├── src
├── __init__.py
├── bleu_scorer.py
├── srilm.py
├── query_comparer.py
├── smt_semparse_config.py
├── config.py
├── evaluator.py
├── util.py
├── smt_semparse_experiment.py
├── functionalizer.py
├── geo_world.py
├── moses.py
├── nl_reweighter.py
└── extractor.py
├── .gitignore
├── .gitmodules
├── data
└── geo
│ ├── folds600
│ ├── geo600cv-ids.zip
│ ├── fold-1-test.ids
│ ├── fold-2-test.ids
│ ├── fold-8-test.ids
│ ├── fold-3-test.ids
│ ├── fold-4-test.ids
│ ├── fold-5-test.ids
│ ├── fold-6-test.ids
│ ├── fold-7-test.ids
│ ├── fold-9-test.ids
│ ├── fold-0-test.ids
│ ├── fold-0-train.ids
│ ├── fold-3-train.ids
│ ├── fold-4-train.ids
│ ├── fold-5-train.ids
│ ├── fold-6-train.ids
│ ├── fold-7-train.ids
│ ├── fold-9-train.ids
│ ├── fold-1-train.ids
│ ├── fold-2-train.ids
│ └── fold-8-train.ids
│ ├── split880
│ ├── fold-0-tune.ids
│ ├── fold-0-tune-alt.ids
│ ├── fold-0-test.ids
│ └── fold-0-train.ids
│ ├── geoquery.train.en.txt
│ └── geoquery.train.sem
├── dependencies.yaml
├── filter.py
├── settings.yaml
├── demo.py
├── run.py
└── README.md
/src/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | acl/*
2 | others/*
3 | latest
4 | work/*
5 | *.pyc
6 | .*.swp
7 |
--------------------------------------------------------------------------------
/.gitmodules:
--------------------------------------------------------------------------------
1 | [submodule "nlp_tools"]
2 | path = nlp_tools
3 | url = https://github.com/jacobandreas/nlp_tools.git
4 |
--------------------------------------------------------------------------------
/data/geo/folds600/geo600cv-ids.zip:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jacobandreas/smt-semparse/HEAD/data/geo/folds600/geo600cv-ids.zip
--------------------------------------------------------------------------------
/dependencies.yaml:
--------------------------------------------------------------------------------
1 | smt_semparse: /home/jacob/src/smt-semparse
2 |
3 | moses: /home/jacob/src/3p/mosesdecoder
4 | srilm: /home/jacob/src/3p/srilm1.6.0
5 | prolog: /usr/bin/swipl
6 | wasp: /home/jacob/src/3p/wasp-1.0
7 |
8 | srilm_arch: i686-m64
9 |
--------------------------------------------------------------------------------
/src/bleu_scorer.py:
--------------------------------------------------------------------------------
1 | import os
2 | import subprocess
3 | import sys
4 |
5 | class BLEUScorer:
6 |
7 | def __init__(self, config):
8 | self.config = config
9 |
10 | def run(self):
11 | args = [self.config.bleu_eval, '%s/test.nl' % self.config.experiment_dir]
12 | infile = open('%s/hyp.nl' % self.config.experiment_dir)
13 | nullfile = open(os.devnull, 'w')
14 | p = subprocess.Popen(args, stdin=infile, stdout=sys.stdout, stderr=nullfile)
15 | p.wait()
16 | infile.close()
17 | nullfile.close()
18 |
--------------------------------------------------------------------------------
/data/geo/split880/fold-0-tune.ids:
--------------------------------------------------------------------------------
1 | 859
2 | 683
3 | 697
4 | 223
5 | 118
6 | 488
7 | 584
8 | 5
9 | 122
10 | 736
11 | 555
12 | 221
13 | 462
14 | 24
15 | 113
16 | 32
17 | 430
18 | 567
19 | 439
20 | 632
21 | 357
22 | 95
23 | 109
24 | 116
25 | 619
26 | 21
27 | 128
28 | 789
29 | 496
30 | 177
31 | 318
32 | 102
33 | 358
34 | 685
35 | 362
36 | 324
37 | 290
38 | 127
39 | 503
40 | 453
41 | 157
42 | 540
43 | 557
44 | 393
45 | 153
46 | 480
47 | 622
48 | 522
49 | 535
50 | 562
51 | 11
52 | 65
53 | 264
54 | 103
55 | 20
56 | 171
57 | 71
58 | 36
59 | 450
60 | 383
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-1-test.ids:
--------------------------------------------------------------------------------
1 | 4
2 | 7
3 | 12
4 | 23
5 | 41
6 | 52
7 | 68
8 | 70
9 | 77
10 | 120
11 | 133
12 | 142
13 | 143
14 | 164
15 | 171
16 | 180
17 | 254
18 | 261
19 | 263
20 | 269
21 | 274
22 | 294
23 | 310
24 | 314
25 | 353
26 | 393
27 | 404
28 | 419
29 | 453
30 | 460
31 | 461
32 | 484
33 | 487
34 | 493
35 | 514
36 | 559
37 | 564
38 | 575
39 | 591
40 | 602
41 | 619
42 | 648
43 | 660
44 | 674
45 | 682
46 | 683
47 | 730
48 | 734
49 | 738
50 | 749
51 | 750
52 | 784
53 | 814
54 | 820
55 | 834
56 | 841
57 | 842
58 | 858
59 | 859
60 | 877
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-2-test.ids:
--------------------------------------------------------------------------------
1 | 0
2 | 2
3 | 8
4 | 22
5 | 30
6 | 43
7 | 92
8 | 97
9 | 103
10 | 111
11 | 119
12 | 137
13 | 156
14 | 178
15 | 192
16 | 221
17 | 252
18 | 256
19 | 260
20 | 271
21 | 288
22 | 293
23 | 298
24 | 308
25 | 309
26 | 318
27 | 322
28 | 346
29 | 384
30 | 411
31 | 442
32 | 452
33 | 470
34 | 471
35 | 478
36 | 490
37 | 492
38 | 506
39 | 513
40 | 535
41 | 553
42 | 557
43 | 562
44 | 568
45 | 574
46 | 579
47 | 583
48 | 613
49 | 634
50 | 643
51 | 653
52 | 695
53 | 699
54 | 706
55 | 758
56 | 759
57 | 768
58 | 771
59 | 795
60 | 866
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-8-test.ids:
--------------------------------------------------------------------------------
1 | 9
2 | 13
3 | 14
4 | 28
5 | 58
6 | 65
7 | 66
8 | 69
9 | 72
10 | 78
11 | 102
12 | 145
13 | 186
14 | 189
15 | 217
16 | 244
17 | 267
18 | 306
19 | 327
20 | 330
21 | 351
22 | 362
23 | 367
24 | 407
25 | 410
26 | 415
27 | 430
28 | 447
29 | 465
30 | 473
31 | 474
32 | 512
33 | 527
34 | 530
35 | 540
36 | 541
37 | 560
38 | 561
39 | 567
40 | 569
41 | 584
42 | 587
43 | 607
44 | 609
45 | 614
46 | 624
47 | 647
48 | 651
49 | 655
50 | 681
51 | 691
52 | 726
53 | 727
54 | 752
55 | 790
56 | 817
57 | 846
58 | 848
59 | 854
60 | 856
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-3-test.ids:
--------------------------------------------------------------------------------
1 | 17
2 | 44
3 | 49
4 | 55
5 | 59
6 | 61
7 | 62
8 | 95
9 | 100
10 | 121
11 | 136
12 | 155
13 | 185
14 | 227
15 | 230
16 | 257
17 | 266
18 | 282
19 | 289
20 | 291
21 | 324
22 | 337
23 | 342
24 | 345
25 | 355
26 | 357
27 | 364
28 | 397
29 | 400
30 | 423
31 | 429
32 | 444
33 | 463
34 | 503
35 | 505
36 | 507
37 | 519
38 | 520
39 | 529
40 | 538
41 | 545
42 | 563
43 | 593
44 | 605
45 | 632
46 | 646
47 | 665
48 | 675
49 | 690
50 | 704
51 | 710
52 | 715
53 | 740
54 | 747
55 | 755
56 | 765
57 | 779
58 | 780
59 | 822
60 | 864
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-4-test.ids:
--------------------------------------------------------------------------------
1 | 21
2 | 24
3 | 36
4 | 67
5 | 75
6 | 79
7 | 83
8 | 90
9 | 112
10 | 144
11 | 154
12 | 160
13 | 165
14 | 170
15 | 176
16 | 215
17 | 237
18 | 258
19 | 262
20 | 265
21 | 278
22 | 279
23 | 299
24 | 312
25 | 338
26 | 360
27 | 361
28 | 371
29 | 392
30 | 427
31 | 441
32 | 466
33 | 476
34 | 480
35 | 494
36 | 501
37 | 509
38 | 510
39 | 528
40 | 580
41 | 597
42 | 644
43 | 652
44 | 673
45 | 680
46 | 686
47 | 693
48 | 700
49 | 709
50 | 739
51 | 751
52 | 773
53 | 783
54 | 800
55 | 805
56 | 807
57 | 855
58 | 857
59 | 863
60 | 873
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-5-test.ids:
--------------------------------------------------------------------------------
1 | 10
2 | 11
3 | 18
4 | 20
5 | 54
6 | 57
7 | 74
8 | 130
9 | 140
10 | 150
11 | 159
12 | 169
13 | 182
14 | 205
15 | 212
16 | 216
17 | 222
18 | 276
19 | 302
20 | 303
21 | 316
22 | 340
23 | 344
24 | 352
25 | 354
26 | 377
27 | 379
28 | 383
29 | 388
30 | 389
31 | 424
32 | 431
33 | 434
34 | 449
35 | 456
36 | 479
37 | 533
38 | 536
39 | 544
40 | 555
41 | 566
42 | 595
43 | 603
44 | 612
45 | 630
46 | 650
47 | 668
48 | 670
49 | 677
50 | 694
51 | 697
52 | 702
53 | 708
54 | 712
55 | 718
56 | 756
57 | 766
58 | 835
59 | 839
60 | 845
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-6-test.ids:
--------------------------------------------------------------------------------
1 | 19
2 | 31
3 | 32
4 | 56
5 | 86
6 | 89
7 | 94
8 | 106
9 | 113
10 | 174
11 | 193
12 | 194
13 | 202
14 | 248
15 | 259
16 | 264
17 | 280
18 | 307
19 | 366
20 | 370
21 | 376
22 | 385
23 | 394
24 | 443
25 | 445
26 | 448
27 | 450
28 | 462
29 | 481
30 | 496
31 | 497
32 | 518
33 | 523
34 | 525
35 | 556
36 | 578
37 | 589
38 | 594
39 | 610
40 | 623
41 | 625
42 | 638
43 | 667
44 | 679
45 | 728
46 | 733
47 | 736
48 | 748
49 | 777
50 | 789
51 | 797
52 | 801
53 | 806
54 | 823
55 | 830
56 | 833
57 | 838
58 | 847
59 | 867
60 | 872
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-7-test.ids:
--------------------------------------------------------------------------------
1 | 5
2 | 47
3 | 48
4 | 73
5 | 76
6 | 81
7 | 85
8 | 91
9 | 118
10 | 126
11 | 128
12 | 138
13 | 139
14 | 147
15 | 153
16 | 163
17 | 173
18 | 191
19 | 201
20 | 206
21 | 211
22 | 218
23 | 223
24 | 233
25 | 234
26 | 236
27 | 239
28 | 240
29 | 241
30 | 246
31 | 311
32 | 317
33 | 343
34 | 363
35 | 387
36 | 391
37 | 396
38 | 401
39 | 418
40 | 426
41 | 439
42 | 457
43 | 502
44 | 549
45 | 565
46 | 585
47 | 590
48 | 600
49 | 659
50 | 661
51 | 688
52 | 689
53 | 761
54 | 762
55 | 763
56 | 767
57 | 804
58 | 853
59 | 871
60 | 876
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-9-test.ids:
--------------------------------------------------------------------------------
1 | 27
2 | 42
3 | 71
4 | 80
5 | 96
6 | 98
7 | 109
8 | 123
9 | 124
10 | 129
11 | 175
12 | 177
13 | 197
14 | 198
15 | 219
16 | 235
17 | 268
18 | 277
19 | 284
20 | 285
21 | 297
22 | 315
23 | 326
24 | 329
25 | 335
26 | 374
27 | 421
28 | 458
29 | 488
30 | 499
31 | 532
32 | 539
33 | 543
34 | 570
35 | 576
36 | 588
37 | 601
38 | 606
39 | 622
40 | 626
41 | 627
42 | 628
43 | 629
44 | 637
45 | 641
46 | 654
47 | 658
48 | 671
49 | 672
50 | 685
51 | 714
52 | 717
53 | 720
54 | 741
55 | 764
56 | 770
57 | 772
58 | 821
59 | 844
60 | 878
61 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-0-test.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 |
--------------------------------------------------------------------------------
/filter.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 |
3 | import sys
4 |
5 | while True:
6 | lfrac = sys.stdin.readline()
7 | if not lfrac:
8 | break
9 | monolingual = sys.stdin.readline()
10 | ul_only = sys.stdin.readline()
11 |
12 | print lfrac, monolingual, ul_only,
13 |
14 | p = 0
15 | r = 0
16 | f = 0
17 |
18 | for i in range(10):
19 | lp = float(sys.stdin.readline().split()[1])
20 | lr = float(sys.stdin.readline().split()[1])
21 | lf = float(sys.stdin.readline().split()[1])
22 |
23 | p += lp
24 | r += lr
25 | f += lf
26 |
27 | p /= 10
28 | r /= 10
29 | f /= 10
30 |
31 | print 'p:', p
32 | print 'r:', r
33 | print 'f:', f
34 |
--------------------------------------------------------------------------------
/src/srilm.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import subprocess
3 |
4 | class SRILM:
5 |
6 | def __init__(self, config):
7 | self.config = config
8 |
9 | def run_ngram_count(self):
10 | log = open('%s/lm.log' % self.config.experiment_dir, 'w')
11 | p = subprocess.Popen([self.config.srilm_ngram_count,
12 | '-text', '%s/train.%s.lm' % (self.config.experiment_dir, self.config.tgt),
13 | '-order', '3',
14 | '-no-sos',
15 | '-no-eos',
16 | '-lm', '%s/%s.arpa' % (self.config.experiment_dir, self.config.tgt),
17 | '-unk'],
18 | stderr=log)
19 | p.wait()
20 | log.close()
21 |
--------------------------------------------------------------------------------
/src/query_comparer.py:
--------------------------------------------------------------------------------
1 | class QueryComparer:
2 |
3 | def __init__(self, config):
4 | self.config = config
5 |
6 | def run(self):
7 |
8 | hyp_file = open('%s/hyp.fun' % self.config.experiment_dir)
9 | ref_file = open('%s/test.fun' % self.config.experiment_dir)
10 | out_file = open('%s/eval.scored' % self.config.experiment_dir, 'w')
11 |
12 | hyps = {}
13 | for line in hyp_file:
14 | idx, hyp, scores1, scores2 = line.split(' ||| ')
15 | hyps[int(idx)] = hyp
16 |
17 | i = -1
18 | for line in ref_file:
19 | i += 1
20 | if i not in hyps:
21 | print >>out_file, 'empty'
22 | continue
23 | test = line.strip()
24 | if hyps[i] == test:
25 | print >>out_file, 'yes', 0
26 | else:
27 | print >>out_file, 'no', 0
28 |
29 | hyp_file.close()
30 | ref_file.close()
31 | out_file.close()
32 |
--------------------------------------------------------------------------------
/data/geo/split880/fold-0-tune-alt.ids:
--------------------------------------------------------------------------------
1 | 621
2 | 244
3 | 354
4 | 308
5 | 578
6 | 718
7 | 303
8 | 131
9 | 9
10 | 583
11 | 297
12 | 634
13 | 293
14 | 493
15 | 106
16 | 410
17 | 527
18 | 644
19 | 215
20 | 353
21 | 236
22 | 187
23 | 660
24 | 27
25 | 444
26 | 690
27 | 647
28 | 322
29 | 316
30 | 414
31 | 69
32 | 646
33 | 415
34 | 123
35 | 423
36 | 426
37 | 505
38 | 112
39 | 310
40 | 859
41 | 683
42 | 697
43 | 223
44 | 118
45 | 488
46 | 584
47 | 5
48 | 122
49 | 736
50 | 555
51 | 221
52 | 462
53 | 24
54 | 113
55 | 32
56 | 430
57 | 567
58 | 439
59 | 632
60 | 357
61 | 95
62 | 109
63 | 116
64 | 619
65 | 21
66 | 128
67 | 789
68 | 496
69 | 177
70 | 318
71 | 102
72 | 358
73 | 685
74 | 362
75 | 324
76 | 290
77 | 127
78 | 503
79 | 453
80 | 157
81 | 540
82 | 557
83 | 393
84 | 153
85 | 480
86 | 622
87 | 522
88 | 535
89 | 562
90 | 11
91 | 65
92 | 264
93 | 103
94 | 20
95 | 171
96 | 71
97 | 36
98 | 450
99 | 383
100 |
--------------------------------------------------------------------------------
/settings.yaml:
--------------------------------------------------------------------------------
1 | nbest: 100 # how many entries in the nbest list?
2 | corpus: geo # which corpus? [geo, robo]
3 | lang: en # which language? [en, de, el, th]
4 | stem: false # run the stemmer?
5 | symm: srctotgt # which symmetrization? [e.g. srctotgt, tgttosrc, grow, ...]
6 | np: true # use NP list?
7 | np_type: all # what version of NP list?
