├── WaterControlZone_HK_shp.zip ├── MonitoringStation_wgs84_76_shp.zip ├── README.md ├── GEE_TimeSeriesApp.js ├── GEE_6S_AtmosphericParameter.js ├── Part1_ImagePreprocessing.ipynb ├── LocalProcessingPipeline_Part2_NewlyAcquiredImage.ipynb ├── LocalProcessingPipeline_Part1_ArchivedImageDatabase.ipynb └── Part2_ModelDevelopmentAndPrediction.ipynb /WaterControlZone_HK_shp.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK/HEAD/WaterControlZone_HK_shp.zip -------------------------------------------------------------------------------- /MonitoringStation_wgs84_76_shp.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK/HEAD/MonitoringStation_wgs84_76_shp.zip -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Marine Water Quality Monitoring in Hong Kong - Time Series Estimated from Satellite Images (2015-2021) 2 | 3 | Supplementary materials used in the following projects: 4 | 5 | Journal article: 6 | 7 | **Kwong, I. H. Y., Wong, F. K. K., & Fung, T. (2022). Automatic mapping and monitoring of marine water quality parameters in Hong Kong using Sentinel-2 image time-series and Google Earth Engine cloud computing. *Frontiers in Marine Science, 9*, 871470. doi: 10.3389/fmars.2022.871470** 8 | 9 | - Link to the article: https://www.frontiersin.org/articles/10.3389/fmars.2022.871470/ 10 | 11 | Award-winning ArcGIS Dashboard: 12 | 13 | **Water Quality Monitoring From Satellite Imagery: A Case Study in Hong Kong. *Common Spatial Data Infrastructure (CSDI) Awards 2024 - Merit (Open Category).* https://csdigeolab.gov.hk/en/past-events/csdi-awards-2024** 14 | 15 | - Project presentation slides: https://csdigeolab.gov.hk/images/CSDI_Awards_2024/brief/C4-23.pdf 16 | - **Interactive ArcGIS Dashboard: https://www.arcgis.com/apps/dashboards/3b1a7e3a7ea640a1a2b2338cd774520a** 17 | - Video introduction: https://youtu.be/ghYus8dmrP0 (English) / https://youtu.be/mNEPP1INqXE (Cantonese) 18 | 19 | --- 20 | 21 | **Online application developed using Google Earth Engine:** https://khoyinivan.users.earthengine.app/view/marine-water-quality-hk 22 | * Source code of the web application: GEE_TimeSeriesApp.js 23 | 24 | **Time-series video of the estimated water quality:** https://youtu.be/b2zwPFGDKY8 25 | 26 | --- 27 | 28 | **Additional tool to obtain the parameters related to atmospheric constituents required for 6S atmospheric correction, including Water Vapour, Ozone and Aerosol Optical Thickness:** https://khoyinivan.users.earthengine.app/view/atmospheric-constituents-for-6s 29 | * Source code of the web application: GEE_6S_AtmosphericParameter.js 30 | 31 | --- 32 | 33 | **Analysis codes:** (Python API for GEE processing; used to produce the results in the journal article) 34 | 35 | * Part1_ImagePreprocessing.ipynb 36 | 37 | * Part2_ModelDevelopmentAndPrediction.ipynb 38 | 39 | **Analysis codes:** (Python processing in local PC; used to produce the results in the ArcGIS Dashboard) 40 | 41 | * LocalProcessingPipeline_Part1_ArchivedImageDatabase.ipynb 42 | 43 | * LocalProcessingPipeline_Part2_NewlyAcquiredImage.ipynb 44 | 45 | **GEE application:** 46 | ![khoyinivan users earthengine app_view_marine-water-quality-hk_Apr2022](https://user-images.githubusercontent.com/68047356/161700888-ca8e0ee7-b962-48e5-96da-e224ada1982a.png) 47 | 48 | **ArcGIS Dashboard:** 49 | ![DashboardScreenshot](https://github.com/user-attachments/assets/04ee70e7-fe94-4495-9bad-4e19b949967f) 50 | 51 | Other files: 52 | 53 | * **MarineQuality_2015-2020.csv**: Marine Water Quality data measured at different Marine Water Quality Monitoring stations in Hong Kong from 2015 to 2020; Gathered from DATA.GOV.HK (https://data.gov.hk/en-data/dataset/hk-epd-marineteam-marine-water-quality-historical-data-en) 54 | 55 | * **MonitoringStation_wgs84_76_shp.zip**: Locations of the 76 water quality monitoring stations in the open waters of Hong Kong (ESRI shapefile format); Equivalent to the Feature Collection ("users/khoyinivan/MonitoringStation_wgs84_76") in GEE; Extracted from Appendix A of the Annual Marine Water Quality Report 2019 (https://www.epd.gov.hk/epd/english/environmentinhk/water/hkwqrc/waterquality/marine-2.html) 56 | 57 | * **WaterControlZone_HK_shp.zip**: Polygons of the water control zones in Hong Kong (ESRI shapefile format); It was manually digitized from Appendix A of the Annual Marine Water Quality Report 2019 (https://www.epd.gov.hk/epd/english/environmentinhk/water/hkwqrc/waterquality/marine-2.html); Only boundaries in the open water were extracted 58 | 59 | *Last updated in July 2025* 60 | -------------------------------------------------------------------------------- /GEE_TimeSeriesApp.js: -------------------------------------------------------------------------------- 1 | var aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]]); 2 | 3 | var Chla = ee.ImageCollection('users/khoyinivan/S2_Chla_ANN'); 4 | var vis = {palette: ['#2b83ba', '#abdda4', '#ffffbf', '#fdae61', '#d7191c'], 5 | min: 0.2, max: 30.0}; 6 | 7 | var SS = ee.ImageCollection('users/khoyinivan/S2_SS_ANN'); 8 | var Tur = ee.ImageCollection('users/khoyinivan/S2_Tur_ANN'); 9 | 10 | var utils = require('users/gena/packages:utils'); 11 | var text = require('users/gena/packages:text'); 12 | 13 | Map.centerObject(aoi, 11); 14 | var bounds = aoi.bounds(); 15 | 16 | //make the data 8-bit which is necessary for making a video 17 | var Chla_video = Chla.map(function(image){ 18 | var label = ee.Date(image.get('system:time_start')).format('YYYY-MM-dd'); 19 | return image.visualize({ 20 | forceRgbOutput: true, 21 | palette: ['#2b83ba', '#abdda4', '#ffffbf', '#fdae61', '#d7191c'], 22 | min: 0.2, max: 30.0 23 | }).set({label: label}); 24 | }); 25 | 26 | // annotate 27 | var annotations = [{position: 'left', offset: '1%', margin: '1%', property: 'label', scale: Map.getScale() * 5}]; 28 | 29 | Chla_video = Chla_video.map(function(image) { 30 | return text.annotateImage(image, {}, bounds, annotations); 31 | }); 32 | 33 | var Chla_list = Chla_video.toList(Chla_video.size()); 34 | 35 | 36 | /* 37 | * Map layer configuration 38 | */ 39 | 40 | // Create the main map 41 | var mapPanel = ui.Map(); 42 | 43 | 44 | /* 45 | * Panel setup 46 | */ 47 | 48 | // Create a panel to hold title, intro text, chart and legend components. 49 | var inspectorPanel = ui.Panel({style: {width: '30%'}}); 50 | 51 | // Create an intro panel with labels. 52 | var intro = ui.Panel([ 53 | ui.Label({ 54 | value: 'Marine Water Quality Inspector - Time Series Estimated From Satellite Image (2015-2021)', 55 | style: {fontSize: '20px', fontWeight: 'bold'} 56 | }), 57 | ui.Label('Refresh the browser if the charts cannot be shown.'), 58 | ui.Label('Background of this app can be found in:'), 59 | ui.Label('https://github.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK').setUrl('https://github.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK'), 60 | ui.Label('Click a location to see its time series of Chlorophyll-a (μg/L).') 61 | ]); 62 | inspectorPanel.add(intro); 63 | 64 | // Create panels to hold lon/lat values. 65 | var lon = ui.Label(); 66 | var lat = ui.Label(); 67 | inspectorPanel.add(ui.Panel([lon, lat], ui.Panel.Layout.flow('horizontal'))); 68 | 69 | // Add placeholders for the chart and legend. 70 | inspectorPanel.add(ui.Label('[Chart]')); 71 | inspectorPanel.add(ui.Label('[Legend]')); 72 | inspectorPanel.add(ui.Label('Click a location to see its time series of other indicators.')); 73 | inspectorPanel.add(ui.Label('[Chart-SS]')); 74 | inspectorPanel.add(ui.Label('[Chart-TUR]')); 75 | 76 | 77 | /* 78 | * Chart setup 79 | */ 80 | 81 | // Generates a new time series chart of SST for the given coordinates. 82 | var generateChart = function (coords) { 83 | // Update the lon/lat panel with values from the click event. 84 | lon.setValue('lon: ' + coords.lon.toFixed(2)); 85 | lat.setValue('lat: ' + coords.lat.toFixed(2)); 86 | 87 | // Add a dot for the point clicked on. 88 | var point = ee.Geometry.Point(coords.lon, coords.lat); 89 | var dot = ui.Map.Layer(point, {color: '000000'}, 'clicked location'); 90 | // Add the dot as the second layer, so it shows up on top of the composite. 91 | mapPanel.layers().set(1, dot); 92 | 93 | // Make a chart from the time series. 94 | var sstChart = ui.Chart.image.series(Chla, point, ee.Reducer.mean(), 50); 95 | 96 | // Customize the chart. 97 | sstChart.setOptions({ 98 | title: 'Chlorophyll-a: time series', 99 | titleTextStyle: {fontSize: 16}, 100 | vAxis: {title: 'Chlorophyll-a (μg/L)'}, //, viewWindow: { min: 0, max: 30 } 101 | hAxis: {title: 'Date', format: 'MM-yyyy', gridlines: {count: 7}}, 102 | pointSize: 5, 103 | legend: {position: 'none'} 104 | }); 105 | // Add the chart at a fixed position, so that new charts overwrite older ones. 106 | inspectorPanel.widgets().set(2, sstChart); 107 | }; 108 | 109 | 110 | /* 111 | * Legend setup 112 | */ 113 | 114 | // Creates a color bar thumbnail image for use in legend from the given color 115 | // palette. 116 | function makeColorBarParams(palette) { 117 | return { 118 | bbox: [0, 0, 1, 0.1], 119 | dimensions: '100x10', 120 | format: 'png', 121 | min: 0, 122 | max: 1, 123 | palette: palette, 124 | }; 125 | } 126 | 127 | // Create the color bar for the legend. 128 | var colorBar = ui.Thumbnail({ 129 | image: ee.Image.pixelLonLat().select(0), 130 | params: makeColorBarParams(vis.palette), 131 | style: {stretch: 'horizontal', margin: '0px 8px', maxHeight: '24px'}, 132 | }); 133 | 134 | // Create a panel with three numbers for the legend. 135 | var legendLabels = ui.Panel({ 136 | widgets: [ 137 | ui.Label(vis.min, {margin: '4px 8px'}), 138 | ui.Label( 139 | (vis.max / 2), 140 | {margin: '4px 8px', textAlign: 'center', stretch: 'horizontal'}), 141 | ui.Label(vis.max, {margin: '4px 8px'}) 142 | ], 143 | layout: ui.Panel.Layout.flow('horizontal') 144 | }); 145 | 146 | var legendTitle = ui.Label({ 147 | value: 'Map Legend: Chlorophyll-a (μg/L)', 148 | style: {fontWeight: 'bold'} 149 | }); 150 | 151 | var legendPanel = ui.Panel([legendTitle, colorBar, legendLabels]); 152 | inspectorPanel.widgets().set(3, legendPanel); 153 | 154 | 155 | // Generates a new time series chart of SST for the given coordinates. 156 | var generateChart_SS = function (coords) { 157 | 158 | // Add a dot for the point clicked on. 159 | var point = ee.Geometry.Point(coords.lon, coords.lat); 160 | 161 | // Make a chart from the time series. 162 | var sstChart = ui.Chart.image.series(SS, point, ee.Reducer.mean(), 50); 163 | 164 | // Customize the chart. 165 | sstChart.setOptions({ 166 | title: 'Suspended Solids: time series', 167 | titleTextStyle: {fontSize: 16}, 168 | vAxis: {title: 'Suspended Solids (mg/L)'}, //,viewWindow: { min: 0, max: 30 } 169 | hAxis: {title: 'Date', format: 'MM-yyyy', gridlines: {count: 7}}, 170 | pointSize: 5, 171 | legend: {position: 'none'} 172 | }); 173 | // Add the chart at a fixed position, so that new charts overwrite older ones. 174 | inspectorPanel.widgets().set(5, sstChart); 175 | }; 176 | 177 | 178 | // Generates a new time series chart of SST for the given coordinates. 179 | var generateChart_TUR = function (coords) { 180 | 181 | // Add a dot for the point clicked on. 182 | var point = ee.Geometry.Point(coords.lon, coords.lat); 183 | 184 | // Make a chart from the time series. 185 | var sstChart = ui.Chart.image.series(Tur, point, ee.Reducer.mean(), 50); 186 | 187 | // Customize the chart. 188 | sstChart.setOptions({ 189 | title: 'Turbidity: time series', 190 | titleTextStyle: {fontSize: 16}, 191 | vAxis: {title: 'Turbidity (NTU)'}, //, viewWindow: { min: 0, max: 25 } 192 | hAxis: {title: 'Date', format: 'MM-yyyy', gridlines: {count: 7}}, 193 | pointSize: 5, 194 | legend: {position: 'none'} 195 | }); 196 | // Add the chart at a fixed position, so that new charts overwrite older ones. 197 | inspectorPanel.widgets().set(6, sstChart); 198 | }; 199 | 200 | 201 | /* 202 | * Map setup 203 | */ 204 | 205 | 206 | // Create a panel that contains both the slider and the label. 207 | var uilabel = ui.Label('Chlorophyll-a time series (1=earliest)'); 208 | var DateSlider = ui.Slider({min: 1, max: 120, step: 1, 209 | style: {stretch: 'horizontal', width:'500px', fontWeight: 'bold'}, 210 | onChange: (function(value) { 211 | mapPanel.layers().reset(); 212 | mapPanel.layers().add(ee.Image(Chla_list.get(value - 1)), 'Chl-a'); 213 | }) 214 | }); 215 | DateSlider.setValue(120); // Set a default value. 216 | mapPanel.layers().add(ee.Image(Chla_list.get(0)), 'Chl-a'); 217 | 218 | var uipanel = ui.Panel({ 219 | widgets: [uilabel, DateSlider], 220 | layout: ui.Panel.Layout.flow('horizontal') 221 | }); 222 | 223 | // Add the panel to the map. 224 | mapPanel.add(uipanel); 225 | 226 | 227 | // Register a callback on the default map to be invoked when the map is clicked. 228 | mapPanel.onClick(generateChart); 229 | mapPanel.onClick(generateChart_SS); 230 | mapPanel.onClick(generateChart_TUR); 231 | 232 | 233 | // Configure the map. 234 | mapPanel.style().set('cursor', 'crosshair'); 235 | 236 | // Initialize with a test point. 237 | var initialPoint = ee.Geometry.Point(114.10, 22.30); 238 | mapPanel.centerObject(aoi, 11); 239 | 240 | /* 241 | * Initialize the app 242 | */ 243 | 244 | // Replace the root with a SplitPanel that contains the inspector and map. 245 | ui.root.clear(); 246 | ui.root.add(ui.SplitPanel(inspectorPanel, mapPanel)); 247 | 248 | generateChart({ 249 | lon: initialPoint.coordinates().get(0).getInfo(), 250 | lat: initialPoint.coordinates().get(1).getInfo() 251 | }); 252 | generateChart_SS({ 253 | lon: initialPoint.coordinates().get(0).getInfo(), 254 | lat: initialPoint.coordinates().get(1).getInfo() 255 | }); 256 | generateChart_TUR({ 257 | lon: initialPoint.coordinates().get(0).getInfo(), 258 | lat: initialPoint.coordinates().get(1).getInfo() 259 | }); 260 | 261 | -------------------------------------------------------------------------------- /GEE_6S_AtmosphericParameter.js: -------------------------------------------------------------------------------- 1 | // atmospheric.py, Sam Murphy (2016-10-26) 2 | 3 | // Atmospheric water vapour, ozone and AOT from GEE 4 | 5 | // Usage 6 | // H2O = Atmospheric.water(geom,date) 7 | // O3 = Atmospheric.ozone(geom,date) 8 | // AOT = Atmospheric.aerosol(geom,date) 9 | 10 | function round_date(date,xhour){ 11 | // rounds a date of to the closest 'x' hours 12 | var y = date.get('year'); 13 | var m = date.get('month'); 14 | var d = date.get('day'); 15 | var H = date.get('hour'); 16 | var HH = H.divide(xhour).round().multiply(xhour); 17 | return ee.Date.fromYMD(y,m,d).advance(HH,'hour'); 18 | } 19 | 20 | function round_month(date){ 21 | // round date to closest month 22 | // start of THIS month 23 | var m1 = ee.Date.fromYMD(date.get('year'),date.get('month'),ee.Number(1)); 24 | // start of NEXT month 25 | var m2 = m1.advance(1,'month'); 26 | // difference from date 27 | var d1 = ee.Number(date.difference(m1,'day')).abs(); 28 | var d2 = ee.Number(date.difference(m2,'day')).abs(); 29 | // return closest start of month 30 | return ee.Date(ee.Algorithms.If(d2.gt(d1),m1,m2)); 31 | } 32 | 33 | function water(geom,date){ 34 | // Water vapour column above target at time of image aquisition. 35 | // (Kalnay et al., 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bull. 36 | // Amer. Meteor. Soc., 77, 437-471) 37 | // Point geometry required 38 | var centroid = geom.centroid(); 39 | // H2O datetime is in 6 hour intervals 40 | var H2O_date = round_date(date,6); 41 | // filtered water collection 42 | var water_ic = ee.ImageCollection('NCEP_RE/surface_wv').filterDate(H2O_date, H2O_date.advance(1,'month')); 43 | // water image 44 | var water_Py6S_units; 45 | if (water_ic.size().getInfo() === 0) { 46 | water_Py6S_units = 'Out of scope'; 47 | } else { 48 | var water_img = ee.Image(water_ic.first()); 49 | // water_vapour at target 50 | var water_target = water_img.reduceRegion({reducer:ee.Reducer.mean(), geometry:centroid}).get('pr_wtr'); 51 | // convert to Py6S units (Google = kg/m^2, Py6S = g/cm^2) 52 | water_Py6S_units = ee.Number(water_target).divide(10); 53 | } 54 | return water_Py6S_units; 55 | } 56 | 57 | 58 | function ozone(geom,date){ 59 | // returns ozone measurement from merged TOMS/OMI dataset 60 | // OR 61 | // uses our fill value (which is mean value for that latlon and day-of-year) 62 | // Point geometry required 63 | var centroid = geom.centroid(); 64 | 65 | function ozone_fill(centroid,O3_date){ 66 | // Gets our ozone fill value (i.e. mean value for that doy and latlon) 67 | // you can see it 68 | // 1) compared to LEDAPS: https://code.earthengine.google.com/8e62a5a66e4920e701813e43c0ecb83e 69 | // 2) as a video: https://www.youtube.com/watch?v=rgqwvMRVguI&feature=youtu.be 70 | 71 | // ozone fills (i.e. one band per doy) 72 | var ozone_fills = ee.ImageCollection('users/samsammurphy/public/ozone_fill').toList(366); 73 | // day of year index 74 | var jan01 = ee.Date.fromYMD(O3_date.get('year'),1,1); 75 | var doy_index = date.difference(jan01,'day').toInt(); // (NB. index is one less than doy, so no need to +1) 76 | // day of year image 77 | var fill_image = ee.Image(ozone_fills.get(doy_index)); 78 | // return scalar fill value 79 | return fill_image.reduceRegion({reducer:ee.Reducer.mean(), geometry:centroid}).get('ozone'); 80 | } 81 | 82 | function ozone_measurement(centroid,O3_date){ 83 | // filtered ozone collection 84 | var ozone_ic = ee.ImageCollection('TOMS/MERGED').filterDate(O3_date, O3_date.advance(1,'month')); 85 | // ozone image 86 | var ozone_img = ee.Image(ozone_ic.first()); 87 | // ozone value IF TOMS/OMI image exists ELSE use fill value 88 | var ozone_target = ee.Algorithms.If(ozone_img, ozone_img.reduceRegion({reducer:ee.Reducer.mean(), geometry:centroid}).get('ozone'), ozone_fill(centroid,O3_date)); 89 | return ozone_target; 90 | } 91 | 92 | // O3 datetime in 24 hour intervals 93 | var O3_date = round_date(date,24); 94 | // TOMS temporal gap 95 | var TOMS_gap = ee.DateRange('1994-11-01','1996-08-01'); 96 | // avoid TOMS gap entirely 97 | var ozone_target = ee.Algorithms.If(TOMS_gap.contains(O3_date),ozone_fill(centroid,O3_date),ozone_measurement(centroid,O3_date)); 98 | // fix other data gaps (e.g. spatial, missing images, etc..) 99 | ozone_target = ee.Algorithms.If(ozone_target,ozone_target,ozone_fill(centroid,O3_date)); 100 | // convert to Py6S units 101 | var ozone_Py6S_units = ee.Number(ozone_target).divide(1000); // (i.e. Dobson units are milli-atm-cm ) 102 | return ozone_Py6S_units; 103 | } 104 | 105 | function aerosol(geom,date){ 106 | // Aerosol Optical Thickness. 107 | // try: MODIS Aerosol Product (monthly) 108 | // except: fill value 109 | 110 | function aerosol_fill(date){ 111 | // MODIS AOT fill value for this month (i.e. no data gaps) 112 | return ee.Image('users/samsammurphy/public/AOT_stack').select([ee.String('AOT_').cat(date.format('M'))]).rename(['AOT_550']); 113 | } 114 | 115 | function aerosol_this_month(date){ 116 | // MODIS AOT original data product for this month (i.e. some data gaps) 117 | // image for this month 118 | var img = ee.Image(ee.ImageCollection('MODIS/061/MOD08_M3').filterDate(round_month(date)).first()); 119 | 120 | // fill missing month (?) 121 | img = ee.Algorithms.If(img, img.select(['Aerosol_Optical_Depth_Land_Mean_Mean_550']).divide(1000).rename(['AOT_550']), aerosol_fill(date)); 122 | return img; 123 | } 124 | 125 | function get_AOT(AOT_band,geom){ 126 | // AOT scalar value for target 127 | return ee.Image(AOT_band).reduceRegion({reducer:ee.Reducer.mean(), geometry:geom.centroid()}).get('AOT_550'); 128 | } 129 | 130 | var after_modis_start = date.difference(ee.Date('2000-03-01'),'month').gt(0); 131 | var AOT_band = ee.Algorithms.If(after_modis_start, aerosol_this_month(date), aerosol_fill(date)); 132 | var AOT = get_AOT(AOT_band,geom); 133 | AOT = ee.Algorithms.If(AOT,AOT,get_AOT(aerosol_fill(date),geom)); // check reduce region worked (else force fill value) 134 | 135 | return AOT; 136 | } 137 | 138 | 139 | var mainPanel = ui.Panel({style: {width: '40%'}}); 140 | 141 | // Add the app title to the side panel 142 | var titleLabel = ui.Label('Atmospheric Constituent and Parameters for 6S Atmospheric Correction', {fontSize: '32px'}); 143 | mainPanel.add(titleLabel); 144 | 145 | // Add the app description to the main panel 146 | var descriptionText = 147 | 'This app allows you to obtain the parameters related to atmospheric constituents required for 6S atmospheric correction, '+ 148 | 'including Water Vapour (g/cm^2), Ozone (cm-atm) and Aerosol Optical Thickness. '+ 149 | 'Modified from functions created by Sam Murphy.'; 150 | mainPanel.add(ui.Label(descriptionText)); 151 | 152 | var descriptionText2 = 153 | 'Reference: https://github.com/samsammurphy/gee-atmcorr-S2/blob/master/bin/atmospheric.py'; 154 | mainPanel.add(ui.Label(descriptionText2, {}, 155 | 'https://github.com/samsammurphy/gee-atmcorr-S2/blob/master/bin/atmospheric.py')); 156 | 157 | var descriptionText3 = 158 | 'Enter the latitude and longitude of the target location in the following textboxes, or click on the map to obtain the coordinates. '+ 159 | 'Then enter the year, month, day and hour in the corresponding textboxes. '+ 160 | 'Click "Calculate" to obtain the result.'; 161 | mainPanel.add(ui.Label(descriptionText3)); 162 | 163 | var Lat_textbox = ui.Textbox({placeholder: 'Latitude'}).setValue('0'); 164 | mainPanel.add(ui.Panel([ui.Label('Latitude (-90 to 90):'), Lat_textbox], ui.Panel.Layout.flow('horizontal'))); 165 | 166 | var Lon_textbox = ui.Textbox({placeholder: 'Longitude'}).setValue('0'); 167 | mainPanel.add(ui.Panel([ui.Label('Longitude (-180 to 180):'), Lon_textbox], ui.Panel.Layout.flow('horizontal'))); 168 | 169 | var Year_textbox = ui.Textbox({placeholder: 'Year'}).setValue('2000'); 170 | mainPanel.add(ui.Panel([ui.Label('Year:'), Year_textbox], ui.Panel.Layout.flow('horizontal'))); 171 | 172 | var Month_textbox = ui.Textbox({placeholder: 'Month'}).setValue('01'); 173 | mainPanel.add(ui.Panel([ui.Label('Month:'), Month_textbox], ui.Panel.Layout.flow('horizontal'))); 174 | 175 | var Day_textbox = ui.Textbox({placeholder: 'Day'}).setValue('01'); 176 | mainPanel.add(ui.Panel([ui.Label('Day:'), Day_textbox], ui.Panel.Layout.flow('horizontal'))); 177 | 178 | var Hour_textbox = ui.Textbox({placeholder: 'Hour'}).setValue('00'); 179 | mainPanel.add(ui.Panel([ui.Label('Hour:'), Hour_textbox], ui.Panel.Layout.flow('horizontal'))); 180 | 181 | function compute(){ 182 | var Lat = ee.Number.parse(Lat_textbox.getValue()); 183 | var Lon = ee.Number.parse(Lon_textbox.getValue()); 184 | var Year = ee.String(Year_textbox.getValue()); 185 | var Month = ee.String(Month_textbox.getValue()); 186 | var Day = ee.String(Day_textbox.getValue()); 187 | var Hour = ee.String(Hour_textbox.getValue()); 188 | var Date = Year.cat('-').cat(Month).cat('-').cat(Day).cat('T').cat(Hour).cat(':00:00'); 189 | var geom = ee.Geometry.Point([Lon, Lat]); 190 | var H2O = water(geom,ee.Date(Date)); 191 | var O3 = ozone(geom,ee.Date(Date)); 192 | var AOT = aerosol(geom,ee.Date(Date)); 193 | Lon_display.setValue('Lon: ' + Lon.getInfo()); 194 | Lat_display.setValue('Lat: ' + Lat.getInfo()); 195 | Date_display.setValue('Date: ' + Date.getInfo()); 196 | H2O_display.setValue('Water Vapour (g/cm^2): ' + ee.String(H2O).getInfo()); 197 | O3_display.setValue('Ozone (cm-atm): ' + O3.getInfo()); 198 | AOT_display.setValue('Aerosol Optical Thickness: ' + AOT.getInfo()); 199 | mapPanel.centerObject(geom,11); 200 | var dot = ui.Map.Layer(geom, {color: '000000'}, 'location'); 201 | mapPanel.layers().set(0, dot); 202 | } 203 | 204 | var button = ui.Button({ 205 | label: 'Calculate', 206 | onClick: compute 207 | }); 208 | mainPanel.add(button); 209 | 210 | var Lon_display = ui.Label(); 211 | var Lat_display = ui.Label(); 212 | mainPanel.add(ui.Panel([Lon_display, Lat_display], ui.Panel.Layout.flow('horizontal'))); 213 | var Date_display = ui.Label(); 214 | var H2O_display = ui.Label(); 215 | var O3_display = ui.Label(); 216 | var AOT_display = ui.Label(); 217 | mainPanel.add(Date_display); 218 | mainPanel.add(H2O_display); 219 | mainPanel.add(O3_display); 220 | mainPanel.add(AOT_display); 221 | 222 | 223 | var mapPanel = ui.Map(); 224 | mapPanel.style().set('cursor', 'crosshair'); 225 | var clickmap = function (coords) { 226 | // Update the lon/lat textbox with values from the click event. 