├── .vscode
└── settings.json
├── Basics
└── Methods
│ └── Methods.ipynb
├── Big O
├── .ipynb_checkpoints
│ └── Big O-checkpoint.ipynb
└── Big O.ipynb
├── ML algorithm
├── 1-Linear Regression
│ ├── Linear Regression.ipynb
│ ├── Project
│ │ ├── .ipynb_checkpoints
│ │ │ └── Linear Regression Project-checkpoint.ipynb
│ │ ├── Ecommerce Customers
│ │ └── Linear Regression Project.ipynb
│ └── USA_Housing.csv
├── 10-NLP
│ ├── .ipynb_checkpoints
│ │ └── NLP-checkpoint.ipynb
│ ├── NLP.ipynb
│ └── smsspamcollection
│ │ ├── SMSSpamCollection
│ │ └── readme
├── 2-Logistic Regression
│ ├── Logistic Regression.ipynb
│ ├── Project
│ │ ├── 02-Logistic Regression Project.ipynb
│ │ └── advertising.csv
│ ├── titanic_test.csv
│ └── titanic_train.csv
├── 3-KNN
│ ├── Classified Data
│ ├── KNN.ipynb
│ └── Project
│ │ ├── 02-K Nearest Neighbors Project.ipynb
│ │ └── KNN_Project_Data
├── 4-Decission & Random Tree
│ ├── Decission & Random Tree.ipynb
│ ├── Project
│ │ ├── 02-Decision Trees and Random Forest Project.ipynb
│ │ └── loan_data.csv
│ └── kyphosis.csv
├── 5-SVM
│ ├── .ipynb_checkpoints
│ │ └── SVM-checkpoint.ipynb
│ ├── Project
│ │ ├── .ipynb_checkpoints
│ │ │ └── 02-Support Vector Machines Project-checkpoint.ipynb
│ │ └── 02-Support Vector Machines Project.ipynb
│ └── SVM.ipynb
├── 6-K Means Clustering
│ ├── K means Clustering.ipynb
│ └── Project
│ │ ├── 02-K Means Clustering Project-checkpoint.ipynb
│ │ └── College_Data
├── 8-PrincipalComponentAnalysis
│ ├── PCA.ipynb
│ └── PCA.png
└── 9-Recommender System
│ ├── .ipynb_checkpoints
│ └── Recommender System!!-checkpoint.ipynb
│ ├── Movie_Id_Titles
│ ├── Recommender System!!.ipynb
│ ├── u.data
│ └── u.item
└── ML basics
├── 1_NUMPY.ipynb
├── 2_PANDAS.ipynb
├── 3_MatplotLib.ipynb
├── 4_Seaborn.ipynb
├── 5_Pandas_built_in_visualization_function.ipynb
├── Excel_Sample.xlsx
├── Name
├── SMALL PROJECTS
├── PANDAS
│ ├── Ecommerce Purchases
│ ├── Ecommerce Purchases Exercise -checkpoint.ipynb
│ ├── SF Salaries Exercise.ipynb
│ └── Salaries.csv
└── capstone project
│ ├── .ipynb_checkpoints
│ └── 911 Calls Data Capstone Project-checkpoint.ipynb
│ ├── 03-Finance Project.ipynb
│ ├── 911 Calls Data Capstone Project.ipynb
│ ├── 911.csv
│ └── precipitation.html
├── df1
├── df2
├── df3
├── example
├── group.png
├── multi_index_example
└── my_picture.png
/.vscode/settings.json:
--------------------------------------------------------------------------------
1 | {
2 | "python.pythonPath": "/Users/ishikakesarwani/opt/anaconda3/bin/python"
3 | }
--------------------------------------------------------------------------------
/Basics/Methods/Methods.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# METHODS"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | " Methods are just calls you can make off for an object that will effect the object or result in some manner"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 1,
20 | "metadata": {},
21 | "outputs": [],
22 | "source": [
23 | "s=\" hello my name is ishika\""
24 | ]
25 | },
26 | {
27 | "cell_type": "markdown",
28 | "metadata": {},
29 | "source": [
30 | "**s.tab** \n",
31 | "will give a result of all the string objects that you can use!"
32 | ]
33 | },
34 | {
35 | "cell_type": "code",
36 | "execution_count": 5,
37 | "metadata": {},
38 | "outputs": [
39 | {
40 | "data": {
41 | "text/plain": [
42 | "' hello my name is ishika'"
43 | ]
44 | },
45 | "execution_count": 5,
46 | "metadata": {},
47 | "output_type": "execute_result"
48 | }
49 | ],
50 | "source": [
51 | "s.lower()"
52 | ]
53 | },
54 | {
55 | "cell_type": "code",
56 | "execution_count": 7,
57 | "metadata": {},
58 | "outputs": [
59 | {
60 | "data": {
61 | "text/plain": [
62 | "' HELLO MY NAME IS ISHIKA'"
63 | ]
64 | },
65 | "execution_count": 7,
66 | "metadata": {},
67 | "output_type": "execute_result"
68 | }
69 | ],
70 | "source": [
71 | "s.upper()"
72 | ]
73 | },
74 | {
75 | "cell_type": "code",
76 | "execution_count": 12,
77 | "metadata": {},
78 | "outputs": [
79 | {
80 | "data": {
81 | "text/plain": [
82 | "['hello', 'my', 'name', 'is', 'ishika']"
83 | ]
84 | },
85 | "execution_count": 12,
86 | "metadata": {},
87 | "output_type": "execute_result"
88 | }
89 | ],
90 | "source": [
91 | "s.split()"
92 | ]
93 | },
94 | {
95 | "cell_type": "code",
96 | "execution_count": 15,
97 | "metadata": {},
98 | "outputs": [
99 | {
100 | "data": {
101 | "text/plain": [
102 | "['hello what are ', 'you doing?']"
103 | ]
104 | },
105 | "execution_count": 15,
106 | "metadata": {},
107 | "output_type": "execute_result"
108 | }
109 | ],
110 | "source": [
111 | "tweet=\"hello what are #you doing?\"\n",
112 | "tweet.split(\"#\")\n"
113 | ]
114 | },
115 | {
116 | "cell_type": "code",
117 | "execution_count": 16,
118 | "metadata": {
119 | "scrolled": true
120 | },
121 | "outputs": [
122 | {
123 | "data": {
124 | "text/plain": [
125 | "'you doing?'"
126 | ]
127 | },
128 | "execution_count": 16,
129 | "metadata": {},
130 | "output_type": "execute_result"
131 | }
132 | ],
133 | "source": [
134 | "tweet.split('#')[1]"
135 | ]
136 | },
137 | {
138 | "cell_type": "markdown",
139 | "metadata": {},
140 | "source": [
141 | "# Some useful methods for a dictionary!"
142 | ]
143 | },
144 | {
145 | "cell_type": "code",
146 | "execution_count": 19,
147 | "metadata": {},
148 | "outputs": [
149 | {
150 | "data": {
151 | "text/plain": [
152 | "{'k1': 1, 'k2': 2}"
153 | ]
154 | },
155 | "execution_count": 19,
156 | "metadata": {},
157 | "output_type": "execute_result"
158 | }
159 | ],
160 | "source": [
161 | "d={'k1':1,'k2':2}\n",
162 | "d"
163 | ]
164 | },
165 | {
166 | "cell_type": "code",
167 | "execution_count": 20,
168 | "metadata": {},
169 | "outputs": [
170 | {
171 | "data": {
172 | "text/plain": [
173 | "dict_keys(['k1', 'k2'])"
174 | ]
175 | },
176 | "execution_count": 20,
177 | "metadata": {},
178 | "output_type": "execute_result"
179 | }
180 | ],
181 | "source": [
182 | "d.keys()"
183 | ]
184 | },
185 | {
186 | "cell_type": "code",
187 | "execution_count": 21,
188 | "metadata": {},
189 | "outputs": [
190 | {
191 | "data": {
192 | "text/plain": [
193 | "dict_items([('k1', 1), ('k2', 2)])"
194 | ]
195 | },
196 | "execution_count": 21,
197 | "metadata": {},
198 | "output_type": "execute_result"
199 | }
200 | ],
201 | "source": [
202 | "d.items()"
203 | ]
204 | },
205 | {
206 | "cell_type": "code",
207 | "execution_count": 22,
208 | "metadata": {},
209 | "outputs": [
210 | {
211 | "data": {
212 | "text/plain": [
213 | "dict_values([1, 2])"
214 | ]
215 | },
216 | "execution_count": 22,
217 | "metadata": {},
218 | "output_type": "execute_result"
219 | }
220 | ],
221 | "source": [
222 | "d.values()"
223 | ]
224 | },
225 | {
226 | "cell_type": "markdown",
227 | "metadata": {},
228 | "source": [
229 | "# # Some useful methods for a List"
230 | ]
231 | },
232 | {
233 | "cell_type": "code",
234 | "execution_count": 23,
235 | "metadata": {},
236 | "outputs": [],
237 | "source": [
238 | "list=[1,2,3]"
239 | ]
240 | },
241 | {
242 | "cell_type": "code",
243 | "execution_count": 24,
244 | "metadata": {},
245 | "outputs": [
246 | {
247 | "data": {
248 | "text/plain": [
249 | "3"
250 | ]
251 | },
252 | "execution_count": 24,
253 | "metadata": {},
254 | "output_type": "execute_result"
255 | }
256 | ],
257 | "source": [
258 | "list.pop()\n",
259 | "#pops the last item!"
260 | ]
261 | },
262 | {
263 | "cell_type": "code",
264 | "execution_count": 26,
265 | "metadata": {},
266 | "outputs": [
267 | {
268 | "data": {
269 | "text/plain": [
270 | "[1, 2]"
271 | ]
272 | },
273 | "execution_count": 26,
274 | "metadata": {},
275 | "output_type": "execute_result"
276 | }
277 | ],
278 | "source": [
279 | "list"
280 | ]
281 | },
282 | {
283 | "cell_type": "code",
284 | "execution_count": 32,
285 | "metadata": {},
286 | "outputs": [],
287 | "source": [
288 | "list=[1,2,3,4,5]\n",
289 | "item=list.pop()"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": 33,
295 | "metadata": {},
296 | "outputs": [
297 | {
298 | "data": {
299 | "text/plain": [
300 | "5"
301 | ]
302 | },
303 | "execution_count": 33,
304 | "metadata": {},
305 | "output_type": "execute_result"
306 | }
307 | ],
308 | "source": [
309 | "item\n",
310 | "#this will be re-assigned, with the number which was popped!"
311 | ]
312 | },
313 | {
314 | "cell_type": "code",
315 | "execution_count": 34,
316 | "metadata": {},
317 | "outputs": [
318 | {
319 | "data": {
320 | "text/plain": [
321 | "[1, 2, 3, 4]"
322 | ]
323 | },
324 | "execution_count": 34,
325 | "metadata": {},
326 | "output_type": "execute_result"
327 | }
328 | ],
329 | "source": [
330 | "list\n"
331 | ]
332 | },
333 | {
334 | "cell_type": "code",
335 | "execution_count": 35,
336 | "metadata": {},
337 | "outputs": [
338 | {
339 | "name": "stdout",
340 | "output_type": "stream",
341 | "text": [
342 | "(1, 2)\n",
343 | "(3, 4)\n",
344 | "(5, 6)\n"
345 | ]
346 | }
347 | ],
348 | "source": [
349 | "x=[(1,2),(3,4),(5,6)]\n",
350 | "for item in x:\n",
351 | " print(item)"
352 | ]
353 | },
354 | {
355 | "cell_type": "code",
356 | "execution_count": 36,
357 | "metadata": {},
358 | "outputs": [
359 | {
360 | "name": "stdout",
361 | "output_type": "stream",
362 | "text": [
363 | "1\n",
364 | "3\n",
365 | "5\n"
366 | ]
367 | }
368 | ],
369 | "source": [
370 | "for (a,b) in x:\n",
371 | " print(a)"
372 | ]
373 | },
374 | {
375 | "cell_type": "code",
376 | "execution_count": null,
377 | "metadata": {},
378 | "outputs": [],
379 | "source": []
380 | }
381 | ],
382 | "metadata": {
383 | "kernelspec": {
384 | "display_name": "Python 3",
385 | "language": "python",
386 | "name": "python3"
387 | },
388 | "language_info": {
389 | "codemirror_mode": {
390 | "name": "ipython",
391 | "version": 3
392 | },
393 | "file_extension": ".py",
394 | "mimetype": "text/x-python",
395 | "name": "python",
396 | "nbconvert_exporter": "python",
397 | "pygments_lexer": "ipython3",
398 | "version": "3.8.5"
399 | }
400 | },
401 | "nbformat": 4,
402 | "nbformat_minor": 4
403 | }
404 |
--------------------------------------------------------------------------------
/ML algorithm/10-NLP/.ipynb_checkpoints/NLP-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [],
3 | "metadata": {},
4 | "nbformat": 4,
5 | "nbformat_minor": 5
6 | }
7 |
--------------------------------------------------------------------------------
/ML algorithm/10-NLP/NLP.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "3f61273a",
6 | "metadata": {},
7 | "source": [
8 | "# NLP!!"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 1,
14 | "id": "91d18f16",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import nltk"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 2,
24 | "id": "6ced05ee",
25 | "metadata": {},
26 | "outputs": [
27 | {
28 | "name": "stdout",
29 | "output_type": "stream",
30 | "text": [
31 | "NLTK Downloader\n",
32 | "---------------------------------------------------------------------------\n",
33 | " d) Download l) List u) Update c) Config h) Help q) Quit\n",
34 | "---------------------------------------------------------------------------\n",
35 | "Downloader> d\n",
36 | "\n",
37 | "Download which package (l=list; x=cancel)?\n",
38 | " Identifier> stopwords\n"
39 | ]
40 | },
41 | {
42 | "name": "stderr",
43 | "output_type": "stream",
44 | "text": [
45 | " Downloading package stopwords to\n",
46 | " /Users/ishikakesarwani/nltk_data...\n",
47 | " Unzipping corpora/stopwords.zip.\n"
48 | ]
49 | },
50 | {
51 | "name": "stdout",
52 | "output_type": "stream",
53 | "text": [
54 | "\n",
55 | "---------------------------------------------------------------------------\n",
56 | " d) Download l) List u) Update c) Config h) Help q) Quit\n",
57 | "---------------------------------------------------------------------------\n",
58 | "Downloader> x\n"
59 | ]
60 | }
61 | ],
62 | "source": [
63 | "nltk.download_shell()"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": 3,
69 | "id": "c6221fef",
70 | "metadata": {},
71 | "outputs": [
72 | {
73 | "name": "stderr",
74 | "output_type": "stream",
75 | "text": [
76 | "[nltk_data] Downloading package stopwords to\n",
77 | "[nltk_data] /Users/ishikakesarwani/nltk_data...\n",
78 | "[nltk_data] Package stopwords is already up-to-date!\n"
79 | ]
80 | },
81 | {
82 | "data": {
83 | "text/plain": [
84 | "True"
85 | ]
86 | },
87 | "execution_count": 3,
88 | "metadata": {},
89 | "output_type": "execute_result"
90 | }
91 | ],
92 | "source": [
93 | "nltk.download('stopwords')"
94 | ]
95 | },
96 | {
97 | "cell_type": "markdown",
98 | "id": "8697dbd2",
99 | "metadata": {},
100 | "source": [
101 | "We'll be using a dataset from the [UCI datasets](https://archive.ics.uci.edu/ml/datasets/SMS+Spam+Collection)! "
102 | ]
103 | },
104 | {
105 | "cell_type": "code",
106 | "execution_count": 4,
107 | "id": "56f36f92",
108 | "metadata": {},
109 | "outputs": [],
110 | "source": [
111 | "messages = [line.rstrip() for line in open('smsspamcollection/SMSSpamCollection')]"
112 | ]
113 | },
114 | {
115 | "cell_type": "code",
116 | "execution_count": 5,
117 | "id": "ae89d856",
118 | "metadata": {},
119 | "outputs": [
120 | {
121 | "name": "stdout",
122 | "output_type": "stream",
123 | "text": [
124 | "5574\n"
125 | ]
126 | }
127 | ],
128 | "source": [
129 | "print(len(messages))"
130 | ]
131 | },
132 | {
133 | "cell_type": "code",
134 | "execution_count": 14,
135 | "id": "9c0b17b3",
136 | "metadata": {},
137 | "outputs": [
138 | {
139 | "name": "stdout",
140 | "output_type": "stream",
141 | "text": [
142 | "0 ham\tGo until jurong point, crazy.. Available only in bugis n great world la e buffet... Cine there got amore wat...\n",
143 | "\n",
144 | "\n",
145 | "1 ham\tOk lar... Joking wif u oni...\n",
146 | "\n",
147 | "\n",
148 | "2 spam\tFree entry in 2 a wkly comp to win FA Cup final tkts 21st May 2005. Text FA to 87121 to receive entry question(std txt rate)T&C's apply 08452810075over18's\n",
149 | "\n",
150 | "\n",
151 | "3 ham\tU dun say so early hor... U c already then say...\n",
152 | "\n",
153 | "\n",
154 | "4 ham\tNah I don't think he goes to usf, he lives around here though\n",
155 | "\n",
156 | "\n",
157 | "5 spam\tFreeMsg Hey there darling it's been 3 week's now and no word back! I'd like some fun you up for it still? Tb ok! XxX std chgs to send, £1.50 to rcv\n",
158 | "\n",
159 | "\n",
160 | "6 ham\tEven my brother is not like to speak with me. They treat me like aids patent.\n",
161 | "\n",
162 | "\n",
163 | "7 ham\tAs per your request 'Melle Melle (Oru Minnaminunginte Nurungu Vettam)' has been set as your callertune for all Callers. Press *9 to copy your friends Callertune\n",
164 | "\n",
165 | "\n",
166 | "8 spam\tWINNER!! As a valued network customer you have been selected to receivea £900 prize reward! To claim call 09061701461. Claim code KL341. Valid 12 hours only.\n",
167 | "\n",
168 | "\n",
169 | "9 spam\tHad your mobile 11 months or more? U R entitled to Update to the latest colour mobiles with camera for Free! Call The Mobile Update Co FREE on 08002986030\n",
170 | "\n",
171 | "\n"
172 | ]
173 | }
174 | ],
175 | "source": [
176 | "for mess_no,message in enumerate(messages[:10]):\n",
177 | " print(mess_no,message)\n",
178 | " print('\\n')"
179 | ]
180 | },
181 | {
182 | "cell_type": "code",
183 | "execution_count": null,
184 | "id": "4145cbd5",
185 | "metadata": {},
186 | "outputs": [],
187 | "source": []
188 | },
189 | {
190 | "cell_type": "code",
191 | "execution_count": null,
192 | "id": "8472401f",
193 | "metadata": {},
194 | "outputs": [],
195 | "source": []
196 | }
197 | ],
198 | "metadata": {
199 | "kernelspec": {
200 | "display_name": "Python 3",
201 | "language": "python",
202 | "name": "python3"
203 | },
204 | "language_info": {
205 | "codemirror_mode": {
206 | "name": "ipython",
207 | "version": 3
208 | },
209 | "file_extension": ".py",
210 | "mimetype": "text/x-python",
211 | "name": "python",
212 | "nbconvert_exporter": "python",
213 | "pygments_lexer": "ipython3",
214 | "version": "3.8.10"
215 | }
216 | },
217 | "nbformat": 4,
218 | "nbformat_minor": 5
219 | }
220 |
--------------------------------------------------------------------------------
/ML algorithm/10-NLP/smsspamcollection/readme:
--------------------------------------------------------------------------------
1 | SMS Spam Collection v.1
2 | -------------------------
3 |
4 | 1. DESCRIPTION
5 | --------------
6 |
7 | The SMS Spam Collection v.1 (hereafter the corpus) is a set of SMS tagged messages that have been collected for SMS Spam research. It contains one set of SMS messages in English of 5,574 messages, tagged acording being ham (legitimate) or spam.
8 |
9 | 1.1. Compilation
10 | ----------------
11 |
12 | This corpus has been collected from free or free for research sources at the Web:
13 |
14 | - A collection of between 425 SMS spam messages extracted manually from the Grumbletext Web site. This is a UK forum in which cell phone users make public claims about SMS spam messages, most of them without reporting the very spam message received. The identification of the text of spam messages in the claims is a very hard and time-consuming task, and it involved carefully scanning hundreds of web pages. The Grumbletext Web site is: http://www.grumbletext.co.uk/
15 | - A list of 450 SMS ham messages collected from Caroline Tag's PhD Theses available at http://etheses.bham.ac.uk/253/1/Tagg09PhD.pdf
16 | - A subset of 3,375 SMS ham messages of the NUS SMS Corpus (NSC), which is a corpus of about 10,000 legitimate messages collected for research at the Department of Computer Science at the National University of Singapore. The messages largely originate from Singaporeans and mostly from students attending the University. These messages were collected from volunteers who were made aware that their contributions were going to be made publicly available. The NUS SMS Corpus is avalaible at: http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora/smsCorpus/
17 | - The amount of 1,002 SMS ham messages and 322 spam messages extracted from the SMS Spam Corpus v.0.1 Big created by Jos� Mar�a G�mez Hidalgo and public available at: http://www.esp.uem.es/jmgomez/smsspamcorpus/
18 |
19 |
20 | 1.2. Statistics
21 | ---------------
22 |
23 | There is one collection:
24 |
25 | - The SMS Spam Collection v.1 (text file: smsspamcollection) has a total of 4,827 SMS legitimate messages (86.6%) and a total of 747 (13.4%) spam messages.
26 |
27 |
28 | 1.3. Format
29 | -----------
30 |
31 | The files contain one message per line. Each line is composed by two columns: one with label (ham or spam) and other with the raw text. Here are some examples:
32 |
33 | ham What you doing?how are you?
34 | ham Ok lar... Joking wif u oni...
35 | ham dun say so early hor... U c already then say...
36 | ham MY NO. IN LUTON 0125698789 RING ME IF UR AROUND! H*
37 | ham Siva is in hostel aha:-.
38 | ham Cos i was out shopping wif darren jus now n i called him 2 ask wat present he wan lor. Then he started guessing who i was wif n he finally guessed darren lor.
39 | spam FreeMsg: Txt: CALL to No: 86888 & claim your reward of 3 hours talk time to use from your phone now! ubscribe6GBP/ mnth inc 3hrs 16 stop?txtStop
40 | spam Sunshine Quiz! Win a super Sony DVD recorder if you canname the capital of Australia? Text MQUIZ to 82277. B
41 | spam URGENT! Your Mobile No 07808726822 was awarded a L2,000 Bonus Caller Prize on 02/09/03! This is our 2nd attempt to contact YOU! Call 0871-872-9758 BOX95QU
42 |
43 | Note: messages are not chronologically sorted.
44 |
45 |
46 | 2. USAGE
47 | --------
48 |
49 | We offer a comprehensive study of this corpus in the following paper that is under review. This work presents a number of statistics, studies and baseline results for several machine learning methods.
50 |
51 | [1] Almeida, T.A., G�mez Hidalgo, J.M., Yamakami, A. Contributions to the study of SMS Spam Filtering: New Collection and Results. Proceedings of the 2011 ACM Symposium on Document Engineering (ACM DOCENG'11), Mountain View, CA, USA, 2011. (Under review)
52 |
53 |
54 | 3. ABOUT
55 | --------
56 |
57 | The corpus has been collected by Tiago Agostinho de Almeida (http://www.dt.fee.unicamp.br/~tiago) and Jos� Mar�a G�mez Hidalgo (http://www.esp.uem.es/jmgomez).
58 |
59 | We would like to thank Dr. Min-Yen Kan (http://www.comp.nus.edu.sg/~kanmy/) and his team for making the NUS SMS Corpus available. See: http://www.comp.nus.edu.sg/~rpnlpir/downloads/corpora/smsCorpus/. He is currently collecting a bigger SMS corpus at: http://wing.comp.nus.edu.sg:8080/SMSCorpus/
60 |
61 | 4. LICENSE/DISCLAIMER
62 | ---------------------
63 |
64 | We would appreciate if:
65 |
66 | - In case you find this corpus useful, please make a reference to previous paper and the web page: http://www.dt.fee.unicamp.br/~tiago/smsspamcollection/ in your papers, research, etc.
67 | - Send us a message to tiago@dt.fee.unicamp.br in case you make use of the corpus.
68 |
69 | The SMS Spam Collection v.1 is provided for free and with no limitations excepting:
70 |
71 | 1. Tiago Agostinho de Almeida and Jos� Mar�a G�mez Hidalgo hold the copyrigth (c) for the SMS Spam Collection v.1.
72 |
73 | 2. No Warranty/Use At Your Risk. THE CORPUS IS MADE AT NO CHARGE. ACCORDINGLY, THE CORPUS IS PROVIDED `AS IS,' WITHOUT WARRANTY OF ANY KIND, INCLUDING WITHOUT LIMITATION THE WARRANTIES THAT THEY ARE MERCHANTABLE, FIT FOR A PARTICULAR PURPOSE OR NON-INFRINGING. YOU ARE SOLELY RESPONSIBLE FOR YOUR USE, DISTRIBUTION, MODIFICATION, REPRODUCTION AND PUBLICATION OF THE CORPUS AND ANY DERIVATIVE WORKS THEREOF BY YOU AND ANY OF YOUR SUBLICENSEES (COLLECTIVELY, `YOUR CORPUS USE'). THE ENTIRE RISK AS TO YOUR CORPUS USE IS BORNE BY YOU. YOU AGREE TO INDEMNIFY AND HOLD THE COPYRIGHT HOLDERS, AND THEIR AFFILIATES HARMLESS FROM ANY CLAIMS ARISING FROM OR RELATING TO YOUR CORPUS USE.
74 |
75 | 3. Limitation of Liability. IN NO EVENT SHALL THE COPYRIGHT HOLDERS OR THEIR AFFILIATES, OR THE CORPUS CONTRIBUTING EDITORS, BE LIABLE FOR ANY INDIRECT, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES, INCLUDING, WITHOUT LIMITATION, DAMAGES FOR LOSS OF GOODWILL OR ANY AND ALL OTHER COMMERCIAL DAMAGES OR LOSSES, EVEN IF ADVISED OF THE POSSIBILITY THEREOF, AND REGARDLESS OF WHETHER ANY CLAIM IS BASED UPON ANY CONTRACT, TORT OR OTHER LEGAL OR EQUITABLE THEORY, RELATING OR ARISING FROM THE CORPUS, YOUR CORPUS USE OR THIS LICENSE AGREEMENT.