8 | model: hier # which machine translation model? [phrase, hier]
9 | run: test # which experiment? [dev, test, debug]
10 | workdir: work # where?
11 |
12 | # experimental, and unrelated to published work
13 | retrain: false # after tuning, re-extract phrases from tune and train data
14 | filter: false # filter malformed trees from phrase table?
15 | lfrac: 1.0 # what fraction of training sentences should be labeled?
16 | monolingual: false # use monolingual data?
17 | ul_only: false # reweight only with unlabeled data
18 | nlg: false # do MRL->NL rather than semantic parsing
19 |
--------------------------------------------------------------------------------
/src/smt_semparse_config.py:
--------------------------------------------------------------------------------
1 | from config import Config
2 |
3 | class SMTSemparseConfig(Config):
4 |
5 | def __init__(self, settings_path, dependencies_path):
6 | Config.__init__(self, settings_path, dependencies_path)
7 |
8 | self.put('data_dir', '%s/data/%s' % (self.smt_semparse, self.corpus))
9 |
10 | if self.np:
11 | self.train_name = 'train.np'
12 | else:
13 | self.train_name = 'train'
14 |
15 | self.put('srilm_ngram_count', '%s/bin/%s/ngram-count' % \
16 | (self.srilm, self.srilm_arch))
17 |
18 | self.put('moses_train', '%s/scripts/training/train-model.perl' % self.moses)
19 | self.put('moses_tune', '%s/scripts/training/mert-moses.pl' % self.moses)
20 | self.put('moses_decode_phrase', '%s/dist/bin/moses' % self.moses)
21 | self.put('moses_decode_hier', '%s/dist/bin/moses_chart' % self.moses)
22 | self.put('bleu_eval', '%s/scripts/generic/multi-bleu.perl' % self.moses)
23 |
24 | self.put('wasp_eval', '%s/data/geo-funql/eval/eval.pl' % self.wasp)
25 |
26 | if self.nlg:
27 | self.put('src', 'mrl')
28 | self.put('tgt', 'nl')
29 | else:
30 | self.put('src', 'nl')
31 | self.put('tgt', 'mrl')
32 |
--------------------------------------------------------------------------------
/src/config.py:
--------------------------------------------------------------------------------
1 | import yaml
2 | import logging
3 |
4 | class Config:
5 |
6 | def __init__(self, settings_path, dependencies_path):
7 | with open(settings_path) as settings_file:
8 | settings = yaml.load(settings_file)
9 | with open(dependencies_path) as dependencies_file:
10 | dependencies = yaml.load(dependencies_file)
11 |
12 | self.entries = {}
13 |
14 | for config in (settings, dependencies):
15 | for key, value in config.items():
16 | self.put(key, value)
17 |
18 | def __hasattr__(self, key):
19 | return key in self.entries
20 |
21 | def __getattr__(self, key):
22 | if key not in self.entries:
23 | raise Exception('No such key: %s' % key)
24 | return self.entries[key]
25 |
26 | def put(self, key, value):
27 | if key in self.entries:
28 | logging.warn('changing value of %s' % key)
29 | self.entries[key] = value
30 |
31 | def __repr__(self):
32 | return '%s(%d items)' % (self.__class__, len(self.keys))
33 |
34 | def __str__(self):
35 | s = []
36 | s.append('%s:' % self.__class__.__name__)
37 | for key in sorted(self.entries.keys()):
38 | s.append(' %s: %s' % (key, getattr(self, key)))
39 | return '\n'.join(s)
40 |
--------------------------------------------------------------------------------
/src/evaluator.py:
--------------------------------------------------------------------------------
1 | class Evaluator:
2 |
3 | def __init__(self, config):
4 | self.config = config
5 |
6 | def run(self):
7 | if self.config.run == 'debug':
8 | s_p, s_r, s_f = self.score('%s/1' % self.config.work_dir)
9 | elif self.config.run == 'dev':
10 | s_p = 0
11 | s_r = 0
12 | s_f = 0
13 | for i in range(10):
14 | p, r, f = self.score('%s/%d' % (self.config.work_dir, i))
15 | s_p += p
16 | s_r += r
17 | s_f += f
18 | s_p /= 10
19 | s_r /= 10
20 | s_f /= 10
21 | elif self.config.run == 'test':
22 | s_p, s_r, s_f = self.score(self.config.work_dir)
23 |
24 | print 'p: %f\nr: %f\nf: %f' % (s_p, s_r, s_f)
25 |
26 | def score(self, experiment_dir):
27 | result_file = open('%s/eval.scored' % (experiment_dir))
28 | tp = 0
29 | fp = 0
30 | count = 0
31 | for line in result_file.readlines():
32 | count += 1
33 | tag = line.strip()
34 | if tag == 'empty':
35 | continue
36 | tag, score = tag.split()
37 | score = float(score)
38 | if tag == 'yes':
39 | tp += 1
40 | elif tag == 'no':
41 | fp += 1
42 |
43 | p = 1.0 * tp / (tp + fp)
44 | r = 1.0 * tp / count
45 | f = 2.0 * p * r / (p + r)
46 |
47 | return (p, r, f)
48 |
--------------------------------------------------------------------------------
/demo.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 |
3 | import sys
4 | import subprocess
5 | from nltk.stem.porter import PorterStemmer
6 | from src.functionalizer import Functionalizer
7 | import re
8 | import os
9 |
10 | def pretty_print_prolog(ans):
11 | ans = re.sub(r'\w+\(([^)]+)\)', r'\1', ans)
12 | parts = ans[1:-2].split(',')
13 | print '\n'.join(parts)
14 | #for part in parts:
15 | # if 'stateid' in part:
16 | # part = part[8:-1]
17 | # print part
18 |
19 | MOSES='/home/jacob/src/3p/mosesdecoder/dist/bin/moses_chart'
20 | #WORK_DIR='/home/jacob/src/smt-semparse/work/DEMO'
21 | WORK_DIR=os.path.realpath('latest')
22 |
23 | fcr = Functionalizer(None)
24 |
25 | moses_args = [MOSES,
26 | '-drop-unknown',
27 | '-f', '%s/mert-work/moses.ini' % WORK_DIR]
28 |
29 | moses = subprocess.Popen(moses_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE,
30 | stderr=subprocess.PIPE)
31 |
32 | prolog_args = ['/usr/bin/swipl',
33 | '-l', '/home/jacob/src/3p/wasp-1.0/data/geo-funql/eval/eval.pl']
34 |
35 | prolog = subprocess.Popen(prolog_args, stdin=subprocess.PIPE,
36 | stdout=subprocess.PIPE, stderr=subprocess.PIPE)
37 |
38 | while True:
39 |
40 | print '\n\n? ',
41 | line = sys.stdin.readline()
42 | print
43 | print >>moses.stdin, line
44 | mrl = moses.stdout.readline().strip()
45 | moses.stdout.readline()
46 |
47 | fun = fcr.functionalize(mrl)
48 | print '!', fun
49 |
50 | plg = 'execute_funql_query(%s, A), print(A), nl.\n' % fun
51 | print >>prolog.stdin, plg
52 | answer = prolog.stdout.readline()
53 | print
54 | pretty_print_prolog(answer)
55 |
--------------------------------------------------------------------------------
/run.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/env python2
2 |
3 | import os
4 | import datetime
5 | import logging
6 | from src.evaluator import Evaluator
7 | from src.smt_semparse_config import SMTSemparseConfig
8 | from src.smt_semparse_experiment import SMTSemparseExperiment
9 |
10 | LOGFILE_NAME = 'run.log'
11 |
12 | def run_one(config):
13 | # create work dir for this run
14 | # moses can't handle paths with colons
15 | timestamp = datetime.datetime.now().strftime('%Y-%m-%dT%H.%M.%S')
16 | run_work_dir = os.path.join(base_work_dir, timestamp)
17 | assert not os.path.exists(run_work_dir)
18 | os.makedirs(run_work_dir)
19 | config.put('work_dir', run_work_dir)
20 | if os.path.exists('latest'):
21 | os.remove('latest')
22 | os.symlink(run_work_dir, 'latest')
23 |
24 | # set up logging
25 | if config.run == 'debug':
26 | logging.basicConfig(level=logging.DEBUG)
27 | else:
28 | log_path = os.path.join(run_work_dir, LOGFILE_NAME)
29 | logging.basicConfig(filename=log_path, level=logging.INFO)
30 |
31 | experiment = SMTSemparseExperiment(config)
32 | if config.run == 'debug':
33 | experiment.run_fold(1)
34 | elif config.run == 'dev':
35 | for i in range(10):
36 | experiment.run_fold(i)
37 | elif config.run == 'test':
38 | experiment.run_split()
39 | else:
40 | assert False
41 |
42 | if not config.nlg:
43 | logging.info('evaluating')
44 | Evaluator(config).run()
45 |
46 | if __name__ == '__main__':
47 |
48 | # load config
49 | config = SMTSemparseConfig('settings.yaml', 'dependencies.yaml')
50 |
51 | # create base work dir if it doesn't exist
52 | base_work_dir = os.path.join(config.smt_semparse, config.workdir)
53 | if not os.path.exists(base_work_dir):
54 | os.makedirs(base_work_dir)
55 |
56 | run_one(config)
57 |
--------------------------------------------------------------------------------
/src/util.py:
--------------------------------------------------------------------------------
1 | import re
2 | from collections import defaultdict
3 |
4 | ARITY_SEP = '@'
5 | ARITY_STR = 's'
6 | ARITY_ANY = '*'
7 |
8 | def after_nth(mrl, token, n):
9 | #print mrl, token
10 | while n > 0:
11 | m = re.search(r'\b%s\b' % token, mrl)
12 | #m = re.search(r'(^|[(, ])%s[(),]' % token, mrl)
13 | mrl = mrl[m.end()-1:]
14 | n = n - 1;
15 | return mrl
16 |
17 | def count_arguments(s):
18 | args = False;
19 | parens = 0;
20 | commas = 0;
21 | i = 0
22 | #while parens >= 0 and i < len(s):
23 | while i < len(s) and ((not args and parens == 0) or (args and parens > 0)):
24 | c = s[i:i+1]
25 | if c == '(':
26 | args = True
27 | parens += 1
28 | elif c == ')':
29 | parens -= 1
30 | elif parens == 1 and c == ',':
31 | commas += 1
32 | elif parens < 1 and c == ',':
33 | break
34 | i += 1
35 | if args:
36 | return commas + 1
37 | else:
38 | assert commas == 0
39 | return 0
40 |
41 | def fun_to_mrl(mrl, star_top=False):
42 | mrl = mrl.strip()
43 |
44 | mrl = re.sub(r"' *([A-Za-z0-9_ ]+?) *'", lambda x: '%s%s%s' % (x.group(1).replace(' ', '_'), ARITY_SEP, ARITY_STR), mrl)
45 | mrl = re.sub(r'\s+', ' ', mrl)
46 | mrl_noparens = re.sub(r'[\(\)]', ' ', mrl)
47 | mrl_noparens = re.sub(r'\s+', ' ', mrl_noparens)
48 | mrl_nocommas = re.sub(r',', ' ', mrl_noparens)
49 | mrl_nocommas = re.sub(r'\s+', ' ', mrl_nocommas)
50 |
51 | mrl_labeled_tokens = []
52 | seen = defaultdict(lambda:0)
53 | for token in mrl_nocommas.split():
54 | seen[token] += 1
55 | args = count_arguments(after_nth(mrl, token, seen[token]))
56 | #print token, args, after_nth(mrl, token, seen[token])
57 | if token[-len(ARITY_SEP)-len(ARITY_STR):] == '%s%s' % (ARITY_SEP, ARITY_STR):
58 | mrl_labeled_tokens.append(token)
59 | else:
60 | mrl_labeled_tokens.append('%s%s%d' % (token, ARITY_SEP, args))
61 |
62 | if star_top:
63 | tok = mrl_labeled_tokens[0]
64 | sep = tok.rindex(ARITY_SEP)
65 | mrl_labeled_tokens[0] = tok[:sep] + ARITY_SEP + ARITY_ANY
66 |
67 | return ' '.join(mrl_labeled_tokens)
68 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Semantic parsing as machine translation
2 |
3 | Most work on semantic parsing, even in variable-free formulations, has focused
4 | on developing task- and formalism-specific models, often with expensive
5 | training and decoding procedures. Can we use standard machine translation tools
6 | to perform the same task?
7 |
8 | Yes.
9 |
10 | For a description of the system (it's really not complicated), see:
11 |
12 | - J Andreas, A Vlachos and S Clark. "Semantic Parsing as Machine
13 | Translation". In ACL-short 2013.
14 | http://www.cs.berkeley.edu/~jda/papers/avc_smt_semparse.pdf
15 |
16 | You should also check out Carolin Lawrence's cdec-based reimplementation at
17 | https://github.com/carhaas/cdec-semparse.
18 |
19 | ### Getting started
20 |
21 | Edit `dependencies.yaml` to reflect the configuration of your system.
22 | `smt_semparse` should be set to the location of the repository root, the
23 | `moses`, `srilm`, etc. entries to the roots of the corresponding external
24 | dependencies, and `srilm_arch` to your machine architecture.
25 |
26 | ### Reproducing the ACL13 paper
27 |
28 | Edit settings.yaml to choose a language and translation model for the particular
29 | experiment you want to run. Use the following additional settings:
30 |
31 | lang=en -> stem=true, symm=srctotgt
32 | lang=de -> stem=true, symm=tgttosrc
33 | lang=el -> stem=false, symm=tgttosrc
34 | lang=th -> stem=false, symm=tgttosrc
35 |
36 | Note that due to random MERT initialization your exact accuracy and F1 values
37 | may differ slightly from those in the paper.
38 |
39 | ### Experimental things
40 |
41 | Additional settings also allow you to do the following:
42 |
43 | - Rebuild the phrase table after running MERT to squeeze a few more translation
44 | rules out of the training data. (Should give a nearly-imperceptible
45 | improvement in accuracy.)
46 |
47 | - Filter rules which correspond to multi-rooted forests from the phrase table.
48 | (Should decrease accuracy.)
49 |
50 | - Do full-supervised training on only a fraction of the dataset, and use the
51 | remaining monolingual data to reweight rules. (Mostly garbage---this data set
52 | is already too small to permit experiments which require holding out even more
53 | data.)
54 |
55 | ### Not implemented
56 |
57 | MRL-to-NL à la Lu & Ng 2011.
58 |
59 | ### Using a new dataset
60 |
61 | Update `extractor.py` to create appropriately-formatted files in the working
62 | directory. See the existing GeoQuery extractor for an example.
