├── .gitattributes
├── .gitignore
├── README.md
├── chapter1
├── BPDLX.m
├── chapter1_1.asv
├── chapter1_1.m
├── data1.mat
├── data2.mat
├── data3.mat
└── data4.mat
├── chapter10
├── Readme.txt
├── chapter10.m
├── class.mat
├── sim.mat
├── stdlib.m
└── test.m
├── chapter11
├── Readme.txt
├── city_location.mat
├── diff_u.m
├── energy.m
└── main.m
├── chapter12
├── Chapter_ClassifyRegressUsingLibsvm.m
├── heart_scale.mat
└── html
│ ├── Chapter_ClassifyRegressUsingLibsvm.html
│ ├── Chapter_ClassifyRegressUsingLibsvm.png
│ └── Chapter_ClassifyRegressUsingLibsvm_01.png
├── chapter13
├── Chapter_ModelDecryption.m
├── heart_scale.mat
└── html
│ └── Chapter_ModelDecryption.html
├── chapter14
├── chapter_WineClass.m
├── chapter_WineClass.mat
└── html
│ ├── chapter_WineClass.html
│ ├── chapter_WineClass.png
│ ├── chapter_WineClass_01.png
│ ├── chapter_WineClass_02.png
│ └── chapter_WineClass_03.png
├── chapter15
├── chapter_GA.m
├── chapter_GridSearch.m
├── chapter_PSO.m
├── html
│ ├── chapter_GA.html
│ ├── chapter_GA.png
│ ├── chapter_GA_01.png
│ ├── chapter_GA_02.png
│ ├── chapter_GA_03.png
│ ├── chapter_GA_04.png
│ ├── chapter_GridSearch.html
│ ├── chapter_GridSearch.png
│ ├── chapter_GridSearch_01.png
│ ├── chapter_GridSearch_02.png
│ ├── chapter_GridSearch_03.png
│ ├── chapter_GridSearch_04.png
│ ├── chapter_GridSearch_05.png
│ ├── chapter_GridSearch_06.png
│ ├── chapter_GridSearch_07.png
│ ├── chapter_PSO.html
│ ├── chapter_PSO.png
│ ├── chapter_PSO_01.png
│ ├── chapter_PSO_02.png
│ ├── chapter_PSO_03.png
│ └── chapter_PSO_04.png
└── wine.mat
├── chapter16
├── chapter_sh.m
├── chapter_sh.mat
└── html
│ ├── chapter_sh.html
│ ├── chapter_sh.png
│ ├── chapter_sh_01.png
│ ├── chapter_sh_02.png
│ ├── chapter_sh_03.png
│ ├── chapter_sh_04.png
│ ├── chapter_sh_05.png
│ ├── chapter_sh_06.png
│ ├── chapter_sh_07.png
│ ├── chapter_sh_08.png
│ └── chapter_sh_09.png
├── chapter17
├── FIG_D.m
├── chapter_FIGsh.m
├── chapter_sh.mat
└── html
│ ├── chapter_FIGsh.html
│ ├── chapter_FIGsh.png
│ ├── chapter_FIGsh_01.png
│ ├── chapter_FIGsh_02.png
│ ├── chapter_FIGsh_03.png
│ ├── chapter_FIGsh_04.png
│ ├── chapter_FIGsh_05.png
│ ├── chapter_FIGsh_06.png
│ ├── chapter_FIGsh_07.png
│ ├── chapter_FIGsh_08.png
│ ├── chapter_FIGsh_09.png
│ ├── chapter_FIGsh_10.png
│ ├── chapter_FIGsh_11.png
│ ├── chapter_FIGsh_12.png
│ ├── chapter_FIGsh_13.png
│ ├── chapter_FIGsh_14.png
│ ├── chapter_FIGsh_15.png
│ ├── chapter_FIGsh_16.png
│ └── chapter_FIGsh_17.png
├── chapter18
├── Chapter_ImSegmentUsingLibsvm.m
├── html
│ ├── Chapter_ImSegmentUsingLibsvm.html
│ ├── Chapter_ImSegmentUsingLibsvm.png
│ ├── Chapter_ImSegmentUsingLibsvm_01.png
│ ├── Chapter_ImSegmentUsingLibsvm_02.png
│ └── Chapter_ImSegmentUsingLibsvm_03.png
└── littleduck.jpg
├── chapter19
├── Chapter_CharacterRecognitionUsingLibsvm.m
├── html
│ ├── Chapter_CharacterRecognitionUsingLibsvm.html
│ ├── Chapter_CharacterRecognitionUsingLibsvm.png
│ └── Chapter_CharacterRecognitionUsingLibsvm_01.png
├── pic_preprocess.m
├── 手写数字测试样本图片
│ ├── num0_1.bmp
│ ├── num0_2.bmp
│ ├── num0_3.bmp
│ ├── num1_1.bmp
│ ├── num1_2.bmp
│ ├── num1_3.bmp
│ ├── num2_1.bmp
│ ├── num2_2.bmp
│ ├── num2_3.bmp
│ ├── num3_1.bmp
│ ├── num3_2.bmp
│ ├── num3_3.bmp
│ ├── num4_1.bmp
│ ├── num4_2.bmp
│ ├── num4_3.bmp
│ ├── num5_1.bmp
│ ├── num5_2.bmp
│ ├── num5_3.bmp
│ ├── num6_1.bmp
│ ├── num6_2.bmp
│ ├── num6_3.bmp
│ ├── num7_1.bmp
│ ├── num7_2.bmp
│ ├── num7_3.bmp
│ ├── num8_1.bmp
│ ├── num8_2.bmp
│ ├── num8_3.bmp
│ ├── num9_1.bmp
│ ├── num9_2.bmp
│ └── num9_3.bmp
└── 手写数字训练样本图片
│ ├── num0_1.jpg
│ ├── num0_2.jpg
│ ├── num0_3.jpg
│ ├── num0_4.jpg
│ ├── num0_5.jpg
│ ├── num1_1.jpg
│ ├── num1_2.jpg
│ ├── num1_3.jpg
│ ├── num1_4.jpg
│ ├── num1_5.jpg
│ ├── num2_1.jpg
│ ├── num2_2.jpg
│ ├── num2_3.jpg
│ ├── num2_4.jpg
│ ├── num2_5.jpg
│ ├── num3_1.jpg
│ ├── num3_2.jpg
│ ├── num3_3.jpg
│ ├── num3_4.jpg
│ ├── num3_5.jpg
│ ├── num4_1.jpg
│ ├── num4_2.jpg
│ ├── num4_3.jpg
│ ├── num4_4.jpg
│ ├── num4_5.jpg
│ ├── num5_1.jpg
│ ├── num5_2.jpg
│ ├── num5_3.jpg
│ ├── num5_4.jpg
│ ├── num5_5.jpg
│ ├── num6_1.jpg
│ ├── num6_2.jpg
│ ├── num6_3.jpg
│ ├── num6_4.jpg
│ ├── num6_5.jpg
│ ├── num7_1.jpg
│ ├── num7_2.jpg
│ ├── num7_3.jpg
│ ├── num7_4.jpg
│ ├── num7_5.jpg
│ ├── num8_1.jpg
│ ├── num8_2.jpg
│ ├── num8_3.jpg
│ ├── num8_4.jpg
│ ├── num8_5.jpg
│ ├── num9_1.jpg
│ ├── num9_2.jpg
│ ├── num9_3.jpg
│ ├── num9_4.jpg
│ └── num9_5.jpg
├── chapter2
├── BP_Hidden.m
├── chapter2_1.m
└── data.mat
├── chapter20
├── SVM_GUI_3.1[mcode]{by faruto}.rar
├── SVM_GUI_3.1[mcode]{by faruto}
│ ├── SVC.fig
│ ├── SVC.m
│ ├── SVM_GUI.fig
│ ├── SVM_GUI.m
│ ├── SVR.fig
│ ├── SVR.m
│ ├── readme.txt
│ └── testdata
│ │ ├── fisheriris_test.mat
│ │ ├── regress_test.mat
│ │ └── wine_test.mat
├── TutorialTest.m
├── html
│ ├── TutorialTest.html
│ ├── TutorialTest.png
│ ├── TutorialTest_01.png
│ ├── TutorialTest_02.png
│ ├── TutorialTest_03.png
│ ├── TutorialTest_04.png
│ ├── TutorialTest_05.png
│ ├── TutorialTest_06.png
│ ├── TutorialTest_07.png
│ ├── TutorialTest_08.png
│ ├── TutorialTest_09.png
│ ├── TutorialTest_10.png
│ ├── TutorialTest_11.png
│ ├── TutorialTest_12.png
│ ├── TutorialTest_13.png
│ └── TutorialTest_14.png
├── libsvm-3.1-[FarutoUltimate3.1Mcode].rar
└── libsvm-3.1-[FarutoUltimate3.1Mcode]
│ ├── COPYRIGHT
│ ├── FAQ.html
│ ├── Makefile
│ ├── Makefile.win
│ ├── README
│ ├── heart_scale
│ ├── java
│ ├── Makefile
│ ├── libsvm.jar
│ ├── libsvm
│ │ ├── svm.java
│ │ ├── svm.m4
│ │ ├── svm_model.java
│ │ ├── svm_node.java
│ │ ├── svm_parameter.java
│ │ ├── svm_print_interface.java
│ │ └── svm_problem.java
│ ├── svm_predict.java
│ ├── svm_scale.java
│ ├── svm_toy.java
│ ├── svm_train.java
│ └── test_applet.html
│ ├── matlab-implement[by faruto]
│ ├── ClassResult.m
│ ├── ClassResult_test.m
│ ├── Readme[by faruto]CN.txt
│ ├── Readme[by faruto]EN.txt
│ ├── SVC.m
│ ├── SVC_test.m
│ ├── SVMcgForClass.m
│ ├── SVMcgForRegress.m
│ ├── SVR.m
│ ├── SVR_test.m
│ ├── TutorialForFarutoUltimate3.1.pdf
│ ├── TutorialTest.m
│ ├── VF.m
│ ├── a_template_flow_usingSVM_class.m
│ ├── a_template_flow_usingSVM_regress.m
│ ├── gaSVMcgForClass.m
│ ├── gaSVMcgForRegress.m
│ ├── gaSVMcgpForRegress.m
│ ├── libsvm参数说明.txt
│ ├── myprivate
│ │ ├── gatbx[Sheffield]
│ │ │ ├── bs2rv.m
│ │ │ ├── contents.m
│ │ │ ├── crtbase.m
│ │ │ ├── crtbp.m
│ │ │ ├── crtrp.m
│ │ │ ├── migrate.m
│ │ │ ├── mpga.m
│ │ │ ├── mut.m
│ │ │ ├── mutate.m
│ │ │ ├── mutbga.m
│ │ │ ├── mytest
│ │ │ │ └── gaSVM.m
│ │ │ ├── ranking.m
│ │ │ ├── recdis.m
│ │ │ ├── recint.m
│ │ │ ├── reclin.m
│ │ │ ├── recmut.m
│ │ │ ├── recombin.m
│ │ │ ├── reins.m
│ │ │ ├── rep.m
│ │ │ ├── resplot.m
│ │ │ ├── rws.m
│ │ │ ├── scaling.m
│ │ │ ├── select.m
│ │ │ ├── sus.m
│ │ │ ├── xovdp.m
│ │ │ ├── xovdprs.m
│ │ │ ├── xovmp.m
│ │ │ ├── xovsh.m
│ │ │ ├── xovshrs.m
│ │ │ ├── xovsp.m
│ │ │ └── xovsprs.m
│ │ └── plotroc2009b.m
│ ├── pcaForSVM.m
│ ├── plotSVMroc.m
│ ├── plotSVMroc_test.m
│ ├── plotSVMroc_test2.m
│ ├── psoSVMcgForClass.m
│ ├── psoSVMcgForRegress.m
│ ├── psoSVMcgpForRegress.m
│ ├── scaleForSVM.m
│ ├── svmplot.m
│ ├── test_data
│ │ ├── adult.mat
│ │ ├── book.mat
│ │ ├── data1.mat
│ │ ├── image_seg.mat
│ │ ├── test1.mat
│ │ ├── testFor_image_seg.m
│ │ ├── wine_test.mat
│ │ └── x123.mat
│ ├── test_data2
│ │ ├── wine_test.mat
│ │ └── x123.mat
│ ├── testingFuntion_beta
│ │ ├── #gaSVMcgForClass.m
│ │ ├── #gaSVMcgForRegress.m
│ │ ├── #gaSVMcgpForRegress.m
│ │ ├── DCTforSVM.m
│ │ ├── SVMcgpForRegress.m
│ │ ├── fasticaForSVM.m
│ │ ├── testFor_DCT.m
│ │ └── test_for_ica_SVM.m
│ └── 更新说明2011.06.10.txt
│ ├── matlab
│ ├── Makefile
│ ├── README
│ ├── heart_scale.mat
│ ├── libsvmread.c
│ ├── libsvmread.mexw32
│ ├── libsvmwrite.c
│ ├── libsvmwrite.mexw32
│ ├── make.m
│ ├── svm.obj
│ ├── svm_model_matlab.c
│ ├── svm_model_matlab.h
│ ├── svm_model_matlab.obj
│ ├── svmpredict.c
│ ├── svmpredict.mexw32
│ ├── svmtrain.c
│ ├── svmtrain.c.bak
│ └── svmtrain.mexw32
│ ├── python
│ ├── Makefile
│ ├── README
│ ├── svm.py
│ └── svmutil.py
│ ├── svm-predict.c
│ ├── svm-scale.c
│ ├── svm-toy
│ ├── gtk
│ │ ├── Makefile
│ │ ├── callbacks.cpp
│ │ ├── callbacks.h
│ │ ├── interface.c
│ │ ├── interface.h
│ │ ├── main.c
│ │ └── svm-toy.glade
│ ├── qt
│ │ ├── Makefile
│ │ └── svm-toy.cpp
│ └── windows
│ │ └── svm-toy.cpp
│ ├── svm-train.c
│ ├── svm.cpp
│ ├── svm.cpp.bak
│ ├── svm.def
│ ├── svm.h
│ ├── tools
│ ├── README
│ ├── checkdata.py
│ ├── easy.py
│ ├── grid.py
│ └── subset.py
│ └── windows
│ ├── libsvm.dll
│ ├── libsvmread.mexw32
│ ├── libsvmread.mexw64
│ ├── libsvmwrite.mexw32
│ ├── libsvmwrite.mexw64
│ ├── svm-predict.exe
│ ├── svm-scale.exe
│ ├── svm-toy.exe
│ ├── svm-train.exe
│ ├── svmpredict.mexw32
│ ├── svmpredict.mexw64
│ ├── svmtrain.mexw32
│ └── svmtrain.mexw64
├── chapter21
├── chapter21.m
├── gene.mat
├── gene.txt
└── html
│ └── chapter21.html
├── chapter22
├── addon.m
├── chapter22.asv
├── chapter22.m
├── html
│ ├── addon.html
│ ├── addon.png
│ ├── addon_01.png
│ ├── chapter22.html
│ ├── chapter22.png
│ ├── chapter22_01.png
│ ├── chapter22_02.png
│ └── chapter22_03.png
├── p.mat
└── 运行说明.txt
├── chapter23
├── chapter23.m
├── data.mat
└── html
│ ├── chapter23.html
│ ├── chapter23.png
│ └── chapter23_01.png
├── chapter24
├── chapter24.m
├── data.mat
└── html
│ ├── chapter24.html
│ ├── chapter24.png
│ ├── chapter24_01.png
│ └── chapter24_02.png
├── chapter25
├── chapter25.m
└── html
│ └── chapter25.html
├── chapter26
├── Readme.txt
├── chapter26_bp.m
├── chapter26_lvq.m
├── crossvalidation_lvq.m
└── data.mat
├── chapter27
├── Images
│ ├── 10_1.bmp
│ ├── 10_2.bmp
│ ├── 10_3.bmp
│ ├── 10_4.bmp
│ ├── 10_5.bmp
│ ├── 1_1.bmp
│ ├── 1_2.bmp
│ ├── 1_3.bmp
│ ├── 1_4.bmp
│ ├── 1_5.bmp
│ ├── 2_1.bmp
│ ├── 2_2.bmp
│ ├── 2_3.bmp
│ ├── 2_4.bmp
│ ├── 2_5.bmp
│ ├── 3_1.bmp
│ ├── 3_2.bmp
│ ├── 3_3.bmp
│ ├── 3_4.bmp
│ ├── 3_5.bmp
│ ├── 4_1.bmp
│ ├── 4_2.bmp
│ ├── 4_3.bmp
│ ├── 4_4.bmp
│ ├── 4_5.bmp
│ ├── 5_1.bmp
│ ├── 5_2.bmp
│ ├── 5_3.bmp
│ ├── 5_4.bmp
│ ├── 5_5.bmp
│ ├── 6_1.bmp
│ ├── 6_2.bmp
│ ├── 6_3.bmp
│ ├── 6_4.bmp
│ ├── 6_5.bmp
│ ├── 7_1.bmp
│ ├── 7_2.bmp
│ ├── 7_3.bmp
│ ├── 7_4.bmp
│ ├── 7_5.bmp
│ ├── 8_1.bmp
│ ├── 8_2.bmp
│ ├── 8_3.bmp
│ ├── 8_4.bmp
│ ├── 8_5.bmp
│ ├── 9_1.bmp
│ ├── 9_2.bmp
│ ├── 9_3.bmp
│ ├── 9_4.bmp
│ └── 9_5.bmp
├── Readme.txt
├── chapter27_bp.m
├── chapter27_lvq.m
├── chapter_svm.m
├── crossvalind_lvq.m
├── feature_extraction.m
├── lvq1_train.m
├── lvq2_train.m
├── lvq_predict.m
└── test.m
├── chapter28
├── Readme.txt
├── data.mat
├── main_2009a.m
└── main_2012b.m
├── chapter29
├── classification
│ ├── Readme.txt
│ ├── data.mat
│ ├── elmpredict.m
│ ├── elmtrain.m
│ └── main.m
└── regression
│ ├── Readme.txt
│ ├── data.mat
│ ├── elmpredict.m
│ ├── elmtrain.m
│ └── main.m
├── chapter3
├── Code.m
├── Cross.m
├── Decode.m
├── Genetic.m
├── Mutation.m
├── PSO.m
├── Select.m
├── data.m
├── data.mat
├── fun.m
└── test.m
├── chapter30
├── RF_MexStandalone-v0.02.zip
├── RF_MexStandalone-v0.02
│ └── randomforest-matlab
│ │ ├── RF_Class_C
│ │ ├── Compile_Check
│ │ ├── Makefile
│ │ ├── Makefile.windows
│ │ ├── README.txt
│ │ ├── Version_History.txt
│ │ ├── classRF_predict.m
│ │ ├── classRF_train.m
│ │ ├── compile_linux.m
│ │ ├── compile_windows.m
│ │ ├── data
│ │ │ ├── X_twonorm.txt
│ │ │ ├── Y_twonorm.txt
│ │ │ └── twonorm.mat
│ │ ├── mexClassRF_predict.mexw32
│ │ ├── mexClassRF_train.mexw32
│ │ ├── precompiled_rfsub
│ │ │ ├── win32
│ │ │ │ └── rfsub.o
│ │ │ └── win64
│ │ │ │ └── rfsub.o
│ │ ├── rfsub.o
│ │ ├── src
│ │ │ ├── classRF.cpp
│ │ │ ├── classTree.cpp
│ │ │ ├── cokus.cpp
│ │ │ ├── cokus_test.cpp
│ │ │ ├── mex_ClassificationRF_predict.cpp
│ │ │ ├── mex_ClassificationRF_train.cpp
│ │ │ ├── qsort.c
│ │ │ ├── rf.h
│ │ │ ├── rfsub.f
│ │ │ ├── rfutils.cpp
│ │ │ └── twonorm_C_wrapper.cpp
│ │ ├── test_ClassRF_extensively.m
│ │ ├── tutorial_ClassRF.m
│ │ └── twonorm_C_devcpp.dev
│ │ └── RF_Reg_C
│ │ ├── Compile_Check_kcachegrind
│ │ ├── Compile_Check_memcheck
│ │ ├── Makefile
│ │ ├── README.txt
│ │ ├── Version_History.txt
│ │ ├── compile_linux.m
│ │ ├── compile_windows.m
│ │ ├── data
│ │ ├── X_diabetes.txt
│ │ ├── Y_diabetes.txt
│ │ └── diabetes.mat
│ │ ├── diabetes_C_devc.dev
│ │ ├── mexRF_predict.mexw32
│ │ ├── mexRF_train.mexw32
│ │ ├── regRF_predict.m
│ │ ├── regRF_train.m
│ │ ├── src
│ │ ├── cokus.cpp
│ │ ├── cokus_test.cpp
│ │ ├── diabetes_C_wrapper.cpp
│ │ ├── mex_regressionRF_predict.cpp
│ │ ├── mex_regressionRF_train.cpp
│ │ ├── qsort.c
│ │ ├── reg_RF.cpp
│ │ └── reg_RF.h
│ │ ├── test_RegRF_extensively.m
│ │ └── tutorial_RegRF.m
├── Readme.txt
├── data.mat
└── main.m
├── chapter31
├── Readme.txt
├── data.mat
├── initpop_generate.m
├── ismature.m
├── main.m
└── subpop_generate.m
├── chapter32
├── d_mymorlet.m
├── mymorlet.m
├── traffic_flux.mat
└── wavenn.m
├── chapter33
├── FuzzyNet.m
├── data1.mat
└── data2.mat
├── chapter34
├── FCMGRNN.m
└── netattack.mat
├── chapter35
├── PSO.m
├── PSOMutation.m
└── fun.m
├── chapter36
├── Readme.txt
├── data.mat
├── de_code.m
├── fitness.m
├── gabpEval.m
├── gadecod.m
├── gaot
│ ├── Contents.m
│ ├── EER.m
│ ├── README
│ ├── adjswapMutation.m
│ ├── arithXover.m
│ ├── b2f.m
│ ├── binaryExample.m
│ ├── binaryMutation.m
│ ├── boundaryMutation.m
│ ├── calcbits.m
│ ├── coranaEval.m
│ ├── coranaFeval.m
│ ├── coranaMin.m
│ ├── cyclicXover.m
│ ├── delta.m
│ ├── dists.m
│ ├── enhancederXover.m
│ ├── erXover.m
│ ├── f2b.m
│ ├── floatExample.m
│ ├── floatGradExample.m
│ ├── ga.m
│ ├── gaMichEval.m
│ ├── gaZBGrad.m
│ ├── gaZBGradEval.m
│ ├── gademo.m
│ ├── gademo1.m
│ ├── gademo1eval1.m
│ ├── gademo2.m
│ ├── gademo3.m
│ ├── gaotv5.ps
│ ├── heuristicXover.m
│ ├── initializega.m
│ ├── initializeoga.m
│ ├── inversionMutation.m
│ ├── linerorderXover.m
│ ├── maxGenTerm.m
│ ├── multiNonUnifMutation.m
│ ├── nonUnifMutation.m
│ ├── normGeomSelect.m
│ ├── optMaxGenTerm.m
│ ├── orderBasedExample.m
│ ├── orderbasedXover.m
│ ├── parse.m
│ ├── partmapXover.m
│ ├── plotCorana.m
│ ├── roulette.m
│ ├── shiftMutation.m
│ ├── simpleXover.m
│ ├── singleptXover.m
│ ├── startup.m
│ ├── swapMutation.m
│ ├── threeswapMutation.m
│ ├── tournSelect.m
│ ├── tspEval.m
│ ├── unifMutation.m
│ └── uniformXover.m
└── main.m
├── chapter37
├── Greynet.m
└── data.mat
├── chapter38
├── Kohonen.m
├── SKohonen.m
└── data.mat
├── chapter39
└── 说明文件.txt
├── chapter4
├── BP.m
├── Code.m
├── Cross.m
├── Genetic.m
├── Mutation.m
├── Select.m
├── data.m
├── data.mat
├── data1.mat
├── fun.m
├── net.mat
└── test.m
├── chapter40
├── chapter40.m
└── html
│ ├── chapter40.html
│ ├── chapter40.png
│ ├── chapter40_01.png
│ ├── chapter40_02.png
│ ├── chapter40_03.png
│ ├── chapter40_04.png
│ ├── chapter40_05.png
│ ├── chapter40_06.png
│ ├── chapter40_07.png
│ ├── chapter40_08.png
│ └── chapter40_09.png
├── chapter41
├── chapter41.m
└── html
│ ├── chapter41.html
│ ├── chapter41.png
│ ├── chapter41_01.png
│ ├── chapter41_02.png
│ ├── chapter41_03.png
│ ├── chapter41_04.png
│ ├── chapter41_05.png
│ ├── chapter41_06.png
│ └── chapter41_07.png
├── chapter42
├── chapter42.asv
├── chapter42_1.m
├── chapter42_2.asv
├── chapter42_2.m
├── html
│ ├── chapter42_2.html
│ ├── chapter42_2.png
│ ├── chapter42_2_01.png