76 |
--------------------------------------------------------------------------------
/ML algorithm/2-Logistic Regression/titanic_test.csv:
--------------------------------------------------------------------------------
1 | PassengerId,Pclass,Name,Sex,Age,SibSp,Parch,Ticket,Fare,Cabin,Embarked
2 | 892,3,"Kelly, Mr. James",male,34.5,0,0,330911,7.8292,,Q
3 | 893,3,"Wilkes, Mrs. James (Ellen Needs)",female,47,1,0,363272,7,,S
4 | 894,2,"Myles, Mr. Thomas Francis",male,62,0,0,240276,9.6875,,Q
5 | 895,3,"Wirz, Mr. Albert",male,27,0,0,315154,8.6625,,S
6 | 896,3,"Hirvonen, Mrs. Alexander (Helga E Lindqvist)",female,22,1,1,3101298,12.2875,,S
7 | 897,3,"Svensson, Mr. Johan Cervin",male,14,0,0,7538,9.225,,S
8 | 898,3,"Connolly, Miss. Kate",female,30,0,0,330972,7.6292,,Q
9 | 899,2,"Caldwell, Mr. Albert Francis",male,26,1,1,248738,29,,S
10 | 900,3,"Abrahim, Mrs. Joseph (Sophie Halaut Easu)",female,18,0,0,2657,7.2292,,C
11 | 901,3,"Davies, Mr. John Samuel",male,21,2,0,A/4 48871,24.15,,S
12 | 902,3,"Ilieff, Mr. Ylio",male,,0,0,349220,7.8958,,S
13 | 903,1,"Jones, Mr. Charles Cresson",male,46,0,0,694,26,,S
14 | 904,1,"Snyder, Mrs. John Pillsbury (Nelle Stevenson)",female,23,1,0,21228,82.2667,B45,S
15 | 905,2,"Howard, Mr. Benjamin",male,63,1,0,24065,26,,S
16 | 906,1,"Chaffee, Mrs. Herbert Fuller (Carrie Constance Toogood)",female,47,1,0,W.E.P. 5734,61.175,E31,S
17 | 907,2,"del Carlo, Mrs. Sebastiano (Argenia Genovesi)",female,24,1,0,SC/PARIS 2167,27.7208,,C
18 | 908,2,"Keane, Mr. Daniel",male,35,0,0,233734,12.35,,Q
19 | 909,3,"Assaf, Mr. Gerios",male,21,0,0,2692,7.225,,C
20 | 910,3,"Ilmakangas, Miss. Ida Livija",female,27,1,0,STON/O2. 3101270,7.925,,S
21 | 911,3,"Assaf Khalil, Mrs. Mariana (Miriam"")""",female,45,0,0,2696,7.225,,C
22 | 912,1,"Rothschild, Mr. Martin",male,55,1,0,PC 17603,59.4,,C
23 | 913,3,"Olsen, Master. Artur Karl",male,9,0,1,C 17368,3.1708,,S
24 | 914,1,"Flegenheim, Mrs. Alfred (Antoinette)",female,,0,0,PC 17598,31.6833,,S
25 | 915,1,"Williams, Mr. Richard Norris II",male,21,0,1,PC 17597,61.3792,,C
26 | 916,1,"Ryerson, Mrs. Arthur Larned (Emily Maria Borie)",female,48,1,3,PC 17608,262.375,B57 B59 B63 B66,C
27 | 917,3,"Robins, Mr. Alexander A",male,50,1,0,A/5. 3337,14.5,,S
28 | 918,1,"Ostby, Miss. Helene Ragnhild",female,22,0,1,113509,61.9792,B36,C
29 | 919,3,"Daher, Mr. Shedid",male,22.5,0,0,2698,7.225,,C
30 | 920,1,"Brady, Mr. John Bertram",male,41,0,0,113054,30.5,A21,S
31 | 921,3,"Samaan, Mr. Elias",male,,2,0,2662,21.6792,,C
32 | 922,2,"Louch, Mr. Charles Alexander",male,50,1,0,SC/AH 3085,26,,S
33 | 923,2,"Jefferys, Mr. Clifford Thomas",male,24,2,0,C.A. 31029,31.5,,S
34 | 924,3,"Dean, Mrs. Bertram (Eva Georgetta Light)",female,33,1,2,C.A. 2315,20.575,,S
35 | 925,3,"Johnston, Mrs. Andrew G (Elizabeth Lily"" Watson)""",female,,1,2,W./C. 6607,23.45,,S
36 | 926,1,"Mock, Mr. Philipp Edmund",male,30,1,0,13236,57.75,C78,C
37 | 927,3,"Katavelas, Mr. Vassilios (Catavelas Vassilios"")""",male,18.5,0,0,2682,7.2292,,C
38 | 928,3,"Roth, Miss. Sarah A",female,,0,0,342712,8.05,,S
39 | 929,3,"Cacic, Miss. Manda",female,21,0,0,315087,8.6625,,S
40 | 930,3,"Sap, Mr. Julius",male,25,0,0,345768,9.5,,S
41 | 931,3,"Hee, Mr. Ling",male,,0,0,1601,56.4958,,S
42 | 932,3,"Karun, Mr. Franz",male,39,0,1,349256,13.4167,,C
43 | 933,1,"Franklin, Mr. Thomas Parham",male,,0,0,113778,26.55,D34,S
44 | 934,3,"Goldsmith, Mr. Nathan",male,41,0,0,SOTON/O.Q. 3101263,7.85,,S
45 | 935,2,"Corbett, Mrs. Walter H (Irene Colvin)",female,30,0,0,237249,13,,S
46 | 936,1,"Kimball, Mrs. Edwin Nelson Jr (Gertrude Parsons)",female,45,1,0,11753,52.5542,D19,S
47 | 937,3,"Peltomaki, Mr. Nikolai Johannes",male,25,0,0,STON/O 2. 3101291,7.925,,S
48 | 938,1,"Chevre, Mr. Paul Romaine",male,45,0,0,PC 17594,29.7,A9,C
49 | 939,3,"Shaughnessy, Mr. Patrick",male,,0,0,370374,7.75,,Q
50 | 940,1,"Bucknell, Mrs. William Robert (Emma Eliza Ward)",female,60,0,0,11813,76.2917,D15,C
51 | 941,3,"Coutts, Mrs. William (Winnie Minnie"" Treanor)""",female,36,0,2,C.A. 37671,15.9,,S
52 | 942,1,"Smith, Mr. Lucien Philip",male,24,1,0,13695,60,C31,S
53 | 943,2,"Pulbaum, Mr. Franz",male,27,0,0,SC/PARIS 2168,15.0333,,C
54 | 944,2,"Hocking, Miss. Ellen Nellie""""",female,20,2,1,29105,23,,S
55 | 945,1,"Fortune, Miss. Ethel Flora",female,28,3,2,19950,263,C23 C25 C27,S
56 | 946,2,"Mangiavacchi, Mr. Serafino Emilio",male,,0,0,SC/A.3 2861,15.5792,,C
57 | 947,3,"Rice, Master. Albert",male,10,4,1,382652,29.125,,Q
58 | 948,3,"Cor, Mr. Bartol",male,35,0,0,349230,7.8958,,S
59 | 949,3,"Abelseth, Mr. Olaus Jorgensen",male,25,0,0,348122,7.65,F G63,S
60 | 950,3,"Davison, Mr. Thomas Henry",male,,1,0,386525,16.1,,S
61 | 951,1,"Chaudanson, Miss. Victorine",female,36,0,0,PC 17608,262.375,B61,C
62 | 952,3,"Dika, Mr. Mirko",male,17,0,0,349232,7.8958,,S
63 | 953,2,"McCrae, Mr. Arthur Gordon",male,32,0,0,237216,13.5,,S
64 | 954,3,"Bjorklund, Mr. Ernst Herbert",male,18,0,0,347090,7.75,,S
65 | 955,3,"Bradley, Miss. Bridget Delia",female,22,0,0,334914,7.725,,Q
66 | 956,1,"Ryerson, Master. John Borie",male,13,2,2,PC 17608,262.375,B57 B59 B63 B66,C
67 | 957,2,"Corey, Mrs. Percy C (Mary Phyllis Elizabeth Miller)",female,,0,0,F.C.C. 13534,21,,S
68 | 958,3,"Burns, Miss. Mary Delia",female,18,0,0,330963,7.8792,,Q
69 | 959,1,"Moore, Mr. Clarence Bloomfield",male,47,0,0,113796,42.4,,S
70 | 960,1,"Tucker, Mr. Gilbert Milligan Jr",male,31,0,0,2543,28.5375,C53,C
71 | 961,1,"Fortune, Mrs. Mark (Mary McDougald)",female,60,1,4,19950,263,C23 C25 C27,S
72 | 962,3,"Mulvihill, Miss. Bertha E",female,24,0,0,382653,7.75,,Q
73 | 963,3,"Minkoff, Mr. Lazar",male,21,0,0,349211,7.8958,,S
74 | 964,3,"Nieminen, Miss. Manta Josefina",female,29,0,0,3101297,7.925,,S
75 | 965,1,"Ovies y Rodriguez, Mr. Servando",male,28.5,0,0,PC 17562,27.7208,D43,C
76 | 966,1,"Geiger, Miss. Amalie",female,35,0,0,113503,211.5,C130,C
77 | 967,1,"Keeping, Mr. Edwin",male,32.5,0,0,113503,211.5,C132,C
78 | 968,3,"Miles, Mr. Frank",male,,0,0,359306,8.05,,S
79 | 969,1,"Cornell, Mrs. Robert Clifford (Malvina Helen Lamson)",female,55,2,0,11770,25.7,C101,S
80 | 970,2,"Aldworth, Mr. Charles Augustus",male,30,0,0,248744,13,,S
81 | 971,3,"Doyle, Miss. Elizabeth",female,24,0,0,368702,7.75,,Q
82 | 972,3,"Boulos, Master. Akar",male,6,1,1,2678,15.2458,,C
83 | 973,1,"Straus, Mr. Isidor",male,67,1,0,PC 17483,221.7792,C55 C57,S
84 | 974,1,"Case, Mr. Howard Brown",male,49,0,0,19924,26,,S
85 | 975,3,"Demetri, Mr. Marinko",male,,0,0,349238,7.8958,,S
86 | 976,2,"Lamb, Mr. John Joseph",male,,0,0,240261,10.7083,,Q
87 | 977,3,"Khalil, Mr. Betros",male,,1,0,2660,14.4542,,C
88 | 978,3,"Barry, Miss. Julia",female,27,0,0,330844,7.8792,,Q
89 | 979,3,"Badman, Miss. Emily Louisa",female,18,0,0,A/4 31416,8.05,,S
90 | 980,3,"O'Donoghue, Ms. Bridget",female,,0,0,364856,7.75,,Q
91 | 981,2,"Wells, Master. Ralph Lester",male,2,1,1,29103,23,,S
92 | 982,3,"Dyker, Mrs. Adolf Fredrik (Anna Elisabeth Judith Andersson)",female,22,1,0,347072,13.9,,S
93 | 983,3,"Pedersen, Mr. Olaf",male,,0,0,345498,7.775,,S
94 | 984,1,"Davidson, Mrs. Thornton (Orian Hays)",female,27,1,2,F.C. 12750,52,B71,S
95 | 985,3,"Guest, Mr. Robert",male,,0,0,376563,8.05,,S
96 | 986,1,"Birnbaum, Mr. Jakob",male,25,0,0,13905,26,,C
97 | 987,3,"Tenglin, Mr. Gunnar Isidor",male,25,0,0,350033,7.7958,,S
98 | 988,1,"Cavendish, Mrs. Tyrell William (Julia Florence Siegel)",female,76,1,0,19877,78.85,C46,S
99 | 989,3,"Makinen, Mr. Kalle Edvard",male,29,0,0,STON/O 2. 3101268,7.925,,S
100 | 990,3,"Braf, Miss. Elin Ester Maria",female,20,0,0,347471,7.8542,,S
101 | 991,3,"Nancarrow, Mr. William Henry",male,33,0,0,A./5. 3338,8.05,,S
102 | 992,1,"Stengel, Mrs. Charles Emil Henry (Annie May Morris)",female,43,1,0,11778,55.4417,C116,C
103 | 993,2,"Weisz, Mr. Leopold",male,27,1,0,228414,26,,S
104 | 994,3,"Foley, Mr. William",male,,0,0,365235,7.75,,Q
105 | 995,3,"Johansson Palmquist, Mr. Oskar Leander",male,26,0,0,347070,7.775,,S
106 | 996,3,"Thomas, Mrs. Alexander (Thamine Thelma"")""",female,16,1,1,2625,8.5167,,C
107 | 997,3,"Holthen, Mr. Johan Martin",male,28,0,0,C 4001,22.525,,S
108 | 998,3,"Buckley, Mr. Daniel",male,21,0,0,330920,7.8208,,Q
109 | 999,3,"Ryan, Mr. Edward",male,,0,0,383162,7.75,,Q
110 | 1000,3,"Willer, Mr. Aaron (Abi Weller"")""",male,,0,0,3410,8.7125,,S
111 | 1001,2,"Swane, Mr. George",male,18.5,0,0,248734,13,F,S
112 | 1002,2,"Stanton, Mr. Samuel Ward",male,41,0,0,237734,15.0458,,C
113 | 1003,3,"Shine, Miss. Ellen Natalia",female,,0,0,330968,7.7792,,Q
114 | 1004,1,"Evans, Miss. Edith Corse",female,36,0,0,PC 17531,31.6792,A29,C
115 | 1005,3,"Buckley, Miss. Katherine",female,18.5,0,0,329944,7.2833,,Q
116 | 1006,1,"Straus, Mrs. Isidor (Rosalie Ida Blun)",female,63,1,0,PC 17483,221.7792,C55 C57,S
117 | 1007,3,"Chronopoulos, Mr. Demetrios",male,18,1,0,2680,14.4542,,C
118 | 1008,3,"Thomas, Mr. John",male,,0,0,2681,6.4375,,C
119 | 1009,3,"Sandstrom, Miss. Beatrice Irene",female,1,1,1,PP 9549,16.7,G6,S
120 | 1010,1,"Beattie, Mr. Thomson",male,36,0,0,13050,75.2417,C6,C
121 | 1011,2,"Chapman, Mrs. John Henry (Sara Elizabeth Lawry)",female,29,1,0,SC/AH 29037,26,,S
122 | 1012,2,"Watt, Miss. Bertha J",female,12,0,0,C.A. 33595,15.75,,S
123 | 1013,3,"Kiernan, Mr. John",male,,1,0,367227,7.75,,Q
124 | 1014,1,"Schabert, Mrs. Paul (Emma Mock)",female,35,1,0,13236,57.75,C28,C
125 | 1015,3,"Carver, Mr. Alfred John",male,28,0,0,392095,7.25,,S
126 | 1016,3,"Kennedy, Mr. John",male,,0,0,368783,7.75,,Q
127 | 1017,3,"Cribb, Miss. Laura Alice",female,17,0,1,371362,16.1,,S
128 | 1018,3,"Brobeck, Mr. Karl Rudolf",male,22,0,0,350045,7.7958,,S
129 | 1019,3,"McCoy, Miss. Alicia",female,,2,0,367226,23.25,,Q
130 | 1020,2,"Bowenur, Mr. Solomon",male,42,0,0,211535,13,,S
131 | 1021,3,"Petersen, Mr. Marius",male,24,0,0,342441,8.05,,S
132 | 1022,3,"Spinner, Mr. Henry John",male,32,0,0,STON/OQ. 369943,8.05,,S
133 | 1023,1,"Gracie, Col. Archibald IV",male,53,0,0,113780,28.5,C51,C
134 | 1024,3,"Lefebre, Mrs. Frank (Frances)",female,,0,4,4133,25.4667,,S
135 | 1025,3,"Thomas, Mr. Charles P",male,,1,0,2621,6.4375,,C
136 | 1026,3,"Dintcheff, Mr. Valtcho",male,43,0,0,349226,7.8958,,S
137 | 1027,3,"Carlsson, Mr. Carl Robert",male,24,0,0,350409,7.8542,,S
138 | 1028,3,"Zakarian, Mr. Mapriededer",male,26.5,0,0,2656,7.225,,C
139 | 1029,2,"Schmidt, Mr. August",male,26,0,0,248659,13,,S
140 | 1030,3,"Drapkin, Miss. Jennie",female,23,0,0,SOTON/OQ 392083,8.05,,S
141 | 1031,3,"Goodwin, Mr. Charles Frederick",male,40,1,6,CA 2144,46.9,,S
142 | 1032,3,"Goodwin, Miss. Jessie Allis",female,10,5,2,CA 2144,46.9,,S
143 | 1033,1,"Daniels, Miss. Sarah",female,33,0,0,113781,151.55,,S
144 | 1034,1,"Ryerson, Mr. Arthur Larned",male,61,1,3,PC 17608,262.375,B57 B59 B63 B66,C
145 | 1035,2,"Beauchamp, Mr. Henry James",male,28,0,0,244358,26,,S
146 | 1036,1,"Lindeberg-Lind, Mr. Erik Gustaf (Mr Edward Lingrey"")""",male,42,0,0,17475,26.55,,S
147 | 1037,3,"Vander Planke, Mr. Julius",male,31,3,0,345763,18,,S
148 | 1038,1,"Hilliard, Mr. Herbert Henry",male,,0,0,17463,51.8625,E46,S
149 | 1039,3,"Davies, Mr. Evan",male,22,0,0,SC/A4 23568,8.05,,S
150 | 1040,1,"Crafton, Mr. John Bertram",male,,0,0,113791,26.55,,S
151 | 1041,2,"Lahtinen, Rev. William",male,30,1,1,250651,26,,S
152 | 1042,1,"Earnshaw, Mrs. Boulton (Olive Potter)",female,23,0,1,11767,83.1583,C54,C
153 | 1043,3,"Matinoff, Mr. Nicola",male,,0,0,349255,7.8958,,C
154 | 1044,3,"Storey, Mr. Thomas",male,60.5,0,0,3701,,,S
155 | 1045,3,"Klasen, Mrs. (Hulda Kristina Eugenia Lofqvist)",female,36,0,2,350405,12.1833,,S
156 | 1046,3,"Asplund, Master. Filip Oscar",male,13,4,2,347077,31.3875,,S
157 | 1047,3,"Duquemin, Mr. Joseph",male,24,0,0,S.O./P.P. 752,7.55,,S
158 | 1048,1,"Bird, Miss. Ellen",female,29,0,0,PC 17483,221.7792,C97,S
159 | 1049,3,"Lundin, Miss. Olga Elida",female,23,0,0,347469,7.8542,,S
160 | 1050,1,"Borebank, Mr. John James",male,42,0,0,110489,26.55,D22,S
161 | 1051,3,"Peacock, Mrs. Benjamin (Edith Nile)",female,26,0,2,SOTON/O.Q. 3101315,13.775,,S
162 | 1052,3,"Smyth, Miss. Julia",female,,0,0,335432,7.7333,,Q
163 | 1053,3,"Touma, Master. Georges Youssef",male,7,1,1,2650,15.2458,,C
164 | 1054,2,"Wright, Miss. Marion",female,26,0,0,220844,13.5,,S
165 | 1055,3,"Pearce, Mr. Ernest",male,,0,0,343271,7,,S
166 | 1056,2,"Peruschitz, Rev. Joseph Maria",male,41,0,0,237393,13,,S
167 | 1057,3,"Kink-Heilmann, Mrs. Anton (Luise Heilmann)",female,26,1,1,315153,22.025,,S
168 | 1058,1,"Brandeis, Mr. Emil",male,48,0,0,PC 17591,50.4958,B10,C
169 | 1059,3,"Ford, Mr. Edward Watson",male,18,2,2,W./C. 6608,34.375,,S
170 | 1060,1,"Cassebeer, Mrs. Henry Arthur Jr (Eleanor Genevieve Fosdick)",female,,0,0,17770,27.7208,,C
171 | 1061,3,"Hellstrom, Miss. Hilda Maria",female,22,0,0,7548,8.9625,,S
172 | 1062,3,"Lithman, Mr. Simon",male,,0,0,S.O./P.P. 251,7.55,,S
173 | 1063,3,"Zakarian, Mr. Ortin",male,27,0,0,2670,7.225,,C
174 | 1064,3,"Dyker, Mr. Adolf Fredrik",male,23,1,0,347072,13.9,,S
175 | 1065,3,"Torfa, Mr. Assad",male,,0,0,2673,7.2292,,C
176 | 1066,3,"Asplund, Mr. Carl Oscar Vilhelm Gustafsson",male,40,1,5,347077,31.3875,,S
177 | 1067,2,"Brown, Miss. Edith Eileen",female,15,0,2,29750,39,,S
178 | 1068,2,"Sincock, Miss. Maude",female,20,0,0,C.A. 33112,36.75,,S
179 | 1069,1,"Stengel, Mr. Charles Emil Henry",male,54,1,0,11778,55.4417,C116,C
180 | 1070,2,"Becker, Mrs. Allen Oliver (Nellie E Baumgardner)",female,36,0,3,230136,39,F4,S
181 | 1071,1,"Compton, Mrs. Alexander Taylor (Mary Eliza Ingersoll)",female,64,0,2,PC 17756,83.1583,E45,C
182 | 1072,2,"McCrie, Mr. James Matthew",male,30,0,0,233478,13,,S
183 | 1073,1,"Compton, Mr. Alexander Taylor Jr",male,37,1,1,PC 17756,83.1583,E52,C
184 | 1074,1,"Marvin, Mrs. Daniel Warner (Mary Graham Carmichael Farquarson)",female,18,1,0,113773,53.1,D30,S
185 | 1075,3,"Lane, Mr. Patrick",male,,0,0,7935,7.75,,Q
186 | 1076,1,"Douglas, Mrs. Frederick Charles (Mary Helene Baxter)",female,27,1,1,PC 17558,247.5208,B58 B60,C
187 | 1077,2,"Maybery, Mr. Frank Hubert",male,40,0,0,239059,16,,S
188 | 1078,2,"Phillips, Miss. Alice Frances Louisa",female,21,0,1,S.O./P.P. 2,21,,S
189 | 1079,3,"Davies, Mr. Joseph",male,17,2,0,A/4 48873,8.05,,S
190 | 1080,3,"Sage, Miss. Ada",female,,8,2,CA. 2343,69.55,,S
191 | 1081,2,"Veal, Mr. James",male,40,0,0,28221,13,,S
192 | 1082,2,"Angle, Mr. William A",male,34,1,0,226875,26,,S
193 | 1083,1,"Salomon, Mr. Abraham L",male,,0,0,111163,26,,S
194 | 1084,3,"van Billiard, Master. Walter John",male,11.5,1,1,A/5. 851,14.5,,S
195 | 1085,2,"Lingane, Mr. John",male,61,0,0,235509,12.35,,Q
196 | 1086,2,"Drew, Master. Marshall Brines",male,8,0,2,28220,32.5,,S
197 | 1087,3,"Karlsson, Mr. Julius Konrad Eugen",male,33,0,0,347465,7.8542,,S
198 | 1088,1,"Spedden, Master. Robert Douglas",male,6,0,2,16966,134.5,E34,C
199 | 1089,3,"Nilsson, Miss. Berta Olivia",female,18,0,0,347066,7.775,,S
200 | 1090,2,"Baimbrigge, Mr. Charles Robert",male,23,0,0,C.A. 31030,10.5,,S
201 | 1091,3,"Rasmussen, Mrs. (Lena Jacobsen Solvang)",female,,0,0,65305,8.1125,,S
202 | 1092,3,"Murphy, Miss. Nora",female,,0,0,36568,15.5,,Q
203 | 1093,3,"Danbom, Master. Gilbert Sigvard Emanuel",male,0.33,0,2,347080,14.4,,S
204 | 1094,1,"Astor, Col. John Jacob",male,47,1,0,PC 17757,227.525,C62 C64,C
205 | 1095,2,"Quick, Miss. Winifred Vera",female,8,1,1,26360,26,,S
206 | 1096,2,"Andrew, Mr. Frank Thomas",male,25,0,0,C.A. 34050,10.5,,S
207 | 1097,1,"Omont, Mr. Alfred Fernand",male,,0,0,F.C. 12998,25.7417,,C
208 | 1098,3,"McGowan, Miss. Katherine",female,35,0,0,9232,7.75,,Q
209 | 1099,2,"Collett, Mr. Sidney C Stuart",male,24,0,0,28034,10.5,,S
210 | 1100,1,"Rosenbaum, Miss. Edith Louise",female,33,0,0,PC 17613,27.7208,A11,C
211 | 1101,3,"Delalic, Mr. Redjo",male,25,0,0,349250,7.8958,,S
212 | 1102,3,"Andersen, Mr. Albert Karvin",male,32,0,0,C 4001,22.525,,S
213 | 1103,3,"Finoli, Mr. Luigi",male,,0,0,SOTON/O.Q. 3101308,7.05,,S
214 | 1104,2,"Deacon, Mr. Percy William",male,17,0,0,S.O.C. 14879,73.5,,S
215 | 1105,2,"Howard, Mrs. Benjamin (Ellen Truelove Arman)",female,60,1,0,24065,26,,S
216 | 1106,3,"Andersson, Miss. Ida Augusta Margareta",female,38,4,2,347091,7.775,,S
217 | 1107,1,"Head, Mr. Christopher",male,42,0,0,113038,42.5,B11,S
218 | 1108,3,"Mahon, Miss. Bridget Delia",female,,0,0,330924,7.8792,,Q
219 | 1109,1,"Wick, Mr. George Dennick",male,57,1,1,36928,164.8667,,S
220 | 1110,1,"Widener, Mrs. George Dunton (Eleanor Elkins)",female,50,1,1,113503,211.5,C80,C
221 | 1111,3,"Thomson, Mr. Alexander Morrison",male,,0,0,32302,8.05,,S
222 | 1112,2,"Duran y More, Miss. Florentina",female,30,1,0,SC/PARIS 2148,13.8583,,C
223 | 1113,3,"Reynolds, Mr. Harold J",male,21,0,0,342684,8.05,,S
224 | 1114,2,"Cook, Mrs. (Selena Rogers)",female,22,0,0,W./C. 14266,10.5,F33,S
225 | 1115,3,"Karlsson, Mr. Einar Gervasius",male,21,0,0,350053,7.7958,,S
226 | 1116,1,"Candee, Mrs. Edward (Helen Churchill Hungerford)",female,53,0,0,PC 17606,27.4458,,C
227 | 1117,3,"Moubarek, Mrs. George (Omine Amenia"" Alexander)""",female,,0,2,2661,15.2458,,C
228 | 1118,3,"Asplund, Mr. Johan Charles",male,23,0,0,350054,7.7958,,S
229 | 1119,3,"McNeill, Miss. Bridget",female,,0,0,370368,7.75,,Q
230 | 1120,3,"Everett, Mr. Thomas James",male,40.5,0,0,C.A. 6212,15.1,,S
231 | 1121,2,"Hocking, Mr. Samuel James Metcalfe",male,36,0,0,242963,13,,S
232 | 1122,2,"Sweet, Mr. George Frederick",male,14,0,0,220845,65,,S
233 | 1123,1,"Willard, Miss. Constance",female,21,0,0,113795,26.55,,S
234 | 1124,3,"Wiklund, Mr. Karl Johan",male,21,1,0,3101266,6.4958,,S
235 | 1125,3,"Linehan, Mr. Michael",male,,0,0,330971,7.8792,,Q
236 | 1126,1,"Cumings, Mr. John Bradley",male,39,1,0,PC 17599,71.2833,C85,C
237 | 1127,3,"Vendel, Mr. Olof Edvin",male,20,0,0,350416,7.8542,,S
238 | 1128,1,"Warren, Mr. Frank Manley",male,64,1,0,110813,75.25,D37,C
239 | 1129,3,"Baccos, Mr. Raffull",male,20,0,0,2679,7.225,,C
240 | 1130,2,"Hiltunen, Miss. Marta",female,18,1,1,250650,13,,S
241 | 1131,1,"Douglas, Mrs. Walter Donald (Mahala Dutton)",female,48,1,0,PC 17761,106.425,C86,C
242 | 1132,1,"Lindstrom, Mrs. Carl Johan (Sigrid Posse)",female,55,0,0,112377,27.7208,,C
243 | 1133,2,"Christy, Mrs. (Alice Frances)",female,45,0,2,237789,30,,S
244 | 1134,1,"Spedden, Mr. Frederic Oakley",male,45,1,1,16966,134.5,E34,C
245 | 1135,3,"Hyman, Mr. Abraham",male,,0,0,3470,7.8875,,S
246 | 1136,3,"Johnston, Master. William Arthur Willie""""",male,,1,2,W./C. 6607,23.45,,S
247 | 1137,1,"Kenyon, Mr. Frederick R",male,41,1,0,17464,51.8625,D21,S
248 | 1138,2,"Karnes, Mrs. J Frank (Claire Bennett)",female,22,0,0,F.C.C. 13534,21,,S
249 | 1139,2,"Drew, Mr. James Vivian",male,42,1,1,28220,32.5,,S
250 | 1140,2,"Hold, Mrs. Stephen (Annie Margaret Hill)",female,29,1,0,26707,26,,S
251 | 1141,3,"Khalil, Mrs. Betros (Zahie Maria"" Elias)""",female,,1,0,2660,14.4542,,C
252 | 1142,2,"West, Miss. Barbara J",female,0.92,1,2,C.A. 34651,27.75,,S
253 | 1143,3,"Abrahamsson, Mr. Abraham August Johannes",male,20,0,0,SOTON/O2 3101284,7.925,,S
254 | 1144,1,"Clark, Mr. Walter Miller",male,27,1,0,13508,136.7792,C89,C
255 | 1145,3,"Salander, Mr. Karl Johan",male,24,0,0,7266,9.325,,S
256 | 1146,3,"Wenzel, Mr. Linhart",male,32.5,0,0,345775,9.5,,S
257 | 1147,3,"MacKay, Mr. George William",male,,0,0,C.A. 42795,7.55,,S
258 | 1148,3,"Mahon, Mr. John",male,,0,0,AQ/4 3130,7.75,,Q
259 | 1149,3,"Niklasson, Mr. Samuel",male,28,0,0,363611,8.05,,S
260 | 1150,2,"Bentham, Miss. Lilian W",female,19,0,0,28404,13,,S
261 | 1151,3,"Midtsjo, Mr. Karl Albert",male,21,0,0,345501,7.775,,S
262 | 1152,3,"de Messemaeker, Mr. Guillaume Joseph",male,36.5,1,0,345572,17.4,,S
263 | 1153,3,"Nilsson, Mr. August Ferdinand",male,21,0,0,350410,7.8542,,S
264 | 1154,2,"Wells, Mrs. Arthur Henry (Addie"" Dart Trevaskis)""",female,29,0,2,29103,23,,S
265 | 1155,3,"Klasen, Miss. Gertrud Emilia",female,1,1,1,350405,12.1833,,S
266 | 1156,2,"Portaluppi, Mr. Emilio Ilario Giuseppe",male,30,0,0,C.A. 34644,12.7375,,C
267 | 1157,3,"Lyntakoff, Mr. Stanko",male,,0,0,349235,7.8958,,S
268 | 1158,1,"Chisholm, Mr. Roderick Robert Crispin",male,,0,0,112051,0,,S
269 | 1159,3,"Warren, Mr. Charles William",male,,0,0,C.A. 49867,7.55,,S
270 | 1160,3,"Howard, Miss. May Elizabeth",female,,0,0,A. 2. 39186,8.05,,S
271 | 1161,3,"Pokrnic, Mr. Mate",male,17,0,0,315095,8.6625,,S
272 | 1162,1,"McCaffry, Mr. Thomas Francis",male,46,0,0,13050,75.2417,C6,C
273 | 1163,3,"Fox, Mr. Patrick",male,,0,0,368573,7.75,,Q
274 | 1164,1,"Clark, Mrs. Walter Miller (Virginia McDowell)",female,26,1,0,13508,136.7792,C89,C
275 | 1165,3,"Lennon, Miss. Mary",female,,1,0,370371,15.5,,Q
276 | 1166,3,"Saade, Mr. Jean Nassr",male,,0,0,2676,7.225,,C
277 | 1167,2,"Bryhl, Miss. Dagmar Jenny Ingeborg ",female,20,1,0,236853,26,,S
278 | 1168,2,"Parker, Mr. Clifford Richard",male,28,0,0,SC 14888,10.5,,S
279 | 1169,2,"Faunthorpe, Mr. Harry",male,40,1,0,2926,26,,S
280 | 1170,2,"Ware, Mr. John James",male,30,1,0,CA 31352,21,,S
281 | 1171,2,"Oxenham, Mr. Percy Thomas",male,22,0,0,W./C. 14260,10.5,,S
282 | 1172,3,"Oreskovic, Miss. Jelka",female,23,0,0,315085,8.6625,,S
283 | 1173,3,"Peacock, Master. Alfred Edward",male,0.75,1,1,SOTON/O.Q. 3101315,13.775,,S
284 | 1174,3,"Fleming, Miss. Honora",female,,0,0,364859,7.75,,Q
285 | 1175,3,"Touma, Miss. Maria Youssef",female,9,1,1,2650,15.2458,,C
286 | 1176,3,"Rosblom, Miss. Salli Helena",female,2,1,1,370129,20.2125,,S
287 | 1177,3,"Dennis, Mr. William",male,36,0,0,A/5 21175,7.25,,S
288 | 1178,3,"Franklin, Mr. Charles (Charles Fardon)",male,,0,0,SOTON/O.Q. 3101314,7.25,,S
289 | 1179,1,"Snyder, Mr. John Pillsbury",male,24,1,0,21228,82.2667,B45,S
290 | 1180,3,"Mardirosian, Mr. Sarkis",male,,0,0,2655,7.2292,F E46,C
291 | 1181,3,"Ford, Mr. Arthur",male,,0,0,A/5 1478,8.05,,S
292 | 1182,1,"Rheims, Mr. George Alexander Lucien",male,,0,0,PC 17607,39.6,,S
293 | 1183,3,"Daly, Miss. Margaret Marcella Maggie""""",female,30,0,0,382650,6.95,,Q
294 | 1184,3,"Nasr, Mr. Mustafa",male,,0,0,2652,7.2292,,C
295 | 1185,1,"Dodge, Dr. Washington",male,53,1,1,33638,81.8583,A34,S
296 | 1186,3,"Wittevrongel, Mr. Camille",male,36,0,0,345771,9.5,,S
297 | 1187,3,"Angheloff, Mr. Minko",male,26,0,0,349202,7.8958,,S
298 | 1188,2,"Laroche, Miss. Louise",female,1,1,2,SC/Paris 2123,41.5792,,C
299 | 1189,3,"Samaan, Mr. Hanna",male,,2,0,2662,21.6792,,C
300 | 1190,1,"Loring, Mr. Joseph Holland",male,30,0,0,113801,45.5,,S
301 | 1191,3,"Johansson, Mr. Nils",male,29,0,0,347467,7.8542,,S
302 | 1192,3,"Olsson, Mr. Oscar Wilhelm",male,32,0,0,347079,7.775,,S
303 | 1193,2,"Malachard, Mr. Noel",male,,0,0,237735,15.0458,D,C
304 | 1194,2,"Phillips, Mr. Escott Robert",male,43,0,1,S.O./P.P. 2,21,,S
305 | 1195,3,"Pokrnic, Mr. Tome",male,24,0,0,315092,8.6625,,S
306 | 1196,3,"McCarthy, Miss. Catherine Katie""""",female,,0,0,383123,7.75,,Q
307 | 1197,1,"Crosby, Mrs. Edward Gifford (Catherine Elizabeth Halstead)",female,64,1,1,112901,26.55,B26,S
308 | 1198,1,"Allison, Mr. Hudson Joshua Creighton",male,30,1,2,113781,151.55,C22 C26,S
309 | 1199,3,"Aks, Master. Philip Frank",male,0.83,0,1,392091,9.35,,S
310 | 1200,1,"Hays, Mr. Charles Melville",male,55,1,1,12749,93.5,B69,S
311 | 1201,3,"Hansen, Mrs. Claus Peter (Jennie L Howard)",female,45,1,0,350026,14.1083,,S
312 | 1202,3,"Cacic, Mr. Jego Grga",male,18,0,0,315091,8.6625,,S
313 | 1203,3,"Vartanian, Mr. David",male,22,0,0,2658,7.225,,C
314 | 1204,3,"Sadowitz, Mr. Harry",male,,0,0,LP 1588,7.575,,S
315 | 1205,3,"Carr, Miss. Jeannie",female,37,0,0,368364,7.75,,Q
316 | 1206,1,"White, Mrs. John Stuart (Ella Holmes)",female,55,0,0,PC 17760,135.6333,C32,C
317 | 1207,3,"Hagardon, Miss. Kate",female,17,0,0,AQ/3. 30631,7.7333,,Q
318 | 1208,1,"Spencer, Mr. William Augustus",male,57,1,0,PC 17569,146.5208,B78,C
319 | 1209,2,"Rogers, Mr. Reginald Harry",male,19,0,0,28004,10.5,,S
320 | 1210,3,"Jonsson, Mr. Nils Hilding",male,27,0,0,350408,7.8542,,S
321 | 1211,2,"Jefferys, Mr. Ernest Wilfred",male,22,2,0,C.A. 31029,31.5,,S
322 | 1212,3,"Andersson, Mr. Johan Samuel",male,26,0,0,347075,7.775,,S
323 | 1213,3,"Krekorian, Mr. Neshan",male,25,0,0,2654,7.2292,F E57,C
324 | 1214,2,"Nesson, Mr. Israel",male,26,0,0,244368,13,F2,S
325 | 1215,1,"Rowe, Mr. Alfred G",male,33,0,0,113790,26.55,,S
326 | 1216,1,"Kreuchen, Miss. Emilie",female,39,0,0,24160,211.3375,,S
327 | 1217,3,"Assam, Mr. Ali",male,23,0,0,SOTON/O.Q. 3101309,7.05,,S
328 | 1218,2,"Becker, Miss. Ruth Elizabeth",female,12,2,1,230136,39,F4,S
329 | 1219,1,"Rosenshine, Mr. George (Mr George Thorne"")""",male,46,0,0,PC 17585,79.2,,C
330 | 1220,2,"Clarke, Mr. Charles Valentine",male,29,1,0,2003,26,,S
331 | 1221,2,"Enander, Mr. Ingvar",male,21,0,0,236854,13,,S
332 | 1222,2,"Davies, Mrs. John Morgan (Elizabeth Agnes Mary White) ",female,48,0,2,C.A. 33112,36.75,,S
333 | 1223,1,"Dulles, Mr. William Crothers",male,39,0,0,PC 17580,29.7,A18,C
334 | 1224,3,"Thomas, Mr. Tannous",male,,0,0,2684,7.225,,C
335 | 1225,3,"Nakid, Mrs. Said (Waika Mary"" Mowad)""",female,19,1,1,2653,15.7417,,C
336 | 1226,3,"Cor, Mr. Ivan",male,27,0,0,349229,7.8958,,S
337 | 1227,1,"Maguire, Mr. John Edward",male,30,0,0,110469,26,C106,S
338 | 1228,2,"de Brito, Mr. Jose Joaquim",male,32,0,0,244360,13,,S
339 | 1229,3,"Elias, Mr. Joseph",male,39,0,2,2675,7.2292,,C
340 | 1230,2,"Denbury, Mr. Herbert",male,25,0,0,C.A. 31029,31.5,,S
341 | 1231,3,"Betros, Master. Seman",male,,0,0,2622,7.2292,,C
342 | 1232,2,"Fillbrook, Mr. Joseph Charles",male,18,0,0,C.A. 15185,10.5,,S
343 | 1233,3,"Lundstrom, Mr. Thure Edvin",male,32,0,0,350403,7.5792,,S
344 | 1234,3,"Sage, Mr. John George",male,,1,9,CA. 2343,69.55,,S
345 | 1235,1,"Cardeza, Mrs. James Warburton Martinez (Charlotte Wardle Drake)",female,58,0,1,PC 17755,512.3292,B51 B53 B55,C
346 | 1236,3,"van Billiard, Master. James William",male,,1,1,A/5. 851,14.5,,S
347 | 1237,3,"Abelseth, Miss. Karen Marie",female,16,0,0,348125,7.65,,S
348 | 1238,2,"Botsford, Mr. William Hull",male,26,0,0,237670,13,,S
349 | 1239,3,"Whabee, Mrs. George Joseph (Shawneene Abi-Saab)",female,38,0,0,2688,7.2292,,C
