└── README.md
/README.md:
--------------------------------------------------------------------------------
1 | # SmallObjectDetectionList
2 | List of the Papers Addressing Vision-based Small Object Detection, links to more than 50 papers are given below.(please cite the paper if you benefit from this repository):
3 |
4 | ``````````````````````````````
5 | ### Submitted
6 |
7 | BibTeX entry:
8 | ```
9 | @ARTICLE{,
10 | title = {A Survey of the Four Pillars for Small Object Detection: Multi-scale Representation, Contextual Information, Super-resolution, and Region Proposal},
11 | journal = {IEEE Transactions on Systems, Man and Cybernetics: Systems},
12 | year = {2020},
13 | pages = {},
14 | author = {Chen, Guang and Wang, Haitao and Chen, Kai and Li, Zhijun and Song, Zida and Liu, Yinlong and Chen, Wenkai and Knoll, Alois},
15 | eprint = {}
16 | }
17 | ```
18 |
19 | ``````````````````````````````
20 |
21 | ## How to request addition of a paper
22 | If you know of a paper that addresses an Vision-based Small Object Detection problem and is not on this repository, you are welcome to request the addition of that paper by submitting a pull request. In your pull request please briefly state which section of your paper is related to which problem.
23 |
24 |
25 |
26 | # Table of Contents
27 | 1.[Multi-scales representation](#1)
28 | >1.1 [Multiple feature maps fusion](#1.1)
29 | 1.2 [Connection method of different feature maps](#1.2)
30 |
31 | 2.[Contextual information](#2)
32 |
33 | 3.[Super-Resolution](#3)
34 |
35 | 4.[Region-proposal](#4)
36 |
37 | 5.[Others](#5)
38 | >5.1 [Traffic road object detection](#5.1)
39 | 5.2 [Others](#5.2)
40 |
41 | 6.[Datasets](#6)
42 | >6.1 [Datasets for traffic road scene](#6.1)
43 | 6.2 [Datasets for generic small objects](#6.2)
44 | 6.3 [Datasets for single category](#6.3)
45 | # 1. Multi-scales representation
46 |
47 | ## 1.1. Multiple feature maps fusion
48 | - MDSSD: Multi-scale Deconvolutional Single Shot Detector for Small Objects, arXiv 2018, [[paper]](https://arxiv.org/pdf/1805.07009.pdf)
49 | - MR-CNN: A Multi-Scale Region-Based Convolutional Neural Network for Small Traffic Sign Recognition, IEEE Acess 2019, [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8701699)
50 | - Improving Tiny Vehicle Detection in Complex Scenes, IEEE ICME 2018, [[paper]](https://www.computer.org/csdl/proceedings-article/icme/2018/08486507/14jQfPe2Vca)
51 | - Small Object Detection with Multiscale Features, Int. J. Digit. Multimedia Broadcast 2018, [[paper]](https://pdfs.semanticscholar.org/942e/386250587fc789d807093cc56f0a95f9798c.pdf?_ga=2.175036386.1996274586.1568206454-1908503646.1568206454)
52 | - A detection method for low-pixel ratio object, Multimed Tools Appl 2019, [[paper]](https://link.springer.com/content/pdf/10.1007%2Fs11042-018-6653-6.pdf)
53 | - Research on Small Size Object Detection in Complex Background, CAC 2018, [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=8623078)
54 | - Small Object Detection Using Deep Feature Pyramid Networks, PCM 2018, [[paper]](https://link.springer.com/chapter/10.1007/978-3-030-00764-5_51)
55 | - Multiple receptive fields and small-object-focusing weaklysupervised segmentation network for fast object detection, arXiv 2019, [[paper]](https://arxiv.org/ftp/arxiv/papers/1904/1904.12619.pdf)
56 | - A Block Object Detection Method Based on Feature Fusion Networks for Autonomous Vehicles, Complexity 2019, [[paper]](http://downloads.hindawi.com/journals/complexity/2019/4042624.pdf)
