tp + fn)
156 | f = 0 if p + r == 0 else 2 * p * r / (p + r)
157 | return Metrics(tp, fp, fn, p, r, f)
158 |
159 |
160 | def metrics(counts):
161 | c = counts
162 | overall = calculate_metrics(
163 | c.correct_chunk, c.found_guessed, c.found_correct
164 | )
165 | by_type = {}
166 | for t in uniq(list(c.t_found_correct) + list(c.t_found_guessed)):
167 | by_type[t] = calculate_metrics(
168 | c.t_correct_chunk[t], c.t_found_guessed[t], c.t_found_correct[t]
169 | )
170 | return overall, by_type
171 |
172 |
173 | def report(counts, out=None):
174 | if out is None:
175 | out = sys.stdout
176 |
177 | overall, by_type = metrics(counts)
178 |
179 | c = counts
180 | out.write('processed %d tokens with %d phrases; ' %
181 | (c.token_counter, c.found_correct))
182 | out.write('found: %d phrases; correct: %d.\n' %
183 | (c.found_guessed, c.correct_chunk))
184 |
185 | if c.token_counter > 0:
186 | out.write('accuracy: %6.2f%%; ' %
187 | (100.*c.correct_tags/c.token_counter))
188 | out.write('precision: %6.2f%%; ' % (100.*overall.prec))
189 | out.write('recall: %6.2f%%; ' % (100.*overall.rec))
190 | out.write('FB1: %6.2f\n' % (100.*overall.fscore))
191 |
192 | for i, m in sorted(by_type.items()):
193 | out.write('%17s: ' % i)
194 | out.write('precision: %6.2f%%; ' % (100.*m.prec))
195 | out.write('recall: %6.2f%%; ' % (100.*m.rec))
196 | out.write('FB1: %6.2f %d\n' % (100.*m.fscore, c.t_found_guessed[i]))
197 |
198 |
199 | def report_notprint(counts, out=None):
200 | if out is None:
201 | out = sys.stdout
202 |
203 | overall, by_type = metrics(counts)
204 |
205 | c = counts
206 | final_report = []
207 | line = []
208 | line.append('processed %d tokens with %d phrases; ' %
209 | (c.token_counter, c.found_correct))
210 | line.append('found: %d phrases; correct: %d.\n' %
211 | (c.found_guessed, c.correct_chunk))
212 | final_report.append("".join(line))
213 |
214 | if c.token_counter > 0:
215 | line = []
216 | line.append('accuracy: %6.2f%%; ' %
217 | (100.*c.correct_tags/c.token_counter))
218 | line.append('precision: %6.2f%%; ' % (100.*overall.prec))
219 | line.append('recall: %6.2f%%; ' % (100.*overall.rec))
220 | line.append('FB1: %6.2f\n' % (100.*overall.fscore))
221 | final_report.append("".join(line))
222 |
223 | for i, m in sorted(by_type.items()):
224 | line = []
225 | line.append('%17s: ' % i)
226 | line.append('precision: %6.2f%%; ' % (100.*m.prec))
227 | line.append('recall: %6.2f%%; ' % (100.*m.rec))
228 | line.append('FB1: %6.2f %d\n' % (100.*m.fscore, c.t_found_guessed[i]))
229 | final_report.append("".join(line))
230 | return final_report
231 |
232 |
233 | def end_of_chunk(prev_tag, tag, prev_type, type_):
234 | # check if a chunk ended between the previous and current word
235 | # arguments: previous and current chunk tags, previous and current types
236 | chunk_end = False
237 |
238 | if prev_tag == 'E': chunk_end = True
239 | if prev_tag == 'S': chunk_end = True
240 |
241 | if prev_tag == 'B' and tag == 'B': chunk_end = True
242 | if prev_tag == 'B' and tag == 'S': chunk_end = True
243 | if prev_tag == 'B' and tag == 'O': chunk_end = True
244 | if prev_tag == 'I' and tag == 'B': chunk_end = True
245 | if prev_tag == 'I' and tag == 'S': chunk_end = True
246 | if prev_tag == 'I' and tag == 'O': chunk_end = True
247 |
248 | if prev_tag != 'O' and prev_tag != '.' and prev_type != type_:
249 | chunk_end = True
250 |
251 | # these chunks are assumed to have length 1
252 | if prev_tag == ']': chunk_end = True
253 | if prev_tag == '[': chunk_end = True
254 |
255 | return chunk_end
256 |
257 |
258 | def start_of_chunk(prev_tag, tag, prev_type, type_):
259 | # check if a chunk started between the previous and current word
260 | # arguments: previous and current chunk tags, previous and current types
261 | chunk_start = False
262 |
263 | if tag == 'B': chunk_start = True
264 | if tag == 'S': chunk_start = True
265 |
266 | if prev_tag == 'E' and tag == 'E': chunk_start = True
267 | if prev_tag == 'E' and tag == 'I': chunk_start = True
268 | if prev_tag == 'S' and tag == 'E': chunk_start = True
269 | if prev_tag == 'S' and tag == 'I': chunk_start = True
270 | if prev_tag == 'O' and tag == 'E': chunk_start = True
271 | if prev_tag == 'O' and tag == 'I': chunk_start = True
272 |
273 | if tag != 'O' and tag != '.' and prev_type != type_:
274 | chunk_start = True
275 |
276 | # these chunks are assumed to have length 1
277 | if tag == '[': chunk_start = True
278 | if tag == ']': chunk_start = True
279 |
280 | return chunk_start
281 |
282 |
283 | def return_report(input_file):
284 | with codecs.open(input_file, "r", "utf8") as f:
285 | counts = evaluate(f)
286 | return report_notprint(counts)
287 |
288 |
289 | def main(argv):
290 | args = parse_args(argv[1:])
291 |
292 | if args.file is None:
293 | counts = evaluate(sys.stdin, args)
294 | else:
295 | with open(args.file) as f:
296 | counts = evaluate(f, args)
297 | report(counts)
298 |
299 | if __name__ == '__main__':
300 | sys.exit(main(sys.argv))
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/data/data.here:
--------------------------------------------------------------------------------
1 | data here.
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/data_process_utils.py:
--------------------------------------------------------------------------------
1 | import json
2 | import re
3 |
4 |
5 | def create_example(entry):
6 | data_list = []
7 |
8 | #entry = json.loads(line,strict=False)
9 | entities = entry['coreEntityEmotions']
10 | entity_set = set()
11 | for entity in entities:
12 | entity_name = entity['entity']
13 | entity_set.add(entity_name)
14 | content = entry['title']+entry['content']
15 | lines = re.split(r"\n", content)
16 | for line in lines:
17 | if not line:
18 | continue
19 | sentences = re.split(r"([。])", line)
20 | sentences.append("")
21 | sentences = ["".join(i) for i in zip(sentences[0::2], sentences[1::2])]
22 | order = 0
23 |
24 | for sentence in sentences:
25 | sentence = sentence.strip()
26 | if sentence == "" or sentence == '\r' or len(sentence) == 1 or len(sentence) > 500:
27 | continue
28 | order += 1
29 | label_result = []
30 | seg_result = []
31 | beginset = set()
32 | endset = set()
33 | for name in entity_set:
34 | listb, liste = search(name, sentence)
35 | for b in listb:
36 | beginset.add(b)
37 | for e in liste:
38 | endset.add(e)
39 | state = 0
40 | for index in range(len(sentence)):
41 | seg_result.append(sentence[index])
42 | if index in beginset:
43 | label_result.append('B')
44 | state = 1
45 | continue
46 | if index in endset:
47 | label_result.append('I')
48 | state = 0
49 | continue
50 | if index not in beginset and index not in endset and state == 1:
51 | label_result.append('I')
52 | continue
53 |
54 | label_result.append('O')
55 | subjson = dict()
56 | subjson['newsId'] = entry['newsId']+"_"+str(order)
57 | subjson['seq'] = seg_result
58 | subjson['label'] = label_result
59 | data_list.append(subjson)
60 | return data_list
61 |
62 |
63 | def search(subtext, string: str):
64 | list = []
65 | liste = []
66 | text = string
67 | index = 0
68 | while True:
69 | index = text.find(subtext, index)
70 | if index == -1:
71 | return list,liste
72 | else:
73 | list.append(index)
74 | liste.append(index+len(subtext)-1)
75 | index += len(subtext)
76 |
77 |
78 | if __name__ == "__main__":
79 | # 例子
80 | string = '{"newsId": "7bdc768b", "coreEntityEmotions": [{"entity": "abc", "emotion": "NORM"}, ' \
81 | '{"entity": "d", "emotion": "NORM"}, {"entity": "e", "emotion": "NORM"}], ' \
82 | '"title": "abcde", "content": "abcdefadf\nadsea\n"}'
83 | print(create_example(string))
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/feature_input.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | """
4 | import os
5 | import pickle
6 | import collections
7 |
8 | import tensorflow as tf
9 | from bert import tokenization
10 |
11 |
12 | class InputExample(object):
13 | """A single training/test example for simple sequence classification."""
14 |
15 | def __init__(self, guid, text, label=None):
16 | """Constructs a InputExample.
17 |
18 | Args:
19 | guid: Unique id for the example.
20 | text_a: string. The untokenized text of the first sequence. For single
21 | sequence tasks, only this sequence must be specified.
22 | label: (Optional) string. The label of the example. This should be
23 | specified for train and dev examples, but not for test examples.
24 | """
25 | self.guid = guid
26 | self.text = text
27 | self.label = label
28 |
29 |
30 | class InputFeatures(object):
31 | """A single set of features of data."""
32 |
33 | def __init__(self, input_ids, input_mask, segment_ids, label_ids, ):
34 | self.input_ids = input_ids
35 | self.input_mask = input_mask
36 | self.segment_ids = segment_ids
37 | self.label_ids = label_ids
38 | # self.label_mask = label_mask
39 |
40 |
41 | def convert_single_example(ex_index, example, label_map, max_seq_length, tokenizer, mode, FLAGS):
42 | textlist = example.text.split(' ')
43 | labellist = example.label.split(' ')
44 | tokens = []
45 | labels = []
46 | # print(textlist)
47 | for i, word in enumerate(textlist):
48 | token = tokenizer.tokenize(word)
49 | # print(token)
50 | tokens.extend(token)
51 | label_1 = labellist[i]
52 | # print(label_1)
53 | for m in range(len(token)):
54 | if m == 0:
55 | labels.append(label_1)
56 | else:
57 | labels.append("X")
58 | # print(tokens, labels)
59 | # tokens = tokenizer.tokenize(example.text)
60 | if len(tokens) >= max_seq_length - 1:
61 | tokens = tokens[0:(max_seq_length - 2)]
62 | labels = labels[0:(max_seq_length - 2)]
63 | ntokens = []
64 | segment_ids = []
65 | label_ids = []
66 | ntokens.append("[CLS]")
67 | segment_ids.append(0)
68 | # append("O") or append("[CLS]") not sure!
69 | label_ids.append(label_map["[CLS]"])
70 | for i, token in enumerate(tokens):
71 | ntokens.append(token)
72 | segment_ids.append(0)
73 | label_ids.append(label_map[labels[i]])
74 | ntokens.append("[SEP]")
75 | segment_ids.append(0)
76 | # append("O") or append("[SEP]") not sure!
77 | label_ids.append(label_map["[SEP]"])
78 | input_ids = tokenizer.convert_tokens_to_ids(ntokens)
79 | input_mask = [1] * len(input_ids)
80 | # label_mask = [1] * len(input_ids)
81 | while len(input_ids) < max_seq_length:
82 | input_ids.append(0)
83 | input_mask.append(0)
84 | segment_ids.append(0)
85 | # we don't concerned about it!