350 | 1240,2,"Giles, Mr. Ralph",male,24,0,0,248726,13.5,,S
351 | 1241,2,"Walcroft, Miss. Nellie",female,31,0,0,F.C.C. 13528,21,,S
352 | 1242,1,"Greenfield, Mrs. Leo David (Blanche Strouse)",female,45,0,1,PC 17759,63.3583,D10 D12,C
353 | 1243,2,"Stokes, Mr. Philip Joseph",male,25,0,0,F.C.C. 13540,10.5,,S
354 | 1244,2,"Dibden, Mr. William",male,18,0,0,S.O.C. 14879,73.5,,S
355 | 1245,2,"Herman, Mr. Samuel",male,49,1,2,220845,65,,S
356 | 1246,3,"Dean, Miss. Elizabeth Gladys Millvina""""",female,0.17,1,2,C.A. 2315,20.575,,S
357 | 1247,1,"Julian, Mr. Henry Forbes",male,50,0,0,113044,26,E60,S
358 | 1248,1,"Brown, Mrs. John Murray (Caroline Lane Lamson)",female,59,2,0,11769,51.4792,C101,S
359 | 1249,3,"Lockyer, Mr. Edward",male,,0,0,1222,7.8792,,S
360 | 1250,3,"O'Keefe, Mr. Patrick",male,,0,0,368402,7.75,,Q
361 | 1251,3,"Lindell, Mrs. Edvard Bengtsson (Elin Gerda Persson)",female,30,1,0,349910,15.55,,S
362 | 1252,3,"Sage, Master. William Henry",male,14.5,8,2,CA. 2343,69.55,,S
363 | 1253,2,"Mallet, Mrs. Albert (Antoinette Magnin)",female,24,1,1,S.C./PARIS 2079,37.0042,,C
364 | 1254,2,"Ware, Mrs. John James (Florence Louise Long)",female,31,0,0,CA 31352,21,,S
365 | 1255,3,"Strilic, Mr. Ivan",male,27,0,0,315083,8.6625,,S
366 | 1256,1,"Harder, Mrs. George Achilles (Dorothy Annan)",female,25,1,0,11765,55.4417,E50,C
367 | 1257,3,"Sage, Mrs. John (Annie Bullen)",female,,1,9,CA. 2343,69.55,,S
368 | 1258,3,"Caram, Mr. Joseph",male,,1,0,2689,14.4583,,C
369 | 1259,3,"Riihivouri, Miss. Susanna Juhantytar Sanni""""",female,22,0,0,3101295,39.6875,,S
370 | 1260,1,"Gibson, Mrs. Leonard (Pauline C Boeson)",female,45,0,1,112378,59.4,,C
371 | 1261,2,"Pallas y Castello, Mr. Emilio",male,29,0,0,SC/PARIS 2147,13.8583,,C
372 | 1262,2,"Giles, Mr. Edgar",male,21,1,0,28133,11.5,,S
373 | 1263,1,"Wilson, Miss. Helen Alice",female,31,0,0,16966,134.5,E39 E41,C
374 | 1264,1,"Ismay, Mr. Joseph Bruce",male,49,0,0,112058,0,B52 B54 B56,S
375 | 1265,2,"Harbeck, Mr. William H",male,44,0,0,248746,13,,S
376 | 1266,1,"Dodge, Mrs. Washington (Ruth Vidaver)",female,54,1,1,33638,81.8583,A34,S
377 | 1267,1,"Bowen, Miss. Grace Scott",female,45,0,0,PC 17608,262.375,,C
378 | 1268,3,"Kink, Miss. Maria",female,22,2,0,315152,8.6625,,S
379 | 1269,2,"Cotterill, Mr. Henry Harry""""",male,21,0,0,29107,11.5,,S
380 | 1270,1,"Hipkins, Mr. William Edward",male,55,0,0,680,50,C39,S
381 | 1271,3,"Asplund, Master. Carl Edgar",male,5,4,2,347077,31.3875,,S
382 | 1272,3,"O'Connor, Mr. Patrick",male,,0,0,366713,7.75,,Q
383 | 1273,3,"Foley, Mr. Joseph",male,26,0,0,330910,7.8792,,Q
384 | 1274,3,"Risien, Mrs. Samuel (Emma)",female,,0,0,364498,14.5,,S
385 | 1275,3,"McNamee, Mrs. Neal (Eileen O'Leary)",female,19,1,0,376566,16.1,,S
386 | 1276,2,"Wheeler, Mr. Edwin Frederick""""",male,,0,0,SC/PARIS 2159,12.875,,S
387 | 1277,2,"Herman, Miss. Kate",female,24,1,2,220845,65,,S
388 | 1278,3,"Aronsson, Mr. Ernst Axel Algot",male,24,0,0,349911,7.775,,S
389 | 1279,2,"Ashby, Mr. John",male,57,0,0,244346,13,,S
390 | 1280,3,"Canavan, Mr. Patrick",male,21,0,0,364858,7.75,,Q
391 | 1281,3,"Palsson, Master. Paul Folke",male,6,3,1,349909,21.075,,S
392 | 1282,1,"Payne, Mr. Vivian Ponsonby",male,23,0,0,12749,93.5,B24,S
393 | 1283,1,"Lines, Mrs. Ernest H (Elizabeth Lindsey James)",female,51,0,1,PC 17592,39.4,D28,S
394 | 1284,3,"Abbott, Master. Eugene Joseph",male,13,0,2,C.A. 2673,20.25,,S
395 | 1285,2,"Gilbert, Mr. William",male,47,0,0,C.A. 30769,10.5,,S
396 | 1286,3,"Kink-Heilmann, Mr. Anton",male,29,3,1,315153,22.025,,S
397 | 1287,1,"Smith, Mrs. Lucien Philip (Mary Eloise Hughes)",female,18,1,0,13695,60,C31,S
398 | 1288,3,"Colbert, Mr. Patrick",male,24,0,0,371109,7.25,,Q
399 | 1289,1,"Frolicher-Stehli, Mrs. Maxmillian (Margaretha Emerentia Stehli)",female,48,1,1,13567,79.2,B41,C
400 | 1290,3,"Larsson-Rondberg, Mr. Edvard A",male,22,0,0,347065,7.775,,S
401 | 1291,3,"Conlon, Mr. Thomas Henry",male,31,0,0,21332,7.7333,,Q
402 | 1292,1,"Bonnell, Miss. Caroline",female,30,0,0,36928,164.8667,C7,S
403 | 1293,2,"Gale, Mr. Harry",male,38,1,0,28664,21,,S
404 | 1294,1,"Gibson, Miss. Dorothy Winifred",female,22,0,1,112378,59.4,,C
405 | 1295,1,"Carrau, Mr. Jose Pedro",male,17,0,0,113059,47.1,,S
406 | 1296,1,"Frauenthal, Mr. Isaac Gerald",male,43,1,0,17765,27.7208,D40,C
407 | 1297,2,"Nourney, Mr. Alfred (Baron von Drachstedt"")""",male,20,0,0,SC/PARIS 2166,13.8625,D38,C
408 | 1298,2,"Ware, Mr. William Jeffery",male,23,1,0,28666,10.5,,S
409 | 1299,1,"Widener, Mr. George Dunton",male,50,1,1,113503,211.5,C80,C
410 | 1300,3,"Riordan, Miss. Johanna Hannah""""",female,,0,0,334915,7.7208,,Q
411 | 1301,3,"Peacock, Miss. Treasteall",female,3,1,1,SOTON/O.Q. 3101315,13.775,,S
412 | 1302,3,"Naughton, Miss. Hannah",female,,0,0,365237,7.75,,Q
413 | 1303,1,"Minahan, Mrs. William Edward (Lillian E Thorpe)",female,37,1,0,19928,90,C78,Q
414 | 1304,3,"Henriksson, Miss. Jenny Lovisa",female,28,0,0,347086,7.775,,S
415 | 1305,3,"Spector, Mr. Woolf",male,,0,0,A.5. 3236,8.05,,S
416 | 1306,1,"Oliva y Ocana, Dona. Fermina",female,39,0,0,PC 17758,108.9,C105,C
417 | 1307,3,"Saether, Mr. Simon Sivertsen",male,38.5,0,0,SOTON/O.Q. 3101262,7.25,,S
418 | 1308,3,"Ware, Mr. Frederick",male,,0,0,359309,8.05,,S
419 | 1309,3,"Peter, Master. Michael J",male,,1,1,2668,22.3583,,C
420 |
--------------------------------------------------------------------------------
/ML algorithm/4-Decission & Random Tree/kyphosis.csv:
--------------------------------------------------------------------------------
1 | "Kyphosis","Age","Number","Start"
2 | "absent",71,3,5
3 | "absent",158,3,14
4 | "present",128,4,5
5 | "absent",2,5,1
6 | "absent",1,4,15
7 | "absent",1,2,16
8 | "absent",61,2,17
9 | "absent",37,3,16
10 | "absent",113,2,16
11 | "present",59,6,12
12 | "present",82,5,14
13 | "absent",148,3,16
14 | "absent",18,5,2
15 | "absent",1,4,12
16 | "absent",168,3,18
17 | "absent",1,3,16
18 | "absent",78,6,15
19 | "absent",175,5,13
20 | "absent",80,5,16
21 | "absent",27,4,9
22 | "absent",22,2,16
23 | "present",105,6,5
24 | "present",96,3,12
25 | "absent",131,2,3
26 | "present",15,7,2
27 | "absent",9,5,13
28 | "absent",8,3,6
29 | "absent",100,3,14
30 | "absent",4,3,16
31 | "absent",151,2,16
32 | "absent",31,3,16
33 | "absent",125,2,11
34 | "absent",130,5,13
35 | "absent",112,3,16
36 | "absent",140,5,11
37 | "absent",93,3,16
38 | "absent",1,3,9
39 | "present",52,5,6
40 | "absent",20,6,9
41 | "present",91,5,12
42 | "present",73,5,1
43 | "absent",35,3,13
44 | "absent",143,9,3
45 | "absent",61,4,1
46 | "absent",97,3,16
47 | "present",139,3,10
48 | "absent",136,4,15
49 | "absent",131,5,13
50 | "present",121,3,3
51 | "absent",177,2,14
52 | "absent",68,5,10
53 | "absent",9,2,17
54 | "present",139,10,6
55 | "absent",2,2,17
56 | "absent",140,4,15
57 | "absent",72,5,15
58 | "absent",2,3,13
59 | "present",120,5,8
60 | "absent",51,7,9
61 | "absent",102,3,13
62 | "present",130,4,1
63 | "present",114,7,8
64 | "absent",81,4,1
65 | "absent",118,3,16
66 | "absent",118,4,16
67 | "absent",17,4,10
68 | "absent",195,2,17
69 | "absent",159,4,13
70 | "absent",18,4,11
71 | "absent",15,5,16
72 | "absent",158,5,14
73 | "absent",127,4,12
74 | "absent",87,4,16
75 | "absent",206,4,10
76 | "absent",11,3,15
77 | "absent",178,4,15
78 | "present",157,3,13
79 | "absent",26,7,13
80 | "absent",120,2,13
81 | "present",42,7,6
82 | "absent",36,4,13
83 |
--------------------------------------------------------------------------------
/ML algorithm/5-SVM/.ipynb_checkpoints/SVM-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "1f60e40b",
6 | "metadata": {},
7 | "source": [
8 | "# SVM"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 1,
14 | "id": "8a0e0607",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import pandas as pd\n",
19 | "import numpy as np\n",
20 | "import matplotlib.pyplot as plt\n",
21 | "import seaborn as sns\n",
22 | "%matplotlib inline"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 2,
28 | "id": "e74c73e1",
29 | "metadata": {},
30 | "outputs": [],
31 | "source": [
32 | "from sklearn.datasets import load_breast_cancer"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 3,
38 | "id": "555f2622",
39 | "metadata": {},
40 | "outputs": [],
41 | "source": [
42 | "cancer = load_breast_cancer()"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": 4,
48 | "id": "83bac0dc",
49 | "metadata": {},
50 | "outputs": [
51 | {
52 | "data": {
53 | "text/plain": [
54 | "dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])"
55 | ]
56 | },
57 | "execution_count": 4,
58 | "metadata": {},
59 | "output_type": "execute_result"
60 | }
61 | ],
62 | "source": [
63 | "cancer.keys()"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": 7,
69 | "id": "6e407f3e",
70 | "metadata": {},
71 | "outputs": [
72 | {
73 | "name": "stdout",
74 | "output_type": "stream",
75 | "text": [
76 | ".. _breast_cancer_dataset:\n",
77 | "\n",
78 | "Breast cancer wisconsin (diagnostic) dataset\n",
79 | "--------------------------------------------\n",
80 | "\n",
81 | "**Data Set Characteristics:**\n",
82 | "\n",
83 | " :Number of Instances: 569\n",
84 | "\n",
85 | " :Number of Attributes: 30 numeric, predictive attributes and the class\n",
86 | "\n",
87 | " :Attribute Information:\n",
88 | " - radius (mean of distances from center to points on the perimeter)\n",
89 | " - texture (standard deviation of gray-scale values)\n",
90 | " - perimeter\n",
91 | " - area\n",
92 | " - smoothness (local variation in radius lengths)\n",
93 | " - compactness (perimeter^2 / area - 1.0)\n",
94 | " - concavity (severity of concave portions of the contour)\n",
95 | " - concave points (number of concave portions of the contour)\n",
96 | " - symmetry\n",
97 | " - fractal dimension (\"coastline approximation\" - 1)\n",
98 | "\n",
99 | " The mean, standard error, and \"worst\" or largest (mean of the three\n",
100 | " worst/largest values) of these features were computed for each image,\n",
101 | " resulting in 30 features. For instance, field 0 is Mean Radius, field\n",
102 | " 10 is Radius SE, field 20 is Worst Radius.\n",
103 | "\n",
104 | " - class:\n",
105 | " - WDBC-Malignant\n",
106 | " - WDBC-Benign\n",
107 | "\n",
108 | " :Summary Statistics:\n",
109 | "\n",
110 | " ===================================== ====== ======\n",
111 | " Min Max\n",
112 | " ===================================== ====== ======\n",
113 | " radius (mean): 6.981 28.11\n",
114 | " texture (mean): 9.71 39.28\n",
115 | " perimeter (mean): 43.79 188.5\n",
116 | " area (mean): 143.5 2501.0\n",
117 | " smoothness (mean): 0.053 0.163\n",
118 | " compactness (mean): 0.019 0.345\n",
119 | " concavity (mean): 0.0 0.427\n",
120 | " concave points (mean): 0.0 0.201\n",
121 | " symmetry (mean): 0.106 0.304\n",
122 | " fractal dimension (mean): 0.05 0.097\n",
123 | " radius (standard error): 0.112 2.873\n",
124 | " texture (standard error): 0.36 4.885\n",
125 | " perimeter (standard error): 0.757 21.98\n",
126 | " area (standard error): 6.802 542.2\n",
127 | " smoothness (standard error): 0.002 0.031\n",
128 | " compactness (standard error): 0.002 0.135\n",
129 | " concavity (standard error): 0.0 0.396\n",
130 | " concave points (standard error): 0.0 0.053\n",
131 | " symmetry (standard error): 0.008 0.079\n",
132 | " fractal dimension (standard error): 0.001 0.03\n",
133 | " radius (worst): 7.93 36.04\n",
134 | " texture (worst): 12.02 49.54\n",
135 | " perimeter (worst): 50.41 251.2\n",
136 | " area (worst): 185.2 4254.0\n",
137 | " smoothness (worst): 0.071 0.223\n",
138 | " compactness (worst): 0.027 1.058\n",
139 | " concavity (worst): 0.0 1.252\n",
140 | " concave points (worst): 0.0 0.291\n",
141 | " symmetry (worst): 0.156 0.664\n",
142 | " fractal dimension (worst): 0.055 0.208\n",
143 | " ===================================== ====== ======\n",
144 | "\n",
145 | " :Missing Attribute Values: None\n",
146 | "\n",
147 | " :Class Distribution: 212 - Malignant, 357 - Benign\n",
148 | "\n",
149 | " :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n",
150 | "\n",
151 | " :Donor: Nick Street\n",
152 | "\n",
153 | " :Date: November, 1995\n",
154 | "\n",
155 | "This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\n",
156 | "https://goo.gl/U2Uwz2\n",
157 | "\n",
158 | "Features are computed from a digitized image of a fine needle\n",
159 | "aspirate (FNA) of a breast mass. They describe\n",
160 | "characteristics of the cell nuclei present in the image.\n",
161 | "\n",
162 | "Separating plane described above was obtained using\n",
163 | "Multisurface Method-Tree (MSM-T) [K. P. Bennett, \"Decision Tree\n",
164 | "Construction Via Linear Programming.\" Proceedings of the 4th\n",
165 | "Midwest Artificial Intelligence and Cognitive Science Society,\n",
166 | "pp. 97-101, 1992], a classification method which uses linear\n",
167 | "programming to construct a decision tree. Relevant features\n",
168 | "were selected using an exhaustive search in the space of 1-4\n",
169 | "features and 1-3 separating planes.\n",
170 | "\n",
171 | "The actual linear program used to obtain the separating plane\n",
172 | "in the 3-dimensional space is that described in:\n",
173 | "[K. P. Bennett and O. L. Mangasarian: \"Robust Linear\n",
174 | "Programming Discrimination of Two Linearly Inseparable Sets\",\n",
175 | "Optimization Methods and Software 1, 1992, 23-34].\n",
176 | "\n",
177 | "This database is also available through the UW CS ftp server:\n",
178 | "\n",
179 | "ftp ftp.cs.wisc.edu\n",
180 | "cd math-prog/cpo-dataset/machine-learn/WDBC/\n",
181 | "\n",
182 | ".. topic:: References\n",
183 | "\n",
184 | " - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \n",
185 | " for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on \n",
186 | " Electronic Imaging: Science and Technology, volume 1905, pages 861-870,\n",
187 | " San Jose, CA, 1993.\n",
188 | " - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n",
189 | " prognosis via linear programming. Operations Research, 43(4), pages 570-577, \n",
190 | " July-August 1995.\n",
191 | " - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n",
192 | " to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \n",
193 | " 163-171.\n"
194 | ]
195 | }
196 | ],
197 | "source": [
198 | "print(cancer['DESCR'])"
199 | ]
200 | },
201 | {
202 | "cell_type": "code",
203 | "execution_count": 11,
204 | "id": "029871e7",
205 | "metadata": {},
206 | "outputs": [
207 | {
208 | "data": {
209 | "text/html": [
210 | "
\n",
211 | "\n",
224 | "
\n",
225 | " \n",
226 | " \n",
227 | " | \n",
228 | " mean radius | \n",
229 | " mean texture | \n",
230 | " mean perimeter | \n",
231 | " mean area | \n",
232 | " mean smoothness | \n",
233 | " mean compactness | \n",
234 | " mean concavity | \n",
235 | " mean concave points | \n",
236 | " mean symmetry | \n",
237 | " mean fractal dimension | \n",
238 | " ... | \n",
239 | " worst radius | \n",
240 | " worst texture | \n",
241 | " worst perimeter | \n",
242 | " worst area | \n",
243 | " worst smoothness | \n",
244 | " worst compactness | \n",
245 | " worst concavity | \n",
246 | " worst concave points | \n",
247 | " worst symmetry | \n",
248 | " worst fractal dimension | \n",
249 | "
\n",
250 | " \n",
251 | " \n",
252 | " \n",
253 | " 0 | \n",
254 | " 17.99 | \n",
255 | " 10.38 | \n",
256 | " 122.80 | \n",
257 | " 1001.0 | \n",
258 | " 0.11840 | \n",
259 | " 0.27760 | \n",
260 | " 0.3001 | \n",
261 | " 0.14710 | \n",
262 | " 0.2419 | \n",
263 | " 0.07871 | \n",
264 | " ... | \n",
265 | " 25.38 | \n",
266 | " 17.33 | \n",
267 | " 184.60 | \n",
268 | " 2019.0 | \n",
269 | " 0.1622 | \n",
270 | " 0.6656 | \n",
271 | " 0.7119 | \n",
272 | " 0.2654 | \n",
273 | " 0.4601 | \n",
274 | " 0.11890 | \n",
275 | "
\n",
276 | " \n",
277 | " 1 | \n",
278 | " 20.57 | \n",
279 | " 17.77 | \n",
280 | " 132.90 | \n",
281 | " 1326.0 | \n",
282 | " 0.08474 | \n",
283 | " 0.07864 | \n",
284 | " 0.0869 | \n",
285 | " 0.07017 | \n",
286 | " 0.1812 | \n",
287 | " 0.05667 | \n",
288 | " ... | \n",
289 | " 24.99 | \n",
290 | " 23.41 | \n",
291 | " 158.80 | \n",
292 | " 1956.0 | \n",
293 | " 0.1238 | \n",
294 | " 0.1866 | \n",
295 | " 0.2416 | \n",
296 | " 0.1860 | \n",
297 | " 0.2750 | \n",
298 | " 0.08902 | \n",
299 | "
\n",
300 | " \n",
301 | " 2 | \n",
302 | " 19.69 | \n",
303 | " 21.25 | \n",
304 | " 130.00 | \n",
305 | " 1203.0 | \n",
306 | " 0.10960 | \n",
307 | " 0.15990 | \n",
308 | " 0.1974 | \n",
309 | " 0.12790 | \n",
310 | " 0.2069 | \n",
311 | " 0.05999 | \n",
312 | " ... | \n",
313 | " 23.57 | \n",
314 | " 25.53 | \n",
315 | " 152.50 | \n",
316 | " 1709.0 | \n",
317 | " 0.1444 | \n",
318 | " 0.4245 | \n",
319 | " 0.4504 | \n",
320 | " 0.2430 | \n",
321 | " 0.3613 | \n",
322 | " 0.08758 | \n",
323 | "
\n",
324 | " \n",
325 | " 3 | \n",
326 | " 11.42 | \n",
327 | " 20.38 | \n",
328 | " 77.58 | \n",
329 | " 386.1 | \n",
330 | " 0.14250 | \n",
331 | " 0.28390 | \n",
332 | " 0.2414 | \n",
333 | " 0.10520 | \n",
334 | " 0.2597 | \n",
335 | " 0.09744 | \n",
336 | " ... | \n",
337 | " 14.91 | \n",
338 | " 26.50 | \n",
339 | " 98.87 | \n",
340 | " 567.7 | \n",
341 | " 0.2098 | \n",
342 | " 0.8663 | \n",
343 | " 0.6869 | \n",
344 | " 0.2575 | \n",
345 | " 0.6638 | \n",
346 | " 0.17300 | \n",
347 | "
\n",
348 | " \n",
349 | " 4 | \n",
350 | " 20.29 | \n",
351 | " 14.34 | \n",
352 | " 135.10 | \n",
353 | " 1297.0 | \n",
354 | " 0.10030 | \n",
355 | " 0.13280 | \n",
356 | " 0.1980 | \n",
357 | " 0.10430 | \n",
358 | " 0.1809 | \n",
359 | " 0.05883 | \n",
360 | " ... | \n",
361 | " 22.54 | \n",
362 | " 16.67 | \n",
363 | " 152.20 | \n",
364 | " 1575.0 | \n",
365 | " 0.1374 | \n",
366 | " 0.2050 | \n",
367 | " 0.4000 | \n",
368 | " 0.1625 | \n",
369 | " 0.2364 | \n",
370 | " 0.07678 | \n",
371 | "
\n",
372 | " \n",
373 | "
\n",
374 | "
5 rows × 30 columns
\n",
375 | "
"
376 | ],
377 | "text/plain": [
378 | " mean radius mean texture mean perimeter mean area mean smoothness \\\n",
379 | "0 17.99 10.38 122.80 1001.0 0.11840 \n",
380 | "1 20.57 17.77 132.90 1326.0 0.08474 \n",
381 | "2 19.69 21.25 130.00 1203.0 0.10960 \n",
382 | "3 11.42 20.38 77.58 386.1 0.14250 \n",
383 | "4 20.29 14.34 135.10 1297.0 0.10030 \n",
384 | "\n",
385 | " mean compactness mean concavity mean concave points mean symmetry \\\n",
386 | "0 0.27760 0.3001 0.14710 0.2419 \n",
387 | "1 0.07864 0.0869 0.07017 0.1812 \n",
388 | "2 0.15990 0.1974 0.12790 0.2069 \n",
389 | "3 0.28390 0.2414 0.10520 0.2597 \n",
390 | "4 0.13280 0.1980 0.10430 0.1809 \n",
391 | "\n",
392 | " mean fractal dimension ... worst radius worst texture worst perimeter \\\n",
393 | "0 0.07871 ... 25.38 17.33 184.60 \n",
394 | "1 0.05667 ... 24.99 23.41 158.80 \n",
395 | "2 0.05999 ... 23.57 25.53 152.50 \n",
396 | "3 0.09744 ... 14.91 26.50 98.87 \n",
397 | "4 0.05883 ... 22.54 16.67 152.20 \n",
398 | "\n",
399 | " worst area worst smoothness worst compactness worst concavity \\\n",
400 | "0 2019.0 0.1622 0.6656 0.7119 \n",
401 | "1 1956.0 0.1238 0.1866 0.2416 \n",
402 | "2 1709.0 0.1444 0.4245 0.4504 \n",
403 | "3 567.7 0.2098 0.8663 0.6869 \n",
404 | "4 1575.0 0.1374 0.2050 0.4000 \n",
405 | "\n",
406 | " worst concave points worst symmetry worst fractal dimension \n",
407 | "0 0.2654 0.4601 0.11890 \n",
408 | "1 0.1860 0.2750 0.08902 \n",
409 | "2 0.2430 0.3613 0.08758 \n",
410 | "3 0.2575 0.6638 0.17300 \n",
411 | "4 0.1625 0.2364 0.07678 \n",
412 | "\n",
413 | "[5 rows x 30 columns]"
414 | ]
415 | },
416 | "execution_count": 11,
417 | "metadata": {},
418 | "output_type": "execute_result"
419 | }
420 | ],
421 | "source": [
422 | "df_feat=pd.DataFrame(cancer['data'],columns=cancer['feature_names'])\n",
423 | "df_feat.head()"
424 | ]
425 | },
426 | {
427 | "cell_type": "code",
428 | "execution_count": 12,
429 | "id": "498e3a05",
430 | "metadata": {},
431 | "outputs": [
432 | {
433 | "name": "stdout",
434 | "output_type": "stream",
435 | "text": [
436 | "\n",
437 | "RangeIndex: 569 entries, 0 to 568\n",
438 | "Data columns (total 30 columns):\n",
439 | " # Column Non-Null Count Dtype \n",
440 | "--- ------ -------------- ----- \n",
441 | " 0 mean radius 569 non-null float64\n",
442 | " 1 mean texture 569 non-null float64\n",
443 | " 2 mean perimeter 569 non-null float64\n",
444 | " 3 mean area 569 non-null float64\n",
445 | " 4 mean smoothness 569 non-null float64\n",
446 | " 5 mean compactness 569 non-null float64\n",
447 | " 6 mean concavity 569 non-null float64\n",
448 | " 7 mean concave points 569 non-null float64\n",
449 | " 8 mean symmetry 569 non-null float64\n",
450 | " 9 mean fractal dimension 569 non-null float64\n",
451 | " 10 radius error 569 non-null float64\n",
452 | " 11 texture error 569 non-null float64\n",
453 | " 12 perimeter error 569 non-null float64\n",
454 | " 13 area error 569 non-null float64\n",
455 | " 14 smoothness error 569 non-null float64\n",
456 | " 15 compactness error 569 non-null float64\n",
457 | " 16 concavity error 569 non-null float64\n",
458 | " 17 concave points error 569 non-null float64\n",
459 | " 18 symmetry error 569 non-null float64\n",
460 | " 19 fractal dimension error 569 non-null float64\n",
461 | " 20 worst radius 569 non-null float64\n",
462 | " 21 worst texture 569 non-null float64\n",
463 | " 22 worst perimeter 569 non-null float64\n",
464 | " 23 worst area 569 non-null float64\n",
465 | " 24 worst smoothness 569 non-null float64\n",
466 | " 25 worst compactness 569 non-null float64\n",
467 | " 26 worst concavity 569 non-null float64\n",
468 | " 27 worst concave points 569 non-null float64\n",
469 | " 28 worst symmetry 569 non-null float64\n",
470 | " 29 worst fractal dimension 569 non-null float64\n",
471 | "dtypes: float64(30)\n",
472 | "memory usage: 133.5 KB\n"
473 | ]
474 | }
475 | ],
476 | "source": [
477 | "df_feat.info()"
478 | ]
479 | },
480 | {
481 | "cell_type": "code",
482 | "execution_count": 14,
483 | "id": "a6bf042a",
484 | "metadata": {},
485 | "outputs": [],
486 | "source": [
487 | "from sklearn.model_selection import train_test_split"
488 | ]
489 | },
490 | {
491 | "cell_type": "code",
492 | "execution_count": 16,
493 | "id": "c72ed091",
494 | "metadata": {},
495 | "outputs": [],
496 | "source": [
497 | "X=df_feat\n",
498 | "y=cancer['target']\n",
499 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)"
500 | ]
501 | },
502 | {
503 | "cell_type": "code",
504 | "execution_count": 17,
505 | "id": "12b80c92",
506 | "metadata": {},
507 | "outputs": [
508 | {
509 | "data": {
510 | "text/plain": [
511 | "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,\n",
512 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n",
513 | " 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,\n",
514 | " 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,\n",
515 | " 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n",
516 | " 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,\n",
517 | " 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,\n",
518 | " 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,\n",
519 | " 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n",
520 | " 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,\n",
521 | " 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n",
522 | " 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
523 | " 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n",
524 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n",
525 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n",
526 | " 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,\n",
527 | " 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n",
528 | " 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,\n",
529 | " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n",
530 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n",
531 | " 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,\n",
532 | " 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
533 | " 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n",
534 | " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
535 | " 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
536 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])"
537 | ]
538 | },
539 | "execution_count": 17,
540 | "metadata": {},
541 | "output_type": "execute_result"
542 | }
543 | ],
544 | "source": [
545 | "cancer['target']"
546 | ]
547 | },
548 | {
549 | "cell_type": "code",
550 | "execution_count": 21,
551 | "id": "ea46ff2a",
552 | "metadata": {},
553 | "outputs": [],
554 | "source": [
555 | "from sklearn.svm import SVC"
556 | ]
557 | },
558 | {
559 | "cell_type": "code",
560 | "execution_count": 25,
561 | "id": "8fe55202",
562 | "metadata": {},
563 | "outputs": [],
564 | "source": [
565 | "model = SVC()"
566 | ]
567 | },
568 | {
569 | "cell_type": "code",
570 | "execution_count": 26,
571 | "id": "8dd2a400",
572 | "metadata": {},
573 | "outputs": [
574 | {
575 | "data": {
576 | "text/plain": [
577 | "SVC()"
578 | ]
579 | },
580 | "execution_count": 26,
581 | "metadata": {},
582 | "output_type": "execute_result"
583 | }
584 | ],
585 | "source": [
586 | "model.fit(X_train,y_train)"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": 27,
592 | "id": "fab8056d",
593 | "metadata": {},
594 | "outputs": [],
595 | "source": [
596 | "pred=model.predict(X_test)"
597 | ]
598 | },
599 | {
600 | "cell_type": "code",
601 | "execution_count": 29,
602 | "id": "2690bbf2",
603 | "metadata": {},
604 | "outputs": [],
605 | "source": [
606 | "from sklearn.metrics import confusion_matrix"
607 | ]
608 | },
609 | {
610 | "cell_type": "code",
611 | "execution_count": 30,
612 | "id": "7c7c1d44",
613 | "metadata": {},
614 | "outputs": [],
615 | "source": [
616 | "from sklearn.metrics import classification_report"
617 | ]
618 | },
619 | {
620 | "cell_type": "code",