227 | Lat_textbox.setValue(coords.lat.toFixed(2)); 228 | Lon_textbox.setValue(coords.lon.toFixed(2)); 229 | }; 230 | mapPanel.onClick(clickmap); 231 | 232 | mainPanel.add(ui.Label('------------------')); 233 | mainPanel.add(ui.Label('Created by Ivan Kwong, in December 2022')); 234 | mainPanel.add(ui.Label('GitHub page', {}, 235 | 'https://github.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK')); 236 | 237 | ui.root.clear(); 238 | ui.root.add(ui.SplitPanel(mainPanel, mapPanel)); 239 | -------------------------------------------------------------------------------- /Part1_ImagePreprocessing.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [] 7 | }, 8 | "kernelspec": { 9 | "name": "python3", 10 | "display_name": "Python 3" 11 | }, 12 | "language_info": { 13 | "name": "python" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "source": [ 20 | "# **Atmospheric correction of Sentinel 2 image using Py6S in Google Colab environment**\n", 21 | "\n", 22 | "This is the first part of python codes used in the article. The codes are tested inside Google Colab environment using Hong Kong water as the study area.\n", 23 | "\n", 24 | "Guidance and reference provided at the following websites are appreciated.\n", 25 | "\n", 26 | "* https://github.com/samsammurphy/gee-atmcorr-S2\n", 27 | "* https://github.com/ndminhhus/geeguide/blob/master/02.Atm-correction.md\n", 28 | "* https://blog.csdn.net/qq_45110581/article/details/108629636\n", 29 | "\n", 30 | "\n", 31 | "\n", 32 | "\n", 33 | "\n", 34 | "\n" 35 | ], 36 | "metadata": { 37 | "id": "_Uqq-ql9K-JU" 38 | } 39 | }, 40 | { 41 | "cell_type": "markdown", 42 | "source": [ 43 | "# Step 1 - Set up Py6S in Google Colab" 44 | ], 45 | "metadata": { 46 | "id": "OCD-euOFNEcC" 47 | } 48 | }, 49 | { 50 | "cell_type": "code", 51 | "metadata": { 52 | "id": "PinuZF07l__N" 53 | }, 54 | "source": [ 55 | "!gfortran -v\n", 56 | "!wget http://rtwilson.com/downloads/6SV-1.1.tar\n", 57 | "!tar xvf 6SV-1.1.tar\n", 58 | "!cd 6SV1.1" 59 | ], 60 | "execution_count": null, 61 | "outputs": [] 62 | }, 63 | { 64 | "cell_type": "markdown", 65 | "source": [ 66 | "**Manual work required before executing the subsequent code**\n", 67 | "\n", 68 | "Refer to comments below" 69 | ], 70 | "metadata": { 71 | "id": "NOYRtE-TMZ2E" 72 | } 73 | }, 74 | { 75 | "cell_type": "code", 76 | "metadata": { 77 | "id": "sBstCWxeizie" 78 | }, 79 | "source": [ 80 | "# modify \"makefile\" from \"FC = g77 $(FFLAGS)\" to \"FC = gfortran -std=legacy -ffixed-line-length-none -ffpe-summary=none $(FFLAGS)\"\n", 81 | "# upload modified \"makefile\" to /content/6SV1.1\n", 82 | "\n", 83 | "import os\n", 84 | "os.chdir(\"/content/6SV1.1\")\n", 85 | "!ls\n", 86 | "!make\n", 87 | "os.environ[\"PATH\"]=\"/content/6SV1.1:\"+os.environ[\"PATH\"]\n", 88 | "# test\n", 89 | "!sixsV1.1 < /content/Examples/Example_In_1.txt\n", 90 | "!pip install Py6S\n", 91 | "from Py6S import *\n", 92 | "SixS.test()" 93 | ], 94 | "execution_count": null, 95 | "outputs": [] 96 | }, 97 | { 98 | "cell_type": "markdown", 99 | "source": [ 100 | "# Step 2 - Define functions required in atmospheric correction" 101 | ], 102 | "metadata": { 103 | "id": "Tcyi0J-jM1mL" 104 | } 105 | }, 106 | { 107 | "cell_type": "markdown", 108 | "source": [ 109 | "**Functions created by Sam Murphy**\n", 110 | "\n", 111 | "Modified from https://github.com/samsammurphy/gee-atmcorr-S2" 112 | ], 113 | "metadata": { 114 | "id": "cTHmiwFmNrez" 115 | } 116 | }, 117 | { 118 | "cell_type": "code", 119 | "metadata": { 120 | "id": "FeO5C5TcfV3G" 121 | }, 122 | "source": [ 123 | "\"\"\"\n", 124 | "atmospheric.py, Sam Murphy (2016-10-26)\n", 125 | "\n", 126 | "Atmospheric water vapour, ozone and AOT from GEE\n", 127 | "\n", 128 | "Usage\n", 129 | "H2O = Atmospheric.water(geom,date)\n", 130 | "O3 = Atmospheric.ozone(geom,date)\n", 131 | "AOT = Atmospheric.aerosol(geom,date)\n", 132 | "\n", 133 | "\"\"\"\n", 134 | "\n", 135 | "\n", 136 | "import ee\n", 137 | "\n", 138 | "class Atmospheric():\n", 139 | "\n", 140 | " def round_date(date,xhour):\n", 141 | " \"\"\"\n", 142 | " rounds a date of to the closest 'x' hours\n", 143 | " \"\"\"\n", 144 | " y = date.get('year')\n", 145 | " m = date.get('month')\n", 146 | " d = date.get('day')\n", 147 | " H = date.get('hour')\n", 148 | " HH = H.divide(xhour).round().multiply(xhour)\n", 149 | " return date.fromYMD(y,m,d).advance(HH,'hour')\n", 150 | "\n", 151 | " def round_month(date):\n", 152 | " \"\"\"\n", 153 | " round date to closest month\n", 154 | " \"\"\"\n", 155 | " # start of THIS month\n", 156 | " m1 = date.fromYMD(date.get('year'),date.get('month'),ee.Number(1))\n", 157 | "\n", 158 | " # start of NEXT month\n", 159 | " m2 = m1.advance(1,'month')\n", 160 | "\n", 161 | " # difference from date\n", 162 | " d1 = ee.Number(date.difference(m1,'day')).abs()\n", 163 | " d2 = ee.Number(date.difference(m2,'day')).abs()\n", 164 | "\n", 165 | " # return closest start of month\n", 166 | " return ee.Date(ee.Algorithms.If(d2.gt(d1),m1,m2))\n", 167 | "\n", 168 | "\n", 169 | "\n", 170 | " def water(geom,date):\n", 171 | " \"\"\"\n", 172 | " Water vapour column above target at time of image aquisition.\n", 173 | "\n", 174 | " (Kalnay et al., 1996, The NCEP/NCAR 40-Year Reanalysis Project. Bull.\n", 175 | " Amer. Meteor. Soc., 77, 437-471)\n", 176 | " \"\"\"\n", 177 | "\n", 178 | " # Point geometry required\n", 179 | " centroid = geom.centroid()\n", 180 | "\n", 181 | " # H2O datetime is in 6 hour intervals\n", 182 | " H2O_date = Atmospheric.round_date(date,6)\n", 183 | "\n", 184 | " # filtered water collection\n", 185 | " water_ic = ee.ImageCollection('NCEP_RE/surface_wv').filterDate(H2O_date, H2O_date.advance(1,'month'))\n", 186 | "\n", 187 | " # water image\n", 188 | " water_img = ee.Image(water_ic.first())\n", 189 | "\n", 190 | " # water_vapour at target\n", 191 | " water = water_img.reduceRegion(reducer=ee.Reducer.mean(), geometry=centroid).get('pr_wtr')\n", 192 | "\n", 193 | " # convert to Py6S units (Google = kg/m^2, Py6S = g/cm^2)\n", 194 | " water_Py6S_units = ee.Number(water).divide(10)\n", 195 | "\n", 196 | " return water_Py6S_units\n", 197 | "\n", 198 | "\n", 199 | "\n", 200 | " def ozone(geom,date):\n", 201 | " \"\"\"\n", 202 | " returns ozone measurement from merged TOMS/OMI dataset\n", 203 | "\n", 204 | " OR\n", 205 | "\n", 206 | " uses our fill value (which is mean value for that latlon and day-of-year)\n", 207 | "\n", 208 | " \"\"\"\n", 209 | "\n", 210 | " # Point geometry required\n", 211 | " centroid = geom.centroid()\n", 212 | "\n", 213 | " def ozone_measurement(centroid,O3_date):\n", 214 | "\n", 215 | " # filtered ozone collection\n", 216 | " ozone_ic = ee.ImageCollection('TOMS/MERGED').filterDate(O3_date, O3_date.advance(1,'month'))\n", 217 | "\n", 218 | " # ozone image\n", 219 | " ozone_img = ee.Image(ozone_ic.first())\n", 220 | "\n", 221 | " # ozone value IF TOMS/OMI image exists ELSE use fill value\n", 222 | " ozone = ee.Algorithms.If(ozone_img,\\\n", 223 | " ozone_img.reduceRegion(reducer=ee.Reducer.mean(), geometry=centroid).get('ozone'),\\\n", 224 | " ozone_fill(centroid,O3_date))\n", 225 | "\n", 226 | " return ozone\n", 227 | "\n", 228 | " def ozone_fill(centroid,O3_date):\n", 229 | " \"\"\"\n", 230 | " Gets our ozone fill value (i.e. mean value for that doy and latlon)\n", 231 | "\n", 232 | " you can see it\n", 233 | " 1) compared to LEDAPS: https://code.earthengine.google.com/8e62a5a66e4920e701813e43c0ecb83e\n", 234 | " 2) as a video: https://www.youtube.com/watch?v=rgqwvMRVguI&feature=youtu.be\n", 235 | "\n", 236 | " \"\"\"\n", 237 | "\n", 238 | " # ozone fills (i.e. one band per doy)\n", 239 | " ozone_fills = ee.ImageCollection('users/samsammurphy/public/ozone_fill').toList(366)\n", 240 | "\n", 241 | " # day of year index\n", 242 | " jan01 = ee.Date.fromYMD(O3_date.get('year'),1,1)\n", 243 | " doy_index = date.difference(jan01,'day').toInt()# (NB. index is one less than doy, so no need to +1)\n", 244 | "\n", 245 | " # day of year image\n", 246 | " fill_image = ee.Image(ozone_fills.get(doy_index))\n", 247 | "\n", 248 | " # return scalar fill value\n", 249 | " return fill_image.reduceRegion(reducer=ee.Reducer.mean(), geometry=centroid).get('ozone')\n", 250 | "\n", 251 | " # O3 datetime in 24 hour intervals\n", 252 | " O3_date = Atmospheric.round_date(date,24)\n", 253 | "\n", 254 | " # TOMS temporal gap\n", 255 | " TOMS_gap = ee.DateRange('1994-11-01','1996-08-01')\n", 256 | "\n", 257 | " # avoid TOMS gap entirely\n", 258 | " ozone = ee.Algorithms.If(TOMS_gap.contains(O3_date),ozone_fill(centroid,O3_date),ozone_measurement(centroid,O3_date))\n", 259 | "\n", 260 | " # fix other data gaps (e.g. spatial, missing images, etc..)\n", 261 | " ozone = ee.Algorithms.If(ozone,ozone,ozone_fill(centroid,O3_date))\n", 262 | "\n", 263 | " #convert to Py6S units\n", 264 | " ozone_Py6S_units = ee.Number(ozone).divide(1000)# (i.e. Dobson units are milli-atm-cm )\n", 265 | "\n", 266 | " return ozone_Py6S_units\n", 267 | "\n", 268 | "\n", 269 | " def aerosol(geom,date):\n", 270 | " \"\"\"\n", 271 | " Aerosol Optical Thickness.\n", 272 | "\n", 273 | " try:\n", 274 | " MODIS Aerosol Product (monthly)\n", 275 | " except:\n", 276 | " fill value\n", 277 | " \"\"\"\n", 278 | "\n", 279 | " def aerosol_fill(date):\n", 280 | " \"\"\"\n", 281 | " MODIS AOT fill value for this month (i.e. no data gaps)\n", 282 | " \"\"\"\n", 283 | " return ee.Image('users/samsammurphy/public/AOT_stack')\\\n", 284 | " .select([ee.String('AOT_').cat(date.format('M'))])\\\n", 285 | " .rename(['AOT_550'])\n", 286 | "\n", 287 | "\n", 288 | " def aerosol_this_month(date):\n", 289 | " \"\"\"\n", 290 | " MODIS AOT original data product for this month (i.e. some data gaps)\n", 291 | " \"\"\"\n", 292 | " # image for this month\n", 293 | " img = ee.Image(\\\n", 294 | " ee.ImageCollection('MODIS/006/MOD08_M3')\\\n", 295 | " .filterDate(Atmospheric.round_month(date))\\\n", 296 | " .first()\\\n", 297 | " )\n", 298 | "\n", 299 | " # fill missing month (?)\n", 300 | " img = ee.Algorithms.If(img,\\\n", 301 | " # all good\n", 302 | " img\\\n", 303 | " .select(['Aerosol_Optical_Depth_Land_Mean_Mean_550'])\\\n", 304 | " .divide(1000)\\\n", 305 | " .rename(['AOT_550']),\\\n", 306 | " # missing month\n", 307 | " aerosol_fill(date))\n", 308 | "\n", 309 | " return img\n", 310 | "\n", 311 | "\n", 312 | " def get_AOT(AOT_band,geom):\n", 313 | " \"\"\"\n", 314 | " AOT scalar value for target\n", 315 | " \"\"\"\n", 316 | " return ee.Image(AOT_band).reduceRegion(reducer=ee.Reducer.mean(),\\\n", 317 | " geometry=geom.centroid())\\\n", 318 | " .get('AOT_550')\n", 319 | "\n", 320 | "\n", 321 | " after_modis_start = date.difference(ee.Date('2000-03-01'),'month').gt(0)\n", 322 | "\n", 323 | " AOT_band = ee.Algorithms.If(after_modis_start, aerosol_this_month(date), aerosol_fill(date))\n", 324 | "\n", 325 | " AOT = get_AOT(AOT_band,geom)\n", 326 | "\n", 327 | " AOT = ee.Algorithms.If(AOT,AOT,get_AOT(aerosol_fill(date),geom))\n", 328 | " # i.e. check reduce region worked (else force fill value)\n", 329 | "\n", 330 | " return AOT" 331 | ], 332 | "execution_count": null, 333 | "outputs": [] 334 | }, 335 | { 336 | "cell_type": "markdown", 337 | "source": [ 338 | "Import required libraries" 339 | ], 340 | "metadata": { 341 | "id": "3zDQifBXNzpy" 342 | } 343 | }, 344 | { 345 | "cell_type": "code", 346 | "metadata": { 347 | "id": "x2tuCpkef5Xt" 348 | }, 349 | "source": [ 350 | "import ee\n", 351 | "from Py6S import *\n", 352 | "from datetime import datetime\n", 353 | "import math\n", 354 | "import os\n", 355 | "import sys" 356 | ], 357 | "execution_count": null, 358 | "outputs": [] 359 | }, 360 | { 361 | "cell_type": "markdown", 362 | "source": [ 363 | "**Initialize Google Earth Engine session**\n", 364 | "\n", 365 | "Need enter verification using GEE account" 366 | ], 367 | "metadata": { 368 | "id": "juwUBcecN4Ay" 369 | } 370 | }, 371 | { 372 | "cell_type": "code", 373 | "metadata": { 374 | "id": "MaH1Ub1zgbJl" 375 | }, 376 | "source": [ 377 | "ee.Authenticate()\n", 378 | "ee.Initialize()" 379 | ], 380 | "execution_count": null, 381 | "outputs": [] 382 | }, 383 | { 384 | "cell_type": "markdown", 385 | "source": [ 386 | "**Py6S function**" 387 | ], 388 | "metadata": { 389 | "id": "WnvRgEOuODrR" 390 | } 391 | }, 392 | { 393 | "cell_type": "code", 394 | "metadata": { 395 | "id": "JdcVyK0Agox-" 396 | }, 397 | "source": [ 398 | "# Define Py6S function\n", 399 | "# Modified from https://github.com/ndminhhus/geeguide/blob/master/02.Atm-correction.md\n", 400 | "\n", 401 | "def func1(img):\n", 402 | " S2 = ee.Image(img)\n", 403 | " date = S2.date()\n", 404 | " # top of atmosphere reflectance\n", 405 | " toa = S2.divide(10000)\n", 406 | "\n", 407 | " info = S2.getInfo()['properties']\n", 408 | " scene_date = datetime.utcfromtimestamp(info['system:time_start']/1000)# i.e. Python uses seconds, EE uses milliseconds\n", 409 | " solar_z = info['MEAN_SOLAR_ZENITH_ANGLE']\n", 410 | "\n", 411 | " h2o = Atmospheric.water(geom,date).getInfo()\n", 412 | " o3 = Atmospheric.ozone(geom,date).getInfo()\n", 413 | " aot = Atmospheric.aerosol(geom,date).getInfo()\n", 414 | "\n", 415 | " SRTM = ee.Image('CGIAR/SRTM90_V4')# Shuttle Radar Topography mission covers *most* of the Earth\n", 416 | " alt = SRTM.reduceRegion(reducer = ee.Reducer.mean(),geometry = geom.centroid()).get('elevation').getInfo()\n", 417 | " km = alt/1000 # i.e. Py6S uses units of kilometers\n", 418 | "\n", 419 | " # Instantiate\n", 420 | " s = SixS()\n", 421 | "\n", 422 | " # Atmospheric constituents\n", 423 | " s.atmos_profile = AtmosProfile.UserWaterAndOzone(h2o,o3)\n", 424 | " s.aero_profile = AeroProfile.Maritime # https://github.com/robintw/Py6S/blob/master/Py6S/Params/aeroprofile.py\n", 425 | " s.aot550 = aot\n", 426 | "\n", 427 | " # Earth-Sun-satellite geometry\n", 428 | " s.geometry = Geometry.User()\n", 429 | " s.geometry.view_z = 0 # always NADIR\n", 430 | " s.geometry.solar_z = solar_z # solar zenith angle\n", 431 | " s.geometry.month = scene_date.month # month and day used for Earth-Sun distance\n", 432 | " s.geometry.day = scene_date.day # month and day used for Earth-Sun distance\n", 433 | " s.altitudes.set_sensor_satellite_level()\n", 434 | " s.altitudes.set_target_custom_altitude(km)\n", 435 | "\n", 436 | " def spectralResponseFunction(bandname):\n", 437 | " \"\"\"\n", 438 | " Extract spectral response function for given band name\n", 439 | " \"\"\"\n", 440 | " bandSelect = {\n", 441 | " 'B1':PredefinedWavelengths.S2A_MSI_01,\n", 442 | " 'B2':PredefinedWavelengths.S2A_MSI_02,\n", 443 | " 'B3':PredefinedWavelengths.S2A_MSI_03,\n", 444 | " 'B4':PredefinedWavelengths.S2A_MSI_04,\n", 445 | " 'B5':PredefinedWavelengths.S2A_MSI_05,\n", 446 | " 'B6':PredefinedWavelengths.S2A_MSI_06,\n", 447 | " 'B7':PredefinedWavelengths.S2A_MSI_07,\n", 448 | " 'B8':PredefinedWavelengths.S2A_MSI_08,\n", 449 | " 'B8A':PredefinedWavelengths.S2A_MSI_8A,\n", 450 | " 'B9':PredefinedWavelengths.S2A_MSI_09,\n", 451 | " 'B10':PredefinedWavelengths.S2A_MSI_10,\n", 452 | " 'B11':PredefinedWavelengths.S2A_MSI_11,\n", 453 | " 'B12':PredefinedWavelengths.S2A_MSI_12,\n", 454 | " }\n", 455 | " return Wavelength(bandSelect[bandname])\n", 456 | "\n", 457 | " def toa_to_rad(bandname):\n", 458 | " \"\"\"\n", 459 | " Converts top of atmosphere reflectance to at-sensor radiance\n", 460 | " \"\"\"\n", 461 | " # solar exoatmospheric spectral irradiance\n", 462 | " ESUN = info['SOLAR_IRRADIANCE_'+bandname]\n", 463 | " solar_angle_correction = math.cos(math.radians(solar_z))\n", 464 | " # Earth-Sun distance (from day of year)\n", 465 | " doy = scene_date.timetuple().tm_yday\n", 466 | " d = 1 - 0.01672 * math.cos(0.9856 * (doy-4))# http://physics.stackexchange.com/questions/177949/earth-sun-distance-on-a-given-day-of-the-year\n", 467 | " # conversion factor\n", 468 | " multiplier = ESUN*solar_angle_correction/(math.pi*d**2)\n", 469 | " # at-sensor radiance\n", 470 | " rad = toa.select(bandname).multiply(multiplier)\n", 471 | " return rad\n", 472 | "\n", 473 | " def surface_reflectance(bandname):\n", 474 | " \"\"\"\n", 475 | " Calculate surface reflectance from at-sensor radiance given waveband name\n", 476 | " \"\"\"\n", 477 | " # run 6S for this waveband\n", 478 | " s.wavelength = spectralResponseFunction(bandname)\n", 479 | " s.run()\n", 480 | " # extract 6S outputs\n", 481 | " Edir = s.outputs.direct_solar_irradiance #direct solar irradiance\n", 482 | " Edif = s.outputs.diffuse_solar_irradiance #diffuse solar irradiance\n", 483 | " Lp = s.outputs.atmospheric_intrinsic_radiance #path radiance\n", 484 | " absorb = s.outputs.trans['global_gas'].upward #absorption transmissivity\n", 485 | " scatter = s.outputs.trans['total_scattering'].upward #scattering transmissivity\n", 486 | " tau2 = absorb*scatter #total transmissivity\n", 487 | " # radiance to surface reflectance\n", 488 | " rad = toa_to_rad(bandname)\n", 489 | " ref = rad.subtract(Lp).multiply(math.pi).divide(tau2*(Edir+Edif))\n", 490 | " return ref\n", 491 | "\n", 492 | " # all wavebands\n", 493 | " output = S2.select('QA60')\n", 494 | " for band in ['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B9','B10','B11','B12']:\n", 495 | " print(band)\n", 496 | " output = output.addBands(surface_reflectance(band))\n", 497 | "\n", 498 | " return output\n" 499 | ], 500 | "execution_count": null, 501 | "outputs": [] 502 | }, 503 | { 504 | "cell_type": "markdown", 505 | "source": [ 506 | "# Step 3 - Remove clouds using cloud mask" 507 | ], 508 | "metadata": { 509 | "id": "qcBG4lRpOMEp" 510 | } 511 | }, 512 | { 513 | "cell_type": "code", 514 | "metadata": { 515 | "id": "cdThxtTHsgXz" 516 | }, 517 | "source": [ 518 | "# Remove cloud and cloud shadow\n", 519 | "# Modified from https://developers.google.com/earth-engine/tutorials/community/sentinel-2-s2cloudless\n", 520 | "\n", 521 | "AOI_point_right = ee.Geometry.Point(114.05, 22.40) # Define AOI location\n", 522 | "AOI_point_left = ee.Geometry.Point(113.80, 22.40) # Mosaic with another tile is needed to cover the study area\n", 523 | "START_DATE = '2015-01-01' # Define start date\n", 524 | "END_DATE = '2021-12-31' # Define end date\n", 525 | "CLD_PRB_THRESH = 60 #\tCloud probability (%); values greater than are considered cloud\n", 526 | "NIR_DRK_THRESH = 0.15 # Near-infrared reflectance; values less than are considered potential cloud shadow\n", 527 | "CLD_PRJ_DIST = 1 # Maximum distance (km) to search for cloud shadows from cloud edges\n", 528 | "BUFFER = 100 # Distance (m) to dilate the edge of cloud-identified objects\n", 529 | "\n", 530 | "def get_s2_sr_cld_col(aoi, start_date, end_date):\n", 531 | " # Import and filter S2 SR.\n", 532 | " s2_sr_col = (ee.ImageCollection('COPERNICUS/S2')\n", 533 | " .filterBounds(aoi)\n", 534 | " .filterDate(start_date, end_date)\n", 535 | " .filter(ee.Filter.lte('CLOUDY_PIXEL_PERCENTAGE', 20)))\n", 536 | "\n", 537 | " # Import and filter s2cloudless.\n", 538 | " s2_cloudless_col = (ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY')\n", 539 | " .filterBounds(aoi)\n", 540 | " .filterDate(start_date, end_date))\n", 541 | "\n", 542 | " # Join the filtered s2cloudless collection to the SR collection by the 'system:index' property.\n", 543 | " return ee.ImageCollection(ee.Join.saveFirst('s2cloudless').apply(**{\n", 544 | " 'primary': s2_sr_col,\n", 545 | " 'secondary': s2_cloudless_col,\n", 546 | " 'condition': ee.Filter.equals(**{\n", 547 | " 'leftField': 'system:index',\n", 548 | " 'rightField': 'system:index'\n", 549 | " })\n", 550 | " }))\n", 551 | "\n", 552 | "def get_s2_sr_cld_col_left(aoi, start_date, end_date):\n", 553 | " # Import and filter S2 SR.\n", 554 | " s2_sr_col = (ee.ImageCollection('COPERNICUS/S2')\n", 555 | " .filterBounds(aoi)\n", 556 | " .filterDate(start_date, end_date))\n", 557 | "\n", 558 | " # Import and filter s2cloudless.\n", 559 | " s2_cloudless_col = (ee.ImageCollection('COPERNICUS/S2_CLOUD_PROBABILITY')\n", 560 | " .filterBounds(aoi)\n", 561 | " .filterDate(start_date, end_date))\n", 562 | "\n", 563 | " # Join the filtered s2cloudless collection to the SR collection by the 'system:index' property.\n", 564 | " return ee.ImageCollection(ee.Join.saveFirst('s2cloudless').apply(**{\n", 565 | " 'primary': s2_sr_col,\n", 566 | " 'secondary': s2_cloudless_col,\n", 567 | " 'condition': ee.Filter.equals(**{\n", 568 | " 'leftField': 'system:index',\n", 569 | " 'rightField': 'system:index'\n", 570 | " })\n", 571 | " }))\n", 572 | "\n", 573 | "s2_right = get_s2_sr_cld_col(AOI_point_right, START_DATE, END_DATE)\n", 574 | "s2_left = get_s2_sr_cld_col_left(AOI_point_left, START_DATE, END_DATE)\n", 575 | "\n", 576 | "def add_cloud_bands(img):\n", 577 | " # Get s2cloudless image, subset the probability band.\n", 578 | " cld_prb = ee.Image(img.get('s2cloudless')).select('probability')\n", 579 | "\n", 580 | " # Condition s2cloudless by the probability threshold value.