63 |
--------------------------------------------------------------------------------
/src/smt_semparse_experiment.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import os
3 | from extractor import Extractor
4 | from functionalizer import Functionalizer
5 | #from slot_checker import SlotChecker
6 | from srilm import SRILM
7 | from moses import Moses
8 | from nl_reweighter import NLReweighter
9 | from geo_world import GeoWorld
10 | from query_comparer import QueryComparer
11 | from bleu_scorer import BLEUScorer
12 |
13 | class SMTSemparseExperiment:
14 |
15 | def __init__(self, config):
16 | self.config = config
17 |
18 | def run_fold(self, fold):
19 | logging.info('running fold %d', fold)
20 | self.config.put('fold', fold)
21 | fold_dir = os.path.join(self.config.work_dir, str(fold))
22 | self.config.put('experiment_dir', fold_dir)
23 | os.makedirs(fold_dir)
24 | self.run()
25 |
26 | def run_split(self):
27 | logging.info('running split')
28 | self.config.put('experiment_dir', self.config.work_dir)
29 | self.run()
30 |
31 | def run(self):
32 | logging.info('working dir is %s', self.config.experiment_dir)
33 |
34 | # get data
35 | logging.info('extracting data')
36 | Extractor(self.config).run()
37 |
38 | # learn lm
39 | logging.info('learning LM')
40 | SRILM(self.config).run_ngram_count()
41 |
42 | # train moses
43 | moses = Moses(self.config)
44 | logging.info('training TM')
45 | moses.run_train()
46 |
47 | # reweight using monolingual data
48 | if self.config.monolingual:
49 | logging.info('learning from monolingual data')
50 | NLReweighter(self.config).run()
51 |
52 | # filter disconnected rules
53 | if self.config.filter:
54 | logging.info('filtering disconnected rules')
55 | moses.filter_phrase_table()
56 |
57 | # tune moses
58 | if self.config.run == 'test':
59 | logging.info('tuning TM')
60 | moses.run_tune()
61 |
62 | if self.config.retrain:
63 | logging.info('retraining TM')
64 | moses.run_retrain()
65 |
66 | # decode input
67 | logging.info('decoding')
68 | moses.run_decode()
69 |
70 | if self.config.nlg:
71 | logging.info('running BLEU')
72 | BLEUScorer(self.config).run()
73 | pass
74 |
75 | else:
76 | # functionalize
77 | logging.info('functionalizing')
78 | Functionalizer(self.config).run()
79 |
80 | # compare answers
81 | logging.info('executing queries')
82 | if self.config.corpus == 'geo':
83 | GeoWorld(self.config).run()
84 | #elif self.config.corpus == 'atis':
85 | # SlotChecker(self.config).run()
86 | else:
87 | QueryComparer(self.config).run()
88 |
--------------------------------------------------------------------------------
/data/geo/split880/fold-0-test.ids:
--------------------------------------------------------------------------------
1 | 3
2 | 6
3 | 15
4 | 16
5 | 25
6 | 26
7 | 29
8 | 33
9 | 34
10 | 37
11 | 38
12 | 39
13 | 40
14 | 45
15 | 46
16 | 50
17 | 53
18 | 60
19 | 64
20 | 82
21 | 84
22 | 87
23 | 88
24 | 93
25 | 99
26 | 101
27 | 104
28 | 107
29 | 108
30 | 110
31 | 114
32 | 117
33 | 125
34 | 132
35 | 134
36 | 135
37 | 141
38 | 148
39 | 149
40 | 152
41 | 158
42 | 161
43 | 166
44 | 167
45 | 168
46 | 172
47 | 179
48 | 183
49 | 184
50 | 188
51 | 190
52 | 195
53 | 196
54 | 199
55 | 203
56 | 204
57 | 207
58 | 208
59 | 209
60 | 213
61 | 214
62 | 220
63 | 225
64 | 229
65 | 231
66 | 232
67 | 238
68 | 242
69 | 243
70 | 245
71 | 247
72 | 249
73 | 250
74 | 255
75 | 272
76 | 273
77 | 275
78 | 281
79 | 286
80 | 295
81 | 296
82 | 300
83 | 301
84 | 304
85 | 305
86 | 319
87 | 320
88 | 323
89 | 325
90 | 328
91 | 331
92 | 332
93 | 333
94 | 334
95 | 336
96 | 339
97 | 341
98 | 347
99 | 348
100 | 349
101 | 350
102 | 356
103 | 359
104 | 365
105 | 368
106 | 369
107 | 372
108 | 373
109 | 375
110 | 378
111 | 380
112 | 381
113 | 382
114 | 386
115 | 390
116 | 395
117 | 398
118 | 399
119 | 402
120 | 403
121 | 405
122 | 408
123 | 412
124 | 413
125 | 416
126 | 420
127 | 422
128 | 428
129 | 432
130 | 433
131 | 436
132 | 437
133 | 438
134 | 440
135 | 446
136 | 451
137 | 454
138 | 455
139 | 459
140 | 464
141 | 467
142 | 468
143 | 469
144 | 472
145 | 475
146 | 477
147 | 482
148 | 483
149 | 486
150 | 489
151 | 491
152 | 495
153 | 498
154 | 504
155 | 511
156 | 515
157 | 516
158 | 517
159 | 521
160 | 524
161 | 526
162 | 531
163 | 537
164 | 542
165 | 546
166 | 547
167 | 548
168 | 550
169 | 551
170 | 552
171 | 572
172 | 573
173 | 577
174 | 581
175 | 582
176 | 586
177 | 592
178 | 596
179 | 598
180 | 599
181 | 604
182 | 608
183 | 611
184 | 615
185 | 616
186 | 618
187 | 631
188 | 635
189 | 636
190 | 639
191 | 642
192 | 645
193 | 656
194 | 657
195 | 663
196 | 664
197 | 666
198 | 669
199 | 676
200 | 678
201 | 684
202 | 687
203 | 692
204 | 698
205 | 701
206 | 703
207 | 705
208 | 707
209 | 711
210 | 716
211 | 719
212 | 721
213 | 722
214 | 723
215 | 724
216 | 725
217 | 729
218 | 731
219 | 732
220 | 735
221 | 737
222 | 742
223 | 743
224 | 744
225 | 745
226 | 746
227 | 754
228 | 757
229 | 760
230 | 769
231 | 774
232 | 775
233 | 776
234 | 778
235 | 781
236 | 782
237 | 785
238 | 786
239 | 787
240 | 788
241 | 791
242 | 792
243 | 793
244 | 794
245 | 796
246 | 798
247 | 799
248 | 802
249 | 803
250 | 808
251 | 810
252 | 811
253 | 813
254 | 815
255 | 816
256 | 818
257 | 819
258 | 824
259 | 825
260 | 826
261 | 827
262 | 828
263 | 829
264 | 831
265 | 832
266 | 836
267 | 837
268 | 840
269 | 843
270 | 850
271 | 852
272 | 860
273 | 861
274 | 862
275 | 865
276 | 868
277 | 870
278 | 874
279 | 875
280 | 879
281 |
--------------------------------------------------------------------------------
/src/functionalizer.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import util
3 | import sys
4 |
5 | class Functionalizer:
6 |
7 | def __init__(self, config):
8 | self.config = config
9 |
10 | def run(self):
11 | hyp_file = open('%s/hyp.mrl.nbest' % self.config.experiment_dir)
12 | fun_file = open('%s/hyp.fun' % self.config.experiment_dir, 'w')
13 |
14 | hypsets = []
15 | hypset = []
16 | last_eid = 0
17 | for line in hyp_file:
18 | parts = line.split('|||')
19 | eid = int(parts[0])
20 | if eid != last_eid:
21 | hypsets.append(hypset)
22 | hypset = []
23 | last_eid = eid
24 | score = parts[2] + ' ||| ' + parts[3].strip()
25 | hyp = parts[1].strip()
26 | hypset.append((hyp,score))
27 | hypsets.append(hypset)
28 |
29 | counter = 0
30 | for hypset in hypsets:
31 | hypset = list(reversed(hypset))
32 | while hypset:
33 | hyp, score = hypset.pop()
34 | fun = self.functionalize(hyp)
35 | if fun:
36 | print >>fun_file, counter, '|||', fun, '|||', score
37 | break
38 | counter += 1
39 |
40 | #xc = 0
41 | def functionalize(self, mrl):
42 |
43 | #if '_@0' in mrl and 'cityid@2' in mrl:
44 | # #print '==='
45 | # #print mrl
46 | # self.xc += 1
47 | # if self.xc > 5:
48 | # exit()
49 |
50 | stack = []
51 | r = []
52 | tokens = list(reversed(mrl.split()))
53 |
54 | #print tokens
55 |
56 | while tokens:
57 | it = tokens.pop()
58 | #print it
59 | if util.ARITY_SEP not in it:
60 | token = it
61 | arity = util.ARITY_STR
62 | logging.warn('unrecognized token: %s', it)
63 | else:
64 | token, arity = it.rsplit(util.ARITY_SEP)
65 | if arity == util.ARITY_STR:
66 | arity = 0
67 | arity_str = True
68 | elif not (arity == util.ARITY_ANY):
69 | arity = int(arity)
70 | arity_str = False
71 |
72 | if arity == util.ARITY_ANY or arity > 0:
73 | r.append(token)
74 | r.append('(')
75 | stack.append(arity)
76 | else:
77 | assert arity == 0
78 | if arity_str:
79 | r.append("'%s'" % token.replace('_', ' '))
80 | else:
81 | r.append(token)
82 | #print r
83 | while stack:
84 | top = stack.pop()
85 | if top == util.ARITY_ANY and tokens:
86 | r.append(',')
87 | stack.append(util.ARITY_ANY)
88 | break
89 | elif top != util.ARITY_ANY and top > 1:
90 | r.append(',')
91 | stack.append(top - 1)
92 | break
93 | else:
94 | r.append(')')
95 |
96 | if not stack and tokens:
97 | return None
98 |
99 | if stack:
100 | return None
101 |
102 | r = ''.join(r)
103 |
104 | # nasty hacks to fix misplaced _
105 | if '(_' in r:
106 | return None
107 | if ',_' in r and not ('cityid' in r):
108 | return None
109 | if '_),_)' in r:
110 | return None
111 |
112 | return r
113 |
--------------------------------------------------------------------------------
/src/geo_world.py:
--------------------------------------------------------------------------------
1 | import subprocess
2 |
3 | class GeoWorld:
4 |
5 | def __init__(self, config):
6 | self.config = config
7 |
8 | def run(self):
9 | self.write_queries()
10 |
11 | infile = open('%s/eval.pl' % self.config.experiment_dir)
12 | log = open('%s/prolog.log' % self.config.experiment_dir, 'w')
13 | outfile = open('%s/eval.out' % self.config.experiment_dir, 'w')
14 | p = subprocess.Popen([self.config.prolog,
15 | '-l', self.config.wasp_eval],
16 | stdin=infile,
17 | stdout=outfile,
18 | stderr=log)
19 | p.wait()
20 | infile.close()
21 | log.close()
22 | outfile.close()
23 |
24 | self.extract_results()
25 |
26 | def write_queries(self):
27 |
28 | hyp_file = open('%s/hyp.fun' % self.config.experiment_dir)
29 | ref_file = open('%s/test.fun' % self.config.experiment_dir)
30 | query_file = open('%s/eval.pl' % self.config.experiment_dir, 'w')
31 |
32 | examples = []
33 | hyp_list = []
34 | last_idx = 0
35 | for hyp_line in hyp_file.readlines():
36 | idx, hyp, scoreparts, score = hyp_line.split('|||')
37 | idx = int(idx)
38 | hyp = hyp.strip()
39 | if idx != last_idx:
40 | examples.append(hyp_list)
41 | for i in range(last_idx, idx-1):
42 | examples.append([])
43 | hyp_list = []
44 | last_idx = idx
45 | hyp_list.append((hyp,float(score)))
46 | examples.append(hyp_list)
47 |
48 | i = 0
49 | for ref, hyp_list in zip(ref_file.readlines(), examples):
50 | ref = ref.strip()
51 | for hyp, score in hyp_list:
52 | print >>query_file, \
53 | 'catch(call_with_time_limit(1,eval([%d,%f,%s,%s])),E,writeln(\'error\')).\n' \
54 | % (i, score, ref, hyp)
55 | i += 1
56 |
57 | hyp_file.close()
58 | ref_file.close()
59 | query_file.close()
60 |
61 | def extract_results(self):
62 |
63 | eval_file = open('%s/eval.out' % self.config.experiment_dir)
64 | result_file = open('%s/eval.scored' % self.config.experiment_dir, 'w')
65 |
66 | examples = []
67 | hyp_list = []
68 | last_idx = 0
69 | for line in eval_file.readlines():
70 | if line == 'error\n':
71 | continue
72 | idx, score, result = line.split()
73 | idx = int(idx)
74 | score = float(score)
75 | if idx > last_idx:
76 | examples.append(hyp_list)
77 | last_idx += 1
78 | while idx > last_idx:
79 | examples.append([])
80 | last_idx += 1
81 | hyp_list = []
82 | hyp_list.append((result,score))
83 | examples.append(hyp_list)
84 | last_idx += 1
85 |
86 | if self.config.corpus == 'geo' and self.config.run in ('debug', 'dev'):
87 | top = 60
88 | elif self.config.corpus == 'geo' and self.config.run == 'test':
89 | top = 280
90 | else:
91 | assert False
92 | while top > last_idx:
93 | examples.append([])
94 | last_idx += 1
95 |
96 | for hyp_list in examples:
97 | if len(hyp_list) == 0:
98 | print >>result_file, 'empty'
99 | continue
100 |
101 | choice, score = hyp_list[0]
102 | if choice == 'y':
103 | print >>result_file, 'yes', score
104 | else:
105 | print >>result_file, 'no', score
106 |
107 | eval_file.close()
108 | result_file.close()
109 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-0-train.ids:
--------------------------------------------------------------------------------
1 | 4
2 | 7
3 | 12
4 | 23
5 | 41
6 | 52
7 | 68
8 | 70
9 | 77
10 | 120
11 | 133
12 | 142
13 | 143
14 | 164
15 | 171
16 | 180
17 | 254
18 | 261
19 | 263
20 | 269
21 | 274
22 | 294
23 | 310
24 | 314
25 | 353
26 | 393
27 | 404
28 | 419
29 | 453
30 | 460
31 | 461
32 | 484
33 | 487
34 | 493
35 | 514
36 | 559
37 | 564
38 | 575
39 | 591
40 | 602
41 | 619
42 | 648
43 | 660
44 | 674
45 | 682
46 | 683
47 | 730
48 | 734
49 | 738
50 | 749
51 | 750
52 | 784
53 | 814
54 | 820
55 | 834
56 | 841
57 | 842
58 | 858
59 | 859
60 | 877
61 | 0
62 | 2
63 | 8
64 | 22
65 | 30
66 | 43
67 | 92
68 | 97
69 | 103
70 | 111
71 | 119
72 | 137
73 | 156
74 | 178
75 | 192
76 | 221
77 | 252
78 | 256
79 | 260
80 | 271
81 | 288
82 | 293
83 | 298
84 | 308
85 | 309
86 | 318
87 | 322
88 | 346
89 | 384
90 | 411
91 | 442
92 | 452
93 | 470
94 | 471
95 | 478
96 | 490
97 | 492
98 | 506
99 | 513
100 | 535
101 | 553
102 | 557
103 | 562
104 | 568
105 | 574
106 | 579
107 | 583
108 | 613
109 | 634
110 | 643
111 | 653
112 | 695
113 | 699
114 | 706
115 | 758
116 | 759
117 | 768
118 | 771
119 | 795
120 | 866
121 | 17
122 | 44
123 | 49
124 | 55
125 | 59
126 | 61
127 | 62
128 | 95
129 | 100
130 | 121
131 | 136
132 | 155
133 | 185
134 | 227
135 | 230
136 | 257
137 | 266
138 | 282
139 | 289
140 | 291
141 | 324
142 | 337
143 | 342
144 | 345
145 | 355
146 | 357
147 | 364
148 | 397
149 | 400
150 | 423
151 | 429
152 | 444
153 | 463
154 | 503
155 | 505
156 | 507
157 | 519
158 | 520
159 | 529
160 | 538
161 | 545
162 | 563
163 | 593
164 | 605
165 | 632
166 | 646
167 | 665
168 | 675
169 | 690
170 | 704
171 | 710
172 | 715
173 | 740
174 | 747
175 | 755
176 | 765
177 | 779
178 | 780
179 | 822
180 | 864
181 | 21
182 | 24
183 | 36
184 | 67
185 | 75
186 | 79
187 | 83
188 | 90
189 | 112
190 | 144
191 | 154
192 | 160
193 | 165
194 | 170
195 | 176
196 | 215
197 | 237
198 | 258
199 | 262
200 | 265
201 | 278
202 | 279
203 | 299
204 | 312
205 | 338
206 | 360
207 | 361
208 | 371
209 | 392
210 | 427
211 | 441
212 | 466
213 | 476
214 | 480
215 | 494
216 | 501
217 | 509
218 | 510
219 | 528
220 | 580
221 | 597
222 | 644
223 | 652
224 | 673
225 | 680
226 | 686
227 | 693
228 | 700
229 | 709
230 | 739
231 | 751
232 | 773
233 | 783
234 | 800
235 | 805
236 | 807
237 | 855
238 | 857
239 | 863
240 | 873
241 | 10
242 | 11
243 | 18
244 | 20