621 | "execution_count": 31,
622 | "id": "0414cbc7",
623 | "metadata": {},
624 | "outputs": [
625 | {
626 | "name": "stdout",
627 | "output_type": "stream",
628 | "text": [
629 | "[[ 56 10]\n",
630 | " [ 3 102]]\n",
631 | "\n",
632 | "\n",
633 | " precision recall f1-score support\n",
634 | "\n",
635 | " 0 0.95 0.85 0.90 66\n",
636 | " 1 0.91 0.97 0.94 105\n",
637 | "\n",
638 | " accuracy 0.92 171\n",
639 | " macro avg 0.93 0.91 0.92 171\n",
640 | "weighted avg 0.93 0.92 0.92 171\n",
641 | "\n"
642 | ]
643 | }
644 | ],
645 | "source": [
646 | "print(confusion_matrix(y_test,pred))\n",
647 | "print('\\n')\n",
648 | "print(classification_report(y_test,pred))"
649 | ]
650 | },
651 | {
652 | "cell_type": "code",
653 | "execution_count": 33,
654 | "id": "95d1c4f0",
655 | "metadata": {},
656 | "outputs": [],
657 | "source": [
658 | "from sklearn.model_selection import GridSearchCV"
659 | ]
660 | },
661 | {
662 | "cell_type": "code",
663 | "execution_count": null,
664 | "id": "73b79c38",
665 | "metadata": {},
666 | "outputs": [],
667 | "source": []
668 | }
669 | ],
670 | "metadata": {
671 | "kernelspec": {
672 | "display_name": "Python 3",
673 | "language": "python",
674 | "name": "python3"
675 | },
676 | "language_info": {
677 | "codemirror_mode": {
678 | "name": "ipython",
679 | "version": 3
680 | },
681 | "file_extension": ".py",
682 | "mimetype": "text/x-python",
683 | "name": "python",
684 | "nbconvert_exporter": "python",
685 | "pygments_lexer": "ipython3",
686 | "version": "3.8.10"
687 | }
688 | },
689 | "nbformat": 4,
690 | "nbformat_minor": 5
691 | }
692 |
--------------------------------------------------------------------------------
/ML algorithm/5-SVM/SVM.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "id": "1f60e40b",
6 | "metadata": {},
7 | "source": [
8 | "# SVM"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 1,
14 | "id": "8a0e0607",
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import pandas as pd\n",
19 | "import numpy as np\n",
20 | "import matplotlib.pyplot as plt\n",
21 | "import seaborn as sns\n",
22 | "%matplotlib inline"
23 | ]
24 | },
25 | {
26 | "cell_type": "code",
27 | "execution_count": 2,
28 | "id": "e74c73e1",
29 | "metadata": {},
30 | "outputs": [],
31 | "source": [
32 | "from sklearn.datasets import load_breast_cancer"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 3,
38 | "id": "555f2622",
39 | "metadata": {},
40 | "outputs": [],
41 | "source": [
42 | "cancer = load_breast_cancer()"
43 | ]
44 | },
45 | {
46 | "cell_type": "code",
47 | "execution_count": 4,
48 | "id": "83bac0dc",
49 | "metadata": {},
50 | "outputs": [
51 | {
52 | "data": {
53 | "text/plain": [
54 | "dict_keys(['data', 'target', 'frame', 'target_names', 'DESCR', 'feature_names', 'filename'])"
55 | ]
56 | },
57 | "execution_count": 4,
58 | "metadata": {},
59 | "output_type": "execute_result"
60 | }
61 | ],
62 | "source": [
63 | "cancer.keys()"
64 | ]
65 | },
66 | {
67 | "cell_type": "code",
68 | "execution_count": 7,
69 | "id": "6e407f3e",
70 | "metadata": {},
71 | "outputs": [
72 | {
73 | "name": "stdout",
74 | "output_type": "stream",
75 | "text": [
76 | ".. _breast_cancer_dataset:\n",
77 | "\n",
78 | "Breast cancer wisconsin (diagnostic) dataset\n",
79 | "--------------------------------------------\n",
80 | "\n",
81 | "**Data Set Characteristics:**\n",
82 | "\n",
83 | " :Number of Instances: 569\n",
84 | "\n",
85 | " :Number of Attributes: 30 numeric, predictive attributes and the class\n",
86 | "\n",
87 | " :Attribute Information:\n",
88 | " - radius (mean of distances from center to points on the perimeter)\n",
89 | " - texture (standard deviation of gray-scale values)\n",
90 | " - perimeter\n",
91 | " - area\n",
92 | " - smoothness (local variation in radius lengths)\n",
93 | " - compactness (perimeter^2 / area - 1.0)\n",
94 | " - concavity (severity of concave portions of the contour)\n",
95 | " - concave points (number of concave portions of the contour)\n",
96 | " - symmetry\n",
97 | " - fractal dimension (\"coastline approximation\" - 1)\n",
98 | "\n",
99 | " The mean, standard error, and \"worst\" or largest (mean of the three\n",
100 | " worst/largest values) of these features were computed for each image,\n",
101 | " resulting in 30 features. For instance, field 0 is Mean Radius, field\n",
102 | " 10 is Radius SE, field 20 is Worst Radius.\n",
103 | "\n",
104 | " - class:\n",
105 | " - WDBC-Malignant\n",
106 | " - WDBC-Benign\n",
107 | "\n",
108 | " :Summary Statistics:\n",
109 | "\n",
110 | " ===================================== ====== ======\n",
111 | " Min Max\n",
112 | " ===================================== ====== ======\n",
113 | " radius (mean): 6.981 28.11\n",
114 | " texture (mean): 9.71 39.28\n",
115 | " perimeter (mean): 43.79 188.5\n",
116 | " area (mean): 143.5 2501.0\n",
117 | " smoothness (mean): 0.053 0.163\n",
118 | " compactness (mean): 0.019 0.345\n",
119 | " concavity (mean): 0.0 0.427\n",
120 | " concave points (mean): 0.0 0.201\n",
121 | " symmetry (mean): 0.106 0.304\n",
122 | " fractal dimension (mean): 0.05 0.097\n",
123 | " radius (standard error): 0.112 2.873\n",
124 | " texture (standard error): 0.36 4.885\n",
125 | " perimeter (standard error): 0.757 21.98\n",
126 | " area (standard error): 6.802 542.2\n",
127 | " smoothness (standard error): 0.002 0.031\n",
128 | " compactness (standard error): 0.002 0.135\n",
129 | " concavity (standard error): 0.0 0.396\n",
130 | " concave points (standard error): 0.0 0.053\n",
131 | " symmetry (standard error): 0.008 0.079\n",
132 | " fractal dimension (standard error): 0.001 0.03\n",
133 | " radius (worst): 7.93 36.04\n",
134 | " texture (worst): 12.02 49.54\n",
135 | " perimeter (worst): 50.41 251.2\n",
136 | " area (worst): 185.2 4254.0\n",
137 | " smoothness (worst): 0.071 0.223\n",
138 | " compactness (worst): 0.027 1.058\n",
139 | " concavity (worst): 0.0 1.252\n",
140 | " concave points (worst): 0.0 0.291\n",
141 | " symmetry (worst): 0.156 0.664\n",
142 | " fractal dimension (worst): 0.055 0.208\n",
143 | " ===================================== ====== ======\n",
144 | "\n",
145 | " :Missing Attribute Values: None\n",
146 | "\n",
147 | " :Class Distribution: 212 - Malignant, 357 - Benign\n",
148 | "\n",
149 | " :Creator: Dr. William H. Wolberg, W. Nick Street, Olvi L. Mangasarian\n",
150 | "\n",
151 | " :Donor: Nick Street\n",
152 | "\n",
153 | " :Date: November, 1995\n",
154 | "\n",
155 | "This is a copy of UCI ML Breast Cancer Wisconsin (Diagnostic) datasets.\n",
156 | "https://goo.gl/U2Uwz2\n",
157 | "\n",
158 | "Features are computed from a digitized image of a fine needle\n",
159 | "aspirate (FNA) of a breast mass. They describe\n",
160 | "characteristics of the cell nuclei present in the image.\n",
161 | "\n",
162 | "Separating plane described above was obtained using\n",
163 | "Multisurface Method-Tree (MSM-T) [K. P. Bennett, \"Decision Tree\n",
164 | "Construction Via Linear Programming.\" Proceedings of the 4th\n",
165 | "Midwest Artificial Intelligence and Cognitive Science Society,\n",
166 | "pp. 97-101, 1992], a classification method which uses linear\n",
167 | "programming to construct a decision tree. Relevant features\n",
168 | "were selected using an exhaustive search in the space of 1-4\n",
169 | "features and 1-3 separating planes.\n",
170 | "\n",
171 | "The actual linear program used to obtain the separating plane\n",
172 | "in the 3-dimensional space is that described in:\n",
173 | "[K. P. Bennett and O. L. Mangasarian: \"Robust Linear\n",
174 | "Programming Discrimination of Two Linearly Inseparable Sets\",\n",
175 | "Optimization Methods and Software 1, 1992, 23-34].\n",
176 | "\n",
177 | "This database is also available through the UW CS ftp server:\n",
178 | "\n",
179 | "ftp ftp.cs.wisc.edu\n",
180 | "cd math-prog/cpo-dataset/machine-learn/WDBC/\n",
181 | "\n",
182 | ".. topic:: References\n",
183 | "\n",
184 | " - W.N. Street, W.H. Wolberg and O.L. Mangasarian. Nuclear feature extraction \n",
185 | " for breast tumor diagnosis. IS&T/SPIE 1993 International Symposium on \n",
186 | " Electronic Imaging: Science and Technology, volume 1905, pages 861-870,\n",
187 | " San Jose, CA, 1993.\n",
188 | " - O.L. Mangasarian, W.N. Street and W.H. Wolberg. Breast cancer diagnosis and \n",
189 | " prognosis via linear programming. Operations Research, 43(4), pages 570-577, \n",
190 | " July-August 1995.\n",
191 | " - W.H. Wolberg, W.N. Street, and O.L. Mangasarian. Machine learning techniques\n",
192 | " to diagnose breast cancer from fine-needle aspirates. Cancer Letters 77 (1994) \n",
193 | " 163-171.\n"
194 | ]
195 | }
196 | ],
197 | "source": [
198 | "print(cancer['DESCR'])"
199 | ]
200 | },
201 | {
202 | "cell_type": "code",
203 | "execution_count": 11,
204 | "id": "029871e7",
205 | "metadata": {},
206 | "outputs": [
207 | {
208 | "data": {
209 | "text/html": [
210 | "\n",
211 | "\n",
224 | "
\n",
225 | " \n",
226 | " \n",
227 | " | \n",
228 | " mean radius | \n",
229 | " mean texture | \n",
230 | " mean perimeter | \n",
231 | " mean area | \n",
232 | " mean smoothness | \n",
233 | " mean compactness | \n",
234 | " mean concavity | \n",
235 | " mean concave points | \n",
236 | " mean symmetry | \n",
237 | " mean fractal dimension | \n",
238 | " ... | \n",
239 | " worst radius | \n",
240 | " worst texture | \n",
241 | " worst perimeter | \n",
242 | " worst area | \n",
243 | " worst smoothness | \n",
244 | " worst compactness | \n",
245 | " worst concavity | \n",
246 | " worst concave points | \n",
247 | " worst symmetry | \n",
248 | " worst fractal dimension | \n",
249 | "
\n",
250 | " \n",
251 | " \n",
252 | " \n",
253 | " 0 | \n",
254 | " 17.99 | \n",
255 | " 10.38 | \n",
256 | " 122.80 | \n",
257 | " 1001.0 | \n",
258 | " 0.11840 | \n",
259 | " 0.27760 | \n",
260 | " 0.3001 | \n",
261 | " 0.14710 | \n",
262 | " 0.2419 | \n",
263 | " 0.07871 | \n",
264 | " ... | \n",
265 | " 25.38 | \n",
266 | " 17.33 | \n",
267 | " 184.60 | \n",
268 | " 2019.0 | \n",
269 | " 0.1622 | \n",
270 | " 0.6656 | \n",
271 | " 0.7119 | \n",
272 | " 0.2654 | \n",
273 | " 0.4601 | \n",
274 | " 0.11890 | \n",
275 | "
\n",
276 | " \n",
277 | " 1 | \n",
278 | " 20.57 | \n",
279 | " 17.77 | \n",
280 | " 132.90 | \n",
281 | " 1326.0 | \n",
282 | " 0.08474 | \n",
283 | " 0.07864 | \n",
284 | " 0.0869 | \n",
285 | " 0.07017 | \n",
286 | " 0.1812 | \n",
287 | " 0.05667 | \n",
288 | " ... | \n",
289 | " 24.99 | \n",
290 | " 23.41 | \n",
291 | " 158.80 | \n",
292 | " 1956.0 | \n",
293 | " 0.1238 | \n",
294 | " 0.1866 | \n",
295 | " 0.2416 | \n",
296 | " 0.1860 | \n",
297 | " 0.2750 | \n",
298 | " 0.08902 | \n",
299 | "
\n",
300 | " \n",
301 | " 2 | \n",
302 | " 19.69 | \n",
303 | " 21.25 | \n",
304 | " 130.00 | \n",
305 | " 1203.0 | \n",
306 | " 0.10960 | \n",
307 | " 0.15990 | \n",
308 | " 0.1974 | \n",
309 | " 0.12790 | \n",
310 | " 0.2069 | \n",
311 | " 0.05999 | \n",
312 | " ... | \n",
313 | " 23.57 | \n",
314 | " 25.53 | \n",
315 | " 152.50 | \n",
316 | " 1709.0 | \n",
317 | " 0.1444 | \n",
318 | " 0.4245 | \n",
319 | " 0.4504 | \n",
320 | " 0.2430 | \n",
321 | " 0.3613 | \n",
322 | " 0.08758 | \n",
323 | "
\n",
324 | " \n",
325 | " 3 | \n",
326 | " 11.42 | \n",
327 | " 20.38 | \n",
328 | " 77.58 | \n",
329 | " 386.1 | \n",
330 | " 0.14250 | \n",
331 | " 0.28390 | \n",
332 | " 0.2414 | \n",
333 | " 0.10520 | \n",
334 | " 0.2597 | \n",
335 | " 0.09744 | \n",
336 | " ... | \n",
337 | " 14.91 | \n",
338 | " 26.50 | \n",
339 | " 98.87 | \n",
340 | " 567.7 | \n",
341 | " 0.2098 | \n",
342 | " 0.8663 | \n",
343 | " 0.6869 | \n",
344 | " 0.2575 | \n",
345 | " 0.6638 | \n",
346 | " 0.17300 | \n",
347 | "
\n",
348 | " \n",
349 | " 4 | \n",
350 | " 20.29 | \n",
351 | " 14.34 | \n",
352 | " 135.10 | \n",
353 | " 1297.0 | \n",
354 | " 0.10030 | \n",
355 | " 0.13280 | \n",
356 | " 0.1980 | \n",
357 | " 0.10430 | \n",
358 | " 0.1809 | \n",
359 | " 0.05883 | \n",
360 | " ... | \n",
361 | " 22.54 | \n",
362 | " 16.67 | \n",
363 | " 152.20 | \n",
364 | " 1575.0 | \n",
365 | " 0.1374 | \n",
366 | " 0.2050 | \n",
367 | " 0.4000 | \n",
368 | " 0.1625 | \n",
369 | " 0.2364 | \n",
370 | " 0.07678 | \n",
371 | "
\n",
372 | " \n",
373 | "
\n",
374 | "
5 rows × 30 columns
\n",
375 | "
"
376 | ],
377 | "text/plain": [
378 | " mean radius mean texture mean perimeter mean area mean smoothness \\\n",
379 | "0 17.99 10.38 122.80 1001.0 0.11840 \n",
380 | "1 20.57 17.77 132.90 1326.0 0.08474 \n",
381 | "2 19.69 21.25 130.00 1203.0 0.10960 \n",
382 | "3 11.42 20.38 77.58 386.1 0.14250 \n",
383 | "4 20.29 14.34 135.10 1297.0 0.10030 \n",
384 | "\n",
385 | " mean compactness mean concavity mean concave points mean symmetry \\\n",
386 | "0 0.27760 0.3001 0.14710 0.2419 \n",
387 | "1 0.07864 0.0869 0.07017 0.1812 \n",
388 | "2 0.15990 0.1974 0.12790 0.2069 \n",
389 | "3 0.28390 0.2414 0.10520 0.2597 \n",
390 | "4 0.13280 0.1980 0.10430 0.1809 \n",
391 | "\n",
392 | " mean fractal dimension ... worst radius worst texture worst perimeter \\\n",
393 | "0 0.07871 ... 25.38 17.33 184.60 \n",
394 | "1 0.05667 ... 24.99 23.41 158.80 \n",
395 | "2 0.05999 ... 23.57 25.53 152.50 \n",
396 | "3 0.09744 ... 14.91 26.50 98.87 \n",
397 | "4 0.05883 ... 22.54 16.67 152.20 \n",
398 | "\n",
399 | " worst area worst smoothness worst compactness worst concavity \\\n",
400 | "0 2019.0 0.1622 0.6656 0.7119 \n",
401 | "1 1956.0 0.1238 0.1866 0.2416 \n",
402 | "2 1709.0 0.1444 0.4245 0.4504 \n",
403 | "3 567.7 0.2098 0.8663 0.6869 \n",
404 | "4 1575.0 0.1374 0.2050 0.4000 \n",
405 | "\n",
406 | " worst concave points worst symmetry worst fractal dimension \n",
407 | "0 0.2654 0.4601 0.11890 \n",
408 | "1 0.1860 0.2750 0.08902 \n",
409 | "2 0.2430 0.3613 0.08758 \n",
410 | "3 0.2575 0.6638 0.17300 \n",
411 | "4 0.1625 0.2364 0.07678 \n",
412 | "\n",
413 | "[5 rows x 30 columns]"
414 | ]
415 | },
416 | "execution_count": 11,
417 | "metadata": {},
418 | "output_type": "execute_result"
419 | }
420 | ],
421 | "source": [
422 | "df_feat=pd.DataFrame(cancer['data'],columns=cancer['feature_names'])\n",
423 | "df_feat.head()"
424 | ]
425 | },
426 | {
427 | "cell_type": "code",
428 | "execution_count": 12,
429 | "id": "498e3a05",
430 | "metadata": {},
431 | "outputs": [
432 | {
433 | "name": "stdout",
434 | "output_type": "stream",
435 | "text": [
436 | "\n",
437 | "RangeIndex: 569 entries, 0 to 568\n",
438 | "Data columns (total 30 columns):\n",
439 | " # Column Non-Null Count Dtype \n",
440 | "--- ------ -------------- ----- \n",
441 | " 0 mean radius 569 non-null float64\n",
442 | " 1 mean texture 569 non-null float64\n",
443 | " 2 mean perimeter 569 non-null float64\n",
444 | " 3 mean area 569 non-null float64\n",
445 | " 4 mean smoothness 569 non-null float64\n",
446 | " 5 mean compactness 569 non-null float64\n",
447 | " 6 mean concavity 569 non-null float64\n",
448 | " 7 mean concave points 569 non-null float64\n",
449 | " 8 mean symmetry 569 non-null float64\n",
450 | " 9 mean fractal dimension 569 non-null float64\n",
451 | " 10 radius error 569 non-null float64\n",
452 | " 11 texture error 569 non-null float64\n",
453 | " 12 perimeter error 569 non-null float64\n",
454 | " 13 area error 569 non-null float64\n",
455 | " 14 smoothness error 569 non-null float64\n",
456 | " 15 compactness error 569 non-null float64\n",
457 | " 16 concavity error 569 non-null float64\n",
458 | " 17 concave points error 569 non-null float64\n",
459 | " 18 symmetry error 569 non-null float64\n",
460 | " 19 fractal dimension error 569 non-null float64\n",
461 | " 20 worst radius 569 non-null float64\n",
462 | " 21 worst texture 569 non-null float64\n",
463 | " 22 worst perimeter 569 non-null float64\n",
464 | " 23 worst area 569 non-null float64\n",
465 | " 24 worst smoothness 569 non-null float64\n",
466 | " 25 worst compactness 569 non-null float64\n",
467 | " 26 worst concavity 569 non-null float64\n",
468 | " 27 worst concave points 569 non-null float64\n",
469 | " 28 worst symmetry 569 non-null float64\n",
470 | " 29 worst fractal dimension 569 non-null float64\n",
471 | "dtypes: float64(30)\n",
472 | "memory usage: 133.5 KB\n"
473 | ]
474 | }
475 | ],
476 | "source": [
477 | "df_feat.info()"
478 | ]
479 | },
480 | {
481 | "cell_type": "code",
482 | "execution_count": 14,
483 | "id": "a6bf042a",
484 | "metadata": {},
485 | "outputs": [],
486 | "source": [
487 | "from sklearn.model_selection import train_test_split"
488 | ]
489 | },
490 | {
491 | "cell_type": "code",
492 | "execution_count": 16,
493 | "id": "c72ed091",
494 | "metadata": {},
495 | "outputs": [],
496 | "source": [
497 | "X=df_feat\n",
498 | "y=cancer['target']\n",
499 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=101)"
500 | ]
501 | },
502 | {
503 | "cell_type": "code",
504 | "execution_count": 17,
505 | "id": "12b80c92",
506 | "metadata": {},
507 | "outputs": [
508 | {
509 | "data": {
510 | "text/plain": [
511 | "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,\n",
512 | " 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0,\n",
513 | " 0, 0, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 1, 1, 1, 1, 0, 1, 0, 0,\n",
514 | " 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 0,\n",
515 | " 1, 1, 1, 0, 1, 1, 0, 0, 1, 1, 1, 0, 0, 1, 1, 1, 1, 0, 1, 1, 0, 1,\n",
516 | " 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 1, 0,\n",
517 | " 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1,\n",
518 | " 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 1, 0, 0, 1, 1, 1,\n",
519 | " 1, 0, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 0, 0,\n",
520 | " 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0,\n",
521 | " 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1,\n",
522 | " 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,\n",
523 | " 0, 0, 1, 1, 1, 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 1,\n",
524 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1,\n",
525 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 0, 1, 1, 1, 1, 0, 0,\n",
526 | " 0, 1, 1, 1, 1, 0, 1, 0, 1, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0,\n",
527 | " 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0,\n",
528 | " 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 1, 0, 1, 1, 0, 0, 1, 1,\n",
529 | " 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 0, 1, 1, 0,\n",
530 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 0, 1, 1, 1, 1,\n",
531 | " 1, 0, 1, 1, 0, 1, 0, 1, 1, 0, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0,\n",
532 | " 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 1, 1, 1, 1,\n",
533 | " 1, 1, 1, 0, 1, 0, 1, 1, 0, 1, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 1,\n",
534 | " 1, 1, 1, 0, 1, 1, 0, 1, 0, 1, 0, 0, 1, 1, 1, 0, 1, 1, 1, 1, 1, 1,\n",
535 | " 1, 1, 1, 1, 1, 0, 1, 0, 0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1,\n",
536 | " 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1])"
537 | ]
538 | },
539 | "execution_count": 17,
540 | "metadata": {},
541 | "output_type": "execute_result"
542 | }
543 | ],
544 | "source": [
545 | "cancer['target']"
546 | ]
547 | },
548 | {
549 | "cell_type": "code",
550 | "execution_count": 21,
551 | "id": "ea46ff2a",
552 | "metadata": {},
553 | "outputs": [],
554 | "source": [
555 | "from sklearn.svm import SVC"
556 | ]
557 | },
558 | {
559 | "cell_type": "code",
560 | "execution_count": 25,
561 | "id": "8fe55202",
562 | "metadata": {},
563 | "outputs": [],
564 | "source": [
565 | "model = SVC()"
566 | ]
567 | },
568 | {
569 | "cell_type": "code",
570 | "execution_count": 26,
571 | "id": "8dd2a400",
572 | "metadata": {},
573 | "outputs": [
574 | {
575 | "data": {
576 | "text/plain": [
577 | "SVC()"
578 | ]
579 | },
580 | "execution_count": 26,
581 | "metadata": {},
582 | "output_type": "execute_result"
583 | }
584 | ],
585 | "source": [
586 | "model.fit(X_train,y_train)"
587 | ]
588 | },
589 | {
590 | "cell_type": "code",
591 | "execution_count": 27,
592 | "id": "fab8056d",
593 | "metadata": {},
594 | "outputs": [],
595 | "source": [
596 | "pred=model.predict(X_test)"
597 | ]
598 | },
599 | {
600 | "cell_type": "code",
601 | "execution_count": 29,
602 | "id": "2690bbf2",
603 | "metadata": {},
604 | "outputs": [],
605 | "source": [
606 | "from sklearn.metrics import confusion_matrix"
607 | ]
608 | },
609 | {
610 | "cell_type": "code",
611 | "execution_count": 30,
612 | "id": "7c7c1d44",
613 | "metadata": {},
614 | "outputs": [],
615 | "source": [
616 | "from sklearn.metrics import classification_report"
617 | ]
618 | },
619 | {
620 | "cell_type": "code",
621 | "execution_count": 31,
622 | "id": "0414cbc7",
623 | "metadata": {},
624 | "outputs": [
625 | {
626 | "name": "stdout",
627 | "output_type": "stream",
628 | "text": [
629 | "[[ 56 10]\n",
630 | " [ 3 102]]\n",
631 | "\n",
632 | "\n",
633 | " precision recall f1-score support\n",
634 | "\n",
635 | " 0 0.95 0.85 0.90 66\n",
636 | " 1 0.91 0.97 0.94 105\n",
637 | "\n",
638 | " accuracy 0.92 171\n",
639 | " macro avg 0.93 0.91 0.92 171\n",
640 | "weighted avg 0.93 0.92 0.92 171\n",
641 | "\n"
642 | ]
643 | }
644 | ],
645 | "source": [
646 | "print(confusion_matrix(y_test,pred))\n",
647 | "print('\\n')\n",
648 | "print(classification_report(y_test,pred))"
649 | ]
650 | },
651 | {
652 | "cell_type": "code",
653 | "execution_count": 33,
654 | "id": "95d1c4f0",
655 | "metadata": {},
656 | "outputs": [],
657 | "source": [
658 | "from sklearn.model_selection import GridSearchCV"
659 | ]
660 | },
661 | {
662 | "cell_type": "code",
663 | "execution_count": null,
664 | "id": "73b79c38",
665 | "metadata": {},
666 | "outputs": [],
667 | "source": []
668 | }
669 | ],
670 | "metadata": {
671 | "kernelspec": {
672 | "display_name": "Python 3",
673 | "language": "python",
674 | "name": "python3"
675 | },
676 | "language_info": {
677 | "codemirror_mode": {
678 | "name": "ipython",
679 | "version": 3
680 | },
681 | "file_extension": ".py",
682 | "mimetype": "text/x-python",
683 | "name": "python",
684 | "nbconvert_exporter": "python",
685 | "pygments_lexer": "ipython3",
686 | "version": "3.8.10"
687 | }
688 | },
689 | "nbformat": 4,
690 | "nbformat_minor": 5
691 | }
692 |
--------------------------------------------------------------------------------
/ML algorithm/8-PrincipalComponentAnalysis/PCA.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ishikkkkaaaa/Python-ML/8c64a5d82314a5603e2e892ba991fabdee8932f2/ML algorithm/8-PrincipalComponentAnalysis/PCA.png
--------------------------------------------------------------------------------
/ML algorithm/9-Recommender System/u.item:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ishikkkkaaaa/Python-ML/8c64a5d82314a5603e2e892ba991fabdee8932f2/ML algorithm/9-Recommender System/u.item
--------------------------------------------------------------------------------
/ML basics/1_NUMPY.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Numpy"
8 | ]
9 | },
10 | {
11 | "cell_type": "markdown",
12 | "metadata": {},
13 | "source": [
14 | "*Numpy arryas are the main way we will use numpy*\n",
15 | "\n",
16 | "*They come in two favors: **Vectors & Matrices** *\n",
17 | "\n",
18 | "*Vectors are 1D and Matrix are 2D(can still have one row one col)*"
19 | ]
20 | },
21 | {
22 | "cell_type": "code",
23 | "execution_count": 1,
24 | "metadata": {},
25 | "outputs": [
26 | {
27 | "data": {
28 | "text/plain": [
29 | "[1, 2, 3]"
30 | ]
31 | },
32 | "execution_count": 1,
33 | "metadata": {},
34 | "output_type": "execute_result"
35 | }
36 | ],
37 | "source": [
38 | "list=[1,2,3]\n",
39 | "list"
40 | ]
41 | },
42 | {
43 | "cell_type": "code",
44 | "execution_count": 2,
45 | "metadata": {},
46 | "outputs": [],
47 | "source": [
48 | "import numpy as np"
49 | ]
50 | },
51 | {
52 | "cell_type": "code",
53 | "execution_count": 4,
54 | "metadata": {},
55 | "outputs": [
56 | {
57 | "data": {
58 | "text/plain": [
59 | "array([1, 2, 3])"
60 | ]
61 | },
62 | "execution_count": 4,
63 | "metadata": {},
64 | "output_type": "execute_result"
65 | }
66 | ],
67 | "source": [
68 | "arr=np.array(list)\n",
69 | "arr"
70 | ]
71 | },
72 | {
73 | "cell_type": "code",
74 | "execution_count": 5,
75 | "metadata": {},
76 | "outputs": [
77 | {
78 | "data": {
79 | "text/plain": [
80 | "array([[1, 2, 3],\n",
81 | " [4, 5, 6],\n",
82 | " [7, 8, 9]])"
83 | ]
84 | },
85 | "execution_count": 5,
86 | "metadata": {},
87 | "output_type": "execute_result"
88 | }
89 | ],
90 | "source": [
91 | "my_math=[[1,2,3],[4,5,6],[7,8,9]]\n",
92 | "np.array(my_math)"
93 | ]
94 | },
95 | {
96 | "cell_type": "markdown",
97 | "metadata": {},
98 | "source": [
99 | "**Arange** is one of the most useful function for *quicly generating an array*"
100 | ]
101 | },
102 | {
103 | "cell_type": "code",
104 | "execution_count": 6,
105 | "metadata": {},
106 | "outputs": [
107 | {
108 | "data": {
109 | "text/plain": [
110 | "array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9])"
111 | ]
112 | },
113 | "execution_count": 6,
114 | "metadata": {},
115 | "output_type": "execute_result"
116 | }
117 | ],
118 | "source": [
119 | "np.arange(0,10)\n",
120 | "#indexing does upto 10, but does not include 10"
121 | ]
122 | },
123 | {
124 | "cell_type": "code",
125 | "execution_count": 8,
126 | "metadata": {},
127 | "outputs": [
128 | {
129 | "data": {
130 | "text/plain": [
131 | "array([ 0, 2, 4, 6, 8, 10])"
132 | ]
133 | },
134 | "execution_count": 8,
135 | "metadata": {},
136 | "output_type": "execute_result"
137 | }
138 | ],
139 | "source": [
140 | "np.arange(0,11,2)"
141 | ]
142 | },
143 | {
144 | "cell_type": "code",
145 | "execution_count": 9,
146 | "metadata": {},
147 | "outputs": [
148 | {
149 | "data": {
150 | "text/plain": [
151 | "array([0., 0., 0.])"