│ ├── chapter42_2_02.png
│ ├── chapter42_2_03.png
│ ├── chapter42_2_04.png
│ ├── chapter42_2_05.png
│ ├── chapter42_2_06.png
│ ├── chapter42_2_07.png
│ └── chapter42_2_08.png
└── 程序说明.txt
├── chapter43
└── chapter43.m
├── chapter5
├── Bp_Ada_Fore.m
├── Bp_Ada_Sort.m
├── data.mat
└── data1.mat
├── chapter6
├── MPID.m
├── MPIDCS.m
├── MPIDDLX.m
├── draw.m
├── fun.m
└── pso.m
├── chapter7
├── chapter7_1.m
├── chapter7_2.m
├── html
│ ├── chapter7_1.html
│ ├── chapter7_1.png
│ ├── chapter7_1_01.png
│ ├── chapter7_2.html
│ ├── chapter7_2.png
│ ├── chapter7_2_01.png
│ └── chapter7_2_02.png
└── 运行提示.txt
├── chapter8
├── best.mat
├── chapter8_1.asv
├── chapter8_1.m
├── chapter8_2.m
├── data.mat
├── html
│ ├── chapter8_1.html
│ └── chapter8_2.html
└── 运行提示.txt
└── chapter9
├── Readme.txt
├── chapter9.m
├── data0.mat
├── data1.mat
├── data1_noisy.mat
├── data2.mat
├── data2_noisy.mat
├── data3.mat
├── data4.mat
├── data5.mat
├── data6.mat
├── data7.mat
├── data8.mat
├── data9.mat
└── waiji.m
/.gitattributes:
--------------------------------------------------------------------------------
1 | # Auto detect text files and perform LF normalization
2 | * text=auto
3 |
4 | # Custom for Visual Studio
5 | *.cs diff=csharp
6 |
7 | # Standard to msysgit
8 | *.doc diff=astextplain
9 | *.DOC diff=astextplain
10 | *.docx diff=astextplain
11 | *.DOCX diff=astextplain
12 | *.dot diff=astextplain
13 | *.DOT diff=astextplain
14 | *.pdf diff=astextplain
15 | *.PDF diff=astextplain
16 | *.rtf diff=astextplain
17 | *.RTF diff=astextplain
18 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Windows image file caches
2 | Thumbs.db
3 | ehthumbs.db
4 |
5 | # Folder config file
6 | Desktop.ini
7 |
8 | # Recycle Bin used on file shares
9 | $RECYCLE.BIN/
10 |
11 | # Windows Installer files
12 | *.cab
13 | *.msi
14 | *.msm
15 | *.msp
16 |
17 | # Windows shortcuts
18 | *.lnk
19 |
20 | # =========================
21 | # Operating System Files
22 | # =========================
23 |
24 | # OSX
25 | # =========================
26 |
27 | .DS_Store
28 | .AppleDouble
29 | .LSOverride
30 |
31 | # Thumbnails
32 | ._*
33 |
34 | # Files that might appear in the root of a volume
35 | .DocumentRevisions-V100
36 | .fseventsd
37 | .Spotlight-V100
38 | .TemporaryItems
39 | .Trashes
40 | .VolumeIcon.icns
41 |
42 | # Directories potentially created on remote AFP share
43 | .AppleDB
44 | .AppleDesktop
45 | Network Trash Folder
46 | Temporary Items
47 | .apdisk
48 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # MATLAB-neural-network-43-case-studies-Code
2 | matlab神经网络43个案例分析
3 |
--------------------------------------------------------------------------------
/chapter1/BPDLX.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/BPDLX.m
--------------------------------------------------------------------------------
/chapter1/chapter1_1.asv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/chapter1_1.asv
--------------------------------------------------------------------------------
/chapter1/chapter1_1.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/chapter1_1.m
--------------------------------------------------------------------------------
/chapter1/data1.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/data1.mat
--------------------------------------------------------------------------------
/chapter1/data2.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/data2.mat
--------------------------------------------------------------------------------
/chapter1/data3.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/data3.mat
--------------------------------------------------------------------------------
/chapter1/data4.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter1/data4.mat
--------------------------------------------------------------------------------
/chapter10/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter10/Readme.txt
--------------------------------------------------------------------------------
/chapter10/chapter10.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter10/chapter10.m
--------------------------------------------------------------------------------
/chapter10/class.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter10/class.mat
--------------------------------------------------------------------------------
/chapter10/sim.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter10/sim.mat
--------------------------------------------------------------------------------
/chapter10/stdlib.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter10/stdlib.m
--------------------------------------------------------------------------------
/chapter10/test.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter10/test.m
--------------------------------------------------------------------------------
/chapter11/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter11/Readme.txt
--------------------------------------------------------------------------------
/chapter11/city_location.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter11/city_location.mat
--------------------------------------------------------------------------------
/chapter11/diff_u.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter11/diff_u.m
--------------------------------------------------------------------------------
/chapter11/energy.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter11/energy.m
--------------------------------------------------------------------------------
/chapter11/main.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter11/main.m
--------------------------------------------------------------------------------
/chapter12/Chapter_ClassifyRegressUsingLibsvm.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter12/Chapter_ClassifyRegressUsingLibsvm.m
--------------------------------------------------------------------------------
/chapter12/heart_scale.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter12/heart_scale.mat
--------------------------------------------------------------------------------
/chapter12/html/Chapter_ClassifyRegressUsingLibsvm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter12/html/Chapter_ClassifyRegressUsingLibsvm.png
--------------------------------------------------------------------------------
/chapter12/html/Chapter_ClassifyRegressUsingLibsvm_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter12/html/Chapter_ClassifyRegressUsingLibsvm_01.png
--------------------------------------------------------------------------------
/chapter13/Chapter_ModelDecryption.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter13/Chapter_ModelDecryption.m
--------------------------------------------------------------------------------
/chapter13/heart_scale.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter13/heart_scale.mat
--------------------------------------------------------------------------------
/chapter14/chapter_WineClass.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter14/chapter_WineClass.m
--------------------------------------------------------------------------------
/chapter14/chapter_WineClass.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter14/chapter_WineClass.mat
--------------------------------------------------------------------------------
/chapter14/html/chapter_WineClass.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter14/html/chapter_WineClass.png
--------------------------------------------------------------------------------
/chapter14/html/chapter_WineClass_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter14/html/chapter_WineClass_01.png
--------------------------------------------------------------------------------
/chapter14/html/chapter_WineClass_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter14/html/chapter_WineClass_02.png
--------------------------------------------------------------------------------
/chapter14/html/chapter_WineClass_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter14/html/chapter_WineClass_03.png
--------------------------------------------------------------------------------
/chapter15/chapter_GA.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/chapter_GA.m
--------------------------------------------------------------------------------
/chapter15/chapter_GridSearch.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/chapter_GridSearch.m
--------------------------------------------------------------------------------
/chapter15/chapter_PSO.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/chapter_PSO.m
--------------------------------------------------------------------------------
/chapter15/html/chapter_GA.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GA.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GA_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GA_01.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GA_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GA_02.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GA_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GA_03.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GA_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GA_04.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_01.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_02.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_03.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_04.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_05.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_05.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_06.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_06.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_GridSearch_07.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_GridSearch_07.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_PSO.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_PSO.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_PSO_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_PSO_01.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_PSO_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_PSO_02.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_PSO_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_PSO_03.png
--------------------------------------------------------------------------------
/chapter15/html/chapter_PSO_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/html/chapter_PSO_04.png
--------------------------------------------------------------------------------
/chapter15/wine.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter15/wine.mat
--------------------------------------------------------------------------------
/chapter16/chapter_sh.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/chapter_sh.m
--------------------------------------------------------------------------------
/chapter16/chapter_sh.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/chapter_sh.mat
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_01.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_02.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_03.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_04.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_05.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_05.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_06.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_06.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_07.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_07.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_08.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_08.png
--------------------------------------------------------------------------------
/chapter16/html/chapter_sh_09.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter16/html/chapter_sh_09.png
--------------------------------------------------------------------------------
/chapter17/FIG_D.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/FIG_D.m
--------------------------------------------------------------------------------
/chapter17/chapter_FIGsh.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/chapter_FIGsh.m
--------------------------------------------------------------------------------
/chapter17/chapter_sh.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/chapter_sh.mat
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_01.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_02.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_03.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_04.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_05.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_05.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_06.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_06.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_07.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_07.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_08.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_08.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_09.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_09.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_10.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_11.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_12.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_13.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_14.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_15.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_15.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_16.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_16.png
--------------------------------------------------------------------------------
/chapter17/html/chapter_FIGsh_17.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter17/html/chapter_FIGsh_17.png
--------------------------------------------------------------------------------
/chapter18/Chapter_ImSegmentUsingLibsvm.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter18/Chapter_ImSegmentUsingLibsvm.m
--------------------------------------------------------------------------------
/chapter18/html/Chapter_ImSegmentUsingLibsvm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter18/html/Chapter_ImSegmentUsingLibsvm.png
--------------------------------------------------------------------------------
/chapter18/html/Chapter_ImSegmentUsingLibsvm_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter18/html/Chapter_ImSegmentUsingLibsvm_01.png
--------------------------------------------------------------------------------
/chapter18/html/Chapter_ImSegmentUsingLibsvm_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter18/html/Chapter_ImSegmentUsingLibsvm_02.png
--------------------------------------------------------------------------------
/chapter18/html/Chapter_ImSegmentUsingLibsvm_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter18/html/Chapter_ImSegmentUsingLibsvm_03.png
--------------------------------------------------------------------------------