86 | label_ids.append(0)
87 | ntokens.append("**NULL**")
88 | # label_mask.append(0)
89 | # print(len(input_ids))
90 | assert len(input_ids) == max_seq_length
91 | assert len(input_mask) == max_seq_length
92 | assert len(segment_ids) == max_seq_length
93 | assert len(label_ids) == max_seq_length
94 | # assert len(label_mask) == max_seq_length
95 |
96 | if ex_index < 5:
97 | tf.logging.info("*** Example ***")
98 | tf.logging.info("guid: %s" % (example.guid))
99 | tf.logging.info("tokens: %s" % " ".join(
100 | [tokenization.printable_text(x) for x in tokens]))
101 | tf.logging.info("input_ids: %s" % " ".join([str(x) for x in input_ids]))
102 | tf.logging.info("input_mask: %s" % " ".join([str(x) for x in input_mask]))
103 | tf.logging.info("segment_ids: %s" % " ".join([str(x) for x in segment_ids]))
104 | tf.logging.info("label_ids: %s" % " ".join([str(x) for x in label_ids]))
105 | # tf.logging.info("label_mask: %s" % " ".join([str(x) for x in label_mask]))
106 |
107 | feature = InputFeatures(
108 | input_ids=input_ids,
109 | input_mask=input_mask,
110 | segment_ids=segment_ids,
111 | label_ids=label_ids,
112 | # label_mask = label_mask
113 | )
114 | write_tokens(ntokens, mode, FLAGS)
115 | return feature
116 |
117 |
118 | def write_tokens(tokens, mode, FLAGS):
119 | if mode == "test":
120 | path = os.path.join(FLAGS.output_dir, "token_" + mode + ".txt")
121 | wf = open(path, 'a')
122 | for token in tokens:
123 | if token != "**NULL**":
124 | wf.write(token + '\n')
125 | wf.close()
126 |
127 |
128 | def filed_based_convert_examples_to_features(
129 | examples, label_list, max_seq_length, tokenizer, output_file, FLAGS, mode=None):
130 | label_map = {}
131 | for (i, label) in enumerate(label_list, 1):
132 | label_map[label] = i
133 | with open('./output/label2id.pkl', 'wb') as w:
134 | pickle.dump(label_map, w)
135 |
136 | writer = tf.python_io.TFRecordWriter(output_file)
137 | for (ex_index, example) in enumerate(examples):
138 | if ex_index % 5000 == 0:
139 | tf.logging.info("Writing example %d of %d" % (ex_index, len(examples)))
140 | feature = convert_single_example(
141 | ex_index,
142 | example,
143 | label_map,
144 | max_seq_length,
145 | tokenizer, mode, FLAGS)
146 |
147 | def create_int_feature(values):
148 | f = tf.train.Feature(int64_list=tf.train.Int64List(value=list(values)))
149 | return f
150 |
151 | features = collections.OrderedDict()
152 | features["input_ids"] = create_int_feature(feature.input_ids)
153 | features["input_mask"] = create_int_feature(feature.input_mask)
154 | features["segment_ids"] = create_int_feature(feature.segment_ids)
155 | features["label_ids"] = create_int_feature(feature.label_ids)
156 | # features["label_mask"] = create_int_feature(feature.label_mask)
157 | tf_example = tf.train.Example(features=tf.train.Features(feature=features))
158 | writer.write(tf_example.SerializeToString())
159 |
160 |
161 | def file_based_input_fn_builder(input_file, seq_length, is_training, drop_remainder):
162 | name_to_features = {
163 | "input_ids": tf.FixedLenFeature([seq_length], tf.int64),
164 | "input_mask": tf.FixedLenFeature([seq_length], tf.int64),
165 | "segment_ids": tf.FixedLenFeature([seq_length], tf.int64),
166 | "label_ids": tf.FixedLenFeature([seq_length], tf.int64),
167 | # "label_ids":tf.VarLenFeature(tf.int64),
168 | # "label_mask": tf.FixedLenFeature([seq_length], tf.int64),
169 | }
170 |
171 | def _decode_record(record, name_to_features):
172 | example = tf.parse_single_example(record, name_to_features)
173 | for name in list(example.keys()):
174 | t = example[name]
175 | if t.dtype == tf.int64:
176 | t = tf.to_int32(t)
177 | example[name] = t
178 | return example
179 |
180 | def input_fn(params):
181 | batch_size = params["batch_size"]
182 | d = tf.data.TFRecordDataset(input_file)
183 | if is_training:
184 | d = d.repeat()
185 | d = d.shuffle(buffer_size=100)
186 | d = d.apply(tf.contrib.data.map_and_batch(
187 | lambda record: _decode_record(record, name_to_features),
188 | batch_size=batch_size,
189 | drop_remainder=drop_remainder
190 | ))
191 | return d
192 |
193 | return input_fn
194 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/lstm_crf_layer.py:
--------------------------------------------------------------------------------
1 | # encoding=utf-8
2 |
3 | """
4 | bert-blstm-crf layer
5 | @Author:Macan
6 | """
7 |
8 | import tensorflow as tf
9 | from tensorflow.contrib import rnn
10 | from tensorflow.contrib import crf
11 |
12 |
13 | class BLSTM_CRF(object):
14 | def __init__(self, embedded_chars, hidden_unit, cell_type, num_layers, dropout_rate,
15 | initializers, num_labels, seq_length, labels, lengths, is_training):
16 | """
17 | BLSTM-CRF 网络
18 | :param embedded_chars: Fine-tuning embedding input
19 | :param hidden_unit: LSTM的隐含单元个数
20 | :param cell_type: RNN类型(LSTM OR GRU DICNN will be add in feature)
21 | :param num_layers: RNN的层数
22 | :param droupout_rate: droupout rate
23 | :param initializers: variable init class
24 | :param num_labels: 标签数量
25 | :param seq_length: 序列最大长度
26 | :param labels: 真实标签
27 | :param lengths: [batch_size] 每个batch下序列的真实长度
28 | :param is_training: 是否是训练过程
29 | """
30 | self.hidden_unit = hidden_unit
31 | self.dropout_rate = dropout_rate
32 | self.cell_type = cell_type
33 | self.num_layers = num_layers
34 | self.embedded_chars = embedded_chars
35 | self.initializers = initializers
36 | self.seq_length = seq_length
37 | self.num_labels = num_labels
38 | self.labels = labels
39 | self.lengths = lengths
40 | self.embedding_dims = embedded_chars.shape[-1].value
41 | self.is_training = is_training
42 |
43 | def add_blstm_crf_layer(self, crf_only):
44 | """
45 | blstm-crf网络
46 | :return:
47 | """
48 | if self.is_training:
49 | # lstm input dropout rate i set 0.9 will get best score
50 | self.embedded_chars = tf.nn.dropout(self.embedded_chars, self.dropout_rate)
51 |
52 | if crf_only:
53 | # [batch_size, num_steps, num_tags]
54 | logits = self.project_crf_layer(self.embedded_chars)
55 | else:
56 | # blstm
57 | lstm_output = self.blstm_layer(self.embedded_chars)
58 | # project
59 | # [batch_size, num_steps, num_tags]
60 | logits = self.project_bilstm_layer(lstm_output)
61 | # crf
62 | # [batch_size, num_steps, num_tags]
63 | loss, trans = self.crf_layer(logits)
64 | # CRF decode, pred_ids 是一条最大概率的标注路径
65 | pred_ids, _ = crf.crf_decode(potentials=logits, transition_params=trans, sequence_length=self.lengths)
66 | return (loss, logits, trans, pred_ids)
67 |
68 | def _witch_cell(self):
69 | """
70 | RNN 类型
71 | :return:
72 | """
73 | cell_tmp = None
74 | if self.cell_type == 'lstm':
75 | cell_tmp = rnn.LSTMCell(self.hidden_unit)
76 | elif self.cell_type == 'gru':
77 | cell_tmp = rnn.GRUCell(self.hidden_unit)
78 | return cell_tmp
79 |
80 | def _bi_dir_rnn(self):
81 | """
82 | 双向RNN
83 | :return:
84 | """
85 | cell_fw = self._witch_cell()
86 | cell_bw = self._witch_cell()
87 | if self.dropout_rate is not None:
88 | cell_bw = rnn.DropoutWrapper(cell_bw, output_keep_prob=self.dropout_rate)
89 | cell_fw = rnn.DropoutWrapper(cell_fw, output_keep_prob=self.dropout_rate)
90 | return cell_fw, cell_bw
91 |
92 | def blstm_layer(self, embedding_chars):
93 | """
94 |
95 | :return:
96 | """
97 | with tf.variable_scope('rnn_layer'):
98 | cell_fw, cell_bw = self._bi_dir_rnn()
99 | if self.num_layers > 1:
100 | cell_fw = rnn.MultiRNNCell([cell_fw] * self.num_layers, state_is_tuple=True)
101 | cell_bw = rnn.MultiRNNCell([cell_bw] * self.num_layers, state_is_tuple=True)
102 |
103 | outputs, _ = tf.nn.bidirectional_dynamic_rnn(cell_fw, cell_bw, embedding_chars,
104 | dtype=tf.float32)
105 | outputs = tf.concat(outputs, axis=2)
106 | return outputs
107 |
108 | def project_bilstm_layer(self, lstm_outputs, name=None):
109 | """
110 | hidden layer between lstm layer and logits
111 | :param lstm_outputs: [batch_size, num_steps, emb_size]
112 | :return: [batch_size, num_steps, num_tags]
113 | """
114 | with tf.variable_scope("project" if not name else name):
115 | with tf.variable_scope("hidden"):
116 | W = tf.get_variable("W", shape=[self.hidden_unit * 2, self.hidden_unit],
117 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
118 |
119 | b = tf.get_variable("b", shape=[self.hidden_unit], dtype=tf.float32,
120 | initializer=tf.zeros_initializer())
121 | output = tf.reshape(lstm_outputs, shape=[-1, self.hidden_unit * 2])
122 | hidden = tf.tanh(tf.nn.xw_plus_b(output, W, b))
123 |
124 | # project to score of tags
125 | with tf.variable_scope("logits"):
126 | W = tf.get_variable("W", shape=[self.hidden_unit, self.num_labels],
127 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
128 |
129 | b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
130 | initializer=tf.zeros_initializer())
131 |
132 | pred = tf.nn.xw_plus_b(hidden, W, b)
133 | return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
134 |
135 | def project_crf_layer(self, embedding_chars, name=None):
136 | """
137 | hidden layer between input layer and logits
138 | :param lstm_outputs: [batch_size, num_steps, emb_size]
139 | :return: [batch_size, num_steps, num_tags]
140 | """
141 | with tf.variable_scope("project" if not name else name):
142 | with tf.variable_scope("logits"):
143 | W = tf.get_variable("W", shape=[self.embedding_dims, self.num_labels],
144 | dtype=tf.float32, initializer=self.initializers.xavier_initializer())
145 |
146 | b = tf.get_variable("b", shape=[self.num_labels], dtype=tf.float32,
147 | initializer=tf.zeros_initializer())
148 | output = tf.reshape(self.embedded_chars,
149 | shape=[-1, self.embedding_dims]) # [batch_size, embedding_dims]
150 | pred = tf.tanh(tf.nn.xw_plus_b(output, W, b))
151 | return tf.reshape(pred, [-1, self.seq_length, self.num_labels])
152 |
153 | def crf_layer(self, logits):
154 | """
155 | calculate crf loss
156 | :param project_logits: [1, num_steps, num_tags]
157 | :return: scalar loss
158 | """
159 | with tf.variable_scope("crf_loss"):
160 | trans = tf.get_variable(
161 | "transitions",
162 | shape=[self.num_labels, self.num_labels],
163 | initializer=self.initializers.xavier_initializer())
164 | if self.labels is None:
165 | return None, trans
166 | else:
167 | log_likelihood, trans = tf.contrib.crf.crf_log_likelihood(
168 | inputs=logits,
169 | tag_indices=self.labels,
170 | transition_params=trans,
171 | sequence_lengths=self.lengths)
172 | return tf.reduce_mean(-log_likelihood), trans
173 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/model.py:
--------------------------------------------------------------------------------
1 | #! usr/bin/env python3
2 | # -*- coding:utf-8 -*-
3 | """
4 | Copyright 2018 The Google AI Language Team Authors.
5 | BASED ON Google_BERT.
6 | reference from :zhoukaiyin/
7 |
8 | @Author:Macan
9 | """
10 |
11 | from __future__ import absolute_import
12 | from __future__ import division
13 | from __future__ import print_function
14 |
15 | import tf_metrics
16 | import tensorflow as tf
17 | from bert import modeling, optimization
18 | from lstm_crf_layer import BLSTM_CRF
19 | from tensorflow.contrib.layers.python.layers import initializers
20 |
21 |
22 | def create_model(bert_config, is_training, input_ids, input_mask,
23 | segment_ids, labels, num_labels, use_one_hot_embeddings,
24 | dropout_rate=1.0, lstm_size=1, cell='lstm', num_layers=1):
25 | """创建Bert + LSTM + CRF模型
26 | """
27 | # 使用数据加载BertModel,获取对应的字embedding
28 |
29 | model = modeling.BertModel(
30 | config=bert_config,
31 | is_training=is_training,
32 | input_ids=input_ids,
33 | input_mask=input_mask,
34 | token_type_ids=segment_ids,
35 | use_one_hot_embeddings=use_one_hot_embeddings
36 | )
37 | # 获取对应的embedding 输入数据[batch_size, seq_length, embedding_size]
38 | embedding = model.get_sequence_output()
39 | max_seq_length = embedding.shape[1].value
40 | # 算序列真实长度
41 | used = tf.sign(tf.abs(input_ids))
42 | lengths = tf.reduce_sum(used, reduction_indices=1) # [batch_size] 大小的向量,包含了当前batch中的序列长度
43 | # 添加CRF output layer
44 | blstm_crf = BLSTM_CRF(embedded_chars=embedding, hidden_unit=lstm_size, cell_type=cell, num_layers=num_layers,
45 | dropout_rate=dropout_rate, initializers=initializers, num_labels=num_labels,
46 | seq_length=max_seq_length, labels=labels, lengths=lengths, is_training=is_training)
47 | rst = blstm_crf.add_blstm_crf_layer(crf_only=True)
48 | return rst
49 |
50 |
51 | def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
52 | num_train_steps, num_warmup_steps):
53 | """用于Estimator的构建模型"""
54 |
55 | def model_fn(features, labels, mode, params):
56 | tf.logging.info("*** Features ***")
57 | for name in sorted(features.keys()):
58 | tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
59 | input_ids = features["input_ids"]
60 | input_mask = features["input_mask"]
61 | segment_ids = features["segment_ids"]
62 | label_ids = features["label_ids"]
63 |
64 | print('shape of input_ids', input_ids.shape)
65 | is_training = (mode == tf.estimator.ModeKeys.TRAIN)
66 |
67 | # 使用参数构建模型,input_idx 就是输入的样本idx表示,label_ids 就是标签的idx表示
68 | total_loss, logits, trans, pred_ids = create_model(
69 | bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
70 | num_labels, False)
71 |
72 | tvars = tf.trainable_variables()
73 | # 加载BERT模型
74 | if init_checkpoint:
75 | (assignment_map, initialized_variable_names) = \
76 | modeling.get_assignment_map_from_checkpoint(tvars,
77 | init_checkpoint)
78 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
79 |
80 | output_spec = None
81 | if mode == tf.estimator.ModeKeys.TRAIN:
82 | train_op = optimization.create_optimizer(
83 | total_loss, learning_rate, num_train_steps, num_warmup_steps, False)
84 | hook_dict = {}
85 | hook_dict['loss'] = total_loss
86 | hook_dict['global_steps'] = tf.train.get_or_create_global_step()
87 | logging_hook = tf.train.LoggingTensorHook(
88 | hook_dict, every_n_iter=100)
89 |
90 | output_spec = tf.estimator.EstimatorSpec(
91 | mode=mode,
92 | loss=total_loss,
93 | train_op=train_op,
94 | training_hooks=[logging_hook])
95 |
96 | elif mode == tf.estimator.ModeKeys.EVAL:
97 | # 针对NER ,进行了修改
98 | # def metric_fn(label_ids, pred_ids):
99 | # return {
100 | # "eval_loss": tf.metrics.mean_squared_error(labels=label_ids, predictions=pred_ids),
101 | # }
102 |
103 | # eval_metrics = metric_fn(label_ids, pred_ids)
104 | # output_spec = tf.estimator.EstimatorSpec(
105 | # mode=mode,
106 | # loss=total_loss,
107 | # eval_metric_ops=eval_metrics
108 | # )
109 |
110 | def metric_fn(label_ids, pred_ids):
111 | precision = tf_metrics.precision(label_ids, pred_ids, 11, [2, 3, 4, 5, 6, 7], average="macro")
112 | recall = tf_metrics.recall(label_ids, pred_ids, 11, [2, 3, 4, 5, 6, 7], average="macro")
113 | f = tf_metrics.f1(label_ids, pred_ids, 11, [2, 3, 4, 5, 6, 7], average="macro")
114 | #
115 | return {
116 | "eval_precision": precision,
117 | "eval_recall": recall,
118 | "eval_f": f,
119 | # "eval_loss": loss,
120 | }
121 |
122 | eval_metrics = metric_fn(label_ids, pred_ids)
123 | output_spec = tf.estimator.EstimatorSpec(
124 | mode=mode,
125 | loss=total_loss,
126 | eval_metric_ops=eval_metrics
127 | )
128 |
129 | else:
130 | output_spec = tf.estimator.EstimatorSpec(
131 | mode=mode,
132 | predictions=pred_ids
133 | )
134 | return output_spec
135 |
136 | return model_fn
137 |
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/requirement.txt:
--------------------------------------------------------------------------------
1 | # client-side requirements, pretty light-weight right?
2 | # tensorflow >= 1.12.0
3 | # tensorflow-gpu >= 1.12.0 # GPU version of TensorFlow.
4 | GPUtil >= 1.3.0 # no need if you dont have GPU
5 | pyzmq >= 17.1.0 # python zmq
6 | flask # no need if you do not need http
7 | flask_compress # no need if you do not need http
8 | flask_json # no need if you do not need http
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/run_test.py:
--------------------------------------------------------------------------------
1 | import re
2 | import os
3 | from pyltp import Segmentor
4 | import json
5 |
6 | def loadStopwords():
7 | stopwords = set([])
8 | with open("stopwords.txt", "r", encoding="utf-8") as f:
9 | for line in f.readlines():
10 | line = line.strip()
11 | stopwords.add(line)
12 | return stopwords
13 |
14 | def read():
15 | # LTP_DATA_DIR = "3.4.0/ltp_data_v3.4.0"
16 | # cws_model_path = os.path.join(LTP_DATA_DIR, "cws.model")
17 | # segmentor = Segmentor()
18 | # segmentor.load(cws_model_path)
19 |
20 | # stopwords = loadStopwords()
21 | m = 1000
22 | with open("data/coreEntityEmotion_train.txt", "r", encoding="utf-8") as f:
23 | length = 0
24 | for line in f.readlines()[:1]:
25 | line = line.strip()
26 | data = json.loads(line)
27 |
28 | content = data["content"]
29 | if len(content) < m:
30 | m = len(content)
31 | print(m)
32 |
33 | def saveJson(data):
34 | with open("train.txt", "a", encoding="utf-8") as f:
35 | f.write(json.dumps(data, ensure_ascii=False))
36 |
37 |
38 | if __name__ == "__main__":
39 | read()
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/stopwords.txt:
--------------------------------------------------------------------------------
1 | ?
2 | 、
3 | 。
4 | “
5 | ”
6 | 《
7 | 》
8 | !
9 | ,
10 | :
11 | ;
12 | ?