\n", 581 | " is_cloud = cld_prb.gt(CLD_PRB_THRESH).rename('clouds')\n", 582 | "\n", 583 | " # Add the cloud probability layer and cloud mask as image bands.\n", 584 | " return img.addBands(ee.Image([cld_prb, is_cloud]))\n", 585 | "\n", 586 | "def add_shadow_bands(img):\n", 587 | "\n", 588 | " # Identify dark NIR pixels that are not water (potential cloud shadow pixels).\n", 589 | " SR_BAND_SCALE = 1e4\n", 590 | " dark_pixels = img.select('B8').lt(NIR_DRK_THRESH*SR_BAND_SCALE).rename('dark_pixels')\n", 591 | "\n", 592 | " # Determine the direction to project cloud shadow from clouds (assumes UTM projection).\n", 593 | " shadow_azimuth = ee.Number(90).subtract(ee.Number(img.get('MEAN_SOLAR_AZIMUTH_ANGLE')));\n", 594 | "\n", 595 | " # Project shadows from clouds for the distance specified by the CLD_PRJ_DIST input.\n", 596 | " cld_proj = (img.select('clouds').directionalDistanceTransform(shadow_azimuth, CLD_PRJ_DIST*10)\n", 597 | " .reproject(**{'crs': img.select(0).projection(), 'scale': 100})\n", 598 | " .select('distance')\n", 599 | " .mask()\n", 600 | " .rename('cloud_transform'))\n", 601 | "\n", 602 | " # Identify the intersection of dark pixels with cloud shadow projection.\n", 603 | " shadows = cld_proj.multiply(dark_pixels).rename('shadows')\n", 604 | "\n", 605 | " # Add dark pixels, cloud projection, and identified shadows as image bands.\n", 606 | " return img.addBands(ee.Image([dark_pixels, cld_proj, shadows]))\n", 607 | "\n", 608 | "def add_cld_shdw_mask(img):\n", 609 | " # Add cloud component bands.\n", 610 | " img_cloud = add_cloud_bands(img)\n", 611 | "\n", 612 | " # Add cloud shadow component bands.\n", 613 | " img_cloud_shadow = add_shadow_bands(img_cloud)\n", 614 | "\n", 615 | " # Combine cloud and shadow mask, set cloud and shadow as value 1, else 0.\n", 616 | " is_cld_shdw = img_cloud_shadow.select('clouds').add(img_cloud_shadow.select('shadows')).gt(0)\n", 617 | "\n", 618 | " # Remove small cloud-shadow patches and dilate remaining pixels by BUFFER input.\n", 619 | " # 20 m scale is for speed, and assumes clouds don't require 10 m precision.\n", 620 | " is_cld_shdw = (is_cld_shdw.focal_min(2).focal_max(BUFFER*2/20)\n", 621 | " .reproject(**{'crs': img.select([0]).projection(), 'scale': 20})\n", 622 | " .rename('cloudmask'))\n", 623 | "\n", 624 | " # Add the final cloud-shadow mask to the image.\n", 625 | " return img.addBands(is_cld_shdw)\n", 626 | "\n", 627 | "def apply_cld_shdw_mask(img):\n", 628 | " # Subset the cloudmask band and invert it so clouds/shadow are 0, else 1.\n", 629 | " not_cld_shdw = img.select('cloudmask').Not()\n", 630 | "\n", 631 | " # Subset reflectance bands and update their masks, return the result.\n", 632 | " # return img.select('B.*').updateMask(not_cld_shdw)\n", 633 | " return img.updateMask(not_cld_shdw)\n", 634 | "\n", 635 | "s2_cloudless_right = (s2_right.map(add_cld_shdw_mask)\n", 636 | " .map(apply_cld_shdw_mask))\n", 637 | "s2_cloudless_left = (s2_left.map(add_cld_shdw_mask)\n", 638 | " .map(apply_cld_shdw_mask))\n" 639 | ], 640 | "execution_count": null, 641 | "outputs": [] 642 | }, 643 | { 644 | "cell_type": "markdown", 645 | "source": [ 646 | "# Step 4 - Execute the image processing\n", 647 | "\n", 648 | "Results are saved as GEE assets" 649 | ], 650 | "metadata": { 651 | "id": "7MVP8tg7Omaq" 652 | } 653 | }, 654 | { 655 | "cell_type": "code", 656 | "source": [ 657 | "# Define function to chain the above process\n", 658 | "\n", 659 | "def preprocess(image):\n", 660 | " s2_boa = func1(image)\n", 661 | " d1 = s2_boa.clip(aoi)\n", 662 | "\n", 663 | " # export to asset\n", 664 | " fname = ee.String(d1.get('system:index')).getInfo()\n", 665 | " export = ee.batch.Export.image.toAsset(\n", 666 | " image = d1,\n", 667 | " description= 'S2_BOA_' + fname,\n", 668 | " assetId = 'users/khoyinivan/S2_Py6S_mask/' +'S2_BOA_' + fname, # Manually create image collection in GEE asset first\n", 669 | " region = aoi,\n", 670 | " scale = 10)\n", 671 | " export.start()\n", 672 | " print('exporting ' +fname + '--->done')\n", 673 | "\n", 674 | " # find adjacent S2 tile\n", 675 | " d1_date = d1.date().format('yyyy-MM-dd')\n", 676 | " s2_left = s2_cloudless_left.filterDate(d1.date().advance(-1,'day').format('yyyy-MM-dd'), d1.date().advance(1,'day').format('yyyy-MM-dd')).first()\n", 677 | " s2_left_boa = func1(s2_left)\n", 678 | " d2 = s2_left_boa.clip(aoi)\n", 679 | "\n", 680 | " # export to asset\n", 681 | " fname = ee.String(d2.get('system:index')).getInfo()\n", 682 | " export = ee.batch.Export.image.toAsset(\n", 683 | " image = d2,\n", 684 | " description= 'S2_BOA_' + fname,\n", 685 | " assetId = 'users/khoyinivan/S2_Py6S_mask/' +'S2_BOA_' + fname,\n", 686 | " region = aoi,\n", 687 | " scale = 10)\n", 688 | " export.start()\n", 689 | " print('exporting ' +fname + '--->done')" 690 | ], 691 | "metadata": { 692 | "id": "rBmoyVhVO39i" 693 | }, 694 | "execution_count": null, 695 | "outputs": [] 696 | }, 697 | { 698 | "cell_type": "code", 699 | "metadata": { 700 | "id": "WVIc6cbqvBQw" 701 | }, 702 | "source": [ 703 | "# Run the preprocessing & export to asset\n", 704 | "\n", 705 | "aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]]) # Define output AOI\n", 706 | "geom = aoi\n", 707 | "dates = []\n", 708 | "\n", 709 | "s2_col = s2_cloudless_right\n", 710 | "\n", 711 | "col_length = s2_col.size().getInfo()\n", 712 | "print(col_length)\n", 713 | "\n", 714 | "for i in range(0,col_length):\n", 715 | " print(i)\n", 716 | " s2_list = s2_col.toList(col_length)\n", 717 | " img = ee.Image(s2_list.get(i))\n", 718 | " d1_date_info = img.date().format('yyyy-MM-dd').getInfo()\n", 719 | " if d1_date_info in dates:\n", 720 | " continue\n", 721 | " dates.append(d1_date_info)\n", 722 | " preprocess(img)\n", 723 | "\n", 724 | "print(dates)\n" 725 | ], 726 | "execution_count": null, 727 | "outputs": [] 728 | }, 729 | { 730 | "cell_type": "markdown", 731 | "source": [ 732 | "# Step 5 - Mosaic the Sentinel-2 tiles\n", 733 | "\n", 734 | "The study area is divided into 2 tiles & require mosaicking step" 735 | ], 736 | "metadata": { 737 | "id": "f96ckM5MO8iB" 738 | } 739 | }, 740 | { 741 | "cell_type": "code", 742 | "metadata": { 743 | "id": "7x6k9fBfKK0l" 744 | }, 745 | "source": [ 746 | "# Mosaic the two tiles created above into one mosaic\n", 747 | "\n", 748 | "aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]])\n", 749 | "\n", 750 | "s2_boa_col = ee.ImageCollection(\"users/khoyinivan/S2_Py6S_mask\")\n", 751 | "print(s2_boa_col.size().getInfo())\n", 752 | "days = ee.Dictionary(s2_boa_col.aggregate_histogram('system:time_start')).keys().getInfo()\n", 753 | "days = [datetime.fromtimestamp(float(s)/1000.0).strftime('%Y-%m-%d') for s in days]\n", 754 | "days = list(dict.fromkeys(days))\n", 755 | "print(len(days))\n", 756 | "\n", 757 | "for i in range(0,len(days)):\n", 758 | " print(i)\n", 759 | " print(days[i])\n", 760 | " d = ee.Date(days[i])\n", 761 | " t = s2_boa_col.filterDate(d,d.advance(1,'day'))\n", 762 | " f = ee.Image(t.first())\n", 763 | " t = t.mosaic().select(['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B11','B12'])\n", 764 | " t = t.set('system:time_start',d.millis())\n", 765 | " t = t.copyProperties(f, f.propertyNames())\n", 766 | " t = ee.Image(t)\n", 767 | " fname = ee.String(t.get('system:index')).getInfo()\n", 768 | " export = ee.batch.Export.image.toAsset(\n", 769 | " image = t,\n", 770 | " description = fname,\n", 771 | " assetId = 'users/khoyinivan/S2_Py6S_mask_m/' + fname,\n", 772 | " region = aoi,\n", 773 | " scale = 10)\n", 774 | " export.start()\n", 775 | " print('exporting ' +fname + '--->done')" 776 | ], 777 | "execution_count": null, 778 | "outputs": [] 779 | } 780 | ] 781 | } -------------------------------------------------------------------------------- /LocalProcessingPipeline_Part2_NewlyAcquiredImage.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# Install and load libraries for image processing steps\n", 10 | "# pip install --user landsatxplore-master.zip\n", 11 | "from landsatxplore.api import API\n", 12 | "from landsatxplore.earthexplorer import EarthExplorer\n", 13 | "import os\n", 14 | "import shutil\n", 15 | "from datetime import date, datetime, timedelta\n", 16 | "import zipfile\n", 17 | "import tarfile \n", 18 | "import glob\n", 19 | "import numpy as np\n", 20 | "import pandas as pd\n", 21 | "from simpledbf import Dbf5\n", 22 | "import requests\n", 23 | "import arcpy\n", 24 | "from arcpy import env\n", 25 | "from arcpy.sa import *\n", 26 | "arcpy.CheckOutExtension(\"spatial\")" 27 | ] 28 | }, 29 | { 30 | "cell_type": "code", 31 | "execution_count": 3, 32 | "metadata": {}, 33 | "outputs": [], 34 | "source": [ 35 | "# Search and download Landsat satellite images\n", 36 | "def downloadlandsat(startdate, enddate):\n", 37 | " # Initialize a new API instance and get an access key\n", 38 | " username = \"username\" # change your EarthExplorer username and password\n", 39 | " password = \"password\"\n", 40 | " api = API(username, password)\n", 41 | " # 22.13,113.81,22.59,114.52\n", 42 | " # https://github.com/yannforget/landsatxplore/blob/master/landsatxplore/api.py\n", 43 | " # Search for Landsat TM scenes\n", 44 | " scenes = api.search(\n", 45 | " dataset='landsat_ot_c2_l1', bbox=(113.81, 22.13, 114.52, 22.59),\n", 46 | " start_date=startdate, # start_date='2014-01-01',\n", 47 | " end_date=enddate, # end_date='2015-12-31',\n", 48 | " max_cloud_cover=20, max_results=1000\n", 49 | " )\n", 50 | " print(f\"{len(scenes)} Landsat scenes found.\")\n", 51 | " print(scenes)\n", 52 | " # Log out\n", 53 | " api.logout()\n", 54 | " # Downloading scenes\n", 55 | " if len(scenes) > 0:\n", 56 | " ee = EarthExplorer(username, password)\n", 57 | " df = pd.read_csv(\"D:/WaterQuality/ImageInfo.csv\")\n", 58 | " for s in scenes:\n", 59 | " print(s['landsat_product_id'])\n", 60 | " ee.download(s['entity_id'], output_dir='D:/WaterQuality/datadownload')\n", 61 | " df.loc[len(df.index)] = [s['landsat_product_id'], s['start_time'].isoformat()]\n", 62 | " df.to_csv(\"D:/WaterQuality/ImageInfo.csv\", index=False)\n", 63 | " ee.logout()\n", 64 | "\n", 65 | "# Search and download Sentinel satellite images\n", 66 | "def downloadsentinel(startdate, enddate):\n", 67 | " # WKT Representation of BBOX of AOI\n", 68 | " ft = \"POLYGON((113.81 22.13, 114.52 22.13, 114.52 22.59, 113.81 22.59, 113.81 22.13))\" \n", 69 | " data_collection = \"SENTINEL-2\"\n", 70 | "\n", 71 | " def get_keycloak():\n", 72 | " data = {\n", 73 | " \"client_id\": \"cdse-public\",\n", 74 | " \"username\": \"username\", # change your copernicus dataspace username and password\n", 75 | " \"password\": \"password\",\n", 76 | " \"grant_type\": \"password\",\n", 77 | " }\n", 78 | " try:\n", 79 | " r = requests.post(\n", 80 | " \"https://identity.dataspace.copernicus.eu/auth/realms/CDSE/protocol/openid-connect/token\",\n", 81 | " data=data,\n", 82 | " )\n", 83 | " r.raise_for_status()\n", 84 | " except Exception as e:\n", 85 | " raise Exception(\n", 86 | " f\"Keycloak token creation failed. Reponse from the server was: {r.json()}\"\n", 87 | " )\n", 88 | " return r.json()[\"access_token\"]\n", 89 | " \n", 90 | " json_ = requests.get( # cloud le 20\n", 91 | " f\"https://catalogue.dataspace.copernicus.eu/odata/v1/Products?$filter=Collection/Name eq '{data_collection}' and OData.CSC.Intersects(area=geography'SRID=4326;{ft}') and Attributes/OData.CSC.DoubleAttribute/any(att:att/Name eq 'cloudCover' and att/OData.CSC.DoubleAttribute/Value le 20.00) and ContentDate/Start gt {startdate}T00:00:00.000Z and ContentDate/Start lt {enddate}T23:59:00.000Z&$count=True&$top=1000\"\n", 92 | " ).json()\n", 93 | " p = pd.DataFrame.from_dict(json_[\"value\"]) # Fetch available dataset\n", 94 | " print(f\" total Sentinel tiles found {len(p)}\")\n", 95 | " if len(p)>0:\n", 96 | " # Remove L2A and UTM50 dataset\n", 97 | " p = p[~p[\"Name\"].str.contains(\"L2A\")] \n", 98 | " p = p[~p[\"Name\"].str.contains(\"T50Q\")] \n", 99 | " df = pd.read_csv(\"D:/WaterQuality/ImageInfo.csv\")\n", 100 | " for i in range(len(p)):\n", 101 | " url_id = p[\"Id\"].iloc[i]\n", 102 | " download_name = p[\"Name\"].iloc[i].split(\".\")[0]\n", 103 | " contentdate = p[\"ContentDate\"].iloc[i]\n", 104 | " print(\"Start download: \"+str(i+1)+\"/\"+str(len(p))+\"; \"+download_name)\n", 105 | " keycloak_token = get_keycloak()\n", 106 | " url = f\"https://zipper.dataspace.copernicus.eu/odata/v1/Products(\"+url_id+\")/$value\"\n", 107 | " headers = {\"Authorization\": f\"Bearer {keycloak_token}\"}\n", 108 | " session = requests.Session()\n", 109 | " session.headers.update(headers)\n", 110 | " response = session.get(url, headers=headers, stream=True)\n", 111 | " with open(\"D:/WaterQuality/datadownload/\"+download_name+\".zip\", \"wb\") as file:\n", 112 | " for chunk in response.iter_content(chunk_size=8192):\n", 113 | " if chunk:\n", 114 | " file.write(chunk)\n", 115 | " df.loc[len(df.index)] = [download_name, contentdate[\"Start\"]]\n", 116 | " print(\"Finish download: \"+download_name)\n", 117 | " df.to_csv(\"D:/WaterQuality/ImageInfo.csv\", index=False)\n", 118 | "\n", 119 | "# Function to preprocess a single Landsat image\n", 120 | "def preprocessLandsat(tar):\n", 121 | " # extract tar\n", 122 | " datadir = 'D:/WaterQuality/datadownload'\n", 123 | " os.chdir(datadir)\n", 124 | " file = tarfile.open(tar)\n", 125 | " file.extractall('extract')\n", 126 | " file.close()\n", 127 | " # run acolite\n", 128 | " acolitepath = \"D:/WaterQuality/acolite/acolite_py_win/dist/acolite/acolite.exe\"\n", 129 | " settingpath = \"D:/WaterQuality/acolite/setting_landsat.txt\"\n", 130 | " os.system(acolitepath+\" --cli --settings=\"+settingpath)\n", 131 | " def merge_and_mask():\n", 132 | " # merge 7 bands\n", 133 | " os.chdir('atmocor')\n", 134 | " tiflist = glob.glob('*L2R_rhos_*.tif')\n", 135 | " bandorder = [2, 3, 4, 7, 8, 0, 1]\n", 136 | " tiflist = [tiflist[i] for i in bandorder]\n", 137 | " env.workspace = 'D:/WaterQuality/datadownload/atmocor'\n", 138 | " arcpy.CompositeBands_management(tiflist, \"compbands.tif\")\n", 139 | " # mask land and cloud\n", 140 | " ras = Raster(\"compbands.tif\")\n", 141 | " qaband = Raster(glob.glob(datadir+'/extract/*QA_PIXEL.TIF')[0])\n", 142 | " qaband_m = SetNull(qaband>22200,1)\n", 143 | " qaband_m = FocalStatistics(qaband_m, NbrCircle(3,\"CELL\"), \"MEAN\", \"NODATA\") # expand radius 3\n", 144 | " ras_m = ExtractByMask(ras, qaband_m)\n", 145 | " swir = Raster(\"compbands.tif\\Band_6\")\n", 146 | " green = Raster(\"compbands.tif\\Band_3\")\n", 147 | " nir = Raster(\"compbands.tif\\Band_5\")\n", 148 | " red = Raster(\"compbands.tif\\Band_4\")\n", 149 | " ndvi1 = arcpy.sa.Float((red-nir)/(red+nir))\n", 150 | " ndvi1_m = SetNull(ndvi1<0,1)\n", 151 | " ndwi = arcpy.sa.Float((green-swir)/(green+swir))\n", 152 | " ndwi_m = SetNull(ndwi<0,1)\n", 153 | " swir_m = SetNull(swir>0.15,1)\n", 154 | " ras_m = ExtractByMask(ras_m, ndvi1_m)\n", 155 | " ras_m = ExtractByMask(ras_m, ndwi_m)\n", 156 | " ras_m = ExtractByMask(ras_m, swir_m)\n", 157 | " # reproject\n", 158 | " aoi = \"D:/WaterQuality/aoi/aoi.shp\"\n", 159 | " outfilename = \"D:/WaterQuality/reflectance/\"+tar.replace(\".tar\",\".tif\")\n", 160 | " arcpy.management.ProjectRaster(ras_m, \"compbands_p.tif\", aoi) \n", 161 | " arcpy.management.Clip(\"compbands_p.tif\", aoi, \"compbands_p_c.tif\", \n", 162 | " \"#\", \"#\", \"NONE\",\"MAINTAIN_EXTENT\")\n", 163 | " arcpy.management.Resample(\"compbands_p_c.tif\", outfilename, 0.00028571429)\n", 164 | " merge_and_mask()\n", 165 | " # empty extract and atmocor\n", 166 | " def emptyfolder(folder):\n", 167 | " for filename in os.listdir(folder):\n", 168 | " file_path = os.path.join(folder, filename) \n", 169 | " if os.path.isfile(file_path) or os.path.islink(file_path):\n", 170 | " os.unlink(file_path)\n", 171 | " emptyfolder(\"D:/WaterQuality/datadownload/extract\")\n", 172 | " emptyfolder(\"D:/WaterQuality/datadownload/atmocor\")\n", 173 | " # delete tarfile\n", 174 | " os.chdir(datadir)\n", 175 | " os.unlink(tar)\n", 176 | "\n", 177 | "# Function to preprocess a single Sentinel image\n", 178 | "def preprocessSentinel(zipf):\n", 179 | " datadir = 'D:/WaterQuality/datadownload'\n", 180 | " os.chdir(datadir)\n", 181 | " with zipfile.ZipFile(zipf, 'r') as zip_ref:\n", 182 | " zip_ref.extractall()\n", 183 | " safefolder = glob.glob('*.SAFE')[0]\n", 184 | " # run acolite\n", 185 | " settingtemp = \"D:/WaterQuality/acolite/setting_sentinel.txt\"\n", 186 | " settingpath = \"D:/WaterQuality/acolite/setting_sentinel2.txt\"\n", 187 | " # Read in the file\n", 188 | " with open(settingtemp, 'r') as file:\n", 189 | " filedata = file.read()\n", 190 | " filedata = filedata.replace('inputfile=', 'inputfile='+os.path.join(datadir,safefolder))\n", 191 | " # Write the file out again\n", 192 | " with open(settingpath, 'w') as file:\n", 193 | " file.write(filedata)\n", 194 | " acolitepath = \"D:/WaterQuality/acolite/acolite_py_win/dist/acolite/acolite.exe\"\n", 195 | " os.system(acolitepath+\" --cli --settings=\"+settingpath)\n", 196 | " def merge_and_mask():\n", 197 | " # merge 7 bands\n", 198 | " os.chdir('atmocor')\n", 199 | " tiflist = glob.glob('*L2R_rhos_*.tif')\n", 200 | " if len(tiflist)==0: # if acolite does not produce any files\n", 201 | " return\n", 202 | " bandorder = [2, 3, 4, 5, 10, 0, 1]\n", 203 | " tiflist = [tiflist[i] for i in bandorder]\n", 204 | " env.workspace = 'D:/WaterQuality/datadownload/atmocor'\n", 205 | " arcpy.CompositeBands_management(tiflist, \"compbands.tif\")\n", 206 | " arcpy.management.Resample(\"compbands.tif\", \"compbands_r.tif\", 30)\n", 207 | " # mask land and cloud\n", 208 | " ras = Raster(\"compbands_r.tif\")\n", 209 | " swir = Raster(\"compbands_r.tif\\Band_6\")\n", 210 | " green = Raster(\"compbands_r.tif\\Band_3\")\n", 211 | " nir = Raster(\"compbands_r.tif\\Band_5\")\n", 212 | " red = Raster(\"compbands_r.tif\\Band_4\")\n", 213 | " cloud_m = SetNull((red>0.2)&(nir>0.2),1)\n", 214 | " cloud_m = FocalStatistics(cloud_m, NbrCircle(3,\"CELL\"), \"MEAN\", \"NODATA\") # expand radius 3\n", 215 | " ndvi1 = arcpy.sa.Float((red-nir)/(red+nir))\n", 216 | " ndvi1_m = SetNull(ndvi1<0,1)\n", 217 | " ndwi2 = arcpy.sa.Float((green-swir)/(green+swir))\n", 218 | " ndwi2_m = SetNull(ndwi2<0,1)\n", 219 | " swir_m = SetNull(swir>0.15,1)\n", 220 | " nir_m = SetNull((nir>0.03)&(red>0.08)&(ndwi2_m==1)&(swir_m==1)&(cloud_m==1),1) # remaining haze\n", 221 | " nir_m = FocalStatistics(nir_m, NbrCircle(1,\"CELL\"), \"MEAN\", \"NODATA\") # expand radius 1\n", 222 | " ras_m = ExtractByMask(ras, cloud_m)\n", 223 | " ras_m = ExtractByMask(ras_m, ndvi1_m)\n", 224 | " ras_m = ExtractByMask(ras_m, ndwi2_m)\n", 225 | " ras_m = ExtractByMask(ras_m, swir_m)\n", 226 | " ras_m = ExtractByMask(ras_m, nir_m)\n", 227 | " # reproject\n", 228 | " aoi = \"D:/WaterQuality/aoi/aoi.shp\"\n", 229 | " outfilename = \"D:/WaterQuality/reflectance/\"+safefolder.replace(\".SAFE\",\".tif\")\n", 230 | " arcpy.management.ProjectRaster(ras_m, \"compbands_p.tif\", aoi)\n", 231 | " arcpy.management.Clip(\"compbands_p.tif\", aoi, \"compbands_p_c.tif\", \n", 232 | " \"#\", \"#\", \"NONE\",\"MAINTAIN_EXTENT\")\n", 233 | " arcpy.management.Resample(\"compbands_p_c.tif\", outfilename, 0.00028571429)\n", 234 | " merge_and_mask()\n", 235 | " # empty extract and atmocor\n", 236 | " def emptyfolder(folder):\n", 237 | " for filename in os.listdir(folder):\n", 238 | " file_path = os.path.join(folder, filename) \n", 239 | " if os.path.isfile(file_path) or os.path.islink(file_path):\n", 240 | " os.unlink(file_path)\n", 241 | " emptyfolder(\"D:/WaterQuality/datadownload/atmocor\")\n", 242 | " # delete whole safefolder\n", 243 | " os.chdir(datadir)\n", 244 | " shutil.rmtree(safefolder)\n", 245 | " os.unlink(zipf)\n", 246 | "\n", 247 | "# Function to preprocess all Landsat images\n", 248 | "def preprocessLandsat_all():\n", 249 | " datadir = 'D:/WaterQuality/datadownload'\n", 250 | " os.chdir(datadir)\n", 251 | " tarlist = glob.glob('*.tar')\n", 252 | " if len(tarlist)>0:\n", 253 | " for tar in tarlist:\n", 254 | " preprocessLandsat(tar)\n", 255 | "\n", 256 | "# Function to preprocess all Sentinel images\n", 257 | "def preprocessSentinel_all():\n", 258 | " datadir = 'D:/WaterQuality/datadownload'\n", 259 | " os.chdir(datadir)\n", 260 | " ziplist = glob.glob('*.zip')\n", 261 | " if len(ziplist)>0:\n", 262 | " for zipf in ziplist:\n", 263 | " preprocessSentinel(zipf)\n", 264 | "\n", 265 | "# Function to get dates in each month\n", 266 | "def monthstart(year, month):\n", 267 | " from datetime import date, datetime, timedelta\n", 268 | " first_date = datetime(year, month, 1)\n", 269 | " return first_date.strftime(\"%Y-%m-%d\")\n", 270 | "def monthmid1(year, month):\n", 271 | " from datetime import date, datetime, timedelta\n", 272 | " mid_date = datetime(year, month, 15)\n", 273 | " return mid_date.strftime(\"%Y-%m-%d\")\n", 274 | "def monthmid2(year, month):\n", 275 | " from datetime import date, datetime, timedelta\n", 276 | " mid_date = datetime(year, month, 16)\n", 277 | " return mid_date.strftime(\"%Y-%m-%d\")\n", 278 | "def monthend(year, month):\n", 279 | " from datetime import date, datetime, timedelta\n", 280 | " if month == 12:\n", 281 | " last_date = datetime(year, month, 31)\n", 282 | " else:\n", 283 | " last_date = datetime(year, month + 1, 1) + timedelta(days=-1)\n", 284 | " return last_date.strftime(\"%Y-%m-%d\")\n", 285 | "\n", 286 | "# Remove Tier 2 Landsat imagery\n", 287 | "def removeLandsatT2():\n", 288 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 289 | " Tier2list = glob.glob('LC*T2.