/chapter18/littleduck.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter18/littleduck.jpg
--------------------------------------------------------------------------------
/chapter19/Chapter_CharacterRecognitionUsingLibsvm.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/Chapter_CharacterRecognitionUsingLibsvm.m
--------------------------------------------------------------------------------
/chapter19/html/Chapter_CharacterRecognitionUsingLibsvm.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/html/Chapter_CharacterRecognitionUsingLibsvm.png
--------------------------------------------------------------------------------
/chapter19/html/Chapter_CharacterRecognitionUsingLibsvm_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/html/Chapter_CharacterRecognitionUsingLibsvm_01.png
--------------------------------------------------------------------------------
/chapter19/pic_preprocess.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/pic_preprocess.m
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num0_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num0_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num0_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num0_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num0_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num0_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num1_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num1_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num1_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num1_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num1_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num1_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num2_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num2_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num2_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num2_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num2_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num2_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num3_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num3_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num3_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num3_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num3_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num3_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num4_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num4_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num4_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num4_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num4_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num4_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num5_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num5_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num5_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num5_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num5_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num5_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num6_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num6_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num6_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num6_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num6_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num6_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num7_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num7_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num7_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num7_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num7_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num7_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num8_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num8_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num8_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num8_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num8_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num8_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num9_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num9_1.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num9_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num9_2.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字测试样本图片/num9_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字测试样本图片/num9_3.bmp
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num0_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num0_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num0_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num0_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num0_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num0_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num0_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num0_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num0_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num0_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num1_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num1_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num1_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num1_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num1_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num1_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num1_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num1_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num1_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num1_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num2_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num2_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num2_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num2_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num2_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num2_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num2_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num2_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num2_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num2_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num3_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num3_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num3_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num3_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num3_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num3_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num3_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num3_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num3_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num3_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num4_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num4_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num4_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num4_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num4_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num4_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num4_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num4_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num4_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num4_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num5_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num5_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num5_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num5_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num5_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num5_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num5_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num5_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num5_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num5_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num6_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num6_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num6_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num6_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num6_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num6_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num6_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num6_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num6_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num6_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num7_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num7_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num7_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num7_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num7_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num7_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num7_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num7_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num7_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num7_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num8_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num8_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num8_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num8_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num8_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num8_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num8_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num8_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num8_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num8_5.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num9_1.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num9_1.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num9_2.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num9_2.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num9_3.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num9_3.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num9_4.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num9_4.jpg
--------------------------------------------------------------------------------
/chapter19/手写数字训练样本图片/num9_5.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter19/手写数字训练样本图片/num9_5.jpg
--------------------------------------------------------------------------------
/chapter2/BP_Hidden.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter2/BP_Hidden.m
--------------------------------------------------------------------------------
/chapter2/chapter2_1.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter2/chapter2_1.m
--------------------------------------------------------------------------------
/chapter2/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter2/data.mat
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}.rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}.rar
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVC.fig:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVC.fig
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVC.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVC.m
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVM_GUI.fig:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVM_GUI.fig
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVR.fig:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVR.fig
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVR.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/SVR.m
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/readme.txt
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/testdata/fisheriris_test.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/testdata/fisheriris_test.mat
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/testdata/regress_test.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/testdata/regress_test.mat
--------------------------------------------------------------------------------
/chapter20/SVM_GUI_3.1[mcode]{by faruto}/testdata/wine_test.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/SVM_GUI_3.1[mcode]{by faruto}/testdata/wine_test.mat
--------------------------------------------------------------------------------
/chapter20/TutorialTest.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/TutorialTest.m
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_01.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_02.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_03.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_04.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_04.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_05.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_05.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_06.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_06.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_07.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_07.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_08.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_08.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_09.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_09.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_10.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_10.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_11.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_11.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_12.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_12.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_13.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_13.png
--------------------------------------------------------------------------------
/chapter20/html/TutorialTest_14.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/html/TutorialTest_14.png
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode].rar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode].rar
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/Makefile:
--------------------------------------------------------------------------------
1 | CXX ?= g++
2 | CFLAGS = -Wall -Wconversion -O3 -fPIC
3 | SHVER = 2
4 |
5 | all: svm-train svm-predict svm-scale
6 |
7 | lib: svm.o
8 | $(CXX) -shared -dynamiclib svm.o -o libsvm.so.$(SHVER)
9 |
10 | svm-predict: svm-predict.c svm.o
11 | $(CXX) $(CFLAGS) svm-predict.c svm.o -o svm-predict -lm
12 | svm-train: svm-train.c svm.o
13 | $(CXX) $(CFLAGS) svm-train.c svm.o -o svm-train -lm
14 | svm-scale: svm-scale.c
15 | $(CXX) $(CFLAGS) svm-scale.c -o svm-scale
16 | svm.o: svm.cpp svm.h
17 | $(CXX) $(CFLAGS) -c svm.cpp
18 | clean:
19 | rm -f *~ svm.o svm-train svm-predict svm-scale libsvm.so.$(SHVER)
20 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/Makefile.win:
--------------------------------------------------------------------------------
1 | #You must ensure nmake.exe, cl.exe, link.exe are in system path.