13 | 啊
14 | 阿
15 | 哎
16 | 哎呀
17 | 哎哟
18 | 唉
19 | 俺
20 | 俺们
21 | 按
22 | 按照
23 | 吧
24 | 吧哒
25 | 把
26 | 罢了
27 | 被
28 | 本
29 | 本着
30 | 比
31 | 比方
32 | 比如
33 | 鄙人
34 | 彼
35 | 彼此
36 | 边
37 | 别
38 | 别的
39 | 别说
40 | 并
41 | 并且
42 | 不比
43 | 不成
44 | 不单
45 | 不但
46 | 不独
47 | 不管
48 | 不光
49 | 不过
50 | 不仅
51 | 不拘
52 | 不论
53 | 不怕
54 | 不然
55 | 不如
56 | 不特
57 | 不惟
58 | 不问
59 | 不只
60 | 朝
61 | 朝着
62 | 趁
63 | 趁着
64 | 乘
65 | 冲
66 | 除
67 | 除此之外
68 | 除非
69 | 除了
70 | 此
71 | 此间
72 | 此外
73 | 从
74 | 从而
75 | 打
76 | 待
77 | 但
78 | 但是
79 | 当
80 | 当着
81 | 到
82 | 得
83 | 的
84 | 的话
85 | 等
86 | 等等
87 | 地
88 | 第
89 | 叮咚
90 | 对
91 | 对于
92 | 多
93 | 多少
94 | 而
95 | 而况
96 | 而且
97 | 而是
98 | 而外
99 | 而言
100 | 而已
101 | 尔后
102 | 反过来
103 | 反过来说
104 | 反之
105 | 非但
106 | 非徒
107 | 否则
108 | 嘎
109 | 嘎登
110 | 该
111 | 赶
112 | 个
113 | 各
114 | 各个
115 | 各位
116 | 各种
117 | 各自
118 | 给
119 | 根据
120 | 跟
121 | 故
122 | 故此
123 | 固然
124 | 关于
125 | 管
126 | 归
127 | 果然
128 | 果真
129 | 过
130 | 哈
131 | 哈哈
132 | 呵
133 | 和
134 | 何
135 | 何处
136 | 何况
137 | 何时
138 | 嘿
139 | 哼
140 | 哼唷
141 | 呼哧
142 | 乎
143 | 哗
144 | 还是
145 | 还有
146 | 换句话说
147 | 换言之
148 | 或
149 | 或是
150 | 或者
151 | 极了
152 | 及
153 | 及其
154 | 及至
155 | 即
156 | 即便
157 | 即或
158 | 即令
159 | 即若
160 | 即使
161 | 几
162 | 几时
163 | 己
164 | 既
165 | 既然
166 | 既是
167 | 继而
168 | 加之
169 | 假如
170 | 假若
171 | 假使
172 | 鉴于
173 | 将
174 | 较
175 | 较之
176 | 叫
177 | 接着
178 | 结果
179 | 借
180 | 紧接着
181 | 进而
182 | 尽
183 | 尽管
184 | 经
185 | 经过
186 | 就
187 | 就是
188 | 就是说
189 | 据
190 | 具体地说
191 | 具体说来
192 | 开始
193 | 开外
194 | 靠
195 | 咳
196 | 可
197 | 可见
198 | 可是
199 | 可以
200 | 况且
201 | 啦
202 | 来
203 | 来着
204 | 离
205 | 例如
206 | 哩
207 | 连
208 | 连同
209 | 两者
210 | 了
211 | 临
212 | 另
213 | 另外
214 | 另一方面
215 | 论
216 | 嘛
217 | 吗
218 | 慢说
219 | 漫说
220 | 冒
221 | 么
222 | 每
223 | 每当
224 | 们
225 | 莫若
226 | 某
227 | 某个
228 | 某些
229 | 拿
230 | 哪
231 | 哪边
232 | 哪儿
233 | 哪个
234 | 哪里
235 | 哪年
236 | 哪怕
237 | 哪天
238 | 哪些
239 | 哪样
240 | 那
241 | 那边
242 | 那儿
243 | 那个
244 | 那会儿
245 | 那里
246 | 那么
247 | 那么些
248 | 那么样
249 | 那时
250 | 那些
251 | 那样
252 | 乃
253 | 乃至
254 | 呢
255 | 能
256 | 你
257 | 你们
258 | 您
259 | 宁
260 | 宁可
261 | 宁肯
262 | 宁愿
263 | 哦
264 | 呕
265 | 啪达
266 | 旁人
267 | 呸
268 | 凭
269 | 凭借
270 | 其
271 | 其次
272 | 其二
273 | 其他
274 | 其它
275 | 其一
276 | 其余
277 | 其中
278 | 起
279 | 起见
280 | 起见
281 | 岂但
282 | 恰恰相反
283 | 前后
284 | 前者
285 | 且
286 | 然而
287 | 然后
288 | 然则
289 | 让
290 | 人家
291 | 任
292 | 任何
293 | 任凭
294 | 如
295 | 如此
296 | 如果
297 | 如何
298 | 如其
299 | 如若
300 | 如上所述
301 | 若
302 | 若非
303 | 若是
304 | 啥
305 | 上下
306 | 尚且
307 | 设若
308 | 设使
309 | 甚而
310 | 甚么
311 | 甚至
312 | 省得
313 | 时候
314 | 什么
315 | 什么样
316 | 使得
317 | 是
318 | 是的
319 | 首先
320 | 谁
321 | 谁知
322 | 顺
323 | 顺着
324 | 似的
325 | 虽
326 | 虽然
327 | 虽说
328 | 虽则
329 | 随
330 | 随着
331 | 所
332 | 所以
333 | 他
334 | 他们
335 | 他人
336 | 它
337 | 它们
338 | 她
339 | 她们
340 | 倘
341 | 倘或
342 | 倘然
343 | 倘若
344 | 倘使
345 | 腾
346 | 替
347 | 通过
348 | 同
349 | 同时
350 | 哇
351 | 万一
352 | 往
353 | 望
354 | 为
355 | 为何
356 | 为了
357 | 为什么
358 | 为着
359 | 喂
360 | 嗡嗡
361 | 我
362 | 我们
363 | 呜
364 | 呜呼
365 | 乌乎
366 | 无论
367 | 无宁
368 | 毋宁
369 | 嘻
370 | 吓
371 | 相对而言
372 | 像
373 | 向
374 | 向着
375 | 嘘
376 | 呀
377 | 焉
378 | 沿
379 | 沿着
380 | 要
381 | 要不
382 | 要不然
383 | 要不是
384 | 要么
385 | 要是
386 | 也
387 | 也罢
388 | 也好
389 | 一
390 | 一般
391 | 一旦
392 | 一方面
393 | 一来
394 | 一切
395 | 一样
396 | 一则
397 | 依
398 | 依照
399 | 矣
400 | 以
401 | 以便
402 | 以及
403 | 以免
404 | 以至
405 | 以至于
406 | 以致
407 | 抑或
408 | 因
409 | 因此
410 | 因而
411 | 因为
412 | 哟
413 | 用
414 | 由
415 | 由此可见
416 | 由于
417 | 有
418 | 有的
419 | 有关
420 | 有些
421 | 又
422 | 于
423 | 于是
424 | 于是乎
425 | 与
426 | 与此同时
427 | 与否
428 | 与其
429 | 越是
430 | 云云
431 | 哉
432 | 再说
433 | 再者
434 | 在
435 | 都
436 | 在下
437 | 咱
438 | 咱们
439 | 则
440 | 怎
441 | 怎么
442 | 怎么办
443 | 怎么样
444 | 怎样
445 | 咋
446 | 照
447 | 照着
448 | 者
449 | 这
450 | 这边
451 | 这儿
452 | 这个
453 | 这会儿
454 | 这就是说
455 | 这里
456 | 这么
457 | 这么点儿
458 | 这么些
459 | 这么样
460 | 这时
461 | 这些
462 | 这样
463 | 正如
464 | 吱
465 | 之
466 | 之类
467 | 之所以
468 | 之一
469 | 只是
470 | 只限
471 | 只要
472 | 只有
473 | 至
474 | 至于
475 | 诸位
476 | 着
477 | 着呢
478 | 自
479 | 自从
480 | 自个儿
481 | 自各儿
482 | 自己
483 | 自家
484 | 自身
485 | 综上所述
486 | 总的来看
487 | 总的来说
488 | 总的说来
489 | 总而言之
490 | 总之
491 | 纵
492 | 纵令
493 | 纵然
494 | 纵使
495 | 遵照
496 | 作为
497 | 兮
498 | 呃
499 | 呗
500 | 咚
501 | 咦
502 | 喏
503 | 啐
504 | 喔唷
505 | 嗬
506 | 嗯
507 | 嗳
--------------------------------------------------------------------------------
/BERT-BiLSTM-CRF-NER/tf_metrics.py:
--------------------------------------------------------------------------------
1 | """
2 | Multiclass
3 | from:
4 | https://github.com/guillaumegenthial/tf_metrics/blob/master/tf_metrics/__init__.py
5 |
6 | """
7 |
8 | __author__ = "Guillaume Genthial"
9 |
10 | import numpy as np
11 | import tensorflow as tf
12 | from tensorflow.python.ops.metrics_impl import _streaming_confusion_matrix
13 |
14 |
15 | def precision(labels, predictions, num_classes, pos_indices=None,
16 | weights=None, average='micro'):
17 | """Multi-class precision metric for Tensorflow
18 | Parameters
19 | ----------
20 | labels : Tensor of tf.int32 or tf.int64
21 | The true labels
22 | predictions : Tensor of tf.int32 or tf.int64
23 | The predictions, same shape as labels
24 | num_classes : int
25 | The number of classes
26 | pos_indices : list of int, optional
27 | The indices of the positive classes, default is all
28 | weights : Tensor of tf.int32, optional
29 | Mask, must be of compatible shape with labels
30 | average : str, optional
31 | 'micro': counts the total number of true positives, false
32 | positives, and false negatives for the classes in
33 | `pos_indices` and infer the metric from it.
34 | 'macro': will compute the metric separately for each class in
35 | `pos_indices` and average. Will not account for class
36 | imbalance.
37 | 'weighted': will compute the metric separately for each class in
38 | `pos_indices` and perform a weighted average by the total
39 | number of true labels for each class.
40 | Returns
41 | -------
42 | tuple of (scalar float Tensor, update_op)
43 | """
44 | cm, op = _streaming_confusion_matrix(
45 | labels, predictions, num_classes, weights)
46 | pr, _, _ = metrics_from_confusion_matrix(
47 | cm, pos_indices, average=average)
48 | op, _, _ = metrics_from_confusion_matrix(
49 | op, pos_indices, average=average)
50 | return (pr, op)
51 |
52 |
53 | def recall(labels, predictions, num_classes, pos_indices=None, weights=None,
54 | average='micro'):
55 | """Multi-class recall metric for Tensorflow
56 | Parameters
57 | ----------
58 | labels : Tensor of tf.int32 or tf.int64
59 | The true labels
60 | predictions : Tensor of tf.int32 or tf.int64
61 | The predictions, same shape as labels
62 | num_classes : int
63 | The number of classes
64 | pos_indices : list of int, optional
65 | The indices of the positive classes, default is all
66 | weights : Tensor of tf.int32, optional
67 | Mask, must be of compatible shape with labels
68 | average : str, optional
69 | 'micro': counts the total number of true positives, false
70 | positives, and false negatives for the classes in
71 | `pos_indices` and infer the metric from it.
72 | 'macro': will compute the metric separately for each class in
73 | `pos_indices` and average. Will not account for class
74 | imbalance.
75 | 'weighted': will compute the metric separately for each class in
76 | `pos_indices` and perform a weighted average by the total
77 | number of true labels for each class.
78 | Returns
79 | -------
80 | tuple of (scalar float Tensor, update_op)
81 | """
82 | cm, op = _streaming_confusion_matrix(
83 | labels, predictions, num_classes, weights)
84 | _, re, _ = metrics_from_confusion_matrix(
85 | cm, pos_indices, average=average)
86 | _, op, _ = metrics_from_confusion_matrix(
87 | op, pos_indices, average=average)
88 | return (re, op)
89 |
90 |
91 | def f1(labels, predictions, num_classes, pos_indices=None, weights=None,
92 | average='micro'):
93 | return fbeta(labels, predictions, num_classes, pos_indices, weights,
94 | average)
95 |
96 |
97 | def fbeta(labels, predictions, num_classes, pos_indices=None, weights=None,
98 | average='micro', beta=1):
99 | """Multi-class fbeta metric for Tensorflow
100 | Parameters
101 | ----------
102 | labels : Tensor of tf.int32 or tf.int64
103 | The true labels
104 | predictions : Tensor of tf.int32 or tf.int64
105 | The predictions, same shape as labels
106 | num_classes : int
107 | The number of classes
108 | pos_indices : list of int, optional
109 | The indices of the positive classes, default is all
110 | weights : Tensor of tf.int32, optional
111 | Mask, must be of compatible shape with labels
112 | average : str, optional
113 | 'micro': counts the total number of true positives, false
114 | positives, and false negatives for the classes in
115 | `pos_indices` and infer the metric from it.
116 | 'macro': will compute the metric separately for each class in
117 | `pos_indices` and average. Will not account for class
118 | imbalance.
119 | 'weighted': will compute the metric separately for each class in
120 | `pos_indices` and perform a weighted average by the total
121 | number of true labels for each class.
122 | beta : int, optional
123 | Weight of precision in harmonic mean
124 | Returns
125 | -------
126 | tuple of (scalar float Tensor, update_op)
127 | """
128 | cm, op = _streaming_confusion_matrix(
129 | labels, predictions, num_classes, weights)
130 | _, _, fbeta = metrics_from_confusion_matrix(
131 | cm, pos_indices, average=average, beta=beta)
132 | _, _, op = metrics_from_confusion_matrix(
133 | op, pos_indices, average=average, beta=beta)
134 | return (fbeta, op)
135 |
136 |
137 | def safe_div(numerator, denominator):
138 | """Safe division, return 0 if denominator is 0"""
139 | numerator, denominator = tf.to_float(numerator), tf.to_float(denominator)
140 | zeros = tf.zeros_like(numerator, dtype=numerator.dtype)
141 | denominator_is_zero = tf.equal(denominator, zeros)
142 | return tf.where(denominator_is_zero, zeros, numerator / denominator)
143 |
144 |
145 | def pr_re_fbeta(cm, pos_indices, beta=1):
146 | """Uses a confusion matrix to compute precision, recall and fbeta"""
147 | num_classes = cm.shape[0]
148 | neg_indices = [i for i in range(num_classes) if i not in pos_indices]
149 | cm_mask = np.ones([num_classes, num_classes])
150 | cm_mask[neg_indices, neg_indices] = 0
151 | diag_sum = tf.reduce_sum(tf.diag_part(cm * cm_mask))
152 |
153 | cm_mask = np.ones([num_classes, num_classes])
154 | cm_mask[:, neg_indices] = 0
155 | tot_pred = tf.reduce_sum(cm * cm_mask)
156 |
157 | cm_mask = np.ones([num_classes, num_classes])
158 | cm_mask[neg_indices, :] = 0
159 | tot_gold = tf.reduce_sum(cm * cm_mask)
160 |
161 | pr = safe_div(diag_sum, tot_pred)
162 | re = safe_div(diag_sum, tot_gold)
163 | fbeta = safe_div((1. + beta**2) * pr * re, beta**2 * pr + re)
164 |
165 | return pr, re, fbeta
166 |
167 |
168 | def metrics_from_confusion_matrix(cm, pos_indices=None, average='micro',
169 | beta=1):
170 | """Precision, Recall and F1 from the confusion matrix
171 | Parameters
172 | ----------
173 | cm : tf.Tensor of type tf.int32, of shape (num_classes, num_classes)
174 | The streaming confusion matrix.