57 | - Small Object Sensitive Segmentation of Urban Street Scene with Spatial Adjacency Between Object Classes, IEEE TIP 2019, [[paper]](https://cse.sc.edu/~songwang/document/tip19b.pdf)
58 | - Small traffic sign detection from large image, Springer Applied Intelligence 2019, [[paper]](https://link.springer.com/article/10.1007%2Fs10489-019-01511-7)
59 | ## 1.2. Connection method of different feature maps
60 | - Detecting Small Objects Using a Channel-Aware Deconvolutional Network, IEEE TCSVT 2019, [[paper]](https://ieeexplore.ieee.org/document/8669953)
61 | - A unified multi-scale deep convolutional neural network for fast object detection, ECCV 2016, [[paper]](http://www.cvlibs.net/projects/autonomous_vision_survey/literature/Cai2016ECCV.pdf)
62 |
63 | # 2. Contextual Information
64 | - Inside-Outside Net: Detecting Objects in Context with Skip Pooling and Recurrent Neural Networks, CVPR 2016, [[paper]](http://openaccess.thecvf.com/content_cvpr_2016/papers/Bell_Inside-Outside_Net_Detecting_CVPR_2016_paper.pdf)
65 | - VSSA-NET: Vertical Spatial Sequence Attention Network for Traffic Sign Detection, IEEE TIP 2019, [[paper]](https://arxiv.org/pdf/1905.01583.pdf)
66 | - R-CNN for Small Object Detection, ACCV 2016, [[paper]](https://merl.com/publications/docs/TR2016-144.pdf)
67 | - Detecting The Objects on The Road Using Modular Lightweight Network, arXiv 2019, [[paper]](https://arxiv.org/ftp/arxiv/papers/1811/1811.06641.pdf)
68 | - Feature-fused ssd: fast detection for small objects, ICGIP 2017, [[paper]](https://arxiv.org/ftp/arxiv/papers/1709/1709.05054.pdf) [[code]](https://github.com/wnzhyee/Feature-Fused-SSD)
69 | - Spatial Memory for Context Reasoning in Object Detection, ICCV 2017, [[paper]](http://openaccess.thecvf.com/content_ICCV_2017/papers/Chen_Spatial_Memory_for_ICCV_2017_paper.pdf)
70 | - P-CNN: Part-Based Convolutional Neural Networks for Fine-Grained Visual Categorization, IEEE TPAMI 2019, [[paper]](https://ieeexplore.ieee.org/abstract/document/8789527)
71 | - ContextAware Single-Shot Detector, WACV 2018, [[paper]](https://arxiv.org/pdf/1707.08682.pdf)
72 | - Detecting Traffic Lights by Single Shot Detection, ITSC 2018, [[paper]](https://arxiv.org/pdf/1805.02523.pdf) [[code]](https://github.com/julimueller/tl_ssd)
73 | - SCAN: Semantic Context Aware Network for Accurate Small Object Detection, IJCIS 2018, [[paper]](https://www.atlantis-press.com/journals/ijcis/25894607/view)
74 | - SINet: A Scale Insensitive Convolutional Neural Network for Fast Vehicle Detection, IEEE ITS 2019, [[paper]](https://arxiv.org/pdf/1804.00433.pdf)
75 | - Robust Obstacle Detection and Recognition for Driver Assistance Systems, IEEE ITS 2019, [[paper]](https://www.researchgate.net/profile/Jiaxu_Leng2/publication/332438373_Robust_Obstacle_Detection_and_Recognition_for_Driver_Assistance_Systems/links/5cbeb092a6fdcc1d49a87438/Robust-Obstacle-Detection-and-Recognition-for-Driver-Assistance-Systems.pdf)
76 | - Small Object Detection Using Context Information Fusion in Faster R-CNN, IEEE ICCC 2018, [[paper]](https://ieeexplore.ieee.org/abstract/document/8780579)
77 |
78 | # 3. Super-Resolution
79 | - JCS-Net: Joint Classification and SuperResolution Network for Small-scale Pedestrian Detection in Surveillance Images, IEEE TIFS 2019, [[paper]](https://ieeexplore.ieee.org/abstract/document/8714071)