*')\n", 290 | " if len(Tier2list)>0:\n", 291 | " for T2file in Tier2list:\n", 292 | " os.unlink(T2file)\n", 293 | "\n", 294 | "# Rename all Landsat imagery\n", 295 | "def renameLandsat_all():\n", 296 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 297 | " Landsatlist = glob.glob('LC*')\n", 298 | " for Landsatfile in Landsatlist:\n", 299 | " nfilename = Landsatfile[0:25]+Landsatfile[40:] # first 25 characters & from 40 to end\n", 300 | " os.rename(Landsatfile, nfilename)\n", 301 | "\n", 302 | "# Rename all Sentinel imagery\n", 303 | "def renameSentinel_all():\n", 304 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 305 | " Sentinellist = glob.glob('S2*')\n", 306 | " for Sentinelfile in Sentinellist:\n", 307 | " nfilename = Sentinelfile[0:19]+Sentinelfile[37:44]+Sentinelfile[60:]\n", 308 | " if os.path.isfile(nfilename) == True:\n", 309 | " nfilename = Sentinelfile[0:19]+Sentinelfile[37:44]+'a'+Sentinelfile[60:]\n", 310 | " os.rename(Sentinelfile, nfilename)\n", 311 | "\n", 312 | "# Mosaic tiles acquired on the same day\n", 313 | "def mosaictiles(): \n", 314 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 315 | " env.workspace = \"D:/WaterQuality/reflectance\"\n", 316 | " Landsatlist = glob.glob('LC*')\n", 317 | " Landsatdatelist = [i[17:25] for i in Landsatlist]\n", 318 | " Sentinellist = glob.glob('S2*')\n", 319 | " Sentineldatelist = [i[11:19] for i in Sentinellist]\n", 320 | " datelist = sorted(list(set(Landsatdatelist+Sentineldatelist))) # get unique date\n", 321 | " imglist = glob.glob('*.tif')\n", 322 | " for d in datelist:\n", 323 | " img_match = [img for img in imglist if d in img]\n", 324 | " outfolder = \"D:/WaterQuality/preprocess_finish\"\n", 325 | " outfilename = \"LandsatSentinel_\"+d+\".tif\"\n", 326 | " if len(img_match)==1:\n", 327 | " arcpy.management.CopyRaster(img_match[0], os.path.join(outfolder, outfilename))\n", 328 | " arcpy.management.Delete(img_match[0]) # delete original file in reflectance folder\n", 329 | " if len(img_match)>1:\n", 330 | " arcpy.MosaicToNewRaster_management(img_match,outfolder,outfilename,\"\",\"32_BIT_FLOAT\",\"\",\"7\",\"MEAN\",\"\")\n", 331 | " arcpy.management.Delete(img_match) # delete original file in reflectance folder\n", 332 | " # deleteimage_lowvalid\n", 333 | " img1 = os.path.join(outfolder, outfilename)\n", 334 | " ras_np = arcpy.RasterToNumPyArray(img1,\"\",\"\",\"\",-9999)[0]\n", 335 | " if (ras_np != -9999).sum() < (2390000*0.1): # largest valid count = 2390000\n", 336 | " arcpy.management.Delete(img1)\n", 337 | "\n", 338 | "# Connect all functions\n", 339 | "def download_preprocess_allimagery(startdate, enddate): # From search download to mosaic\n", 340 | " print(\"Start download Landsat\")\n", 341 | " downloadlandsat(startdate, enddate)\n", 342 | " print(\"Start download Sentinel\")\n", 343 | " downloadsentinel(startdate, enddate)\n", 344 | " print(\"Start preprocess Landsat\")\n", 345 | " preprocessLandsat_all()\n", 346 | " print(\"Start preprocess Sentinel\")\n", 347 | " preprocessSentinel_all()\n", 348 | " removeLandsatT2()\n", 349 | " renameLandsat_all()\n", 350 | " renameSentinel_all()\n", 351 | " print(\"Start mosaic\")\n", 352 | " mosaictiles()" 353 | ] 354 | }, 355 | { 356 | "cell_type": "code", 357 | "execution_count": null, 358 | "metadata": {}, 359 | "outputs": [], 360 | "source": [ 361 | "# Run the function from search download to mosaic\n", 362 | "# download_preprocess_allimagery(startdate, enddate)\n", 363 | "download_preprocess_allimagery(\"2024-07-10\", \"2024-07-10\")" 364 | ] 365 | }, 366 | { 367 | "cell_type": "code", 368 | "execution_count": 14, 369 | "metadata": {}, 370 | "outputs": [], 371 | "source": [ 372 | "# predict Chla\n", 373 | "def predictChla(imgname): # name with full path\n", 374 | "\toutfolder = \"D:/WaterQuality/predict\"\n", 375 | "\tos.chdir(outfolder)\n", 376 | "\tenv.workspace = outfolder\n", 377 | "\t# ANN layers: 14, 6, 3, 1\n", 378 | "\tp = pd.read_json(\"D:/WaterQuality/extract/Chla_modelweight.json\", typ=\"series\")\n", 379 | "\t# Chla ['NR_B2B4', 'NR_B2B6', 'NR_B3B6', 'NR_B3B4', 'TB_B1B2B3', \n", 380 | "\t# 'TB_B4B5B6', 'B2_3', 'B5', 'B4_2', 'B3_3', 'TB_B2B3B4', 'B6_3', 'NR_B1B6', 'B6_2']\n", 381 | "\toutname = imgname.replace(\"preprocess_finish\", \"predict\").replace(\"LandsatSentinel_20\", \"Chla_20\")\n", 382 | "\tb1 = Raster(imgname+\"/Band_1\")*10\n", 383 | "\tb2 = Raster(imgname+\"/Band_2\")*10\n", 384 | "\tb3 = Raster(imgname+\"/Band_3\")*10\n", 385 | "\tb4 = Raster(imgname+\"/Band_4\")*10\n", 386 | "\tb5 = Raster(imgname+\"/Band_5\")*10\n", 387 | "\tb6 = Raster(imgname+\"/Band_6\")*10\n", 388 | "\tras_0 = b1*0\n", 389 | "\tras_neg1 = ras_0 - 1\n", 390 | "\tras_1 = ras_0 + 1\n", 391 | "\tv1 = CellStatistics([CellStatistics([(b2-b4)/(b2+b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 392 | "\tv2 = CellStatistics([CellStatistics([(b2-b6)/(b2+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 393 | "\tv3 = CellStatistics([CellStatistics([(b3-b6)/(b3+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 394 | "\tv4 = CellStatistics([CellStatistics([(b3-b4)/(b3+b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 395 | "\tv5 = CellStatistics([CellStatistics([(((1/b1)-(1/b2))*b3),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 396 | "\tv6 = CellStatistics([CellStatistics([(((1/b4)-(1/b5))*b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 397 | "\tv7 = b2 ** 3\n", 398 | "\tv8 = b5\n", 399 | "\tv9 = b4 ** 2\n", 400 | "\tv10 = b3 ** 3\n", 401 | "\tv11 = CellStatistics([CellStatistics([(((1/b2)-(1/b3))*b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 402 | "\tv12 = b6 ** 3\n", 403 | "\tv13 = CellStatistics([CellStatistics([(b1-b6)/(b1+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 404 | "\tv14 = b6 ** 2\n", 405 | "\n", 406 | "\th1n1 = (Exp((p[1][0]+v1*p[0][0][0]+v2*p[0][1][0]+v3*p[0][2][0]+v4*p[0][3][0]+v5*p[0][4][0]+\n", 407 | "\t\t\tv6*p[0][5][0]+v7*p[0][6][0]+v8*p[0][7][0]+v9*p[0][8][0]+v10*p[0][9][0]+\n", 408 | "\t\t\tv11*p[0][10][0]+v12*p[0][11][0]+v13*p[0][12][0]+v14*p[0][13][0])*(-1))+1)**-1\n", 409 | "\th1n2 = (Exp((p[1][1]+v1*p[0][0][1]+v2*p[0][1][1]+v3*p[0][2][1]+v4*p[0][3][1]+v5*p[0][4][1]+\n", 410 | "\t\t\tv6*p[0][5][1]+v7*p[0][6][1]+v8*p[0][7][1]+v9*p[0][8][1]+v10*p[0][9][1]+\n", 411 | "\t\t\tv11*p[0][10][1]+v12*p[0][11][1]+v13*p[0][12][1]+v14*p[0][13][1])*(-1))+1)**-1\n", 412 | "\th1n3 = (Exp((p[1][2]+v1*p[0][0][2]+v2*p[0][1][2]+v3*p[0][2][2]+v4*p[0][3][2]+v5*p[0][4][2]+\n", 413 | "\t\t\tv6*p[0][5][2]+v7*p[0][6][2]+v8*p[0][7][2]+v9*p[0][8][2]+v10*p[0][9][2]+\n", 414 | "\t\t\tv11*p[0][10][2]+v12*p[0][11][2]+v13*p[0][12][2]+v14*p[0][13][2])*(-1))+1)**-1\n", 415 | "\th1n4 = (Exp((p[1][3]+v1*p[0][0][3]+v2*p[0][1][3]+v3*p[0][2][3]+v4*p[0][3][3]+v5*p[0][4][3]+\n", 416 | "\t\t\tv6*p[0][5][3]+v7*p[0][6][3]+v8*p[0][7][3]+v9*p[0][8][3]+v10*p[0][9][3]+\n", 417 | "\t\t\tv11*p[0][10][3]+v12*p[0][11][3]+v13*p[0][12][3]+v14*p[0][13][3])*(-1))+1)**-1\n", 418 | "\th1n5 = (Exp((p[1][4]+v1*p[0][0][4]+v2*p[0][1][4]+v3*p[0][2][4]+v4*p[0][3][4]+v5*p[0][4][4]+\n", 419 | "\t\t\tv6*p[0][5][4]+v7*p[0][6][4]+v8*p[0][7][4]+v9*p[0][8][4]+v10*p[0][9][4]+\n", 420 | "\t\t\tv11*p[0][10][4]+v12*p[0][11][4]+v13*p[0][12][4]+v14*p[0][13][4])*(-1))+1)**-1\n", 421 | "\th1n6 = (Exp((p[1][5]+v1*p[0][0][5]+v2*p[0][1][5]+v3*p[0][2][5]+v4*p[0][3][5]+v5*p[0][4][5]+\n", 422 | "\t\t\tv6*p[0][5][5]+v7*p[0][6][5]+v8*p[0][7][5]+v9*p[0][8][5]+v10*p[0][9][5]+\n", 423 | "\t\t\tv11*p[0][10][5]+v12*p[0][11][5]+v13*p[0][12][5]+v14*p[0][13][5])*(-1))+1)**-1\n", 424 | "\n", 425 | "\th2n1 = (Exp((p[3][0]+h1n1*p[2][0][0]+h1n2*p[2][1][0]+h1n3*p[2][2][0]+\n", 426 | "\t\t\th1n4*p[2][3][0]+h1n5*p[2][4][0]+h1n6*p[2][5][0])*(-1))+1)**-1\n", 427 | "\th2n2 = (Exp((p[3][1]+h1n1*p[2][0][1]+h1n2*p[2][1][1]+h1n3*p[2][2][1]+\n", 428 | "\t\t\th1n4*p[2][3][1]+h1n5*p[2][4][1]+h1n6*p[2][5][1])*(-1))+1)**-1\n", 429 | "\th2n3 = (Exp((p[3][2]+h1n1*p[2][0][2]+h1n2*p[2][1][2]+h1n3*p[2][2][2]+\n", 430 | "\t\t\th1n4*p[2][3][2]+h1n5*p[2][4][2]+h1n6*p[2][5][2])*(-1))+1)**-1\n", 431 | "\n", 432 | "\tpred = CellStatistics([p[5][0]+h2n1*p[4][0][0]+h2n2*p[4][1][0]+h2n3*p[4][2][0],ras_0], \"MAXIMUM\")\n", 433 | "\tarcpy.management.CopyRaster(pred, outname)\n", 434 | "\n", 435 | "# predict SS\n", 436 | "def predictSS(imgname):\n", 437 | "\toutfolder = \"D:/WaterQuality/predict\"\n", 438 | "\tos.chdir(outfolder)\n", 439 | "\tenv.workspace = outfolder\n", 440 | "\t# ANN layers: 9, 6, 3, 1\n", 441 | "\tp = pd.read_json(\"D:/WaterQuality/extract/SS_modelweight.json\", typ=\"series\")\n", 442 | "\t# SS ['TB_B2B3B4', 'LH_B4B5B6', 'B3_3', 'B4_2', 'LH_B5B6B7', 'TB_B3B4B5', 'NR_B5B6', 'NR_B1B4', 'B2_3']\n", 443 | "\toutname = imgname.replace(\"preprocess_finish\", \"predict\").replace(\"LandsatSentinel_20\", \"SuSo_20\")\n", 444 | "\tb1 = Raster(imgname+\"/Band_1\")*10\n", 445 | "\tb2 = Raster(imgname+\"/Band_2\")*10\n", 446 | "\tb3 = Raster(imgname+\"/Band_3\")*10\n", 447 | "\tb4 = Raster(imgname+\"/Band_4\")*10\n", 448 | "\tb5 = Raster(imgname+\"/Band_5\")*10\n", 449 | "\tb6 = Raster(imgname+\"/Band_6\")*10\n", 450 | "\tb7 = Raster(imgname+\"/Band_7\")*10\n", 451 | "\tras_0 = b1*0\n", 452 | "\tras_neg1 = ras_0 - 1\n", 453 | "\tras_1 = ras_0 + 1\n", 454 | "\tv1 = CellStatistics([CellStatistics([(((1/b2)-(1/b3))*b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 455 | "\tv2 = b5-b4-((b6-b4)*((865-660)/(1610-660)))\n", 456 | "\tv3 = b3 ** 3\n", 457 | "\tv4 = b4 ** 2\n", 458 | "\tv5 = b6-b5-((b7-b5)*((1610-865)/(2195-865)))\n", 459 | "\tv6 = CellStatistics([CellStatistics([(((1/b3)-(1/b4))*b5),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 460 | "\tv7 = CellStatistics([CellStatistics([(b5-b6)/(b5+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 461 | "\tv8 = CellStatistics([CellStatistics([(b1-b4)/(b1+b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 462 | "\tv9 = b2 ** 3\n", 463 | "\n", 464 | "\th1n1 = (Exp((p[1][0]+v1*p[0][0][0]+v2*p[0][1][0]+v3*p[0][2][0]+v4*p[0][3][0]+v5*p[0][4][0]+\n", 465 | "\t\t\tv6*p[0][5][0]+v7*p[0][6][0]+v8*p[0][7][0]+v9*p[0][8][0])*(-1))+1)**-1\n", 466 | "\th1n2 = (Exp((p[1][1]+v1*p[0][0][1]+v2*p[0][1][1]+v3*p[0][2][1]+v4*p[0][3][1]+v5*p[0][4][1]+\n", 467 | "\t\t\tv6*p[0][5][1]+v7*p[0][6][1]+v8*p[0][7][1]+v9*p[0][8][1])*(-1))+1)**-1\n", 468 | "\th1n3 = (Exp((p[1][2]+v1*p[0][0][2]+v2*p[0][1][2]+v3*p[0][2][2]+v4*p[0][3][2]+v5*p[0][4][2]+\n", 469 | "\t\t\tv6*p[0][5][2]+v7*p[0][6][2]+v8*p[0][7][2]+v9*p[0][8][2])*(-1))+1)**-1\n", 470 | "\th1n4 = (Exp((p[1][3]+v1*p[0][0][3]+v2*p[0][1][3]+v3*p[0][2][3]+v4*p[0][3][3]+v5*p[0][4][3]+\n", 471 | "\t\t\tv6*p[0][5][3]+v7*p[0][6][3]+v8*p[0][7][3]+v9*p[0][8][3])*(-1))+1)**-1\n", 472 | "\th1n5 = (Exp((p[1][4]+v1*p[0][0][4]+v2*p[0][1][4]+v3*p[0][2][4]+v4*p[0][3][4]+v5*p[0][4][4]+\n", 473 | "\t\t\tv6*p[0][5][4]+v7*p[0][6][4]+v8*p[0][7][4]+v9*p[0][8][4])*(-1))+1)**-1\n", 474 | "\th1n6 = (Exp((p[1][5]+v1*p[0][0][5]+v2*p[0][1][5]+v3*p[0][2][5]+v4*p[0][3][5]+v5*p[0][4][5]+\n", 475 | "\t\t\tv6*p[0][5][5]+v7*p[0][6][5]+v8*p[0][7][5]+v9*p[0][8][5])*(-1))+1)**-1\n", 476 | "\n", 477 | "\th2n1 = (Exp((p[3][0]+h1n1*p[2][0][0]+h1n2*p[2][1][0]+h1n3*p[2][2][0]+\n", 478 | "\t\t\th1n4*p[2][3][0]+h1n5*p[2][4][0]+h1n6*p[2][5][0])*(-1))+1)**-1\n", 479 | "\th2n2 = (Exp((p[3][1]+h1n1*p[2][0][1]+h1n2*p[2][1][1]+h1n3*p[2][2][1]+\n", 480 | "\t\t\th1n4*p[2][3][1]+h1n5*p[2][4][1]+h1n6*p[2][5][1])*(-1))+1)**-1\n", 481 | "\th2n3 = (Exp((p[3][2]+h1n1*p[2][0][2]+h1n2*p[2][1][2]+h1n3*p[2][2][2]+\n", 482 | "\t\t\th1n4*p[2][3][2]+h1n5*p[2][4][2]+h1n6*p[2][5][2])*(-1))+1)**-1\n", 483 | "\n", 484 | "\tpred = CellStatistics([p[5][0]+h2n1*p[4][0][0]+h2n2*p[4][1][0]+h2n3*p[4][2][0],ras_0], \"MAXIMUM\")\n", 485 | "\tarcpy.management.CopyRaster(pred, outname)\n", 486 | "\n", 487 | "def predict_ChlaSS_all():\n", 488 | " imglist = glob.glob('D:/WaterQuality/preprocess_finish/*.tif')\n", 489 | " for i in imglist:\n", 490 | " predictChla(i)\n", 491 | " predictSS(i)\n", 492 | " # move img to finish folder\n", 493 | " imgname_move = i.replace(\"preprocess_finish\", \"preprocess_finish/finish\")\n", 494 | " arcpy.management.CopyRaster(i, imgname_move)\n", 495 | " arcpy.management.Delete(i)\n", 496 | "\n", 497 | "# update predicted latestimg\n", 498 | "def update_latestimg():\n", 499 | " aoi_water = \"D:/WaterQuality/aoi/aoi_water.shp\"\n", 500 | " # Chla\n", 501 | " oldimg = glob.glob(\"D:/WaterQuality/predict_display/merge_Chla_*.tif\")[0]\n", 502 | " chlalist = glob.glob(\"D:/WaterQuality/predict/Chla_*.tif\")\n", 503 | " latestimg = chlalist[len(chlalist)-1]\n", 504 | " latestimg = latestimg[len(latestimg)-17:len(latestimg)]\n", 505 | " mergeras = arcpy.management.MosaicToNewRaster([oldimg]+chlalist, \"D:/WaterQuality/predict_display\", \"merge_\"+latestimg, \"\", \"32_BIT_FLOAT\", \"\", 1, \"LAST\")\n", 506 | " mergeras_focal = FocalStatistics(mergeras, NbrRectangle(3,3,\"CELL\"), \"MEDIAN\")\n", 507 | " outname = (\"D:/WaterQuality/predict_display/merge_\"+latestimg).replace(\".tif\", \"_smoothclip.tif\")\n", 508 | " arcpy.management.Clip(mergeras_focal, \"\", outname, aoi_water, \"\", \"ClippingGeometry\")\n", 509 | " arcpy.management.Delete(oldimg)\n", 510 | " arcpy.management.Delete(oldimg.replace(\".tif\", \"_smoothclip.tif\"))\n", 511 | " # SS\n", 512 | " oldimg = glob.glob(\"D:/WaterQuality/predict_display/merge_SuSo_*.tif\")[0]\n", 513 | " sslist = glob.glob(\"D:/WaterQuality/predict/SuSo_*.tif\")\n", 514 | " latestimg = sslist[len(sslist)-1]\n", 515 | " latestimg = latestimg[len(latestimg)-17:len(latestimg)]\n", 516 | " mergeras = arcpy.management.MosaicToNewRaster([oldimg]+sslist, \"D:/WaterQuality/predict_display\", \"merge_\"+latestimg, \"\", \"32_BIT_FLOAT\", \"\", 1, \"LAST\")\n", 517 | " mergeras_focal = FocalStatistics(mergeras, NbrRectangle(3,3,\"CELL\"), \"MEDIAN\")\n", 518 | " outname = (\"D:/WaterQuality/predict_display/merge_\"+latestimg).replace(\".tif\", \"_smoothclip.tif\")\n", 519 | " arcpy.management.Clip(mergeras_focal, \"\", outname, aoi_water, \"\", \"ClippingGeometry\")\n", 520 | " arcpy.management.Delete(oldimg)\n", 521 | " arcpy.management.Delete(oldimg.replace(\".tif\", \"_smoothclip.tif\"))\n", 522 | "\n", 523 | "# update datapoint to latest date\n", 524 | "def update_datapoint():\n", 525 | " datapoint = \"D:/WaterQuality/ArcGISPro/DataPoint.shp\"\n", 526 | " datapoint_d1 = \"D:/WaterQuality/ArcGISPro/DataPoint_d1.shp\"\n", 527 | " datapoint_d2 = \"D:/WaterQuality/ArcGISPro/DataPoint_d2.shp\"\n", 528 | " datapoint_all = \"D:/WaterQuality/ArcGISPro/DataPoint_all.shp\"\n", 529 | " chlalist = glob.glob(\"D:/WaterQuality/predict/Chla_*.tif\")\n", 530 | " sslist = glob.glob(\"D:/WaterQuality/predict/SuSo_*.tif\")\n", 531 | " for i in range(0,len(chlalist)):\n", 532 | " chla_d1 = chlalist[i]\n", 533 | " ss_d1 = sslist[i]\n", 534 | " arcpy.management.Copy(datapoint, datapoint_d1)\n", 535 | " arcpy.management.Copy(datapoint, datapoint_d2)\n", 536 | " arcpy.sa.ExtractMultiValuesToPoints(datapoint_d1, chla_d1+\" value\", \"BILINEAR\")\n", 537 | " arcpy.sa.ExtractMultiValuesToPoints(datapoint_d2, ss_d1+\" value\", \"BILINEAR\")\n", 538 | " # remove points with no data, else add date and extract list of valid points\n", 539 | " newdatapt = []\n", 540 | " d1 = int(chla_d1[len(chla_d1)-12:len(chla_d1)-4])\n", 541 | " d1_month = round(d1/100)*100+15\n", 542 | " with arcpy.da.UpdateCursor(datapoint_d1, [\"value\",\"pt\",\"Date\",\"parameter\",\"latest\",\"DateRange\"]) as cursor:\n", 543 | " for row in cursor:\n", 544 | " if row[0] < 0:\n", 545 | " cursor.deleteRow()\n", 546 | " else:\n", 547 | " newdatapt.append(row[1])\n", 548 | " row[2] = d1 # Date\n", 549 | " row[3] = \"Chla\"\n", 550 | " row[4] = 1 # latest\n", 551 | " row[5] = \"Day\"\n", 552 | " cursor.updateRow(row)\n", 553 | " # modify values for SS\n", 554 | " with arcpy.da.UpdateCursor(datapoint_d2, [\"value\",\"pt\",\"Date\",\"parameter\",\"latest\",\"DateRange\"]) as cursor:\n", 555 | " for row in cursor:\n", 556 | " if row[0] < 0:\n", 557 | " cursor.deleteRow()\n", 558 | " else:\n", 559 | " row[2] = d1 # Date\n", 560 | " row[3] = \"SS\"\n", 561 | " row[4] = 1 # latest\n", 562 | " row[5] = \"Day\"\n", 563 | " cursor.updateRow(row) \n", 564 | " # modify latest in datapoint_all\n", 565 | " with arcpy.da.UpdateCursor(datapoint_all, [\"pt\",\"latest\",\"Date\",\"DateRange\"], \"latest = 1\") as cursor: # where clause\n", 566 | " for row in cursor:\n", 567 | " if row[0] in newdatapt: # if latest image provides obs on this pt\n", 568 | " row[1] = 0\n", 569 | " if row[3]==\"Month\" and row[2]==d1_month: # if same month as latest image\n", 570 | " row[1] = 1\n", 571 | " cursor.updateRow(row)\n", 572 | " arcpy.management.Append(datapoint_d1, datapoint_all)\n", 573 | " arcpy.management.Append(datapoint_d2, datapoint_all)\n", 574 | " # add monthly average data\n", 575 | " with arcpy.da.UpdateCursor(datapoint_d1, [\"Date\",\"DateRange\"]) as cursor:\n", 576 | " for row in cursor:\n", 577 | " row[0] = d1_month\n", 578 | " row[1] = \"Month\"\n", 579 | " cursor.updateRow(row)\n", 580 | " with arcpy.da.UpdateCursor(datapoint_d2, [\"Date\",\"DateRange\"]) as cursor:\n", 581 | " for row in cursor:\n", 582 | " row[0] = d1_month\n", 583 | " row[1] = \"Month\"\n", 584 | " cursor.updateRow(row)\n", 585 | " arcpy.management.Append(datapoint_d1, datapoint_all)\n", 586 | " arcpy.management.Append(datapoint_d2, datapoint_all)\n", 587 | " arcpy.management.Delete(datapoint_d1)\n", 588 | " arcpy.management.Delete(datapoint_d2)\n", 589 | " # move chla and SS tif to finish\n", 590 | " arcpy.management.CopyRaster(chla_d1, chla_d1.replace(\"predict\", \"predict/finish\"))\n", 591 | " arcpy.management.Delete(chla_d1)\n", 592 | " arcpy.management.CopyRaster(ss_d1, ss_d1.replace(\"predict\", \"predict/finish\"))\n", 593 | " arcpy.management.Delete(ss_d1)\n", 594 | " print(\"Finish: \"+ str(i+1)+\"/\"+str(len(chlalist)))\n", 595 | " # save shp as zip file\n", 596 | " os.chdir(\"D:/WaterQuality/ArcGISPro\")\n", 597 | " datapoint_all_new = glob.glob(\"DataPoint_all.*\")\n", 598 | " zipname = 'DataPoint_all_shp_to'+str(d1)+'.zip'\n", 599 | " with zipfile.ZipFile(zipname, 'w') as zip_object:\n", 600 | " for f in datapoint_all_new:\n", 601 | " zip_object.write(f, compress_type=zipfile.ZIP_DEFLATED)\n", 602 | " return zipname\n", 603 | "# zipname = update_datapoint()\n", 604 | "\n", 605 | "# Function to create kmz file for ArcGIS Online display\n", 606 | "def createkmz():\n", 607 | " chlalayer = glob.glob(\"D:/WaterQuality/predict_display/merge_Chla_*_smoothclip.tif\")[0]\n", 608 | " chlasym = \"D:/WaterQuality/ArcGISPro/chla_lyr.lyrx\"\n", 609 | " chlalayer_sym = arcpy.management.ApplySymbologyFromLayer(chlalayer, chlasym)\n", 610 | " os.unlink(\"D:/WaterQuality/ArcGISPro/chla_kmz.kmz\")\n", 611 | " arcpy.conversion.LayerToKML(chlalayer_sym, \n", 612 | " \"D:/WaterQuality/ArcGISPro/chla_kmz.kmz\", 0, \"NO_COMPOSITE\", \n", 613 | " '113.81800000012 22.1377142789301 114.50171429609 22.5711428568601 GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]', \n", 614 | " 4096, 96, \"CLAMPED_TO_GROUND\")\n", 615 | " sslayer = glob.glob(\"D:/WaterQuality/predict_display/merge_SuSo_*_smoothclip.tif\")[0]\n", 616 | " sssym = \"D:/WaterQuality/ArcGISPro/ss_lyr.lyrx\"\n", 617 | " sslayer_sym = arcpy.management.ApplySymbologyFromLayer(sslayer, sssym)\n", 618 | " os.unlink(\"D:/WaterQuality/ArcGISPro/ss_kmz.kmz\")\n", 619 | " arcpy.conversion.LayerToKML(sslayer_sym, \n", 620 | " \"D:/WaterQuality/ArcGISPro/ss_kmz.kmz\", 0, \"NO_COMPOSITE\", \n", 621 | " '113.81800000012 22.1377142789301 114.50171429609 22.5711428568601 GEOGCS[\"GCS_WGS_1984\",DATUM[\"D_WGS_1984\",SPHEROID[\"WGS_1984\",6378137.0,298.257223563]],PRIMEM[\"Greenwich\",0.0],UNIT[\"Degree\",0.0174532925199433]]', \n", 622 | " 4096, 96, \"CLAMPED_TO_GROUND\")" 623 | ] 624 | }, 625 | { 626 | "cell_type": "code", 627 | "execution_count": null, 628 | "metadata": {}, 629 | "outputs": [], 630 | "source": [ 631 | "# Run the functions to predict and update datapoints\n", 632 | "predict_ChlaSS_all()\n", 633 | "update_latestimg()\n", 634 | "zipname = update_datapoint()\n", 635 | "print(zipname)\n", 636 | "createkmz()" 637 | ] 638 | }, 639 | { 640 | "cell_type": "code", 641 | "execution_count": null, 642 | "metadata": {}, 643 | "outputs": [], 644 | "source": [ 645 | "# Upload results to ArcGIS Online\n", 646 | "import os\n", 647 | "from arcgis.gis import GIS\n", 648 | "from arcgis.features import FeatureLayerCollection\n", 649 | "gis = GIS(url=\"https://wwww.arcgis.com\", username=\"username\", password=\"password\") # Change to your ArcGIS Online account with publisher role\n", 650 | "# Data point FeatureLayer and shp\n", 651 | "DataPoint_all_shp_flc = gis.content.get(\"item id\") # Item id of the datapoint featre layer collection on AGOL\n", 652 | "flc = FeatureLayerCollection.fromitem(DataPoint_all_shp_flc)\n", 653 | "flc.manager.overwrite(os.path.join(\"D:/WaterQuality/ArcGISPro\",zipname))\n", 654 | "DataPoint_all_shp_s = gis.content.get(\"item id\") # Item id of the datapoint service on AGOL\n", 655 | "DataPoint_all_shp_s.update(data=os.path.join(\"D:/WaterQuality/ArcGISPro\",zipname))\n", 656 | "# kmz\n", 657 | "chla_kmz = gis.content.get(\"item id\") # Item id of the chla kmz on AGOL\n", 658 | "chla_kmz.update(data=\"D:/WaterQuality/ArcGISPro/chla_kmz.kmz\")\n", 659 | "ss_kmz = gis.content.get(\"item id\") # Item id of the SS kmz on AGOL\n", 660 | "ss_kmz.update(data=\"D:/WaterQuality/ArcGISPro/ss_kmz.kmz\")" 661 | ] 662 | } 663 | ], 664 | "metadata": { 665 | "kernelspec": { 666 | "display_name": "Python 3", 667 | "language": "python", 668 | "name": "python3" 669 | }, 670 | "language_info": { 671 | "codemirror_mode": { 672 | "name": "ipython", 673 | "version": 3 674 | }, 675 | "file_extension": ".py", 676 | "mimetype": "text/x-python", 677 | "name": "python", 678 | "nbconvert_exporter": "python", 679 | "pygments_lexer": "ipython3", 680 | "version": "3.9.11" 681 | }, 682 | "orig_nbformat": 4 683 | }, 684 | "nbformat": 4, 685 | "nbformat_minor": 2 686 | } 687 | -------------------------------------------------------------------------------- /LocalProcessingPipeline_Part1_ArchivedImageDatabase.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": null, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "# Install and load libraries for image processing steps\n", 10 | "# pip install --user sentinel2tools-master.zip\n", 11 | "# pip install --user landsatxplore-master.zip\n", 12 | "from landsatxplore.api import API\n", 13 | "from landsatxplore.earthexplorer import EarthExplorer\n", 14 | "from sentinel2download.overlap import Sentinel2Overlap\n", 15 | "from sentinel2download.downloader import Sentinel2Downloader\n", 16 | "import os\n", 17 | "import shutil\n", 18 | "from datetime import date, datetime, timedelta\n", 19 | "import tarfile \n", 20 | "import glob\n", 21 | "import numpy as np\n", 22 | "import pandas as pd\n", 23 | "from simpledbf import Dbf5\n", 24 | "import requests\n", 25 | "import arcpy\n", 26 | "from arcpy import env\n", 27 | "from arcpy.sa import *\n", 28 | "arcpy.CheckOutExtension(\"spatial\")" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 3, 34 | "metadata": {}, 35 | "outputs": [], 36 | "source": [ 37 | "# Search and download Landsat satellite images\n", 38 | "def downloadlandsat(startdate, enddate):\n", 39 | " # Initialize a new API instance and get an access key\n", 40 | " username = \"username\" # change your EarthExplorer username and password\n", 41 | " password = \"password\"\n", 42 | " api = API(username, password)\n", 43 | " # 22.13,113.81,22.59,114.52\n", 44 | " # https://github.com/yannforget/landsatxplore/blob/master/landsatxplore/api.py\n", 45 | " # Search for Landsat TM scenes\n", 46 | " scenes = api.search(\n", 47 | " dataset='landsat_ot_c2_l1', bbox=(113.81, 22.13, 114.52, 22.59),\n", 48 | " start_date=startdate, # start_date='2014-01-01',\n", 49 | " end_date=enddate, # end_date='2015-12-31',\n", 50 | " max_cloud_cover=20, max_results=1000\n", 51 | " )\n", 52 | " # print(f\"{len(scenes)} scenes found.