175 | pos_indices : list of int, optional
176 | The indices of the positive classes
177 | beta : int, optional
178 | Weight of precision in harmonic mean
179 | average : str, optional
180 | 'micro', 'macro' or 'weighted'
181 | """
182 | num_classes = cm.shape[0]
183 | if pos_indices is None:
184 | pos_indices = [i for i in range(num_classes)]
185 |
186 | if average == 'micro':
187 | return pr_re_fbeta(cm, pos_indices, beta)
188 | elif average in {'macro', 'weighted'}:
189 | precisions, recalls, fbetas, n_golds = [], [], [], []
190 | for idx in pos_indices:
191 | pr, re, fbeta = pr_re_fbeta(cm, [idx], beta)
192 | precisions.append(pr)
193 | recalls.append(re)
194 | fbetas.append(fbeta)
195 | cm_mask = np.zeros([num_classes, num_classes])
196 | cm_mask[idx, :] = 1
197 | n_golds.append(tf.to_float(tf.reduce_sum(cm * cm_mask)))
198 |
199 | if average == 'macro':
200 | pr = tf.reduce_mean(precisions)
201 | re = tf.reduce_mean(recalls)
202 | fbeta = tf.reduce_mean(fbetas)
203 | return pr, re, fbeta
204 | if average == 'weighted':
205 | n_gold = tf.reduce_sum(n_golds)
206 | pr_sum = sum(p * n for p, n in zip(precisions, n_golds))
207 | pr = safe_div(pr_sum, n_gold)
208 | re_sum = sum(r * n for r, n in zip(recalls, n_golds))
209 | re = safe_div(re_sum, n_gold)
210 | fbeta_sum = sum(f * n for f, n in zip(fbetas, n_golds))
211 | fbeta = safe_div(fbeta_sum, n_gold)
212 | return pr, re, fbeta
213 |
214 | else:
215 | raise NotImplementedError()
--------------------------------------------------------------------------------
/BERT-SA/README.md:
--------------------------------------------------------------------------------
1 | ### Sentiment Analyze
2 | Bert + softmax
3 |
4 | - Input
5 | + [CLS]Named Entity[SEQ]The Article[SEQ]
6 | - Output
7 | + positive or negtive
--------------------------------------------------------------------------------
/BERT-SA/bert/.gitignore:
--------------------------------------------------------------------------------
1 | # Initially taken from Github's Python gitignore file
2 |
3 | # Byte-compiled / optimized / DLL files
4 | __pycache__/
5 | *.py[cod]
6 | *$py.class
7 |
8 | # C extensions
9 | *.so
10 |
11 | # Distribution / packaging
12 | .Python
13 | build/
14 | develop-eggs/
15 | dist/
16 | downloads/
17 | eggs/
18 | .eggs/
19 | lib/
20 | lib64/
21 | parts/
22 | sdist/
23 | var/
24 | wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | .hypothesis/
51 | .pytest_cache/
52 |
53 | # Translations
54 | *.mo
55 | *.pot
56 |
57 | # Django stuff:
58 | *.log
59 | local_settings.py
60 | db.sqlite3
61 |
62 | # Flask stuff:
63 | instance/
64 | .webassets-cache
65 |
66 | # Scrapy stuff:
67 | .scrapy
68 |
69 | # Sphinx documentation
70 | docs/_build/
71 |
72 | # PyBuilder
73 | target/
74 |
75 | # Jupyter Notebook
76 | .ipynb_checkpoints
77 |
78 | # IPython
79 | profile_default/
80 | ipython_config.py
81 |
82 | # pyenv
83 | .python-version
84 |
85 | # celery beat schedule file
86 | celerybeat-schedule
87 |
88 | # SageMath parsed files
89 | *.sage.py
90 |
91 | # Environments
92 | .env
93 | .venv
94 | env/
95 | venv/
96 | ENV/
97 | env.bak/
98 | venv.bak/
99 |
100 | # Spyder project settings
101 | .spyderproject
102 | .spyproject
103 |
104 | # Rope project settings
105 | .ropeproject
106 |
107 | # mkdocs documentation
108 | /site
109 |
110 | # mypy
111 | .mypy_cache/
112 | .dmypy.json
113 | dmypy.json
114 |
115 | # Pyre type checker
116 | .pyre/
117 |
--------------------------------------------------------------------------------
/BERT-SA/bert/.idea/bert.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/BERT-SA/bert/.idea/encodings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
--------------------------------------------------------------------------------
/BERT-SA/bert/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
--------------------------------------------------------------------------------
/BERT-SA/bert/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/BERT-SA/bert/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 | create_model
49 | model_fn
50 |
51 |
52 |
53 |
58 |
59 |
60 |
150 |
151 |
152 |
153 |
154 |
155 | Python
156 | #D:/ACourse/2019Spring/CIP/MRC/bert/run_squad.py
157 |
158 | run_squad.FeatureWriter
159 | run_squad.SquadExample
160 | object
161 | run_squad.InputFeatures
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 | Inner Classes
186 | Fields
187 |
188 | All
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
--------------------------------------------------------------------------------
/BERT-SA/bert/CONTRIBUTING.md:
--------------------------------------------------------------------------------
1 | # How to Contribute
2 |
3 | BERT needs to maintain permanent compatibility with the pre-trained model files,
4 | so we do not plan to make any major changes to this library (other than what was
5 | promised in the README). However, we can accept small patches related to
6 | re-factoring and documentation. To submit contributes, there are just a few
7 | small guidelines you need to follow.
8 |
9 | ## Contributor License Agreement
10 |
11 | Contributions to this project must be accompanied by a Contributor License
12 | Agreement. You (or your employer) retain the copyright to your contribution;
13 | this simply gives us permission to use and redistribute your contributions as
14 | part of the project. Head over to to see
15 | your current agreements on file or to sign a new one.
16 |
17 | You generally only need to submit a CLA once, so if you've already submitted one
18 | (even if it was for a different project), you probably don't need to do it
19 | again.
20 |
21 | ## Code reviews
22 |
23 | All submissions, including submissions by project members, require review. We
24 | use GitHub pull requests for this purpose. Consult
25 | [GitHub Help](https://help.github.com/articles/about-pull-requests/) for more
26 | information on using pull requests.
27 |
28 | ## Community Guidelines
29 |
30 | This project follows
31 | [Google's Open Source Community Guidelines](https://opensource.google.com/conduct/).
32 |
--------------------------------------------------------------------------------
/BERT-SA/bert/LICENSE:
--------------------------------------------------------------------------------
1 |
2 | Apache License
3 | Version 2.0, January 2004
4 | http://www.apache.org/licenses/
5 |
6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7 |
8 | 1. Definitions.
9 |
10 | "License" shall mean the terms and conditions for use, reproduction,
11 | and distribution as defined by Sections 1 through 9 of this document.
12 |
13 | "Licensor" shall mean the copyright owner or entity authorized by
14 | the copyright owner that is granting the License.
15 |
16 | "Legal Entity" shall mean the union of the acting entity and all
17 | other entities that control, are controlled by, or are under common
18 | control with that entity. For the purposes of this definition,
19 | "control" means (i) the power, direct or indirect, to cause the
20 | direction or management of such entity, whether by contract or
21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
22 | outstanding shares, or (iii) beneficial ownership of such entity.
23 |
24 | "You" (or "Your") shall mean an individual or Legal Entity
25 | exercising permissions granted by this License.
26 |
27 | "Source" form shall mean the preferred form for making modifications,
28 | including but not limited to software source code, documentation
29 | source, and configuration files.
30 |
31 | "Object" form shall mean any form resulting from mechanical
32 | transformation or translation of a Source form, including but
33 | not limited to compiled object code, generated documentation,
34 | and conversions to other media types.
35 |
36 | "Work" shall mean the work of authorship, whether in Source or
37 | Object form, made available under the License, as indicated by a
38 | copyright notice that is included in or attached to the work
39 | (an example is provided in the Appendix below).
40 |
41 | "Derivative Works" shall mean any work, whether in Source or Object
42 | form, that is based on (or derived from) the Work and for which the
43 | editorial revisions, annotations, elaborations, or other modifications
44 | represent, as a whole, an original work of authorship. For the purposes
45 | of this License, Derivative Works shall not include works that remain
46 | separable from, or merely link (or bind by name) to the interfaces of,
47 | the Work and Derivative Works thereof.
48 |
49 | "Contribution" shall mean any work of authorship, including
50 | the original version of the Work and any modifications or additions
51 | to that Work or Derivative Works thereof, that is intentionally
52 | submitted to Licensor for inclusion in the Work by the copyright owner
53 | or by an individual or Legal Entity authorized to submit on behalf of
54 | the copyright owner. For the purposes of this definition, "submitted"
55 | means any form of electronic, verbal, or written communication sent
56 | to the Licensor or its representatives, including but not limited to
57 | communication on electronic mailing lists, source code control systems,
58 | and issue tracking systems that are managed by, or on behalf of, the
59 | Licensor for the purpose of discussing and improving the Work, but
60 | excluding communication that is conspicuously marked or otherwise
61 | designated in writing by the copyright owner as "Not a Contribution."
62 |
63 | "Contributor" shall mean Licensor and any individual or Legal Entity
64 | on behalf of whom a Contribution has been received by Licensor and
65 | subsequently incorporated within the Work.
66 |
67 | 2. Grant of Copyright License. Subject to the terms and conditions of
68 | this License, each Contributor hereby grants to You a perpetual,
69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70 | copyright license to reproduce, prepare Derivative Works of,
71 | publicly display, publicly perform, sublicense, and distribute the
72 | Work and such Derivative Works in Source or Object form.
73 |
74 | 3. Grant of Patent License. Subject to the terms and conditions of
75 | this License, each Contributor hereby grants to You a perpetual,
76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77 | (except as stated in this section) patent license to make, have made,
78 | use, offer to sell, sell, import, and otherwise transfer the Work,
79 | where such license applies only to those patent claims licensable
80 | by such Contributor that are necessarily infringed by their
81 | Contribution(s) alone or by combination of their Contribution(s)
82 | with the Work to which such Contribution(s) was submitted. If You
83 | institute patent litigation against any entity (including a
84 | cross-claim or counterclaim in a lawsuit) alleging that the Work
85 | or a Contribution incorporated within the Work constitutes direct
86 | or contributory patent infringement, then any patent licenses
87 | granted to You under this License for that Work shall terminate
88 | as of the date such litigation is filed.
89 |
90 | 4. Redistribution. You may reproduce and distribute copies of the
91 | Work or Derivative Works thereof in any medium, with or without
92 | modifications, and in Source or Object form, provided that You
93 | meet the following conditions:
94 |
95 | (a) You must give any other recipients of the Work or
96 | Derivative Works a copy of this License; and
97 |
98 | (b) You must cause any modified files to carry prominent notices
99 | stating that You changed the files; and
100 |
101 | (c) You must retain, in the Source form of any Derivative Works
102 | that You distribute, all copyright, patent, trademark, and
103 | attribution notices from the Source form of the Work,
104 | excluding those notices that do not pertain to any part of
105 | the Derivative Works; and
106 |
107 | (d) If the Work includes a "NOTICE" text file as part of its
108 | distribution, then any Derivative Works that You distribute must
109 | include a readable copy of the attribution notices contained
110 | within such NOTICE file, excluding those notices that do not
111 | pertain to any part of the Derivative Works, in at least one
112 | of the following places: within a NOTICE text file distributed
113 | as part of the Derivative Works; within the Source form or
114 | documentation, if provided along with the Derivative Works; or,
115 | within a display generated by the Derivative Works, if and
116 | wherever such third-party notices normally appear. The contents
117 | of the NOTICE file are for informational purposes only and
118 | do not modify the License. You may add Your own attribution
119 | notices within Derivative Works that You distribute, alongside
120 | or as an addendum to the NOTICE text from the Work, provided
121 | that such additional attribution notices cannot be construed
122 | as modifying the License.
123 |
124 | You may add Your own copyright statement to Your modifications and
125 | may provide additional or different license terms and conditions
126 | for use, reproduction, or distribution of Your modifications, or
127 | for any such Derivative Works as a whole, provided Your use,
128 | reproduction, and distribution of the Work otherwise complies with
129 | the conditions stated in this License.
130 |
131 | 5. Submission of Contributions. Unless You explicitly state otherwise,
132 | any Contribution intentionally submitted for inclusion in the Work
133 | by You to the Licensor shall be under the terms and conditions of
134 | this License, without any additional terms or conditions.
135 | Notwithstanding the above, nothing herein shall supersede or modify
136 | the terms of any separate license agreement you may have executed
137 | with Licensor regarding such Contributions.
138 |
139 | 6. Trademarks. This License does not grant permission to use the trade
140 | names, trademarks, service marks, or product names of the Licensor,
141 | except as required for reasonable and customary use in describing the
142 | origin of the Work and reproducing the content of the NOTICE file.
143 |
144 | 7. Disclaimer of Warranty. Unless required by applicable law or
145 | agreed to in writing, Licensor provides the Work (and each
146 | Contributor provides its Contributions) on an "AS IS" BASIS,
147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148 | implied, including, without limitation, any warranties or conditions
149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150 | PARTICULAR PURPOSE. You are solely responsible for determining the
151 | appropriateness of using or redistributing the Work and assume any
152 | risks associated with Your exercise of permissions under this License.
153 |
154 | 8. Limitation of Liability. In no event and under no legal theory,
155 | whether in tort (including negligence), contract, or otherwise,
156 | unless required by applicable law (such as deliberate and grossly
157 | negligent acts) or agreed to in writing, shall any Contributor be
158 | liable to You for damages, including any direct, indirect, special,
159 | incidental, or consequential damages of any character arising as a
160 | result of this License or out of the use or inability to use the
161 | Work (including but not limited to damages for loss of goodwill,
162 | work stoppage, computer failure or malfunction, or any and all
163 | other commercial damages or losses), even if such Contributor
164 | has been advised of the possibility of such damages.
165 |
166 | 9. Accepting Warranty or Additional Liability. While redistributing
167 | the Work or Derivative Works thereof, You may choose to offer,
168 | and charge a fee for, acceptance of support, warranty, indemnity,
169 | or other liability obligations and/or rights consistent with this
170 | License. However, in accepting such obligations, You may act only
171 | on Your own behalf and on Your sole responsibility, not on behalf
172 | of any other Contributor, and only if You agree to indemnify,
173 | defend, and hold each Contributor harmless for any liability
174 | incurred by, or claims asserted against, such Contributor by reason
175 | of your accepting any such warranty or additional liability.
176 |
177 | END OF TERMS AND CONDITIONS
178 |
179 | APPENDIX: How to apply the Apache License to your work.
180 |
181 | To apply the Apache License to your work, attach the following
182 | boilerplate notice, with the fields enclosed by brackets "[]"
183 | replaced with your own identifying information. (Don't include
184 | the brackets!) The text should be enclosed in the appropriate
185 | comment syntax for the file format. We also recommend that a
186 | file or class name and description of purpose be included on the
187 | same "printed page" as the copyright notice for easier
188 | identification within third-party archives.
189 |
190 | Copyright [yyyy] [name of copyright owner]
191 |
192 | Licensed under the Apache License, Version 2.0 (the "License");
193 | you may not use this file except in compliance with the License.
194 | You may obtain a copy of the License at
195 |
196 | http://www.apache.org/licenses/LICENSE-2.0
197 |
198 | Unless required by applicable law or agreed to in writing, software
199 | distributed under the License is distributed on an "AS IS" BASIS,
200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201 | See the License for the specific language governing permissions and
202 | limitations under the License.