80 | - Accurate image super-resolution using very deep convolutional networks, CVPR 2016, [[paper]](https://www.cv-foundation.org/openaccess/content_cvpr_2016/papers/Kim_Accurate_Image_Super-Resolution_CVPR_2016_paper.pdf)
81 | - Finding tiny faces in the wild with generative adversarial network, CVPR 2018, [[paper]](http://openaccess.thecvf.com/content_cvpr_2018/papers/Bai_Finding_Tiny_Faces_CVPR_2018_paper.pdf)
82 | - Multi-branch fully convolutional network for face detection, arXiv 2017, [[paper]](https://arxiv.org/pdf/1707.06330.pdf)
83 | - SOD-MTGAN: Small Object Detection via Multi-Task Generative Adversarial Network, ECCV 2018, [[paper]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Yongqiang_Zhang_SOD-MTGAN_Small_Object_ECCV_2018_paper.pdf)
84 | - Improving Small Object Detection, ACPR 2017, [[paper]](http://cdn.iiit.ac.in/cdn/cvit.iiit.ac.in/images/ConferencePapers/2017/Improving-SmallObject-Detection.pdf)
85 | - Perceptual Generative Adversarial Networks for Small Object Detection, CVPR 2017, [[paper]](http://openaccess.thecvf.com/content_cvpr_2017/papers/Li_Perceptual_Generative_Adversarial_CVPR_2017_paper.pdf)
86 | - Prior Knowledge Guided Small Object Detection on High-Resolution Images, IEEE ICIP 2019, [[paper]](https://ieeexplore.ieee.org/abstract/document/8802612)
87 |
88 | # 4. Region-Proposal
89 | - AttentionMask: Attentive, Efficient Object Proposal Generation Focusing on Small Objects, ACCV 2018, [[paper]](https://arxiv.org/pdf/1811.08728.pdf) [[code]](https://github.com/chwilms/AttentionMask)
90 | - A PSO and BFO-Based Learning Strategy Applied to Faster R-CNN for Object Detection in Autonomous Driving, IEEE Access 2019, [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8633817)
91 | - Improving Small Object Proposals for Company Logo Detection, ICMR 2017, [[paper]](https://arxiv.org/pdf/1704.08881.pdf)
92 | - Augmentation for small object detection, arXiv 2019, [[paper]](https://arxiv.org/pdf/1902.07296)
93 | - Detecting Small Signs from Large Images, IEEE IRI 2017, [[paper]](https://arxiv.org/pdf/1706.08574.pdf)
94 | - Cascade Mask Generation Framework for Fast Small Object Detection, IEEE ICME 2018, [[paper]](https://ieeexplore.ieee.org/abstract/document/8486561)
95 | - Cascaded CNN Method for Far Object Detection in Outdoor Surveillance, IEEE SITIS 2018, [[paper]](https://ieeexplore.ieee.org/abstract/document/8706233)
96 | - SSD-MSN: An Improved Multi-scale Object Detection Network Based on SSD, IEEE Access 2019, [[paper]](https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=8736726)
97 | - Efficient Small Object Detection with an Improved Region Proposal Networks, IOP Conf. Ser.: Mater. Sci. Eng. 2019, [[paper]](https://iopscience.iop.org/article/10.1088/1757-899X/533/1/012062)
98 |
99 | # 5. Others
100 |
101 | ## 5.1. Traffic road object detection
102 | - Knowledge-based recurrent attentive neural network for small object detection, arXiv 2018, [[paper]](https://arxiv.org/pdf/1803.05263.pdf)
103 | - Efficient convNets for fast traffic sign recognition, IET ITS 2019, [[paper]](https://digital-library.theiet.org/content/journals/10.1049/iet-its.2018.5489)
104 | - Real-time small traffic sign detection with revised faster-RCNN, Multimed Tools Appl 2019, [[paper]](https://link.springer.com/article/10.1007/s11042-018-6428-0)