245 | 54
246 | 57
247 | 74
248 | 130
249 | 140
250 | 150
251 | 159
252 | 169
253 | 182
254 | 205
255 | 212
256 | 216
257 | 222
258 | 276
259 | 302
260 | 303
261 | 316
262 | 340
263 | 344
264 | 352
265 | 354
266 | 377
267 | 379
268 | 383
269 | 388
270 | 389
271 | 424
272 | 431
273 | 434
274 | 449
275 | 456
276 | 479
277 | 533
278 | 536
279 | 544
280 | 555
281 | 566
282 | 595
283 | 603
284 | 612
285 | 630
286 | 650
287 | 668
288 | 670
289 | 677
290 | 694
291 | 697
292 | 702
293 | 708
294 | 712
295 | 718
296 | 756
297 | 766
298 | 835
299 | 839
300 | 845
301 | 19
302 | 31
303 | 32
304 | 56
305 | 86
306 | 89
307 | 94
308 | 106
309 | 113
310 | 174
311 | 193
312 | 194
313 | 202
314 | 248
315 | 259
316 | 264
317 | 280
318 | 307
319 | 366
320 | 370
321 | 376
322 | 385
323 | 394
324 | 443
325 | 445
326 | 448
327 | 450
328 | 462
329 | 481
330 | 496
331 | 497
332 | 518
333 | 523
334 | 525
335 | 556
336 | 578
337 | 589
338 | 594
339 | 610
340 | 623
341 | 625
342 | 638
343 | 667
344 | 679
345 | 728
346 | 733
347 | 736
348 | 748
349 | 777
350 | 789
351 | 797
352 | 801
353 | 806
354 | 823
355 | 830
356 | 833
357 | 838
358 | 847
359 | 867
360 | 872
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-3-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 21
182 | 24
183 | 36
184 | 67
185 | 75
186 | 79
187 | 83
188 | 90
189 | 112
190 | 144
191 | 154
192 | 160
193 | 165
194 | 170
195 | 176
196 | 215
197 | 237
198 | 258
199 | 262
200 | 265
201 | 278
202 | 279
203 | 299
204 | 312
205 | 338
206 | 360
207 | 361
208 | 371
209 | 392
210 | 427
211 | 441
212 | 466
213 | 476
214 | 480
215 | 494
216 | 501
217 | 509
218 | 510
219 | 528
220 | 580
221 | 597
222 | 644
223 | 652
224 | 673
225 | 680
226 | 686
227 | 693
228 | 700
229 | 709
230 | 739
231 | 751
232 | 773
233 | 783
234 | 800
235 | 805
236 | 807
237 | 855
238 | 857
239 | 863
240 | 873
241 | 10
242 | 11
243 | 18
244 | 20
245 | 54
246 | 57
247 | 74
248 | 130
249 | 140
250 | 150
251 | 159
252 | 169
253 | 182
254 | 205
255 | 212
256 | 216
257 | 222
258 | 276
259 | 302
260 | 303
261 | 316
262 | 340
263 | 344
264 | 352
265 | 354
266 | 377
267 | 379
268 | 383
269 | 388
270 | 389
271 | 424
272 | 431
273 | 434
274 | 449
275 | 456
276 | 479
277 | 533
278 | 536
279 | 544
280 | 555
281 | 566
282 | 595
283 | 603
284 | 612
285 | 630
286 | 650
287 | 668
288 | 670
289 | 677
290 | 694
291 | 697
292 | 702
293 | 708
294 | 712
295 | 718
296 | 756
297 | 766
298 | 835
299 | 839
300 | 845
301 | 19
302 | 31
303 | 32
304 | 56
305 | 86
306 | 89
307 | 94
308 | 106
309 | 113
310 | 174
311 | 193
312 | 194
313 | 202
314 | 248
315 | 259
316 | 264
317 | 280
318 | 307
319 | 366
320 | 370
321 | 376
322 | 385
323 | 394
324 | 443
325 | 445
326 | 448
327 | 450
328 | 462
329 | 481
330 | 496
331 | 497
332 | 518
333 | 523
334 | 525
335 | 556
336 | 578
337 | 589
338 | 594
339 | 610
340 | 623
341 | 625
342 | 638
343 | 667
344 | 679
345 | 728
346 | 733
347 | 736
348 | 748
349 | 777
350 | 789
351 | 797
352 | 801
353 | 806
354 | 823
355 | 830
356 | 833
357 | 838
358 | 847
359 | 867
360 | 872
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-4-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 17
182 | 44
183 | 49
184 | 55
185 | 59
186 | 61
187 | 62
188 | 95
189 | 100
190 | 121
191 | 136
192 | 155
193 | 185
194 | 227
195 | 230
196 | 257
197 | 266
198 | 282
199 | 289
200 | 291
201 | 324
202 | 337
203 | 342
204 | 345
205 | 355
206 | 357
207 | 364
208 | 397
209 | 400
210 | 423
211 | 429
212 | 444
213 | 463
214 | 503
215 | 505
216 | 507
217 | 519
218 | 520
219 | 529
220 | 538
221 | 545
222 | 563
223 | 593
224 | 605
225 | 632
226 | 646
227 | 665
228 | 675
229 | 690
230 | 704
231 | 710
232 | 715
233 | 740
234 | 747
235 | 755
236 | 765
237 | 779
238 | 780
239 | 822
240 | 864
241 | 10
242 | 11
243 | 18
244 | 20
245 | 54
246 | 57
247 | 74
248 | 130
249 | 140
250 | 150
251 | 159
252 | 169
253 | 182
254 | 205
255 | 212
256 | 216
257 | 222
258 | 276
259 | 302
260 | 303
261 | 316
262 | 340
263 | 344
264 | 352
265 | 354
266 | 377
267 | 379
268 | 383
269 | 388
270 | 389
271 | 424
272 | 431
273 | 434
274 | 449
275 | 456
276 | 479
277 | 533
278 | 536
279 | 544
280 | 555
281 | 566
282 | 595
283 | 603
284 | 612
285 | 630
286 | 650
287 | 668
288 | 670
289 | 677
290 | 694
291 | 697
292 | 702
293 | 708
294 | 712
295 | 718
296 | 756
297 | 766
298 | 835
299 | 839
300 | 845
301 | 19
302 | 31
303 | 32
304 | 56
305 | 86
306 | 89
307 | 94
308 | 106
309 | 113
310 | 174
311 | 193
312 | 194
313 | 202
314 | 248
315 | 259
316 | 264
317 | 280
318 | 307
319 | 366
320 | 370
321 | 376
322 | 385
323 | 394
324 | 443
325 | 445
326 | 448
327 | 450
328 | 462
329 | 481
330 | 496
331 | 497
332 | 518
333 | 523
334 | 525
335 | 556
336 | 578
337 | 589
338 | 594
339 | 610
340 | 623
341 | 625
342 | 638
343 | 667
344 | 679
345 | 728
346 | 733
347 | 736
348 | 748
349 | 777
350 | 789
351 | 797
352 | 801
353 | 806
354 | 823
355 | 830
356 | 833
357 | 838
358 | 847
359 | 867
360 | 872
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-5-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 17
182 | 44
183 | 49
184 | 55
185 | 59
186 | 61
187 | 62
188 | 95
189 | 100
190 | 121
191 | 136
192 | 155
193 | 185
194 | 227
195 | 230
196 | 257
197 | 266
198 | 282
199 | 289
200 | 291
201 | 324
202 | 337
203 | 342
204 | 345
205 | 355
206 | 357
207 | 364
208 | 397
209 | 400
210 | 423
211 | 429
212 | 444
213 | 463
214 | 503
215 | 505
216 | 507
217 | 519
218 | 520
219 | 529
220 | 538
221 | 545
222 | 563
223 | 593
224 | 605
225 | 632
226 | 646
227 | 665
228 | 675
229 | 690
230 | 704
231 | 710
232 | 715
233 | 740
234 | 747
235 | 755
236 | 765
237 | 779
238 | 780
239 | 822
240 | 864
241 | 21
242 | 24
243 | 36
244 | 67
245 | 75
246 | 79
247 | 83
248 | 90
249 | 112
250 | 144
251 | 154
252 | 160
253 | 165
254 | 170
255 | 176
256 | 215
257 | 237
258 | 258
259 | 262
260 | 265
261 | 278
262 | 279
263 | 299
264 | 312
265 | 338
266 | 360
267 | 361
268 | 371
269 | 392
270 | 427
271 | 441
272 | 466
273 | 476
274 | 480
275 | 494
276 | 501
277 | 509
278 | 510
279 | 528
280 | 580
281 | 597
282 | 644
283 | 652
284 | 673
285 | 680
286 | 686
287 | 693
288 | 700
289 | 709
290 | 739
291 | 751
292 | 773
293 | 783
294 | 800
295 | 805
296 | 807
297 | 855
298 | 857
299 | 863
300 | 873
301 | 19
302 | 31
303 | 32
304 | 56
305 | 86
306 | 89
307 | 94
308 | 106
309 | 113
310 | 174
311 | 193
312 | 194
313 | 202
314 | 248
315 | 259
316 | 264
317 | 280
318 | 307
319 | 366
320 | 370
321 | 376
322 | 385
323 | 394
324 | 443
325 | 445
326 | 448
327 | 450
328 | 462
329 | 481
330 | 496
331 | 497
332 | 518
333 | 523
334 | 525
335 | 556
336 | 578
337 | 589
338 | 594
339 | 610
340 | 623
341 | 625
342 | 638
343 | 667
344 | 679
345 | 728
346 | 733
347 | 736
348 | 748
349 | 777
350 | 789
351 | 797
352 | 801
353 | 806
354 | 823
355 | 830
356 | 833
357 | 838
358 | 847
359 | 867
360 | 872
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-6-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 17
182 | 44
183 | 49
184 | 55
185 | 59
186 | 61
187 | 62
188 | 95
189 | 100
190 | 121
191 | 136
192 | 155
193 | 185
194 | 227
195 | 230
196 | 257
197 | 266
198 | 282
199 | 289
200 | 291
201 | 324
202 | 337
203 | 342
204 | 345
205 | 355
206 | 357
207 | 364
208 | 397
209 | 400
210 | 423
211 | 429
212 | 444
213 | 463
214 | 503
215 | 505
216 | 507
217 | 519
218 | 520
219 | 529
220 | 538
221 | 545
222 | 563
223 | 593
224 | 605
225 | 632
226 | 646
227 | 665
228 | 675
229 | 690
230 | 704
231 | 710
232 | 715
233 | 740
234 | 747
235 | 755
236 | 765
237 | 779
238 | 780
239 | 822
240 | 864
241 | 21
242 | 24
243 | 36
244 | 67
245 | 75
246 | 79
247 | 83
248 | 90
249 | 112
250 | 144
251 | 154
252 | 160
253 | 165
254 | 170
255 | 176
256 | 215
257 | 237
258 | 258
259 | 262
260 | 265
261 | 278
262 | 279
263 | 299
264 | 312
265 | 338
266 | 360
267 | 361
268 | 371
269 | 392
270 | 427
271 | 441
272 | 466
273 | 476
274 | 480
275 | 494
276 | 501
277 | 509
278 | 510
279 | 528
280 | 580
281 | 597
282 | 644
283 | 652
284 | 673
285 | 680
286 | 686
287 | 693
288 | 700
289 | 709
290 | 739
291 | 751
292 | 773
293 | 783
294 | 800
295 | 805
296 | 807
297 | 855
298 | 857
299 | 863
300 | 873
301 | 10
302 | 11
303 | 18
304 | 20
305 | 54
306 | 57
307 | 74
308 | 130
309 | 140
310 | 150
311 | 159
312 | 169
313 | 182
314 | 205
315 | 212
316 | 216
317 | 222
318 | 276
319 | 302
320 | 303
321 | 316
322 | 340
323 | 344
324 | 352
325 | 354
326 | 377
327 | 379
328 | 383
329 | 388
330 | 389
331 | 424
332 | 431
333 | 434
334 | 449
335 | 456
336 | 479
337 | 533
338 | 536
339 | 544
340 | 555
341 | 566
342 | 595
343 | 603
344 | 612
345 | 630
346 | 650
347 | 668
348 | 670
349 | 677
350 | 694
351 | 697
352 | 702
353 | 708
354 | 712
355 | 718
356 | 756
357 | 766
358 | 835
359 | 839
360 | 845
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-7-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 17
182 | 44
183 | 49
184 | 55
185 | 59
186 | 61
187 | 62
188 | 95
189 | 100
190 | 121
191 | 136
192 | 155
193 | 185
194 | 227
195 | 230
196 | 257
197 | 266
198 | 282
199 | 289
200 | 291
201 | 324
202 | 337
203 | 342
204 | 345
205 | 355
206 | 357
207 | 364
208 | 397
209 | 400
210 | 423
211 | 429
212 | 444
213 | 463
214 | 503
215 | 505
216 | 507
217 | 519
218 | 520
219 | 529
220 | 538
221 | 545
222 | 563
223 | 593
224 | 605
225 | 632
226 | 646
227 | 665
228 | 675
229 | 690
230 | 704
231 | 710
232 | 715
233 | 740
234 | 747
235 | 755
236 | 765
237 | 779
238 | 780
239 | 822
240 | 864
241 | 21
242 | 24
243 | 36
244 | 67
245 | 75
246 | 79
247 | 83
248 | 90
249 | 112
250 | 144
251 | 154
252 | 160
253 | 165
254 | 170
255 | 176
256 | 215
257 | 237
258 | 258
259 | 262
260 | 265
261 | 278
262 | 279
263 | 299
264 | 312
265 | 338
266 | 360
267 | 361
268 | 371
269 | 392
270 | 427
271 | 441
272 | 466
273 | 476
274 | 480
275 | 494
276 | 501
277 | 509
278 | 510
279 | 528
280 | 580
281 | 597
282 | 644
283 | 652
284 | 673
285 | 680
286 | 686
287 | 693
288 | 700
289 | 709
290 | 739
291 | 751
292 | 773
293 | 783
294 | 800
295 | 805
296 | 807
297 | 855
298 | 857
299 | 863
300 | 873
301 | 10
302 | 11
303 | 18
304 | 20
305 | 54
306 | 57
307 | 74
308 | 130
309 | 140
310 | 150
311 | 159
312 | 169
313 | 182
314 | 205
315 | 212
316 | 216
317 | 222
318 | 276
319 | 302
320 | 303
321 | 316
322 | 340
323 | 344
324 | 352
325 | 354
326 | 377
327 | 379
328 | 383
329 | 388
330 | 389
331 | 424
332 | 431
333 | 434
334 | 449
335 | 456
336 | 479
337 | 533
338 | 536
339 | 544
340 | 555
341 | 566
342 | 595
343 | 603
344 | 612
345 | 630
346 | 650
347 | 668
348 | 670
349 | 677
350 | 694
351 | 697
352 | 702
353 | 708
354 | 712
355 | 718
356 | 756
357 | 766
358 | 835
359 | 839
360 | 845
361 | 19
362 | 31
363 | 32
364 | 56
365 | 86
366 | 89
367 | 94
368 | 106
369 | 113
370 | 174
371 | 193
372 | 194
373 | 202
374 | 248
375 | 259
376 | 264
377 | 280
378 | 307
379 | 366
380 | 370
381 | 376
382 | 385
383 | 394
384 | 443
385 | 445
386 | 448
387 | 450
388 | 462
389 | 481
390 | 496
391 | 497
392 | 518
393 | 523
394 | 525
395 | 556
396 | 578
397 | 589
398 | 594
399 | 610
400 | 623
401 | 625
402 | 638
403 | 667
404 | 679
405 | 728
406 | 733
407 | 736
408 | 748
409 | 777
410 | 789
411 | 797
412 | 801
413 | 806
414 | 823
415 | 830
416 | 833
417 | 838
418 | 847
419 | 867
420 | 872
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-9-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 17
182 | 44
183 | 49
184 | 55
185 | 59
186 | 61
187 | 62
188 | 95
189 | 100
190 | 121
191 | 136
192 | 155
193 | 185
194 | 227
195 | 230
196 | 257
197 | 266
198 | 282
199 | 289
200 | 291
201 | 324
202 | 337
203 | 342
204 | 345
205 | 355
206 | 357
207 | 364
208 | 397
209 | 400
210 | 423
211 | 429
212 | 444
213 | 463
214 | 503
215 | 505
216 | 507
217 | 519
218 | 520
219 | 529
220 | 538
221 | 545
222 | 563
223 | 593
224 | 605
225 | 632
226 | 646
227 | 665
228 | 675
229 | 690
230 | 704
231 | 710
232 | 715
233 | 740
234 | 747
235 | 755
236 | 765
237 | 779
238 | 780
239 | 822
240 | 864
241 | 21
242 | 24
243 | 36
244 | 67
245 | 75
246 | 79
247 | 83
248 | 90
249 | 112
250 | 144
251 | 154
252 | 160
253 | 165
254 | 170
255 | 176
256 | 215
257 | 237
258 | 258
259 | 262
260 | 265
261 | 278
262 | 279
263 | 299
264 | 312
265 | 338
266 | 360
267 | 361
268 | 371
269 | 392
270 | 427
271 | 441
272 | 466
273 | 476
274 | 480
275 | 494
276 | 501
277 | 509
278 | 510
279 | 528
280 | 580
281 | 597
282 | 644
283 | 652
284 | 673
285 | 680
286 | 686
287 | 693
288 | 700
289 | 709
290 | 739
291 | 751
292 | 773
293 | 783
294 | 800
295 | 805
296 | 807
297 | 855
298 | 857
299 | 863
300 | 873
301 | 10
302 | 11
303 | 18
304 | 20
305 | 54
306 | 57
307 | 74
308 | 130
309 | 140
310 | 150
311 | 159
312 | 169
313 | 182
314 | 205
315 | 212
316 | 216
317 | 222
318 | 276
319 | 302
320 | 303
321 | 316
322 | 340
323 | 344
324 | 352
325 | 354
326 | 377
327 | 379
328 | 383
329 | 388
330 | 389
331 | 424
332 | 431
333 | 434
334 | 449
335 | 456
336 | 479
337 | 533
338 | 536
339 | 544
340 | 555
341 | 566
342 | 595
343 | 603
344 | 612
345 | 630
346 | 650
347 | 668
348 | 670
349 | 677
350 | 694
351 | 697
352 | 702
353 | 708
354 | 712
355 | 718
356 | 756
357 | 766
358 | 835
359 | 839
360 | 845
361 | 19
362 | 31
363 | 32
364 | 56
365 | 86
366 | 89
367 | 94
368 | 106
369 | 113
370 | 174
371 | 193
372 | 194
373 | 202
374 | 248
375 | 259
376 | 264
377 | 280
378 | 307
379 | 366
380 | 370
381 | 376
382 | 385
383 | 394
384 | 443
385 | 445
386 | 448
387 | 450
388 | 462
389 | 481
390 | 496
391 | 497
392 | 518
393 | 523
394 | 525
395 | 556
396 | 578
397 | 589
398 | 594
399 | 610
400 | 623
401 | 625
402 | 638
403 | 667
404 | 679
405 | 728
406 | 733
407 | 736
408 | 748
409 | 777
410 | 789
411 | 797
412 | 801
413 | 806