203 |
--------------------------------------------------------------------------------
/BERT-SA/bert/__init__.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 |
16 |
--------------------------------------------------------------------------------
/BERT-SA/bert/_gitignore.txt:
--------------------------------------------------------------------------------
1 | # Initially taken from Github's Python gitignore file
2 |
3 | # Byte-compiled / optimized / DLL files
4 | __pycache__/
5 | *.py[cod]
6 | *$py.class
7 |
8 | # C extensions
9 | *.so
10 |
11 | # Distribution / packaging
12 | .Python
13 | build/
14 | develop-eggs/
15 | dist/
16 | downloads/
17 | eggs/
18 | .eggs/
19 | lib/
20 | lib64/
21 | parts/
22 | sdist/
23 | var/
24 | wheels/
25 | *.egg-info/
26 | .installed.cfg
27 | *.egg
28 | MANIFEST
29 |
30 | # PyInstaller
31 | # Usually these files are written by a python script from a template
32 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
33 | *.manifest
34 | *.spec
35 |
36 | # Installer logs
37 | pip-log.txt
38 | pip-delete-this-directory.txt
39 |
40 | # Unit test / coverage reports
41 | htmlcov/
42 | .tox/
43 | .nox/
44 | .coverage
45 | .coverage.*
46 | .cache
47 | nosetests.xml
48 | coverage.xml
49 | *.cover
50 | .hypothesis/
51 | .pytest_cache/
52 |
53 | # Translations
54 | *.mo
55 | *.pot
56 |
57 | # Django stuff:
58 | *.log
59 | local_settings.py
60 | db.sqlite3
61 |
62 | # Flask stuff:
63 | instance/
64 | .webassets-cache
65 |
66 | # Scrapy stuff:
67 | .scrapy
68 |
69 | # Sphinx documentation
70 | docs/_build/
71 |
72 | # PyBuilder
73 | target/
74 |
75 | # Jupyter Notebook
76 | .ipynb_checkpoints
77 |
78 | # IPython
79 | profile_default/
80 | ipython_config.py
81 |
82 | # pyenv
83 | .python-version
84 |
85 | # celery beat schedule file
86 | celerybeat-schedule
87 |
88 | # SageMath parsed files
89 | *.sage.py
90 |
91 | # Environments
92 | .env
93 | .venv
94 | env/
95 | venv/
96 | ENV/
97 | env.bak/
98 | venv.bak/
99 |
100 | # Spyder project settings
101 | .spyderproject
102 | .spyproject
103 |
104 | # Rope project settings
105 | .ropeproject
106 |
107 | # mkdocs documentation
108 | /site
109 |
110 | # mypy
111 | .mypy_cache/
112 | .dmypy.json
113 | dmypy.json
114 |
115 | # Pyre type checker
116 | .pyre/
117 |
--------------------------------------------------------------------------------
/BERT-SA/bert/modeling_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import collections
20 | import json
21 | import random
22 | import re
23 |
24 | import modeling
25 | import six
26 | import tensorflow as tf
27 |
28 |
29 | class BertModelTest(tf.test.TestCase):
30 |
31 | class BertModelTester(object):
32 |
33 | def __init__(self,
34 | parent,
35 | batch_size=13,
36 | seq_length=7,
37 | is_training=True,
38 | use_input_mask=True,
39 | use_token_type_ids=True,
40 | vocab_size=99,
41 | hidden_size=32,
42 | num_hidden_layers=5,
43 | num_attention_heads=4,
44 | intermediate_size=37,
45 | hidden_act="gelu",
46 | hidden_dropout_prob=0.1,
47 | attention_probs_dropout_prob=0.1,
48 | max_position_embeddings=512,
49 | type_vocab_size=16,
50 | initializer_range=0.02,
51 | scope=None):
52 | self.parent = parent
53 | self.batch_size = batch_size
54 | self.seq_length = seq_length
55 | self.is_training = is_training
56 | self.use_input_mask = use_input_mask
57 | self.use_token_type_ids = use_token_type_ids
58 | self.vocab_size = vocab_size
59 | self.hidden_size = hidden_size
60 | self.num_hidden_layers = num_hidden_layers
61 | self.num_attention_heads = num_attention_heads
62 | self.intermediate_size = intermediate_size
63 | self.hidden_act = hidden_act
64 | self.hidden_dropout_prob = hidden_dropout_prob
65 | self.attention_probs_dropout_prob = attention_probs_dropout_prob
66 | self.max_position_embeddings = max_position_embeddings
67 | self.type_vocab_size = type_vocab_size
68 | self.initializer_range = initializer_range
69 | self.scope = scope
70 |
71 | def create_model(self):
72 | input_ids = BertModelTest.ids_tensor([self.batch_size, self.seq_length],
73 | self.vocab_size)
74 |
75 | input_mask = None
76 | if self.use_input_mask:
77 | input_mask = BertModelTest.ids_tensor(
78 | [self.batch_size, self.seq_length], vocab_size=2)
79 |
80 | token_type_ids = None
81 | if self.use_token_type_ids:
82 | token_type_ids = BertModelTest.ids_tensor(
83 | [self.batch_size, self.seq_length], self.type_vocab_size)
84 |
85 | config = modeling.BertConfig(
86 | vocab_size=self.vocab_size,
87 | hidden_size=self.hidden_size,
88 | num_hidden_layers=self.num_hidden_layers,
89 | num_attention_heads=self.num_attention_heads,
90 | intermediate_size=self.intermediate_size,
91 | hidden_act=self.hidden_act,
92 | hidden_dropout_prob=self.hidden_dropout_prob,
93 | attention_probs_dropout_prob=self.attention_probs_dropout_prob,
94 | max_position_embeddings=self.max_position_embeddings,
95 | type_vocab_size=self.type_vocab_size,
96 | initializer_range=self.initializer_range)
97 |
98 | model = modeling.BertModel(
99 | config=config,
100 | is_training=self.is_training,
101 | input_ids=input_ids,
102 | input_mask=input_mask,
103 | token_type_ids=token_type_ids,
104 | scope=self.scope)
105 |
106 | outputs = {
107 | "embedding_output": model.get_embedding_output(),
108 | "sequence_output": model.get_sequence_output(),
109 | "pooled_output": model.get_pooled_output(),
110 | "all_encoder_layers": model.get_all_encoder_layers(),
111 | }
112 | return outputs
113 |
114 | def check_output(self, result):
115 | self.parent.assertAllEqual(
116 | result["embedding_output"].shape,
117 | [self.batch_size, self.seq_length, self.hidden_size])
118 |
119 | self.parent.assertAllEqual(
120 | result["sequence_output"].shape,
121 | [self.batch_size, self.seq_length, self.hidden_size])
122 |
123 | self.parent.assertAllEqual(result["pooled_output"].shape,
124 | [self.batch_size, self.hidden_size])
125 |
126 | def test_default(self):
127 | self.run_tester(BertModelTest.BertModelTester(self))
128 |
129 | def test_config_to_json_string(self):
130 | config = modeling.BertConfig(vocab_size=99, hidden_size=37)
131 | obj = json.loads(config.to_json_string())
132 | self.assertEqual(obj["vocab_size"], 99)
133 | self.assertEqual(obj["hidden_size"], 37)
134 |
135 | def run_tester(self, tester):
136 | with self.test_session() as sess:
137 | ops = tester.create_model()
138 | init_op = tf.group(tf.global_variables_initializer(),
139 | tf.local_variables_initializer())
140 | sess.run(init_op)
141 | output_result = sess.run(ops)
142 | tester.check_output(output_result)
143 |
144 | self.assert_all_tensors_reachable(sess, [init_op, ops])
145 |
146 | @classmethod
147 | def ids_tensor(cls, shape, vocab_size, rng=None, name=None):
148 | """Creates a random int32 tensor of the shape within the vocab size."""
149 | if rng is None:
150 | rng = random.Random()
151 |
152 | total_dims = 1
153 | for dim in shape:
154 | total_dims *= dim
155 |
156 | values = []
157 | for _ in range(total_dims):
158 | values.append(rng.randint(0, vocab_size - 1))
159 |
160 | return tf.constant(value=values, dtype=tf.int32, shape=shape, name=name)
161 |
162 | def assert_all_tensors_reachable(self, sess, outputs):
163 | """Checks that all the tensors in the graph are reachable from outputs."""
164 | graph = sess.graph
165 |
166 | ignore_strings = [
167 | "^.*/assert_less_equal/.*$",
168 | "^.*/dilation_rate$",
169 | "^.*/Tensordot/concat$",
170 | "^.*/Tensordot/concat/axis$",
171 | "^testing/.*$",
172 | ]
173 |
174 | ignore_regexes = [re.compile(x) for x in ignore_strings]
175 |
176 | unreachable = self.get_unreachable_ops(graph, outputs)
177 | filtered_unreachable = []
178 | for x in unreachable:
179 | do_ignore = False
180 | for r in ignore_regexes:
181 | m = r.match(x.name)
182 | if m is not None:
183 | do_ignore = True
184 | if do_ignore:
185 | continue
186 | filtered_unreachable.append(x)
187 | unreachable = filtered_unreachable
188 |
189 | self.assertEqual(
190 | len(unreachable), 0, "The following ops are unreachable: %s" %
191 | (" ".join([x.name for x in unreachable])))
192 |
193 | @classmethod
194 | def get_unreachable_ops(cls, graph, outputs):
195 | """Finds all of the tensors in graph that are unreachable from outputs."""
196 | outputs = cls.flatten_recursive(outputs)
197 | output_to_op = collections.defaultdict(list)
198 | op_to_all = collections.defaultdict(list)
199 | assign_out_to_in = collections.defaultdict(list)
200 |
201 | for op in graph.get_operations():
202 | for x in op.inputs:
203 | op_to_all[op.name].append(x.name)
204 | for y in op.outputs:
205 | output_to_op[y.name].append(op.name)
206 | op_to_all[op.name].append(y.name)
207 | if str(op.type) == "Assign":
208 | for y in op.outputs:
209 | for x in op.inputs:
210 | assign_out_to_in[y.name].append(x.name)
211 |
212 | assign_groups = collections.defaultdict(list)
213 | for out_name in assign_out_to_in.keys():
214 | name_group = assign_out_to_in[out_name]
215 | for n1 in name_group:
216 | assign_groups[n1].append(out_name)
217 | for n2 in name_group:
218 | if n1 != n2:
219 | assign_groups[n1].append(n2)
220 |
221 | seen_tensors = {}
222 | stack = [x.name for x in outputs]
223 | while stack:
224 | name = stack.pop()
225 | if name in seen_tensors:
226 | continue
227 | seen_tensors[name] = True
228 |
229 | if name in output_to_op:
230 | for op_name in output_to_op[name]:
231 | if op_name in op_to_all:
232 | for input_name in op_to_all[op_name]:
233 | if input_name not in stack:
234 | stack.append(input_name)
235 |
236 | expanded_names = []
237 | if name in assign_groups:
238 | for assign_name in assign_groups[name]:
239 | expanded_names.append(assign_name)
240 |
241 | for expanded_name in expanded_names:
242 | if expanded_name not in stack:
243 | stack.append(expanded_name)
244 |
245 | unreachable_ops = []
246 | for op in graph.get_operations():
247 | is_unreachable = False
248 | all_names = [x.name for x in op.inputs] + [x.name for x in op.outputs]
249 | for name in all_names:
250 | if name not in seen_tensors:
251 | is_unreachable = True
252 | if is_unreachable:
253 | unreachable_ops.append(op)
254 | return unreachable_ops
255 |
256 | @classmethod
257 | def flatten_recursive(cls, item):
258 | """Flattens (potentially nested) a tuple/dictionary/list to a list."""
259 | output = []
260 | if isinstance(item, list):
261 | output.extend(item)
262 | elif isinstance(item, tuple):
263 | output.extend(list(item))
264 | elif isinstance(item, dict):
265 | for (_, v) in six.iteritems(item):
266 | output.append(v)
267 | else:
268 | return [item]
269 |
270 | flat_output = []
271 | for x in output:
272 | flat_output.extend(cls.flatten_recursive(x))
273 | return flat_output
274 |
275 |
276 | if __name__ == "__main__":
277 | tf.test.main()
278 |
--------------------------------------------------------------------------------
/BERT-SA/bert/multilingual.md:
--------------------------------------------------------------------------------
1 | ## Models
2 |
3 | There are two multilingual models currently available. We do not plan to release
4 | more single-language models, but we may release `BERT-Large` versions of these
5 | two in the future:
6 |
7 | * **[`BERT-Base, Multilingual Cased (New, recommended)`](https://storage.googleapis.com/bert_models/2018_11_23/multi_cased_L-12_H-768_A-12.zip)**:
8 | 104 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
9 | * **[`BERT-Base, Multilingual Uncased (Orig, not recommended)`](https://storage.googleapis.com/bert_models/2018_11_03/multilingual_L-12_H-768_A-12.zip)**:
10 | 102 languages, 12-layer, 768-hidden, 12-heads, 110M parameters
11 | * **[`BERT-Base, Chinese`](https://storage.googleapis.com/bert_models/2018_11_03/chinese_L-12_H-768_A-12.zip)**:
12 | Chinese Simplified and Traditional, 12-layer, 768-hidden, 12-heads, 110M
13 | parameters
14 |
15 | **The `Multilingual Cased (New)` model also fixes normalization issues in many
16 | languages, so it is recommended in languages with non-Latin alphabets (and is
17 | often better for most languages with Latin alphabets). When using this model,
18 | make sure to pass `--do_lower_case=false` to `run_pretraining.py` and other
19 | scripts.**
20 |
21 | See the [list of languages](#list-of-languages) that the Multilingual model
22 | supports. The Multilingual model does include Chinese (and English), but if your
23 | fine-tuning data is Chinese-only, then the Chinese model will likely produce
24 | better results.
25 |
26 | ## Results
27 |
28 | To evaluate these systems, we use the
29 | [XNLI dataset](https://github.com/facebookresearch/XNLI) dataset, which is a
30 | version of [MultiNLI](https://www.nyu.edu/projects/bowman/multinli/) where the
31 | dev and test sets have been translated (by humans) into 15 languages. Note that
32 | the training set was *machine* translated (we used the translations provided by
33 | XNLI, not Google NMT). For clarity, we only report on 6 languages below:
34 |
35 |
36 |
37 | | System | English | Chinese | Spanish | German | Arabic | Urdu |
38 | | --------------------------------- | -------- | -------- | -------- | -------- | -------- | -------- |
39 | | XNLI Baseline - Translate Train | 73.7 | 67.0 | 68.8 | 66.5 | 65.8 | 56.6 |
40 | | XNLI Baseline - Translate Test | 73.7 | 68.3 | 70.7 | 68.7 | 66.8 | 59.3 |
41 | | BERT - Translate Train Cased | **81.9** | **76.6** | **77.8** | **75.9** | **70.7** | 61.6 |
42 | | BERT - Translate Train Uncased | 81.4 | 74.2 | 77.3 | 75.2 | 70.5 | 61.7 |
43 | | BERT - Translate Test Uncased | 81.4 | 70.1 | 74.9 | 74.4 | 70.4 | **62.1** |
44 | | BERT - Zero Shot Uncased | 81.4 | 63.8 | 74.3 | 70.5 | 62.1 | 58.3 |
45 |
46 |
47 |
48 | The first two rows are baselines from the XNLI paper and the last three rows are
49 | our results with BERT.
50 |
51 | **Translate Train** means that the MultiNLI training set was machine translated
52 | from English into the foreign language. So training and evaluation were both
53 | done in the foreign language. Unfortunately, training was done on
54 | machine-translated data, so it is impossible to quantify how much of the lower
55 | accuracy (compared to English) is due to the quality of the machine translation
56 | vs. the quality of the pre-trained model.
57 |
58 | **Translate Test** means that the XNLI test set was machine translated from the
59 | foreign language into English. So training and evaluation were both done on
60 | English. However, test evaluation was done on machine-translated English, so the
61 | accuracy depends on the quality of the machine translation system.
62 |
63 | **Zero Shot** means that the Multilingual BERT system was fine-tuned on English
64 | MultiNLI, and then evaluated on the foreign language XNLI test. In this case,
65 | machine translation was not involved at all in either the pre-training or
66 | fine-tuning.
67 |
68 | Note that the English result is worse than the 84.2 MultiNLI baseline because
69 | this training used Multilingual BERT rather than English-only BERT. This implies
70 | that for high-resource languages, the Multilingual model is somewhat worse than
71 | a single-language model. However, it is not feasible for us to train and
72 | maintain dozens of single-language model. Therefore, if your goal is to maximize
73 | performance with a language other than English or Chinese, you might find it
74 | beneficial to run pre-training for additional steps starting from our
75 | Multilingual model on data from your language of interest.