152 | ]
153 | },
154 | "execution_count": 9,
155 | "metadata": {},
156 | "output_type": "execute_result"
157 | }
158 | ],
159 | "source": [
160 | "np.zeros(3)"
161 | ]
162 | },
163 | {
164 | "cell_type": "code",
165 | "execution_count": 10,
166 | "metadata": {},
167 | "outputs": [
168 | {
169 | "data": {
170 | "text/plain": [
171 | "array([[0., 0., 0.],\n",
172 | " [0., 0., 0.]])"
173 | ]
174 | },
175 | "execution_count": 10,
176 | "metadata": {},
177 | "output_type": "execute_result"
178 | }
179 | ],
180 | "source": [
181 | "np.zeros((2,3))"
182 | ]
183 | },
184 | {
185 | "cell_type": "code",
186 | "execution_count": 11,
187 | "metadata": {},
188 | "outputs": [
189 | {
190 | "data": {
191 | "text/plain": [
192 | "array([1., 1., 1., 1.])"
193 | ]
194 | },
195 | "execution_count": 11,
196 | "metadata": {},
197 | "output_type": "execute_result"
198 | }
199 | ],
200 | "source": [
201 | "np.ones(4)"
202 | ]
203 | },
204 | {
205 | "cell_type": "markdown",
206 | "metadata": {},
207 | "source": [
208 | " Creating **Identity Matrix**"
209 | ]
210 | },
211 | {
212 | "cell_type": "markdown",
213 | "metadata": {},
214 | "source": [
215 | "2D square matrix, having ones in diagonal"
216 | ]
217 | },
218 | {
219 | "cell_type": "code",
220 | "execution_count": 12,
221 | "metadata": {},
222 | "outputs": [
223 | {
224 | "data": {
225 | "text/plain": [
226 | "array([[1., 0., 0., 0.],\n",
227 | " [0., 1., 0., 0.],\n",
228 | " [0., 0., 1., 0.],\n",
229 | " [0., 0., 0., 1.]])"
230 | ]
231 | },
232 | "execution_count": 12,
233 | "metadata": {},
234 | "output_type": "execute_result"
235 | }
236 | ],
237 | "source": [
238 | "np.eye(4)"
239 | ]
240 | },
241 | {
242 | "cell_type": "code",
243 | "execution_count": 13,
244 | "metadata": {},
245 | "outputs": [
246 | {
247 | "data": {
248 | "text/plain": [
249 | "array([0.31860116, 0.15041774, 0.47305949, 0.91984763, 0.31191998])"
250 | ]
251 | },
252 | "execution_count": 13,
253 | "metadata": {},
254 | "output_type": "execute_result"
255 | }
256 | ],
257 | "source": [
258 | "np.random.rand(5)"
259 | ]
260 | },
261 | {
262 | "cell_type": "code",
263 | "execution_count": 14,
264 | "metadata": {},
265 | "outputs": [
266 | {
267 | "data": {
268 | "text/plain": [
269 | "array([[0.30265439, 0.94887264, 0.42351647],\n",
270 | " [0.80734252, 0.38626543, 0.92528118],\n",
271 | " [0.39704804, 0.01872057, 0.19964596]])"
272 | ]
273 | },
274 | "execution_count": 14,
275 | "metadata": {},
276 | "output_type": "execute_result"
277 | }
278 | ],
279 | "source": [
280 | "np.random.rand(3,3)"
281 | ]
282 | },
283 | {
284 | "cell_type": "code",
285 | "execution_count": 15,
286 | "metadata": {},
287 | "outputs": [
288 | {
289 | "data": {
290 | "text/plain": [
291 | "42"
292 | ]
293 | },
294 | "execution_count": 15,
295 | "metadata": {},
296 | "output_type": "execute_result"
297 | }
298 | ],
299 | "source": [
300 | "np.random.randint(1,100)"
301 | ]
302 | },
303 | {
304 | "cell_type": "code",
305 | "execution_count": 16,
306 | "metadata": {},
307 | "outputs": [
308 | {
309 | "data": {
310 | "text/plain": [
311 | "array([23, 95, 15, 74, 54, 62, 5, 70, 80, 76])"
312 | ]
313 | },
314 | "execution_count": 16,
315 | "metadata": {},
316 | "output_type": "execute_result"
317 | }
318 | ],
319 | "source": [
320 | "np.random.randint(1,100,10)"
321 | ]
322 | },
323 | {
324 | "cell_type": "code",
325 | "execution_count": 17,
326 | "metadata": {},
327 | "outputs": [
328 | {
329 | "data": {
330 | "text/plain": [
331 | "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16,\n",
332 | " 17, 18, 19, 20, 21, 22, 23, 24])"
333 | ]
334 | },
335 | "execution_count": 17,
336 | "metadata": {},
337 | "output_type": "execute_result"
338 | }
339 | ],
340 | "source": [
341 | "arr=np.arange(25)\n",
342 | "arr"
343 | ]
344 | },
345 | {
346 | "cell_type": "code",
347 | "execution_count": 18,
348 | "metadata": {},
349 | "outputs": [
350 | {
351 | "data": {
352 | "text/plain": [
353 | "array([38, 48, 32, 12, 44, 3, 3, 12, 16, 8])"
354 | ]
355 | },
356 | "execution_count": 18,
357 | "metadata": {},
358 | "output_type": "execute_result"
359 | }
360 | ],
361 | "source": [
362 | "random_arr=np.random.randint(0,50,10)\n",
363 | "random_arr"
364 | ]
365 | },
366 | {
367 | "cell_type": "code",
368 | "execution_count": 19,
369 | "metadata": {},
370 | "outputs": [
371 | {
372 | "data": {
373 | "text/plain": [
374 | "array([[ 0, 1, 2, 3, 4],\n",
375 | " [ 5, 6, 7, 8, 9],\n",
376 | " [10, 11, 12, 13, 14],\n",
377 | " [15, 16, 17, 18, 19],\n",
378 | " [20, 21, 22, 23, 24]])"
379 | ]
380 | },
381 | "execution_count": 19,
382 | "metadata": {},
383 | "output_type": "execute_result"
384 | }
385 | ],
386 | "source": [
387 | "arr.reshape(5,5)"
388 | ]
389 | },
390 | {
391 | "cell_type": "code",
392 | "execution_count": 20,
393 | "metadata": {},
394 | "outputs": [
395 | {
396 | "data": {
397 | "text/plain": [
398 | "48"
399 | ]
400 | },
401 | "execution_count": 20,
402 | "metadata": {},
403 | "output_type": "execute_result"
404 | }
405 | ],
406 | "source": [
407 | "random_arr.max()"
408 | ]
409 | },
410 | {
411 | "cell_type": "code",
412 | "execution_count": 21,
413 | "metadata": {},
414 | "outputs": [
415 | {
416 | "data": {
417 | "text/plain": [
418 | "3"
419 | ]
420 | },
421 | "execution_count": 21,
422 | "metadata": {},
423 | "output_type": "execute_result"
424 | }
425 | ],
426 | "source": [
427 | "random_arr.min()"
428 | ]
429 | },
430 | {
431 | "cell_type": "code",
432 | "execution_count": 22,
433 | "metadata": {},
434 | "outputs": [
435 | {
436 | "data": {
437 | "text/plain": [
438 | "1"
439 | ]
440 | },
441 | "execution_count": 22,
442 | "metadata": {},
443 | "output_type": "execute_result"
444 | }
445 | ],
446 | "source": [
447 | "random_arr.argmax()"
448 | ]
449 | },
450 | {
451 | "cell_type": "code",
452 | "execution_count": 23,
453 | "metadata": {},
454 | "outputs": [
455 | {
456 | "data": {
457 | "text/plain": [
458 | "(25,)"
459 | ]
460 | },
461 | "execution_count": 23,
462 | "metadata": {},
463 | "output_type": "execute_result"
464 | }
465 | ],
466 | "source": [
467 | "#shape of a vector!\n",
468 | "arr.shape"
469 | ]
470 | },
471 | {
472 | "cell_type": "code",
473 | "execution_count": 24,
474 | "metadata": {},
475 | "outputs": [
476 | {
477 | "data": {
478 | "text/plain": [
479 | "array([[ 0, 1, 2, 3, 4],\n",
480 | " [ 5, 6, 7, 8, 9],\n",
481 | " [10, 11, 12, 13, 14],\n",
482 | " [15, 16, 17, 18, 19],\n",
483 | " [20, 21, 22, 23, 24]])"
484 | ]
485 | },
486 | "execution_count": 24,
487 | "metadata": {},
488 | "output_type": "execute_result"
489 | }
490 | ],
491 | "source": [
492 | "#reshaping an array\n",
493 | "arr=arr.reshape(5,5)\n",
494 | "arr"
495 | ]
496 | },
497 | {
498 | "cell_type": "code",
499 | "execution_count": 25,
500 | "metadata": {},
501 | "outputs": [
502 | {
503 | "data": {
504 | "text/plain": [
505 | "(5, 5)"
506 | ]
507 | },
508 | "execution_count": 25,
509 | "metadata": {},
510 | "output_type": "execute_result"
511 | }
512 | ],
513 | "source": [
514 | "arr.shape"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 26,
520 | "metadata": {},
521 | "outputs": [
522 | {
523 | "data": {
524 | "text/plain": [
525 | "dtype('int64')"
526 | ]
527 | },
528 | "execution_count": 26,
529 | "metadata": {},
530 | "output_type": "execute_result"
531 | }
532 | ],
533 | "source": [
534 | "arr.dtype"
535 | ]
536 | },
537 | {
538 | "cell_type": "markdown",
539 | "metadata": {},
540 | "source": [
541 | "Indexing and Selection!!"
542 | ]
543 | },
544 | {
545 | "cell_type": "code",
546 | "execution_count": 27,
547 | "metadata": {},
548 | "outputs": [
549 | {
550 | "data": {
551 | "text/plain": [
552 | "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])"
553 | ]
554 | },
555 | "execution_count": 27,
556 | "metadata": {},
557 | "output_type": "execute_result"
558 | }
559 | ],
560 | "source": [
561 | "arr=np.arange(0,11)\n",
562 | "arr"
563 | ]
564 | },
565 | {
566 | "cell_type": "code",
567 | "execution_count": 28,
568 | "metadata": {},
569 | "outputs": [
570 | {
571 | "data": {
572 | "text/plain": [
573 | "4"
574 | ]
575 | },
576 | "execution_count": 28,
577 | "metadata": {},
578 | "output_type": "execute_result"
579 | }
580 | ],
581 | "source": [
582 | "arr[4]"
583 | ]
584 | },
585 | {
586 | "cell_type": "code",
587 | "execution_count": 29,
588 | "metadata": {},
589 | "outputs": [
590 | {
591 | "data": {
592 | "text/plain": [
593 | "array([1, 2, 3, 4])"
594 | ]
595 | },
596 | "execution_count": 29,
597 | "metadata": {},
598 | "output_type": "execute_result"
599 | }
600 | ],
601 | "source": [
602 | "arr[1:5]"
603 | ]
604 | },
605 | {
606 | "cell_type": "code",
607 | "execution_count": 30,
608 | "metadata": {},
609 | "outputs": [
610 | {
611 | "data": {
612 | "text/plain": [
613 | "array([0, 1, 2, 3, 4, 5])"
614 | ]
615 | },
616 | "execution_count": 30,
617 | "metadata": {},
618 | "output_type": "execute_result"
619 | }
620 | ],
621 | "source": [
622 | "slice=arr[0:6]\n",
623 | "slice\n"
624 | ]
625 | },
626 | {
627 | "cell_type": "code",
628 | "execution_count": 31,
629 | "metadata": {},
630 | "outputs": [
631 | {
632 | "data": {
633 | "text/plain": [
634 | "array([0, 1, 2, 3, 4, 5])"
635 | ]
636 | },
637 | "execution_count": 31,
638 | "metadata": {},
639 | "output_type": "execute_result"
640 | }
641 | ],
642 | "source": [
643 | "slice[:]"
644 | ]
645 | },
646 | {
647 | "cell_type": "code",
648 | "execution_count": 32,
649 | "metadata": {},
650 | "outputs": [
651 | {
652 | "data": {
653 | "text/plain": [
654 | "array([99, 99, 99, 99, 99, 99])"
655 | ]
656 | },
657 | "execution_count": 32,
658 | "metadata": {},
659 | "output_type": "execute_result"
660 | }
661 | ],
662 | "source": [
663 | "slice[:]=99\n",
664 | "slice\n"
665 | ]
666 | },
667 | {
668 | "cell_type": "code",
669 | "execution_count": 33,
670 | "metadata": {},
671 | "outputs": [
672 | {
673 | "data": {
674 | "text/plain": [
675 | "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10])"
676 | ]
677 | },
678 | "execution_count": 33,
679 | "metadata": {},
680 | "output_type": "execute_result"
681 | }
682 | ],
683 | "source": [
684 | "arr\n"
685 | ]
686 | },
687 | {
688 | "cell_type": "code",
689 | "execution_count": 34,
690 | "metadata": {},
691 | "outputs": [],
692 | "source": [
693 | "arr_copy=arr.copy()"
694 | ]
695 | },
696 | {
697 | "cell_type": "code",
698 | "execution_count": 35,
699 | "metadata": {},
700 | "outputs": [
701 | {
702 | "data": {
703 | "text/plain": [
704 | "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10])"
705 | ]
706 | },
707 | "execution_count": 35,
708 | "metadata": {},
709 | "output_type": "execute_result"
710 | }
711 | ],
712 | "source": [
713 | "arr"
714 | ]
715 | },
716 | {
717 | "cell_type": "code",
718 | "execution_count": 36,
719 | "metadata": {},
720 | "outputs": [
721 | {
722 | "data": {
723 | "text/plain": [
724 | "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10])"
725 | ]
726 | },
727 | "execution_count": 36,
728 | "metadata": {},
729 | "output_type": "execute_result"
730 | }
731 | ],
732 | "source": [
733 | "arr_copy"
734 | ]
735 | },
736 | {
737 | "cell_type": "code",
738 | "execution_count": 37,
739 | "metadata": {},
740 | "outputs": [],
741 | "source": [
742 | "arr_copy[:]=100"
743 | ]
744 | },
745 | {
746 | "cell_type": "code",
747 | "execution_count": 38,
748 | "metadata": {},
749 | "outputs": [
750 | {
751 | "data": {
752 | "text/plain": [
753 | "array([99, 99, 99, 99, 99, 99, 6, 7, 8, 9, 10])"
754 | ]
755 | },
756 | "execution_count": 38,
757 | "metadata": {},
758 | "output_type": "execute_result"
759 | }
760 | ],
761 | "source": [
762 | "arr\n"
763 | ]
764 | },
765 | {
766 | "cell_type": "code",
767 | "execution_count": 39,
768 | "metadata": {},
769 | "outputs": [
770 | {
771 | "data": {
772 | "text/plain": [
773 | "array([100, 100, 100, 100, 100, 100, 100, 100, 100, 100, 100])"
774 | ]
775 | },
776 | "execution_count": 39,
777 | "metadata": {},
778 | "output_type": "execute_result"
779 | }
780 | ],
781 | "source": [
782 | "arr_copy"
783 | ]
784 | },
785 | {
786 | "cell_type": "markdown",
787 | "metadata": {},
788 | "source": [
789 | "**Indexing for 2D array**"
790 | ]
791 | },
792 | {
793 | "cell_type": "code",
794 | "execution_count": 40,
795 | "metadata": {},
796 | "outputs": [
797 | {
798 | "data": {
799 | "text/plain": [
800 | "array([[ 5, 10, 15],\n",
801 | " [35, 40, 45]])"
802 | ]
803 | },
804 | "execution_count": 40,
805 | "metadata": {},
806 | "output_type": "execute_result"
807 | }
808 | ],
809 | "source": [
810 | "arr_2d=np.array([[5,10,15],[35,40,45]])\n",
811 | "arr_2d"
812 | ]
813 | },
814 | {
815 | "cell_type": "code",
816 | "execution_count": 42,
817 | "metadata": {},
818 | "outputs": [
819 | {
820 | "data": {
821 | "text/plain": [
822 | "10"
823 | ]
824 | },
825 | "execution_count": 42,
826 | "metadata": {},
827 | "output_type": "execute_result"
828 | }
829 | ],
830 | "source": [
831 | "arr_2d[0][1]"
832 | ]
833 | },
834 | {
835 | "cell_type": "code",
836 | "execution_count": 43,
837 | "metadata": {},
838 | "outputs": [
839 | {
840 | "data": {
841 | "text/plain": [
842 | "array([ 5, 10, 15])"
843 | ]
844 | },
845 | "execution_count": 43,
846 | "metadata": {},
847 | "output_type": "execute_result"
848 | }
849 | ],
850 | "source": [
851 | "arr_2d[0]"
852 | ]
853 | },
854 | {
855 | "cell_type": "code",
856 | "execution_count": 44,
857 | "metadata": {},
858 | "outputs": [
859 | {
860 | "data": {
861 | "text/plain": [
862 | "array([[10, 15]])"
863 | ]
864 | },
865 | "execution_count": 44,
866 | "metadata": {},
867 | "output_type": "execute_result"
868 | }
869 | ],
870 | "source": [
871 | "arr_2d[:1,1:]"
872 | ]
873 | },
874 | {
875 | "cell_type": "code",
876 | "execution_count": 45,
877 | "metadata": {},
878 | "outputs": [],
879 | "source": [
880 | "arr=np.arange(1,11)"
881 | ]
882 | },
883 | {
884 | "cell_type": "code",
885 | "execution_count": 46,
886 | "metadata": {},
887 | "outputs": [
888 | {
889 | "data": {
890 | "text/plain": [
891 | "array([ 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])"
892 | ]
893 | },
894 | "execution_count": 46,
895 | "metadata": {},
896 | "output_type": "execute_result"
897 | }
898 | ],
899 | "source": [
900 | "arr"
901 | ]
902 | },
903 | {
904 | "cell_type": "code",
905 | "execution_count": 48,
906 | "metadata": {},
907 | "outputs": [
908 | {
909 | "data": {
910 | "text/plain": [
911 | "array([False, False, False, False, False, True, True, True, True,\n",
912 | " True])"
913 | ]
914 | },
915 | "execution_count": 48,
916 | "metadata": {},
917 | "output_type": "execute_result"
918 | }
919 | ],
920 | "source": [
921 | "bool_arr=arr>5\n",
922 | "bool_arr"
923 | ]
924 | },
925 | {
926 | "cell_type": "markdown",
927 | "metadata": {},
928 | "source": [
929 | "We can use the above code, for **Conditional selection!**"
930 | ]
931 | },
932 | {
933 | "cell_type": "code",
934 | "execution_count": 49,
935 | "metadata": {},
936 | "outputs": [
937 | {
938 | "data": {
939 | "text/plain": [
940 | "array([ 6, 7, 8, 9, 10])"
941 | ]
942 | },
943 | "execution_count": 49,
944 | "metadata": {},
945 | "output_type": "execute_result"
946 | }
947 | ],
948 | "source": [
949 | "arr[bool_arr]\n",
950 | "#prints to true values"
951 | ]
952 | },
953 | {
954 | "cell_type": "code",
955 | "execution_count": 51,
956 | "metadata": {},
957 | "outputs": [
958 | {
959 | "data": {
960 | "text/plain": [
961 | "array([[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9],\n",
962 | " [10, 11, 12, 13, 14, 15, 16, 17, 18, 19],\n",
963 | " [20, 21, 22, 23, 24, 25, 26, 27, 28, 29],\n",
964 | " [30, 31, 32, 33, 34, 35, 36, 37, 38, 39],\n",
965 | " [40, 41, 42, 43, 44, 45, 46, 47, 48, 49]])"
966 | ]
967 | },
968 | "execution_count": 51,
969 | "metadata": {},
970 | "output_type": "execute_result"
971 | }
972 | ],
973 | "source": [
974 | "arr_2d=np.arange(50).reshape(5,10)\n",
975 | "arr_2d"
976 | ]
977 | },
978 | {
979 | "cell_type": "markdown",
980 | "metadata": {},
981 | "source": [
982 | "# Numpy Operations!"
983 | ]
984 | },
985 | {
986 | "cell_type": "markdown",
987 | "metadata": {},
988 | "source": [
989 | "Arraye with Array"
990 | ]
991 | },
992 | {
993 | "cell_type": "code",
994 | "execution_count": 52,
995 | "metadata": {},
996 | "outputs": [
997 | {
998 | "data": {
999 | "text/plain": [
1000 | "array([ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10])"
1001 | ]
1002 | },
1003 | "execution_count": 52,
1004 | "metadata": {},
1005 | "output_type": "execute_result"
1006 | }
1007 | ],
1008 | "source": [
1009 | "arr=np.arange(0,11)\n",
1010 | "arr"
1011 | ]
1012 | },
1013 | {
1014 | "cell_type": "code",
1015 | "execution_count": 53,
1016 | "metadata": {},
1017 | "outputs": [
1018 | {
1019 | "data": {
1020 | "text/plain": [
1021 | "array([ 0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20])"
1022 | ]
1023 | },
1024 | "execution_count": 53,
1025 | "metadata": {},
1026 | "output_type": "execute_result"
1027 | }
1028 | ],
1029 | "source": [
1030 | "arr+arr"
1031 | ]
1032 | },
1033 | {
1034 | "cell_type": "code",
1035 | "execution_count": 54,
1036 | "metadata": {},
1037 | "outputs": [
1038 | {
1039 | "data": {
1040 | "text/plain": [
1041 | "array([0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0])"
1042 | ]
1043 | },
1044 | "execution_count": 54,
1045 | "metadata": {},
1046 | "output_type": "execute_result"
1047 | }
1048 | ],
1049 | "source": [
1050 | "arr-arr"
1051 | ]
1052 | },
1053 | {
1054 | "cell_type": "code",
1055 | "execution_count": 55,
1056 | "metadata": {},
1057 | "outputs": [
1058 | {
1059 | "data": {
1060 | "text/plain": [
1061 | "array([ 0, 1, 4, 9, 16, 25, 36, 49, 64, 81, 100])"
1062 | ]
1063 | },
1064 | "execution_count": 55,
1065 | "metadata": {},
1066 | "output_type": "execute_result"
1067 | }
1068 | ],
1069 | "source": [
1070 | "arr*arr"
1071 | ]
1072 | },
1073 | {
1074 | "cell_type": "code",
1075 | "execution_count": 56,
1076 | "metadata": {},
1077 | "outputs": [
1078 | {
1079 | "data": {
1080 | "text/plain": [
1081 | "array([100, 101, 102, 103, 104, 105, 106, 107, 108, 109, 110])"
1082 | ]
1083 | },
1084 | "execution_count": 56,
1085 | "metadata": {},
1086 | "output_type": "execute_result"
1087 | }
1088 | ],
1089 | "source": [
1090 | "arr+100"
1091 | ]
1092 | },
1093 | {
1094 | "cell_type": "code",
1095 | "execution_count": 57,
1096 | "metadata": {},
1097 | "outputs": [
1098 | {
1099 | "data": {
1100 | "text/plain": [
1101 | "array([-100, -99, -98, -97, -96, -95, -94, -93, -92, -91, -90])"
1102 | ]
1103 | },
1104 | "execution_count": 57,
1105 | "metadata": {},
1106 | "output_type": "execute_result"
1107 | }
1108 | ],
1109 | "source": [
1110 | "arr-100"
1111 | ]
1112 | },
1113 | {
1114 | "cell_type": "code",
1115 | "execution_count": 59,
1116 | "metadata": {},
1117 | "outputs": [
1118 | {
1119 | "ename": "ZeroDivisionError",
1120 | "evalue": "division by zero",
1121 | "output_type": "error",
1122 | "traceback": [
1123 | "\u001b[0;31m---------------------------------------------------------------------------\u001b[0m",
1124 | "\u001b[0;31mZeroDivisionError\u001b[0m Traceback (most recent call last)",
1125 | "\u001b[0;32m\u001b[0m in \u001b[0;36m\u001b[0;34m\u001b[0m\n\u001b[0;32m----> 1\u001b[0;31m \u001b[0;36m1\u001b[0m\u001b[0;34m/\u001b[0m\u001b[0;36m0\u001b[0m\u001b[0;34m\u001b[0m\u001b[0;34m\u001b[0m\u001b[0m\n\u001b[0m",
1126 | "\u001b[0;31mZeroDivisionError\u001b[0m: division by zero"
1127 | ]
1128 | }
1129 | ],
1130 | "source": [
1131 | "1/0"
1132 | ]
1133 | },
1134 | {
1135 | "cell_type": "code",
1136 | "execution_count": 60,
1137 | "metadata": {},
1138 | "outputs": [
1139 | {
1140 | "name": "stderr",
1141 | "output_type": "stream",
1142 | "text": [
1143 | ":2: RuntimeWarning: invalid value encountered in true_divide\n",
1144 | " arr/arr\n"
1145 | ]
1146 | },
1147 | {
1148 | "data": {
1149 | "text/plain": [
1150 | "array([nan, 1., 1., 1., 1., 1., 1., 1., 1., 1., 1.])"