\")\n", 53 | " # Log out\n", 54 | " api.logout()\n", 55 | " # Downloading scenes\n", 56 | " if len(scenes) > 0:\n", 57 | " ee = EarthExplorer(username, password)\n", 58 | " for s in scenes:\n", 59 | " ee.download(s['entity_id'], output_dir='D:/WaterQuality/datadownload')\n", 60 | " ee.logout()" 61 | ] 62 | }, 63 | { 64 | "cell_type": "code", 65 | "execution_count": null, 66 | "metadata": {}, 67 | "outputs": [], 68 | "source": [ 69 | "# Find Sentinel overlap tiles\n", 70 | "aoi_path = \"D:/WaterQuality/aoi/aoi_geojson.json\"\n", 71 | "overlap = Sentinel2Overlap(aoi_path)\n", 72 | "tiles = overlap.overlap()\n", 73 | "print(f\"Overlapped tiles: {tiles}\")" 74 | ] 75 | }, 76 | { 77 | "cell_type": "code", 78 | "execution_count": null, 79 | "metadata": {}, 80 | "outputs": [], 81 | "source": [ 82 | "# Search and download Sentinel satellite images from Google Cloud\n", 83 | "def downloadsentinel(startdate, enddate):\n", 84 | " CONSTRAINTS = {'CLOUDY_PIXEL_PERCENTAGE': 20.0, }\n", 85 | " loader = Sentinel2Downloader(api_key=\"D:/WaterQuality/xxx.json\") # change your Google Cloud Sentinel API key\n", 86 | " loaded = loader.download(product_type=\"L1C\", tiles=['49QGE','49QGF','49QHE','49QHF'], \n", 87 | " start_date=startdate, # \"2016-01-01\"\n", 88 | " end_date=enddate, # \"2016-01-05\"\n", 89 | " output_dir=\"D:/WaterQuality/datadownload\",\n", 90 | " cores=2, constraints=CONSTRAINTS, full_download=True)" 91 | ] 92 | }, 93 | { 94 | "cell_type": "code", 95 | "execution_count": null, 96 | "metadata": {}, 97 | "outputs": [], 98 | "source": [ 99 | "# Download and extract acolite_py_win_20221114.0.tar.gz\n", 100 | "# Save the following text as a txt file \"acolite/setting_landsat.txt\"\n", 101 | "## ACOLITE settings\n", 102 | "limit=22.13,113.81,22.59,114.52\n", 103 | "inputfile=D:/WaterQuality/datadownload/extract\n", 104 | "output=D:/WaterQuality/datadownload/atmocor\n", 105 | "dsf_interface_reflectance=False\n", 106 | "dsf_residual_glint_correction=True\n", 107 | "glint_mask_rhos_threshold=0.15\n", 108 | "l2w_parameters=None\n", 109 | "l2r_export_geotiff=True" 110 | ] 111 | }, 112 | { 113 | "cell_type": "code", 114 | "execution_count": null, 115 | "metadata": {}, 116 | "outputs": [], 117 | "source": [ 118 | "# Function to preprocess a single Landsat image\n", 119 | "def preprocessLandsat(tar):\n", 120 | " # extract tar\n", 121 | " datadir = 'D:/WaterQuality/datadownload'\n", 122 | " os.chdir(datadir)\n", 123 | " file = tarfile.open(tar)\n", 124 | " file.extractall('extract')\n", 125 | " file.close()\n", 126 | " # run acolite\n", 127 | " acolitepath = \"D:/WaterQuality/acolite/acolite_py_win/dist/acolite/acolite.exe\"\n", 128 | " settingpath = \"D:/WaterQuality/acolite/setting_landsat.txt\"\n", 129 | " os.system(acolitepath+\" --cli --settings=\"+settingpath)\n", 130 | " def merge_and_mask():\n", 131 | " # merge 7 bands\n", 132 | " os.chdir('atmocor')\n", 133 | " tiflist = glob.glob('*L2R_rhos_*.tif')\n", 134 | " bandorder = [2, 3, 4, 7, 8, 0, 1]\n", 135 | " tiflist = [tiflist[i] for i in bandorder]\n", 136 | " env.workspace = 'D:/WaterQuality/datadownload/atmocor'\n", 137 | " arcpy.CompositeBands_management(tiflist, \"compbands.tif\")\n", 138 | " # mask land and cloud\n", 139 | " ras = Raster(\"compbands.tif\")\n", 140 | " qaband = Raster(glob.glob(datadir+'/extract/*QA_PIXEL.TIF')[0])\n", 141 | " qaband_m = SetNull(qaband>22200,1)\n", 142 | " qaband_m = FocalStatistics(qaband_m, NbrCircle(3,\"CELL\"), \"MEAN\", \"NODATA\") # expand radius 3\n", 143 | " ras_m = ExtractByMask(ras, qaband_m)\n", 144 | " swir = Raster(\"compbands.tif\\Band_6\")\n", 145 | " green = Raster(\"compbands.tif\\Band_3\")\n", 146 | " nir = Raster(\"compbands.tif\\Band_5\")\n", 147 | " red = Raster(\"compbands.tif\\Band_4\")\n", 148 | " ndvi1 = arcpy.sa.Float((red-nir)/(red+nir))\n", 149 | " ndvi1_m = SetNull(ndvi1<0,1)\n", 150 | " ndwi = arcpy.sa.Float((green-swir)/(green+swir))\n", 151 | " ndwi_m = SetNull(ndwi<0,1)\n", 152 | " swir_m = SetNull(swir>0.15,1)\n", 153 | " ras_m = ExtractByMask(ras_m, ndvi1_m)\n", 154 | " ras_m = ExtractByMask(ras_m, ndwi_m)\n", 155 | " ras_m = ExtractByMask(ras_m, swir_m)\n", 156 | " # reproject\n", 157 | " aoi = \"D:/WaterQuality/aoi/aoi.shp\"\n", 158 | " outfilename = \"D:/WaterQuality/reflectance/\"+tar.replace(\".tar\",\".tif\")\n", 159 | " arcpy.management.ProjectRaster(ras_m, \"compbands_p.tif\", aoi) \n", 160 | " arcpy.management.Clip(\"compbands_p.tif\", aoi, \"compbands_p_c.tif\", \n", 161 | " \"#\", \"#\", \"NONE\",\"MAINTAIN_EXTENT\")\n", 162 | " arcpy.management.Resample(\"compbands_p_c.tif\", outfilename, 0.00028571429)\n", 163 | " merge_and_mask()\n", 164 | " # empty extract and atmocor\n", 165 | " def emptyfolder(folder):\n", 166 | " for filename in os.listdir(folder):\n", 167 | " file_path = os.path.join(folder, filename) \n", 168 | " if os.path.isfile(file_path) or os.path.islink(file_path):\n", 169 | " os.unlink(file_path)\n", 170 | " emptyfolder(\"D:/WaterQuality/datadownload/extract\")\n", 171 | " emptyfolder(\"D:/WaterQuality/datadownload/atmocor\")\n", 172 | " # delete tarfile\n", 173 | " os.chdir(datadir)\n", 174 | " os.unlink(tar)\n" 175 | ] 176 | }, 177 | { 178 | "cell_type": "code", 179 | "execution_count": null, 180 | "metadata": {}, 181 | "outputs": [], 182 | "source": [ 183 | "# Function to preprocess all Landsat images\n", 184 | "def preprocessLandsat_all():\n", 185 | " datadir = 'D:/WaterQuality/datadownload'\n", 186 | " os.chdir(datadir)\n", 187 | " tarlist = glob.glob('*.tar')\n", 188 | " if len(tarlist)>0:\n", 189 | " for tar in tarlist:\n", 190 | " preprocessLandsat(tar)" 191 | ] 192 | }, 193 | { 194 | "cell_type": "code", 195 | "execution_count": null, 196 | "metadata": {}, 197 | "outputs": [], 198 | "source": [ 199 | "# Save the following text as a txt file \"acolite/setting_sentinel.txt\"\n", 200 | "## ACOLITE settings\n", 201 | "limit=22.13,113.81,22.59,114.52\n", 202 | "inputfile=\n", 203 | "output=D:/WaterQuality/datadownload/atmocor\n", 204 | "s2_target_res=20\n", 205 | "dsf_interface_reflectance=False\n", 206 | "dsf_residual_glint_correction=True\n", 207 | "glint_mask_rhos_threshold=0.15\n", 208 | "l2w_parameters=None\n", 209 | "l2r_export_geotiff=True\n", 210 | "\n", 211 | "# Save the following text as a txt file \"acolite/setting_sentinel2.txt\"\n", 212 | "## ACOLITE settings\n", 213 | "limit=22.13,113.81,22.59,114.52\n", 214 | "inputfile=D:/WaterQuality/datadownload\\S2A_MSIL1C_20240717T025551_N0510_R032_T49QHE_20240717T053551.SAFE\n", 215 | "output=D:/WaterQuality_LandsatSentinel/datadownload/atmocor\n", 216 | "s2_target_res=20\n", 217 | "dsf_interface_reflectance=False\n", 218 | "dsf_residual_glint_correction=True\n", 219 | "glint_mask_rhos_threshold=0.15\n", 220 | "l2w_parameters=None\n", 221 | "l2r_export_geotiff=True" 222 | ] 223 | }, 224 | { 225 | "cell_type": "code", 226 | "execution_count": null, 227 | "metadata": {}, 228 | "outputs": [], 229 | "source": [ 230 | "# Function to preprocess a single Sentinel image\n", 231 | "def preprocessSentinel(safefolder):\n", 232 | " datadir = 'D:/WaterQuality/datadownload'\n", 233 | " os.chdir(datadir)\n", 234 | " # run acolite\n", 235 | " settingtemp = \"D:/WaterQuality/acolite/setting_sentinel.txt\"\n", 236 | " settingpath = \"D:/WaterQuality/acolite/setting_sentinel2.txt\"\n", 237 | " # Read in the file\n", 238 | " with open(settingtemp, 'r') as file:\n", 239 | " filedata = file.read()\n", 240 | " filedata = filedata.replace('inputfile=', 'inputfile='+os.path.join(datadir,safefolder))\n", 241 | " # Write the file out again\n", 242 | " with open(settingpath, 'w') as file:\n", 243 | " file.write(filedata)\n", 244 | " acolitepath = \"D:/WaterQuality/acolite/acolite_py_win/dist/acolite/acolite.exe\"\n", 245 | " os.system(acolitepath+\" --cli --settings=\"+settingpath)\n", 246 | " def merge_and_mask():\n", 247 | " # merge 7 bands\n", 248 | " os.chdir('atmocor')\n", 249 | " tiflist = glob.glob('*L2R_rhos_*.tif')\n", 250 | " if len(tiflist)==0: # if acolite does not produce any files\n", 251 | " return\n", 252 | " bandorder = [2, 3, 4, 5, 10, 0, 1]\n", 253 | " tiflist = [tiflist[i] for i in bandorder]\n", 254 | " env.workspace = 'D:/WaterQuality/datadownload/atmocor'\n", 255 | " arcpy.CompositeBands_management(tiflist, \"compbands.tif\")\n", 256 | " arcpy.management.Resample(\"compbands.tif\", \"compbands_r.tif\", 30)\n", 257 | " # mask land and cloud\n", 258 | " ras = Raster(\"compbands_r.tif\")\n", 259 | " swir = Raster(\"compbands_r.tif\\Band_6\")\n", 260 | " green = Raster(\"compbands_r.tif\\Band_3\")\n", 261 | " nir = Raster(\"compbands_r.tif\\Band_5\")\n", 262 | " red = Raster(\"compbands_r.tif\\Band_4\")\n", 263 | " cloud_m = SetNull((red>0.2)&(nir>0.2),1)\n", 264 | " cloud_m = FocalStatistics(cloud_m, NbrCircle(3,\"CELL\"), \"MEAN\", \"NODATA\") # expand radius 3\n", 265 | " ndvi1 = arcpy.sa.Float((red-nir)/(red+nir))\n", 266 | " ndvi1_m = SetNull(ndvi1<0,1)\n", 267 | " ndwi2 = arcpy.sa.Float((green-swir)/(green+swir))\n", 268 | " ndwi2_m = SetNull(ndwi2<0,1)\n", 269 | " swir_m = SetNull(swir>0.15,1)\n", 270 | " nir_m = SetNull((nir>0.03)&(red>0.08)&(ndwi2_m==1)&(swir_m==1)&(cloud_m==1),1) # remaining haze\n", 271 | " nir_m = FocalStatistics(nir_m, NbrCircle(1,\"CELL\"), \"MEAN\", \"NODATA\") # expand radius 1\n", 272 | " ras_m = ExtractByMask(ras, cloud_m)\n", 273 | " ras_m = ExtractByMask(ras_m, ndvi1_m)\n", 274 | " ras_m = ExtractByMask(ras_m, ndwi2_m)\n", 275 | " ras_m = ExtractByMask(ras_m, swir_m)\n", 276 | " ras_m = ExtractByMask(ras_m, nir_m)\n", 277 | " # reproject\n", 278 | " aoi = \"D:/WaterQuality/aoi/aoi.shp\"\n", 279 | " outfilename = \"D:/WaterQuality/reflectance/\"+safefolder.replace(\".SAFE\",\".tif\")\n", 280 | " arcpy.management.ProjectRaster(ras_m, \"compbands_p.tif\", aoi)\n", 281 | " arcpy.management.Clip(\"compbands_p.tif\", aoi, \"compbands_p_c.tif\", \n", 282 | " \"#\", \"#\", \"NONE\",\"MAINTAIN_EXTENT\")\n", 283 | " arcpy.management.Resample(\"compbands_p_c.tif\", outfilename, 0.00028571429)\n", 284 | " merge_and_mask()\n", 285 | " # empty extract and atmocor\n", 286 | " def emptyfolder(folder):\n", 287 | " for filename in os.listdir(folder):\n", 288 | " file_path = os.path.join(folder, filename) \n", 289 | " if os.path.isfile(file_path) or os.path.islink(file_path):\n", 290 | " os.unlink(file_path)\n", 291 | " emptyfolder(\"D:/WaterQuality/datadownload/atmocor\")\n", 292 | " # delete whole safefolder\n", 293 | " os.chdir(datadir)\n", 294 | " shutil.rmtree(safefolder)" 295 | ] 296 | }, 297 | { 298 | "cell_type": "code", 299 | "execution_count": null, 300 | "metadata": {}, 301 | "outputs": [], 302 | "source": [ 303 | "# Function to preprocess all Sentinel images\n", 304 | "def preprocessSentinel_all():\n", 305 | " datadir = 'D:/WaterQuality/datadownload'\n", 306 | " os.chdir(datadir)\n", 307 | " safelist = glob.glob('*.safe')\n", 308 | " if len(safelist)>0:\n", 309 | " for safefolder in safelist:\n", 310 | " preprocessSentinel(safefolder)" 311 | ] 312 | }, 313 | { 314 | "cell_type": "code", 315 | "execution_count": null, 316 | "metadata": {}, 317 | "outputs": [], 318 | "source": [ 319 | "# Function to get dates in each month\n", 320 | "from datetime import date, datetime, timedelta\n", 321 | "def monthstart(year, month):\n", 322 | " first_date = datetime(year, month, 1)\n", 323 | " return first_date.strftime(\"%Y-%m-%d\")\n", 324 | "def monthmid1(year, month):\n", 325 | " mid_date = datetime(year, month, 15)\n", 326 | " return mid_date.strftime(\"%Y-%m-%d\")\n", 327 | "def monthmid2(year, month):\n", 328 | " mid_date = datetime(year, month, 16)\n", 329 | " return mid_date.strftime(\"%Y-%m-%d\")\n", 330 | "def monthend(year, month):\n", 331 | " if month == 12:\n", 332 | " last_date = datetime(year, month, 31)\n", 333 | " else:\n", 334 | " last_date = datetime(year, month + 1, 1) + timedelta(days=-1)\n", 335 | " return last_date.strftime(\"%Y-%m-%d\")" 336 | ] 337 | }, 338 | { 339 | "cell_type": "code", 340 | "execution_count": null, 341 | "metadata": {}, 342 | "outputs": [], 343 | "source": [ 344 | "# Run the functions to download and preprocess all Landsat and Sentinel imagery\n", 345 | "for year in [2020,2021,2022]:\n", 346 | " for month in range(1,13):\n", 347 | " downloadlandsat(monthstart(year, month), monthend(year, month))\n", 348 | " preprocessLandsat_all()\n", 349 | " downloadsentinel(monthstart(year, month), monthend(year, month))\n", 350 | " preprocessSentinel_all()" 351 | ] 352 | }, 353 | { 354 | "cell_type": "code", 355 | "execution_count": null, 356 | "metadata": {}, 357 | "outputs": [], 358 | "source": [ 359 | "# Remove Tier 2 Landsat imagery\n", 360 | "def removeLandsatT2():\n", 361 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 362 | " Tier2list = glob.glob('LC*T2.*')\n", 363 | " if len(Tier2list)>0:\n", 364 | " for T2file in Tier2list:\n", 365 | " os.unlink(T2file)\n", 366 | "# removeLandsatT2()" 367 | ] 368 | }, 369 | { 370 | "cell_type": "code", 371 | "execution_count": null, 372 | "metadata": {}, 373 | "outputs": [], 374 | "source": [ 375 | "# Rename all Landsat imagery\n", 376 | "def renameLandsat_all():\n", 377 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 378 | " Landsatlist = glob.glob('LC*')\n", 379 | " for Landsatfile in Landsatlist:\n", 380 | " nfilename = Landsatfile[0:25]+Landsatfile[40:] # first 25 characters & from 40 to end\n", 381 | " os.rename(Landsatfile, nfilename)\n", 382 | "# renameLandsat_all()" 383 | ] 384 | }, 385 | { 386 | "cell_type": "code", 387 | "execution_count": null, 388 | "metadata": {}, 389 | "outputs": [], 390 | "source": [ 391 | "# Rename all Sentinel imagery\n", 392 | "def renameSentinel_all():\n", 393 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 394 | " Sentinellist = glob.glob('S2*')\n", 395 | " for Sentinelfile in Sentinellist:\n", 396 | " nfilename = Sentinelfile[0:19]+Sentinelfile[37:44]+Sentinelfile[60:]\n", 397 | " if os.path.isfile(nfilename) == True:\n", 398 | " nfilename = Sentinelfile[0:19]+Sentinelfile[37:44]+'a'+Sentinelfile[60:]\n", 399 | " os.rename(Sentinelfile, nfilename)\n", 400 | "# renameSentinel_all()" 401 | ] 402 | }, 403 | { 404 | "cell_type": "code", 405 | "execution_count": null, 406 | "metadata": {}, 407 | "outputs": [], 408 | "source": [ 409 | "# Mosaic tiles acquired on the same day\n", 410 | "def mosaictiles(): \n", 411 | " os.chdir(\"D:/WaterQuality/reflectance\")\n", 412 | " env.workspace = \"D:/WaterQuality/reflectance\"\n", 413 | " Landsatlist = glob.glob('LC*')\n", 414 | " Landsatdatelist = [i[17:25] for i in Landsatlist]\n", 415 | " Sentinellist = glob.glob('S2*')\n", 416 | " Sentineldatelist = [i[11:19] for i in Sentinellist]\n", 417 | " datelist = sorted(list(set(Landsatdatelist+Sentineldatelist))) # get unique date\n", 418 | " imglist = glob.glob('*.tif')\n", 419 | " for d in datelist:\n", 420 | " img_match = [img for img in imglist if d in img]\n", 421 | " outfolder = \"D:/WaterQuality/preprocess_finish\"\n", 422 | " outfilename = \"LandsatSentinel_\"+d+\".tif\"\n", 423 | " if len(img_match)==1:\n", 424 | " arcpy.management.CopyRaster(img_match[0], os.path.join(outfolder, outfilename))\n", 425 | " if len(img_match)>1:\n", 426 | " arcpy.MosaicToNewRaster_management(img_match,outfolder,outfilename,\"\",\"32_BIT_FLOAT\",\"\",\"7\",\"MEAN\",\"\")\n", 427 | "# mosaictiles()" 428 | ] 429 | }, 430 | { 431 | "cell_type": "code", 432 | "execution_count": null, 433 | "metadata": {}, 434 | "outputs": [], 435 | "source": [ 436 | "# Remove images that cover too few valid pixels\n", 437 | "def deleteimage_lowvalid():\n", 438 | " os.chdir(\"D:/WaterQuality/preprocess_finish\")\n", 439 | " env.workspace = \"D:/WaterQuality/preprocess_finish\"\n", 440 | " imglist = glob.glob('*.tif')\n", 441 | " for img in imglist:\n", 442 | " ras_np = arcpy.RasterToNumPyArray(img,\"\",\"\",\"\",-9999)[0]\n", 443 | " if (ras_np != -9999).sum() < (2390000*0.2): # largest valid count = 2390000\n", 444 | " arcpy.management.Delete(img)\n", 445 | "# deleteimage_lowvalid()" 446 | ] 447 | }, 448 | { 449 | "cell_type": "code", 450 | "execution_count": null, 451 | "metadata": {}, 452 | "outputs": [], 453 | "source": [ 454 | "# Extract pixel values based on the monitoring station locations\n", 455 | "def extractpixel(imgname):\n", 456 | " os.chdir(\"D:/WaterQuality/preprocess_finish\")\n", 457 | " env.workspace = \"D:/WaterQuality/preprocess_finish\"\n", 458 | " imgdate = imgname[16:24]\n", 459 | " station_shp = \"D:/WaterQuality/stationdata/MonitoringStation_wgs84_76.shp\"\n", 460 | " extract_dbf = \"D:/WaterQuality/extract/extract.dbf\"\n", 461 | " arcpy.sa.Sample(imgname, station_shp, extract_dbf, \"BILINEAR\", \"FID\")\n", 462 | " extract_df = Dbf5(extract_dbf).to_dataframe()\n", 463 | " extract_df[\"monitoring\"] = range(0,len(extract_df))\n", 464 | " arcpy.management.Delete(extract_dbf)\n", 465 | " extract_df.columns = ['Monitoring','X','Y','B1','B2','B3','B4','B5','B6','B7','monitoring']\n", 466 | " station_df = Dbf5(\"D:/WaterQuality/stationdata/MonitoringStation_wgs84_76.dbf\").to_dataframe()\n", 467 | " station_df[\"monitoring\"] = range(0,len(station_df))\n", 468 | " station_df = station_df[[\"monitoring\",\"WaterStati\"]]\n", 469 | " extract_df = extract_df.merge(station_df, on=\"monitoring\")\n", 470 | " extract_df = extract_df.drop(columns=['Monitoring','X','Y','monitoring'])\n", 471 | " extract_df = extract_df[extract_df[\"B1\"] > -1] # remove no data (-9999) rows\n", 472 | " extract_df[\"Date\"] = imgdate\n", 473 | " return extract_df" 474 | ] 475 | }, 476 | { 477 | "cell_type": "code", 478 | "execution_count": null, 479 | "metadata": {}, 480 | "outputs": [], 481 | "source": [ 482 | "# Extract and save the pixel values as a csv file\n", 483 | "os.chdir(\"D:/WaterQuality/preprocess_finish\")\n", 484 | "imglist = glob.glob('*.tif')\n", 485 | "dflist = [extractpixel(img) for img in imglist]\n", 486 | "extract_df_all = pd.concat(dflist)\n", 487 | "extract_df_all.to_csv(\"D:/WaterQuality/extract/extract_df_all.csv\")" 488 | ] 489 | }, 490 | { 491 | "cell_type": "code", 492 | "execution_count": 7, 493 | "metadata": {}, 494 | "outputs": [], 495 | "source": [ 496 | "# Combine station data different years\n", 497 | "os.chdir(\"D:/WaterQuality/stationdata\")\n", 498 | "csvlist = glob.glob('marine-historical-*.csv')\n", 499 | "csvlist = [pd.read_csv(c) for c in csvlist]\n", 500 | "df = pd.concat(csvlist)\n", 501 | "df.to_csv(\"marine-historical-2010-2022.csv\")\n", 502 | "# Additional manual step: subset only surface water and replace <0.2 to 0.1, <0.5 to 0.25" 503 | ] 504 | }, 505 | { 506 | "cell_type": "code", 507 | "execution_count": null, 508 | "metadata": {}, 509 | "outputs": [], 510 | "source": [ 511 | "# Merge image pixel value and station data that are same day\n", 512 | "stationdata_df = pd.read_csv(\"D:/WaterQuality/stationdata/marine-historical-2010-2022.csv\")\n", 513 | "extract_df_all = pd.read_csv(\"D:/WaterQuality/extract/extract_df_all.csv\", index_col=0)\n", 514 | "stationdata_df = stationdata_df[[\"Station\",\"Dates\",\"Chlorophyll-a (µg/L)\",\"Suspended Solids (mg/L)\",\"Turbidity (NTU)\"]]\n", 515 | "stationdata_df.columns = [\"WaterStati\", \"Date\", \"Chla\", \"SS\", \"Tur\"]\n", 516 | "stationdata_df[\"Date\"] = pd.to_datetime(stationdata_df[\"Date\"], format='%d/%m/%Y').dt.strftime('%Y%m%d').astype(int)\n", 517 | "img_stationdata_merge = stationdata_df.merge(extract_df_all, on=[\"WaterStati\",\"Date\"])\n", 518 | "img_stationdata_merge.to_csv(\"D:/WaterQuality/extract/img_stationdata_merge.csv\")\n" 519 | ] 520 | }, 521 | { 522 | "cell_type": "code", 523 | "execution_count": 194, 524 | "metadata": {}, 525 | "outputs": [], 526 | "source": [ 527 | "# Create independent variables\n", 528 | "df = pd.read_csv(\"D:/WaterQuality/extract/img_stationdata_merge.csv\", index_col=0)\n", 529 | "bands = ['B' + str(b) for b in [*range(1,8)]]\n", 530 | "wl = [443,490,560,660,865,1610,2195] #wavelength in nm\n", 531 | "\n", 532 | "# Multiply 10\n", 533 | "for i in bands:\n", 534 | " df[i] = df[i]*10\n", 535 | "# Square and cubic\n", 536 | "for i in bands:\n", 537 | " df[i+'_2'] = df[i]**2\n", 538 | " df[i+'_3'] = df[i]**3\n", 539 | "# Two-band ratio\n", 540 | "for i in bands:\n", 541 | " for j in bands:\n", 542 | " if (i != j) & (i < j):\n", 543 | " df['NR_'+i+j] = ((df[i] - df[j]) / (df[i] + df[j])).clip(lower=-1.0, upper=1.0)\n", 544 | "# Three-band ratio\n", 545 | "for i in range(0,7):\n", 546 | " for j in range(0,7):\n", 547 | " for k in range(0,7):\n", 548 | " if (j == i+1) & (k == j+1):\n", 549 | " df['TB_'+bands[i]+bands[j]+bands[k]] = (((1/df[bands[i]])-(1/df[bands[j]]))*df[bands[k]]).clip(lower=-1.0, upper=1.0)\n", 550 | "# Line height algorithm\n", 551 | "for i in range(0,7):\n", 552 | " for j in range(0,7):\n", 553 | " for k in range(0,7):\n", 554 | " if (j == i+1) & (k == j+1):\n", 555 | " df['LH_'+bands[i]+bands[j]+bands[k]] = df[bands[j]] - df[bands[i]] - ((df[bands[k]] - df[bands[i]]) * ((wl[j]-wl[i])/(wl[k]-wl[i])))\n", 556 | "\n", 557 | "df.to_csv('D:/WaterQuality/extract/df_variable.csv')" 558 | ] 559 | }, 560 | { 561 | "cell_type": "code", 562 | "execution_count": 211, 563 | "metadata": {}, 564 | "outputs": [], 565 | "source": [ 566 | "df = pd.read_csv(\"D:/WaterQuality/extract/df_variable.csv\", index_col=0)\n", 567 | "df = df.drop(columns = [\"WaterStati\",\"Date\"])\n", 568 | "df_var = df.iloc[:,3:]" 569 | ] 570 | }, 571 | { 572 | "cell_type": "code", 573 | "execution_count": null, 574 | "metadata": {}, 575 | "outputs": [], 576 | "source": [ 577 | "# Install and load libraries for neural network steps\n", 578 | "import tensorflow as tf\n", 579 | "from keras import backend as K\n", 580 | "from sklearn import linear_model\n", 581 | "from sklearn.model_selection import KFold\n", 582 | "from sklearn.metrics import mean_squared_error, mean_absolute_error\n", 583 | "import statsmodels.api as sm" 584 | ] 585 | }, 586 | { 587 | "cell_type": "code", 588 | "execution_count": 3, 589 | "metadata": {}, 590 | "outputs": [], 591 | "source": [ 592 | "# Function for stepwise variable selection\n", 593 | "# Modified from https://datascience.stackexchange.com/questions/24405/how-to-do-stepwise-regression-using-sklearn/24447#24447\n", 594 | "def stepwise_selection(X, y, \n", 595 | " initial_list=[], \n", 596 | " threshold_in=0.05, \n", 597 | " threshold_out = 0.1, \n", 598 | " verbose=True):\n", 599 | " \"\"\" Perform a forward-backward feature selection \n", 600 | " based on p-value from statsmodels.api.OLS\n", 601 | " Arguments:\n", 602 | " X - pandas.DataFrame with candidate features\n", 603 | " y - pandas.DataFrame with the target column\n", 604 | " initial_list - list of features to start with (column names of X)\n", 605 | " threshold_in - include a feature if its p-value < threshold_in\n", 606 | " threshold_out - exclude a feature if its p-value > threshold_out\n", 607 | " verbose - whether to print the sequence of inclusions and exclusions\n", 608 | " Returns: list of selected features \n", 609 | " Always set threshold_in < threshold_out to avoid infinite looping.