76 |
77 | Here is a comparison of training Chinese models with the Multilingual
78 | `BERT-Base` and Chinese-only `BERT-Base`:
79 |
80 | System | Chinese
81 | ----------------------- | -------
82 | XNLI Baseline | 67.0
83 | BERT Multilingual Model | 74.2
84 | BERT Chinese-only Model | 77.2
85 |
86 | Similar to English, the single-language model does 3% better than the
87 | Multilingual model.
88 |
89 | ## Fine-tuning Example
90 |
91 | The multilingual model does **not** require any special consideration or API
92 | changes. We did update the implementation of `BasicTokenizer` in
93 | `tokenization.py` to support Chinese character tokenization, so please update if
94 | you forked it. However, we did not change the tokenization API.
95 |
96 | To test the new models, we did modify `run_classifier.py` to add support for the
97 | [XNLI dataset](https://github.com/facebookresearch/XNLI). This is a 15-language
98 | version of MultiNLI where the dev/test sets have been human-translated, and the
99 | training set has been machine-translated.
100 |
101 | To run the fine-tuning code, please download the
102 | [XNLI dev/test set](https://s3.amazonaws.com/xnli/XNLI-1.0.zip) and the
103 | [XNLI machine-translated training set](https://s3.amazonaws.com/xnli/XNLI-MT-1.0.zip)
104 | and then unpack both .zip files into some directory `$XNLI_DIR`.
105 |
106 | To run fine-tuning on XNLI. The language is hard-coded into `run_classifier.py`
107 | (Chinese by default), so please modify `XnliProcessor` if you want to run on
108 | another language.
109 |
110 | This is a large dataset, so this will training will take a few hours on a GPU
111 | (or about 30 minutes on a Cloud TPU). To run an experiment quickly for
112 | debugging, just set `num_train_epochs` to a small value like `0.1`.
113 |
114 | ```shell
115 | export BERT_BASE_DIR=/path/to/bert/chinese_L-12_H-768_A-12 # or multilingual_L-12_H-768_A-12
116 | export XNLI_DIR=/path/to/xnli
117 |
118 | python run_classifier.py \
119 | --task_name=XNLI \
120 | --do_train=true \
121 | --do_eval=true \
122 | --data_dir=$XNLI_DIR \
123 | --vocab_file=$BERT_BASE_DIR/vocab.txt \
124 | --bert_config_file=$BERT_BASE_DIR/bert_config.json \
125 | --init_checkpoint=$BERT_BASE_DIR/bert_model.ckpt \
126 | --max_seq_length=128 \
127 | --train_batch_size=32 \
128 | --learning_rate=5e-5 \
129 | --num_train_epochs=2.0 \
130 | --output_dir=/tmp/xnli_output/
131 | ```
132 |
133 | With the Chinese-only model, the results should look something like this:
134 |
135 | ```
136 | ***** Eval results *****
137 | eval_accuracy = 0.774116
138 | eval_loss = 0.83554
139 | global_step = 24543
140 | loss = 0.74603
141 | ```
142 |
143 | ## Details
144 |
145 | ### Data Source and Sampling
146 |
147 | The languages chosen were the
148 | [top 100 languages with the largest Wikipedias](https://meta.wikimedia.org/wiki/List_of_Wikipedias).
149 | The entire Wikipedia dump for each language (excluding user and talk pages) was
150 | taken as the training data for each language
151 |
152 | However, the size of the Wikipedia for a given language varies greatly, and
153 | therefore low-resource languages may be "under-represented" in terms of the
154 | neural network model (under the assumption that languages are "competing" for
155 | limited model capacity to some extent).
156 |
157 | However, the size of a Wikipedia also correlates with the number of speakers of
158 | a language, and we also don't want to overfit the model by performing thousands
159 | of epochs over a tiny Wikipedia for a particular language.
160 |
161 | To balance these two factors, we performed exponentially smoothed weighting of
162 | the data during pre-training data creation (and WordPiece vocab creation). In
163 | other words, let's say that the probability of a language is *P(L)*, e.g.,
164 | *P(English) = 0.21* means that after concatenating all of the Wikipedias
165 | together, 21% of our data is English. We exponentiate each probability by some
166 | factor *S* and then re-normalize, and sample from that distribution. In our case
167 | we use *S=0.7*. So, high-resource languages like English will be under-sampled,
168 | and low-resource languages like Icelandic will be over-sampled. E.g., in the
169 | original distribution English would be sampled 1000x more than Icelandic, but
170 | after smoothing it's only sampled 100x more.
171 |
172 | ### Tokenization
173 |
174 | For tokenization, we use a 110k shared WordPiece vocabulary. The word counts are
175 | weighted the same way as the data, so low-resource languages are upweighted by
176 | some factor. We intentionally do *not* use any marker to denote the input
177 | language (so that zero-shot training can work).
178 |
179 | Because Chinese (and Japanese Kanji and Korean Hanja) does not have whitespace
180 | characters, we add spaces around every character in the
181 | [CJK Unicode range](https://en.wikipedia.org/wiki/CJK_Unified_Ideographs_\(Unicode_block\))
182 | before applying WordPiece. This means that Chinese is effectively
183 | character-tokenized. Note that the CJK Unicode block only includes
184 | Chinese-origin characters and does *not* include Hangul Korean or
185 | Katakana/Hiragana Japanese, which are tokenized with whitespace+WordPiece like
186 | all other languages.
187 |
188 | For all other languages, we apply the
189 | [same recipe as English](https://github.com/google-research/bert#tokenization):
190 | (a) lower casing+accent removal, (b) punctuation splitting, (c) whitespace
191 | tokenization. We understand that accent markers have substantial meaning in some
192 | languages, but felt that the benefits of reducing the effective vocabulary make
193 | up for this. Generally the strong contextual models of BERT should make up for
194 | any ambiguity introduced by stripping accent markers.
195 |
196 | ### List of Languages
197 |
198 | The multilingual model supports the following languages. These languages were
199 | chosen because they are the top 100 languages with the largest Wikipedias:
200 |
201 | * Afrikaans
202 | * Albanian
203 | * Arabic
204 | * Aragonese
205 | * Armenian
206 | * Asturian
207 | * Azerbaijani
208 | * Bashkir
209 | * Basque
210 | * Bavarian
211 | * Belarusian
212 | * Bengali
213 | * Bishnupriya Manipuri
214 | * Bosnian
215 | * Breton
216 | * Bulgarian
217 | * Burmese
218 | * Catalan
219 | * Cebuano
220 | * Chechen
221 | * Chinese (Simplified)
222 | * Chinese (Traditional)
223 | * Chuvash
224 | * Croatian
225 | * Czech
226 | * Danish
227 | * Dutch
228 | * English
229 | * Estonian
230 | * Finnish
231 | * French
232 | * Galician
233 | * Georgian
234 | * German
235 | * Greek
236 | * Gujarati
237 | * Haitian
238 | * Hebrew
239 | * Hindi
240 | * Hungarian
241 | * Icelandic
242 | * Ido
243 | * Indonesian
244 | * Irish
245 | * Italian
246 | * Japanese
247 | * Javanese
248 | * Kannada
249 | * Kazakh
250 | * Kirghiz
251 | * Korean
252 | * Latin
253 | * Latvian
254 | * Lithuanian
255 | * Lombard
256 | * Low Saxon
257 | * Luxembourgish
258 | * Macedonian
259 | * Malagasy
260 | * Malay
261 | * Malayalam
262 | * Marathi
263 | * Minangkabau
264 | * Nepali
265 | * Newar
266 | * Norwegian (Bokmal)
267 | * Norwegian (Nynorsk)
268 | * Occitan
269 | * Persian (Farsi)
270 | * Piedmontese
271 | * Polish
272 | * Portuguese
273 | * Punjabi
274 | * Romanian
275 | * Russian
276 | * Scots
277 | * Serbian
278 | * Serbo-Croatian
279 | * Sicilian
280 | * Slovak
281 | * Slovenian
282 | * South Azerbaijani
283 | * Spanish
284 | * Sundanese
285 | * Swahili
286 | * Swedish
287 | * Tagalog
288 | * Tajik
289 | * Tamil
290 | * Tatar
291 | * Telugu
292 | * Turkish
293 | * Ukrainian
294 | * Urdu
295 | * Uzbek
296 | * Vietnamese
297 | * Volapük
298 | * Waray-Waray
299 | * Welsh
300 | * West Frisian
301 | * Western Punjabi
302 | * Yoruba
303 |
304 | The **Multilingual Cased (New)** release contains additionally **Thai** and
305 | **Mongolian**, which were not included in the original release.
306 |
--------------------------------------------------------------------------------
/BERT-SA/bert/optimization.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """Functions and classes related to optimization (weight updates)."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import re
22 | import tensorflow as tf
23 |
24 |
25 | def create_optimizer(loss, init_lr, num_train_steps, num_warmup_steps, use_tpu):
26 | """Creates an optimizer training op."""
27 | global_step = tf.train.get_or_create_global_step()
28 |
29 | learning_rate = tf.constant(value=init_lr, shape=[], dtype=tf.float32)
30 |
31 | # Implements linear decay of the learning rate.
32 | learning_rate = tf.train.polynomial_decay(
33 | learning_rate,
34 | global_step,
35 | num_train_steps,
36 | end_learning_rate=0.0,
37 | power=1.0,
38 | cycle=False)
39 |
40 | # Implements linear warmup. I.e., if global_step < num_warmup_steps, the
41 | # learning rate will be `global_step/num_warmup_steps * init_lr`.
42 | if num_warmup_steps:
43 | global_steps_int = tf.cast(global_step, tf.int32)
44 | warmup_steps_int = tf.constant(num_warmup_steps, dtype=tf.int32)
45 |
46 | global_steps_float = tf.cast(global_steps_int, tf.float32)
47 | warmup_steps_float = tf.cast(warmup_steps_int, tf.float32)
48 |
49 | warmup_percent_done = global_steps_float / warmup_steps_float
50 | warmup_learning_rate = init_lr * warmup_percent_done
51 |
52 | is_warmup = tf.cast(global_steps_int < warmup_steps_int, tf.float32)
53 | learning_rate = (
54 | (1.0 - is_warmup) * learning_rate + is_warmup * warmup_learning_rate)
55 |
56 | # It is recommended that you use this optimizer for fine tuning, since this
57 | # is how the model was trained (note that the Adam m/v variables are NOT
58 | # loaded from init_checkpoint.)
59 | optimizer = AdamWeightDecayOptimizer(
60 | learning_rate=learning_rate,
61 | weight_decay_rate=0.01,
62 | beta_1=0.9,
63 | beta_2=0.999,
64 | epsilon=1e-6,
65 | exclude_from_weight_decay=["LayerNorm", "layer_norm", "bias"])
66 |
67 | if use_tpu:
68 | optimizer = tf.contrib.tpu.CrossShardOptimizer(optimizer)
69 |
70 | tvars = tf.trainable_variables()
71 | grads = tf.gradients(loss, tvars)
72 |
73 | # This is how the model was pre-trained.
74 | (grads, _) = tf.clip_by_global_norm(grads, clip_norm=1.0)
75 |
76 | train_op = optimizer.apply_gradients(
77 | zip(grads, tvars), global_step=global_step)
78 |
79 | # Normally the global step update is done inside of `apply_gradients`.
80 | # However, `AdamWeightDecayOptimizer` doesn't do this. But if you use
81 | # a different optimizer, you should probably take this line out.
82 | new_global_step = global_step + 1
83 | train_op = tf.group(train_op, [global_step.assign(new_global_step)])
84 | return train_op
85 |
86 |
87 | class AdamWeightDecayOptimizer(tf.train.Optimizer):
88 | """A basic Adam optimizer that includes "correct" L2 weight decay."""
89 |
90 | def __init__(self,
91 | learning_rate,
92 | weight_decay_rate=0.0,
93 | beta_1=0.9,
94 | beta_2=0.999,
95 | epsilon=1e-6,
96 | exclude_from_weight_decay=None,
97 | name="AdamWeightDecayOptimizer"):
98 | """Constructs a AdamWeightDecayOptimizer."""
99 | super(AdamWeightDecayOptimizer, self).__init__(False, name)
100 |
101 | self.learning_rate = learning_rate
102 | self.weight_decay_rate = weight_decay_rate
103 | self.beta_1 = beta_1
104 | self.beta_2 = beta_2
105 | self.epsilon = epsilon
106 | self.exclude_from_weight_decay = exclude_from_weight_decay
107 |
108 | def apply_gradients(self, grads_and_vars, global_step=None, name=None):
109 | """See base class."""
110 | assignments = []
111 | for (grad, param) in grads_and_vars:
112 | if grad is None or param is None:
113 | continue
114 |
115 | param_name = self._get_variable_name(param.name)
116 |
117 | m = tf.get_variable(
118 | name=param_name + "/adam_m",
119 | shape=param.shape.as_list(),
120 | dtype=tf.float32,
121 | trainable=False,
122 | initializer=tf.zeros_initializer())
123 | v = tf.get_variable(
124 | name=param_name + "/adam_v",
125 | shape=param.shape.as_list(),
126 | dtype=tf.float32,
127 | trainable=False,
128 | initializer=tf.zeros_initializer())
129 |
130 | # Standard Adam update.
131 | next_m = (
132 | tf.multiply(self.beta_1, m) + tf.multiply(1.0 - self.beta_1, grad))
133 | next_v = (
134 | tf.multiply(self.beta_2, v) + tf.multiply(1.0 - self.beta_2,
135 | tf.square(grad)))
136 |
137 | update = next_m / (tf.sqrt(next_v) + self.epsilon)
138 |
139 | # Just adding the square of the weights to the loss function is *not*
140 | # the correct way of using L2 regularization/weight decay with Adam,
141 | # since that will interact with the m and v parameters in strange ways.
142 | #
143 | # Instead we want ot decay the weights in a manner that doesn't interact
144 | # with the m/v parameters. This is equivalent to adding the square
145 | # of the weights to the loss with plain (non-momentum) SGD.
146 | if self._do_use_weight_decay(param_name):
147 | update += self.weight_decay_rate * param
148 |
149 | update_with_lr = self.learning_rate * update
150 |
151 | next_param = param - update_with_lr
152 |
153 | assignments.extend(
154 | [param.assign(next_param),
155 | m.assign(next_m),
156 | v.assign(next_v)])
157 | return tf.group(*assignments, name=name)
158 |
159 | def _do_use_weight_decay(self, param_name):
160 | """Whether to use L2 weight decay for `param_name`."""
161 | if not self.weight_decay_rate:
162 | return False
163 | if self.exclude_from_weight_decay:
164 | for r in self.exclude_from_weight_decay:
165 | if re.search(r, param_name) is not None:
166 | return False
167 | return True
168 |
169 | def _get_variable_name(self, param_name):
170 | """Get the variable name from the tensor name."""
171 | m = re.match("^(.*):\\d+$", param_name)
172 | if m is not None:
173 | param_name = m.group(1)
174 | return param_name
175 |
--------------------------------------------------------------------------------
/BERT-SA/bert/optimization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import optimization
20 | import tensorflow as tf
21 |
22 |
23 | class OptimizationTest(tf.test.TestCase):
24 |
25 | def test_adam(self):
26 | with self.test_session() as sess:
27 | w = tf.get_variable(
28 | "w",
29 | shape=[3],
30 | initializer=tf.constant_initializer([0.1, -0.2, -0.1]))
31 | x = tf.constant([0.4, 0.2, -0.5])
32 | loss = tf.reduce_mean(tf.square(x - w))
33 | tvars = tf.trainable_variables()
34 | grads = tf.gradients(loss, tvars)
35 | global_step = tf.train.get_or_create_global_step()
36 | optimizer = optimization.AdamWeightDecayOptimizer(learning_rate=0.2)
37 | train_op = optimizer.apply_gradients(zip(grads, tvars), global_step)
38 | init_op = tf.group(tf.global_variables_initializer(),
39 | tf.local_variables_initializer())
40 | sess.run(init_op)
41 | for _ in range(100):
42 | sess.run(train_op)
43 | w_np = sess.run(w)
44 | self.assertAllClose(w_np.flat, [0.4, 0.2, -0.5], rtol=1e-2, atol=1e-2)
45 |
46 |
47 | if __name__ == "__main__":
48 | tf.test.main()
49 |
--------------------------------------------------------------------------------
/BERT-SA/bert/requirements.txt:
--------------------------------------------------------------------------------
1 | tensorflow >= 1.11.0 # CPU Version of TensorFlow.