414 | 823
415 | 830
416 | 833
417 | 838
418 | 847
419 | 867
420 | 872
421 | 5
422 | 47
423 | 48
424 | 73
425 | 76
426 | 81
427 | 85
428 | 91
429 | 118
430 | 126
431 | 128
432 | 138
433 | 139
434 | 147
435 | 153
436 | 163
437 | 173
438 | 191
439 | 201
440 | 206
441 | 211
442 | 218
443 | 223
444 | 233
445 | 234
446 | 236
447 | 239
448 | 240
449 | 241
450 | 246
451 | 311
452 | 317
453 | 343
454 | 363
455 | 387
456 | 391
457 | 396
458 | 401
459 | 418
460 | 426
461 | 439
462 | 457
463 | 502
464 | 549
465 | 565
466 | 585
467 | 590
468 | 600
469 | 659
470 | 661
471 | 688
472 | 689
473 | 761
474 | 762
475 | 763
476 | 767
477 | 804
478 | 853
479 | 871
480 | 876
481 | 9
482 | 13
483 | 14
484 | 28
485 | 58
486 | 65
487 | 66
488 | 69
489 | 72
490 | 78
491 | 102
492 | 145
493 | 186
494 | 189
495 | 217
496 | 244
497 | 267
498 | 306
499 | 327
500 | 330
501 | 351
502 | 362
503 | 367
504 | 407
505 | 410
506 | 415
507 | 430
508 | 447
509 | 465
510 | 473
511 | 474
512 | 512
513 | 527
514 | 530
515 | 540
516 | 541
517 | 560
518 | 561
519 | 567
520 | 569
521 | 584
522 | 587
523 | 607
524 | 609
525 | 614
526 | 624
527 | 647
528 | 651
529 | 655
530 | 681
531 | 691
532 | 726
533 | 727
534 | 752
535 | 790
536 | 817
537 | 846
538 | 848
539 | 854
540 | 856
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-1-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 0
62 | 2
63 | 8
64 | 22
65 | 30
66 | 43
67 | 92
68 | 97
69 | 103
70 | 111
71 | 119
72 | 137
73 | 156
74 | 178
75 | 192
76 | 221
77 | 252
78 | 256
79 | 260
80 | 271
81 | 288
82 | 293
83 | 298
84 | 308
85 | 309
86 | 318
87 | 322
88 | 346
89 | 384
90 | 411
91 | 442
92 | 452
93 | 470
94 | 471
95 | 478
96 | 490
97 | 492
98 | 506
99 | 513
100 | 535
101 | 553
102 | 557
103 | 562
104 | 568
105 | 574
106 | 579
107 | 583
108 | 613
109 | 634
110 | 643
111 | 653
112 | 695
113 | 699
114 | 706
115 | 758
116 | 759
117 | 768
118 | 771
119 | 795
120 | 866
121 | 17
122 | 44
123 | 49
124 | 55
125 | 59
126 | 61
127 | 62
128 | 95
129 | 100
130 | 121
131 | 136
132 | 155
133 | 185
134 | 227
135 | 230
136 | 257
137 | 266
138 | 282
139 | 289
140 | 291
141 | 324
142 | 337
143 | 342
144 | 345
145 | 355
146 | 357
147 | 364
148 | 397
149 | 400
150 | 423
151 | 429
152 | 444
153 | 463
154 | 503
155 | 505
156 | 507
157 | 519
158 | 520
159 | 529
160 | 538
161 | 545
162 | 563
163 | 593
164 | 605
165 | 632
166 | 646
167 | 665
168 | 675
169 | 690
170 | 704
171 | 710
172 | 715
173 | 740
174 | 747
175 | 755
176 | 765
177 | 779
178 | 780
179 | 822
180 | 864
181 | 21
182 | 24
183 | 36
184 | 67
185 | 75
186 | 79
187 | 83
188 | 90
189 | 112
190 | 144
191 | 154
192 | 160
193 | 165
194 | 170
195 | 176
196 | 215
197 | 237
198 | 258
199 | 262
200 | 265
201 | 278
202 | 279
203 | 299
204 | 312
205 | 338
206 | 360
207 | 361
208 | 371
209 | 392
210 | 427
211 | 441
212 | 466
213 | 476
214 | 480
215 | 494
216 | 501
217 | 509
218 | 510
219 | 528
220 | 580
221 | 597
222 | 644
223 | 652
224 | 673
225 | 680
226 | 686
227 | 693
228 | 700
229 | 709
230 | 739
231 | 751
232 | 773
233 | 783
234 | 800
235 | 805
236 | 807
237 | 855
238 | 857
239 | 863
240 | 873
241 | 10
242 | 11
243 | 18
244 | 20
245 | 54
246 | 57
247 | 74
248 | 130
249 | 140
250 | 150
251 | 159
252 | 169
253 | 182
254 | 205
255 | 212
256 | 216
257 | 222
258 | 276
259 | 302
260 | 303
261 | 316
262 | 340
263 | 344
264 | 352
265 | 354
266 | 377
267 | 379
268 | 383
269 | 388
270 | 389
271 | 424
272 | 431
273 | 434
274 | 449
275 | 456
276 | 479
277 | 533
278 | 536
279 | 544
280 | 555
281 | 566
282 | 595
283 | 603
284 | 612
285 | 630
286 | 650
287 | 668
288 | 670
289 | 677
290 | 694
291 | 697
292 | 702
293 | 708
294 | 712
295 | 718
296 | 756
297 | 766
298 | 835
299 | 839
300 | 845
301 | 19
302 | 31
303 | 32
304 | 56
305 | 86
306 | 89
307 | 94
308 | 106
309 | 113
310 | 174
311 | 193
312 | 194
313 | 202
314 | 248
315 | 259
316 | 264
317 | 280
318 | 307
319 | 366
320 | 370
321 | 376
322 | 385
323 | 394
324 | 443
325 | 445
326 | 448
327 | 450
328 | 462
329 | 481
330 | 496
331 | 497
332 | 518
333 | 523
334 | 525
335 | 556
336 | 578
337 | 589
338 | 594
339 | 610
340 | 623
341 | 625
342 | 638
343 | 667
344 | 679
345 | 728
346 | 733
347 | 736
348 | 748
349 | 777
350 | 789
351 | 797
352 | 801
353 | 806
354 | 823
355 | 830
356 | 833
357 | 838
358 | 847
359 | 867
360 | 872
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-2-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 17
122 | 44
123 | 49
124 | 55
125 | 59
126 | 61
127 | 62
128 | 95
129 | 100
130 | 121
131 | 136
132 | 155
133 | 185
134 | 227
135 | 230
136 | 257
137 | 266
138 | 282
139 | 289
140 | 291
141 | 324
142 | 337
143 | 342
144 | 345
145 | 355
146 | 357
147 | 364
148 | 397
149 | 400
150 | 423
151 | 429
152 | 444
153 | 463
154 | 503
155 | 505
156 | 507
157 | 519
158 | 520
159 | 529
160 | 538
161 | 545
162 | 563
163 | 593
164 | 605
165 | 632
166 | 646
167 | 665
168 | 675
169 | 690
170 | 704
171 | 710
172 | 715
173 | 740
174 | 747
175 | 755
176 | 765
177 | 779
178 | 780
179 | 822
180 | 864
181 | 21
182 | 24
183 | 36
184 | 67
185 | 75
186 | 79
187 | 83
188 | 90
189 | 112
190 | 144
191 | 154
192 | 160
193 | 165
194 | 170
195 | 176
196 | 215
197 | 237
198 | 258
199 | 262
200 | 265
201 | 278
202 | 279
203 | 299
204 | 312
205 | 338
206 | 360
207 | 361
208 | 371
209 | 392
210 | 427
211 | 441
212 | 466
213 | 476
214 | 480
215 | 494
216 | 501
217 | 509
218 | 510
219 | 528
220 | 580
221 | 597
222 | 644
223 | 652
224 | 673
225 | 680
226 | 686
227 | 693
228 | 700
229 | 709
230 | 739
231 | 751
232 | 773
233 | 783
234 | 800
235 | 805
236 | 807
237 | 855
238 | 857
239 | 863
240 | 873
241 | 10
242 | 11
243 | 18
244 | 20
245 | 54
246 | 57
247 | 74
248 | 130
249 | 140
250 | 150
251 | 159
252 | 169
253 | 182
254 | 205
255 | 212
256 | 216
257 | 222
258 | 276
259 | 302
260 | 303
261 | 316
262 | 340
263 | 344
264 | 352
265 | 354
266 | 377
267 | 379
268 | 383
269 | 388
270 | 389
271 | 424
272 | 431
273 | 434
274 | 449
275 | 456
276 | 479
277 | 533
278 | 536
279 | 544
280 | 555
281 | 566
282 | 595
283 | 603
284 | 612
285 | 630
286 | 650
287 | 668
288 | 670
289 | 677
290 | 694
291 | 697
292 | 702
293 | 708
294 | 712
295 | 718
296 | 756
297 | 766
298 | 835
299 | 839
300 | 845
301 | 19
302 | 31
303 | 32
304 | 56
305 | 86
306 | 89
307 | 94
308 | 106
309 | 113
310 | 174
311 | 193
312 | 194
313 | 202
314 | 248
315 | 259
316 | 264
317 | 280
318 | 307
319 | 366
320 | 370
321 | 376
322 | 385
323 | 394
324 | 443
325 | 445
326 | 448
327 | 450
328 | 462
329 | 481
330 | 496
331 | 497
332 | 518
333 | 523
334 | 525
335 | 556
336 | 578
337 | 589
338 | 594
339 | 610
340 | 623
341 | 625
342 | 638
343 | 667
344 | 679
345 | 728
346 | 733
347 | 736
348 | 748
349 | 777
350 | 789
351 | 797
352 | 801
353 | 806
354 | 823
355 | 830
356 | 833
357 | 838
358 | 847
359 | 867
360 | 872
361 | 5
362 | 47
363 | 48
364 | 73
365 | 76
366 | 81
367 | 85
368 | 91
369 | 118
370 | 126
371 | 128
372 | 138
373 | 139
374 | 147
375 | 153
376 | 163
377 | 173
378 | 191
379 | 201
380 | 206
381 | 211
382 | 218
383 | 223
384 | 233
385 | 234
386 | 236
387 | 239
388 | 240
389 | 241
390 | 246
391 | 311
392 | 317
393 | 343
394 | 363
395 | 387
396 | 391
397 | 396
398 | 401
399 | 418
400 | 426
401 | 439
402 | 457
403 | 502
404 | 549
405 | 565
406 | 585
407 | 590
408 | 600
409 | 659
410 | 661
411 | 688
412 | 689
413 | 761
414 | 762
415 | 763
416 | 767
417 | 804
418 | 853
419 | 871
420 | 876
421 | 9
422 | 13
423 | 14
424 | 28
425 | 58
426 | 65
427 | 66
428 | 69
429 | 72
430 | 78
431 | 102
432 | 145
433 | 186
434 | 189
435 | 217
436 | 244
437 | 267
438 | 306
439 | 327
440 | 330
441 | 351
442 | 362
443 | 367
444 | 407
445 | 410
446 | 415
447 | 430
448 | 447
449 | 465
450 | 473
451 | 474
452 | 512
453 | 527
454 | 530
455 | 540
456 | 541
457 | 560
458 | 561
459 | 567
460 | 569
461 | 584
462 | 587
463 | 607
464 | 609
465 | 614
466 | 624
467 | 647
468 | 651
469 | 655
470 | 681
471 | 691
472 | 726
473 | 727
474 | 752
475 | 790
476 | 817
477 | 846
478 | 848
479 | 854
480 | 856
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/data/geo/folds600/fold-8-train.ids:
--------------------------------------------------------------------------------
1 | 1
2 | 35
3 | 51
4 | 63
5 | 105
6 | 115
7 | 116
8 | 122
9 | 127
10 | 131
11 | 146
12 | 151
13 | 157
14 | 162
15 | 181
16 | 187
17 | 200
18 | 210
19 | 224
20 | 226
21 | 228
22 | 251
23 | 253
24 | 270
25 | 283
26 | 287
27 | 290
28 | 292
29 | 313
30 | 321
31 | 358
32 | 406
33 | 409
34 | 414
35 | 417
36 | 425
37 | 435
38 | 485
39 | 500
40 | 508
41 | 522
42 | 534
43 | 554
44 | 558
45 | 571
46 | 617
47 | 620
48 | 621
49 | 633
50 | 640
51 | 649
52 | 662
53 | 696
54 | 713
55 | 753
56 | 809
57 | 812
58 | 849
59 | 851
60 | 869
61 | 4
62 | 7
63 | 12
64 | 23
65 | 41
66 | 52
67 | 68
68 | 70
69 | 77
70 | 120
71 | 133
72 | 142
73 | 143
74 | 164
75 | 171
76 | 180
77 | 254
78 | 261
79 | 263
80 | 269
81 | 274
82 | 294
83 | 310
84 | 314
85 | 353
86 | 393
87 | 404
88 | 419
89 | 453
90 | 460
91 | 461
92 | 484
93 | 487
94 | 493
95 | 514
96 | 559
97 | 564
98 | 575
99 | 591
100 | 602
101 | 619
102 | 648
103 | 660
104 | 674
105 | 682
106 | 683
107 | 730
108 | 734
109 | 738
110 | 749
111 | 750
112 | 784
113 | 814
114 | 820
115 | 834
116 | 841
117 | 842
118 | 858
119 | 859
120 | 877
121 | 0
122 | 2
123 | 8
124 | 22
125 | 30
126 | 43
127 | 92
128 | 97
129 | 103
130 | 111
131 | 119
132 | 137
133 | 156
134 | 178
135 | 192
136 | 221
137 | 252
138 | 256
139 | 260
140 | 271
141 | 288
142 | 293
143 | 298
144 | 308
145 | 309
146 | 318
147 | 322
148 | 346
149 | 384
150 | 411
151 | 442
152 | 452
153 | 470
154 | 471
155 | 478
156 | 490
157 | 492
158 | 506
159 | 513
160 | 535
161 | 553
162 | 557
163 | 562
164 | 568
165 | 574
166 | 579
167 | 583
168 | 613
169 | 634
170 | 643
171 | 653
172 | 695
173 | 699
174 | 706
175 | 758
176 | 759
177 | 768
178 | 771
179 | 795
180 | 866
181 | 17
182 | 44
183 | 49
184 | 55
185 | 59
186 | 61
187 | 62
188 | 95
189 | 100
190 | 121
191 | 136
192 | 155
193 | 185
194 | 227
195 | 230
196 | 257
197 | 266
198 | 282
199 | 289
200 | 291
201 | 324
202 | 337
203 | 342
204 | 345
205 | 355
206 | 357
207 | 364
208 | 397
209 | 400
210 | 423
211 | 429
212 | 444
213 | 463
214 | 503
215 | 505
216 | 507
217 | 519
218 | 520
219 | 529
220 | 538
221 | 545
222 | 563
223 | 593
224 | 605
225 | 632
226 | 646
227 | 665
228 | 675
229 | 690
230 | 704
231 | 710
232 | 715
233 | 740
234 | 747
235 | 755
236 | 765
237 | 779
238 | 780
239 | 822
240 | 864
241 | 21
242 | 24
243 | 36
244 | 67
245 | 75
246 | 79
247 | 83
248 | 90
249 | 112
250 | 144
251 | 154
252 | 160
253 | 165
254 | 170
255 | 176
256 | 215
257 | 237
258 | 258
259 | 262
260 | 265
261 | 278
262 | 279
263 | 299
264 | 312
265 | 338
266 | 360
267 | 361
268 | 371
269 | 392
270 | 427
271 | 441
272 | 466
273 | 476
274 | 480
275 | 494
276 | 501
277 | 509
278 | 510
279 | 528
280 | 580
281 | 597
282 | 644
283 | 652
284 | 673
285 | 680
286 | 686
287 | 693
288 | 700
289 | 709
290 | 739
291 | 751
292 | 773
293 | 783
294 | 800
295 | 805
296 | 807
297 | 855
298 | 857
299 | 863
300 | 873
301 | 10
302 | 11
303 | 18
304 | 20
305 | 54
306 | 57
307 | 74
308 | 130
309 | 140
310 | 150
311 | 159
312 | 169
313 | 182
314 | 205
315 | 212
316 | 216
317 | 222
318 | 276
319 | 302
320 | 303
321 | 316
322 | 340
323 | 344
324 | 352
325 | 354
326 | 377
327 | 379
328 | 383
329 | 388
330 | 389
331 | 424
332 | 431
333 | 434
334 | 449
335 | 456
336 | 479
337 | 533
338 | 536
339 | 544
340 | 555
341 | 566
342 | 595
343 | 603
344 | 612
345 | 630
346 | 650
347 | 668
348 | 670
349 | 677
350 | 694
351 | 697
352 | 702
353 | 708
354 | 712
355 | 718
356 | 756
357 | 766
358 | 835
359 | 839
360 | 845
361 | 19
362 | 31
363 | 32
364 | 56
365 | 86
366 | 89
367 | 94
368 | 106
369 | 113
370 | 174
371 | 193
372 | 194
373 | 202
374 | 248
375 | 259
376 | 264
377 | 280
378 | 307
379 | 366
380 | 370
381 | 376
382 | 385
383 | 394
384 | 443
385 | 445
386 | 448
387 | 450
388 | 462
389 | 481
390 | 496
391 | 497
392 | 518
393 | 523
394 | 525
395 | 556
396 | 578
397 | 589
398 | 594
399 | 610
400 | 623
401 | 625
402 | 638
403 | 667
404 | 679
405 | 728
406 | 733
407 | 736
408 | 748
409 | 777
410 | 789
411 | 797
412 | 801
413 | 806
414 | 823
415 | 830
416 | 833
417 | 838
418 | 847
419 | 867
420 | 872
421 | 5
422 | 47
423 | 48
424 | 73
425 | 76
426 | 81
427 | 85
428 | 91
429 | 118
430 | 126
431 | 128
432 | 138
433 | 139
434 | 147
435 | 153
436 | 163
437 | 173
438 | 191
439 | 201
440 | 206
441 | 211
442 | 218
443 | 223
444 | 233
445 | 234
446 | 236
447 | 239
448 | 240
449 | 241
450 | 246
451 | 311
452 | 317
453 | 343
454 | 363
455 | 387
456 | 391
457 | 396
458 | 401
459 | 418
460 | 426
461 | 439
462 | 457
463 | 502
464 | 549
465 | 565
466 | 585
467 | 590
468 | 600
469 | 659
470 | 661
471 | 688
472 | 689
473 | 761
474 | 762
475 | 763
476 | 767
477 | 804
478 | 853
479 | 871
480 | 876
481 | 27
482 | 42
483 | 71
484 | 80
485 | 96
486 | 98
487 | 109
488 | 123
489 | 124
490 | 129
491 | 175
492 | 177
493 | 197
494 | 198
495 | 219
496 | 235
497 | 268
498 | 277
499 | 284
500 | 285
501 | 297
502 | 315
503 | 326
504 | 329
505 | 335
506 | 374
507 | 421
508 | 458
509 | 488
510 | 499
511 | 532
512 | 539
513 | 543
514 | 570
515 | 576
516 | 588
517 | 601
518 | 606
519 | 622
520 | 626
521 | 627
522 | 628
523 | 629
524 | 637
525 | 641
526 | 654
527 | 658
528 | 671
529 | 672
530 | 685
531 | 714
532 | 717
533 | 720
534 | 741
535 | 764
536 | 770
537 | 772
538 | 821
539 | 844
540 | 878
541 |
--------------------------------------------------------------------------------
/src/moses.py:
--------------------------------------------------------------------------------
1 | import logging
2 | import os
3 | import subprocess