\n", 610 | " See https://en.wikipedia.org/wiki/Stepwise_regression for the details\n", 611 | " \"\"\"\n", 612 | " y = y.to_numpy()\n", 613 | " included = list(initial_list)\n", 614 | " while True:\n", 615 | " changed=False\n", 616 | " # forward step\n", 617 | " excluded = list(set(X.columns)-set(included))\n", 618 | " new_pval = pd.Series(index=excluded, dtype='float64')\n", 619 | " for new_column in excluded:\n", 620 | " model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included+[new_column]]))).fit()\n", 621 | " new_pval[new_column] = model.pvalues[new_column]\n", 622 | " best_pval = new_pval.min()\n", 623 | " if best_pval < threshold_in:\n", 624 | " best_feature = new_pval.index[new_pval.argmin()]\n", 625 | " included.append(best_feature)\n", 626 | " changed=True\n", 627 | " if verbose:\n", 628 | " print('Add {:30} with p-value {:.6}'.format(best_feature, best_pval))\n", 629 | "\n", 630 | " # backward step\n", 631 | " model = sm.OLS(y, sm.add_constant(pd.DataFrame(X[included]))).fit()\n", 632 | " # use all coefs except intercept\n", 633 | " pvalues = model.pvalues.iloc[1:]\n", 634 | " worst_pval = pvalues.max() # null if pvalues is empty\n", 635 | " if worst_pval > threshold_out:\n", 636 | " changed=True\n", 637 | " worst_feature = pvalues.index[pvalues.argmax()]\n", 638 | " included.remove(worst_feature)\n", 639 | " if verbose:\n", 640 | " print('Drop {:30} with p-value {:.6}'.format(worst_feature, worst_pval))\n", 641 | " if not changed:\n", 642 | " break\n", 643 | " return included" 644 | ] 645 | }, 646 | { 647 | "cell_type": "code", 648 | "execution_count": 4, 649 | "metadata": {}, 650 | "outputs": [], 651 | "source": [ 652 | "# Function to obtain model performance based on cross validation\n", 653 | "wq = ['Chla','SS','Tur']\n", 654 | "def model_cv(wq_name):\n", 655 | " y = df[wq_name]\n", 656 | " step_var = stepwise_selection(df_var, y, verbose=False)\n", 657 | " X = df[step_var]\n", 658 | " kfold = KFold(n_splits=10, shuffle=True, random_state=0)\n", 659 | " df_cv = pd.DataFrame()\n", 660 | " for train, test in kfold.split(X, y):\n", 661 | " model = tf.keras.Sequential([\n", 662 | " tf.keras.layers.Dense(6, activation='sigmoid'),\n", 663 | " tf.keras.layers.Dense(3, activation='sigmoid'),\n", 664 | " tf.keras.layers.Dense(1)\n", 665 | " ])\n", 666 | " model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam())\n", 667 | " model.fit(X.iloc[train,], y[train], epochs=2000)\n", 668 | " y_predict = model.predict(X.iloc[test,]).flatten()\n", 669 | " y_test = y[test]\n", 670 | " df_cv1 = pd.DataFrame({\"y_predict\":y_predict, \"y_test\":y_test})\n", 671 | " df_cv = pd.concat([df_cv,df_cv1])\n", 672 | " corr_test = np.corrcoef(df_cv[\"y_test\"], df_cv[\"y_predict\"])[0, 1]\n", 673 | " rmse_test = mean_squared_error(df_cv[\"y_test\"], df_cv[\"y_predict\"], squared=False)\n", 674 | " mae_test = mean_absolute_error(df_cv[\"y_test\"], df_cv[\"y_predict\"])\n", 675 | " model_cv_df = pd.DataFrame({'WQ': [wq_name], 'var':[step_var], 'corr_test': [corr_test], \n", 676 | " 'rmse_test': [rmse_test], 'mae_test': [mae_test]})\n", 677 | " return(model_cv_df)" 678 | ] 679 | }, 680 | { 681 | "cell_type": "code", 682 | "execution_count": null, 683 | "metadata": {}, 684 | "outputs": [], 685 | "source": [ 686 | "# Obtain model performance\n", 687 | "model_cv_Chla = model_cv('Chla')\n", 688 | "model_cv_SS = model_cv('SS')" 689 | ] 690 | }, 691 | { 692 | "cell_type": "code", 693 | "execution_count": null, 694 | "metadata": {}, 695 | "outputs": [], 696 | "source": [ 697 | "# Chla model\n", 698 | "wq_name = \"Chla\"\n", 699 | "y = df[wq_name]\n", 700 | "step_var = stepwise_selection(df_var, y, verbose=False)\n", 701 | "X = df[step_var]\n", 702 | "model = tf.keras.Sequential([\n", 703 | " tf.keras.layers.Dense(6, activation='sigmoid'),\n", 704 | " tf.keras.layers.Dense(3, activation='sigmoid'),\n", 705 | " tf.keras.layers.Dense(1)\n", 706 | "])\n", 707 | "model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam())\n", 708 | "model.fit(X, y, epochs=2000)\n", 709 | "model.save(\"D:/WaterQuality/extract/Chla_model.keras\")\n", 710 | "\n", 711 | "# SS model\n", 712 | "wq_name = \"SS\"\n", 713 | "y = df[wq_name]\n", 714 | "step_var = stepwise_selection(df_var, y, verbose=False)\n", 715 | "X = df[step_var]\n", 716 | "model = tf.keras.Sequential([\n", 717 | " tf.keras.layers.Dense(6, activation='sigmoid'),\n", 718 | " tf.keras.layers.Dense(3, activation='sigmoid'),\n", 719 | " tf.keras.layers.Dense(1)\n", 720 | "])\n", 721 | "model.compile(loss='mean_absolute_error', optimizer=tf.keras.optimizers.Adam())\n", 722 | "model.fit(X, y, epochs=2000)\n", 723 | "model.save(\"D:/WaterQuality/extract/SS_model.keras\")" 724 | ] 725 | }, 726 | { 727 | "cell_type": "code", 728 | "execution_count": 315, 729 | "metadata": {}, 730 | "outputs": [], 731 | "source": [ 732 | "# print model weights from the trained models\n", 733 | "Chla_model = tf.keras.models.load_model(\"D:/WaterQuality/extract/Chla_model.keras\")\n", 734 | "pd.Series(Chla_model.get_weights()).to_json(\"D:/WaterQuality/extract/Chla_modelweight.json\")\n", 735 | "SS_model = tf.keras.models.load_model(\"D:/WaterQuality/extract/SS_model.keras\")\n", 736 | "pd.Series(SS_model.get_weights()).to_json(\"D:/WaterQuality/extract/SS_modelweight.json\")\n", 737 | "# OR pd.read_json(\"D:/WaterQuality/extract/Chla_modelweight.json\", typ=\"series\")" 738 | ] 739 | }, 740 | { 741 | "cell_type": "code", 742 | "execution_count": null, 743 | "metadata": {}, 744 | "outputs": [], 745 | "source": [ 746 | "# Apply model to predict all imagery\n", 747 | "import os\n", 748 | "import glob\n", 749 | "import numpy as np\n", 750 | "import pandas as pd\n", 751 | "import arcpy\n", 752 | "from arcpy import env\n", 753 | "from arcpy.sa import *\n", 754 | "arcpy.CheckOutExtension(\"spatial\")" 755 | ] 756 | }, 757 | { 758 | "cell_type": "code", 759 | "execution_count": 7, 760 | "metadata": {}, 761 | "outputs": [], 762 | "source": [ 763 | "# Function to predict Chla\n", 764 | "def predictChla(imgname):\n", 765 | " outfolder = \"D:/WaterQuality/predict\"\n", 766 | " os.chdir(outfolder)\n", 767 | " env.workspace = outfolder\n", 768 | " # ANN layers: 14, 6, 3, 1\n", 769 | " p = pd.read_json(\"D:/WaterQuality/extract/Chla_modelweight.json\", typ=\"series\")\n", 770 | " # Chla ['NR_B2B4', 'NR_B2B6', 'NR_B3B6', 'NR_B3B4', 'TB_B1B2B3', \n", 771 | " # 'TB_B4B5B6', 'B2_3', 'B5', 'B4_2', 'B3_3', 'TB_B2B3B4', 'B6_3', 'NR_B1B6', 'B6_2']\n", 772 | " outname = imgname.replace(\"preprocess_finish\", \"predict\").replace(\"LandsatSentinel_20\", \"Chla_20\")\n", 773 | " b1 = Raster(imgname+\"/Band_1\")*10\n", 774 | " b2 = Raster(imgname+\"/Band_2\")*10\n", 775 | " b3 = Raster(imgname+\"/Band_3\")*10\n", 776 | " b4 = Raster(imgname+\"/Band_4\")*10\n", 777 | " b5 = Raster(imgname+\"/Band_5\")*10\n", 778 | " b6 = Raster(imgname+\"/Band_6\")*10\n", 779 | " ras_0 = b1*0\n", 780 | " ras_neg1 = ras_0 - 1\n", 781 | " ras_1 = ras_0 + 1\n", 782 | " v1 = CellStatistics([CellStatistics([(b2-b4)/(b2+b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 783 | " v2 = CellStatistics([CellStatistics([(b2-b6)/(b2+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 784 | " v3 = CellStatistics([CellStatistics([(b3-b6)/(b3+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 785 | " v4 = CellStatistics([CellStatistics([(b3-b4)/(b3+b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 786 | " v5 = CellStatistics([CellStatistics([(((1/b1)-(1/b2))*b3),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 787 | " v6 = CellStatistics([CellStatistics([(((1/b4)-(1/b5))*b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 788 | " v7 = b2 ** 3\n", 789 | " v8 = b5\n", 790 | " v9 = b4 ** 2\n", 791 | " v10 = b3 ** 3\n", 792 | " v11 = CellStatistics([CellStatistics([(((1/b2)-(1/b3))*b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 793 | " v12 = b6 ** 3\n", 794 | " v13 = CellStatistics([CellStatistics([(b1-b6)/(b1+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 795 | " v14 = b6 ** 2\n", 796 | "\n", 797 | " h1n1 = (Exp((p[1][0]+v1*p[0][0][0]+v2*p[0][1][0]+v3*p[0][2][0]+v4*p[0][3][0]+v5*p[0][4][0]+\n", 798 | " v6*p[0][5][0]+v7*p[0][6][0]+v8*p[0][7][0]+v9*p[0][8][0]+v10*p[0][9][0]+\n", 799 | " v11*p[0][10][0]+v12*p[0][11][0]+v13*p[0][12][0]+v14*p[0][13][0])*(-1))+1)**-1\n", 800 | " h1n2 = (Exp((p[1][1]+v1*p[0][0][1]+v2*p[0][1][1]+v3*p[0][2][1]+v4*p[0][3][1]+v5*p[0][4][1]+\n", 801 | " v6*p[0][5][1]+v7*p[0][6][1]+v8*p[0][7][1]+v9*p[0][8][1]+v10*p[0][9][1]+\n", 802 | " v11*p[0][10][1]+v12*p[0][11][1]+v13*p[0][12][1]+v14*p[0][13][1])*(-1))+1)**-1\n", 803 | " h1n3 = (Exp((p[1][2]+v1*p[0][0][2]+v2*p[0][1][2]+v3*p[0][2][2]+v4*p[0][3][2]+v5*p[0][4][2]+\n", 804 | " v6*p[0][5][2]+v7*p[0][6][2]+v8*p[0][7][2]+v9*p[0][8][2]+v10*p[0][9][2]+\n", 805 | " v11*p[0][10][2]+v12*p[0][11][2]+v13*p[0][12][2]+v14*p[0][13][2])*(-1))+1)**-1\n", 806 | " h1n4 = (Exp((p[1][3]+v1*p[0][0][3]+v2*p[0][1][3]+v3*p[0][2][3]+v4*p[0][3][3]+v5*p[0][4][3]+\n", 807 | " v6*p[0][5][3]+v7*p[0][6][3]+v8*p[0][7][3]+v9*p[0][8][3]+v10*p[0][9][3]+\n", 808 | " v11*p[0][10][3]+v12*p[0][11][3]+v13*p[0][12][3]+v14*p[0][13][3])*(-1))+1)**-1\n", 809 | " h1n5 = (Exp((p[1][4]+v1*p[0][0][4]+v2*p[0][1][4]+v3*p[0][2][4]+v4*p[0][3][4]+v5*p[0][4][4]+\n", 810 | " v6*p[0][5][4]+v7*p[0][6][4]+v8*p[0][7][4]+v9*p[0][8][4]+v10*p[0][9][4]+\n", 811 | " v11*p[0][10][4]+v12*p[0][11][4]+v13*p[0][12][4]+v14*p[0][13][4])*(-1))+1)**-1\n", 812 | " h1n6 = (Exp((p[1][5]+v1*p[0][0][5]+v2*p[0][1][5]+v3*p[0][2][5]+v4*p[0][3][5]+v5*p[0][4][5]+\n", 813 | " v6*p[0][5][5]+v7*p[0][6][5]+v8*p[0][7][5]+v9*p[0][8][5]+v10*p[0][9][5]+\n", 814 | " v11*p[0][10][5]+v12*p[0][11][5]+v13*p[0][12][5]+v14*p[0][13][5])*(-1))+1)**-1\n", 815 | "\n", 816 | " h2n1 = (Exp((p[3][0]+h1n1*p[2][0][0]+h1n2*p[2][1][0]+h1n3*p[2][2][0]+\n", 817 | " h1n4*p[2][3][0]+h1n5*p[2][4][0]+h1n6*p[2][5][0])*(-1))+1)**-1\n", 818 | " h2n2 = (Exp((p[3][1]+h1n1*p[2][0][1]+h1n2*p[2][1][1]+h1n3*p[2][2][1]+\n", 819 | " h1n4*p[2][3][1]+h1n5*p[2][4][1]+h1n6*p[2][5][1])*(-1))+1)**-1\n", 820 | " h2n3 = (Exp((p[3][2]+h1n1*p[2][0][2]+h1n2*p[2][1][2]+h1n3*p[2][2][2]+\n", 821 | " h1n4*p[2][3][2]+h1n5*p[2][4][2]+h1n6*p[2][5][2])*(-1))+1)**-1\n", 822 | "\n", 823 | " pred = CellStatistics([p[5][0]+h2n1*p[4][0][0]+h2n2*p[4][1][0]+h2n3*p[4][2][0],ras_0], \"MAXIMUM\")\n", 824 | " arcpy.management.CopyRaster(pred, outname)" 825 | ] 826 | }, 827 | { 828 | "cell_type": "code", 829 | "execution_count": 8, 830 | "metadata": {}, 831 | "outputs": [], 832 | "source": [ 833 | "# Function to predict SS\n", 834 | "def predictSS(imgname):\n", 835 | " outfolder = \"D:/WaterQuality/predict\"\n", 836 | " os.chdir(outfolder)\n", 837 | " env.workspace = outfolder\n", 838 | " # ANN layers: 9, 6, 3, 1\n", 839 | " p = pd.read_json(\"D:/WaterQuality/extract/SS_modelweight.json\", typ=\"series\")\n", 840 | " # SS ['TB_B2B3B4', 'LH_B4B5B6', 'B3_3', 'B4_2', 'LH_B5B6B7', 'TB_B3B4B5', 'NR_B5B6', 'NR_B1B4', 'B2_3']\n", 841 | " outname = imgname.replace(\"preprocess_finish\", \"predict\").replace(\"LandsatSentinel_20\", \"SuSo_20\")\n", 842 | " b1 = Raster(imgname+\"/Band_1\")*10\n", 843 | " b2 = Raster(imgname+\"/Band_2\")*10\n", 844 | " b3 = Raster(imgname+\"/Band_3\")*10\n", 845 | " b4 = Raster(imgname+\"/Band_4\")*10\n", 846 | " b5 = Raster(imgname+\"/Band_5\")*10\n", 847 | " b6 = Raster(imgname+\"/Band_6\")*10\n", 848 | " b7 = Raster(imgname+\"/Band_7\")*10\n", 849 | " ras_0 = b1*0\n", 850 | " ras_neg1 = ras_0 - 1\n", 851 | " ras_1 = ras_0 + 1\n", 852 | " v1 = CellStatistics([CellStatistics([(((1/b2)-(1/b3))*b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 853 | " v2 = b5-b4-((b6-b4)*((865-660)/(1610-660)))\n", 854 | " v3 = b3 ** 3\n", 855 | " v4 = b4 ** 2\n", 856 | " v5 = b6-b5-((b7-b5)*((1610-865)/(2195-865)))\n", 857 | " v6 = CellStatistics([CellStatistics([(((1/b3)-(1/b4))*b5),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 858 | " v7 = CellStatistics([CellStatistics([(b5-b6)/(b5+b6),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 859 | " v8 = CellStatistics([CellStatistics([(b1-b4)/(b1+b4),ras_neg1], \"MAXIMUM\"),ras_1],\"MINIMUM\")\n", 860 | " v9 = b2 ** 3\n", 861 | "\n", 862 | " h1n1 = (Exp((p[1][0]+v1*p[0][0][0]+v2*p[0][1][0]+v3*p[0][2][0]+v4*p[0][3][0]+v5*p[0][4][0]+\n", 863 | " v6*p[0][5][0]+v7*p[0][6][0]+v8*p[0][7][0]+v9*p[0][8][0])*(-1))+1)**-1\n", 864 | " h1n2 = (Exp((p[1][1]+v1*p[0][0][1]+v2*p[0][1][1]+v3*p[0][2][1]+v4*p[0][3][1]+v5*p[0][4][1]+\n", 865 | " v6*p[0][5][1]+v7*p[0][6][1]+v8*p[0][7][1]+v9*p[0][8][1])*(-1))+1)**-1\n", 866 | " h1n3 = (Exp((p[1][2]+v1*p[0][0][2]+v2*p[0][1][2]+v3*p[0][2][2]+v4*p[0][3][2]+v5*p[0][4][2]+\n", 867 | " v6*p[0][5][2]+v7*p[0][6][2]+v8*p[0][7][2]+v9*p[0][8][2])*(-1))+1)**-1\n", 868 | " h1n4 = (Exp((p[1][3]+v1*p[0][0][3]+v2*p[0][1][3]+v3*p[0][2][3]+v4*p[0][3][3]+v5*p[0][4][3]+\n", 869 | " v6*p[0][5][3]+v7*p[0][6][3]+v8*p[0][7][3]+v9*p[0][8][3])*(-1))+1)**-1\n", 870 | " h1n5 = (Exp((p[1][4]+v1*p[0][0][4]+v2*p[0][1][4]+v3*p[0][2][4]+v4*p[0][3][4]+v5*p[0][4][4]+\n", 871 | " v6*p[0][5][4]+v7*p[0][6][4]+v8*p[0][7][4]+v9*p[0][8][4])*(-1))+1)**-1\n", 872 | " h1n6 = (Exp((p[1][5]+v1*p[0][0][5]+v2*p[0][1][5]+v3*p[0][2][5]+v4*p[0][3][5]+v5*p[0][4][5]+\n", 873 | " v6*p[0][5][5]+v7*p[0][6][5]+v8*p[0][7][5]+v9*p[0][8][5])*(-1))+1)**-1\n", 874 | "\n", 875 | " h2n1 = (Exp((p[3][0]+h1n1*p[2][0][0]+h1n2*p[2][1][0]+h1n3*p[2][2][0]+\n", 876 | " h1n4*p[2][3][0]+h1n5*p[2][4][0]+h1n6*p[2][5][0])*(-1))+1)**-1\n", 877 | " h2n2 = (Exp((p[3][1]+h1n1*p[2][0][1]+h1n2*p[2][1][1]+h1n3*p[2][2][1]+\n", 878 | " h1n4*p[2][3][1]+h1n5*p[2][4][1]+h1n6*p[2][5][1])*(-1))+1)**-1\n", 879 | " h2n3 = (Exp((p[3][2]+h1n1*p[2][0][2]+h1n2*p[2][1][2]+h1n3*p[2][2][2]+\n", 880 | " h1n4*p[2][3][2]+h1n5*p[2][4][2]+h1n6*p[2][5][2])*(-1))+1)**-1\n", 881 | "\n", 882 | " pred = CellStatistics([p[5][0]+h2n1*p[4][0][0]+h2n2*p[4][1][0]+h2n3*p[4][2][0],ras_0], \"MAXIMUM\")\n", 883 | " arcpy.management.CopyRaster(pred, outname)" 884 | ] 885 | }, 886 | { 887 | "cell_type": "code", 888 | "execution_count": 7, 889 | "metadata": {}, 890 | "outputs": [], 891 | "source": [ 892 | "# Apply function to all imagery\n", 893 | "imglist = glob.glob('D:/WaterQuality/preprocess_finish/*.tif')\n", 894 | "for i in imglist:\n", 895 | " predictChla(i)\n", 896 | " predictSS(i)" 897 | ] 898 | }, 899 | { 900 | "cell_type": "code", 901 | "execution_count": null, 902 | "metadata": {}, 903 | "outputs": [], 904 | "source": [ 905 | "# Create Chla and SS raster for the latest date\n", 906 | "aoi_water = \"D:/WaterQuality/aoi/aoi_water.shp\"\n", 907 | "# Chla\n", 908 | "chlalist = glob.glob(\"D:/WaterQuality/predict/Chla_*.tif\")\n", 909 | "latestimg = chlalist[len(chlalist)-1]\n", 910 | "latestimg = latestimg[len(latestimg)-17:len(latestimg)]\n", 911 | "mergeras = arcpy.management.MosaicToNewRaster(chlalist, \"D:/WaterQuality/predict_display\", \"merge_\"+latestimg, \"\", \"32_BIT_FLOAT\", \"\", 1, \"LAST\")\n", 912 | "mergeras_focal = FocalStatistics(mergeras, NbrRectangle(3,3,\"CELL\"), \"MEDIAN\")\n", 913 | "outname = (\"D:/WaterQuality/predict_display/merge_\"+latestimg).replace(\".tif\", \"_smoothclip.tif\")\n", 914 | "arcpy.management.Clip(mergeras_focal, \"\", outname, aoi_water, \"\", \"ClippingGeometry\")\n", 915 | "# SS\n", 916 | "sslist = glob.glob(\"D:/WaterQuality/predict/SuSo_*.tif\")\n", 917 | "latestimg = sslist[len(sslist)-1]\n", 918 | "latestimg = latestimg[len(latestimg)-17:len(latestimg)]\n", 919 | "mergeras = arcpy.management.MosaicToNewRaster(sslist, \"D:/WaterQuality/predict_display\", \"merge_\"+latestimg, \"\", \"32_BIT_FLOAT\", \"\", 1, \"LAST\")\n", 920 | "mergeras_focal = FocalStatistics(mergeras, NbrRectangle(3,3,\"CELL\"), \"MEDIAN\")\n", 921 | "outname = (\"D:/WaterQuality/predict_display/merge_\"+latestimg).replace(\".tif\", \"_smoothclip.tif\")\n", 922 | "arcpy.management.Clip(mergeras_focal, \"\", outname, aoi_water, \"\", \"ClippingGeometry\")\n" 923 | ] 924 | }, 925 | { 926 | "cell_type": "code", 927 | "execution_count": null, 928 | "metadata": {}, 929 | "outputs": [], 930 | "source": [ 931 | "# Create datapoints using Fishnet tool in ArcGIS\n", 932 | "# Datapoints are used to plot charts in Dashboard\n", 933 | "# Extract and append values for the first date\n", 934 | "datapoint = \"D:/WaterQuality/ArcGISPro/DataPoint.shp\"\n", 935 | "datapoint_d1 = \"D:/WaterQuality/ArcGISPro/DataPoint_d1.shp\"\n", 936 | "datapoint_d2 = \"D:/WaterQuality/ArcGISPro/DataPoint_d2.shp\"\n", 937 | "datapoint_all = \"D:/WaterQuality/ArcGISPro/DataPoint_all.shp\"\n", 938 | "arcpy.management.Copy(datapoint, datapoint_d1)\n", 939 | "arcpy.management.Copy(datapoint, datapoint_d2)\n", 940 | "chla_d1 = \"D:/WaterQuality/predict/Chla_20130708.tif\"\n", 941 | "ss_d1 = \"D:/WaterQuality/predict/SuSo_20130708.tif\"\n", 942 | "arcpy.sa.ExtractMultiValuesToPoints(datapoint_d1, chla_d1+\" value\", \"BILINEAR\")\n", 943 | "arcpy.sa.ExtractMultiValuesToPoints(datapoint_d2, ss_d1+\" value\", \"BILINEAR\")\n", 944 | "with arcpy.da.UpdateCursor(datapoint_d1, [\"value\",\"Date\",\"parameter\",\"latest\",\"DateRange\"]) as cursor:\n", 945 | " for row in cursor:\n", 946 | " if row[0] < 0:\n", 947 | " cursor.deleteRow()\n", 948 | " else:\n", 949 | " row[1] = 20130708\n", 950 | " row[2] = \"Chla\"\n", 951 | " row[3] = 1\n", 952 | " row[4] = \"Day\"\n", 953 | " cursor.updateRow(row)\n", 954 | "with arcpy.da.UpdateCursor(datapoint_d2, [\"value\",\"Date\",\"parameter\",\"latest\",\"DateRange\"]) as cursor:\n", 955 | " for row in cursor:\n", 956 | " if row[0] < 0:\n", 957 | " cursor.deleteRow()\n", 958 | " else:\n", 959 | " row[1] = 20130708\n", 960 | " row[2] = \"SS\"\n", 961 | " row[3] = 1\n", 962 | " row[4] = \"Day\"\n", 963 | " cursor.updateRow(row)\n", 964 | "arcpy.management.Copy(datapoint_d1, datapoint_all)\n", 965 | "arcpy.management.Append(datapoint_d2, datapoint_all)\n", 966 | "with arcpy.da.UpdateCursor(datapoint_d1, [\"Date\",\"DateRange\"]) as cursor:\n", 967 | " for row in cursor:\n", 968 | " row[0] = round(20130708/100)*100+15\n", 969 | " row[1] = \"Month\"\n", 970 | " cursor.updateRow(row)\n", 971 | "with arcpy.da.UpdateCursor(datapoint_d2, [\"Date\",\"DateRange\"]) as cursor:\n", 972 | " for row in cursor:\n", 973 | " row[0] = round(20130708/100)*100+15\n", 974 | " row[1] = \"Month\"\n", 975 | " cursor.updateRow(row)\n", 976 | "arcpy.management.Append(datapoint_d1, datapoint_all)\n", 977 | "arcpy.management.Append(datapoint_d2, datapoint_all)\n", 978 | "arcpy.management.Delete(datapoint_d1)\n", 979 | "arcpy.management.Delete(datapoint_d2)" 980 | ] 981 | }, 982 | { 983 | "cell_type": "code", 984 | "execution_count": null, 985 | "metadata": {}, 986 | "outputs": [], 987 | "source": [ 988 | "# Append datapoint from 2nd to latest dates\n", 989 | "datapoint = \"D:/WaterQuality/ArcGISPro/DataPoint.shp\"\n", 990 | "datapoint_d1 = \"D:/WaterQuality/ArcGISPro/DataPoint_d1.shp\"\n", 991 | "datapoint_d2 = \"D:/WaterQuality/ArcGISPro/DataPoint_d2.shp\"\n", 992 | "datapoint_all = \"D:/WaterQuality/ArcGISPro/DataPoint_all.shp\"\n", 993 | "chlalist = glob.glob(\"D:/WaterQuality/predict/Chla_*.tif\")\n", 994 | "sslist = glob.glob(\"D:/WaterQuality/predict/SuSo_*.tif\")\n", 995 | "for i in range(1,len(chlalist)):\n", 996 | " chla_d1 = chlalist[i]\n", 997 | " ss_d1 = sslist[i]\n", 998 | " arcpy.management.Copy(datapoint, datapoint_d1)\n", 999 | " arcpy.management.Copy(datapoint, datapoint_d2)\n", 1000 | " arcpy.sa.ExtractMultiValuesToPoints(datapoint_d1, chla_d1+\" value\", \"BILINEAR\")\n", 1001 | " arcpy.sa.ExtractMultiValuesToPoints(datapoint_d2, ss_d1+\" value\", \"BILINEAR\")\n", 1002 | " # remove points with no data, else add date and extract list of valid points\n", 1003 | " newdatapt = []\n", 1004 | " d1 = int(chla_d1[len(chla_d1)-12:len(chla_d1)-4])\n", 1005 | " d1_month = round(d1/100)*100+15\n", 1006 | " with arcpy.da.UpdateCursor(datapoint_d1, [\"value\",\"pt\",\"Date\",\"parameter\",\"latest\",\"DateRange\"]) as cursor:\n", 1007 | " for row in cursor:\n", 1008 | " if row[0] < 0:\n", 1009 | " cursor.deleteRow()\n", 1010 | " else:\n", 1011 | " newdatapt.append(row[1])\n", 1012 | " row[2] = d1 # Date\n", 1013 | " row[3] = \"Chla\"\n", 1014 | " row[4] = 1 # latest\n", 1015 | " row[5] = \"Day\"\n", 1016 | " cursor.updateRow(row)\n", 1017 | " # modify values for SS\n", 1018 | " with arcpy.da.UpdateCursor(datapoint_d2, [\"value\",\"pt\",\"Date\",\"parameter\",\"latest\",\"DateRange\"]) as cursor:\n", 1019 | " for row in cursor:\n", 1020 | " if row[0] < 0:\n", 1021 | " cursor.deleteRow()\n", 1022 | " else:\n", 1023 | " row[2] = d1 # Date\n", 1024 | " row[3] = \"SS\"\n", 1025 | " row[4] = 1 # latest\n", 1026 | " row[5] = \"Day\"\n", 1027 | " cursor.updateRow(row) \n", 1028 | " # modify latest in datapoint_all\n", 1029 | " with arcpy.da.UpdateCursor(datapoint_all, [\"pt\",\"latest\",\"Date\",\"DateRange\"], \"latest = 1\") as cursor: # where clause\n", 1030 | " for row in cursor:\n", 1031 | " if row[0] in newdatapt: # if latest image provides obs on this pt\n", 1032 | " row[1] = 0\n", 1033 | " if row[3]==\"Month\" and row[2]==d1_month: # if same month as latest image\n", 1034 | " row[1] = 1\n", 1035 | " cursor.updateRow(row)\n", 1036 | " arcpy.management.Append(datapoint_d1, datapoint_all)\n", 1037 | " arcpy.management.Append(datapoint_d2, datapoint_all)\n", 1038 | " # add monthly average data\n", 1039 | " with arcpy.da.UpdateCursor(datapoint_d1, [\"Date\",\"DateRange\"]) as cursor:\n", 1040 | " for row in cursor:\n", 1041 | " row[0] = d1_month\n", 1042 | " row[1] = \"Month\"\n", 1043 | " cursor.updateRow(row)\n", 1044 | " with arcpy.da.UpdateCursor(datapoint_d2, [\"Date\",\"DateRange\"]) as cursor:\n", 1045 | " for row in cursor:\n", 1046 | " row[0] = d1_month\n", 1047 | " row[1] = \"Month\"\n", 1048 | " cursor.updateRow(row)\n", 1049 | " arcpy.management.Append(datapoint_d1, datapoint_all)\n", 1050 | " arcpy.management.Append(datapoint_d2, datapoint_all)\n", 1051 | " arcpy.management.Delete(datapoint_d1)\n", 1052 | " arcpy.management.Delete(datapoint_d2)\n", 1053 | " print(\"Finish: \"+ str(i)+\"/\"+str(len(chlalist)))" 1054 | ] 1055 | } 1056 | ], 1057 | "metadata": { 1058 | "kernelspec": { 1059 | "display_name": "Python 3", 1060 | "language": "python", 1061 | "name": "python3" 1062 | }, 1063 | "language_info": { 1064 | "codemirror_mode": { 1065 | "name": "ipython", 1066 | "version": 3 1067 | }, 1068 | "file_extension": ".py", 1069 | "mimetype": "text/x-python", 1070 | "name": "python", 1071 | "nbconvert_exporter": "python", 1072 | "pygments_lexer": "ipython3", 1073 | "version": "3.11.10" 1074 | }, 1075 | "orig_nbformat": 4 1076 | }, 1077 | "nbformat": 4, 1078 | "nbformat_minor": 2 1079 | } 1080 | -------------------------------------------------------------------------------- /Part2_ModelDevelopmentAndPrediction.