2 | #VCVARS32.bat
3 | #Under dosbox prompt
4 | #nmake -f Makefile.win
5 |
6 | ##########################################
7 | CXX = cl.exe
8 | CFLAGS = -nologo -O2 -EHsc -I. -D __WIN32__ -D _CRT_SECURE_NO_DEPRECATE
9 | TARGET = windows
10 |
11 | all: $(TARGET)\svm-train.exe $(TARGET)\svm-predict.exe $(TARGET)\svm-scale.exe $(TARGET)\svm-toy.exe lib
12 |
13 | $(TARGET)\svm-predict.exe: svm.h svm-predict.c svm.obj
14 | $(CXX) $(CFLAGS) svm-predict.c svm.obj -Fe$(TARGET)\svm-predict.exe
15 |
16 | $(TARGET)\svm-train.exe: svm.h svm-train.c svm.obj
17 | $(CXX) $(CFLAGS) svm-train.c svm.obj -Fe$(TARGET)\svm-train.exe
18 |
19 | $(TARGET)\svm-scale.exe: svm.h svm-scale.c
20 | $(CXX) $(CFLAGS) svm-scale.c -Fe$(TARGET)\svm-scale.exe
21 |
22 | $(TARGET)\svm-toy.exe: svm.h svm.obj svm-toy\windows\svm-toy.cpp
23 | $(CXX) $(CFLAGS) svm-toy\windows\svm-toy.cpp svm.obj user32.lib gdi32.lib comdlg32.lib -Fe$(TARGET)\svm-toy.exe
24 |
25 | svm.obj: svm.cpp svm.h
26 | $(CXX) $(CFLAGS) -c svm.cpp
27 |
28 | lib: svm.cpp svm.h svm.def
29 | $(CXX) $(CFLAGS) -LD svm.cpp -Fe$(TARGET)\libsvm -link -DEF:svm.def
30 |
31 | clean:
32 | -erase /Q *.obj $(TARGET)\.
33 |
34 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/Makefile:
--------------------------------------------------------------------------------
1 | .SUFFIXES: .class .java
2 | FILES = libsvm/svm.class libsvm/svm_model.class libsvm/svm_node.class \
3 | libsvm/svm_parameter.class libsvm/svm_problem.class \
4 | libsvm/svm_print_interface.class \
5 | svm_train.class svm_predict.class svm_toy.class svm_scale.class
6 |
7 | #JAVAC = jikes
8 | JAVAC_FLAGS = -target 1.5 -source 1.5
9 | JAVAC = javac
10 | # JAVAC_FLAGS =
11 |
12 | all: $(FILES)
13 | jar cvf libsvm.jar *.class libsvm/*.class
14 |
15 | .java.class:
16 | $(JAVAC) $(JAVAC_FLAGS) $<
17 |
18 | libsvm/svm.java: libsvm/svm.m4
19 | m4 libsvm/svm.m4 > libsvm/svm.java
20 |
21 | clean:
22 | rm -f libsvm/*.class *.class *.jar libsvm/*~ *~ libsvm/svm.java
23 |
24 | dist: clean all
25 | rm *.class libsvm/*.class
26 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/libsvm.jar:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/libsvm.jar
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/libsvm/svm_model.java:
--------------------------------------------------------------------------------
1 | //
2 | // svm_model
3 | //
4 | package libsvm;
5 | public class svm_model implements java.io.Serializable
6 | {
7 | public svm_parameter param; // parameter
8 | public int nr_class; // number of classes, = 2 in regression/one class svm
9 | public int l; // total #SV
10 | public svm_node[][] SV; // SVs (SV[l])
11 | public double[][] sv_coef; // coefficients for SVs in decision functions (sv_coef[k-1][l])
12 | public double[] rho; // constants in decision functions (rho[k*(k-1)/2])
13 | public double[] probA; // pariwise probability information
14 | public double[] probB;
15 |
16 | // for classification only
17 |
18 | public int[] label; // label of each class (label[k])
19 | public int[] nSV; // number of SVs for each class (nSV[k])
20 | // nSV[0] + nSV[1] + ... + nSV[k-1] = l
21 | };
22 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/libsvm/svm_node.java:
--------------------------------------------------------------------------------
1 | package libsvm;
2 | public class svm_node implements java.io.Serializable
3 | {
4 | public int index;
5 | public double value;
6 | }
7 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/libsvm/svm_print_interface.java:
--------------------------------------------------------------------------------
1 | package libsvm;
2 | public interface svm_print_interface
3 | {
4 | public void print(String s);
5 | }
6 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/libsvm/svm_problem.java:
--------------------------------------------------------------------------------
1 | package libsvm;
2 | public class svm_problem implements java.io.Serializable
3 | {
4 | public int l;
5 | public double[] y;
6 | public svm_node[][] x;
7 | }
8 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/java/test_applet.html:
--------------------------------------------------------------------------------
1 |
2 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/ClassResult.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/ClassResult.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/ClassResult_test.m:
--------------------------------------------------------------------------------
1 | %% ClassResult_test
2 | % by faruto
3 | %% a litte clean work
4 | tic;
5 | close all;
6 | clear;
7 | clc;
8 | format compact;
9 | %%
10 | % load wine_test;
11 | % label = train_data_labels;
12 | % data = train_data;
13 |
14 | load heart_scale.mat;
15 | data = heart_scale_inst;
16 | label = heart_scale_label;
17 |
18 | model = svmtrain(label,data);
19 | %%
20 | type = 1;
21 | CR = ClassResult(label, data, model, type)
22 |
23 | %%
24 | toc;
25 |
26 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/Readme[by faruto]CN.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/Readme[by faruto]CN.txt
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVC.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVC.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVC_test.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVC_test.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVMcgForClass.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVMcgForClass.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVMcgForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVMcgForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVR.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVR.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVR_test.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/SVR_test.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/TutorialForFarutoUltimate3.1.pdf:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/TutorialForFarutoUltimate3.1.pdf
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/TutorialTest.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/TutorialTest.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/VF.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/VF.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/a_template_flow_usingSVM_class.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/a_template_flow_usingSVM_class.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/a_template_flow_usingSVM_regress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/a_template_flow_usingSVM_regress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/gaSVMcgForClass.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/gaSVMcgForClass.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/gaSVMcgForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/gaSVMcgForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/gaSVMcgpForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/gaSVMcgpForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/libsvm参数说明.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/libsvm参数说明.txt
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/crtbase.m:
--------------------------------------------------------------------------------
1 | % CRTBASE.m - Create base vector
2 | %
3 | % This function creates a vector containing the base of the loci
4 | % in a chromosome.
5 | %
6 | % Syntax: BaseVec = crtbase(Lind, Base)
7 | %
8 | % Input Parameters:
9 | %
10 | % Lind - A scalar or vector containing the lengths
11 | % of the alleles. Sum(Lind) is the length of
12 | % the corresponding chromosome.
13 | %
14 | % Base - A scalar or vector containing the base of
15 | % the loci contained in the Alleles.
16 | %
17 | % Output Parameters:
18 | %
19 | % BaseVec - A vector whose elements correspond to the base
20 | % of the loci of the associated chromosome structure.
21 |
22 | % Author: Andrew Chipperfield
23 | % Date: 19-Jan-94
24 |
25 | function BaseVec = crtbase(Lind, Base)
26 |
27 | [ml LenL] = size(Lind) ;
28 | if nargin < 2
29 | Base = 2 * ones(LenL,1) ; % default to base 2
30 | end
31 | [mb LenB] = size(Base) ;
32 |
33 | % check parameter consistency
34 | if ml > 1 | mb > 1
35 | error( 'Lind or Base is not a vector') ;
36 | elseif (LenL > 1 & LenB > 1 & LenL ~= LenB) | (LenL == 1 & LenB > 1 )
37 | error( 'Vector dimensions must agree' ) ;
38 | elseif LenB == 1 & LenL > 1
39 | Base = Base * ones(LenL,1) ;
40 |
41 | end
42 |
43 | BaseVec = [] ;
44 | for i = 1:LenL
45 | BaseVec = [BaseVec, Base(i)*ones(Lind(i),1)'];
46 | end
47 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/mytest/gaSVM.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/mytest/gaSVM.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/rep.m:
--------------------------------------------------------------------------------
1 | % REP.m Replicate a matrix
2 | %
3 | % This function replicates a matrix in both dimensions.
4 | %
5 | % Syntax: MatOut = rep(MatIn,REPN);
6 | %
7 | % Input parameters:
8 | % MatIn - Input Matrix (before replicating)
9 | %
10 | % REPN - Vector of 2 numbers, how many replications in each dimension
11 | % REPN(1): replicate vertically
12 | % REPN(2): replicate horizontally
13 | %
14 | % Example:
15 | %
16 | % MatIn = [1 2 3]
17 | % REPN = [1 2]: MatOut = [1 2 3 1 2 3]
18 | % REPN = [2 1]: MatOut = [1 2 3;
19 | % 1 2 3]
20 | % REPN = [3 2]: MatOut = [1 2 3 1 2 3;
21 | % 1 2 3 1 2 3;
22 | % 1 2 3 1 2 3]
23 | %
24 | % Output parameter:
25 | % MatOut - Output Matrix (after replicating)
26 | %
27 |
28 | % Author: Carlos Fonseca & Hartmut Pohlheim
29 | % History: 14.02.94 file created
30 |
31 |
32 | function MatOut = rep(MatIn,REPN)
33 |
34 | % Get size of input matrix
35 | [N_D,N_L] = size(MatIn);
36 |
37 | % Calculate
38 | Ind_D = rem(0:REPN(1)*N_D-1,N_D) + 1;
39 | Ind_L = rem(0:REPN(2)*N_L-1,N_L) + 1;
40 |
41 | % Create output matrix
42 | MatOut = MatIn(Ind_D,Ind_L);
43 |
44 |
45 | % End of function
46 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/rws.m:
--------------------------------------------------------------------------------
1 | % RWS.m - Roulette Wheel Selection
2 | %
3 | % Syntax:
4 | % NewChrIx = rws(FitnV, Nsel)
5 | %
6 | % This function selects a given number of individuals Nsel from a
7 | % population. FitnV is a column vector containing the fitness
8 | % values of the individuals in the population.
9 | %
10 | % The function returns another column vector containing the
11 | % indexes of the new generation of chromosomes relative to the
12 | % original population matrix, shuffled. The new population, ready
13 | % for mating, can be obtained by calculating
14 | % OldChrom(NewChrIx, :).
15 |
16 | % Author: Carlos Fonseca, Updated: Andrew Chipperfield
17 | % Date: 04/10/93, Date: 27-Jan-94
18 |
19 | function NewChrIx = rws(FitnV,Nsel);
20 |
21 | % Identify the population size (Nind)
22 | [Nind,ans] = size(FitnV);
23 |
24 | % Perform Stochastic Sampling with Replacement
25 | cumfit = cumsum(FitnV);
26 | trials = cumfit(Nind) .* rand(Nsel, 1);
27 | Mf = cumfit(:, ones(1, Nsel));
28 | Mt = trials(:, ones(1, Nind))';
29 | [NewChrIx, ans] = find(Mt < Mf & ...
30 | [ zeros(1, Nsel); Mf(1:Nind-1, :) ] <= Mt);
31 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/scaling.m:
--------------------------------------------------------------------------------
1 | % SCALING.m - linear fitness scaling
2 | %
3 | % This function implements a linear fitness scaling algorithm as described
4 | % by Goldberg in "Genetic Algorithms in Search, Optimization and Machine
5 | % Learning", Addison Wesley, 1989. It use is not recommended when fitness
6 | % functions produce negative results as the scaling will become unreliable.
7 | % It is included in this version of the GA Toolbox only for the sake of
8 | % completeness.
9 | %
10 | % Syntax: FitnV = scaling(ObjV, Smul)
11 | %
12 | % Input parameters:
13 | %
14 | % Objv - A vector containing the values of individuals
15 | % fitness.
16 | %
17 | % Smul - Optional scaling parameter (default 2).