4 | import gzip
5 |
6 | class Moses:
7 |
8 | def __init__(self, config):
9 | self.config = config
10 |
11 | def run_train(self):
12 | args = [self.config.moses_train,
13 | '--root-dir', self.config.experiment_dir,
14 | '--corpus', '%s/%s' % (self.config.experiment_dir,
15 | self.config.train_name),
16 | '--f', self.config.src,
17 | '--e', self.config.tgt,
18 | '--lm', '0:3:%s/%s.arpa' % (self.config.experiment_dir, self.config.tgt),
19 | #'-score-options', "'--OnlyDirect --NoPhraseCount'"
20 | '--alignment', self.config.symm]
21 | if self.config.model == 'hier':
22 | args += ['-hierarchical', '-glue-grammar']
23 |
24 | logging.info(' '.join(args))
25 |
26 | log = open('%s/train.log' % self.config.experiment_dir, 'w')
27 | p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=log)
28 | p.wait()
29 | log.close()
30 |
31 | def run_retrain(self):
32 | old_train_nl = '%s/%s.nl' % (self.config.experiment_dir,
33 | self.config.train_name)
34 | old_train_mrl = '%s/%s.mrl' % (self.config.experiment_dir,
35 | self.config.train_name)
36 | moved_train_nl = '%s.notune' % old_train_nl
37 | moved_train_mrl = '%s.notune' % old_train_mrl
38 | tune_nl = '%s/tune.nl' % self.config.experiment_dir
39 | tune_mrl = '%s/tune.mrl' % self.config.experiment_dir
40 | os.rename(old_train_nl, moved_train_nl)
41 | os.rename(old_train_mrl, moved_train_mrl)
42 | with open(old_train_nl, 'w') as rt_train_nl:
43 | subprocess.call(['cat', moved_train_nl, tune_nl], stdout=rt_train_nl)
44 | with open(old_train_mrl, 'w') as rt_train_mrl:
45 | subprocess.call(['cat', moved_train_mrl, tune_mrl], stdout=rt_train_mrl)
46 |
47 | os.remove('%s/model/extract.inv.gz' % self.config.experiment_dir)
48 | os.remove('%s/model/extract.gz' % self.config.experiment_dir)
49 | if self.config.model == 'hier':
50 | os.remove('%s/model/rule-table.gz' % self.config.experiment_dir)
51 | else:
52 | os.remove('%s/model/phrase-table.gz' % self.config.experiment_dir)
53 |
54 | self.run_train()
55 |
56 | def parens_ok(self, line):
57 | mrl_part = line.split(' ||| ')[1]
58 | tokens = [t[-1] for t in mrl_part.split() if t[-2] == '@']
59 | tokens.reverse()
60 | stack = []
61 | while tokens:
62 | t = tokens.pop()
63 | assert t != '*'
64 | if t == 's':
65 | t = 0
66 | t = int(t)
67 | if t > 0:
68 | stack.append(t)
69 | else:
70 | while stack:
71 | top = stack.pop()
72 | if top > 1:
73 | stack.append(top - 1)
74 | break
75 | if tokens and not stack:
76 | return False
77 | return True
78 |
79 | def filter_phrase_table(self):
80 | table_name = 'phrase' if self.config.model == 'phrase' else 'rule'
81 | oldname = '%s/model/%s-table.gz' % (self.config.experiment_dir, table_name)
82 | newname = '%s/model/%s-table.old.gz' % (self.config.experiment_dir, table_name)
83 | os.rename(oldname, newname)
84 |
85 | with gzip.open(oldname, 'w') as filtered_table_f:
86 | with gzip.open(newname, 'r') as old_table_f:
87 | for line in old_table_f:
88 | if self.parens_ok(line):
89 | print >>filtered_table_f, line,
90 |
91 | def run_tune(self):
92 | wd = os.getcwd()
93 | os.chdir(self.config.experiment_dir)
94 | args = [self.config.moses_tune,
95 | '%s/tune.%s' % (self.config.experiment_dir, self.config.src),
96 | '%s/tune.%s' % (self.config.experiment_dir, self.config.tgt)]
97 | if self.config.model == 'hier':
98 | args += [self.config.moses_decode_hier]
99 | else:
100 | args += [self.config.moses_decode_phrase]
101 | args += ['%s/model/moses.ini' % self.config.experiment_dir,
102 | '--mertdir', '%s/dist/bin' % self.config.moses]
103 | if self.config.model == 'hier':
104 | args += ['--filtercmd',
105 | '%s/scripts/training/filter-model-given-input.pl --Hierarchical'\
106 | % self.config.moses]
107 |
108 | log = open('%s/tune.log' % self.config.experiment_dir, 'w')
109 | p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=log)
110 | p.wait()
111 | log.close()
112 | os.chdir(wd)
113 |
114 | def run_decode(self):
115 | if self.config.model == 'phrase':
116 | args = [self.config.moses_decode_phrase]
117 | elif self.config.model == 'hier':
118 | args = [self.config.moses_decode_hier]
119 | else:
120 | assert False
121 |
122 | if self.config.run == 'test':
123 | args += ['-f', '%s/mert-work/moses.ini' % self.config.experiment_dir]
124 | else:
125 | args += ['-f', '%s/model/moses.ini' % self.config.experiment_dir]
126 | #args += ['-f', '%s/model/moses.ini' % self.config.experiment_dir]
127 |
128 | args += ['-drop-unknown',
129 | '-n-best-list', '%s/hyp.%s.nbest' % (self.config.experiment_dir, self.config.tgt),
130 | str(self.config.nbest), 'distinct',
131 | '-threads', '3']
132 |
133 | #nullfile = open(os.devnull, 'w')
134 | infile = open('%s/test.%s' % (self.config.experiment_dir, self.config.src))
135 | outfile = open('%s/hyp.%s' % (self.config.experiment_dir, self.config.tgt), 'w')
136 | log = open('%s/decode.log' % self.config.experiment_dir, 'w')
137 | p = subprocess.Popen(args, stdin=infile, stdout=outfile, stderr=log)
138 | p.wait()
139 | infile.close()
140 | log.close()
141 | outfile.close()
142 |
--------------------------------------------------------------------------------
/data/geo/split880/fold-0-train.ids:
--------------------------------------------------------------------------------
1 | 0
2 | 1
3 | 2
4 | 4
5 | 5
6 | 7
7 | 8
8 | 9
9 | 10
10 | 11
11 | 12
12 | 13
13 | 14
14 | 17
15 | 18
16 | 19
17 | 20
18 | 21
19 | 22
20 | 23
21 | 24
22 | 27
23 | 28
24 | 30
25 | 31
26 | 32
27 | 35
28 | 36
29 | 41
30 | 42
31 | 43
32 | 44
33 | 47
34 | 48
35 | 49
36 | 51
37 | 52
38 | 54
39 | 55
40 | 56
41 | 57
42 | 58
43 | 59
44 | 61
45 | 62
46 | 63
47 | 65
48 | 66
49 | 67
50 | 68
51 | 69
52 | 70
53 | 71
54 | 72
55 | 73
56 | 74
57 | 75
58 | 76
59 | 77
60 | 78
61 | 79
62 | 80
63 | 81
64 | 83
65 | 85
66 | 86
67 | 89
68 | 90
69 | 91
70 | 92
71 | 94
72 | 95
73 | 96
74 | 97
75 | 98
76 | 100
77 | 102
78 | 103
79 | 105
80 | 106
81 | 109
82 | 111
83 | 112
84 | 113
85 | 115
86 | 116
87 | 118
88 | 119
89 | 120
90 | 121
91 | 122
92 | 123
93 | 124
94 | 126
95 | 127
96 | 128
97 | 129
98 | 130
99 | 131
100 | 133
101 | 136
102 | 137
103 | 138
104 | 139
105 | 140
106 | 142
107 | 143
108 | 144
109 | 145
110 | 146
111 | 147
112 | 150
113 | 151
114 | 153
115 | 154
116 | 155
117 | 156
118 | 157
119 | 159
120 | 160
121 | 162
122 | 163
123 | 164
124 | 165
125 | 169
126 | 170
127 | 171
128 | 173
129 | 174
130 | 175
131 | 176
132 | 177
133 | 178
134 | 180
135 | 181
136 | 182
137 | 185
138 | 186
139 | 187
140 | 189
141 | 191
142 | 192
143 | 193
144 | 194
145 | 197
146 | 198
147 | 200
148 | 201
149 | 202
150 | 205
151 | 206
152 | 210
153 | 211
154 | 212
155 | 215
156 | 216
157 | 217
158 | 218
159 | 219
160 | 221
161 | 222
162 | 223
163 | 224
164 | 226
165 | 227
166 | 228
167 | 230
168 | 233
169 | 234
170 | 235
171 | 236
172 | 237
173 | 239
174 | 240
175 | 241
176 | 244
177 | 246
178 | 248
179 | 251
180 | 252
181 | 253
182 | 254
183 | 256
184 | 257
185 | 258
186 | 259
187 | 260
188 | 261
189 | 262
190 | 263
191 | 264
192 | 265
193 | 266
194 | 267
195 | 268
196 | 269
197 | 270
198 | 271
199 | 274
200 | 276
201 | 277
202 | 278
203 | 279
204 | 280
205 | 282
206 | 283
207 | 284
208 | 285
209 | 287
210 | 288
211 | 289
212 | 290
213 | 291
214 | 292
215 | 293
216 | 294
217 | 297
218 | 298
219 | 299
220 | 302
221 | 303
222 | 306
223 | 307
224 | 308
225 | 309
226 | 310
227 | 311
228 | 312
229 | 313
230 | 314
231 | 315
232 | 316
233 | 317
234 | 318
235 | 321
236 | 322
237 | 324
238 | 326
239 | 327
240 | 329
241 | 330
242 | 335
243 | 337
244 | 338
245 | 340
246 | 342
247 | 343
248 | 344
249 | 345
250 | 346
251 | 351
252 | 352
253 | 353
254 | 354
255 | 355
256 | 357
257 | 358
258 | 360
259 | 361
260 | 362
261 | 363
262 | 364
263 | 366
264 | 367
265 | 370
266 | 371
267 | 374
268 | 376
269 | 377
270 | 379
271 | 383
272 | 384
273 | 385
274 | 387
275 | 388
276 | 389
277 | 391
278 | 392
279 | 393
280 | 394
281 | 396
282 | 397
283 | 400
284 | 401
285 | 404
286 | 406
287 | 407
288 | 409
289 | 410
290 | 411
291 | 414
292 | 415
293 | 417
294 | 418
295 | 419
296 | 421
297 | 423
298 | 424
299 | 425
300 | 426
301 | 427
302 | 429
303 | 430
304 | 431
305 | 434
306 | 435
307 | 439
308 | 441
309 | 442
310 | 443
311 | 444
312 | 445
313 | 447
314 | 448
315 | 449
316 | 450
317 | 452
318 | 453
319 | 456
320 | 457
321 | 458
322 | 460
323 | 461
324 | 462
325 | 463
326 | 465
327 | 466
328 | 470
329 | 471
330 | 473
331 | 474
332 | 476
333 | 478
334 | 479
335 | 480
336 | 481
337 | 484
338 | 485
339 | 487
340 | 488
341 | 490
342 | 492
343 | 493
344 | 494
345 | 496
346 | 497
347 | 499
348 | 500
349 | 501
350 | 502
351 | 503
352 | 505
353 | 506
354 | 507
355 | 508
356 | 509
357 | 510
358 | 512
359 | 513
360 | 514
361 | 518
362 | 519
363 | 520
364 | 522
365 | 523
366 | 525
367 | 527
368 | 528
369 | 529
370 | 530
371 | 532
372 | 533
373 | 534
374 | 535
375 | 536
376 | 538
377 | 539
378 | 540
379 | 541
380 | 543
381 | 544
382 | 545
383 | 549
384 | 553
385 | 554
386 | 555
387 | 556
388 | 557
389 | 558
390 | 559
391 | 560
392 | 561
393 | 562
394 | 563
395 | 564
396 | 565
397 | 566
398 | 567
399 | 568
400 | 569
401 | 570
402 | 571
403 | 574
404 | 575
405 | 576
406 | 578
407 | 579
408 | 580
409 | 583
410 | 584
411 | 585
412 | 587
413 | 588
414 | 589
415 | 590
416 | 591
417 | 593
418 | 594
419 | 595
420 | 597
421 | 600
422 | 601
423 | 602
424 | 603
425 | 605
426 | 606
427 | 607
428 | 609
429 | 610
430 | 612
431 | 613
432 | 614
433 | 617
434 | 619
435 | 620
436 | 621
437 | 622
438 | 623
439 | 624
440 | 625
441 | 626
442 | 627
443 | 628
444 | 629
445 | 630
446 | 632
447 | 633
448 | 634
449 | 637
450 | 638
451 | 640
452 | 641
453 | 643
454 | 644
455 | 646
456 | 647
457 | 648
458 | 649
459 | 650
460 | 651
461 | 652
462 | 653
463 | 654
464 | 655
465 | 658
466 | 659
467 | 660
468 | 661
469 | 662
470 | 665
471 | 667
472 | 668
473 | 670
474 | 671
475 | 672
476 | 673
477 | 674
478 | 675
479 | 677
480 | 679
481 | 680
482 | 681
483 | 682
484 | 683
485 | 685
486 | 686
487 | 688
488 | 689
489 | 690
490 | 691
491 | 693
492 | 694
493 | 695
494 | 696
495 | 697
496 | 699
497 | 700
498 | 702
499 | 704
500 | 706
501 | 708
502 | 709
503 | 710
504 | 712
505 | 713
506 | 714
507 | 715
508 | 717
509 | 718
510 | 720
511 | 726
512 | 727
513 | 728
514 | 730
515 | 733
516 | 734
517 | 736
518 | 738
519 | 739
520 | 740
521 | 741
522 | 747
523 | 748
524 | 749
525 | 750
526 | 751
527 | 752
528 | 753
529 | 755
530 | 756
531 | 758
532 | 759
533 | 761
534 | 762
535 | 763
536 | 764
537 | 765
538 | 766
539 | 767
540 | 768
541 | 770
542 | 771
543 | 772
544 | 773
545 | 777
546 | 779
547 | 780
548 | 783
549 | 784
550 | 789
551 | 790
552 | 795
553 | 797
554 | 800
555 | 801
556 | 804
557 | 805
558 | 806
559 | 807
560 | 809
561 | 812
562 | 814
563 | 817
564 | 820
565 | 821
566 | 822
567 | 823
568 | 830
569 | 833
570 | 834
571 | 835
572 | 838
573 | 839
574 | 841
575 | 842
576 | 844
577 | 845
578 | 846
579 | 847
580 | 848
581 | 849
582 | 851
583 | 853
584 | 854
585 | 855
586 | 856
587 | 857
588 | 858
589 | 859
590 | 863
591 | 864
592 | 866
593 | 867
594 | 869
595 | 871
596 | 872
597 | 873
598 | 876
599 | 877
600 | 878
601 |
--------------------------------------------------------------------------------
/src/nl_reweighter.py:
--------------------------------------------------------------------------------
1 | import gzip
2 | import re
3 | from nlp_tools.hypergraph import Hypergraph
4 | import itertools
5 | import logging
6 | from collections import defaultdict
7 | import os
8 |
9 | class Rule:
10 |
11 | MOSES_SYMBOL = '[X]'
12 |
13 | def __init__(self, rule_id, symbol, src, tgt, coindexing):
14 | self.rule_id = rule_id
15 | self.symbol = symbol
16 | self.src = src
17 | self.tgt = tgt
18 | self.coindexing = coindexing
19 | self.degree = len(self.coindexing)
20 |
21 | @classmethod
22 | def from_moses(cls, rule_id, rule_table_line):
23 | nl, mrl, scores, alignments, counts = re.split(r'\ ?\|\|\|\ ?',
24 | rule_table_line.strip())
25 | nl = nl.split()[:-1]
26 | nl = [cls.MOSES_SYMBOL if t == '[X][X]' else t for t in nl]
27 | mrl = mrl.split()[:-1]
28 | mrl = [cls.MOSES_SYMBOL if t == '[X][X]' else t for t in mrl]
29 | coindexing = []
30 | for pair in alignments.split():
31 | i_s, i_t = pair.split('-')
32 | coindexing.append((int(i_s), int(i_t)))
33 | return Rule(rule_id, cls.MOSES_SYMBOL, nl, mrl, coindexing)
34 |
35 | @classmethod
36 | def glue(cls, rule_id):
37 | return Rule(rule_id, cls.MOSES_SYMBOL, [cls.MOSES_SYMBOL, cls.MOSES_SYMBOL],
38 | [cls.MOSES_SYMBOL, cls.MOSES_SYMBOL], [(0,0), (1,1)])
39 |
40 | def __eq__(self, other):
41 | return other.__class__ == self.__class__ and self.rule_id == other.rule_id
42 |
43 | def __hash__(self):
44 | return self.rule_id
45 |
46 | def __repr__(self):
47 | return 'Rule<(%d) %s -> %s : %s>' % (self.rule_id, self.symbol, self.src,
48 | self.tgt)
49 |
50 | class NLReweighter:
51 |
52 | def __init__(self, config):
53 | self.config = config
54 |
55 | def run(self):
56 | rules = self.load_rule_table()
57 | glue = Rule.glue(len(rules))
58 | all_counts = defaultdict(lambda: 0)
59 | successful_counts = defaultdict(lambda: 0)
60 |
61 | with open('%s/unlabeled.nl' % self.config.experiment_dir) as ul_f:
62 | for line in ul_f:
63 | toks = line.strip().split()
64 | chart = self.parse(toks, rules, glue)
65 | if not chart:
66 | continue
67 | self.collect_all_counts(all_counts, chart)
68 | self.collect_successful_counts(successful_counts, chart, toks)
69 |
70 | if not self.config.ul_only:
71 | with open('%s/train.nl' % self.config.experiment_dir) as t_f:
72 | for line in t_f:
73 | toks = line.strip().split()
74 | chart = self.parse(toks, rules, glue)
75 | # TODO is this an OOV issue?