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "nbformat": 4, 3 | "nbformat_minor": 0, 4 | "metadata": { 5 | "colab": { 6 | "provenance": [] 7 | }, 8 | "kernelspec": { 9 | "name": "python3", 10 | "display_name": "Python 3" 11 | }, 12 | "language_info": { 13 | "name": "python" 14 | } 15 | }, 16 | "cells": [ 17 | { 18 | "cell_type": "markdown", 19 | "source": [ 20 | "# **Estimation of water quality in Hong Kong using Sentinel-2 images in GEE and artificial neural network (ANN) in Google Colab environment**\n", 21 | "\n", 22 | "This is the second part of python codes used in the article. The codes are tested inside Google Colab environment using Hong Kong water as the study area." 23 | ], 24 | "metadata": { 25 | "id": "bl3AKmzrS9Ea" 26 | } 27 | }, 28 | { 29 | "cell_type": "markdown", 30 | "source": [ 31 | "**Import required libraries & Initialize Google Earth Engine session**" 32 | ], 33 | "metadata": { 34 | "id": "5S6-DoMKTCdf" 35 | } 36 | }, 37 | { 38 | "cell_type": "code", 39 | "metadata": { 40 | "id": "-YTf5EwSJAbR" 41 | }, 42 | "source": [ 43 | "import ee\n", 44 | "import numpy as np\n", 45 | "import pandas as pd\n", 46 | "from datetime import datetime\n", 47 | "from sklearn.metrics import r2_score, mean_squared_error, mean_absolute_error\n", 48 | "from sklearn.neural_network import MLPRegressor\n", 49 | "from sklearn.model_selection import GridSearchCV\n", 50 | "ee.Authenticate()\n", 51 | "ee.Initialize()" 52 | ], 53 | "execution_count": null, 54 | "outputs": [] 55 | }, 56 | { 57 | "cell_type": "markdown", 58 | "source": [ 59 | "# Step 1 - Match image data & in-situ station data\n", 60 | "\n", 61 | "Sun glint correction & water mask are performed to each image in this step" 62 | ], 63 | "metadata": { 64 | "id": "270h9bUtTImO" 65 | } 66 | }, 67 | { 68 | "cell_type": "code", 69 | "metadata": { 70 | "id": "ZZtgGOLYdssE" 71 | }, 72 | "source": [ 73 | "# Load image data & in-situ station data\n", 74 | "assetList = ee.data.getList({'id':\"users/khoyinivan/S2_Py6S_mask_m\"})\n", 75 | "url = 'https://raw.githubusercontent.com/ivanhykwong/Marine-Water-Quality-Time-Series-HK/main/MarineQuality_2015-2020.csv'\n", 76 | "station_list = ['TM2','TM3','TM4','TM5','TM6','TM7','TM8','SM1','SM2','SM3','SM4','SM5','SM6','SM7','SM9','SM10','SM11',\n", 77 | " 'SM12','SM13','SM17','SM18','SM19','SM20','PM1','PM2','PM3','PM4','PM6','PM7','PM8','PM9','PM11','JM3',\n", 78 | " 'JM4','DM1','DM2','DM3','DM4','DM5','NM1','NM2','NM3','NM5','NM6','NM8','MM1','MM2','MM3','MM4','MM5',\n", 79 | " 'MM6','MM7','MM8','MM13','MM14','MM15','MM16','MM17','MM19','WM1','WM2','WM3','WM4','EM1','EM2','EM3',\n", 80 | " 'VM1','VM2','VM4','VM5','VM6','VM7','VM8','VM12','VM14','VM15']\n", 81 | "df_url = pd.read_csv(url)\n", 82 | "df_url = df_url[df_url['Station'].isin(station_list)]\n", 83 | "print(assetList)\n", 84 | "print(len(assetList))\n", 85 | "aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]])\n", 86 | "df_data = pd.DataFrame()\n", 87 | "\n", 88 | "for i in range(len(assetList)):\n", 89 | " # Extract image date\n", 90 | " assetid = assetList[i]['id']\n", 91 | " print(assetid)\n", 92 | " d1 = ee.Image(assetid)\n", 93 | " d1_date = d1.date().format('yyyy-MM-dd')\n", 94 | " print(d1_date.getInfo())\n", 95 | "\n", 96 | " # sun glint correction by subtracting half of B11 from all bands\n", 97 | " # https://www.mdpi.com/2072-4292/1/4/697/htm\n", 98 | " # https://eatlas.org.au/data/uuid/2932dc63-9c9b-465f-80bf-09073aacaf1c\n", 99 | " swir_half = d1.select('B11').multiply(0.5)\n", 100 | " d1 = d1.subtract(swir_half)\n", 101 | "\n", 102 | " # water mask using MNDWI\n", 103 | " green = d1.select('B3')\n", 104 | " ndwi = d1.expression('(GREEN - SWIR) / (GREEN + SWIR)', {'GREEN': d1.select('B3'), 'SWIR': d1.select('B11')})\n", 105 | " mask = ndwi.gte(0.0).bitwiseAnd(green.gte(0.0)) # MNDWI >= 0\n", 106 | " d1 = d1.updateMask(mask)\n", 107 | " d1 = ee.Image(d1)\n", 108 | "\n", 109 | " # Find nearest date between image & station data\n", 110 | " df = df_url.copy()\n", 111 | " df['Dates'] = pd.to_datetime(df['Dates'], format='%Y-%m-%d')\n", 112 | " imagedate = datetime.strptime(d1_date.getInfo(), '%Y-%m-%d')\n", 113 | " df['Image_date'] = imagedate\n", 114 | " df['Date_compare'] = abs(df['Dates'] - imagedate)\n", 115 | " df = df.sort_values(by=['Date_compare'])\n", 116 | " df = df.drop_duplicates(subset=['Station'])\n", 117 | "\n", 118 | " if imagedate.year > 2020:\n", 119 | " continue\n", 120 | "\n", 121 | " # Match image & station data, extract values to dataframe\n", 122 | " pts = ee.FeatureCollection(\"users/khoyinivan/MonitoringStation_wgs84_76\")\n", 123 | " pt_list = pts.toList(pts.size())\n", 124 | " df[['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B11','B12']] = np.nan\n", 125 | " for pt in range(pt_list.length().getInfo()):\n", 126 | " pt1 = ee.Feature(pt_list.get(pt))\n", 127 | " pt1_buf = pt1.buffer(20)\n", 128 | " s2_dict = d1.reduceRegion(ee.Reducer.mean(), pt1_buf.geometry()).getInfo()\n", 129 | " n = pt1_buf.getInfo()['properties']['WaterStati']\n", 130 | " for b in ['B1','B2','B3','B4','B5','B6','B7','B8','B8A','B11','B12']:\n", 131 | " df.loc[df['Station'] == n, b] = s2_dict[b]\n", 132 | " df = df.dropna(subset = ['B2'])\n", 133 | " df['n'] = df.shape[0]\n", 134 | " print(df.shape)\n", 135 | "\n", 136 | " # Combine all image dates\n", 137 | " df_data = pd.concat([df_data, df])\n", 138 | "\n", 139 | "# Export tables\n", 140 | "df_data.to_csv('df_data.csv')" 141 | ], 142 | "execution_count": null, 143 | "outputs": [] 144 | }, 145 | { 146 | "cell_type": "markdown", 147 | "source": [ 148 | "This block is written for inputing csv file as the data, skip this block if the dataframe is already loaded" 149 | ], 150 | "metadata": { 151 | "id": "lCerveSYTTfy" 152 | } 153 | }, 154 | { 155 | "cell_type": "code", 156 | "metadata": { 157 | "id": "Iu7U3QGzs3S5" 158 | }, 159 | "source": [ 160 | "# for inputing csv file as the data, skip this block if the dataframe is already loaded\n", 161 | "df_data = pd.read_csv('df_data.csv')\n", 162 | "df_data['Image_date'] = pd.to_datetime(df_data['Image_date'], format='%Y-%m-%d')\n", 163 | "df_data['Date_compare'] = pd.to_timedelta(df_data['Date_compare'])\n", 164 | "df_data = df_data.drop(columns=['Unnamed: 0'])" 165 | ], 166 | "execution_count": null, 167 | "outputs": [] 168 | }, 169 | { 170 | "cell_type": "markdown", 171 | "source": [ 172 | "# Step 2 - Extract observations & create variables\n", 173 | "\n", 174 | "Extract observations with ≤1 day difference; remove outliers & compute band combinations" 175 | ], 176 | "metadata": { 177 | "id": "YUHga0c3T6QN" 178 | } 179 | }, 180 | { 181 | "cell_type": "code", 182 | "metadata": { 183 | "id": "-qM8M5UUWB_7" 184 | }, 185 | "source": [ 186 | "# Extract observations with ≤1 day difference\n", 187 | "\n", 188 | "max_day_diff = 1\n", 189 | "\n", 190 | "df = df_data[['Image_date', 'Dates', 'Date_compare', 'n',\n", 191 | " '5-day Biochemical Oxygen Demand mg_L', 'Ammonia Nitrogen mg_L', 'Chlorophyll-a ug_L', 'Dissolved Oxygen mg_L',\n", 192 | " 'E. coli cfu_100mL', 'Faecal Coliforms cfu_100mL', 'Nitrate Nitrogen mg_L', 'Nitrite Nitrogen mg_L',\n", 193 | " 'Orthophosphate Phosphorus mg_L', 'pH', 'Salinity psu', 'Secchi Disc Depth M', 'Silica mg_L',\n", 194 | " 'Suspended Solids mg_L', 'Temperature C', 'Total Inorganic Nitrogen mg_L', 'Total Kjeldahl Nitrogen mg_L',\n", 195 | " 'Total Nitrogen mg_L', 'Total Phosphorus mg_L', 'Turbidity NTU', 'Unionised Ammonia mg_L', 'Volatile Suspended Solids mg_L',\n", 196 | " 'B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8A', 'B11', 'B12']].copy()\n", 197 | "\n", 198 | "df = df.rename(columns={'Image_date': 'Image_Date', 'Dates': 'Station_Date',\n", 199 | " '5-day Biochemical Oxygen Demand mg_L': 'BOD', 'Ammonia Nitrogen mg_L': 'AmNi', 'Chlorophyll-a ug_L': 'Chla', 'Dissolved Oxygen mg_L': 'DO',\n", 200 | " 'E. coli cfu_100mL': 'Ecoli', 'Faecal Coliforms cfu_100mL': 'FC', 'Nitrate Nitrogen mg_L': 'NitraNi', 'Nitrite Nitrogen mg_L': 'NitriNi',\n", 201 | " 'Orthophosphate Phosphorus mg_L': 'OrPh', 'pH': 'pH', 'Salinity psu': 'Sal', 'Secchi Disc Depth M': 'SDD', 'Silica mg_L': 'Si',\n", 202 | " 'Suspended Solids mg_L': 'SS', 'Temperature C': 'Temp', 'Total Inorganic Nitrogen mg_L': 'TIN', 'Total Kjeldahl Nitrogen mg_L': 'TKN',\n", 203 | " 'Total Nitrogen mg_L': 'ToNi', 'Total Phosphorus mg_L': 'ToPh', 'Turbidity NTU': 'Tur', 'Unionised Ammonia mg_L': 'UnAm', 'Volatile Suspended Solids mg_L': 'VSS'})\n", 204 | "\n", 205 | "df['Date_compare'] = pd.to_numeric(df['Date_compare'].dt.days)\n", 206 | "df['Image_Year'] = pd.DatetimeIndex(df['Image_Date']).year\n", 207 | "\n", 208 | "df = df[(df['Date_compare'] <= max_day_diff) & (df['n'] >= 10)].copy().drop(columns=['Image_Date', 'Station_Date', 'Date_compare', 'n'])\n", 209 | "\n", 210 | "# Remove outlier using Tukey’s fences method\n", 211 | "\n", 212 | "Q1 = df.quantile(0.25)\n", 213 | "Q3 = df.quantile(0.75)\n", 214 | "IQR = Q3 - Q1\n", 215 | "df = df[~((df < (Q1 - 1.5 * IQR)) |(df > (Q3 + 1.5 * IQR)))[['B1', 'B2', 'B3', 'B4', 'B5', 'B6', 'B7', 'B8A']].any(axis=1)]\n", 216 | "\n", 217 | "# Replace 0 to min/2 (avoid inf errors during evaluation)\n", 218 | "\n", 219 | "wq = ['BOD', 'AmNi', 'Chla', 'DO', 'Ecoli', 'FC', 'NitraNi', 'NitriNi', 'OrPh', 'pH', 'Sal', 'SDD', 'Si', 'SS', 'Temp', 'TIN', 'TKN', 'ToNi', 'ToPh', 'Tur', 'UnAm', 'VSS']\n", 220 | "for a in wq:\n", 221 | " df[a]=df[a].replace(0, np.NaN)\n", 222 | " df[a]=df[a].replace(np.NaN,df[a].min()/2)\n", 223 | "df" 224 | ], 225 | "execution_count": null, 226 | "outputs": [] 227 | }, 228 | { 229 | "cell_type": "code", 230 | "metadata": { 231 | "id": "Sldxw9LW4fSD" 232 | }, 233 | "source": [ 234 | "# Create independent variables\n", 235 | "\n", 236 | "bands = ['B' + str(b) for b in [*range(1,8),'8A',11,12]]\n", 237 | "wl = [443,490,560,665,705,740,783,865,1610,2190] #wavelength in nm\n", 238 | "\n", 239 | "# Multiply 10\n", 240 | "for i in bands:\n", 241 | " df[i] = df[i]*10\n", 242 | "\n", 243 | "# Square and cubic\n", 244 | "for i in bands:\n", 245 | " df[i+'_2'] = df[i]**2\n", 246 | " df[i+'_3'] = df[i]**3\n", 247 | "\n", 248 | "# Two-band ratio\n", 249 | "for i in bands:\n", 250 | " for j in bands:\n", 251 | " if (i != j) & (i < j):\n", 252 | " df['NR_'+i+j] = ((df[i] - df[j]) / (df[i] + df[j])).clip(lower=-1.0, upper=1.0)\n", 253 | "\n", 254 | "# Three-band ratio\n", 255 | "for i in range(0,10):\n", 256 | " for j in range(0,10):\n", 257 | " for k in range(0,10):\n", 258 | " if (j == i+1) & (k == j+1):\n", 259 | " df['TB_'+bands[i]+bands[j]+bands[k]] = (((1/df[bands[i]]) - (1/df[bands[j]])) * df[bands[k]]).clip(lower=-1.0, upper=1.0)\n", 260 | "\n", 261 | "# Line height algorithm\n", 262 | "for i in range(0,10):\n", 263 | " for j in range(0,10):\n", 264 | " for k in range(0,10):\n", 265 | " if (j == i+1) & (k == j+1):\n", 266 | " df['LH_'+bands[i]+bands[j]+bands[k]] = df[bands[j]] - df[bands[i]] - ((df[bands[k]] - df[bands[i]]) * ((wl[j]-wl[i])/(wl[k]-wl[i])))\n", 267 | "\n", 268 | "df.to_csv('df_data_filter.csv')" 269 | ], 270 | "execution_count": null, 271 | "outputs": [] 272 | }, 273 | { 274 | "cell_type": "markdown", 275 | "source": [ 276 | "This block is written for inputing csv file as the data, skip this block if the dataframe is already loaded" 277 | ], 278 | "metadata": { 279 | "id": "ZIBT5XBwUVh5" 280 | } 281 | }, 282 | { 283 | "cell_type": "code", 284 | "metadata": { 285 | "id": "3MxIbH4UofAj" 286 | }, 287 | "source": [ 288 | "# for inputing csv file as the data, skip this block if the dataframe is already loaded\n", 289 | "df = pd.read_csv('df_data_filter.csv')\n", 290 | "df = df.drop(columns=['Unnamed: 0'])\n", 291 | "wq = ['BOD', 'AmNi', 'Chla', 'DO', 'Ecoli', 'FC', 'NitraNi', 'NitriNi', 'OrPh', 'pH', 'Sal', 'SDD', 'Si', 'SS', 'Temp', 'TIN', 'TKN', 'ToNi', 'ToPh', 'Tur', 'UnAm', 'VSS']" 292 | ], 293 | "execution_count": null, 294 | "outputs": [] 295 | }, 296 | { 297 | "cell_type": "markdown", 298 | "source": [ 299 | "# Step 3 - Train artificial neural network (ANN) models\n", 300 | "\n", 301 | "Include selection of optimal variables through cross-validations; Based on GridSearchCV and MLPRegressor function in Scikit-learn" 302 | ], 303 | "metadata": { 304 | "id": "7LkflG_dUMZQ" 305 | } 306 | }, 307 | { 308 | "cell_type": "code", 309 | "source": [ 310 | "# Define train and test datasets\n", 311 | "\n", 312 | "df_train = df[df['Image_Year'] <= 2019].drop(columns=['Image_Year']).copy()\n", 313 | "df_test = df[df['Image_Year'] == 2020].drop(columns=['Image_Year']).copy()\n", 314 | "X_train = df_train.drop(columns = wq)\n", 315 | "X_test = df_test.drop(columns = wq)" 316 | ], 317 | "metadata": { 318 | "id": "FHQz6nx-Bz_5" 319 | }, 320 | "execution_count": null, 321 | "outputs": [] 322 | }, 323 | { 324 | "cell_type": "code", 325 | "source": [ 326 | "# Define ANN function based on MLPRegressor\n", 327 | "# https://scikit-learn.org/stable/modules/neural_networks_supervised.html#neural-networks-supervised\n", 328 | "\n", 329 | "def ANN(df_train, X_train, wq_name, first, seed):\n", 330 | " print('seed:' + str(seed))\n", 331 | " print('var:' + str(first))\n", 332 | " print(wq_name)\n", 333 | " c = df_train.corr().copy()\n", 334 | " c = c[wq_name][22:113]\n", 335 | " c = abs(c).sort_values(ascending=False)[0:first]\n", 336 | " var = c.index.tolist()\n", 337 | "\n", 338 | " X_train2 = X_train[var]\n", 339 | " X_test2 = X_test[var]\n", 340 | " Y_train = df_train[wq_name]\n", 341 | " Y_test = df_test[wq_name]\n", 342 | "\n", 343 | " hidden_layer_sizes = [2,4,5,6,8,10,(2,2),(4,4),(5,5),(6,6),(8,8),(10,10)]\n", 344 | " tuned_parameters = {'hidden_layer_sizes': hidden_layer_sizes, 'alpha': 10.0 ** -np.arange(1, 7)}\n", 345 | " clf = GridSearchCV(MLPRegressor(random_state=seed,activation='logistic', solver='lbfgs', max_iter=10000, early_stopping=True),\n", 346 | " param_grid=tuned_parameters, scoring='r2', verbose=1, cv=5)\n", 347 | " clf.fit(X_train2, Y_train)\n", 348 | " nvar = len(var)\n", 349 | " best_layer = clf.best_estimator_.hidden_layer_sizes\n", 350 | " best_alpha = clf.best_estimator_.alpha\n", 351 | "\n", 352 | " regr = MLPRegressor(random_state=seed, hidden_layer_sizes=best_layer, alpha=best_alpha, activation='logistic', solver='lbfgs', max_iter=10000, early_stopping=True).fit(X_train2, Y_train)\n", 353 | "\n", 354 | " r_squared = regr.score(X_train2, Y_train)\n", 355 | " adjusted_r_squared = 1 - (1-r_squared)*(len(Y_train)-1)/(len(Y_train)-X_train2.shape[1]-1)\n", 356 | "\n", 357 | " # Evaluate model\n", 358 | " Y_train_pred = regr.predict(X_train2)\n", 359 | " Y_train_pred[Y_train_pred<0]=0.0\n", 360 | " corr_model = np.corrcoef(Y_train, Y_train_pred)[0, 1]\n", 361 | " rmse = mean_squared_error(Y_train, Y_train_pred, squared=False)\n", 362 | " mae = mean_absolute_error(Y_train, Y_train_pred)\n", 363 | " smape = np.mean(2*(np.abs(Y_train_pred - Y_train))/(np.abs(Y_train)+np.abs(Y_train_pred)))\n", 364 | " print(wq_name + ': ' + str(best_layer) + ', alpha: ' + str(best_alpha) + ', best_score: ' + str(clf.best_score_) + ', R2: ' + str(r_squared) + ', RMSE: ' + str(rmse))\n", 365 | "\n", 366 | " # Test model\n", 367 | " Y_test_pred = regr.predict(X_test2)\n", 368 | " Y_test_pred[Y_test_pred<0]=0.0\n", 369 | " r_squared_test = regr.score(X_test2, Y_test)\n", 370 | " corr_test = np.corrcoef(Y_test, Y_test_pred)[0, 1]\n", 371 | " rmse_test = mean_squared_error(Y_test, Y_test_pred, squared=False)\n", 372 | " mae_test = mean_absolute_error(Y_test, Y_test_pred)\n", 373 | " smape_test = np.mean(2*(np.abs(Y_test_pred - Y_test))/(np.abs(Y_test)+np.abs(Y_test_pred)))\n", 374 | " print(wq_name + ': r_squared_test: ' + str(r_squared_test) + ', rmse_test: ' + str(rmse_test) + ', smape_test: ' + str(smape_test))\n", 375 | "\n", 376 | " ANN_df = pd.DataFrame({'WQ': [wq_name], 'nvar':[nvar], 'var':[var], 'random_state':[seed],\n", 377 | " 'best_layer':[best_layer], 'best_alpha':[best_alpha], 'best_score':[clf.best_score_],\n", 378 | " 'r2': [r_squared], 'adjusted_r2': [adjusted_r_squared], 'corr_model': [corr_model],\n", 379 | " 'rmse': [rmse], 'mae': [mae], 'smape': [smape],\n", 380 | " 'r2_test': [r_squared_test], 'corr_test': [corr_test],\n", 381 | " 'rmse_test': [rmse_test], 'mae_test': [mae_test], 'smape_test': [smape_test]})\n", 382 | " return(ANN_df)" 383 | ], 384 | "metadata": { 385 | "id": "pDjp8meoSA5-" 386 | }, 387 | "execution_count": null, 388 | "outputs": [] 389 | }, 390 | { 391 | "cell_type": "code", 392 | "source": [ 393 | "# Apply ANN function to all water quality parameters\n", 394 | "# this process is very time-consuming, reduce the number of wq parameters, reduce the cross-validation variables, or use parallel sessions\n", 395 | "\n", 396 | "wq = ['BOD', 'AmNi', 'Chla', 'DO', 'Ecoli', 'FC', 'NitraNi', 'NitriNi', 'OrPh', 'pH', 'Sal', 'SDD', 'Si', 'SS', 'Temp', 'TIN', 'TKN', 'ToNi', 'ToPh', 'Tur', 'UnAm', 'VSS']\n", 397 | "ANN_result_list = [ANN(df_train, X_train, wq_name=value, first=f, seed=seed) for value in wq for f in range(4,13) for seed in range(1,11)]\n", 398 | "ANN_result = pd.concat(ANN_result_list)" 399 | ], 400 | "metadata": { 401 | "id": "BYXzlU0xcUog" 402 | }, 403 | "execution_count": null, 404 | "outputs": [] 405 | }, 406 | { 407 | "cell_type": "markdown", 408 | "source": [ 409 | "Example output\n", 410 | "![image.png]()" 411 | ], 412 | "metadata": { 413 | "id": "Yw2d3aB96lhy" 414 | } 415 | }, 416 | { 417 | "cell_type": "markdown", 418 | "source": [ 419 | "# Step 4 - Apply ANN models to all images\n", 420 | "\n", 421 | "Output images are exported to image collections in GEE" 422 | ], 423 | "metadata": { 424 | "id": "Mn33CDTqUhqE" 425 | } 426 | }, 427 | { 428 | "cell_type": "code", 429 | "source": [ 430 | "# Choose the optimal model according to the training results in previous step\n", 431 | "# Obtain model parameters (first, seed, best_layer and best_alpha) that were used to create the optimal model (see Example Output above)\n", 432 | "# Then obtain weights of each neuron (regr_int and regr_coef) from the model parameters\n", 433 | "\n", 434 | "# Chla\n", 435 | "wq_name='Chla'\n", 436 | "first=9\n", 437 | "seed=3\n", 438 | "best_layer=(6,6)\n", 439 | "best_alpha=0.1\n", 440 | "activation='logistic'\n", 441 | "c = df_train.corr().copy()\n", 442 | "c = c[wq_name][22:113]\n", 443 | "c = abs(c).sort_values(ascending=False)[0:first]\n", 444 | "var = c.index.tolist()\n", 445 | "X_train2 = X_train[var]\n", 446 | "X_test2 = X_test[var]\n", 447 | "Y_train = df_train[wq_name]\n", 448 | "Y_test = df_test[wq_name]\n", 449 | "\n", 450 | "regr = MLPRegressor(random_state=seed, hidden_layer_sizes=best_layer, alpha=best_alpha, activation=activation, solver='lbfgs', max_iter=10000, early_stopping=True).fit(X_train2, Y_train)\n", 451 | "regr_int = regr.intercepts_\n", 452 | "print(regr_int)\n", 453 | "regr_coef = regr.coefs_\n", 454 | "print(regr_coef)\n", 455 | "\n", 456 | "# SS\n", 457 | "wq_name='SS'\n", 458 | "first=11\n", 459 | "seed=1\n", 460 | "best_layer=5\n", 461 | "best_alpha=0.01\n", 462 | "activation='logistic'\n", 463 | "c = df_train.corr().copy()\n", 464 | "c = c[wq_name][22:113]\n", 465 | "c = abs(c).sort_values(ascending=False)[0:first]\n", 466 | "var = c.index.tolist()\n", 467 | "X_train2 = X_train[var]\n", 468 | "X_test2 = X_test[var]\n", 469 | "Y_train = df_train[wq_name]\n", 470 | "Y_test = df_test[wq_name]\n", 471 | "\n", 472 | "regr = MLPRegressor(random_state=seed, hidden_layer_sizes=best_layer, alpha=best_alpha, activation=activation, solver='lbfgs', max_iter=10000, early_stopping=True).fit(X_train2, Y_train)\n", 473 | "regr_int = regr.intercepts_\n", 474 | "print(regr_int)\n", 475 | "regr_coef = regr.coefs_\n", 476 | "print(regr_coef)\n", 477 | "\n", 478 | "# Tur\n", 479 | "wq_name='Tur'\n", 480 | "first=8\n", 481 | "seed=1\n", 482 | "best_layer=2\n", 483 | "best_alpha=0.1\n", 484 | "activation='logistic'\n", 485 | "c = df_train.corr().copy()\n", 486 | "c = c[wq_name][22:113]\n", 487 | "c = abs(c).sort_values(ascending=False)[0:first]\n", 488 | "var = c.index.tolist()\n", 489 | "X_train2 = X_train[var]\n", 490 | "X_test2 = X_test[var]\n", 491 | "Y_train = df_train[wq_name]\n", 492 | "Y_test = df_test[wq_name]\n", 493 | "\n", 494 | "regr = MLPRegressor(random_state=seed, hidden_layer_sizes=best_layer, alpha=best_alpha, activation=activation, solver='lbfgs', max_iter=10000, early_stopping=True).fit(X_train2, Y_train)\n", 495 | "regr_int = regr.intercepts_\n", 496 | "print(regr_int)\n", 497 | "regr_coef = regr.coefs_\n", 498 | "print(regr_coef)" 499 | ], 500 | "metadata": { 501 | "id": "V6BdGP8U0HRU" 502 | }, 503 | "execution_count": null, 504 | "outputs": [] 505 | }, 506 | { 507 | "cell_type": "code", 508 | "metadata": { 509 | "id": "-uU2nHFJvUck" 510 | }, 511 | "source": [ 512 | "# Apply ANN model to entire image collection to estimate Chla\n", 513 | "\n", 514 | "assetList = ee.data.getList({'id':\"users/khoyinivan/S2_Py6S_mask_m\"})\n", 515 | "print(assetList)\n", 516 | "print(len(assetList))\n", 517 | "aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]])\n", 518 | "\n", 519 | "for i in range(len(assetList)):\n", 520 | " assetid = assetList[i]['id']\n", 521 | " print(assetid)\n", 522 | " d1 = ee.Image(assetid)\n", 523 | " d1_date = d1.date().format('yyyy-MM-dd')\n", 524 | " print(d1_date.getInfo())\n", 525 | " imagedate = datetime.strptime(d1_date.getInfo(), '%Y-%m-%d')\n", 526 | "\n", 527 | " # sun glint correction & water mask\n", 528 | " swir_half = d1.select('B11').multiply(0.5)\n", 529 | " d1 = d1.subtract(swir_half)\n", 530 | " ndwi = d1.expression('(GREEN - NIR) / (GREEN + NIR)', {'GREEN': d1.select('B3'), 'NIR': d1.select('B8')})\n", 531 | " green = d1.select('B3')\n", 