1151 | ]
1152 | },
1153 | "execution_count": 60,
1154 | "metadata": {},
1155 | "output_type": "execute_result"
1156 | }
1157 | ],
1158 | "source": [
1159 | "#numpy wont give you the above error\n",
1160 | "arr/arr"
1161 | ]
1162 | },
1163 | {
1164 | "cell_type": "code",
1165 | "execution_count": 61,
1166 | "metadata": {},
1167 | "outputs": [
1168 | {
1169 | "data": {
1170 | "text/plain": [
1171 | "array([0. , 1. , 1.41421356, 1.73205081, 2. ,\n",
1172 | " 2.23606798, 2.44948974, 2.64575131, 2.82842712, 3. ,\n",
1173 | " 3.16227766])"
1174 | ]
1175 | },
1176 | "execution_count": 61,
1177 | "metadata": {},
1178 | "output_type": "execute_result"
1179 | }
1180 | ],
1181 | "source": [
1182 | "np.sqrt(arr)"
1183 | ]
1184 | },
1185 | {
1186 | "cell_type": "code",
1187 | "execution_count": 63,
1188 | "metadata": {},
1189 | "outputs": [
1190 | {
1191 | "data": {
1192 | "text/plain": [
1193 | "array([1.00000000e+00, 2.71828183e+00, 7.38905610e+00, 2.00855369e+01,\n",
1194 | " 5.45981500e+01, 1.48413159e+02, 4.03428793e+02, 1.09663316e+03,\n",
1195 | " 2.98095799e+03, 8.10308393e+03, 2.20264658e+04])"
1196 | ]
1197 | },
1198 | "execution_count": 63,
1199 | "metadata": {},
1200 | "output_type": "execute_result"
1201 | }
1202 | ],
1203 | "source": [
1204 | "np.exp(arr)"
1205 | ]
1206 | },
1207 | {
1208 | "cell_type": "code",
1209 | "execution_count": 65,
1210 | "metadata": {},
1211 | "outputs": [
1212 | {
1213 | "data": {
1214 | "text/plain": [
1215 | "10"
1216 | ]
1217 | },
1218 | "execution_count": 65,
1219 | "metadata": {},
1220 | "output_type": "execute_result"
1221 | }
1222 | ],
1223 | "source": [
1224 | "arr.max()"
1225 | ]
1226 | },
1227 | {
1228 | "cell_type": "code",
1229 | "execution_count": 66,
1230 | "metadata": {},
1231 | "outputs": [
1232 | {
1233 | "data": {
1234 | "text/plain": [
1235 | "10"
1236 | ]
1237 | },
1238 | "execution_count": 66,
1239 | "metadata": {},
1240 | "output_type": "execute_result"
1241 | }
1242 | ],
1243 | "source": [
1244 | "np.max(arr)"
1245 | ]
1246 | },
1247 | {
1248 | "cell_type": "code",
1249 | "execution_count": null,
1250 | "metadata": {},
1251 | "outputs": [],
1252 | "source": []
1253 | }
1254 | ],
1255 | "metadata": {
1256 | "kernelspec": {
1257 | "display_name": "Python 3",
1258 | "language": "python",
1259 | "name": "python3"
1260 | },
1261 | "language_info": {
1262 | "codemirror_mode": {
1263 | "name": "ipython",
1264 | "version": 3
1265 | },
1266 | "file_extension": ".py",
1267 | "mimetype": "text/x-python",
1268 | "name": "python",
1269 | "nbconvert_exporter": "python",
1270 | "pygments_lexer": "ipython3",
1271 | "version": "3.8.5"
1272 | }
1273 | },
1274 | "nbformat": 4,
1275 | "nbformat_minor": 4
1276 | }
1277 |
--------------------------------------------------------------------------------
/ML basics/Excel_Sample.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ishikkkkaaaa/Python-ML/8c64a5d82314a5603e2e892ba991fabdee8932f2/ML basics/Excel_Sample.xlsx
--------------------------------------------------------------------------------
/ML basics/Name:
--------------------------------------------------------------------------------
1 | a,b,c,d
2 | 0,1,2,3
3 | 4,5,6,7
4 | 8,9,10,11
5 | 12,13,14,15
6 |
--------------------------------------------------------------------------------
/ML basics/SMALL PROJECTS/PANDAS/Ecommerce Purchases Exercise -checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "\n",
8 | "# Ecommerce Purchases Exercise"
9 | ]
10 | },
11 | {
12 | "cell_type": "code",
13 | "execution_count": 1,
14 | "metadata": {},
15 | "outputs": [],
16 | "source": [
17 | "import pandas as pd"
18 | ]
19 | },
20 | {
21 | "cell_type": "code",
22 | "execution_count": 3,
23 | "metadata": {},
24 | "outputs": [],
25 | "source": [
26 | "ecom=pd.read_csv('Ecommerce Purchases')"
27 | ]
28 | },
29 | {
30 | "cell_type": "code",
31 | "execution_count": 4,
32 | "metadata": {},
33 | "outputs": [
34 | {
35 | "data": {
36 | "text/html": [
37 | "\n",
38 | "\n",
51 | "
\n",
52 | " \n",
53 | " \n",
54 | " | \n",
55 | " Address | \n",
56 | " Lot | \n",
57 | " AM or PM | \n",
58 | " Browser Info | \n",
59 | " Company | \n",
60 | " Credit Card | \n",
61 | " CC Exp Date | \n",
62 | " CC Security Code | \n",
63 | " CC Provider | \n",
64 | " Email | \n",
65 | " Job | \n",
66 | " IP Address | \n",
67 | " Language | \n",
68 | " Purchase Price | \n",
69 | "
\n",
70 | " \n",
71 | " \n",
72 | " \n",
73 | " 0 | \n",
74 | " 16629 Pace Camp Apt. 448\\nAlexisborough, NE 77... | \n",
75 | " 46 in | \n",
76 | " PM | \n",
77 | " Opera/9.56.(X11; Linux x86_64; sl-SI) Presto/2... | \n",
78 | " Martinez-Herman | \n",
79 | " 6011929061123406 | \n",
80 | " 02/20 | \n",
81 | " 900 | \n",
82 | " JCB 16 digit | \n",
83 | " pdunlap@yahoo.com | \n",
84 | " Scientist, product/process development | \n",
85 | " 149.146.147.205 | \n",
86 | " el | \n",
87 | " 98.14 | \n",
88 | "
\n",
89 | " \n",
90 | " 1 | \n",
91 | " 9374 Jasmine Spurs Suite 508\\nSouth John, TN 8... | \n",
92 | " 28 rn | \n",
93 | " PM | \n",
94 | " Opera/8.93.(Windows 98; Win 9x 4.90; en-US) Pr... | \n",
95 | " Fletcher, Richards and Whitaker | \n",
96 | " 3337758169645356 | \n",
97 | " 11/18 | \n",
98 | " 561 | \n",
99 | " Mastercard | \n",
100 | " anthony41@reed.com | \n",
101 | " Drilling engineer | \n",
102 | " 15.160.41.51 | \n",
103 | " fr | \n",
104 | " 70.73 | \n",
105 | "
\n",
106 | " \n",
107 | " 2 | \n",
108 | " Unit 0065 Box 5052\\nDPO AP 27450 | \n",
109 | " 94 vE | \n",
110 | " PM | \n",
111 | " Mozilla/5.0 (compatible; MSIE 9.0; Windows NT ... | \n",
112 | " Simpson, Williams and Pham | \n",
113 | " 675957666125 | \n",
114 | " 08/19 | \n",
115 | " 699 | \n",
116 | " JCB 16 digit | \n",
117 | " amymiller@morales-harrison.com | \n",
118 | " Customer service manager | \n",
119 | " 132.207.160.22 | \n",
120 | " de | \n",
121 | " 0.95 | \n",
122 | "
\n",
123 | " \n",
124 | " 3 | \n",
125 | " 7780 Julia Fords\\nNew Stacy, WA 45798 | \n",
126 | " 36 vm | \n",
127 | " PM | \n",
128 | " Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0 ... | \n",
129 | " Williams, Marshall and Buchanan | \n",
130 | " 6011578504430710 | \n",
131 | " 02/24 | \n",
132 | " 384 | \n",
133 | " Discover | \n",
134 | " brent16@olson-robinson.info | \n",
135 | " Drilling engineer | \n",
136 | " 30.250.74.19 | \n",
137 | " es | \n",
138 | " 78.04 | \n",
139 | "
\n",
140 | " \n",
141 | " 4 | \n",
142 | " 23012 Munoz Drive Suite 337\\nNew Cynthia, TX 5... | \n",
143 | " 20 IE | \n",
144 | " AM | \n",
145 | " Opera/9.58.(X11; Linux x86_64; it-IT) Presto/2... | \n",
146 | " Brown, Watson and Andrews | \n",
147 | " 6011456623207998 | \n",
148 | " 10/25 | \n",
149 | " 678 | \n",
150 | " Diners Club / Carte Blanche | \n",
151 | " christopherwright@gmail.com | \n",
152 | " Fine artist | \n",
153 | " 24.140.33.94 | \n",
154 | " es | \n",
155 | " 77.82 | \n",
156 | "
\n",
157 | " \n",
158 | "
\n",
159 | "
"
160 | ],
161 | "text/plain": [
162 | " Address Lot AM or PM \\\n",
163 | "0 16629 Pace Camp Apt. 448\\nAlexisborough, NE 77... 46 in PM \n",
164 | "1 9374 Jasmine Spurs Suite 508\\nSouth John, TN 8... 28 rn PM \n",
165 | "2 Unit 0065 Box 5052\\nDPO AP 27450 94 vE PM \n",
166 | "3 7780 Julia Fords\\nNew Stacy, WA 45798 36 vm PM \n",
167 | "4 23012 Munoz Drive Suite 337\\nNew Cynthia, TX 5... 20 IE AM \n",
168 | "\n",
169 | " Browser Info \\\n",
170 | "0 Opera/9.56.(X11; Linux x86_64; sl-SI) Presto/2... \n",
171 | "1 Opera/8.93.(Windows 98; Win 9x 4.90; en-US) Pr... \n",
172 | "2 Mozilla/5.0 (compatible; MSIE 9.0; Windows NT ... \n",
173 | "3 Mozilla/5.0 (Macintosh; Intel Mac OS X 10_8_0 ... \n",
174 | "4 Opera/9.58.(X11; Linux x86_64; it-IT) Presto/2... \n",
175 | "\n",
176 | " Company Credit Card CC Exp Date \\\n",
177 | "0 Martinez-Herman 6011929061123406 02/20 \n",
178 | "1 Fletcher, Richards and Whitaker 3337758169645356 11/18 \n",
179 | "2 Simpson, Williams and Pham 675957666125 08/19 \n",
180 | "3 Williams, Marshall and Buchanan 6011578504430710 02/24 \n",
181 | "4 Brown, Watson and Andrews 6011456623207998 10/25 \n",
182 | "\n",
183 | " CC Security Code CC Provider \\\n",
184 | "0 900 JCB 16 digit \n",
185 | "1 561 Mastercard \n",
186 | "2 699 JCB 16 digit \n",
187 | "3 384 Discover \n",
188 | "4 678 Diners Club / Carte Blanche \n",
189 | "\n",
190 | " Email Job \\\n",
191 | "0 pdunlap@yahoo.com Scientist, product/process development \n",
192 | "1 anthony41@reed.com Drilling engineer \n",
193 | "2 amymiller@morales-harrison.com Customer service manager \n",
194 | "3 brent16@olson-robinson.info Drilling engineer \n",
195 | "4 christopherwright@gmail.com Fine artist \n",
196 | "\n",
197 | " IP Address Language Purchase Price \n",
198 | "0 149.146.147.205 el 98.14 \n",
199 | "1 15.160.41.51 fr 70.73 \n",
200 | "2 132.207.160.22 de 0.95 \n",
201 | "3 30.250.74.19 es 78.04 \n",
202 | "4 24.140.33.94 es 77.82 "
203 | ]
204 | },
205 | "execution_count": 4,
206 | "metadata": {},
207 | "output_type": "execute_result"
208 | }
209 | ],
210 | "source": [
211 | "ecom.head()"
212 | ]
213 | },
214 | {
215 | "cell_type": "markdown",
216 | "metadata": {},
217 | "source": [
218 | "** How many rows and columns are there? **"
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": 6,
224 | "metadata": {},
225 | "outputs": [
226 | {
227 | "name": "stdout",
228 | "output_type": "stream",
229 | "text": [
230 | "\n",
231 | "RangeIndex: 10000 entries, 0 to 9999\n",
232 | "Data columns (total 14 columns):\n",
233 | " # Column Non-Null Count Dtype \n",
234 | "--- ------ -------------- ----- \n",
235 | " 0 Address 10000 non-null object \n",
236 | " 1 Lot 10000 non-null object \n",
237 | " 2 AM or PM 10000 non-null object \n",
238 | " 3 Browser Info 10000 non-null object \n",
239 | " 4 Company 10000 non-null object \n",
240 | " 5 Credit Card 10000 non-null int64 \n",
241 | " 6 CC Exp Date 10000 non-null object \n",
242 | " 7 CC Security Code 10000 non-null int64 \n",
243 | " 8 CC Provider 10000 non-null object \n",
244 | " 9 Email 10000 non-null object \n",
245 | " 10 Job 10000 non-null object \n",
246 | " 11 IP Address 10000 non-null object \n",
247 | " 12 Language 10000 non-null object \n",
248 | " 13 Purchase Price 10000 non-null float64\n",
249 | "dtypes: float64(1), int64(2), object(11)\n",
250 | "memory usage: 1.1+ MB\n"
251 | ]
252 | }
253 | ],
254 | "source": [
255 | "ecom.info()"
256 | ]
257 | },
258 | {
259 | "cell_type": "markdown",
260 | "metadata": {},
261 | "source": [
262 | "** What is the average Purchase Price? **"
263 | ]
264 | },
265 | {
266 | "cell_type": "code",
267 | "execution_count": 7,
268 | "metadata": {},
269 | "outputs": [
270 | {
271 | "data": {
272 | "text/plain": [
273 | "50.34730200000025"
274 | ]
275 | },
276 | "execution_count": 7,
277 | "metadata": {},
278 | "output_type": "execute_result"
279 | }
280 | ],
281 | "source": [
282 | "ecom['Purchase Price'].mean()"
283 | ]
284 | },
285 | {
286 | "cell_type": "markdown",
287 | "metadata": {},
288 | "source": [
289 | "** What were the highest and lowest purchase prices? **"
290 | ]
291 | },
292 | {
293 | "cell_type": "code",
294 | "execution_count": 8,
295 | "metadata": {},
296 | "outputs": [
297 | {
298 | "data": {
299 | "text/plain": [
300 | "99.99"
301 | ]
302 | },
303 | "execution_count": 8,
304 | "metadata": {},
305 | "output_type": "execute_result"
306 | }
307 | ],
308 | "source": [
309 | "ecom['Purchase Price'].max()"
310 | ]
311 | },
312 | {
313 | "cell_type": "code",
314 | "execution_count": 9,
315 | "metadata": {},
316 | "outputs": [
317 | {
318 | "data": {
319 | "text/plain": [
320 | "0.0"
321 | ]
322 | },
323 | "execution_count": 9,
324 | "metadata": {},
325 | "output_type": "execute_result"
326 | }
327 | ],
328 | "source": [
329 | "ecom['Purchase Price'].min()"
330 | ]
331 | },
332 | {
333 | "cell_type": "markdown",
334 | "metadata": {},
335 | "source": [
336 | "** How many people have English 'en' as their Language of choice on the website? **"
337 | ]
338 | },
339 | {
340 | "cell_type": "code",
341 | "execution_count": 11,
342 | "metadata": {},
343 | "outputs": [
344 | {
345 | "data": {
346 | "text/plain": [
347 | "0 False\n",
348 | "1 False\n",
349 | "2 False\n",
350 | "3 False\n",
351 | "4 False\n",
352 | " ... \n",
353 | "9995 False\n",
354 | "9996 False\n",
355 | "9997 False\n",
356 | "9998 False\n",
357 | "9999 False\n",
358 | "Name: Language, Length: 10000, dtype: bool"
359 | ]
360 | },
361 | "execution_count": 11,
362 | "metadata": {},
363 | "output_type": "execute_result"
364 | }
365 | ],
366 | "source": [
367 | "ecom['Language']=='en'"
368 | ]
369 | },
370 | {
371 | "cell_type": "code",
372 | "execution_count": 13,
373 | "metadata": {},
374 | "outputs": [
375 | {
376 | "data": {
377 | "text/plain": [
378 | "Address 1098\n",
379 | "Lot 1098\n",
380 | "AM or PM 1098\n",
381 | "Browser Info 1098\n",
382 | "Company 1098\n",
383 | "Credit Card 1098\n",
384 | "CC Exp Date 1098\n",
385 | "CC Security Code 1098\n",
386 | "CC Provider 1098\n",
387 | "Email 1098\n",
388 | "Job 1098\n",
389 | "IP Address 1098\n",
390 | "Language 1098\n",
391 | "Purchase Price 1098\n",
392 | "dtype: int64"
393 | ]
394 | },
395 | "execution_count": 13,
396 | "metadata": {},
397 | "output_type": "execute_result"
398 | }
399 | ],
400 | "source": [
401 | "ecom[ecom['Language']=='en'].count()"
402 | ]
403 | },
404 | {
405 | "cell_type": "markdown",
406 | "metadata": {},
407 | "source": [
408 | "** How many people have the job title of \"Lawyer\" ? **\n"
409 | ]
410 | },
411 | {
412 | "cell_type": "code",
413 | "execution_count": 15,
414 | "metadata": {},
415 | "outputs": [
416 | {
417 | "name": "stdout",
418 | "output_type": "stream",
419 | "text": [
420 | "\n",
421 | "Int64Index: 30 entries, 470 to 9979\n",
422 | "Data columns (total 14 columns):\n",
423 | " # Column Non-Null Count Dtype \n",
424 | "--- ------ -------------- ----- \n",
425 | " 0 Address 30 non-null object \n",
426 | " 1 Lot 30 non-null object \n",
427 | " 2 AM or PM 30 non-null object \n",
428 | " 3 Browser Info 30 non-null object \n",
429 | " 4 Company 30 non-null object \n",
430 | " 5 Credit Card 30 non-null int64 \n",
431 | " 6 CC Exp Date 30 non-null object \n",
432 | " 7 CC Security Code 30 non-null int64 \n",
433 | " 8 CC Provider 30 non-null object \n",
434 | " 9 Email 30 non-null object \n",
435 | " 10 Job 30 non-null object \n",
436 | " 11 IP Address 30 non-null object \n",
437 | " 12 Language 30 non-null object \n",
438 | " 13 Purchase Price 30 non-null float64\n",
439 | "dtypes: float64(1), int64(2), object(11)\n",
440 | "memory usage: 3.5+ KB\n"
441 | ]
442 | }
443 | ],
444 | "source": [
445 | "ecom[ecom['Job']=='Lawyer'].info()"
446 | ]
447 | },
448 | {
449 | "cell_type": "markdown",
450 | "metadata": {},
451 | "source": [
452 | "** How many people made the purchase during the AM and how many people made the purchase during PM ? **\n",
453 | "\n"
454 | ]
455 | },
456 | {
457 | "cell_type": "code",
458 | "execution_count": 24,
459 | "metadata": {},
460 | "outputs": [
461 | {
462 | "data": {
463 | "text/plain": [
464 | "PM 5068\n",
465 | "AM 4932\n",
466 | "Name: AM or PM, dtype: int64"
467 | ]
468 | },
469 | "execution_count": 24,
470 | "metadata": {},
471 | "output_type": "execute_result"
472 | }
473 | ],
474 | "source": [
475 | "ecom['AM or PM'].value_counts()"
476 | ]
477 | },
478 | {
479 | "cell_type": "markdown",
480 | "metadata": {},
481 | "source": [
482 | "** What are the 5 most common Job Titles? **"
483 | ]
484 | },
485 | {
486 | "cell_type": "code",
487 | "execution_count": 26,
488 | "metadata": {},
489 | "outputs": [
490 | {
491 | "data": {
492 | "text/plain": [
493 | "Interior and spatial designer 31\n",
494 | "Lawyer 30\n",
495 | "Social researcher 28\n",
496 | "Research officer, political party 27\n",
497 | "Designer, jewellery 27\n",
498 | "Name: Job, dtype: int64"
499 | ]
500 | },
501 | "execution_count": 26,
502 | "metadata": {},
503 | "output_type": "execute_result"
504 | }
505 | ],
506 | "source": [
507 | "ecom['Job'].value_counts().head(5)"
508 | ]
509 | },
510 | {
511 | "cell_type": "markdown",
512 | "metadata": {},
513 | "source": [
514 | "** Someone made a purchase that came from Lot: \"90 WT\" , what was the Purchase Price for this transaction? **"
515 | ]
516 | },
517 | {
518 | "cell_type": "code",
519 | "execution_count": 27,
520 | "metadata": {},
521 | "outputs": [
522 | {
523 | "data": {
524 | "text/plain": [
525 | "513 75.1\n",
526 | "Name: Purchase Price, dtype: float64"
527 | ]
528 | },
529 | "execution_count": 27,
530 | "metadata": {},
531 | "output_type": "execute_result"
532 | }
533 | ],
534 | "source": [
535 | "ecom[ecom['Lot']=='90 WT']['Purchase Price']"
536 | ]
537 | },
538 | {
539 | "cell_type": "markdown",
540 | "metadata": {},
541 | "source": [
542 | "** What is the email of the person with the following Credit Card Number: 4926535242672853 **"
543 | ]
544 | },
545 | {
546 | "cell_type": "code",
547 | "execution_count": 31,
548 | "metadata": {},
549 | "outputs": [
550 | {
551 | "data": {
552 | "text/plain": [
553 | "1234 bondellen@williams-garza.com\n",
554 | "Name: Email, dtype: object"
555 | ]
556 | },
557 | "execution_count": 31,
558 | "metadata": {},
559 | "output_type": "execute_result"
560 | }
561 | ],
562 | "source": [
563 | "ecom[ecom['Credit Card']==4926535242672853]['Email']"
564 | ]
565 | },
566 | {
567 | "cell_type": "markdown",
568 | "metadata": {},
569 | "source": [
570 | "** How many people have American Express as their Credit Card Provider *and* made a purchase above $95 ?**"
571 | ]
572 | },
573 | {
574 | "cell_type": "code",
575 | "execution_count": 32,
576 | "metadata": {},
577 | "outputs": [
578 | {
579 | "data": {
580 | "text/plain": [
581 | "Address 39\n",
582 | "Lot 39\n",
583 | "AM or PM 39\n",
584 | "Browser Info 39\n",
585 | "Company 39\n",
586 | "Credit Card 39\n",
587 | "CC Exp Date 39\n",
588 | "CC Security Code 39\n",
589 | "CC Provider 39\n",
590 | "Email 39\n",
591 | "Job 39\n",
592 | "IP Address 39\n",
593 | "Language 39\n",
594 | "Purchase Price 39\n",
595 | "dtype: int64"
596 | ]
597 | },
598 | "execution_count": 32,
599 | "metadata": {},
600 | "output_type": "execute_result"
601 | }
602 | ],
603 | "source": [
604 | "ecom[(ecom['CC Provider']=='American Express') & (ecom['Purchase Price']>95)].count()"
605 | ]
606 | },
607 | {
608 | "cell_type": "markdown",
609 | "metadata": {},
610 | "source": [
611 | "** How many people have a credit card that expires in 2025? **"
612 | ]
613 | },
614 | {
615 | "cell_type": "code",
616 | "execution_count": 37,
617 | "metadata": {},
618 | "outputs": [
619 | {
620 | "data": {
621 | "text/plain": [
622 | "1033"
623 | ]
624 | },
625 | "execution_count": 37,
626 | "metadata": {},
627 | "output_type": "execute_result"
628 | }
629 | ],
630 | "source": [
631 | "sum(ecom['CC Exp Date'].apply(lambda x: x[3:]) == '25')"
632 | ]
633 | },
634 | {
635 | "cell_type": "markdown",
636 | "metadata": {},
637 | "source": [
638 | "** What are the top 5 most popular email providers/hosts (e.g. gmail.com, yahoo.com, etc...) **"
639 | ]
640 | },
641 | {
642 | "cell_type": "code",
643 | "execution_count": 39,
644 | "metadata": {},
645 | "outputs": [
646 | {
647 | "data": {
648 | "text/plain": [
649 | "hotmail.com 1638\n",
650 | "yahoo.com 1616\n",
651 | "gmail.com 1605\n",
652 | "smith.com 42\n",
653 | "williams.com 37\n",
654 | "Name: Email, dtype: int64"
655 | ]
656 | },
657 | "execution_count": 39,
658 | "metadata": {},
659 | "output_type": "execute_result"
660 | }
661 | ],
662 | "source": [
663 | "ecom['Email'].apply(lambda x:x.split('@')[1]).value_counts().head(5)"
664 | ]
665 | }
666 | ],
667 | "metadata": {
668 | "kernelspec": {
669 | "display_name": "Python 3",
670 | "language": "python",
671 | "name": "python3"
672 | },
673 | "language_info": {
674 | "codemirror_mode": {
675 | "name": "ipython",
676 | "version": 3
677 | },
678 | "file_extension": ".py",
679 | "mimetype": "text/x-python",
680 | "name": "python",
681 | "nbconvert_exporter": "python",
682 | "pygments_lexer": "ipython3",
683 | "version": "3.8.5"
684 | }
685 | },
686 | "nbformat": 4,
687 | "nbformat_minor": 1
688 | }
689 |
--------------------------------------------------------------------------------
/ML basics/SMALL PROJECTS/PANDAS/SF Salaries Exercise.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# SF Salaries Exercise \n",
8 | "\n",
9 | "[SF Salaries Dataset](https://www.kaggle.com/kaggle/sf-salaries) "
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 10,
15 | "metadata": {},
16 | "outputs": [],
17 | "source": [
18 | "import pandas as pd"
19 | ]
20 | },
21 | {
22 | "cell_type": "markdown",
23 | "metadata": {},
24 | "source": [
25 | "** Read Salaries.csv as a dataframe called sal.**"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": 15,
31 | "metadata": {},
32 | "outputs": [],
33 | "source": [
34 | "sal=pd.read_csv('salaries.csv')"
35 | ]
36 | },
37 | {
38 | "cell_type": "markdown",
39 | "metadata": {},
40 | "source": [
41 | "** Check the head of the DataFrame. **"
42 | ]
43 | },
44 | {
45 | "cell_type": "code",
46 | "execution_count": 16,
47 | "metadata": {},
48 | "outputs": [
49 | {
50 | "data": {
51 | "text/html": [
52 | "\n",
53 | "\n",
66 | "
\n",
67 | " \n",
68 | " \n",
69 | " | \n",
70 | " Id | \n",
71 | " EmployeeName | \n",
72 | " JobTitle | \n",
73 | " BasePay | \n",
74 | " OvertimePay | \n",
75 | " OtherPay | \n",
76 | " Benefits | \n",
77 | " TotalPay | \n",
78 | " TotalPayBenefits | \n",
79 | " Year | \n",
80 | " Notes | \n",
81 | " Agency | \n",
82 | " Status | \n",
83 | "
\n",
84 | " \n",
85 | " \n",
86 | " \n",
87 | " 0 | \n",
88 | " 1 | \n",
89 | " NATHANIEL FORD | \n",
90 | " GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY | \n",
91 | " 167411.18 | \n",
92 | " 0.00 | \n",
93 | " 400184.25 | \n",
94 | " NaN | \n",
95 | " 567595.43 | \n",
96 | " 567595.43 | \n",
97 | " 2011 | \n",
98 | " NaN | \n",
99 | " San Francisco | \n",
100 | " NaN | \n",
101 | "
\n",
102 | " \n",
103 | " 1 | \n",
104 | " 2 | \n",
105 | " GARY JIMENEZ | \n",
106 | " CAPTAIN III (POLICE DEPARTMENT) | \n",
107 | " 155966.02 | \n",
108 | " 245131.88 | \n",
109 | " 137811.38 | \n",
110 | " NaN | \n",
111 | " 538909.28 | \n",
112 | " 538909.28 | \n",
113 | " 2011 | \n",
114 | " NaN | \n",
115 | " San Francisco | \n",
116 | " NaN | \n",
117 | "
\n",
118 | " \n",
119 | " 2 | \n",
120 | " 3 | \n",
121 | " ALBERT PARDINI | \n",
122 | " CAPTAIN III (POLICE DEPARTMENT) | \n",
123 | " 212739.13 | \n",
124 | " 106088.18 | \n",
125 | " 16452.60 | \n",
126 | " NaN | \n",
127 | " 335279.91 | \n",
128 | " 335279.91 | \n",
129 | " 2011 | \n",
130 | " NaN | \n",
131 | " San Francisco | \n",
132 | " NaN | \n",
133 | "
\n",
134 | " \n",
135 | " 3 | \n",
136 | " 4 | \n",
137 | " CHRISTOPHER CHONG | \n",
138 | " WIRE ROPE CABLE MAINTENANCE MECHANIC | \n",
139 | " 77916.00 | \n",
140 | " 56120.71 | \n",
141 | " 198306.90 | \n",
142 | " NaN | \n",
143 | " 332343.61 | \n",
144 | " 332343.61 | \n",
145 | " 2011 | \n",
146 | " NaN | \n",
147 | " San Francisco | \n",
148 | " NaN | \n",
149 | "
\n",
150 | " \n",
151 | " 4 | \n",
152 | " 5 | \n",
153 | " PATRICK GARDNER | \n",
154 | " DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) | \n",
155 | " 134401.60 | \n",
156 | " 9737.00 | \n",
157 | " 182234.59 | \n",
158 | " NaN | \n",
159 | " 326373.19 | \n",
160 | " 326373.19 | \n",
161 | " 2011 | \n",
162 | " NaN | \n",
163 | " San Francisco | \n",
164 | " NaN | \n",
165 | "
\n",
166 | " \n",
167 | "
\n",
168 | "
"
169 | ],
170 | "text/plain": [
171 | " Id EmployeeName JobTitle \\\n",
172 | "0 1 NATHANIEL FORD GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY \n",
173 | "1 2 GARY JIMENEZ CAPTAIN III (POLICE DEPARTMENT) \n",
174 | "2 3 ALBERT PARDINI CAPTAIN III (POLICE DEPARTMENT) \n",
175 | "3 4 CHRISTOPHER CHONG WIRE ROPE CABLE MAINTENANCE MECHANIC \n",
176 | "4 5 PATRICK GARDNER DEPUTY CHIEF OF DEPARTMENT,(FIRE DEPARTMENT) \n",
177 | "\n",
178 | " BasePay OvertimePay OtherPay Benefits TotalPay TotalPayBenefits \\\n",
179 | "0 167411.18 0.00 400184.25 NaN 567595.43 567595.43 \n",
180 | "1 155966.02 245131.88 137811.38 NaN 538909.28 538909.28 \n",
181 | "2 212739.13 106088.18 16452.60 NaN 335279.91 335279.91 \n",
182 | "3 77916.00 56120.71 198306.90 NaN 332343.61 332343.61 \n",
183 | "4 134401.60 9737.00 182234.59 NaN 326373.19 326373.19 \n",
184 | "\n",
185 | " Year Notes Agency Status \n",
186 | "0 2011 NaN San Francisco NaN \n",
187 | "1 2011 NaN San Francisco NaN \n",
188 | "2 2011 NaN San Francisco NaN \n",
189 | "3 2011 NaN San Francisco NaN \n",
190 | "4 2011 NaN San Francisco NaN "
191 | ]
192 | },
193 | "execution_count": 16,
194 | "metadata": {},
195 | "output_type": "execute_result"
196 | }
197 | ],
198 | "source": [
199 | "sal.head()"
200 | ]
201 | },
202 | {
203 | "cell_type": "markdown",
204 | "metadata": {},
205 | "source": [
206 | "** Use the .info() method to find out how many entries there are.**"
207 | ]
208 | },
209 | {
210 | "cell_type": "code",
211 | "execution_count": 17,
212 | "metadata": {},
213 | "outputs": [
214 | {
215 | "name": "stdout",
216 | "output_type": "stream",
217 | "text": [
218 | "\n",
219 | "RangeIndex: 148654 entries, 0 to 148653\n",
220 | "Data columns (total 13 columns):\n",
221 | " # Column Non-Null Count Dtype \n",
222 | "--- ------ -------------- ----- \n",
223 | " 0 Id 148654 non-null int64 \n",
224 | " 1 EmployeeName 148654 non-null object \n",
225 | " 2 JobTitle 148654 non-null object \n",
226 | " 3 BasePay 148045 non-null float64\n",
227 | " 4 OvertimePay 148650 non-null float64\n",
228 | " 5 OtherPay 148650 non-null float64\n",
229 | " 6 Benefits 112491 non-null float64\n",
230 | " 7 TotalPay 148654 non-null float64\n",
231 | " 8 TotalPayBenefits 148654 non-null float64\n",
232 | " 9 Year 148654 non-null int64 \n",
233 | " 10 Notes 0 non-null float64\n",
234 | " 11 Agency 148654 non-null object \n",
235 | " 12 Status 0 non-null float64\n",
236 | "dtypes: float64(8), int64(2), object(3)\n",
237 | "memory usage: 14.7+ MB\n"
238 | ]
239 | }
240 | ],
241 | "source": [
242 | "sal.info()"
243 | ]
244 | },
245 | {
246 | "cell_type": "markdown",
247 | "metadata": {},
248 | "source": [
249 | "**What is the average BasePay ?**"
250 | ]
251 | },
252 | {
253 | "cell_type": "code",
254 | "execution_count": 18,
255 | "metadata": {},
256 | "outputs": [
257 | {
258 | "data": {
259 | "text/plain": [
260 | "66325.44884050643"
261 | ]
262 | },
263 | "execution_count": 18,
264 | "metadata": {},
265 | "output_type": "execute_result"
266 | }
267 | ],
268 | "source": [
269 | "sal['BasePay'].mean()"
270 | ]
271 | },
272 | {
273 | "cell_type": "markdown",
274 | "metadata": {},
275 | "source": [
276 | "** What is the highest amount of OvertimePay in the dataset ? **"
277 | ]
278 | },
279 | {
280 | "cell_type": "code",
281 | "execution_count": 19,
282 | "metadata": {},
283 | "outputs": [
284 | {
285 | "data": {
286 | "text/plain": [
287 | "245131.88"
288 | ]
289 | },
290 | "execution_count": 19,
291 | "metadata": {},
292 | "output_type": "execute_result"
293 | }
294 | ],
295 | "source": [
296 | "sal['OvertimePay'].max()"
297 | ]
298 | },
299 | {
300 | "cell_type": "markdown",
301 | "metadata": {},
302 | "source": [
303 | "** What is the job title of JOSEPH DRISCOLL ? Note: Use all caps, otherwise you may get an answer that doesn't match up (there is also a lowercase Joseph Driscoll). **"
304 | ]
305 | },
306 | {
307 | "cell_type": "code",
308 | "execution_count": 31,
309 | "metadata": {},
310 | "outputs": [