18 | %
19 | % Output parameters:
20 | %
21 | % FitnV - A vector containing the individual fitnesses
22 | % for the current population.
23 | %
24 | %
25 |
26 | % Author: Andrew Chipperfield
27 | % Date: 24-Feb-94
28 |
29 |
30 | function FitnV = scaling( ObjV, Smul )
31 |
32 | if nargin == 1
33 | Smul = 2 ;
34 | end
35 |
36 | [Nind, Nobj] = size( ObjV ) ;
37 | Oave = sum( ObjV ) / Nind ;
38 | Omin = min( ObjV ) ;
39 | Omax = max( ObjV ) ;
40 |
41 | if (Omin > ( Smul * Oave - Omax ) / ( Smul - 1.0 ))
42 | delta = Omax - Oave
43 | a = ( Smul - 1.0 ) * Oave / delta
44 | b = Oave * ( Omax - Smul * Oave ) / delta
45 | else
46 | delta = Oave - Omin ;
47 | a = Oave / delta ;
48 | b = -Omin * Oave / delta ;
49 | end
50 |
51 | FitnV = ObjV.*a + b ;
52 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/sus.m:
--------------------------------------------------------------------------------
1 | % SUS.M (Stochastic Universal Sampling)
2 | %
3 | % This function performs selection with STOCHASTIC UNIVERSAL SAMPLING.
4 | %
5 | % Syntax: NewChrIx = sus(FitnV, Nsel)
6 | %
7 | % Input parameters:
8 | % FitnV - Column vector containing the fitness values of the
9 | % individuals in the population.
10 | % Nsel - number of individuals to be selected
11 | %
12 | % Output parameters:
13 | % NewChrIx - column vector containing the indexes of the selected
14 | % individuals relative to the original population, shuffled.
15 | % The new population, ready for mating, can be obtained
16 | % by calculating OldChrom(NewChrIx,:).
17 |
18 | % Author: Hartmut Pohlheim (Carlos Fonseca)
19 | % History: 12.12.93 file created
20 | % 22.02.94 clean up, comments
21 |
22 |
23 | function NewChrIx = sus(FitnV,Nsel);
24 |
25 | % Identify the population size (Nind)
26 | [Nind,ans] = size(FitnV);
27 |
28 | % Perform stochastic universal sampling
29 | cumfit = cumsum(FitnV);
30 | trials = cumfit(Nind) / Nsel * (rand + (0:Nsel-1)');
31 | Mf = cumfit(:, ones(1, Nsel));
32 | Mt = trials(:, ones(1, Nind))';
33 | [NewChrIx, ans] = find(Mt < Mf & [ zeros(1, Nsel); Mf(1:Nind-1, :) ] <= Mt);
34 |
35 | % Shuffle new population
36 | [ans, shuf] = sort(rand(Nsel, 1));
37 | NewChrIx = NewChrIx(shuf);
38 |
39 |
40 | % End of function
41 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/xovdp.m:
--------------------------------------------------------------------------------
1 | % XOVDP.M (CROSSOVer Double Point)
2 | %
3 | % This function performs double point crossover between pairs of
4 | % individuals and returns the current generation after mating.
5 | %
6 | % Syntax: NewChrom = xovdp(OldChrom, XOVR)
7 | %
8 | % Input parameters:
9 | % OldChrom - Matrix containing the chromosomes of the old
10 | % population. Each line corresponds to one individual
11 | % (in any form, not necessarily real values).
12 | % XOVR - Probability of recombination occurring between pairs
13 | % of individuals.
14 | %
15 | % Output parameter:
16 | % NewChrom - Matrix containing the chromosomes of the population
17 | % after mating, ready to be mutated and/or evaluated,
18 | % in the same format as OldChrom.
19 |
20 | % Author: Hartmut Pohlheim
21 | % History: 28.03.94 file created
22 |
23 | function NewChrom = xovdp(OldChrom, XOVR);
24 |
25 | if nargin < 2, XOVR = NaN; end
26 |
27 | % call low level function with appropriate parameters
28 | NewChrom = xovmp(OldChrom, XOVR, 2, 0);
29 |
30 |
31 | % End of function
32 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/xovdprs.m:
--------------------------------------------------------------------------------
1 | % XOVDPRS.M (CROSSOVer Double-Point with Reduced Surrogate)
2 | %
3 | % This function performs double-point 'reduced surrogate' crossover between
4 | % pairs of individuals and returns the current generation after mating.
5 | %
6 | % Syntax: NewChrom = xovdprs(OldChrom, XOVR)
7 | %
8 | % Input parameters:
9 | % OldChrom - Matrix containing the chromosomes of the old
10 | % population. Each line corresponds to one individual
11 | % (in any form, not necessarily real values).
12 | % XOVR - Probability of recombination occurring between pairs
13 | % of individuals.
14 | %
15 | % Output parameter:
16 | % NewChrom - Matrix containing the chromosomes of the population
17 | % after mating, ready to be mutated and/or evaluated,
18 | % in the same format as OldChrom.
19 |
20 | % Author: Hartmut Pohlheim
21 | % History: 28.03.94 file created
22 |
23 | function NewChrom = xovdprs(OldChrom, XOVR);
24 |
25 | if nargin < 2, XOVR = NaN; end
26 |
27 | % call low-level function with appropriate parameters
28 | NewChrom = xovmp(OldChrom, XOVR, 2, 1);
29 |
30 |
31 | % End of function
32 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/xovsh.m:
--------------------------------------------------------------------------------
1 | % XOVSH.M (CROSSOVer SHuffle)
2 | %
3 | % This function performs shuffle crossover between pairs of
4 | % individuals and returns the current generation after mating.
5 | %
6 | % Syntax: NewChrom = xovsh(OldChrom, XOVR)
7 | %
8 | % Input parameters:
9 | % OldChrom - Matrix containing the chromosomes of the old
10 | % population. Each line corresponds to one individual
11 | % (in any form, not necessarily real values).
12 | % XOVR - Probability of recombination occurring between pairs
13 | % of individuals.
14 | %
15 | % Output parameter:
16 | % NewChrom - Matrix containing the chromosomes of the population
17 | % after mating, ready to be mutated and/or evaluated,
18 | % in the same format as OldChrom.
19 |
20 | % Author: Hartmut Pohlheim
21 | % History: 28.03.94 file created
22 |
23 | function NewChrom = xovsh(OldChrom, XOVR);
24 |
25 | if nargin < 2, XOVR = NaN; end
26 |
27 | % call low level function with appropriate parameters
28 | NewChrom = xovmp(OldChrom, XOVR, 0, 0);
29 |
30 |
31 | % End of function
32 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/xovshrs.m:
--------------------------------------------------------------------------------
1 | % XOVSHRS.M (CROSSOVer SHuffle with Reduced Surrogate)
2 | %
3 | % This function performs shuffle 'reduced surrogate' crossover between
4 | % pairs of individuals and returns the current generation after mating.
5 | %
6 | % Syntax: NewChrom = xovshrs(OldChrom, XOVR)
7 | %
8 | % Input parameters:
9 | % OldChrom - Matrix containing the chromosomes of the old
10 | % population. Each line corresponds to one individual
11 | % (in any form, not necessarily real values).
12 | % XOVR - Probability of recombination occurring between pairs
13 | % of individuals.
14 | %
15 | % Output parameter:
16 | % NewChrom - Matrix containing the chromosomes of the population
17 | % after mating, ready to be mutated and/or evaluated,
18 | % in the same format as OldChrom.
19 |
20 | % Author: Hartmut Pohlheim
21 | % History: 28.03.94 file created
22 |
23 | function NewChrom = xovshrs(OldChrom, XOVR);
24 |
25 | if nargin < 2, XOVR = NaN; end
26 |
27 | % call low level function with appropriate parameters
28 | NewChrom = xovmp(OldChrom, XOVR, 0, 1);
29 |
30 |
31 | % End of function
32 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/xovsp.m:
--------------------------------------------------------------------------------
1 | % XOVSP.M (CROSSOVer Single-Point)
2 | %
3 | % This function performs single-point crossover between pairs of
4 | % individuals and returns the current generation after mating.
5 | %
6 | % Syntax: NewChrom = xovsp(OldChrom, XOVR)
7 | %
8 | % Input parameters:
9 | % OldChrom - Matrix containing the chromosomes of the old
10 | % population. Each line corresponds to one individual
11 | % (in any form, not necessarily real values).
12 | % XOVR - Probability of recombination occurring between pairs
13 | % of individuals.
14 | %
15 | % Output parameter:
16 | % NewChrom - Matrix containing the chromosomes of the population
17 | % after mating, ready to be mutated and/or evaluated,
18 | % in the same format as OldChrom.
19 |
20 | % Author: Hartmut Pohlheim
21 | % History: 28.03.94 file created
22 |
23 | function NewChrom = xovsp(OldChrom, XOVR);
24 |
25 | if nargin < 2, XOVR = NaN; end
26 |
27 | % call low level function with appropriate parameters
28 | NewChrom = xovmp(OldChrom, XOVR, 1, 0);
29 |
30 |
31 | % End of function
32 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/myprivate/gatbx[Sheffield]/xovsprs.m:
--------------------------------------------------------------------------------
1 | % XOVSPRS.M (CROSSOVer Single-Point with Reduced Surrogate)
2 | %
3 | % This function performs single-point 'reduced surrogate' crossover between
4 | % pairs of individuals and returns the current generation after mating.
5 | %
6 | % Syntax: NewChrom = xovsprs(OldChrom, XOVR)
7 | %
8 | % Input parameters:
9 | % OldChrom - Matrix containing the chromosomes of the old
10 | % population. Each line corresponds to one individual
11 | % (in any form, not necessarily real-values).
12 | % XOVR - Probability of recombination occurring between pairs
13 | % of individuals.
14 | %
15 | % Output parameter:
16 | % NewChrom - Matrix containing the chromosomes of the population
17 | % after mating, ready to be mutated and/or evaluated,
18 | % in the same format as OldChrom.
19 |
20 | % Author: Hartmut Pohlheim
21 | % History: 28.03.94 file created
22 |
23 | function NewChrom = xovsprs(OldChrom, XOVR);
24 |
25 | if nargin < 2, XOVR = NaN; end
26 |
27 | % call low-level function with appropriate parameters
28 | NewChrom = xovmp(OldChrom, XOVR, 1, 1);
29 |
30 |
31 | % End of function
32 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/pcaForSVM.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/pcaForSVM.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/plotSVMroc_test.m:
--------------------------------------------------------------------------------
1 | %% plotSVMroc_test
2 | % by faruto
3 | % Email:faruto@163.com
4 | % 2010.06.21
5 | %%
6 | clear;
7 | clc;
8 | %%
9 | load wine_test
10 |
11 | %%
12 | [train_data,test_data] = scaleForSVM(train_data,test_data,0,1);
13 | model = svmtrain(train_data_labels,train_data,'-c 0.01 -g 0.01 -b 1');
14 |
15 | [pre,acc,dec] = svmpredict(train_data_labels,train_data,model,'-b 1');
16 |
17 | %% plotSVMroc
18 | plotSVMroc(train_data_labels,dec,3)
19 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/plotSVMroc_test2.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/plotSVMroc_test2.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/psoSVMcgForClass.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/psoSVMcgForClass.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/psoSVMcgForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/psoSVMcgForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/psoSVMcgpForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/psoSVMcgpForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/scaleForSVM.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/scaleForSVM.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/svmplot.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/svmplot.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/adult.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/adult.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/book.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/book.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/data1.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/data1.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/image_seg.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/image_seg.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/test1.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/test1.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/testFor_image_seg.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/testFor_image_seg.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/wine_test.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/wine_test.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/x123.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data/x123.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data2/wine_test.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data2/wine_test.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data2/x123.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/test_data2/x123.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/#gaSVMcgForClass.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/#gaSVMcgForClass.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/#gaSVMcgForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/#gaSVMcgForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/#gaSVMcgpForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/#gaSVMcgpForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/DCTforSVM.m:
--------------------------------------------------------------------------------
1 | function [train_dct,test_dct] = DCTforSVM(train_data,test_data)
2 | % scaleForSVM
3 | % by faruto Email:farutoliyang@gmail.com
4 | % 2009.10.28
5 |
6 | %%
7 | [mtrain,ntrain] = size(train_data);
8 | [mtest,ntest] = size(test_data);
9 | dataset = [train_data;test_data];
10 |
11 | dataset_dct = dct(dataset');
12 | dataset_dct = dataset_dct';
13 |
14 | train_dct = dataset_dct(1:mtrain,:);
15 | test_dct = dataset_dct( (mtrain+1):(mtrain+mtest),: );
16 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/SVMcgpForRegress.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/SVMcgpForRegress.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/fasticaForSVM.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/fasticaForSVM.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/testFor_DCT.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/testFor_DCT.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/test_for_ica_SVM.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/testingFuntion_beta/test_for_ica_SVM.m
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/更新说明2011.06.10.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab-implement[by faruto]/更新说明2011.06.10.txt
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/heart_scale.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/heart_scale.mat
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/libsvmread.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/libsvmread.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/libsvmwrite.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/libsvmwrite.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/make.m:
--------------------------------------------------------------------------------
1 | % This make.m is used under Windows
2 |
3 | % add -largeArrayDims on 64-bit machines
4 |
5 | mex -O -largeArrayDims -I..\ -c ..\svm.cpp
6 | mex -O -largeArrayDims -I..\ -c svm_model_matlab.c
7 | mex -O -largeArrayDims -I..\ svmtrain.c svm.obj svm_model_matlab.obj
8 | mex -O -largeArrayDims -I..\ svmpredict.c svm.obj svm_model_matlab.obj
9 | mex -O -largeArrayDims libsvmread.c
10 | mex -O -largeArrayDims libsvmwrite.c
11 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svm.obj:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svm.obj
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svm_model_matlab.h:
--------------------------------------------------------------------------------
1 | const char *model_to_matlab_structure(mxArray *plhs[], int num_of_feature, struct svm_model *model);
2 | struct svm_model *matlab_matrix_to_model(const mxArray *matlab_struct, const char **error_message);
3 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svm_model_matlab.obj:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svm_model_matlab.obj
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svmpredict.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svmpredict.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svmtrain.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/matlab/svmtrain.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/python/Makefile:
--------------------------------------------------------------------------------
1 | all = lib
2 |
3 | lib:
4 | cd ..; make lib; cd -
5 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/svm-toy/gtk/Makefile:
--------------------------------------------------------------------------------
1 | CC? = gcc
2 | CXX? = g++
3 | CFLAGS = -Wall -O3 -g `pkg-config --cflags gtk+-2.0`
4 | LIBS = `pkg-config --libs gtk+-2.0`
5 |
6 | svm-toy: main.o interface.o callbacks.o ../../svm.o
7 | $(CXX) $(CFLAGS) main.o interface.o callbacks.o ../../svm.o -o svm-toy $(LIBS)
8 |
9 | main.o: main.c
10 | $(CC) $(CFLAGS) -c main.c
11 |
12 | interface.o: interface.c interface.h
13 | $(CC) $(CFLAGS) -c interface.c
14 |
15 | callbacks.o: callbacks.cpp callbacks.h
16 | $(CXX) $(CFLAGS) -c callbacks.cpp
17 |
18 | ../../svm.o:
19 | cd ../..; make svm.o
20 |
21 | clean:
22 | rm -f *~ callbacks.o svm-toy main.o interface.o callbacks.o ../../svm.o
23 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/svm-toy/gtk/interface.h:
--------------------------------------------------------------------------------
1 | /*
2 | * DO NOT EDIT THIS FILE - it is generated by Glade.