2 | # tensorflow-gpu >= 1.11.0 # GPU version of TensorFlow.
3 |
--------------------------------------------------------------------------------
/BERT-SA/bert/run_classifier_with_tfhub.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | """BERT finetuning runner with TF-Hub."""
16 |
17 | from __future__ import absolute_import
18 | from __future__ import division
19 | from __future__ import print_function
20 |
21 | import os
22 | import optimization
23 | import run_classifier
24 | import tokenization
25 | import tensorflow as tf
26 | import tensorflow_hub as hub
27 |
28 | flags = tf.flags
29 |
30 | FLAGS = flags.FLAGS
31 |
32 | flags.DEFINE_string(
33 | "bert_hub_module_handle", None,
34 | "Handle for the BERT TF-Hub module.")
35 |
36 |
37 | def create_model(is_training, input_ids, input_mask, segment_ids, labels,
38 | num_labels, bert_hub_module_handle):
39 | """Creates a classification model."""
40 | tags = set()
41 | if is_training:
42 | tags.add("train")
43 | bert_module = hub.Module(bert_hub_module_handle, tags=tags, trainable=True)
44 | bert_inputs = dict(
45 | input_ids=input_ids,
46 | input_mask=input_mask,
47 | segment_ids=segment_ids)
48 | bert_outputs = bert_module(
49 | inputs=bert_inputs,
50 | signature="tokens",
51 | as_dict=True)
52 |
53 | # In the demo, we are doing a simple classification task on the entire
54 | # segment.
55 | #
56 | # If you want to use the token-level output, use
57 | # bert_outputs["sequence_output"] instead.
58 | output_layer = bert_outputs["pooled_output"]
59 |
60 | hidden_size = output_layer.shape[-1].value
61 |
62 | output_weights = tf.get_variable(
63 | "output_weights", [num_labels, hidden_size],
64 | initializer=tf.truncated_normal_initializer(stddev=0.02))
65 |
66 | output_bias = tf.get_variable(
67 | "output_bias", [num_labels], initializer=tf.zeros_initializer())
68 |
69 | with tf.variable_scope("loss"):
70 | if is_training:
71 | # I.e., 0.1 dropout
72 | output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
73 |
74 | logits = tf.matmul(output_layer, output_weights, transpose_b=True)
75 | logits = tf.nn.bias_add(logits, output_bias)
76 | probabilities = tf.nn.softmax(logits, axis=-1)
77 | log_probs = tf.nn.log_softmax(logits, axis=-1)
78 |
79 | one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
80 |
81 | per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
82 | loss = tf.reduce_mean(per_example_loss)
83 |
84 | return (loss, per_example_loss, logits, probabilities)
85 |
86 |
87 | def model_fn_builder(num_labels, learning_rate, num_train_steps,
88 | num_warmup_steps, use_tpu, bert_hub_module_handle):
89 | """Returns `model_fn` closure for TPUEstimator."""
90 |
91 | def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
92 | """The `model_fn` for TPUEstimator."""
93 |
94 | tf.logging.info("*** Features ***")
95 | for name in sorted(features.keys()):
96 | tf.logging.info(" name = %s, shape = %s" % (name, features[name].shape))
97 |
98 | input_ids = features["input_ids"]
99 | input_mask = features["input_mask"]
100 | segment_ids = features["segment_ids"]
101 | label_ids = features["label_ids"]
102 |
103 | is_training = (mode == tf.estimator.ModeKeys.TRAIN)
104 |
105 | (total_loss, per_example_loss, logits, probabilities) = create_model(
106 | is_training, input_ids, input_mask, segment_ids, label_ids, num_labels,
107 | bert_hub_module_handle)
108 |
109 | output_spec = None
110 | if mode == tf.estimator.ModeKeys.TRAIN:
111 | train_op = optimization.create_optimizer(
112 | total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
113 |
114 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
115 | mode=mode,
116 | loss=total_loss,
117 | train_op=train_op)
118 | elif mode == tf.estimator.ModeKeys.EVAL:
119 |
120 | def metric_fn(per_example_loss, label_ids, logits):
121 | predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
122 | accuracy = tf.metrics.accuracy(label_ids, predictions)
123 | loss = tf.metrics.mean(per_example_loss)
124 | return {
125 | "eval_accuracy": accuracy,
126 | "eval_loss": loss,
127 | }
128 |
129 | eval_metrics = (metric_fn, [per_example_loss, label_ids, logits])
130 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
131 | mode=mode,
132 | loss=total_loss,
133 | eval_metrics=eval_metrics)
134 | elif mode == tf.estimator.ModeKeys.PREDICT:
135 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
136 | mode=mode, predictions={"probabilities": probabilities})
137 | else:
138 | raise ValueError(
139 | "Only TRAIN, EVAL and PREDICT modes are supported: %s" % (mode))
140 |
141 | return output_spec
142 |
143 | return model_fn
144 |
145 |
146 | def create_tokenizer_from_hub_module(bert_hub_module_handle):
147 | """Get the vocab file and casing info from the Hub module."""
148 | with tf.Graph().as_default():
149 | bert_module = hub.Module(bert_hub_module_handle)
150 | tokenization_info = bert_module(signature="tokenization_info", as_dict=True)
151 | with tf.Session() as sess:
152 | vocab_file, do_lower_case = sess.run([tokenization_info["vocab_file"],
153 | tokenization_info["do_lower_case"]])
154 | return tokenization.FullTokenizer(
155 | vocab_file=vocab_file, do_lower_case=do_lower_case)
156 |
157 |
158 | def main(_):
159 | tf.logging.set_verbosity(tf.logging.INFO)
160 |
161 | processors = {
162 | "cola": run_classifier.ColaProcessor,
163 | "mnli": run_classifier.MnliProcessor,
164 | "mrpc": run_classifier.MrpcProcessor,
165 | }
166 |
167 | if not FLAGS.do_train and not FLAGS.do_eval:
168 | raise ValueError("At least one of `do_train` or `do_eval` must be True.")
169 |
170 | tf.gfile.MakeDirs(FLAGS.output_dir)
171 |
172 | task_name = FLAGS.task_name.lower()
173 |
174 | if task_name not in processors:
175 | raise ValueError("Task not found: %s" % (task_name))
176 |
177 | processor = processors[task_name]()
178 |
179 | label_list = processor.get_labels()
180 |
181 | tokenizer = create_tokenizer_from_hub_module(FLAGS.bert_hub_module_handle)
182 |
183 | tpu_cluster_resolver = None
184 | if FLAGS.use_tpu and FLAGS.tpu_name:
185 | tpu_cluster_resolver = tf.contrib.cluster_resolver.TPUClusterResolver(
186 | FLAGS.tpu_name, zone=FLAGS.tpu_zone, project=FLAGS.gcp_project)
187 |
188 | is_per_host = tf.contrib.tpu.InputPipelineConfig.PER_HOST_V2
189 | run_config = tf.contrib.tpu.RunConfig(
190 | cluster=tpu_cluster_resolver,
191 | master=FLAGS.master,
192 | model_dir=FLAGS.output_dir,
193 | save_checkpoints_steps=FLAGS.save_checkpoints_steps,
194 | tpu_config=tf.contrib.tpu.TPUConfig(
195 | iterations_per_loop=FLAGS.iterations_per_loop,
196 | num_shards=FLAGS.num_tpu_cores,
197 | per_host_input_for_training=is_per_host))
198 |
199 | train_examples = None
200 | num_train_steps = None
201 | num_warmup_steps = None
202 | if FLAGS.do_train:
203 | train_examples = processor.get_train_examples(FLAGS.data_dir)
204 | num_train_steps = int(
205 | len(train_examples) / FLAGS.train_batch_size * FLAGS.num_train_epochs)
206 | num_warmup_steps = int(num_train_steps * FLAGS.warmup_proportion)
207 |
208 | model_fn = model_fn_builder(
209 | num_labels=len(label_list),
210 | learning_rate=FLAGS.learning_rate,
211 | num_train_steps=num_train_steps,
212 | num_warmup_steps=num_warmup_steps,
213 | use_tpu=FLAGS.use_tpu,
214 | bert_hub_module_handle=FLAGS.bert_hub_module_handle)
215 |
216 | # If TPU is not available, this will fall back to normal Estimator on CPU
217 | # or GPU.
218 | estimator = tf.contrib.tpu.TPUEstimator(
219 | use_tpu=FLAGS.use_tpu,
220 | model_fn=model_fn,
221 | config=run_config,
222 | train_batch_size=FLAGS.train_batch_size,
223 | eval_batch_size=FLAGS.eval_batch_size,
224 | predict_batch_size=FLAGS.predict_batch_size)
225 |
226 | if FLAGS.do_train:
227 | train_features = run_classifier.convert_examples_to_features(
228 | train_examples, label_list, FLAGS.max_seq_length, tokenizer)
229 | tf.logging.info("***** Running training *****")
230 | tf.logging.info(" Num examples = %d", len(train_examples))
231 | tf.logging.info(" Batch size = %d", FLAGS.train_batch_size)
232 | tf.logging.info(" Num steps = %d", num_train_steps)
233 | train_input_fn = run_classifier.input_fn_builder(
234 | features=train_features,
235 | seq_length=FLAGS.max_seq_length,
236 | is_training=True,
237 | drop_remainder=True)
238 | estimator.train(input_fn=train_input_fn, max_steps=num_train_steps)
239 |
240 | if FLAGS.do_eval:
241 | eval_examples = processor.get_dev_examples(FLAGS.data_dir)
242 | eval_features = run_classifier.convert_examples_to_features(
243 | eval_examples, label_list, FLAGS.max_seq_length, tokenizer)
244 |
245 | tf.logging.info("***** Running evaluation *****")
246 | tf.logging.info(" Num examples = %d", len(eval_examples))
247 | tf.logging.info(" Batch size = %d", FLAGS.eval_batch_size)
248 |
249 | # This tells the estimator to run through the entire set.
250 | eval_steps = None
251 | # However, if running eval on the TPU, you will need to specify the
252 | # number of steps.
253 | if FLAGS.use_tpu:
254 | # Eval will be slightly WRONG on the TPU because it will truncate
255 | # the last batch.
256 | eval_steps = int(len(eval_examples) / FLAGS.eval_batch_size)
257 |
258 | eval_drop_remainder = True if FLAGS.use_tpu else False
259 | eval_input_fn = run_classifier.input_fn_builder(
260 | features=eval_features,
261 | seq_length=FLAGS.max_seq_length,
262 | is_training=False,
263 | drop_remainder=eval_drop_remainder)
264 |
265 | result = estimator.evaluate(input_fn=eval_input_fn, steps=eval_steps)
266 |
267 | output_eval_file = os.path.join(FLAGS.output_dir, "eval_results.txt")
268 | with tf.gfile.GFile(output_eval_file, "w") as writer:
269 | tf.logging.info("***** Eval results *****")
270 | for key in sorted(result.keys()):
271 | tf.logging.info(" %s = %s", key, str(result[key]))
272 | writer.write("%s = %s\n" % (key, str(result[key])))
273 |
274 | if FLAGS.do_predict:
275 | predict_examples = processor.get_test_examples(FLAGS.data_dir)
276 | if FLAGS.use_tpu:
277 | # Discard batch remainder if running on TPU
278 | n = len(predict_examples)
279 | predict_examples = predict_examples[:(n - n % FLAGS.predict_batch_size)]
280 |
281 | predict_file = os.path.join(FLAGS.output_dir, "predict.tf_record")
282 | run_classifier.file_based_convert_examples_to_features(
283 | predict_examples, label_list, FLAGS.max_seq_length, tokenizer,
284 | predict_file)
285 |
286 | tf.logging.info("***** Running prediction*****")
287 | tf.logging.info(" Num examples = %d", len(predict_examples))
288 | tf.logging.info(" Batch size = %d", FLAGS.predict_batch_size)
289 |
290 | predict_input_fn = run_classifier.file_based_input_fn_builder(
291 | input_file=predict_file,
292 | seq_length=FLAGS.max_seq_length,
293 | is_training=False,
294 | drop_remainder=FLAGS.use_tpu)
295 |
296 | result = estimator.predict(input_fn=predict_input_fn)
297 |
298 | output_predict_file = os.path.join(FLAGS.output_dir, "test_results.tsv")
299 | with tf.gfile.GFile(output_predict_file, "w") as writer:
300 | tf.logging.info("***** Predict results *****")
301 | for prediction in result:
302 | probabilities = prediction["probabilities"]
303 | output_line = "\t".join(
304 | str(class_probability)
305 | for class_probability in probabilities) + "\n"
306 | writer.write(output_line)
307 |
308 |
309 | if __name__ == "__main__":
310 | flags.mark_flag_as_required("data_dir")
311 | flags.mark_flag_as_required("task_name")
312 | flags.mark_flag_as_required("bert_hub_module_handle")
313 | flags.mark_flag_as_required("output_dir")
314 | tf.app.run()
315 |
--------------------------------------------------------------------------------
/BERT-SA/bert/sample_text.txt:
--------------------------------------------------------------------------------
1 | This text is included to make sure Unicode is handled properly: 力加勝北区ᴵᴺᵀᵃছজটডণত
2 | Text should be one-sentence-per-line, with empty lines between documents.
3 | This sample text is public domain and was randomly selected from Project Guttenberg.
4 |
5 | The rain had only ceased with the gray streaks of morning at Blazing Star, and the settlement awoke to a moral sense of cleanliness, and the finding of forgotten knives, tin cups, and smaller camp utensils, where the heavy showers had washed away the debris and dust heaps before the cabin doors.
6 | Indeed, it was recorded in Blazing Star that a fortunate early riser had once picked up on the highway a solid chunk of gold quartz which the rain had freed from its incumbering soil, and washed into immediate and glittering popularity.
7 | Possibly this may have been the reason why early risers in that locality, during the rainy season, adopted a thoughtful habit of body, and seldom lifted their eyes to the rifted or india-ink washed skies above them.
8 | "Cass" Beard had risen early that morning, but not with a view to discovery.
9 | A leak in his cabin roof,--quite consistent with his careless, improvident habits,--had roused him at 4 A. M., with a flooded "bunk" and wet blankets.
10 | The chips from his wood pile refused to kindle a fire to dry his bed-clothes, and he had recourse to a more provident neighbor's to supply the deficiency.
11 | This was nearly opposite.
12 | Mr. Cassius crossed the highway, and stopped suddenly.
13 | Something glittered in the nearest red pool before him.
14 | Gold, surely!
15 | But, wonderful to relate, not an irregular, shapeless fragment of crude ore, fresh from Nature's crucible, but a bit of jeweler's handicraft in the form of a plain gold ring.
16 | Looking at it more attentively, he saw that it bore the inscription, "May to Cass."
17 | Like most of his fellow gold-seekers, Cass was superstitious.
18 |
19 | The fountain of classic wisdom, Hypatia herself.
20 | As the ancient sage--the name is unimportant to a monk--pumped water nightly that he might study by day, so I, the guardian of cloaks and parasols, at the sacred doors of her lecture-room, imbibe celestial knowledge.
21 | From my youth I felt in me a soul above the matter-entangled herd.