311 | {
312 | "data": {
313 | "text/plain": [
314 | "24 CAPTAIN, FIRE SUPPRESSION\n",
315 | "Name: JobTitle, dtype: object"
316 | ]
317 | },
318 | "execution_count": 31,
319 | "metadata": {},
320 | "output_type": "execute_result"
321 | }
322 | ],
323 | "source": [
324 | "sal[sal['EmployeeName']=='JOSEPH DRISCOLL']['JobTitle']"
325 | ]
326 | },
327 | {
328 | "cell_type": "markdown",
329 | "metadata": {},
330 | "source": [
331 | "** How much does JOSEPH DRISCOLL make (including benefits)? **"
332 | ]
333 | },
334 | {
335 | "cell_type": "code",
336 | "execution_count": 32,
337 | "metadata": {},
338 | "outputs": [
339 | {
340 | "data": {
341 | "text/plain": [
342 | "24 270324.91\n",
343 | "Name: TotalPayBenefits, dtype: float64"
344 | ]
345 | },
346 | "execution_count": 32,
347 | "metadata": {},
348 | "output_type": "execute_result"
349 | }
350 | ],
351 | "source": [
352 | "sal[sal['EmployeeName']=='JOSEPH DRISCOLL']['TotalPayBenefits']"
353 | ]
354 | },
355 | {
356 | "cell_type": "markdown",
357 | "metadata": {},
358 | "source": [
359 | "** What is the name of highest paid person (including benefits)?**"
360 | ]
361 | },
362 | {
363 | "cell_type": "code",
364 | "execution_count": 41,
365 | "metadata": {},
366 | "outputs": [
367 | {
368 | "data": {
369 | "text/plain": [
370 | "0 True\n",
371 | "1 False\n",
372 | "2 False\n",
373 | "3 False\n",
374 | "4 False\n",
375 | " ... \n",
376 | "148649 False\n",
377 | "148650 False\n",
378 | "148651 False\n",
379 | "148652 False\n",
380 | "148653 False\n",
381 | "Name: TotalPayBenefits, Length: 148654, dtype: bool"
382 | ]
383 | },
384 | "execution_count": 41,
385 | "metadata": {},
386 | "output_type": "execute_result"
387 | }
388 | ],
389 | "source": [
390 | "sal['TotalPayBenefits']==sal['TotalPayBenefits'].max()"
391 | ]
392 | },
393 | {
394 | "cell_type": "code",
395 | "execution_count": 42,
396 | "metadata": {},
397 | "outputs": [
398 | {
399 | "data": {
400 | "text/html": [
401 | "\n",
402 | "\n",
415 | "
\n",
416 | " \n",
417 | " \n",
418 | " | \n",
419 | " Id | \n",
420 | " EmployeeName | \n",
421 | " JobTitle | \n",
422 | " BasePay | \n",
423 | " OvertimePay | \n",
424 | " OtherPay | \n",
425 | " Benefits | \n",
426 | " TotalPay | \n",
427 | " TotalPayBenefits | \n",
428 | " Year | \n",
429 | " Notes | \n",
430 | " Agency | \n",
431 | " Status | \n",
432 | "
\n",
433 | " \n",
434 | " \n",
435 | " \n",
436 | " 0 | \n",
437 | " 1 | \n",
438 | " NATHANIEL FORD | \n",
439 | " GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY | \n",
440 | " 167411.18 | \n",
441 | " 0.0 | \n",
442 | " 400184.25 | \n",
443 | " NaN | \n",
444 | " 567595.43 | \n",
445 | " 567595.43 | \n",
446 | " 2011 | \n",
447 | " NaN | \n",
448 | " San Francisco | \n",
449 | " NaN | \n",
450 | "
\n",
451 | " \n",
452 | "
\n",
453 | "
"
454 | ],
455 | "text/plain": [
456 | " Id EmployeeName JobTitle \\\n",
457 | "0 1 NATHANIEL FORD GENERAL MANAGER-METROPOLITAN TRANSIT AUTHORITY \n",
458 | "\n",
459 | " BasePay OvertimePay OtherPay Benefits TotalPay TotalPayBenefits \\\n",
460 | "0 167411.18 0.0 400184.25 NaN 567595.43 567595.43 \n",
461 | "\n",
462 | " Year Notes Agency Status \n",
463 | "0 2011 NaN San Francisco NaN "
464 | ]
465 | },
466 | "execution_count": 42,
467 | "metadata": {},
468 | "output_type": "execute_result"
469 | }
470 | ],
471 | "source": [
472 | "sal[sal['TotalPayBenefits']==sal['TotalPayBenefits'].max()]"
473 | ]
474 | },
475 | {
476 | "cell_type": "code",
477 | "execution_count": 44,
478 | "metadata": {},
479 | "outputs": [
480 | {
481 | "data": {
482 | "text/plain": [
483 | "0 NATHANIEL FORD\n",
484 | "Name: EmployeeName, dtype: object"
485 | ]
486 | },
487 | "execution_count": 44,
488 | "metadata": {},
489 | "output_type": "execute_result"
490 | }
491 | ],
492 | "source": [
493 | "sal[sal['TotalPayBenefits']==sal['TotalPayBenefits'].max()]['EmployeeName']"
494 | ]
495 | },
496 | {
497 | "cell_type": "markdown",
498 | "metadata": {},
499 | "source": [
500 | "** What is the name of lowest paid person (including benefits)?**"
501 | ]
502 | },
503 | {
504 | "cell_type": "code",
505 | "execution_count": 47,
506 | "metadata": {},
507 | "outputs": [
508 | {
509 | "data": {
510 | "text/plain": [
511 | "148653 Joe Lopez\n",
512 | "Name: EmployeeName, dtype: object"
513 | ]
514 | },
515 | "execution_count": 47,
516 | "metadata": {},
517 | "output_type": "execute_result"
518 | }
519 | ],
520 | "source": [
521 | "sal[sal['TotalPayBenefits']==sal['TotalPayBenefits'].min()]['EmployeeName']"
522 | ]
523 | },
524 | {
525 | "cell_type": "markdown",
526 | "metadata": {},
527 | "source": [
528 | "** What was the average (mean) BasePay of all employees per year? (2011-2014) ? **"
529 | ]
530 | },
531 | {
532 | "cell_type": "code",
533 | "execution_count": 48,
534 | "metadata": {},
535 | "outputs": [
536 | {
537 | "data": {
538 | "text/plain": [
539 | "Year\n",
540 | "2011 63595.956517\n",
541 | "2012 65436.406857\n",
542 | "2013 69630.030216\n",
543 | "2014 66564.421924\n",
544 | "Name: BasePay, dtype: float64"
545 | ]
546 | },
547 | "execution_count": 48,
548 | "metadata": {},
549 | "output_type": "execute_result"
550 | }
551 | ],
552 | "source": [
553 | "sal.groupby('Year').mean()['BasePay']"
554 | ]
555 | },
556 | {
557 | "cell_type": "code",
558 | "execution_count": 51,
559 | "metadata": {},
560 | "outputs": [
561 | {
562 | "data": {
563 | "text/plain": [
564 | "array([2011, 2012, 2013, 2014])"
565 | ]
566 | },
567 | "execution_count": 51,
568 | "metadata": {},
569 | "output_type": "execute_result"
570 | }
571 | ],
572 | "source": [
573 | "sal['Year'].unique()"
574 | ]
575 | },
576 | {
577 | "cell_type": "markdown",
578 | "metadata": {},
579 | "source": [
580 | "** How many unique job titles are there? **"
581 | ]
582 | },
583 | {
584 | "cell_type": "code",
585 | "execution_count": 52,
586 | "metadata": {},
587 | "outputs": [
588 | {
589 | "data": {
590 | "text/plain": [
591 | "2159"
592 | ]
593 | },
594 | "execution_count": 52,
595 | "metadata": {},
596 | "output_type": "execute_result"
597 | }
598 | ],
599 | "source": [
600 | "sal['JobTitle'].nunique()"
601 | ]
602 | },
603 | {
604 | "cell_type": "markdown",
605 | "metadata": {},
606 | "source": [
607 | "** What are the top 5 most common jobs? **"
608 | ]
609 | },
610 | {
611 | "cell_type": "code",
612 | "execution_count": 54,
613 | "metadata": {},
614 | "outputs": [
615 | {
616 | "data": {
617 | "text/plain": [
618 | "Transit Operator 7036\n",
619 | "Special Nurse 4389\n",
620 | "Registered Nurse 3736\n",
621 | "Public Svc Aide-Public Works 2518\n",
622 | "Police Officer 3 2421\n",
623 | "Name: JobTitle, dtype: int64"
624 | ]
625 | },
626 | "execution_count": 54,
627 | "metadata": {},
628 | "output_type": "execute_result"
629 | }
630 | ],
631 | "source": [
632 | "sal['JobTitle'].value_counts().head(5)"
633 | ]
634 | },
635 | {
636 | "cell_type": "markdown",
637 | "metadata": {},
638 | "source": [
639 | "** How many Job Titles were represented by only one person in 2013? (e.g. Job Titles with only one occurence in 2013?) **"
640 | ]
641 | },
642 | {
643 | "cell_type": "code",
644 | "execution_count": 55,
645 | "metadata": {},
646 | "outputs": [
647 | {
648 | "data": {
649 | "text/plain": [
650 | "0 False\n",
651 | "1 False\n",
652 | "2 False\n",
653 | "3 False\n",
654 | "4 False\n",
655 | " ... \n",
656 | "148649 False\n",
657 | "148650 False\n",
658 | "148651 False\n",
659 | "148652 False\n",
660 | "148653 False\n",
661 | "Name: Year, Length: 148654, dtype: bool"
662 | ]
663 | },
664 | "execution_count": 55,
665 | "metadata": {},
666 | "output_type": "execute_result"
667 | }
668 | ],
669 | "source": [
670 | "sal['Year']==2013"
671 | ]
672 | },
673 | {
674 | "cell_type": "code",
675 | "execution_count": 60,
676 | "metadata": {},
677 | "outputs": [
678 | {
679 | "data": {
680 | "text/plain": [
681 | "202"
682 | ]
683 | },
684 | "execution_count": 60,
685 | "metadata": {},
686 | "output_type": "execute_result"
687 | }
688 | ],
689 | "source": [
690 | "sum(sal[sal['Year']==2013]['JobTitle'].value_counts() == 1)"
691 | ]
692 | },
693 | {
694 | "cell_type": "markdown",
695 | "metadata": {},
696 | "source": [
697 | "** How many people have the word Chief in their job title? (This is pretty tricky) **"
698 | ]
699 | },
700 | {
701 | "cell_type": "code",
702 | "execution_count": 64,
703 | "metadata": {},
704 | "outputs": [],
705 | "source": [
706 | "#custom function\n",
707 | "def Chief_S(title):\n",
708 | " if 'chief' in title.lower().split():\n",
709 | " return True\n",
710 | " else:\n",
711 | " return False"
712 | ]
713 | },
714 | {
715 | "cell_type": "code",
716 | "execution_count": 65,
717 | "metadata": {},
718 | "outputs": [
719 | {
720 | "data": {
721 | "text/plain": [
722 | "477"
723 | ]
724 | },
725 | "execution_count": 65,
726 | "metadata": {},
727 | "output_type": "execute_result"
728 | }
729 | ],
730 | "source": [
731 | "sum(sal['JobTitle'].apply(Chief_S))\n",
732 | "#alt-> sum(sal['JobTitle'].apply(lambda x:Chief_S(x)))"
733 | ]
734 | },
735 | {
736 | "cell_type": "markdown",
737 | "metadata": {},
738 | "source": [
739 | "** Is there a correlation between length of the Job Title string and Salary? **"
740 | ]
741 | },
742 | {
743 | "cell_type": "code",
744 | "execution_count": 66,
745 | "metadata": {},
746 | "outputs": [],
747 | "source": [
748 | "sal['title_len']=sal['JobTitle'].apply(len)"
749 | ]
750 | },
751 | {
752 | "cell_type": "code",
753 | "execution_count": 68,
754 | "metadata": {},
755 | "outputs": [
756 | {
757 | "data": {
758 | "text/html": [
759 | "\n",
760 | "\n",
773 | "
\n",
774 | " \n",
775 | " \n",
776 | " | \n",
777 | " title_len | \n",
778 | "
\n",
779 | " \n",
780 | " \n",
781 | " \n",
782 | " title_len | \n",
783 | " 1.0 | \n",
784 | "
\n",
785 | " \n",
786 | "
\n",
787 | "
"
788 | ],
789 | "text/plain": [
790 | " title_len\n",
791 | "title_len 1.0"
792 | ]
793 | },
794 | "execution_count": 68,
795 | "metadata": {},
796 | "output_type": "execute_result"
797 | }
798 | ],
799 | "source": [
800 | "sal[['title_len','JobTitle']].corr()"
801 | ]
802 | }
803 | ],
804 | "metadata": {
805 | "kernelspec": {
806 | "display_name": "Python 3",
807 | "language": "python",
808 | "name": "python3"
809 | },
810 | "language_info": {
811 | "codemirror_mode": {
812 | "name": "ipython",
813 | "version": 3
814 | },
815 | "file_extension": ".py",
816 | "mimetype": "text/x-python",
817 | "name": "python",
818 | "nbconvert_exporter": "python",
819 | "pygments_lexer": "ipython3",
820 | "version": "3.8.5"
821 | }
822 | },
823 | "nbformat": 4,
824 | "nbformat_minor": 1
825 | }
826 |
--------------------------------------------------------------------------------
/ML basics/df2:
--------------------------------------------------------------------------------
1 | a,b,c,d
2 | 0.039761986133905136,0.2185172274750622,0.10342298051665423,0.9579042338107532
3 | 0.9372879037285884,0.04156728027953449,0.8991254222382951,0.9776795571253272
4 | 0.7805044779316328,0.008947537857148302,0.5578084027546968,0.7975104497549266
5 | 0.6727174963492204,0.24786984946279625,0.2640713103088026,0.44435791644122935
6 | 0.05382860859967886,0.5201244020579979,0.5522642392797277,0.19000759632053632
7 | 0.2860433671280178,0.5934650440000543,0.9073072637456548,0.6378977150631427
8 | 0.4304355863327313,0.16623013749421356,0.4693825447762464,0.4977008828313123
9 | 0.3122955538295512,0.5028232900921878,0.8066087010958843,0.8505190941429479
10 | 0.1877648514121828,0.9970746427719338,0.8959552961495315,0.530390137569463
11 | 0.9081621790575398,0.23272641071536715,0.4141382611943452,0.4320069001558664
12 |
--------------------------------------------------------------------------------
/ML basics/df3:
--------------------------------------------------------------------------------
1 | a,b,c,d
2 | 0.33627233637218457,0.3250110687231613,0.0010196408377848298,0.40140189720154196
3 | 0.9802649683525543,0.8318353550307083,0.7722883679048234,0.0764853766737329
4 | 0.4803872425787493,0.6868393727588189,0.0005746529724915961,0.7467584765703297
5 | 0.5021060966555528,0.305141589099338,0.7686084672112038,0.6546851999553737
6 | 0.856602037495124,0.17144842884142553,0.1579712921580272,0.321231483243839
7 | 0.705973481075289,0.6326888750520957,0.5040165014387529,0.313622137930175
8 | 0.16672441593320897,0.26973375516469766,0.6085693621704945,0.8744271309803985
9 | 0.054040593105187384,0.9664396927503365,0.06559570391295622,0.10944814243870982
10 | 0.7578390928377232,0.5238852910755655,0.5272102788067565,0.22693647922759852
11 | 0.4253833221643635,0.21370125617072533,0.04902015655465275,0.2875979408000324
12 | 0.17683680950823633,0.16653356599751545,0.7793735548048444,0.9364861878339583
13 | 0.22154585464980914,0.6608213750146527,0.8117815897698992,0.39256501309009495
14 | 0.0013503699623585996,0.45018589348741,0.07646946429641399,0.7533679412337956
15 | 0.5373231464576197,0.6237788989227707,0.07185135746180549,0.7512000510131361
16 | 0.03228400416591837,0.050181912070182855,0.8975624866722012,0.6141292789106866
17 | 0.48880423301062903,0.091374385826271,0.20380306481467603,0.17970794983894278
18 | 0.8211155924257206,0.19140670507340207,0.7569623666417657,0.5923832772664127
19 | 0.202698689394757,0.10397814468661737,0.3422364309240138,0.7876262313490752
20 | 0.18521752139529557,0.7515544279051898,0.6127372143065575,0.08842911001592957
21 | 0.8428103260014432,0.8423568831968558,0.20658856394692127,0.3899396257210873
22 | 0.8440331226076548,0.4499813871558678,0.13219758424637973,0.10393829250389419
23 | 0.16387799113366353,0.11235392778846287,0.2190873453625617,0.059326947648009165
24 | 0.33190219209756044,0.8080268099068179,0.5101723811744628,0.3875393176456404
25 | 0.5016420034152848,0.9413004247947276,0.3237529405161287,0.6909106696226429
26 | 0.37151955223345456,0.8763309746266572,0.14435751886650183,0.594585432452638
27 | 0.994328979706033,0.4147718333263406,0.4402798249423783,0.547651126220843
28 | 0.00679971308197036,0.4603723951885834,0.09186946680903141,0.5517256896624096
29 | 0.2038574471303466,0.30806922777314416,0.24075597273301397,0.9809566340486252
30 | 0.6057790651048847,0.380763712827924,0.7929227833553262,0.8916493533755211
31 | 0.4773044457751652,0.18348921227398018,0.8665347875764602,0.20115355252830047
32 | 0.5562623859121136,0.12741251095832018,0.5668972900386939,0.37582831435355124
33 | 0.6094551685345265,0.4238303848935505,0.06312888353038026,0.9296411624795633
34 | 0.2830144384308311,0.34994725136301763,0.7866534502340554,0.5685738387259147
35 | 0.6083096069069768,0.8547908027081947,0.1394453009020623,0.4875846563151508
36 | 0.7950019425815656,0.921310174399855,0.7131410421635475,0.6854997471830577
37 | 0.7029167242052079,0.9942208895868356,0.1578293248971958,0.7526027061070005
38 | 0.009322285637569871,0.8523851062431688,0.9869823482550834,0.34136544005312386
39 | 0.12852080402532928,0.596241240318469,0.3968413103480981,0.7848552860308265
40 | 0.002236448759129761,0.5637356470041152,0.8886645729272742,0.37386485230236577
41 | 0.7842827419476831,0.4992192667366049,0.45170232654581244,0.3770787550311161
42 | 0.9158907842654865,0.6409957558601469,0.49568773910025465,0.20171709368134993
43 | 0.19497218789426773,0.07799977284048609,0.45164626525047646,0.41569643117464683
44 | 0.18132400560860884,0.5661707175707383,0.6056319811909233,0.4165675770381041
45 | 0.38488773142764265,0.9821137122971909,0.5027171764378315,0.813578153903196
46 | 0.293214680847236,0.13178425655004344,0.653358739460729,0.9163419033861513
47 | 0.24049964437381832,0.25836815014457226,0.8576721350402634,0.6353489072771664
48 | 0.7845072207604514,0.5549383922577203,0.9430359879805484,0.020917179653205498
49 | 0.4890808014256227,0.6437666545983554,0.04664450518739238,0.9578885394454532
50 | 0.4228457628977761,0.8689120616410727,0.7972507965819937,0.019856966453678848
51 | 0.9241867489910823,0.41850080577561566,0.4394385762716323,0.8024008068527704
52 | 0.8305625919210394,0.3108978272568762,0.6129356703058603,0.8716646405910411
53 | 0.09594336918253688,0.019040152853489145,0.8979912879493811,0.84308872060182
54 | 0.009327986936045307,0.8866217728884342,0.4970262702960242,0.5585917930674684
55 | 0.7659452276041034,0.021081125490953756,0.05379451175469152,0.13182088392280134
56 | 0.5137324258205391,0.03507429771742998,0.6188835497462247,0.47412112348613267
57 | 0.11358486552277647,0.5406403944158276,0.0729449248495877,0.5527552831548942
58 | 0.08956748867615882,0.11654922503912224,0.46266652129506614,0.32642602885962135
59 | 0.4211171586740562,0.6632165454855101,0.6309662913224898,0.8286446436953286
60 | 0.5637355341677186,0.9629205938326909,0.48836102148628124,0.179301852727608
61 | 0.5665145754302383,0.47465892280959876,0.7069399194676959,0.6843231102049017
62 | 0.7919669843727317,0.41286717347824753,0.2199075673075842,0.7190515874041887
63 | 0.4540253976165326,0.8591098044317296,0.05641593355299912,0.052499941434040465
64 | 0.8676454047696701,0.8060309968112127,0.7976554814027406,0.3095319522235279
65 | 0.4034305635707125,0.03613418459915807,0.3325763107210705,0.9512794915551748
66 | 0.20653241823964685,0.6811942258264632,0.1388068478997746,0.907449529319709
67 | 0.9099121743964399,0.6749347933657847,0.7193643552406551,0.5879654995595851
68 | 0.9521397233570815,0.3402404046288864,0.7324666461948954,0.8387632211906879
69 | 0.8421351523246728,0.961220138564085,0.4778471184712483,0.5306040734200057
70 | 0.7258327483128492,0.12740590844845978,0.5227115974518366,0.9165137051199156
71 | 0.39726230939877916,0.9205270920019915,0.37890315076336945,0.8293212927684726
72 | 0.5096842992720936,0.34492156831348975,0.21972392428167264,0.3239206526071199
73 | 0.41923610692712787,0.20316889038447328,0.6723821379431006,0.8138336994323886
74 | 0.5401022043036029,0.9921912472869507,0.07155264815748197,0.22235205692332194
75 | 0.6326231970067655,0.6711395741968569,0.5362098362111336,0.1269112826214921
76 | 0.0767867395670696,0.3565016862470717,0.25388441759642566,0.4242950025417688
77 | 0.4874105739319312,0.25271393595678326,0.7120803949787771,0.6989636412956753
78 | 0.865351123549325,0.47276683251320106,0.349365609886252,0.970488584408135
79 | 0.17522331971527527,0.858030698062132,0.014161641133221714,0.9590157903088603
80 | 0.5219950450807564,0.564292482855931,0.991807593090961,0.8793987668720515
81 | 0.8541851689759502,0.4312804455508483,0.9057447902854223,0.8400308135512039
82 | 0.24962152163352236,0.29976093447523944,0.016659801635567795,0.6113981828515243
83 | 0.5256246254031416,0.7025797018077921,0.45370147271924066,0.21847018115707095
84 | 0.7773168862825681,0.5807690145037084,0.05917681562835819,0.12207149221630365
85 | 0.2969398693899853,0.7101837014089161,0.10264566154018484,0.03802663652391913
86 | 0.13174726635317047,0.4049640420658098,0.10265639488345568,0.6313356859556932
87 | 0.5774537613732307,0.7950091343310087,0.6254072054481303,0.782880581402316
88 | 0.4569088828401272,0.3368057405210615,0.7644526823895249,0.7169545580826315
89 | 0.04405209275176336,0.2643936018285221,0.9125333461775873,0.14914103967117964
90 | 0.9507443774090862,0.027600609976992874,0.8764198054026865,0.879444004820502
91 | 0.5842083305136452,0.6274659945637009,0.5367451676231368,0.392889215931417
92 | 0.8955122098248628,0.7537782106513566,0.1604911709350293,0.5859829839384009
93 | 0.5952961818963642,0.7468739882549703,0.24275681153732187,0.5290670495598715
94 | 0.8312535242920208,0.1917211521709924,0.9220747852006578,0.1970401675822976
95 | 0.46147635658104025,0.2036694441526835,0.9732520838928433,0.09224453800897414
96 | 0.09164896639336784,0.5623431916696897,0.03226422662199835,0.09150761256404727
97 | 0.0027739897107698086,0.4861197117786701,0.2969232876902048,0.14349432537135687
98 | 0.5654476076298837,0.02937985987233005,0.9763755947396335,0.8867719187512502
99 | 0.2970657038748554,0.6517747699408414,0.8441592978236552,0.9189007059914814
100 | 0.18759092285878176,0.5612541486109694,0.24432183733750223,0.8822158061277604
101 | 0.48605710009116976,0.2611925264780821,0.6175926575199631,0.8091933051351528
102 | 0.06034437375304058,0.5013711741578023,0.8991711485489406,0.2201862984008226
103 | 0.25535590055309276,0.3516679243024956,0.5364893477060845,0.03701102753929619
104 | 0.31328688355417955,0.4763862834554521,0.9202864658634526,0.7631840375981793
105 | 0.10431853303024763,0.2851353342832237,0.41775437331758203,0.516107005989879
106 | 0.42920953935242556,0.6462710684488812,0.5332567085391797,0.28323321173177096
107 | 0.6125472392222696,0.9333035762795235,0.3152303713785083,0.5077422637945377
108 | 0.4626467454001375,0.7057207724407146,0.947799261099005,0.41181935062478436
109 | 0.7069326445918329,0.6083604272727989,0.6411963088604483,0.8910570722746401
110 | 0.35738719547306785,0.1749638427392035,0.7126113738291732,0.3418569615350563
111 | 0.8996328040943408,0.07215553808738318,0.950727768044252,0.014300048486940553
112 | 0.04724141430866824,0.244668538365997,0.07762066561538628,0.7853375044908923
113 | 0.16085880428253185,0.5143846890922119,0.12297488332527828,0.8819848358310923
114 | 0.42142592069833285,0.12287317618823113,0.30114178431109306,0.7939797237336467
115 | 0.8815288737565792,0.39151559779951806,0.6958394710958453,0.7814010010773164
116 | 0.44394332894315436,0.07553068723802092,0.37275528784516443,0.7615758767045683
117 | 0.374409464028312,0.5818786972823738,0.08377247884294892,0.3683448657746946
118 | 0.9899294933222142,0.1187671466861393,0.4014778191591516,0.5685096489097043
119 | 0.06915770697644774,0.6090114308381936,0.6220271462009369,0.559585715262603
120 | 0.15955405478675377,0.7359109918618787,0.5084386068305188,0.7045890693080764
121 | 0.23296787478109893,0.03259270193505115,0.33995869443762594,0.056452241818247595
122 | 0.9886431070907975,0.7427660704163951,0.031265351045515644,0.7292813741972919
123 | 0.25761140232278557,0.9690281519031503,0.2205030584495753,0.1340893432229462
124 | 0.48712877508762054,0.4065577726204984,0.5439985356525793,0.6179781655968418
125 | 0.02453108907718138,0.7449006851219485,0.016648998371553758,0.7632656212788141
126 | 0.03249802874858365,0.029654017485838513,0.14598435219688843,0.6408019322014568
127 | 0.3532835865948927,0.4939428604587679,0.3473581714765762,0.9615931874740967
128 | 0.2918184026405345,0.8537398124259274,0.6155473635818071,0.3552247355799426
129 | 0.12703792681969273,0.12599178150105628,0.4336252645614862,0.3654410053985607
130 | 0.6810643435533861,0.3148121150987331,0.399335464667698,0.030530634936642875
131 | 0.9528797882146893,0.12908033520074214,0.8098651406333642,0.7013259143682808
132 | 0.23536709423598234,0.37478763941226545,0.19842775634944565,0.7562456005854551
133 | 0.4318457382401344,0.9967400188922231,0.6626892965429728,0.5111869508038237
134 | 0.634722769256735,0.33641812662999937,0.20032521735368292,0.5413886778285673
135 | 0.30105662499849395,0.8239463258938328,0.7637786846988948,0.6552935262376625
136 | 0.4441603799049635,0.3377263099523602,0.8155043986264426,0.06848219164654568
137 | 0.04548148661580664,0.2709726235565958,0.12465858380131734,0.6591615115575256
138 | 0.03471336985920148,0.7122901580430191,0.9701661055346469,0.6643970613424024
139 | 0.9520651381177343,0.3756720203771867,0.3496562090980858,0.32632321104344
140 | 0.8442220000866414,0.5107899461278133,0.902689007858361,0.5426324179894695
141 | 0.34697608473928676,0.29136838696844236,0.4082087104041593,0.512158775785004
142 | 0.28822069677111695,0.2140493866097244,0.8101917324399203,0.5005469421934069
143 | 0.8098131526492203,0.60964587312313,0.21065530014928446,0.8726083090048955
144 | 0.21337066838328622,0.9415404807508847,0.8702682174016022,0.6119646007822085
145 | 0.16678272406244066,0.5636359806161614,0.6838634496961317,0.17855139525600738
146 | 0.9606328566850059,0.10116986534500116,0.7352811690185582,0.7111515299969101
147 | 0.6948295769243019,0.5487648112166836,0.5971291356412485,0.5862243401316085
148 | 0.25466959663484046,0.03759741654816673,0.18492537417920019,0.3152077908652684
149 | 0.3538690888280669,0.6923581246513688,0.3413271435268187,0.028229200117313447
150 | 0.6643494763809131,0.46728315384847796,0.8177161446969633,0.6303374347843743
151 | 0.7550330801551735,0.5106606444950341,0.21877641466826825,0.22235314483650004
152 | 0.15145309679350605,0.0401938695342976,0.7530073889402137,0.3690417275588833
153 | 0.9760685110956365,0.2832833013287801,0.4101558258510867,0.8616901800434409
154 | 0.02985473595547594,0.7877747487646194,0.23130056297184654,0.9396871681614409
155 | 0.43602827118441545,0.49652538353669173,0.8350577337150469,0.7952136319405787
156 | 0.3093890857172835,0.46716935030046847,0.871500307938109,0.8657480183233166
157 | 0.2456914356877259,0.3990168265017442,0.30165988670453503,0.5018761389125409
158 | 0.773366902423847,0.7898400491523931,0.05466436722123824,0.6342304807902118
159 | 0.4355946549280614,0.21559267306867713,0.6945566395803673,0.06647684585216618
160 | 0.9531814883655881,0.5729141047206507,0.3284221987073983,0.019349445686161593
161 | 0.8554531512435155,0.4048714779813064,0.8191084513172708,0.8869425223890415
162 | 0.22378459698214903,0.6316513388678091,0.59867596778096,0.5453828996141791
163 | 0.7521968015369107,0.9383241204971419,0.26832367689036263,0.9236933301521059
164 | 0.2538420334987834,0.35565504542848503,0.9918313814463339,0.40459295128860495
165 | 0.8512943399155619,0.8145754646436317,0.2300391756142256,0.7616764915071941
166 | 0.9089776204805422,0.06301564577463226,0.6886391518337929,0.143418841185596
167 | 0.6668972843336031,0.9906466338305843,0.8830389070595589,0.12366815086187177
168 | 0.41012099619110054,0.7086901572451703,0.21852541360024869,0.3997955763014477
169 | 0.7880107069926059,0.7394352290465452,0.9389903778450293,0.7113562153904642
170 | 0.16317523834417125,0.7741475223419458,0.5724701320943584,0.859481296551717
171 | 0.5457473442888628,0.3729328111922159,0.51884039225534,0.7386824796906086
172 | 0.6908968027745845,0.08280627925444328,0.06723392896082436,0.24671328573661044
173 | 0.8520623845068883,0.5969710472617193,0.7697327278098809,0.19740658652708765
174 | 0.2574451556296956,0.6621468830829318,0.8412805097791126,0.8651817484405847
175 | 0.01981522137598979,0.24439952915330643,0.28254858839247365,0.04322511390909678
176 | 0.519024275152464,0.9831608667734769,0.7771341747545258,0.6718284665140184
177 | 0.00041033035366877524,0.12073612441607873,0.9580945140036871,0.49285436029614804
178 | 0.765613057681015,0.9840407827973151,0.4242176295457398,0.5253199938914017
179 | 0.20341140639091282,0.5991055566146712,0.7023042489065016,0.4747723187558055
180 | 0.7400900050414457,0.17271094754083793,0.4240999290757701,0.9793393433428702
181 | 0.25820029030355063,0.2728668186538884,0.6322054634098652,0.15238618337531795
182 | 0.5328537481137854,0.5311755568123224,0.7124676069252257,0.7543900408669565
183 | 0.40499751324417577,0.07053712315111249,0.5414349568194385,0.8602525352837128
184 | 0.7167405690532722,0.7655360893975195,0.5152671741703145,0.9190770436346825
185 | 0.88961057246162,0.6254855074738592,0.29409673513750034,0.7109777546908304
186 | 0.4293142758847388,0.07500440719979173,0.8765165097980312,0.21529622822921213
187 | 0.2589801994183899,0.06160881811943064,0.3056520716803025,0.982334083651339
188 | 0.7902310273315167,0.7894298793784357,0.48208921502203306,0.6202306441826341
189 | 0.22466284393364877,0.12148597193505006,0.46103311942117764,0.3483662428684401
190 | 0.57742763442928,0.11828978574400584,0.4131676012891534,0.609522879857421