3 | */
4 |
5 | #ifdef __cplusplus
6 | extern "C" {
7 | #endif
8 |
9 | GtkWidget* create_window (void);
10 | GtkWidget* create_fileselection (void);
11 |
12 | #ifdef __cplusplus
13 | }
14 | #endif
15 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/svm-toy/gtk/main.c:
--------------------------------------------------------------------------------
1 | /*
2 | * Initial main.c file generated by Glade. Edit as required.
3 | * Glade will not overwrite this file.
4 | */
5 |
6 | #include
7 | #include "interface.h"
8 | void svm_toy_initialize();
9 |
10 | int main (int argc, char *argv[])
11 | {
12 | GtkWidget *window;
13 |
14 | gtk_set_locale ();
15 | gtk_init (&argc, &argv);
16 |
17 | window = create_window ();
18 | gtk_widget_show (window);
19 |
20 | svm_toy_initialize();
21 | gtk_main ();
22 | return 0;
23 | }
24 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/svm-toy/qt/Makefile:
--------------------------------------------------------------------------------
1 | CXX? = g++
2 | CFLAGS = -Wall -O3 -I$(INCLUDE) -I$(INCLUDE)/QtGui -lQtGui
3 | INCLUDE = /usr/include/qt4
4 | MOC = /usr/bin/moc-qt4
5 |
6 | svm-toy: svm-toy.cpp svm-toy.moc ../../svm.o
7 | $(CXX) $(CFLAGS) svm-toy.cpp ../../svm.o -o svm-toy
8 |
9 | svm-toy.moc: svm-toy.cpp
10 | $(MOC) svm-toy.cpp -o svm-toy.moc
11 |
12 | ../../svm.o:
13 | cd ../..; make svm.o
14 |
15 | clean:
16 | rm -f *~ svm-toy svm-toy.moc ../../svm.o
17 |
18 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/svm.def:
--------------------------------------------------------------------------------
1 | LIBRARY libsvm
2 | EXPORTS
3 | svm_train @1
4 | svm_cross_validation @2
5 | svm_save_model @3
6 | svm_load_model @4
7 | svm_get_svm_type @5
8 | svm_get_nr_class @6
9 | svm_get_labels @7
10 | svm_get_svr_probability @8
11 | svm_predict_values @9
12 | svm_predict @10
13 | svm_predict_probability @11
14 | svm_free_model_content @12
15 | svm_free_and_destroy_model @13
16 | svm_destroy_param @14
17 | svm_check_parameter @15
18 | svm_check_probability_model @16
19 | svm_set_print_string_function @17
20 |
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvm.dll:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvm.dll
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmread.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmread.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmread.mexw64:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmread.mexw64
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmwrite.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmwrite.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmwrite.mexw64:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/libsvmwrite.mexw64
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-predict.exe:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-predict.exe
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-scale.exe:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-scale.exe
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-toy.exe:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-toy.exe
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-train.exe:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svm-train.exe
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmpredict.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmpredict.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmpredict.mexw64:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmpredict.mexw64
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmtrain.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmtrain.mexw32
--------------------------------------------------------------------------------
/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmtrain.mexw64:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter20/libsvm-3.1-[FarutoUltimate3.1Mcode]/windows/svmtrain.mexw64
--------------------------------------------------------------------------------
/chapter21/chapter21.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter21/chapter21.m
--------------------------------------------------------------------------------
/chapter21/gene.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter21/gene.mat
--------------------------------------------------------------------------------
/chapter22/addon.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/addon.m
--------------------------------------------------------------------------------
/chapter22/chapter22.asv:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/chapter22.asv
--------------------------------------------------------------------------------
/chapter22/chapter22.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/chapter22.m
--------------------------------------------------------------------------------
/chapter22/html/addon.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/html/addon.png
--------------------------------------------------------------------------------
/chapter22/html/addon_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/html/addon_01.png
--------------------------------------------------------------------------------
/chapter22/html/chapter22.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/html/chapter22.png
--------------------------------------------------------------------------------
/chapter22/html/chapter22_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/html/chapter22_01.png
--------------------------------------------------------------------------------
/chapter22/html/chapter22_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/html/chapter22_02.png
--------------------------------------------------------------------------------
/chapter22/html/chapter22_03.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/html/chapter22_03.png
--------------------------------------------------------------------------------
/chapter22/p.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/p.mat
--------------------------------------------------------------------------------
/chapter22/运行说明.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter22/运行说明.txt
--------------------------------------------------------------------------------
/chapter23/chapter23.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter23/chapter23.m
--------------------------------------------------------------------------------
/chapter23/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter23/data.mat
--------------------------------------------------------------------------------
/chapter23/html/chapter23.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter23/html/chapter23.png
--------------------------------------------------------------------------------
/chapter23/html/chapter23_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter23/html/chapter23_01.png
--------------------------------------------------------------------------------
/chapter24/chapter24.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter24/chapter24.m
--------------------------------------------------------------------------------
/chapter24/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter24/data.mat
--------------------------------------------------------------------------------
/chapter24/html/chapter24.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter24/html/chapter24.png
--------------------------------------------------------------------------------
/chapter24/html/chapter24_01.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter24/html/chapter24_01.png
--------------------------------------------------------------------------------
/chapter24/html/chapter24_02.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter24/html/chapter24_02.png
--------------------------------------------------------------------------------
/chapter25/chapter25.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter25/chapter25.m
--------------------------------------------------------------------------------
/chapter26/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter26/Readme.txt
--------------------------------------------------------------------------------
/chapter26/chapter26_bp.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter26/chapter26_bp.m
--------------------------------------------------------------------------------
/chapter26/chapter26_lvq.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter26/chapter26_lvq.m
--------------------------------------------------------------------------------
/chapter26/crossvalidation_lvq.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter26/crossvalidation_lvq.m
--------------------------------------------------------------------------------
/chapter26/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter26/data.mat
--------------------------------------------------------------------------------
/chapter27/Images/10_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/10_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/10_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/10_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/10_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/10_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/10_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/10_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/10_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/10_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/1_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/1_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/1_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/1_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/1_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/1_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/1_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/1_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/1_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/1_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/2_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/2_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/2_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/2_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/2_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/2_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/2_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/2_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/2_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/2_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/3_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/3_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/3_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/3_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/3_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/3_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/3_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/3_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/3_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/3_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/4_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/4_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/4_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/4_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/4_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/4_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/4_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/4_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/4_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/4_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/5_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/5_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/5_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/5_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/5_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/5_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/5_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/5_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/5_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/5_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/6_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/6_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/6_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/6_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/6_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/6_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/6_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/6_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/6_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/6_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/7_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/7_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/7_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/7_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/7_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/7_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/7_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/7_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/7_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/7_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/8_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/8_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/8_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/8_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/8_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/8_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/8_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/8_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/8_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/8_5.bmp
--------------------------------------------------------------------------------
/chapter27/Images/9_1.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/9_1.bmp
--------------------------------------------------------------------------------
/chapter27/Images/9_2.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/9_2.bmp
--------------------------------------------------------------------------------
/chapter27/Images/9_3.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/9_3.bmp
--------------------------------------------------------------------------------
/chapter27/Images/9_4.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/9_4.bmp
--------------------------------------------------------------------------------
/chapter27/Images/9_5.bmp:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Images/9_5.bmp
--------------------------------------------------------------------------------
/chapter27/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/Readme.txt
--------------------------------------------------------------------------------
/chapter27/chapter27_bp.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/chapter27_bp.m
--------------------------------------------------------------------------------
/chapter27/chapter27_lvq.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/chapter27_lvq.m
--------------------------------------------------------------------------------
/chapter27/chapter_svm.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/chapter_svm.m
--------------------------------------------------------------------------------
/chapter27/crossvalind_lvq.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/crossvalind_lvq.m
--------------------------------------------------------------------------------
/chapter27/feature_extraction.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/feature_extraction.m
--------------------------------------------------------------------------------
/chapter27/lvq1_train.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/lvq1_train.m
--------------------------------------------------------------------------------
/chapter27/lvq2_train.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/lvq2_train.m
--------------------------------------------------------------------------------
/chapter27/lvq_predict.m:
--------------------------------------------------------------------------------
1 | function result = lvq_predict(P,Tc,Num_Compet,w1,w2)
2 | n = size(P,2);
3 | result = zeros(2,n);
4 | result(1,:) = Tc;
5 | for i = 1:n
6 | d = zeros(Num_Compet,1);
7 | for j = 1:Num_Compet
8 | d(j) = sqrt(sse(w1(j,:)'-P(:,i)));
9 | end
10 | n1 = compet(-1*d);
11 | n2 = purelin(w2*n1);
12 | result(2,i) = vec2ind(n2);
13 | end
14 | Num_Correct = length(find(result(2,:) == Tc));
15 | accuracy = Num_Correct/n;
16 | disp(['accuracy = ' num2str(accuracy*100) '%(' num2str(Num_Correct) '/' num2str(n) ')']);
--------------------------------------------------------------------------------
/chapter27/test.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter27/test.m
--------------------------------------------------------------------------------
/chapter28/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter28/Readme.txt
--------------------------------------------------------------------------------
/chapter28/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter28/data.mat
--------------------------------------------------------------------------------
/chapter28/main_2009a.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter28/main_2009a.m
--------------------------------------------------------------------------------
/chapter28/main_2012b.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter28/main_2012b.m
--------------------------------------------------------------------------------
/chapter29/classification/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter29/classification/Readme.txt
--------------------------------------------------------------------------------
/chapter29/classification/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter29/classification/data.mat
--------------------------------------------------------------------------------
/chapter29/classification/main.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter29/classification/main.m
--------------------------------------------------------------------------------
/chapter29/regression/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter29/regression/Readme.txt
--------------------------------------------------------------------------------
/chapter29/regression/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter29/regression/data.mat
--------------------------------------------------------------------------------
/chapter29/regression/main.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter29/regression/main.m
--------------------------------------------------------------------------------
/chapter3/Code.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/Code.m
--------------------------------------------------------------------------------
/chapter3/Cross.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/Cross.m
--------------------------------------------------------------------------------
/chapter3/Decode.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/Decode.m
--------------------------------------------------------------------------------
/chapter3/Genetic.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/Genetic.m
--------------------------------------------------------------------------------
/chapter3/Mutation.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/Mutation.m
--------------------------------------------------------------------------------
/chapter3/PSO.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/PSO.m
--------------------------------------------------------------------------------
/chapter3/Select.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/Select.m
--------------------------------------------------------------------------------
/chapter3/data.m:
--------------------------------------------------------------------------------
1 | for i=1:2000
2 | input(i,:)=10*rand(1,2)-5;
3 | output(i)=input(i,1)^2+input(i,2)^2;
4 | end
5 | output=output';
6 |
7 | save data input output
--------------------------------------------------------------------------------
/chapter3/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/data.mat
--------------------------------------------------------------------------------
/chapter3/fun.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/fun.m
--------------------------------------------------------------------------------
/chapter3/test.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter3/test.m
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02.zip
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/Compile_Check:
--------------------------------------------------------------------------------
1 | # Note will work only on linux
2 | # check for various not-visible errors by using valgrind
3 | # this code just profiles the timings/memory leaks of the code.