105 | - Small-scale Pedestrian Detection Based on Topological Line Localization and Temporal Feature Aggregation, ECCV 2018, [[paper]](http://openaccess.thecvf.com/content_ECCV_2018/papers/Tao_Song_Small-scale_Pedestrian_Detection_ECCV_2018_paper.pdf)
106 | - An Efficient Color Space for Deep-Learning Based Traffic Light Recognition, J Adv Transport 2018, [[paper]](http://downloads.hindawi.com/journals/jat/2018/2365414.pdf)
107 | - CFENet: An Accurate and Efficient Single-Shot Object Detector for Autonomous Driving, arXiv 2018, [[paper]](https://arxiv.org/pdf/1806.09790.pdf)
108 | - Research on Vehicle Object Detection Method Based on Convolutional Neural Network, IEEE ISCID 2018, [[paper]](https://ieeexplore.ieee.org/abstract/document/8695461)
109 | - An Improved Faster R-CNN for Small Object Detection, IEEE Access 2019, [[paper]](https://ieeexplore.ieee.org/document/8786135/authors#authors)
110 | - Detecting Small Objects in Urban Settings Using SlimNet Model, IEEE TGRS 2019, [[paper]](https://ieeexplore.ieee.org/abstract/document/8746784)
111 | - Smaller Object Detection for Real-Time Embedded Traffic Flow Estimation Using Fish-Eye Cameras, IEEE ICIP 2019, [[paper]](https://ieeexplore.ieee.org/abstract/document/8803719)
112 |
113 | ## 5.2. others
114 | - An Energy and GPU-Computation Efficient Backbone Network for Real-Time Object Detection, CVPR 2019, [[paper]](http://openaccess.thecvf.com/content_CVPRW_2019/papers/CEFRL/Lee_An_Energy_and_GPU-Computation_Efficient_Backbone_Network_for_Real-Time_Object_CVPRW_2019_paper.pdf)
115 | - Evaluation of Deep Models for Real-Time Small Object Detection, ICONIP 2017, [[paper]](https://link.springer.com/chapter/10.1007/978-3-319-70090-8_53)
116 | - Small-objectness sensitive detection based on shifted single shot detector, Multimed Tools Appl 2019, [[paper]](https://link.springer.com/article/10.1007/s11042-018-6227-7)
117 | - CNN-based small object detection and visualization with feature activation mapping, IEEE IVCNZ 2017, [[paper]](https://ieeexplore.ieee.org/abstract/document/8402455)
118 | - Real-Time Detecting Method of Marine Small Object with Underwater Robot Vision, IEEE OTO 2018, [[paper]](https://ieeexplore.ieee.org/abstract/document/8558804)
119 |
120 | # 6. Datasets
121 |
122 | ## 6.1. Datasets for traffic road scene
123 | - Lost and Found, [[paper]](https://arxiv.org/pdf/1609.04653.pdf)
124 | - Swedish Traffic Signs, [[paper]](https://link.springer.com/content/pdf/10.1007/978-3-642-21227-7_23.pdf)
125 | - Tsinghua-Tencent 100 K, [[paper]](http://openaccess.thecvf.com/content_cvpr_2016/papers/Zhu_Traffic-Sign_Detection_and_CVPR_2016_paper.pdf)
126 | - GTSDB, [[paper]](https://ieeexplore.ieee.org/abstract/document/6706807)
127 | - CURE-TSD, [[paper]](https://arxiv.org/abs/1902.06857)
128 |
129 | ## 6.1. Datasets for generic small objects
130 | - Small Object Dataset, [[paper]](https://merl.com/publications/docs/TR2016-144.pdf)
131 | - CURE-OR, [[paper]](https://ieeexplore.ieee.org/abstract/document/8614053)
132 |
133 | ## 6.3. Datasets for single category
134 | - WIDER FACE, [[paper]](http://openaccess.thecvf.com/content_cvpr_2016/papers/Yang_WIDER_FACE_A_CVPR_2016_paper.pdf)
135 | - DeepScores, [[paper]](https://arxiv.org/pdf/1804.00525.pdf)
136 |
137 |
138 |
139 | # Contact
140 | Please contact Guang Chen (email:tj_autodrive@hotmail.com) | Zida Song(email:szd16688@qq.com) for your questions about this webpage.
141 |
--------------------------------------------------------------------------------