191 | 0.37324999603891995,0.6762975414394721,0.9199544769836527,0.6727504995045568
192 | 0.711766017902915,0.7939550457590105,0.898307777950035,0.3031826214956438
193 | 0.5369879704146969,0.0672550683511125,0.521581223662644,0.8497801425248154
194 | 0.47219976377187045,0.18238353765328474,0.64134961311078,0.6349174852105679
195 | 0.14624800172865604,0.27381356996678785,0.8224393469115399,0.26937877539963895
196 | 0.6794486644723616,0.777012108386266,0.818370703325512,0.3194693652715377
197 | 0.26256894387243823,0.8155410401668229,0.7696362130828602,0.3430597160802066
198 | 0.9534675119281499,0.4104432184290736,0.8006056593860142,0.005469418655068337
199 | 0.22697530159965018,0.3562781425906293,0.42398767253513214,0.5660547467854499
200 | 0.46596218753247365,0.6166765020752157,0.6519869790728867,0.85236029707832
201 | 0.22480145227830328,0.8716277153913593,0.9538694917004743,0.036617369018068446
202 | 0.08734034737180296,0.6818598657649276,0.7118099804139644,0.027208495222140416
203 | 0.22675117581361248,0.5093225169066515,0.2527763043257748,0.9639863410064701
204 | 0.8588116851970607,0.010648950953201508,0.8614073660606832,0.6625653273689048
205 | 0.4032633523884259,0.7190336009781118,0.46849644053207895,0.6931989847582659
206 | 0.6483604621209498,0.5821755673849227,0.1163795863804884,0.8319955295555067
207 | 0.33164962908476237,0.7666367603030417,0.45294386557535204,0.9719452072879635
208 | 0.24813923094249446,0.16216162422596236,0.920552793506166,0.07422765299018297
209 | 0.7748669260198029,0.5082087357106482,0.3810680042430784,0.006379281376213353
210 | 0.0049458797302726065,0.5287299040999536,0.2220534845790877,0.35056975084558806
211 | 0.591143058163664,0.8281272713471354,0.10557105079938112,0.3960752060779493
212 | 0.46918815061405417,0.5598337169460946,0.6153953549781171,0.32641048588855914
213 | 0.5267835440102993,0.8921297487342501,0.7969345924884385,0.607928404254362
214 | 0.6575218281892343,0.6133344689697782,0.026674317422172078,0.6794473556002295
215 | 0.8668190580498522,0.46775642509925586,0.7806493405916398,0.8496739290235378
216 | 0.1244648752899119,0.36771182500646804,0.747766813278335,0.005027986269138474
217 | 0.326904788429768,0.8301066768156419,0.5583885615475986,0.35043091639101154
218 | 0.21878840733396754,0.30890306323298644,0.26063368013827903,0.19940888399650192
219 | 0.47725115799390283,0.4519491379395325,0.9390538584039441,0.28414276135065464
220 | 0.08375430918146376,0.7513028963268265,0.10330365544229436,0.8140028380808133
221 | 0.7518322565413479,0.35891329691832896,0.626080838727002,0.5718455198448357
222 | 0.8393551543401457,0.9798296662023601,0.1619441133529892,0.9050804752896568
223 | 0.2912547699822662,0.8102055466256184,0.029132319044678723,0.3158557431833995
224 | 0.9148656321018671,0.8358907745950482,0.13959370006216,0.11068322090759253
225 | 0.6462408716160324,0.2066776752496059,0.7556240037237695,0.08049990019889608
226 | 0.3229890299355197,0.4421092716998414,0.9774141928524789,0.4826916383029839
227 | 0.19899537213792595,0.6483881552956826,0.9603949241226026,0.7460398701642762
228 | 0.5929616245255648,0.5036138878742359,0.18643020378853825,0.3734615212449818
229 | 0.8606455272824358,0.9449017405763951,0.14989514119892955,0.40871761666733475
230 | 0.09117712354115515,0.6484436120663334,0.7448051068584821,0.4718552300107698
231 | 0.6481453770004487,0.10128509718921264,0.11964736864520609,0.8938592498582604
232 | 0.8586645297808357,0.43434004725542574,0.19382024972204337,0.4701398582696664
233 | 0.5752608568445848,0.5289492967771696,0.17095235409262333,0.808798455412136
234 | 0.04099322454733356,0.7027125073321747,0.3247808840325497,0.46652225478299536
235 | 0.8545900646258339,0.9000924844460604,0.6711822725580922,0.46373836343886
236 | 0.9784349555067512,0.47815086615571867,0.31653408382502835,0.8409104059461735
237 | 0.08965086313576731,0.35615798789552344,0.679037507855203,0.576862661578551
238 | 0.822147160688062,0.22044591928818968,0.622025707499033,0.6356217585107622
239 | 0.9659284010312518,0.7137133305963123,0.42468924235462546,0.8825389487233778
240 | 0.2652004177722498,0.5565624836551789,0.7138942985137977,0.04313867103058555
241 | 0.7204906388512048,0.19300261774017968,0.5553078337805508,0.848623095012623
242 | 0.3137020128453659,0.06213788668138398,0.1104521743306962,0.268482638609996
243 | 0.3339131616047203,0.22286051556127495,0.9302085063006681,0.18969921720557925
244 | 0.47371881012743333,0.27649916957853926,0.918582911002254,0.9077321559115206
245 | 0.16436753572470753,0.41350363461955386,0.1191110629612997,0.5546038843760451
246 | 0.4779404086003456,0.26699235009794486,0.6314602368060491,0.45015079807521685
247 | 0.7526728792121127,0.6235832861546013,0.07095039872912934,0.6533879557008555
248 | 0.5431474850322893,0.612183500299674,0.1687261650843036,0.3172179764612265
249 | 0.2273371617923714,0.865680153487757,0.5827248247756568,0.07328306898709702
250 | 0.12611491247624174,0.5706376312978149,0.28098697486020496,0.9582441234112288
251 | 0.5968739274269275,0.39542100773592714,0.9988692472082709,0.37827430309233656
252 | 0.7771754323352396,0.2697182152654869,0.6403988986023146,0.32137054416117183
253 | 0.593221449278064,0.6959371750998876,0.818237870222789,0.8425875763640115
254 | 0.6150323759787362,0.8300438488533514,0.011941853213758402,0.8647488663500092
255 | 0.2029326067858479,0.2501485915782097,0.20112813726763568,0.03721096985060468
256 | 0.6863936364279091,0.3761179178286703,0.28281992377497234,0.26245689109379067
257 | 0.4965672155028681,0.7675916426266497,0.38879712109112063,0.9408961704746303
258 | 0.14110932738953297,0.7667366428562539,0.5154150569336301,0.8871155170495236
259 | 0.32517727533261,0.13810804974144586,0.8817286203276805,0.8923770435680616
260 | 0.13118415251772886,0.4724813744322741,0.6965185434293946,0.8809271527639683
261 | 0.9545553958345672,0.6911555060264112,0.3461363476444005,0.4577135252289437
262 | 0.604008641577086,0.4049278320866372,0.5576335559750655,0.4584690061172756
263 | 0.3664279387231145,0.9210977637552976,0.9259396184708046,0.6187373590686066
264 | 0.6926921671269616,0.7056455178608063,0.49433124255882477,0.7895438902447587
265 | 0.5052823855197169,0.27106020463914704,0.8116754606279196,0.13565063043789083
266 | 0.7323902276376828,0.7698002360710043,0.713490159628528,0.1641449078306726
267 | 0.13259585151529407,0.6448586999650545,0.044208192437834914,0.7185432988678314
268 | 0.8081759656453317,0.45841661860325944,0.934434925986559,0.49426593400161334
269 | 0.5771885974706991,0.5881467177722365,0.6399022163604299,0.3771869575374359
270 | 0.48758352078031464,0.318129871239599,0.9047263034728386,0.04353003454869386
271 | 0.04224832101083087,0.7216713055488719,0.7702251485607872,0.14660520157118884
272 | 0.906805106288075,0.7142423782039156,0.6492463522633645,0.8089537150363935
273 | 0.22509844113441224,0.714232692976936,0.8863034807750806,0.27751663911557733
274 | 0.927654059080697,0.9472178956834688,0.3238547493736994,0.5313974196131103
275 | 0.7775026248564839,0.366416107883324,0.8913507785084809,0.7129585365523068
276 | 0.701804618572489,0.4754051551620687,0.1483109717640092,0.9629058012646603
277 | 0.6894417967365506,0.47535612758856627,0.27065181763195223,0.419800329085256
278 | 0.7953742832102751,0.017607321320034064,0.9239257373999976,0.9132899083842303
279 | 0.8191848786683833,0.7118868982916801,0.14719023292344702,0.1464878560040236
280 | 0.045339408502298784,0.07403816709500988,0.037202775722709025,0.5006006273772845
281 | 0.3441192304926166,0.8987140282588046,0.19702093237012608,0.513983027156217
282 | 0.09985412950064898,0.38986517472782023,0.40452962687964444,0.010392375900986517
283 | 0.9888796717166685,0.7490090895916841,0.2596294186935606,0.4584345985951731
284 | 0.45700114479701004,0.6806642081959364,0.3941616551891305,0.40932639017050887
285 | 0.22870742070902517,0.4961988524015096,0.04576544412910477,0.6340760637797336
286 | 0.2919710136894722,0.23278641925489285,0.4593479168264748,0.805534031204371
287 | 0.15472055351362923,0.1326050020325038,0.30005418331448175,0.6263173704010072
288 | 0.3855935973315787,0.1600210733653037,0.1192711036086127,0.6364894057985613
289 | 0.5165874702810029,0.10589536555440149,0.836027611899695,0.5425241910064632
290 | 0.06506145636136362,0.2624350464523646,0.60599389298748,0.20824553557216086
291 | 0.5270193642446159,0.8237728230700423,0.2892156336011714,0.8873126338662943
292 | 0.18919484363192918,0.27347313781194604,0.5558426186041985,0.26130285965720756
293 | 0.9560313727021582,0.2323345531125427,0.7109228911421767,0.005298262810604415
294 | 0.5869974306959455,0.551839108711318,0.9631838302064771,0.8748224414451556
295 | 0.8394707823008176,0.14649568514521594,0.42496652865473017,0.6479642065574542
296 | 0.17595067566465916,0.27079531300287973,0.7845760830918573,0.4745584618932701
297 | 0.48854926001759913,0.1258570249789137,0.8052540177863061,0.4192898556746709
298 | 0.6212556965708542,0.39723581820451603,0.07287399150297214,0.9018901762597358
299 | 0.808743928594653,0.22119133563026316,0.25823594549123996,0.30603153212577305
300 | 0.8124836819110055,0.7059634348701986,0.13599942020850242,0.1643630702649136
301 | 0.11270816568759079,0.8985217621210186,0.604783075454661,0.5780567207297427
302 | 0.2478577942115826,0.295514530036352,0.5819979510773367,0.4515276838478285
303 | 0.9341867123294322,0.5241038121822309,0.7349093167256558,0.10821307519543244
304 | 0.9694565801743523,0.7256657249365571,0.4405418454733141,0.3452875476762217
305 | 0.6670885234356302,0.7464035693791718,0.8968707150608508,0.23460678314729688
306 | 0.8787477148217263,0.3820328244947394,0.45637968898810977,0.6485079931308289
307 | 0.6424404543524919,0.5761307478342017,0.4331408926226967,0.8070040991923705
308 | 0.8211851866370176,0.4580361289778362,0.899692936602448,0.5713664527993445
309 | 0.21206397355409146,0.3912268103159252,0.9493983929247443,0.5071785967280376
310 | 0.19406700477640937,0.6150799842880748,0.2883587772964561,0.9708823993407812
311 | 0.8040167613971719,0.6547916899574816,0.5242140387878185,0.008780205484151038
312 | 0.22082426037740743,0.11535424028214303,0.08781152460137587,0.438316057668212
313 | 0.7728123968121355,0.8042828334383247,0.778690715189286,0.38988570049482363
314 | 0.010486111694698264,0.67277991682324,0.07681804627281064,0.9567609277214955
315 | 0.2668864381442586,0.1452568826511088,0.5707392691063333,0.928043972105489
316 | 0.0306102817857985,0.9055360655368343,0.034887490136228494,0.05714269034932418
317 | 0.8886345174201701,0.7309503027420534,0.4776862370499536,0.5670174424366347
318 | 0.8382970567348228,0.34554793003082007,0.3723476159629475,0.1813898979341001
319 | 0.9047848890963807,0.7989647025237637,0.1401466580893611,0.5676980198409542
320 | 0.32257033483181474,0.867562309325832,0.9853490867984394,0.3313521730872008
321 | 0.8833118951420463,0.22198267144590023,0.4053942167679826,0.7460413091565492
322 | 0.6440770031016559,0.6146438380554794,0.2702595340451578,0.6517116434459616
323 | 0.43700087729614623,0.1956640333780958,0.6307740960622968,0.13300572762864438
324 | 0.025545984518965392,0.13259337648090797,0.330639580102997,0.6783486119187357
325 | 0.11745760865685662,0.04655297692915128,0.01570496083384365,0.3324721623808766
326 | 0.9446708945818156,0.7922202276903331,0.13532115814545032,0.5680680471004171
327 | 0.9981105344574744,0.17895387698238285,0.41489085918398205,0.9787571737165199
328 | 0.2182957368236994,0.11369398768302719,0.4712035902042646,0.5810331859747123
329 | 0.3158753508670622,0.508766658109675,0.949177716201396,0.4525860098202471
330 | 0.5260068340155828,0.7165350507158287,0.4145499033093072,0.9405637896975582
331 | 0.6270735198783227,0.014296088209979407,0.3554936000082958,0.47110739130565116
332 | 0.49216742436131966,0.7918069585203404,0.045439755466691434,0.14126827560697552
333 | 0.9551074995452985,0.7609084606692946,0.7517853978688316,0.9362533190577099
334 | 0.26649052838492904,0.10660645060167617,0.6595673397416092,0.8182263625691235
335 | 0.7134956283945861,0.792888640733119,0.16544349103619738,0.461125700665701
336 | 0.21689092404412325,0.28764631665452123,0.9657542611199962,0.9395317857593563
337 | 0.771934364979116,0.47354176406587567,0.39974739561617967,0.4672920917655088
338 | 0.055858469316713455,0.5263535147518149,0.5470407265082073,0.9196145812835027
339 | 0.3233845430037011,0.3180589338229559,0.607742422700699,0.5865738777507155
340 | 0.7652566346579441,0.581821555249569,0.5172069398211208,0.18599163645542838
341 | 0.0034684801064233106,0.2225896795781036,0.9862480175146329,0.13982000478168466
342 | 0.5017790922024837,0.40773441324079573,0.05786902177165454,0.02346346342196437
343 | 0.5899299630888499,0.9347063659987582,0.10017779286159945,0.05031189728135643
344 | 0.7552541885045175,0.8692659914400955,0.1957645607498405,0.38721358997203004
345 | 0.020654345427079224,0.5187027132180971,0.9875380926266475,0.3013184844564526
346 | 0.6514969381102048,0.46072040727750285,0.594442754475653,0.6954838811441331
347 | 0.9185130194324117,0.04293106084778964,0.8363748903511994,0.9169946702125765
348 | 0.01575990734707533,0.6247692943585893,0.09038267623487206,0.05157924280558712
349 | 0.8607637728932239,0.9736616782275902,0.08111827087665802,0.8665656920735859
350 | 0.666744972708363,0.7696471975946282,0.6545167483950083,0.1836352141094666
351 | 0.14890415384126243,0.5882642074433254,0.47488324034977136,0.1401242764796421
352 | 0.9226772234533692,0.5110406596658441,0.5694788038165256,0.7467927879198694
353 | 0.21131539061769633,0.6825600857581313,0.7125768055425141,0.40832581447694716
354 | 0.6067351237433124,0.5936720758765013,0.12956326274296215,0.39895208390744263
355 | 0.07503423810335952,0.7692901398814894,0.5080248598788042,0.1132694830734321
356 | 0.6779853647179561,0.8785368744942339,0.2449159217780239,0.6984978366100005
357 | 0.5639290842821031,0.13429933931245086,0.41879712608263253,0.11511037033327509
358 | 0.4771948700443285,0.66869023375205,0.09436736601701601,0.2832346511771564
359 | 0.11389507788099285,0.9548819478014735,0.43162079915995966,0.13260141339156495
360 | 0.6933840471420535,0.8569772316175522,0.9438136873946976,0.2550298038407348
361 | 0.7667432308405324,0.7092661191253911,0.20467525417272814,0.00409058163964926
362 | 0.6033640307046173,0.5194782580436552,0.269802344368703,0.0252733853595154
363 | 0.7500958618175847,0.6816089568443191,0.06288441532040989,0.6625546198107677
364 | 0.14076814361824563,0.4000247200283372,0.3986400215241256,0.862359520497777
365 | 0.909050353083993,0.734140757406571,0.20627521456988696,0.022666933456822025
366 | 0.14164469015917447,0.46663482555229896,0.19226649392802975,0.6895759193711927
367 | 0.6384146831254898,0.8267776768248442,0.8248241916927097,0.9667913170456913
368 | 0.5995286449654652,0.6128661292930289,0.8076508959412709,0.5643091139270656
369 | 0.3660885061550925,0.6516894443881318,0.08279706016975263,0.02494681579030067
370 | 0.5343084901999381,0.4490041029823132,0.5485797015135121,0.8770746060099789
371 | 0.7591888502765555,0.7641772821881035,0.8627631867464572,0.790588149387367
372 | 0.11646298257714938,0.712586114834284,0.17850893843707638,0.0499046100449253
373 | 0.5736399771896279,0.24779945904696066,0.8353495305737935,0.6098353636118041
374 | 0.39995891099221725,0.38755138066544736,0.3206667889777627,0.8621821104916472
375 | 0.16963442693178976,0.1655588529460691,0.00471004269840658,0.03680381149038636
376 | 0.8913913191956618,0.4931553146014762,0.7212555101341884,0.535167989549179
377 | 0.19260952114367957,0.8894977792750658,0.9277896033411086,0.9266292288349561
378 | 0.8024400170720553,0.15728226403474244,0.6311310614764399,0.8940669250997342
379 | 0.13040641009710163,0.47598924174257407,0.4047476679695895,0.8151863456470257
380 | 0.9904753132378885,0.1929664786631008,0.6649932127466588,0.3890716243782475
381 | 0.06835950232326915,0.9179509323620376,0.9997085419499564,0.005016089384341504
382 | 0.2284112907168191,0.20349570495715097,0.9053407127073567,0.29129471127644957
383 | 0.23807412297897446,0.7433707240814856,0.2797207561532188,0.7055119549347723
384 | 0.2980015747932633,0.1528124911964729,0.2922351758608043,0.4744831732503145
385 | 0.9323151646558789,0.9016005665933837,0.04859295723828494,0.40406758360182427
386 | 0.0020015859464498353,0.8573856734531015,0.835630618879145,0.27134674911444545
387 | 0.6476158569481719,0.7619325435307918,0.9387844644429776,0.5025693523387598
388 | 0.35712967268125584,0.35535013097389045,0.6846636602836755,0.3529193027458817
389 | 0.9528744981293424,0.907004048138501,0.7922686555445306,0.6442300435823645
390 | 0.42594045350938714,0.7635686751066307,0.039866196100581064,0.8501629086487204
391 | 0.16151992349458166,0.027644573646974036,0.9940414223507111,0.30145531751034094
392 | 0.8192631972556896,0.5315304397102365,0.8819242518354289,0.7140853094035905
393 | 0.3640049949086881,0.8916802473396235,0.610690893660492,0.19860084943122835
394 | 0.03241401801078403,0.5997948103711187,0.3459077815858529,0.8429274697369962
395 | 0.860296620923188,0.7498450748611823,0.724915922543078,0.3674775151021594
396 | 0.12479747320689649,0.790080464590465,0.5590618642994262,0.695729010767191
397 | 0.4226547764778965,0.7662131047806842,0.0314974785100639,0.7126390471593306
398 | 0.717960945501675,0.44433663986840155,0.7338197075921654,0.6198705088373945
399 | 0.9130079792319507,0.388142201662786,0.9204914884121788,0.7782865287937031
400 | 0.9446157546353985,0.8229203898981865,0.37815408733881994,0.9474516986216488
401 | 0.4692270195228362,0.3624411531029099,0.9440792553003939,0.6632688289247249
402 | 0.35729593281341854,0.09094931962987118,0.6894993679786272,0.6604239544162929
403 | 0.8295230947269575,0.37987043680523425,0.21978418081773277,0.9845319112288327
404 | 0.9054097736788218,0.6795244920749846,0.8058227024795273,0.8620535192255319
405 | 0.47206954649038335,0.9877578985324961,0.31200381383209264,0.4274016880635737
406 | 0.3788613590960972,0.228409024641122,0.19313897647932965,0.534690513837352
407 | 0.80232246756088,0.2998305554602545,0.2302798655782391,0.3728021218773693
408 | 0.2304818792066189,0.6705989422124993,0.7782382571611371,0.4145383754064982
409 | 0.7865979675238535,0.6256642699276077,0.6975970325705699,0.3304703930316044
410 | 0.2804152526765058,0.7506842663153662,0.935091785948748,0.8731861911602196
411 | 0.7733320316872647,0.06830631213470884,0.727537718955761,0.8243956447692756
412 | 0.8000717021921332,0.9827480235866367,0.10931315443917511,0.7646403326087104
413 | 0.15901650211578955,0.9607869193069879,0.7672418492405033,0.8857690961012441
414 | 0.39077830713874184,0.26566502812783865,0.7247651263316303,0.870345905475203
415 | 0.468444105096292,0.5035851734032031,0.7273267277987141,0.4386595809446233
416 | 0.6082661742527247,0.8835487968537153,0.2648075784103565,0.5097528202982465
417 | 0.1688589216994002,0.4587933228957092,0.06822389196178069,0.6944061276912664
418 | 0.8845023251920414,0.35626742579837833,0.24854712468804263,0.9286656126601583
419 | 0.6919912900325229,0.525926779915432,0.5028362151137027,0.7758761895796565
420 | 0.09072890731788164,0.2754248703653789,0.8794450999976556,0.5929425050351603
421 | 0.8045417151161639,0.717332184240045,0.4009746132815435,0.3576329066088556
422 | 0.8592956140479793,0.8885466867456595,0.6652781416892141,0.46618925902384434
423 | 0.9406255815435112,0.9535348493796136,0.8566780449450918,0.09147572622405076
424 | 0.21134438575825976,0.37870907194098735,0.8918450302424455,0.8756071157265357
425 | 0.17056446131279757,0.5947167672181617,0.42713739170980713,0.8231253767701853
426 | 0.6816965030835896,0.9174242883534593,0.9433745514214174,0.3850430220570764
427 | 0.13200731308338776,0.9544252195264228,0.9253057443590936,0.17330980292668996
428 | 0.1797299073809655,0.5798737456579879,0.4904506542903413,0.07273516539361113
429 | 0.4686355912210618,0.15029444542816606,0.46278071678091204,0.8070448038422068
430 | 0.7574896574957928,0.982488939171607,0.48131438961476347,0.25693746632683634
431 | 0.9031624053831494,0.6540179859697732,0.5756477983878667,0.900018098502001
432 | 0.706778868235879,0.5290013506815173,0.27214577830929343,0.6480582221558611
433 | 0.5257555048131995,0.8202277041197588,0.9755252443363349,0.09150668990330679
434 | 0.2941118779304933,0.3160354013957346,0.07938351200005711,0.9284536477999036
435 | 0.3739355906627365,0.03654420156550575,0.6739743288835183,0.9528120972614034
436 | 0.29419616996955233,0.5180544099970837,0.9045835653031059,0.7490505883308898
437 | 0.5310119647704037,0.6208203267999307,0.4742606286491172,0.3676507758811156
438 | 0.5125560598459081,0.7230868177919499,0.21690326890395972,0.7029765452094612
439 | 0.2327168465092495,0.636427765358658,0.2795775063082444,0.2811043827126858
440 | 0.8979887687291225,0.1998743986080337,0.0861396746346903,0.9648494063439969
441 | 0.12944581215276862,0.7281358241811274,0.8211700518321551,0.14249279838367745
442 | 0.5248705106310002,0.05235202234421987,0.6947375170266925,0.3417365273756968
443 | 0.10595743196582197,0.07826617709938821,0.35337783398376776,0.4264573065236815
444 | 0.050009605714936844,0.018514896667227054,0.9413608402598351,0.791610587209869
445 | 0.17864320609241946,0.31880728783473555,0.6071840694245375,0.8248621694108086
446 | 0.9414648897887672,0.47850303480223844,0.5188440720457512,0.35654133260507215
447 | 0.12219561454685202,0.22693565011856753,0.7331870796269597,0.0028505501610355255
448 | 0.5716554932588412,0.6233114983745688,0.5790584042092602,0.2773603020533283
449 | 0.1730667946075105,0.4564347627258698,0.862108197216226,0.27326576204651987
450 | 0.10099838707719744,0.8963154205564153,0.2995006490737322,0.2507624147096721
451 | 0.2215100698131235,0.2096828648871747,0.1735729661494131,0.9037812640080347
452 | 0.3330121683438939,0.26772071803392583,0.1360347053953318,0.6143336229667071
453 | 0.8755253114603656,0.44786236422952297,0.5069228872958722,0.176168922805505
454 | 0.4360566521753333,0.8249506306465185,0.6928263688828447,0.9157745831809156
455 | 0.7044681125246586,0.7095402004346812,0.05729221320115585,0.03404868292678953
456 | 0.8839520510806439,0.6504324482442831,0.3794442442167103,0.21418711025841375
457 | 0.3967513210941327,0.3325872301281432,0.31405878752308436,0.07799771452864457
458 | 0.7015490555702932,0.5156822991121691,0.23180117678821388,0.7166130112807891
459 | 0.8214439604906325,0.4407717872048116,0.37329993356057734,0.06083737830173952
460 | 0.38149071192905015,0.7550155142103253,0.460697700554616,0.2796872439634027
461 | 0.4810015127837912,0.5713080743424898,0.9571267966357225,0.7911382384952027
462 | 0.13998304353038438,0.3347918696327902,0.39657017898620517,0.5270438421014269
463 | 0.4043555405999496,0.5788249986243309,0.12586900730635686,0.3861265257391172
464 | 0.8389573878855994,0.888492299987596,0.8540078803737782,0.25800593264854366
465 | 0.567489926995696,0.39357032152193006,0.5123037666069444,0.08297825613816934
466 | 0.6649010291920261,0.5047397206924729,0.44553780850164726,0.08797176467481449
467 | 0.7419214077622256,0.12624259595301301,0.9996070355531719,0.06564068719726601
468 | 0.32057166076285726,0.31659935778593506,0.1545928953280743,0.8581764856647075
469 | 0.09301334726876975,0.029335007802145707,0.6565556741127787,0.5739346723086256
470 | 0.04526245346044655,0.811778405905253,0.5066344307977078,0.8059965416628634
471 | 0.8019082608898042,0.10700897299954537,0.7204698407553198,0.7683031150791029
472 | 0.020961990206823322,0.42518192744827077,0.255974197387997,0.7306897745495752
473 | 0.277961915387847,0.8492620182849753,0.34537132250463576,0.15943780211188874
474 | 0.7189442674847957,0.8200795519063174,0.5656964635313514,0.3874546949307659
475 | 0.8268401141848842,0.23386593281804413,0.2845078924626273,0.9406006062017659
476 | 0.23039240497397429,0.761442391428125,0.9392894531292257,0.9085208491905314
477 | 0.29838729188215807,0.5779838410486858,0.8325117429343363,0.9899463893352769
478 | 0.8326874856620977,0.4784419176424144,0.4577629375969198,0.6361698618474226
479 | 0.22261035955598107,0.7416746800534105,0.2454421585188994,0.58078567230664
480 | 0.9571491019691408,0.6511369553101578,0.411185456458281,0.8662214279916548
481 | 0.2824314672551116,0.4507337840870643,0.7588600505511918,0.003965656234663606
482 | 0.07051188316677992,0.4761351008427914,0.5804476241986976,0.3893672504249296
483 | 0.6041561817793055,0.8835940935113349,0.8868809585790102,0.49618477971384356
484 | 0.6759397175203108,0.034009359158778896,0.45914373245374573,0.281948988195467
485 | 0.5848526420565103,0.0630186414631515,0.7352196908090805,0.8726649542656703
486 | 0.35400058269043266,0.3903304091964207,0.7778206460661615,0.2963873440073307
487 | 0.25238414291129874,0.5984939737976703,0.17745813410050737,0.05300754434656185
488 | 0.4954938296688921,0.05875264031148697,0.39350417074169364,0.4328594911628031
489 | 0.9197968567238212,0.5157119691395418,0.033718530566680616,0.5043298885605011
490 | 0.2989332113820844,0.7034343832601815,0.2026921006487793,0.6432289937302853
491 | 0.7779676202913468,0.610689301839738,0.9000420564430714,0.02779597067857109
492 | 0.6904833489696073,0.2790190885678663,0.09485751900588535,0.8814594722251355
493 | 0.5235313634791201,0.23610058713680604,0.9546586611291935,0.3497260033438957
494 | 0.11341445111776471,0.24283712840412264,0.9337047983116655,0.6507089882891222
495 | 0.6881809970467796,0.5354244135798761,0.07696211613601234,0.42662334179962424
496 | 0.6924697609000138,0.23785520913895875,0.8706017587442036,0.07581266371719819
497 | 0.528704746140301,0.22612181722433033,0.055834654502542325,0.1319617598033216
498 | 0.3247295924286646,0.21520112383699908,0.9353024163591054,0.7941147979952861
499 | 0.1180358736188245,0.2645743905840382,0.6292058447395664,0.8240620030300988
500 | 0.227021327823424,0.6602085012760409,0.8513526298900511,0.4786758954200979
501 | 0.4661570022497308,0.7529998155162079,0.11539087183657204,0.27971183920107534
502 |
--------------------------------------------------------------------------------
/ML basics/example:
--------------------------------------------------------------------------------
1 | a,b,c,d
2 | 0,1,2,3
3 | 4,5,6,7
4 | 8,9,10,11
5 | 12,13,14,15
6 |
--------------------------------------------------------------------------------
/ML basics/group.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ishikkkkaaaa/Python-ML/8c64a5d82314a5603e2e892ba991fabdee8932f2/ML basics/group.png
--------------------------------------------------------------------------------
/ML basics/multi_index_example:
--------------------------------------------------------------------------------
1 | first,bar,bar,baz,baz,foo,foo,qux,qux
2 | second,one,two,one,two,one,two,one,two
3 | ,,,,,,,,
4 | A,1.025984152081572,-0.1565979042889875,-0.031579143908112575,0.6498258334908454,2.154846443259472,-0.6102588558227414,-0.755325340010558,-0.34641850351854453
5 | B,0.1470267713241236,-0.47944803904109595,0.558769406443067,1.0248102783372157,-0.925874258809907,1.8628641384939535,-1.1338171615837889,0.6104779075384634
6 | C,0.3860303121135517,2.084018530338962,-0.37651867524923904,0.23033634359240704,0.6812092925867574,1.0351250747739213,-0.031160481493099617,1.9399323109926203
7 |
--------------------------------------------------------------------------------
/ML basics/my_picture.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ishikkkkaaaa/Python-ML/8c64a5d82314a5603e2e892ba991fabdee8932f2/ML basics/my_picture.png
--------------------------------------------------------------------------------