4 | # checked on linux with valgrind and kcachegrind installed
5 | # Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
6 | # run as: sh Compile_Check
7 |
8 |
9 | rm callgrind.out.*
10 | #g++ cokus.cpp reg_RF.cpp diabetes_C_wrapper.cpp -g -pg -funroll-loops -msse3
11 | rm twonorm_test -rf
12 | make twonorm
13 | #g++ twonorm_C_wrapper.cpp rfutils.o rfsub.o classRF.o cokus.o -g -pg -funroll-loops -msse3
14 |
15 | #to check timings
16 | #valgrind -v --error-limit=no --tool=callgrind --dump-instr=yes ./twonorm_test
17 |
18 | #to check mem-usage
19 | valgrind -v --error-limit=no --tool=memcheck --track-origins=yes --leak-check=full --show-reachable=yes --num-callers=1000 ./twonorm_test
20 |
21 |
22 | # when using timings, the below tool helps
23 | # kcachegrind&
24 |
25 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/Version_History.txt:
--------------------------------------------------------------------------------
1 | CHANGES
2 |
3 | svn-v8?
4 | Added almost 95% of the total options provided by the R-package to classification.
5 | Added tutorial for classification based RF in tutorial_ClassRF.m
6 | Moving now to version 0.02
7 |
8 | svn-v4
9 |
10 | Added a `cruft' conditional compile for win64 (-DWIN64) target which involves exporting (extern)
11 | fortran and c function names with another _ at the start (there was one at the end already)
12 |
13 | CROSS-compiling target for win64 shown in the makefile target for rfsub
14 |
15 | Reasons for crosscompiling lies with cygwin not supporting generation of 32 bit binaries.
16 |
17 | right now the rfsub.o is directly taken from the precompiled_rfsub directory for
18 | windows systems, that is the compiled_windows.m directly uses the precompiled
19 | rfsub.o to generate based on the current windows version (tested on winxp 64 and 32).
20 | Its hard to set up the required software (gfortran/g77) on cygwin
21 | (which also are available only to generate 32 bit binaries).
22 |
23 | for windows based rfsub.o. crosscompiler from mingw64 was used on linux from
24 | http://sourceforge.net/project/showfiles.php?group_id=202880&package_id=245516&release_id=546049
25 |
26 | for linux, its simpler to set up gfortran and gcc so will depend on recompiling
27 | everytime mex is recompiled. Checked on 32 and 64 bit linux.
28 |
29 |
30 | svn-v2
31 | initial commit - mapped to v0.01preview version
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/compile_linux.m:
--------------------------------------------------------------------------------
1 | % ********************************************************************
2 | % * mex File compiling code for Random Forest (for linux)
3 | % * mex interface to Andy Liaw et al.'s C code (used in R package randomForest)
4 | % * Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
5 | % * License: GPLv2
6 | % * Version: 0.02
7 | % ********************************************************************/
8 | function compile_linux
9 |
10 | system('rm *.mexglx *.mexa64;');
11 |
12 | system('make clean;make mex;');
13 |
14 | %the fortran code makes it hard to NOT use the Makefile
15 |
16 |
17 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/data/twonorm.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/data/twonorm.mat
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/mexClassRF_predict.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/mexClassRF_predict.mexw32
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/mexClassRF_train.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/mexClassRF_train.mexw32
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/precompiled_rfsub/win32/rfsub.o:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/precompiled_rfsub/win32/rfsub.o
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/precompiled_rfsub/win64/rfsub.o:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/precompiled_rfsub/win64/rfsub.o
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/rfsub.o:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/rfsub.o
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/src/cokus_test.cpp:
--------------------------------------------------------------------------------
1 | //this is a simple file to test the cokus.cpp mersenne twister code.
2 |
3 | //free code with no guarantee. No restrictions on usage
4 | //written by: Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
5 |
6 | #define uint32 unsigned long
7 | #define SMALL_INT char
8 | #define SMALL_INT_CLASS mxCHAR_CLASS
9 | extern void seedMT(uint32 seed);
10 | extern uint32 randomMT(void);
11 |
12 | #include "stdio.h"
13 | #include "math.h"
14 |
15 | //generate lots of random number and check if they are within the limits
16 | //else cry about it
17 |
18 | int main(void) {
19 | int j, k;
20 |
21 | // you can seed with any uint32, but the best are odds in 0..(2^32 - 1)
22 |
23 | seedMT(4357);
24 | uint32 MAX=pow(2, 32)-1;
25 |
26 | // print the first 2,002 random numbers seven to a line as an example
27 | // for(j=0; j<2002; j++)
28 | // printf(" %10lu%s", (unsigned long) randomMT(), (j%7)==6 ? "\n" : "");
29 |
30 | double test_val;
31 | for(k=0;k<100;k++)
32 | for(j=0; j<2000002; j++) {
33 | test_val = ((double)randomMT()/(double)MAX);
34 | if (test_val>=1.0){
35 | printf("Problem");
36 | return(0);
37 | }
38 | //printf(" %f%s", test_val , (j%7)==6 ? "\n" : "");
39 | }
40 | printf("Success");
41 | return(1);
42 | }
43 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Class_C/test_ClassRF_extensively.m:
--------------------------------------------------------------------------------
1 | %run plethora of tests
2 |
3 | %compile everything
4 | if strcmpi(computer,'PCWIN') |strcmpi(computer,'PCWIN64')
5 | compile_windows
6 | else
7 | compile_linux
8 | end
9 |
10 | total_train_time=0;
11 | total_test_time=0;
12 |
13 | %
14 | load data/twonorm
15 | % %twonorm, N=300, D=2
16 | for i=1:10
17 | fprintf('%d,',i);
18 | tic;
19 | model=classRF_train(inputs',outputs,1000);
20 | total_train_time=toc;
21 | tic;
22 | y_hat = classRF_predict(inputs',model);
23 | total_test_time=total_test_time+toc;
24 | length(find(y_hat~=outputs))/length(outputs)
25 | %keyboard
26 | end
27 | fprintf('\nnum_tree %d: Avg train time %d, test time %d\n',1000,total_train_time/100,total_test_time/100);
28 |
29 |
30 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/Compile_Check_kcachegrind:
--------------------------------------------------------------------------------
1 | # Note will work only on linux
2 | # check for various not-visible errors by using valgrind
3 | # this code just profiles the timings of the code.
4 | # checked on linux with valgrind and kcachegrind installed
5 | # Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
6 | # run as: sh Compile_Check_kcachegrind
7 | rm callgrind.out.*
8 |
9 | #if you have icc uncomment below
10 | #icc cokus.cpp reg_RF.cpp diabetes_C_wrapper.cpp -g -pg -funroll-loops -msse3 -fast
11 |
12 | g++ cokus.cpp reg_RF.cpp diabetes_C_wrapper.cpp -g -pg -funroll-loops -msse3
13 | valgrind -v --error-limit=no --tool=callgrind --dump-instr=yes ./a.out
14 |
15 | kcachegrind&
16 |
17 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/Compile_Check_memcheck:
--------------------------------------------------------------------------------
1 | # Note will work only on linux
2 | # check for various not-visible errors by using valgrind
3 | # this code checks for memory allocs in the code
4 | # checked on linux with valgrind and kcachegrind installed
5 | # Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
6 | # run as: sh Compile_Check_kcachegrind
7 | rm callgrind.out.*
8 |
9 | #if you want to use icc uncomment below
10 | #icc cokus.cpp reg_RF.cpp diabetes_C_wrapper.cpp -g -pg -funroll-loops -msse3 -fast
11 |
12 | g++ cokus.cpp reg_RF.cpp diabetes_C_wrapper.cpp -g -pg -funroll-loops -msse3
13 | valgrind -v --error-limit=no --tool=memcheck --track-origins=yes --leak-check=full ./a.out
14 |
15 |
16 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/Version_History.txt:
--------------------------------------------------------------------------------
1 | CHANGES
2 |
3 | svn-v9?
4 | Added almost 95% of the total options provided by the R-package to classification.
5 | Added tutorial for regression based RF in tutorial_RegRF.m
6 | Moving now to version 0.02
7 |
8 | svn-v2
9 | initial commit - mapped to v0.01preview version
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/compile_linux.m:
--------------------------------------------------------------------------------
1 | % ********************************************************************
2 | % * mex File compiling code for Random Forest (for linux)
3 | % * mex interface to Andy Liaw et al.'s C code (used in R package randomForest)
4 | % * Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
5 | % * License: GPLv2
6 | % * Version: 0.02
7 | % ********************************************************************/
8 |
9 | function compile_linux
10 |
11 | % a simple way to compile on linux is to call the Makefile with 'make mex'
12 | system('rm *.mexglx *.mexa64;');
13 |
14 | %Matlab mex requires optimization to be all set in the mexopts.sh(or
15 | %.bat) file. So set it there not here
16 |
17 | %if you want to emulate what the makefile does ucomment below 2 lines:
18 | %mex mex_regressionRF_train.cpp reg_RF.cpp cokus.cpp -o mexRF_train -DMATLAB
19 | %mex mex_regressionRF_predict.cpp reg_RF.cpp cokus.cpp -o mexRF_predict -DMATLAB
20 |
21 | system('make mex;');
22 |
23 | fprintf('Mex compiled\n')
24 |
25 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/compile_windows.m:
--------------------------------------------------------------------------------
1 | % ********************************************************************
2 | % * mex File compiling code for Random Forest (for windows)
3 | % * mex interface to Andy Liaw et al.'s C code (used in R package randomForest)
4 | % * Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
5 | % * License: GPLv2
6 | % * Version: 0.02
7 | % ********************************************************************/
8 |
9 |
10 | function compile_windows
11 |
12 | %need to do tricks for making Makfile run on windows as one needs cygwin.
13 | %so instead use mex to compile everything up.
14 |
15 | system('del *.mexw32;');
16 |
17 | mex src/cokus.cpp src/reg_RF.cpp src/mex_regressionRF_train.cpp -DMATLAB -output mexRF_train
18 | mex src/cokus.cpp src/reg_RF.cpp src/mex_regressionRF_predict.cpp -DMATLAB -output mexRF_predict
19 |
20 | fprintf('\n Mex`s compiled correctly\n')
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/data/diabetes.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/data/diabetes.mat
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/mexRF_predict.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/mexRF_predict.mexw32
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/mexRF_train.mexw32:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/mexRF_train.mexw32
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/regRF_predict.m:
--------------------------------------------------------------------------------
1 | %**************************************************************
2 | %* mex interface to Andy Liaw et al.'s C code (used in R package randomForest)
3 | %* Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
4 | %* License: GPLv2
5 | %* Version: 0.02
6 | %
7 | % Calls Regression Random Forest
8 | % A wrapper matlab file that calls the mex file
9 | % This does prediction given the data and the model file
10 | %**************************************************************
11 |
12 | function Y_hat = regRF_predict(X,model)
13 | %function Y_hat = regRF_predict(X,model)
14 | %requires 2 arguments
15 | %X: data matrix
16 | %model: generated via regRF_train function
17 | if nargin~=2
18 | error('need atleast 2 parameters,X matrix and model');
19 | end
20 |
21 | Y_hat = mexRF_predict(X',model.lDau,model.rDau,model.nodestatus,model.nrnodes,model.upper,model.avnode,model.mbest,model.ndtree,model.ntree);
22 |
23 | if ~isempty(find(model.coef)) %for bias corr
24 | Y_hat = model.coef(1) + model.coef(2)*Y_hat;
25 | end
26 | clear mexRF_predict
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/src/cokus_test.cpp:
--------------------------------------------------------------------------------
1 | //this is a simple file to test the cokus.cpp mersenne twister code.