76 | if not chart:
77 | continue
78 | self.collect_all_counts(all_counts, chart)
79 | self.collect_successful_counts(successful_counts, chart, toks)
80 |
81 | #self.write_updated_model(all_counts)
82 | self.write_updated_model(successful_counts)
83 |
84 | def load_rule_table(self):
85 | rule_table_path = '%s/model/rule-table.gz' % self.config.experiment_dir
86 | rules = {}
87 | with gzip.open(rule_table_path) as rule_table_f:
88 | for line in rule_table_f.readlines():
89 | rule = Rule.from_moses(len(rules), line)
90 | rules[rule.rule_id] = rule
91 | return rules
92 |
93 | def write_updated_model(self, counts):
94 | old_rule_table_path = '%s/model/rule-table.gz' % self.config.experiment_dir
95 | new_rule_table_path = '%s/model/rule-table-new.gz' % self.config.experiment_dir
96 | counter = 0
97 | with gzip.open(old_rule_table_path) as old_rule_table_f:
98 | with gzip.open(new_rule_table_path, 'w') as new_rule_table_f:
99 | for line in old_rule_table_f:
100 | nl, mrl, scores, alignments, rule_counts = re.split(r'\ ?\|\|\|\ ?',
101 | line.strip())
102 | scores = '%s %f' % (scores, counts[counter])
103 | newline = ' ||| '.join([nl, mrl, scores, alignments, rule_counts])
104 | newline = re.sub(r'\s+', ' ', newline)
105 | print >>new_rule_table_f, newline
106 | counter += 1
107 |
108 | old_config_path = '%s/model/moses.ini' % self.config.experiment_dir
109 | new_config_path = '%s/model/moses-new.ini' % self.config.experiment_dir
110 | with open(old_config_path) as old_config_f:
111 | with open(new_config_path, 'w') as new_config_f:
112 | for line in old_config_f:
113 | if line[-14:-1] == 'rule-table.gz':
114 | line = line[:6] + '6' + line[7:]
115 | #line[6] = '6'
116 | print >>new_config_f, line,
117 | if line == '[weight-t]\n':
118 | print >>new_config_f, '0.20'
119 |
120 | os.rename(new_rule_table_path, old_rule_table_path)
121 | os.rename(new_config_path, old_config_path)
122 |
123 | def parse(self, sent, grammar, glue):
124 | chart = dict()
125 |
126 | for span in range(1, len(sent)+1):
127 | for start in range(len(sent)+1-span):
128 | chart[start,span] = list()
129 | for rule in grammar.values():
130 | matches = self.match(sent, rule, start, span, chart)
131 | chart[start,span] += matches
132 |
133 | for i in range(1, len(sent)):
134 | if chart[0,i] and chart[i,len(sent)-i]:
135 | psets = [(c1, c2) for c1 in chart[0,i] for c2 in chart[i,len(sent)-i]]
136 | chart[0,len(sent)].append(Hypergraph(glue, psets))
137 |
138 | if not chart[0,len(sent)]:
139 | #logging.debug('failed to parse')
140 | return None
141 | else:
142 | #logging.debug('parse OK!')
143 | return chart
144 |
145 | def match(self, sent, rule, start, span, chart):
146 |
147 | if rule.degree == 0:
148 | if span != len(rule.src):
149 | return []
150 | if sent[start:start+span] != rule.src:
151 | return []
152 | return [Hypergraph(rule, [])]
153 |
154 | elif rule.degree == 1:
155 | nt_start = start + rule.coindexing[0][0]
156 | nt_span = span - len(rule.src) + 1
157 | if nt_span <= 0:
158 | return []
159 | if sent[start:nt_start] != rule.src[0:rule.coindexing[0][0]]:
160 | return []
161 | if sent[nt_start+nt_span:start+span] != rule.src[rule.coindexing[0][0]+1:]:
162 | return []
163 |
164 | pointer_sets = [i for i in chart[nt_start, nt_span] if i.label.symbol ==
165 | rule.src[rule.coindexing[0][0]]]
166 | ## if not chart[nt_start, nt_span]:
167 | ## return []
168 | if not pointer_sets:
169 | return []
170 | return [Hypergraph(rule, [(i,) for i in pointer_sets])]
171 |
172 | elif rule.degree == 2:
173 | matches = []
174 | before_dist = rule.coindexing[0][0]
175 | between_dist = rule.coindexing[1][0] - rule.coindexing[0][0] - 1
176 | before_2_dist = rule.coindexing[1][0]
177 | nt_total_span = span - len(rule.src) + 2
178 | if nt_total_span <= 0:
179 | return []
180 | nt1_start = start + before_dist
181 | for nt1_span in range(1,nt_total_span):
182 | nt2_start = nt1_start + nt1_span + between_dist
183 | nt2_span = nt_total_span - nt1_span
184 |
185 | if sent[start:nt1_start] != rule.src[0:before_dist]:
186 | continue
187 | if sent[nt1_start+nt1_span:nt2_start] != rule.src[before_dist+1:before_2_dist]:
188 | continue
189 | if sent[nt2_start+nt2_span:start+span] != rule.src[before_2_dist+1:]:
190 | continue
191 |
192 | pointer_sets_1 = [i for i in chart[nt1_start,nt1_span] if i.label.symbol ==
193 | rule.src[rule.coindexing[0][0]]]
194 | pointer_sets_2 = [i for i in chart[nt2_start,nt2_span] if i.label.symbol ==
195 | rule.src[rule.coindexing[1][0]]]
196 |
197 | if not (pointer_sets_1 and pointer_sets_2):
198 | continue
199 |
200 | matches.append(Hypergraph(rule, list(itertools.product(pointer_sets_1,
201 | pointer_sets_2))))
202 | #matches.append(rule.rule_id)
203 |
204 | return matches
205 |
206 | assert False
207 |
208 | def collect_all_counts(self, counts, chart):
209 | for cell in chart.values():
210 | for node in cell:
211 | counts[node.label.rule_id] += 1
212 |
213 | def collect_successful_counts(self, counts, chart, sent):
214 | used = set()
215 | for cell in chart[0, len(sent)]:
216 | self.mark_used(used, cell)
217 | for cell in chart.values():
218 | for node in cell:
219 | if node in used:
220 | counts[node.label.rule_id] += 1
221 |
222 | def mark_used(self, used, cell):
223 | for edge in cell.edges:
224 | for ccell in edge:
225 | if ccell not in used:
226 | self.mark_used(used, ccell)
227 | used.add(cell)
228 |
--------------------------------------------------------------------------------
/src/extractor.py:
--------------------------------------------------------------------------------
1 | from nltk.stem.porter import PorterStemmer
2 | from nltk.stem.snowball import GermanStemmer
3 | import os
4 | import re
5 | import util
6 | import xml.etree.ElementTree as ET
7 |
8 | class IdStemmer:
9 | def stem(self, word):
10 | return word
11 |
12 | class Extractor:
13 |
14 | NP_WEIGHT = 50
15 |
16 | def __init__(self, config):
17 | self.config = config
18 | if config.stem:
19 | if config.lang == 'en':
20 | self.stemmer = PorterStemmer()
21 | elif config.lang == 'de':
22 | self.stemmer = GermanStemmer()
23 | else:
24 | self.stemmer = IdStemmer()
25 |
26 | def run(self):
27 | if self.config.corpus == 'geo':
28 | self.run_geo()
29 | elif self.config.corpus == 'robo':
30 | self.run_robo()
31 | elif self.config.corpus == 'atis':
32 | self.run_atis()
33 | else:
34 | assert False
35 |
36 | def run_atis(self):
37 |
38 | train_nl = open('%s/train.nl' % self.config.experiment_dir, 'w')
39 | train_nl_lm = open('%s/train.nl.lm' % self.config.experiment_dir, 'w')
40 | train_nl_np = open('%s/train.np.nl' % self.config.experiment_dir, 'w')
41 | train_mrl = open('%s/train.mrl' % self.config.experiment_dir, 'w')
42 | train_mrl_lm = open('%s/train.mrl.lm' % self.config.experiment_dir, 'w')
43 | train_mrl_np = open('%s/train.np.mrl' % self.config.experiment_dir, 'w')
44 | train_fun = open('%s/train.fun' % self.config.experiment_dir, 'w')
45 | tune_nl = open('%s/tune.nl' % self.config.experiment_dir, 'w')
46 | tune_mrl = open('%s/tune.mrl' % self.config.experiment_dir, 'w')
47 | test_nl = open('%s/test.nl' % self.config.experiment_dir, 'w')
48 | test_mrl = open('%s/test.mrl' % self.config.experiment_dir, 'w')
49 | test_fun = open('%s/test.fun' % self.config.experiment_dir, 'w')
50 |
51 | if self.config.run == 'debug':
52 | with open('%s/atis-train.sem' % self.config.data_dir) as data_file:
53 | counter = 0
54 | for line in data_file:
55 | nl, slot = line.split('<=>', 1)
56 | nl = self.preprocess_nl(nl)
57 | slot = self.replace_specials(slot)
58 | fun = self.slot_to_fun(slot)
59 | mrl = util.fun_to_mrl(fun, True)
60 | if counter % 4 in (0,1):
61 | print >>train_nl, nl
62 | print >>train_mrl, mrl
63 | print >>train_fun, fun
64 | print >>train_nl_np, nl
65 | print >>train_mrl_np, mrl
66 | print >>train_nl_lm, '', nl, ''
67 | print >>train_mrl_lm, '', mrl, ''
68 | elif counter % 4 == 2:
69 | print >>tune_nl, nl
70 | print >>tune_mrl, mrl
71 | else:
72 | print >>test_nl, nl
73 | print >>test_mrl, mrl
74 | print >>test_fun, fun
75 | counter += 1
76 |
77 | else:
78 | train_path = '%s/atis-train.sem' % self.config.data_dir
79 | if self.config.run == 'dev':
80 | tune_path = train_path
81 | test_path = '%s/atis-dev.sem' % self.config.data_dir
82 | elif self.config.run == 'test':
83 | tune_path = '%s/atis-dev.sem' % self.config.data_dir
84 | test_path = '%s/atis-test.sem' % self.config.data_dir
85 |
86 | with open(train_path) as train_file:
87 | for line in train_file:
88 | nl, slot = line.split('<=>', 1)
89 | nl = self.preprocess_nl(nl)
90 | slot = self.replace_specials(slot)
91 | fun = self.slot_to_fun(slot)
92 | mrl = util.fun_to_mrl(fun, True)
93 | print >>train_nl, nl
94 | print >>train_mrl, mrl
95 | print >>train_fun, fun
96 | print >>train_nl_np, nl
97 | print >>train_mrl_np, mrl
98 | print >>train_nl_lm, '', nl, ''
99 | print >>train_mrl_lm, '', mrl, ''
100 |
101 | with open(tune_path) as tune_file:
102 | for line in tune_file:
103 | nl, slot = line.split('<=>', 1)
104 | nl = self.preprocess_nl(nl)
105 | slot = self.replace_specials(slot)
106 | fun = self.slot_to_fun(slot)
107 | mrl = util.fun_to_mrl(fun, True)
108 | print >>tune_nl, nl
109 | print >>tune_mrl, mrl
110 |
111 | with open(test_path) as test_file:
112 | for line in test_file:
113 | nl, slot = line.split('<=>', 1)
114 | nl = self.preprocess_nl(nl)
115 | slot = self.replace_specials(slot)
116 | fun = self.slot_to_fun(slot)
117 | mrl = util.fun_to_mrl(fun, True)
118 | print >>test_nl, nl
119 | print >>test_mrl, mrl
120 | print >>test_fun, fun
121 |
122 | for np_name in os.listdir('%s/db' % self.config.data_dir):
123 | np_path = '%s/db/%s' % (self.config.data_dir, np_name)
124 | with open(np_path) as np_file:
125 | for line in np_file:
126 | names = re.findall(r'"([^"]+)"', line)
127 | for name in names:
128 | nl = name
129 | mrl = "%s" % self.replace_specials(name)
130 | mrl = mrl.replace(' ', '_')
131 | mrl = mrl + '@s'
132 | print >>train_nl_np, nl
133 | print >>train_mrl_np, mrl
134 | print >>train_nl_lm, nl
135 | print >>train_mrl_lm, mrl
136 |
137 | train_nl.close()
138 | train_nl_lm.close()
139 | train_mrl.close()
140 | train_mrl_lm.close()
141 | train_fun.close()
142 | test_nl.close()
143 | test_mrl.close()
144 | test_fun.close()
145 | tune_nl.close()
146 | tune_mrl.close()
147 |
148 | def run_robo(self):
149 |
150 | train_ids, tune_ids, test_ids = self.get_folds()
151 | tune_ids = test_ids
152 |
153 | train_nl = open('%s/train.nl' % self.config.experiment_dir, 'w')
154 | train_nl_lm = open('%s/train.nl.lm' % self.config.experiment_dir, 'w')
155 | train_nl_np = open('%s/train.np.nl' % self.config.experiment_dir, 'w')
156 | train_mrl = open('%s/train.mrl' % self.config.experiment_dir, 'w')
157 | train_mrl_lm = open('%s/train.mrl.lm' % self.config.experiment_dir, 'w')
158 | train_mrl_np = open('%s/train.np.mrl' % self.config.experiment_dir, 'w')
159 | train_fun = open('%s/train.fun' % self.config.experiment_dir, 'w')
160 | tune_nl = open('%s/tune.nl' % self.config.experiment_dir, 'w')
161 | tune_mrl = open('%s/tune.mrl' % self.config.experiment_dir, 'w')
162 | test_nl = open('%s/test.nl' % self.config.experiment_dir, 'w')
163 | test_mrl = open('%s/test.mrl' % self.config.experiment_dir, 'w')
164 | test_fun = open('%s/test.fun' % self.config.experiment_dir, 'w')
165 |
166 | corpus = ET.parse('%s/corpus.xml' % self.config.data_dir)
167 | corpus_root = corpus.getroot()
168 |
169 | for node in corpus_root.findall('example'):
170 | nl = node.find("nl[@lang='%s']" % self.config.lang).text
171 | nl = self.preprocess_nl(nl)
172 | clang = node.find("mrl[@lang='robocup-clang']").text
173 | clang = self.replace_specials(clang)
174 | fun = self.clang_to_fun(clang)
175 | #print fun
176 | mrl = util.fun_to_mrl(fun)
177 | eid = int(node.attrib['id'])
178 |
179 | if eid in tune_ids:
180 | print >>tune_nl, nl
181 | print >>tune_mrl, mrl
182 | elif eid in train_ids:
183 | print >>train_nl, nl
184 | print >>train_mrl, mrl
185 | print >>train_fun, fun
186 | print >>train_nl_np, nl
187 | print >>train_mrl_np, mrl
188 | print >>train_nl_lm, '', nl, ''
189 | print >>train_mrl_lm, '', mrl, ''
190 | if eid in test_ids:
191 | #elif eid in test_ids:
192 | print >>test_nl, nl
193 | print >>test_mrl, mrl
194 | print >>test_fun, fun
195 |
196 | nps_file = open('%s/names' % self.config.data_dir)
197 | while True:
198 | line = nps_file.readline()
199 | if not line:
200 | break
201 | nl = nps_file.readline().strip()[3:]
202 | nl = self.preprocess_nl(nl)
203 | nps_file.readline()
204 | nps_file.readline()
205 | while True:
206 | line = nps_file.readline().strip()
207 | if line == '':
208 | break
209 | m = re.match('^\*n:(Num|Unum|Ident) -> \(\{ (\S+) \}\)$', line)
210 | mrl = m.group(2) + '@0'
211 | for i in range(self.NP_WEIGHT):
212 | print >>train_nl_np, nl
213 | print >>train_mrl_np, mrl
214 | print >>train_nl_lm, nl
215 | print >>train_mrl_lm, mrl
216 |
217 | train_nl.close()
218 | train_nl_lm.close()
219 | train_mrl.close()
220 | train_mrl_lm.close()
221 | train_fun.close()
222 | test_nl.close()
223 | test_mrl.close()
224 | test_fun.close()
225 | tune_nl.close()
226 | tune_mrl.close()
227 |
228 | def run_geo(self):
229 | train_ids, tune_ids, test_ids = self.get_folds()
230 |
231 | train_nl = open('%s/train.nl' % self.config.experiment_dir, 'w')
232 | train_nl_lm = open('%s/train.nl.lm' % self.config.experiment_dir, 'w')
233 | train_nl_np = open('%s/train.np.nl' % self.config.experiment_dir, 'w')
234 | train_mrl = open('%s/train.mrl' % self.config.experiment_dir, 'w')
235 | train_mrl_lm = open('%s/train.mrl.lm' % self.config.experiment_dir, 'w')
236 | train_mrl_np = open('%s/train.np.mrl' % self.config.experiment_dir, 'w')
237 | train_fun = open('%s/train.fun' % self.config.experiment_dir, 'w')
238 | unlabeled_nl = open('%s/unlabeled.nl' % self.config.experiment_dir, 'w')
239 | tune_nl = open('%s/tune.nl' % self.config.experiment_dir, 'w')
240 | tune_mrl = open('%s/tune.mrl' % self.config.experiment_dir, 'w')
241 | test_nl = open('%s/test.nl' % self.config.experiment_dir, 'w')
242 | test_mrl = open('%s/test.mrl' % self.config.experiment_dir, 'w')
243 | test_fun = open('%s/test.fun' % self.config.experiment_dir, 'w')
244 |
245 | corpus = ET.parse('%s/corpus-true.xml' % self.config.data_dir)
246 | corpus_root = corpus.getroot()
247 |
248 | counter = 0
249 | #stop_labeling = False
250 | for node in corpus_root.findall('example'):
251 | nl = node.find("nl[@lang='%s']" % self.config.lang).text
252 | nl = self.preprocess_nl(nl)
253 | fun = node.find("mrl[@lang='geo-funql']").text
254 | fun = self.preprocess_fun(fun)
255 | #fun = self.replace_specials(fun)
256 | mrl = util.fun_to_mrl(fun)
257 | eid = int(node.attrib['id'])
258 |
259 | unlabel_this = (counter >= 10 * self.config.lfrac)
260 | counter += 1
261 | counter %= 10
262 |
263 | if eid in tune_ids:
264 | print >>tune_nl, nl
265 | print >>tune_mrl, mrl
266 | elif eid in train_ids and not unlabel_this:
267 | print >>train_nl, nl
268 | print >>train_mrl, mrl
269 | print >>train_fun, fun
270 | print >>train_nl_np, nl
271 | print >>train_mrl_np, mrl
272 | print >>train_nl_lm, '', nl, ''
273 | print >>train_mrl_lm, '', mrl, ''
274 | elif eid in train_ids and unlabel_this:
275 | print >>unlabeled_nl, nl
276 | elif eid in test_ids:
277 | print >>test_nl, nl
278 | print >>test_mrl, mrl
279 | print >>test_fun, fun
280 |
281 | nplist = ET.parse('%s/nps-true.xml' % self.config.data_dir)
282 | nplist_root = nplist.getroot()
283 | for node in nplist_root.findall('example'):
284 | fun = node.find("mrl[@lang='geo-funql']").text
285 | fun = self.preprocess_fun(fun)
286 | #fun = self.replace_specials(fun)
287 | mrl = util.fun_to_mrl(fun)
288 | big_np = len(mrl.split()) > 1
289 | if (self.config.np_type == 'big' and not big_np) or \
290 | (self.config.np_type == 'small' and big_np):
291 | continue
292 | for nl_node in node.findall("nl[@lang='%s']" % self.config.lang):
293 | nl = nl_node.text
294 | nl = self.preprocess_nl(nl)
295 | for i in range(self.NP_WEIGHT):
296 | print >>train_nl_np, nl
297 | print >>train_mrl_np, mrl
298 | print >>train_nl_lm, nl
299 | print >>train_mrl_lm, mrl
300 |
301 | train_nl.close()
302 | train_nl_lm.close()
303 | train_mrl.close()
304 | train_mrl_lm.close()
305 | train_fun.close()
306 | test_nl.close()
307 | test_mrl.close()