22 | She revealed to me the glorious fact, that I am a spark of Divinity itself.
23 | A fallen star, I am, sir!' continued he, pensively, stroking his lean stomach--'a fallen star!--fallen, if the dignity of philosophy will allow of the simile, among the hogs of the lower world--indeed, even into the hog-bucket itself. Well, after all, I will show you the way to the Archbishop's.
24 | There is a philosophic pleasure in opening one's treasures to the modest young.
25 | Perhaps you will assist me by carrying this basket of fruit?' And the little man jumped up, put his basket on Philammon's head, and trotted off up a neighbouring street.
26 | Philammon followed, half contemptuous, half wondering at what this philosophy might be, which could feed the self-conceit of anything so abject as his ragged little apish guide;
27 | but the novel roar and whirl of the street, the perpetual stream of busy faces, the line of curricles, palanquins, laden asses, camels, elephants, which met and passed him, and squeezed him up steps and into doorways, as they threaded their way through the great Moon-gate into the ample street beyond, drove everything from his mind but wondering curiosity, and a vague, helpless dread of that great living wilderness, more terrible than any dead wilderness of sand which he had left behind.
28 | Already he longed for the repose, the silence of the Laura--for faces which knew him and smiled upon him; but it was too late to turn back now.
29 | His guide held on for more than a mile up the great main street, crossed in the centre of the city, at right angles, by one equally magnificent, at each end of which, miles away, appeared, dim and distant over the heads of the living stream of passengers, the yellow sand-hills of the desert;
30 | while at the end of the vista in front of them gleamed the blue harbour, through a network of countless masts.
31 | At last they reached the quay at the opposite end of the street;
32 | and there burst on Philammon's astonished eyes a vast semicircle of blue sea, ringed with palaces and towers.
33 | He stopped involuntarily; and his little guide stopped also, and looked askance at the young monk, to watch the effect which that grand panorama should produce on him.
34 |
--------------------------------------------------------------------------------
/BERT-SA/bert/tokenization_test.py:
--------------------------------------------------------------------------------
1 | # coding=utf-8
2 | # Copyright 2018 The Google AI Language Team Authors.
3 | #
4 | # Licensed under the Apache License, Version 2.0 (the "License");
5 | # you may not use this file except in compliance with the License.
6 | # You may obtain a copy of the License at
7 | #
8 | # http://www.apache.org/licenses/LICENSE-2.0
9 | #
10 | # Unless required by applicable law or agreed to in writing, software
11 | # distributed under the License is distributed on an "AS IS" BASIS,
12 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
13 | # See the License for the specific language governing permissions and
14 | # limitations under the License.
15 | from __future__ import absolute_import
16 | from __future__ import division
17 | from __future__ import print_function
18 |
19 | import os
20 | import tempfile
21 | import tokenization
22 | import six
23 | import tensorflow as tf
24 |
25 |
26 | class TokenizationTest(tf.test.TestCase):
27 |
28 | def test_full_tokenizer(self):
29 | vocab_tokens = [
30 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
31 | "##ing", ","
32 | ]
33 | with tempfile.NamedTemporaryFile(delete=False) as vocab_writer:
34 | if six.PY2:
35 | vocab_writer.write("".join([x + "\n" for x in vocab_tokens]))
36 | else:
37 | vocab_writer.write("".join(
38 | [x + "\n" for x in vocab_tokens]).encode("utf-8"))
39 |
40 | vocab_file = vocab_writer.name
41 |
42 | tokenizer = tokenization.FullTokenizer(vocab_file)
43 | os.unlink(vocab_file)
44 |
45 | tokens = tokenizer.tokenize(u"UNwant\u00E9d,running")
46 | self.assertAllEqual(tokens, ["un", "##want", "##ed", ",", "runn", "##ing"])
47 |
48 | self.assertAllEqual(
49 | tokenizer.convert_tokens_to_ids(tokens), [7, 4, 5, 10, 8, 9])
50 |
51 | def test_chinese(self):
52 | tokenizer = tokenization.BasicTokenizer()
53 |
54 | self.assertAllEqual(
55 | tokenizer.tokenize(u"ah\u535A\u63A8zz"),
56 | [u"ah", u"\u535A", u"\u63A8", u"zz"])
57 |
58 | def test_basic_tokenizer_lower(self):
59 | tokenizer = tokenization.BasicTokenizer(do_lower_case=True)
60 |
61 | self.assertAllEqual(
62 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
63 | ["hello", "!", "how", "are", "you", "?"])
64 | self.assertAllEqual(tokenizer.tokenize(u"H\u00E9llo"), ["hello"])
65 |
66 | def test_basic_tokenizer_no_lower(self):
67 | tokenizer = tokenization.BasicTokenizer(do_lower_case=False)
68 |
69 | self.assertAllEqual(
70 | tokenizer.tokenize(u" \tHeLLo!how \n Are yoU? "),
71 | ["HeLLo", "!", "how", "Are", "yoU", "?"])
72 |
73 | def test_wordpiece_tokenizer(self):
74 | vocab_tokens = [
75 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
76 | "##ing"
77 | ]
78 |
79 | vocab = {}
80 | for (i, token) in enumerate(vocab_tokens):
81 | vocab[token] = i
82 | tokenizer = tokenization.WordpieceTokenizer(vocab=vocab)
83 |
84 | self.assertAllEqual(tokenizer.tokenize(""), [])
85 |
86 | self.assertAllEqual(
87 | tokenizer.tokenize("unwanted running"),
88 | ["un", "##want", "##ed", "runn", "##ing"])
89 |
90 | self.assertAllEqual(
91 | tokenizer.tokenize("unwantedX running"), ["[UNK]", "runn", "##ing"])
92 |
93 | def test_convert_tokens_to_ids(self):
94 | vocab_tokens = [
95 | "[UNK]", "[CLS]", "[SEP]", "want", "##want", "##ed", "wa", "un", "runn",
96 | "##ing"
97 | ]
98 |
99 | vocab = {}
100 | for (i, token) in enumerate(vocab_tokens):
101 | vocab[token] = i
102 |
103 | self.assertAllEqual(
104 | tokenization.convert_tokens_to_ids(
105 | vocab, ["un", "##want", "##ed", "runn", "##ing"]), [7, 4, 5, 8, 9])
106 |
107 | def test_is_whitespace(self):
108 | self.assertTrue(tokenization._is_whitespace(u" "))
109 | self.assertTrue(tokenization._is_whitespace(u"\t"))
110 | self.assertTrue(tokenization._is_whitespace(u"\r"))
111 | self.assertTrue(tokenization._is_whitespace(u"\n"))
112 | self.assertTrue(tokenization._is_whitespace(u"\u00A0"))
113 |
114 | self.assertFalse(tokenization._is_whitespace(u"A"))
115 | self.assertFalse(tokenization._is_whitespace(u"-"))
116 |
117 | def test_is_control(self):
118 | self.assertTrue(tokenization._is_control(u"\u0005"))
119 |
120 | self.assertFalse(tokenization._is_control(u"A"))
121 | self.assertFalse(tokenization._is_control(u" "))
122 | self.assertFalse(tokenization._is_control(u"\t"))
123 | self.assertFalse(tokenization._is_control(u"\r"))
124 | self.assertFalse(tokenization._is_control(u"\U0001F4A9"))
125 |
126 | def test_is_punctuation(self):
127 | self.assertTrue(tokenization._is_punctuation(u"-"))
128 | self.assertTrue(tokenization._is_punctuation(u"$"))
129 | self.assertTrue(tokenization._is_punctuation(u"`"))
130 | self.assertTrue(tokenization._is_punctuation(u"."))
131 |
132 | self.assertFalse(tokenization._is_punctuation(u"A"))
133 | self.assertFalse(tokenization._is_punctuation(u" "))
134 |
135 |
136 | if __name__ == "__main__":
137 | tf.test.main()
138 |
--------------------------------------------------------------------------------
/BERT-SA/model.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | import tensorflow as tf
3 | from bert import modeling, optimization
4 |
5 |
6 | def create_model(bert_config, is_training, input_ids, input_mask, segment_ids,
7 | labels, num_labels, use_one_hot_embeddings):
8 | """Creates a classification model."""
9 | model = modeling.BertModel(
10 | config=bert_config,
11 | is_training=is_training,
12 | input_ids=input_ids,
13 | input_mask=input_mask,
14 | token_type_ids=segment_ids,
15 | use_one_hot_embeddings=use_one_hot_embeddings)
16 |
17 | # In the demo, we are doing a simple classification task on the entire
18 | # segment.
19 | #
20 | # If you want to use the token-level output, use model.get_sequence_output()
21 | # instead.
22 | output_layer = model.get_pooled_output()
23 |
24 | hidden_size = output_layer.shape[-1].value
25 |
26 | output_weights = tf.get_variable(
27 | "output_weights", [num_labels, hidden_size],
28 | initializer=tf.truncated_normal_initializer(stddev=0.02))
29 |
30 | output_bias = tf.get_variable(
31 | "output_bias", [num_labels], initializer=tf.zeros_initializer())
32 |
33 | with tf.variable_scope("loss"):
34 | if is_training:
35 | # I.e., 0.1 dropout
36 | output_layer = tf.nn.dropout(output_layer, keep_prob=0.9)
37 |
38 | logits = tf.matmul(output_layer, output_weights, transpose_b=True)
39 | logits = tf.nn.bias_add(logits, output_bias)
40 | probabilities = tf.nn.softmax(logits, axis=-1)
41 | log_probs = tf.nn.log_softmax(logits, axis=-1)
42 |
43 | one_hot_labels = tf.one_hot(labels, depth=num_labels, dtype=tf.float32)
44 |
45 | per_example_loss = -tf.reduce_sum(one_hot_labels * log_probs, axis=-1)
46 | loss = tf.reduce_mean(per_example_loss)
47 |
48 | return (loss, per_example_loss, logits, probabilities)
49 |
50 |
51 | def model_fn_builder(bert_config, num_labels, init_checkpoint, learning_rate,
52 | num_train_steps, num_warmup_steps, use_tpu,
53 | use_one_hot_embeddings):
54 | """Returns `model_fn` closure for TPUEstimator."""
55 |
56 | def model_fn(features, labels, mode, params): # pylint: disable=unused-argument
57 | """The `model_fn` for TPUEstimator."""
58 |
59 | tf.logging.info("*** Features ***")
60 | for name in sorted(features.keys()):
61 | tf.logging.info(" name = %s, shape = %s" %
62 | (name, features[name].shape))
63 |
64 | input_ids = features["input_ids"]
65 | input_mask = features["input_mask"]
66 | segment_ids = features["segment_ids"]
67 | label_ids = features["label_ids"]
68 | is_real_example = None
69 | if "is_real_example" in features:
70 | is_real_example = tf.cast(
71 | features["is_real_example"], dtype=tf.float32)
72 | else:
73 | is_real_example = tf.ones(tf.shape(label_ids), dtype=tf.float32)
74 |
75 | is_training = (mode == tf.estimator.ModeKeys.TRAIN)
76 |
77 | (total_loss, per_example_loss, logits, probabilities) = create_model(
78 | bert_config, is_training, input_ids, input_mask, segment_ids, label_ids,
79 | num_labels, use_one_hot_embeddings)
80 |
81 | tvars = tf.trainable_variables()
82 | initialized_variable_names = {}
83 | scaffold_fn = None
84 | if init_checkpoint:
85 | (assignment_map, initialized_variable_names
86 | ) = modeling.get_assignment_map_from_checkpoint(tvars, init_checkpoint)
87 | if use_tpu:
88 |
89 | def tpu_scaffold():
90 | tf.train.init_from_checkpoint(
91 | init_checkpoint, assignment_map)
92 | return tf.train.Scaffold()
93 |
94 | scaffold_fn = tpu_scaffold
95 | else:
96 | tf.train.init_from_checkpoint(init_checkpoint, assignment_map)
97 |
98 | tf.logging.info("**** Trainable Variables ****")
99 | for var in tvars:
100 | init_string = ""
101 | if var.name in initialized_variable_names:
102 | init_string = ", *INIT_FROM_CKPT*"
103 | tf.logging.info(" name = %s, shape = %s%s", var.name, var.shape,
104 | init_string)
105 |
106 | output_spec = None
107 | if mode == tf.estimator.ModeKeys.TRAIN:
108 |
109 | train_op = optimization.create_optimizer(
110 | total_loss, learning_rate, num_train_steps, num_warmup_steps, use_tpu)
111 |
112 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
113 | mode=mode,
114 | loss=total_loss,
115 | train_op=train_op,
116 | scaffold_fn=scaffold_fn)
117 | elif mode == tf.estimator.ModeKeys.EVAL:
118 |
119 | def metric_fn(per_example_loss, label_ids, logits, is_real_example):
120 | predictions = tf.argmax(logits, axis=-1, output_type=tf.int32)
121 | accuracy = tf.metrics.accuracy(
122 | labels=label_ids, predictions=predictions, weights=is_real_example)
123 | loss = tf.metrics.mean(
124 | values=per_example_loss, weights=is_real_example)
125 | return {
126 | "eval_accuracy": accuracy,
127 | "eval_loss": loss,
128 | }
129 |
130 | eval_metrics = (metric_fn,
131 | [per_example_loss, label_ids, logits, is_real_example])
132 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
133 | mode=mode,
134 | loss=total_loss,
135 | eval_metrics=eval_metrics,
136 | scaffold_fn=scaffold_fn)
137 | else:
138 | output_spec = tf.contrib.tpu.TPUEstimatorSpec(
139 | mode=mode,
140 | predictions={"probabilities": probabilities},
141 | scaffold_fn=scaffold_fn)
142 | return output_spec
143 |
144 | return model_fn
145 |
--------------------------------------------------------------------------------
/BERT-SA/processor.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | """
3 | """
4 | import os
5 | import re
6 | import random
7 | import tensorflow as tf
8 | import pandas as pd
9 | from bert import tokenization
10 | from input_feature import InputExample, InputFeatures
11 |
12 |
13 | class DataProcessor(object):
14 | """Base class for data converters for sequence classification data sets."""
15 |
16 | def get_train_examples(self, data_dir):
17 | """Gets a collection of `InputExample`s for the train set."""
18 | raise NotImplementedError()
19 |
20 | def get_dev_examples(self, data_dir):
21 | """Gets a collection of `InputExample`s for the dev set."""
22 | raise NotImplementedError()
23 |
24 | def get_test_examples(self, data_dir):
25 | """Gets a collection of `InputExample`s for prediction."""
26 | raise NotImplementedError()
27 |
28 | def get_labels(self):
29 | """Gets the list of labels for this data set."""
30 | raise NotImplementedError()
31 |
32 | @classmethod
33 | def _read_tsv(cls, input_file, quotechar=None):
34 | """Reads a tab separated value file."""
35 | with tf.gfile.Open(input_file, "r") as f:
36 | lines = f.readlines()
37 |
38 | examples = []
39 | example = []
40 |
41 | for line in lines:
42 | if " pos else 1)
9 |
10 | with open("1160300607.csv", "w") as f:
11 | for i, l in enumerate(y):
12 | f.write("{},{}\n".format(i, l))
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | ### Core Entity Emotion Classify
2 | [2019搜狐校园算法大赛](https://www.biendata.com/competition/sohu2019/)
3 |
4 | ### 竞赛任务
5 | 给定若干文章,目标是判断文章的核心实体以及对核心实体的情感态度。每篇文章识别最多三个核心实体,并分别判断文章对上述核心实体的情感倾向(积极、中立、消极三种)。
6 |
7 | ### 模型说明
8 | #### 命名实体识别
9 | - BERT + BiLSTM + CRF
10 | + [SEQ]Sentence[SEQ]
11 | - 预处理
12 | + 将训练集文章拆分成句子级样本作为模型输入
13 |
14 | #### 情感分类
15 | - BERT
16 | + [CLS]Entity[SEQ]Article[SEQ]
--------------------------------------------------------------------------------