2 |
3 | //free code with no guarantee. No restrictions on usage
4 | //written by: Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
5 |
6 | #define uint32 unsigned long
7 | #define SMALL_INT char
8 | #define SMALL_INT_CLASS mxCHAR_CLASS
9 | extern void seedMT(uint32 seed);
10 | extern uint32 randomMT(void);
11 |
12 | #include "stdio.h"
13 | #include "math.h"
14 |
15 | //generate lots of random number and check if they are within the limits
16 | //else cry about it
17 |
18 | int main(void) {
19 | int j, k;
20 |
21 | // you can seed with any uint32, but the best are odds in 0..(2^32 - 1)
22 |
23 | seedMT(4357);
24 | uint32 MAX=pow(2, 32)-1;
25 |
26 | // print the first 2,002 random numbers seven to a line as an example
27 | // for(j=0; j<2002; j++)
28 | // printf(" %10lu%s", (unsigned long) randomMT(), (j%7)==6 ? "\n" : "");
29 |
30 | double test_val;
31 | for(k=0;k<100;k++)
32 | for(j=0; j<2000002; j++) {
33 | test_val = ((double)randomMT()/(double)MAX);
34 | if (test_val>=1.0){
35 | printf("Problem");
36 | return(0);
37 | }
38 | //printf(" %f%s", test_val , (j%7)==6 ? "\n" : "");
39 | }
40 | printf("Success");
41 | return(1);
42 | }
43 |
--------------------------------------------------------------------------------
/chapter30/RF_MexStandalone-v0.02/randomforest-matlab/RF_Reg_C/src/reg_RF.h:
--------------------------------------------------------------------------------
1 | /**************************************************************
2 | * mex interface to Andy Liaw et al.'s C code (used in R package randomForest)
3 | * Added by Abhishek Jaiantilal ( abhishek.jaiantilal@colorado.edu )
4 | * License: GPLv2
5 | * Version: 0.02
6 | *
7 | * Supporting file that has some declarations.
8 | *************************************************************/
9 |
10 | #define uint32 unsigned long
11 | #define SMALL_INT char
12 |
13 | #ifdef MATLAB
14 | #define SMALL_INT_CLASS mxCHAR_CLASS //will be used to allocate memory t
15 | #endif
16 |
17 | void seedMT(uint32 seed);
18 | uint32 randomMT(void);
19 |
20 |
--------------------------------------------------------------------------------
/chapter30/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/Readme.txt
--------------------------------------------------------------------------------
/chapter30/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/data.mat
--------------------------------------------------------------------------------
/chapter30/main.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter30/main.m
--------------------------------------------------------------------------------
/chapter31/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter31/Readme.txt
--------------------------------------------------------------------------------
/chapter31/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter31/data.mat
--------------------------------------------------------------------------------
/chapter31/initpop_generate.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter31/initpop_generate.m
--------------------------------------------------------------------------------
/chapter31/ismature.m:
--------------------------------------------------------------------------------
1 | function [flag,index] = ismature(pop)
2 |
3 | [~,index] = max(pop(:,end));
4 | if index == 1
5 | flag = 1;
6 | else
7 | flag = 0;
8 | end
--------------------------------------------------------------------------------
/chapter31/main.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter31/main.m
--------------------------------------------------------------------------------
/chapter31/subpop_generate.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter31/subpop_generate.m
--------------------------------------------------------------------------------
/chapter32/d_mymorlet.m:
--------------------------------------------------------------------------------
1 | function y=d_mymorlet(t)
2 |
3 | y = -1.75*sin(1.75*t).*exp(-(t.^2)/2)-t* cos(1.75*t).*exp(-(t.^2)/2) ;
4 |
--------------------------------------------------------------------------------
/chapter32/mymorlet.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter32/mymorlet.m
--------------------------------------------------------------------------------
/chapter32/traffic_flux.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter32/traffic_flux.mat
--------------------------------------------------------------------------------
/chapter32/wavenn.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter32/wavenn.m
--------------------------------------------------------------------------------
/chapter33/FuzzyNet.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter33/FuzzyNet.m
--------------------------------------------------------------------------------
/chapter33/data1.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter33/data1.mat
--------------------------------------------------------------------------------
/chapter33/data2.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter33/data2.mat
--------------------------------------------------------------------------------
/chapter34/FCMGRNN.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter34/FCMGRNN.m
--------------------------------------------------------------------------------
/chapter34/netattack.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter34/netattack.mat
--------------------------------------------------------------------------------
/chapter35/PSO.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter35/PSO.m
--------------------------------------------------------------------------------
/chapter35/PSOMutation.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter35/PSOMutation.m
--------------------------------------------------------------------------------
/chapter35/fun.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter35/fun.m
--------------------------------------------------------------------------------
/chapter36/Readme.txt:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter36/Readme.txt
--------------------------------------------------------------------------------
/chapter36/data.mat:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter36/data.mat
--------------------------------------------------------------------------------
/chapter36/de_code.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter36/de_code.m
--------------------------------------------------------------------------------
/chapter36/fitness.m:
--------------------------------------------------------------------------------
1 | function [sol,Val] = fitness(sol,options)
2 | global S
3 | for i = 1:S
4 | x(i) = sol(i);
5 | end
6 | Val = de_code(x);
7 | end
--------------------------------------------------------------------------------
/chapter36/gabpEval.m:
--------------------------------------------------------------------------------
1 | function[sol,val] = gabpEval(sol,options)
2 | global s
3 | for i = 1:s
4 | x(i) = sol(i);
5 | end;
6 | [W1,B1,W2,B2,val] = gadecod(x);
7 |
--------------------------------------------------------------------------------
/chapter36/gadecod.m:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jackros1022/MATLAB-neural-network-43-case-studies-Code/3af9f587749a93ac6f1640d2b760217669e9f919/chapter36/gadecod.m
--------------------------------------------------------------------------------
/chapter36/gaot/README:
--------------------------------------------------------------------------------
1 | This directory contains the Genetic Algorithm Optimization Toolbox for
2 | Matlab 5.
3 |
4 | To use this, if you are local to NCSU and have AFS access to this
5 | directory, simply extend the matlab path using the following command.
6 | You can also place this command in a file called startup.m. Everytime
7 | you start Matlab in the directory containing this file, the path will
8 | always be extended.
9 |
10 | >>path(path,'/afs/eos/service/ie/research/kay_res/GAToolBox/gaot');
11 |
12 | Otherwise, install the .m files into a directory named gaot and extend
13 | the matlab path to that directory. The compressed tar archive and the
14 | zip file should automatically create the gaot directory for you.
15 |
16 | The companion paper describing this toolbox is included here as
17 | gaotv5.ps. The paper, the three demo files, gademo1.m gademo2.m
18 | gademo3.m, and four example scripts, binaryExample, floatExample,
19 | floatGradExample, and orderbasedExample, should be sufficient
20 | explanation of this toolbox. For any questions, comments, suggestions
21 | send mail to jjoine@eos.ncsu.edu.
22 |
23 | For a list of the files in the tool box get help on gaot.
24 |
25 | Thanks for trying the toolbox.
26 |
27 |
--------------------------------------------------------------------------------
/chapter36/gaot/calcbits.m:
--------------------------------------------------------------------------------
1 | function [bits]=calcbits(bounds,precision)
2 | % function [bits]=calcbits(bounds,precision)
3 | %
4 | % Determine the number of bits to represent a float number to the precision
5 | % provided.
6 | %
7 | % bits - the number of bits required per variable
8 | % bounds - the bounds on the variables
9 | % precision - the least difference to distinguish two numbers
10 |
11 | % Binary and Real-Valued Simulation Evolution for Matlab
12 | % Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay
13 | %
14 | % C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
15 | % optimization: A Matlab implementation. ACM Transactions on Mathmatical
16 | % Software, Submitted 1996.
17 | %
18 | % This program is free software; you can redistribute it and/or modify
19 | % it under the terms of the GNU General Public License as published by
20 | % the Free Software Foundation; either version 1, or (at your option)
21 | % any later version.
22 | %
23 | % This program is distributed in the hope that it will be useful,
24 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
25 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
26 | % GNU General Public License for more details. A copy of the GNU
27 | % General Public License can be obtained from the
28 | % Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
29 |
30 | bits=ceil(log2((bounds(:,2)-bounds(:,1))' ./ precision));
31 | % bits=ceil(log( (bounds(:,2)-bounds(:,1))' .* 10.^precision+1) ./ log(2));
--------------------------------------------------------------------------------
/chapter36/gaot/coranaMin.m:
--------------------------------------------------------------------------------
1 | function [sol,val] = coranaMin(sol,options)
2 | % function [val,sol] = coranaMin(sol,options)
3 | %
4 | % Function to minimize the Corana function.
5 | %
6 | % val - the value of the Corana function at point sol
7 | % sol - the location to evaluate the Corana function
8 |
9 | % Binary and Real-Valued Simulation Evolution for Matlab
10 | % Copyright (C) 1996 C.R. Houck, J.A. Joines, M.G. Kay
11 | %
12 | % C.R. Houck, J.Joines, and M.Kay. A genetic algorithm for function
13 | % optimization: A Matlab implementation. ACM Transactions on Mathmatical
14 | % Software, Submitted 1996.
15 | %
16 | % This program is free software; you can redistribute it and/or modify
17 | % it under the terms of the GNU General Public License as published by
18 | % the Free Software Foundation; either version 1, or (at your option)
19 | % any later version.
20 | %
21 | % This program is distributed in the hope that it will be useful,
22 | % but WITHOUT ANY WARRANTY; without even the implied warranty of
23 | % MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
24 | % GNU General Public License for more details. A copy of the GNU
25 | % General Public License can be obtained from the
26 | % Free Software Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
27 |
28 | numVar=size(sol,2)-1;
29 | val = coranaEval(sol(1:numVar));
30 | val = -val;
31 |
--------------------------------------------------------------------------------
/chapter36/gaot/gaMichEval.m:
--------------------------------------------------------------------------------
1 | function [sol,val] = gaMichEval(sol,options)
2 | val = 21.5 + sol(1) * sin(4*pi*sol(1)) + sol(2)*sin(20*pi*sol(2));
3 | %G=zeros(0);
4 | %val = sqrt(sol(1)) * sin(2*sol(1)) + sqrt(sol(1))*cos(5*sol(1))+5;
5 |
--------------------------------------------------------------------------------
/chapter36/gaot/gaZBGrad.m:
--------------------------------------------------------------------------------
1 | function [val,G] = gaZBGrad(sol)
2 |
3 | % Constrain minimizes so we have to take the - to maximize
4 | val = -(21.5 + sol(1) * sin(4*pi*sol(1)) + sol(2)*sin(20*pi*sol(2)));
5 | G=zeros(0);
--------------------------------------------------------------------------------
/chapter36/gaot/gaZBGradEval.m:
--------------------------------------------------------------------------------
1 | function [nsol, val] = gaZBGradEval(sol,options)
2 |
3 | % This evaluation function takes in a potential solution and two options
4 | % options(3) is the percent of time to perform the gradient heuristic to the
5 | % potential solution
6 | % options(4) is the percentage of time to update the solution based on the
7 | % outcome of the gradient heuristic
8 | % options [currentGen maxGen eval_with_constr update_with_constr]
9 | nsol=sol;
10 | if (rand= maxGen;
--------------------------------------------------------------------------------
/chapter36/gaot/plotCorana.m:
--------------------------------------------------------------------------------
1 | function [z, a] = coranaEval(per)
2 | i=0;
3 | a=-0.9:per:0.9;
4 | sz=size(a,2);
5 | z=zeros(sz,sz);
6 | for x=a
7 | i=i+1; j=0;
8 | for y=a
9 | j=j+1;
10 | z(i,j)=coranaFeval([x y]);
11 | end
12 | end
13 | %Done!
14 |
15 | %First let's look at it in each dimension independently
16 | clg
17 | plot(z(:,1)) %Plot a slice of the function in x max 250.25
18 | %Notice the range is [250.0-250.25]
19 | pause %Strike any key to continue
20 | clg
21 | plot(z(1,:)) %Plot a slice of the function in y
22 | %Notice the range is [0-250]
23 | pause %Strike any key to continue
24 | mesh(a,a,z);
25 | view(30,60);
26 | grid;
27 |
--------------------------------------------------------------------------------
/chapter36/gaot/roulette.m:
--------------------------------------------------------------------------------
1 | function[newPop] = roulette(oldPop,options)
2 | %roulette is the traditional selection function with the probability of
3 | %surviving equal to the fittness of i / sum of the fittness of all individuals
4 | %
5 | %function[newPop] = roulette(oldPop,options)
6 | %newPop - the new population selected from the oldPop
7 | %oldPop - the current population
8 | %options - options [gen]
9 |
10 | %Get the parameters of the population
11 | numVars = size(oldPop,2);
12 | numSols = size(oldPop,1);
13 |
14 | %Generate the relative probabilites of selection
15 | totalFit = sum(oldPop(:,numVars));
16 | prob=oldPop(:,numVars) / totalFit;
17 | prob=cumsum(prob);
18 |
19 | rNums=sort(rand(numSols,1)); %Generate random numbers
20 |
21 | %Select individuals from the oldPop to the new
22 | fitIn=1;newIn=1;
23 | while newIn<=numSols
24 | if(rNums(newIn)