532 | " mask = ndwi.gte(0.0).bitwiseAnd(green.gte(0.0)) # NDWI >= 0\n", 533 | " d1 = d1.updateMask(mask)\n", 534 | " d1 = ee.Image(d1)\n", 535 | "\n", 536 | " # Chla\n", 537 | " name = ('Chla' + d1_date.getInfo()).replace('-','')\n", 538 | " regr_int = [([ 3.20462862, -4.79607408, 3.72196477, 4.01253827, 2.75393548, 0.16435048]),\n", 539 | " ([-8.74146412, 1.66061145, 0.35839572, -4.36972238, 2.15743342, -1.37527732]),\n", 540 | " ([-0.08353174])]\n", 541 | " # Var: ['TB_B2B3B4','LH_B3B4B5','LH_B1B2B3','LH_B7B8AB11','B2','NR_B2B3','B2_2','B8A_3','B1']\n", 542 | " # wl = [443,490,560,665,705,740,783,865,1610,2190]\n", 543 | " regr_coef = [([[-6.84163335e+00, 9.11557386e-06, 1.19411541e+00,1.21073081e+00, 1.17434541e+00, 8.92068972e+00],\n", 544 | " [ 1.06607504e-01, -1.74092425e-05, 2.85270757e-01, 3.47071654e+00, 6.96241402e+00, -3.52038843e+00],\n", 545 | " [ 4.29869179e+00, 1.02256279e-05, 2.65460603e+00, 1.74870671e+00, -3.90495929e+00, -4.54783495e-01],\n", 546 | " [ 1.17519063e+01, 4.75687333e-06, 6.04921374e-02, -5.21168117e+00, -2.80664876e+00, 1.13555655e+00],\n", 547 | " [-8.89242522e-01, -5.21662319e-08, -1.27341490e+00, -4.42972054e+00, -1.33156806e+01, -4.00857609e+00],\n", 548 | " [ 6.44798755e+00, -2.83891110e-05, -2.00038534e+00, 1.36985042e+01, -3.79913833e+00, 3.92121192e+00],\n", 549 | " [ 5.14241155e+00, -6.06040494e-06, -2.24315388e+00, -5.67994435e+00, -2.52787495e+00, -3.26207134e+00],\n", 550 | " [ 6.30920542e+00, 1.23064247e-05, -3.37502754e-02, 2.83332915e-01, 3.75643313e+00, -4.06294587e-01],\n", 551 | " [-8.35038133e+00, -3.68571701e-05, -5.79237965e+00, 1.48052989e+00, -9.32440766e+00, -3.83986207e+00]]),\n", 552 | " ([[-2.94657990e+00, -1.42551128e+01, -3.45316647e+00, -1.09401098e+01, -7.62867142e+00, -1.62820122e+00],\n", 553 | " [-6.15294982e-04, -2.50226568e-04, 2.28071787e-04, 6.44446416e-05, 1.58399756e-04, 1.03145638e-04],\n", 554 | " [ 2.12536696e-01, -6.21840984e+00, 2.45608299e+00, 2.26263141e+00, 1.26472416e+00, 2.88959971e-01],\n", 555 | " [ 5.46308778e-03, 6.95531564e+00, -1.77089020e+00, 1.00952176e+01, -2.91392188e+00, -3.57717559e+00],\n", 556 | " [ 8.38737781e+00, -6.48407937e-02, -1.47897332e+00, 1.24298506e+01, 9.11814110e+00, 3.07254104e+00],\n", 557 | " [ 6.86841847e+00, 7.39998611e+00, 2.06500733e+00, -5.27889971e+00, 5.32904476e+00, 3.87425016e+00]]),\n", 558 | " ([[13.20989264], [20.96326861], [ 7.10314308], [12.19847729], [-8.33632165], [ 8.97286496]])]\n", 559 | " B1 = d1.select('B1').multiply(10).rename('0')\n", 560 | " B2 = d1.select('B2').multiply(10).rename('0')\n", 561 | " B3 = d1.select('B3').multiply(10).rename('0')\n", 562 | " B4 = d1.select('B4').multiply(10).rename('0')\n", 563 | " B5 = d1.select('B5').multiply(10).rename('0')\n", 564 | " B6 = d1.select('B6').multiply(10).rename('0')\n", 565 | " B7 = d1.select('B7').multiply(10).rename('0')\n", 566 | " B8A = d1.select('B8A').multiply(10).rename('0')\n", 567 | " B11 = d1.select('B11').multiply(10).rename('0')\n", 568 | " B12 = d1.select('B12').multiply(10).rename('0')\n", 569 | "\n", 570 | " V1 = d1.expression('((1/B2)-(1/B3))*B4',{'B2': B2, 'B3': B3, 'B4': B4}).rename('0')\n", 571 | " V1 = V1.gte(-1.0).multiply(V1).subtract(V1.lt(-1.0))\n", 572 | " V1 = V1.lte(1.0).multiply(V1).add(V1.gt(1.0)).rename('0')\n", 573 | " V2 = d1.expression('B4-B3-(B5-B3)*((665-560)/(705-560))',{'B3': B3, 'B4': B4, 'B5': B5}).rename('0')\n", 574 | " V3 = d1.expression('B2-B1-(B3-B1)*((490-443)/(560-443))',{'B1':B1, 'B2': B2, 'B3': B3}).rename('0')\n", 575 | " V4 = d1.expression('B8A-B7-(B11-B7)*((865-783)/(1610-783))',{'B7': B7, 'B8A': B8A, 'B11': B11}).rename('0')\n", 576 | " V5 = B2\n", 577 | " V6 = d1.expression('(B2-B3)/(B2+B3)',{'B2': B2, 'B3': B3}).rename('0')\n", 578 | " V6 = V6.gte(-1.0).multiply(V6).subtract(V6.lt(-1.0))\n", 579 | " V6 = V6.lte(1.0).multiply(V6).add(V6.gt(1.0)).rename('0')\n", 580 | " V7 = B2.multiply(B2).rename('0')\n", 581 | " V8 = B8A.multiply(B8A).multiply(B8A).rename('0')\n", 582 | " V9 = B1\n", 583 | "\n", 584 | " N1 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9',{\n", 585 | " 'Int': regr_int[0][0], 'C1': regr_coef[0][0][0], 'C2': regr_coef[0][1][0], 'C3': regr_coef[0][2][0],\n", 586 | " 'C4': regr_coef[0][3][0], 'C5': regr_coef[0][4][0], 'C6': regr_coef[0][5][0],\n", 587 | " 'C7': regr_coef[0][6][0], 'C8': regr_coef[0][7][0], 'C9': regr_coef[0][8][0],\n", 588 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9\n", 589 | " }).multiply(-1.0).exp().add(1).pow(-1) #sigmoid\n", 590 | " # N1 = N1.gte(0.0).multiply(N1) #relu\n", 591 | "\n", 592 | " N2 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9',{\n", 593 | " 'Int': regr_int[0][1], 'C1': regr_coef[0][0][1], 'C2': regr_coef[0][1][1], 'C3': regr_coef[0][2][1],\n", 594 | " 'C4': regr_coef[0][3][1], 'C5': regr_coef[0][4][1], 'C6': regr_coef[0][5][1],\n", 595 | " 'C7': regr_coef[0][6][1], 'C8': regr_coef[0][7][1], 'C9': regr_coef[0][8][1],\n", 596 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9\n", 597 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 598 | "\n", 599 | " N3 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9',{\n", 600 | " 'Int': regr_int[0][2], 'C1': regr_coef[0][0][2], 'C2': regr_coef[0][1][2], 'C3': regr_coef[0][2][2],\n", 601 | " 'C4': regr_coef[0][3][2], 'C5': regr_coef[0][4][2], 'C6': regr_coef[0][5][2],\n", 602 | " 'C7': regr_coef[0][6][2], 'C8': regr_coef[0][7][2], 'C9': regr_coef[0][8][2],\n", 603 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9\n", 604 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 605 | "\n", 606 | " N4 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9',{\n", 607 | " 'Int': regr_int[0][3], 'C1': regr_coef[0][0][3], 'C2': regr_coef[0][1][3], 'C3': regr_coef[0][2][3],\n", 608 | " 'C4': regr_coef[0][3][3], 'C5': regr_coef[0][4][3], 'C6': regr_coef[0][5][3],\n", 609 | " 'C7': regr_coef[0][6][3], 'C8': regr_coef[0][7][3], 'C9': regr_coef[0][8][3],\n", 610 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9\n", 611 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 612 | "\n", 613 | " N5 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9',{\n", 614 | " 'Int': regr_int[0][4], 'C1': regr_coef[0][0][4], 'C2': regr_coef[0][1][4], 'C3': regr_coef[0][2][4],\n", 615 | " 'C4': regr_coef[0][3][4], 'C5': regr_coef[0][4][4], 'C6': regr_coef[0][5][4],\n", 616 | " 'C7': regr_coef[0][6][4], 'C8': regr_coef[0][7][4], 'C9': regr_coef[0][8][4],\n", 617 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9\n", 618 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 619 | "\n", 620 | " N6 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9',{\n", 621 | " 'Int': regr_int[0][5], 'C1': regr_coef[0][0][5], 'C2': regr_coef[0][1][5], 'C3': regr_coef[0][2][5],\n", 622 | " 'C4': regr_coef[0][3][5], 'C5': regr_coef[0][4][5], 'C6': regr_coef[0][5][5],\n", 623 | " 'C7': regr_coef[0][6][5], 'C8': regr_coef[0][7][5], 'C9': regr_coef[0][8][5],\n", 624 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9\n", 625 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 626 | "\n", 627 | " N21 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6',{\n", 628 | " 'Int': regr_int[1][0], 'C1': regr_coef[1][0][0], 'C2': regr_coef[1][1][0], 'C3': regr_coef[1][2][0],\n", 629 | " 'C4': regr_coef[1][3][0], 'C5': regr_coef[1][4][0], 'C6': regr_coef[1][5][0],\n", 630 | " 'V1': N1, 'V2': N2, 'V3': N3, 'V4': N4, 'V5': N5, 'V6': N6\n", 631 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 632 | "\n", 633 | " N22 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6',{\n", 634 | " 'Int': regr_int[1][1], 'C1': regr_coef[1][0][1], 'C2': regr_coef[1][1][1], 'C3': regr_coef[1][2][1],\n", 635 | " 'C4': regr_coef[1][3][1], 'C5': regr_coef[1][4][1], 'C6': regr_coef[1][5][1],\n", 636 | " 'V1': N1, 'V2': N2, 'V3': N3, 'V4': N4, 'V5': N5, 'V6': N6\n", 637 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 638 | "\n", 639 | " N23 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6',{\n", 640 | " 'Int': regr_int[1][2], 'C1': regr_coef[1][0][2], 'C2': regr_coef[1][1][2], 'C3': regr_coef[1][2][2],\n", 641 | " 'C4': regr_coef[1][3][2], 'C5': regr_coef[1][4][2], 'C6': regr_coef[1][5][2],\n", 642 | " 'V1': N1, 'V2': N2, 'V3': N3, 'V4': N4, 'V5': N5, 'V6': N6\n", 643 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 644 | "\n", 645 | " N24 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6',{\n", 646 | " 'Int': regr_int[1][3], 'C1': regr_coef[1][0][3], 'C2': regr_coef[1][1][3], 'C3': regr_coef[1][2][3],\n", 647 | " 'C4': regr_coef[1][3][3], 'C5': regr_coef[1][4][3], 'C6': regr_coef[1][5][3],\n", 648 | " 'V1': N1, 'V2': N2, 'V3': N3, 'V4': N4, 'V5': N5, 'V6': N6\n", 649 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 650 | "\n", 651 | " N25 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6',{\n", 652 | " 'Int': regr_int[1][4], 'C1': regr_coef[1][0][4], 'C2': regr_coef[1][1][4], 'C3': regr_coef[1][2][4],\n", 653 | " 'C4': regr_coef[1][3][4], 'C5': regr_coef[1][4][4], 'C6': regr_coef[1][5][4],\n", 654 | " 'V1': N1, 'V2': N2, 'V3': N3, 'V4': N4, 'V5': N5, 'V6': N6\n", 655 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 656 | "\n", 657 | " N26 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6',{\n", 658 | " 'Int': regr_int[1][5], 'C1': regr_coef[1][0][5], 'C2': regr_coef[1][1][5], 'C3': regr_coef[1][2][5],\n", 659 | " 'C4': regr_coef[1][3][5], 'C5': regr_coef[1][4][5], 'C6': regr_coef[1][5][5],\n", 660 | " 'V1': N1, 'V2': N2, 'V3': N3, 'V4': N4, 'V5': N5, 'V6': N6\n", 661 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 662 | "\n", 663 | " d1_predict = d1.expression('Int+C1*N21+C2*N22+C3*N23+C4*N24+C5*N25+C6*N26',{\n", 664 | " 'Int': regr_int[2][0], 'C1': regr_coef[2][0][0], 'C2': regr_coef[2][1][0], 'C3': regr_coef[2][2][0],\n", 665 | " 'C4': regr_coef[2][3][0], 'C5': regr_coef[2][4][0], 'C6': regr_coef[2][5][0],\n", 666 | " 'N21': N21, 'N22': N22, 'N23': N23, 'N24': N24, 'N25': N25, 'N26': N26\n", 667 | " })\n", 668 | "\n", 669 | " d1_predict = d1_predict.rename(name).set('system:time_start', ee.Date(d1_date).millis())\n", 670 | "\n", 671 | " task = ee.batch.Export.image.toAsset(image=d1_predict, description=name, assetId = 'users/khoyinivan/S2_Chla_ANN/' + name, scale = 10, region = aoi)\n", 672 | " task.start()" 673 | ], 674 | "execution_count": null, 675 | "outputs": [] 676 | }, 677 | { 678 | "cell_type": "code", 679 | "source": [ 680 | "# Apply ANN model to entire image collection to estimate Suspended Solids\n", 681 | "\n", 682 | "assetList = ee.data.getList({'id':\"users/khoyinivan/S2_Py6S_mask_m\"})\n", 683 | "print(assetList)\n", 684 | "print(len(assetList))\n", 685 | "aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]])\n", 686 | "\n", 687 | "for i in range(len(assetList)):\n", 688 | " assetid = assetList[i]['id']\n", 689 | " print(assetid)\n", 690 | " d1 = ee.Image(assetid)\n", 691 | " d1_date = d1.date().format('yyyy-MM-dd')\n", 692 | " print(d1_date.getInfo())\n", 693 | " imagedate = datetime.strptime(d1_date.getInfo(), '%Y-%m-%d')\n", 694 | "\n", 695 | " # sun glint correction & water mask\n", 696 | " swir_half = d1.select('B11').multiply(0.5)\n", 697 | " d1 = d1.subtract(swir_half)\n", 698 | " ndwi = d1.expression('(GREEN - NIR) / (GREEN + NIR)', {'GREEN': d1.select('B3'), 'NIR': d1.select('B8')})\n", 699 | " green = d1.select('B3')\n", 700 | " mask = ndwi.gte(0.0).bitwiseAnd(green.gte(0.0)) # NDWI >= 0\n", 701 | " d1 = d1.updateMask(mask)\n", 702 | " d1 = ee.Image(d1)\n", 703 | "\n", 704 | " # SS\n", 705 | " name = ('SS' + d1_date.getInfo()).replace('-','')\n", 706 | " regr_int = [[12.55921704, -13.73353476, -1.56213489, -15.96103343, -2.74424462],\n", 707 | " [5.20100899]]\n", 708 | " # Var: ['LH_B5B6B7', 'LH_B4B5B6', 'B5_3', 'B5_2', 'B4_2', 'B4_3', 'B4', 'B5', 'B3_2', 'B3_3', 'B3']\n", 709 | " # wl = [443,490,560,665,705,740,783,865,1610,2190]\n", 710 | " regr_coef = [[[0.00315948251, -32.9780628, -5.07213985, 7.38647208, -28.4785664],\n", 711 | " [-0.000983638194, 25.9594867, 9.85539378, -15.2927115, -13.2072681],\n", 712 | " [-0.00164435665, 36.9788436, 3.02589409, -2.5088956, -1.45870294],\n", 713 | " [-0.00471352417, 20.1816497, 3.80586779, -7.21854322, -1.17430456],\n", 714 | " [-0.00635952648, -2.15180342, -5.37556561, 5.24388819, 10.5224534],\n", 715 | " [-0.00342851065, -8.5595385, 2.34126206, 4.644868, 1.65118437],\n", 716 | " [-0.010480811, 5.77984149, 36.2489087, 3.7447754, 28.9145655],\n", 717 | " [-0.00881720748, -35.9948876, 12.793081, -15.1404911, 15.8537979],\n", 718 | " [-0.0146337387, 7.69747295, -17.8781654, 13.9578202, -9.13328681],\n", 719 | " [-0.0106495051, -13.5599014, -0.717967751, 15.7539373, -14.516977],\n", 720 | " [-0.0179451399, 18.4680285, -1.31164633, 9.56437974, -0.594566828]],\n", 721 | " [[0.00693088504], [60.2560856], [-22.1701438], [2.36782265], [23.713127]]]\n", 722 | " B1 = d1.select('B1').multiply(10).rename('0')\n", 723 | " B2 = d1.select('B2').multiply(10).rename('0')\n", 724 | " B3 = d1.select('B3').multiply(10).rename('0')\n", 725 | " B4 = d1.select('B4').multiply(10).rename('0')\n", 726 | " B5 = d1.select('B5').multiply(10).rename('0')\n", 727 | " B6 = d1.select('B6').multiply(10).rename('0')\n", 728 | " B7 = d1.select('B7').multiply(10).rename('0')\n", 729 | " B8A = d1.select('B8A').multiply(10).rename('0')\n", 730 | " B11 = d1.select('B11').multiply(10).rename('0')\n", 731 | " B12 = d1.select('B12').multiply(10).rename('0')\n", 732 | "\n", 733 | " V1 = d1.expression('B6-B5-(B7-B5)*((740-705)/(783-705))',{'B5': B5, 'B6': B6, 'B7': B7}).rename('0')\n", 734 | " V2 = d1.expression('B5-B4-(B6-B4)*((705-665)/(740-665))',{'B4': B4, 'B5': B5, 'B6': B6}).rename('0')\n", 735 | " V3 = B5.multiply(B5).multiply(B5).rename('0')\n", 736 | " V4 = B5.multiply(B5).rename('0')\n", 737 | " V5 = B4.multiply(B4).rename('0')\n", 738 | " V6 = B4.multiply(B4).multiply(B4).rename('0')\n", 739 | " V7 = B4\n", 740 | " V8 = B5\n", 741 | " V9 = B3.multiply(B3).rename('0')\n", 742 | " V10 = B3.multiply(B3).multiply(B3).rename('0')\n", 743 | " V11 = B3\n", 744 | "\n", 745 | " N1 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9+C10*V10+C11*V11',{\n", 746 | " 'Int': regr_int[0][0], 'C1': regr_coef[0][0][0], 'C2': regr_coef[0][1][0], 'C3': regr_coef[0][2][0],\n", 747 | " 'C4': regr_coef[0][3][0], 'C5': regr_coef[0][4][0], 'C6': regr_coef[0][5][0],\n", 748 | " 'C7': regr_coef[0][6][0], 'C8': regr_coef[0][7][0], 'C9': regr_coef[0][8][0],\n", 749 | " 'C10': regr_coef[0][9][0], 'C11': regr_coef[0][10][0],\n", 750 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9, 'V10': V10, 'V11': V11\n", 751 | " }).multiply(-1.0).exp().add(1).pow(-1) #sigmoid\n", 752 | "\n", 753 | " N2 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9+C10*V10+C11*V11',{\n", 754 | " 'Int': regr_int[0][1], 'C1': regr_coef[0][0][1], 'C2': regr_coef[0][1][1], 'C3': regr_coef[0][2][1],\n", 755 | " 'C4': regr_coef[0][3][1], 'C5': regr_coef[0][4][1], 'C6': regr_coef[0][5][1],\n", 756 | " 'C7': regr_coef[0][6][1], 'C8': regr_coef[0][7][1], 'C9': regr_coef[0][8][1],\n", 757 | " 'C10': regr_coef[0][9][1], 'C11': regr_coef[0][10][1],\n", 758 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9, 'V10': V10, 'V11': V11\n", 759 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 760 | "\n", 761 | " N3 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9+C10*V10+C11*V11',{\n", 762 | " 'Int': regr_int[0][2], 'C1': regr_coef[0][0][2], 'C2': regr_coef[0][1][2], 'C3': regr_coef[0][2][2],\n", 763 | " 'C4': regr_coef[0][3][2], 'C5': regr_coef[0][4][2], 'C6': regr_coef[0][5][2],\n", 764 | " 'C7': regr_coef[0][6][2], 'C8': regr_coef[0][7][2], 'C9': regr_coef[0][8][2],\n", 765 | " 'C10': regr_coef[0][9][2], 'C11': regr_coef[0][10][2],\n", 766 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9, 'V10': V10, 'V11': V11\n", 767 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 768 | "\n", 769 | " N4 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9+C10*V10+C11*V11',{\n", 770 | " 'Int': regr_int[0][3], 'C1': regr_coef[0][0][3], 'C2': regr_coef[0][1][3], 'C3': regr_coef[0][2][3],\n", 771 | " 'C4': regr_coef[0][3][3], 'C5': regr_coef[0][4][3], 'C6': regr_coef[0][5][3],\n", 772 | " 'C7': regr_coef[0][6][3], 'C8': regr_coef[0][7][3], 'C9': regr_coef[0][8][3],\n", 773 | " 'C10': regr_coef[0][9][3], 'C11': regr_coef[0][10][3],\n", 774 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9, 'V10': V10, 'V11': V11\n", 775 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 776 | "\n", 777 | " N5 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8+C9*V9+C10*V10+C11*V11',{\n", 778 | " 'Int': regr_int[0][4], 'C1': regr_coef[0][0][4], 'C2': regr_coef[0][1][4], 'C3': regr_coef[0][2][4],\n", 779 | " 'C4': regr_coef[0][3][4], 'C5': regr_coef[0][4][4], 'C6': regr_coef[0][5][4],\n", 780 | " 'C7': regr_coef[0][6][4], 'C8': regr_coef[0][7][4], 'C9': regr_coef[0][8][4],\n", 781 | " 'C10': regr_coef[0][9][4], 'C11': regr_coef[0][10][4],\n", 782 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8, 'V9': V9, 'V10': V10, 'V11': V11\n", 783 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 784 | "\n", 785 | " d1_predict = d1.expression('Int+C1*N1+C2*N2+C3*N3+C4*N4+C5*N5',{\n", 786 | " 'Int': regr_int[1][0], 'C1': regr_coef[1][0][0], 'C2': regr_coef[1][1][0], 'C3': regr_coef[1][2][0],\n", 787 | " 'C4': regr_coef[1][3][0], 'C5': regr_coef[1][4][0],\n", 788 | " 'N1': N1, 'N2': N2, 'N3': N3, 'N4': N4, 'N5': N5\n", 789 | " })\n", 790 | "\n", 791 | " d1_predict = d1_predict.rename(name).set('system:time_start', ee.Date(d1_date).millis())\n", 792 | "\n", 793 | " task = ee.batch.Export.image.toAsset(image=d1_predict, description=name, assetId = 'users/khoyinivan/S2_SS_ANN/' + name, scale = 10, region = aoi)\n", 794 | " task.start()" 795 | ], 796 | "metadata": { 797 | "id": "wXEJ7rPQjQ3a" 798 | }, 799 | "execution_count": null, 800 | "outputs": [] 801 | }, 802 | { 803 | "cell_type": "code", 804 | "source": [ 805 | "# Apply ANN model to entire image collection to estimate Turbidity\n", 806 | "\n", 807 | "assetList = ee.data.getList({'id':\"users/khoyinivan/S2_Py6S_mask_m\"})\n", 808 | "print(assetList)\n", 809 | "print(len(assetList))\n", 810 | "aoi = ee.Geometry.Polygon([[[113.800, 22.570],[113.800, 22.120],[114.514, 22.120],[114.514, 22.570]]])\n", 811 | "\n", 812 | "for i in range(len(assetList)):\n", 813 | " assetid = assetList[i]['id']\n", 814 | " print(assetid)\n", 815 | " d1 = ee.Image(assetid)\n", 816 | " d1_date = d1.date().format('yyyy-MM-dd')\n", 817 | " print(d1_date.getInfo())\n", 818 | " imagedate = datetime.strptime(d1_date.getInfo(), '%Y-%m-%d')\n", 819 | "\n", 820 | " # sun glint correction & water mask\n", 821 | " swir_half = d1.select('B11').multiply(0.5)\n", 822 | " d1 = d1.subtract(swir_half)\n", 823 | " ndwi = d1.expression('(GREEN - NIR) / (GREEN + NIR)', {'GREEN': d1.select('B3'), 'NIR': d1.select('B8')})\n", 824 | " green = d1.select('B3')\n", 825 | " mask = ndwi.gte(0.0).bitwiseAnd(green.gte(0.0)) # NDWI >= 0\n", 826 | " d1 = d1.updateMask(mask)\n", 827 | " d1 = ee.Image(d1)\n", 828 | "\n", 829 | " # Tur\n", 830 | " name = ('Tur' + d1_date.getInfo()).replace('-','')\n", 831 | " regr_int = [[1.03043919, -5.1108822], [26.60795985]]\n", 832 | " # Var: ['LH_B4B5B6', 'LH_B5B6B7', 'LH_B2B3B4', 'B3_3', 'B3_2', 'B5_3', 'B3', 'B5_2']\n", 833 | " # wl = [443,490,560,665,705,740,783,865,1610,2190]\n", 834 | " regr_coef = [[[-24.70594813, 14.37269736],\n", 835 | " [1.01369778, 0.71021701],\n", 836 | " [5.39600925, 7.8477396],\n", 837 | " [-5.40222666, -13.46987698],\n", 838 | " [-3.67650209, 1.77537138],\n", 839 | " [-1.75628292, 6.8203711],\n", 840 | " [5.18825675, 7.52539217],\n", 841 | " [10.51626892, 8.31789011]],\n", 842 | " [[-27.16748834], [16.79998435]]]\n", 843 | " B1 = d1.select('B1').multiply(10).rename('0')\n", 844 | " B2 = d1.select('B2').multiply(10).rename('0')\n", 845 | " B3 = d1.select('B3').multiply(10).rename('0')\n", 846 | " B4 = d1.select('B4').multiply(10).rename('0')\n", 847 | " B5 = d1.select('B5').multiply(10).rename('0')\n", 848 | " B6 = d1.select('B6').multiply(10).rename('0')\n", 849 | " B7 = d1.select('B7').multiply(10).rename('0')\n", 850 | " B8A = d1.select('B8A').multiply(10).rename('0')\n", 851 | " B11 = d1.select('B11').multiply(10).rename('0')\n", 852 | " B12 = d1.select('B12').multiply(10).rename('0')\n", 853 | "\n", 854 | " V1 = d1.expression('B5-B4-(B6-B4)*((705-665)/(740-665))',{'B4': B4, 'B5': B5, 'B6': B6}).rename('0')\n", 855 | " V2 = d1.expression('B6-B5-(B7-B5)*((740-705)/(783-705))',{'B5': B5, 'B6': B6, 'B7': B7}).rename('0')\n", 856 | " V3 = d1.expression('B3-B2-(B4-B2)*((560-490)/(665-490))',{'B2': B2, 'B3': B3, 'B4': B4}).rename('0')\n", 857 | " V4 = B3.multiply(B3).multiply(B3).rename('0')\n", 858 | " V5 = B3.multiply(B3).rename('0')\n", 859 | " V6 = B5.multiply(B5).multiply(B5).rename('0')\n", 860 | " V7 = B3\n", 861 | " V8 = B5.multiply(B5).rename('0')\n", 862 | "\n", 863 | " N1 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8',{\n", 864 | " 'Int': regr_int[0][0], 'C1': regr_coef[0][0][0], 'C2': regr_coef[0][1][0], 'C3': regr_coef[0][2][0],\n", 865 | " 'C4': regr_coef[0][3][0], 'C5': regr_coef[0][4][0], 'C6': regr_coef[0][5][0],\n", 866 | " 'C7': regr_coef[0][6][0], 'C8': regr_coef[0][7][0],\n", 867 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8\n", 868 | " }).multiply(-1.0).exp().add(1).pow(-1) #sigmoid\n", 869 | "\n", 870 | " N2 = d1.expression('Int+C1*V1+C2*V2+C3*V3+C4*V4+C5*V5+C6*V6+C7*V7+C8*V8',{\n", 871 | " 'Int': regr_int[0][1], 'C1': regr_coef[0][0][1], 'C2': regr_coef[0][1][1], 'C3': regr_coef[0][2][1],\n", 872 | " 'C4': regr_coef[0][3][1], 'C5': regr_coef[0][4][1], 'C6': regr_coef[0][5][1],\n", 873 | " 'C7': regr_coef[0][6][1], 'C8': regr_coef[0][7][1],\n", 874 | " 'V1': V1, 'V2': V2, 'V3': V3, 'V4': V4, 'V5': V5, 'V6': V6, 'V7': V7, 'V8': V8\n", 875 | " }).multiply(-1.0).exp().add(1).pow(-1)\n", 876 | "\n", 877 | " d1_predict = d1.expression('Int+C1*N1+C2*N2',{\n", 878 | " 'Int': regr_int[1][0], 'C1': regr_coef[1][0][0], 'C2': regr_coef[1][1][0],\n", 879 | " 'N1': N1, 'N2': N2\n", 880 | " })\n", 881 | "\n", 882 | " d1_predict = d1_predict.rename(name).set('system:time_start', ee.Date(d1_date).millis())\n", 883 | "\n", 884 | " task = ee.batch.Export.image.toAsset(image=d1_predict, description=name, assetId = 'users/khoyinivan/S2_Tur_ANN/' + name, scale = 10, region = aoi)\n", 885 | " task.start()" 886 | ], 887 | "metadata": { 888 | "id": "EHgPr0ROtlEq" 889 | }, 890 | "execution_count": null, 891 | "outputs": [] 892 | } 893 | ] 894 | } --------------------------------------------------------------------------------