308 | test_fun.close()
309 | tune_nl.close()
310 | tune_mrl.close()
311 |
312 | def get_folds(self):
313 |
314 | if self.config.corpus == 'geo':
315 | if self.config.run in ('debug', 'dev'):
316 | train_ids_file = '%s/folds600/fold-%d-train.ids' \
317 | % (self.config.data_dir, self.config.fold)
318 | tune_ids_file = None
319 | test_ids_file = '%s/folds600/fold-%d-test.ids' \
320 | % (self.config.data_dir, self.config.fold)
321 | elif self.config.run == 'test':
322 | train_ids_file = '%s/split880/fold-0-train.ids' % self.config.data_dir
323 | tune_ids_file = '%s/split880/fold-0-tune.ids' % self.config.data_dir
324 | test_ids_file = '%s/split880/fold-0-test.ids' % self.config.data_dir
325 |
326 | elif self.config.corpus == 'robo':
327 | if self.config.run in ('debug', 'dev'):
328 | train_ids_file = '%s/split-300/run-0/fold-%d/train-N270' \
329 | % (self.config.data_dir, self.config.fold)
330 | tune_ids_file = None
331 | test_ids_file = '%s/split-300/run-0/fold-%d/test' \
332 | % (self.config.data_dir, self.config.fold)
333 | else:
334 | assert False
335 |
336 | train_ids = set()
337 | tune_ids = set()
338 | test_ids = set()
339 | with open(train_ids_file) as fold_file:
340 | for line in fold_file.readlines():
341 | train_ids.add(int(line))
342 | if tune_ids_file:
343 | with open(tune_ids_file) as fold_file:
344 | for line in fold_file.readlines():
345 | tune_ids.add(int(line))
346 | with open(test_ids_file) as fold_file:
347 | for line in fold_file.readlines():
348 | test_ids.add(int(line))
349 |
350 | return train_ids, tune_ids, test_ids
351 |
352 | def preprocess_nl(self, nl):
353 | nl = nl.strip().lower()
354 | if self.config.stem and self.config.lang == 'de':
355 | # German stemmer can't handle UTF-8
356 | nl = nl.encode('ascii', 'ignore')
357 | else:
358 | nl = nl.encode('utf-8', 'ignore')
359 | if nl[-2:] == ' .' or nl[-2:] == ' ?':
360 | nl = nl[:-2]
361 | if self.config.stem:
362 | nl = ' '.join([self.stemmer.stem(tok) for tok in nl.split()])
363 | return nl
364 |
365 | def preprocess_fun(self, fun):
366 | return fun.strip()
367 |
368 | def replace_specials(self, mrl):
369 | mrl = mrl.replace('.', 'xxd')
370 | mrl = mrl.replace("'", 'xxq')
371 | mrl = mrl.replace('/', 'xxs')
372 | #mrl = re.sub(r"(' *[^'()]*)\'([^'()]* *')", r'\1_q_\2', mrl)
373 | #mrl = re.sub(r"(' *[^'()]*)\.([^'()]* *')", r'\1_dot_\2', mrl)
374 | #mrl = re.sub(r"(' *[^'()]*)\/([^'()]* *')", r'\1_slash_\2', mrl)
375 | return mrl
376 |
377 | def clang_to_fun(self, clang):
378 | clang = clang.strip()
379 | clang = re.sub(r'\s+', ' ', clang)
380 | clang = re.sub(r'\{([\d|X]+( [\d|X]+)*)\}', r'(set \1)', clang)
381 | clang = re.sub(r'\(([\w.-]+) ?', r'\1(', clang)
382 | clang = self.strip_bare_parens(clang)
383 | clang = clang.replace('()', '')
384 | clang = clang.replace(' ', ',')
385 | clang = clang.replace('"', '')
386 |
387 | clang = re.sub(r'definerule\([^,]+,[^,]+,', r'definerule(', clang)
388 |
389 | return clang
390 |
391 | def strip_bare_parens(self, clang):
392 | try:
393 | start = clang.index(' (')+1
394 | except ValueError:
395 | return clang
396 |
397 | end = start+1
398 | pcounter = 0
399 | while pcounter >= 0:
400 | c = clang[end:end+1]
401 | if c == '(':
402 | pcounter += 1
403 | elif c == ')':
404 | pcounter -= 1
405 | end += 1
406 | end -= 1
407 |
408 | r = clang[:start] + clang[start+1:end] + clang[end+1:]
409 | return r
410 |
411 | def slot_to_fun(self, slot):
412 | slot = slot.strip()
413 | slot = slot.replace('value', '"value"')
414 | slot = slot.replace('="', "('")
415 | slot = slot.replace('",', "'),")
416 | slot = slot.replace('")', "'))")
417 | slot = slot.replace("'value'", 'value')
418 | return slot
419 |
--------------------------------------------------------------------------------
/data/geo/geoquery.train.en.txt:
--------------------------------------------------------------------------------
1 | name all the lakes of us
2 | what is the highest point in florida
3 | what are the high points of states surrounding mississippi
4 | what state has the shortest river
5 | what is the tallest mountain in the united states
6 | what is the capital of maine
7 | what are the populations of states through which the mississippi river runs
8 | name all the lakes of us
9 | which states border states through which the mississippi traverses
10 | what is the highest mountain in alaska
11 | what is the population of illinois
12 | name all the rivers in colorado
13 | in which state does the highest point in usa exist
14 | which state is the city denver located in
15 | what is the lowest point in texas
16 | how many states have a city called rochester
17 | which capitals are in the states that border texas
18 | how many people live in austin
19 | what states have rivers named colorado
20 | what is the size of texas
21 | what is the shortest river in the usa
22 | what are the major cities of the us
23 | which state border kentucky
24 | what is the population of oregon
25 | what states have a city named austin
26 | what is the highest elevation in south carolina
27 | how many people live in austin texas
28 | what are the rivers in the state of texas
29 | what is the lowest point of colorado
30 | what is the population of atlanta
31 | what rivers are in utah
32 | what river runs through the most states
33 | what is the population of sacramento
34 | could you tell me what is the highest point in the state of oregon
35 | which states does the mississippi river run through
36 | what are the major cities in the smallest state in the us
37 | how high is guadalupe peak
38 | what river runs through illinois
39 | how long is the mississippi river
40 | how high is the highest point in the largest state
41 | what is the area of south carolina
42 | what are the states through which the longest river runs
43 | where is new orleans
44 | in what state is mount mckinley
45 | what state has highest elevation
46 | what is the size of california
47 | what is the smallest state that borders texas
48 | how many citizens in alabama
49 | in which state is rochester
50 | how many states in the us does the shortest river run through
51 | what is the biggest state in continental us
52 | what is the area of the largest state
53 | where is mount whitney
54 | how many states does iowa border
55 | which states does the longest river cross
56 | what river flows through kansas
57 | what is the population of austin texas
58 | what is the capital of vermont
59 | which states border colorado
60 | how long is the mississippi
61 | what state has the largest population density
62 | what states border georgia
63 | what is the capital of pennsylvania
64 | what are the biggest rivers in texas
65 | what is the longest river in the united states
66 | what is the capital of utah
67 | what state has the smallest population density
68 | which capitals are not major cities
69 | what is the biggest city in nebraska
70 | what is the population of texas
71 | what is the shortest river in the united states
72 | what is the population of rhode island
73 | what is the state with the lowest point
74 | what is the longest river in new york
75 | what is the longest river that runs through a state that borders tennessee
76 | how many major cities are in arizona
77 | what are the neighboring states for michigan
78 | what state that borders texas is the largest
79 | what is the shortest river
80 | how many states border the state that borders the most states
81 | which state is the largest city in montana in
82 | what is the population of washington dc
83 | what is the most populous city in texas
84 | what is the capital of hawaii
85 | what is capital of iowa
86 | where is san diego
87 | what are the major cities in delaware
88 | what is the lowest point in louisiana
89 | which state has the highest peak in the country
90 | what texas city has the largest population
91 | what capital is the largest in the us
92 | what is the population of new york
93 | what is the population of the capital of the smallest state
94 | what is the area of alaska
95 | what is the population of california
96 | which state has the longest river
97 | what is the capital of texas
98 | give me the cities which are in texas
99 | what states border kentucky
100 | how high is the highest point of florida
101 | what are the major cities in north carolina
102 | what is the highest point in the state with capital des moines
103 | what is the lowest point in california
104 | what is the biggest city in wyoming
105 | what is the largest state bordering texas
106 | what is the smallest city in hawaii
107 | what is the area of the states
108 | what is the area of idaho
109 | what state has the most rivers running through it
110 | what is the population of springfield missouri
111 | what is the most populated state bordering oklahoma
112 | what is the number of neighboring states for kentucky
113 | what is the average population per square km in pennsylvania
114 | what state has the highest population density
115 | what is the tallest mountain in america
116 | what is the highest point of the state with the largest area
117 | what are the states
118 | how many rivers in washington
119 | what are the populations of states through which the mississippi river runs
120 | what is the biggest river in illinois
121 | what is the capital of michigan
122 | what is the total population of the states that border texas
123 | what states border rhode island
124 | what is the biggest city in oregon
125 | what is the lowest point in wisconsin
126 | what are the rivers in the state of indiana
127 | what is the population of austin
128 | what is the smallest city in arkansas
129 | give me the longest river that passes through the us
130 | how long is the missouri river
131 | which state has the largest city
132 | what is the lowest elevation in pennsylvania
133 | what is the longest river in the state with the highest point
134 | what states does the colorado river run through
135 | what are the states that the potomac runs through
136 | what is the biggest city in the usa
137 | what state has no rivers
138 | what is the highest point in rhode island
139 | name the states which have no surrounding states
140 | what is the population of atlanta ga
141 | how many square kilometers in the us
142 | what is the population of idaho
143 | what is the adjacent state of california
144 | what is the smallest state through which the longest river runs
145 | what are the names of the major cities in illinois
146 | how many states does the colorado river run through
147 | how many states does the colorado river flow through
148 | what are the major cities in kansas
149 | which states border texas
150 | how many people live in new york
151 | what are the largest cities in the states that border the largest state
152 | which states have points that are higher than the highest point in texas
153 | what is the river that cross over ohio
154 | what is the largest city in michigan
155 | how many rivers are in the state with the highest point
156 | what cities are located in pennsylvania
157 | what is the state with the lowest population
158 | what is the highest point in each state whose lowest point is sea level
159 | give me the cities in usa
160 | how many states does the missouri river run through
161 | what state has the city with the largest population
162 | which is the shortest river
163 | how many states border alaska
164 | what is the population of dallas
165 | where is san jose
166 | what states border states that border colorado
167 | what rivers flow through the state with the largest population
168 | whats the largest city
169 | what is the capital of the alabama state
170 | what states border arkansas
171 | what is the population of denver
172 | what is the longest river in america
173 | where is massachusetts
174 | what state has the smallest area
175 | what major rivers run through illinois
176 | how many cities does the usa have
177 | how many people live in california
178 | what are the major rivers in the us
179 | how many states does the mississippi river run through
180 | what is the area of texas
181 | what is the length of the river that traverses the most states
182 | what is the length of the longest river in the usa
183 | can you tell me the capital of texas
184 | what is the largest city in minnesota by population
185 | what is the smallest state in the usa
186 | what states neighbor maine
187 | what states high point is higher than that of colorado
188 | what is the highest mountain in texas
189 | what are the major cities in texas
190 | what are the states that border the state with the greatest population
191 | what rivers run through colorado
192 | how many rivers are there in us
193 | how many rivers are in new york
194 | which rivers are in alaska
195 | what is the longest river flowing through new york
196 | what rivers run through west virginia
197 | what are the capitals of the states that border texas
198 | what is the area of california
199 | how many states have a city named springfield
200 | what is the biggest city in texas
201 | how many cities named austin are there in the usa
202 | what are the major cities in the largest state
203 | which states does the colorado river run through
204 | what is the largest city in wisconsin
205 | how big is alaska
206 | what state contains the highest point in the us
207 | how big is north dakota
208 | which rivers flow through alaska
209 | what is the highest point in the us
210 | what is the shortest river in texas
211 | what are the major cities in the states through which the major river in virginia runs
212 | what rivers are in oregon
213 | what is the lowest point in the united states
214 | how many states have cities or towns named springfield
215 | what is the population of south dakota
216 | what is the capital of the state with the highest point
217 | what state has the highest elevation
218 | what states are next to texas
219 | what is the longest river that passes the states that border the state that borders the most states
220 | which states border hawaii
221 | how many major cities are there in oregon
222 | what is the population of springfield south dakota
223 | how many rivers run through texas
224 | what state has the most major rivers running through it
225 | what are the lakes in states bordering texas
226 | people in boulder
227 | what rivers are in nevada
228 | where is fort wayne
229 | where is indianapolis
230 | what states border states that border states that border states that border texas
231 | population of boulder
232 | what are the major cities of the united states
233 | show major cities in colorado
234 | what state is columbus the capital of
235 | what is the area of all the states combined
236 | what is the average population per square km in the us
237 | what is the largest state that borders california
238 | what is the population of montana
239 | what are the populations of all the major cities in montana
240 | which rivers run through the state with the lowest elevation in the usa
241 | what rivers flow through the largest state
242 | what is the area of maine
243 | what are major rivers in texas
244 | what is the population density of the state with the smallest population
245 | what is the highest point in wyoming
246 | what states border delaware
247 | which state has the most rivers running through it
248 | what is largest capital
249 | what is the state with the largest population density
250 | what states have towns named springfield
251 | what is the smallest city in the largest state
252 | what mountains are in alaska
253 | what rivers flow through colorado
254 | which state has the least population density
255 | how many inhabitants does montgomery have
256 | what city has the largest population
257 | what is the largest state
258 | of the states washed by the mississippi river which has the lowest point
259 | what is the area of the state with the smallest population density
260 | which state contains most rivers
261 | what is the longest river in mississippi
262 | what is the capital of the largest state
263 | what state has the largest population
264 | name the rivers in arkansas
265 | what are the populations of states through which the mississippi river runs
266 | what is the population of arizona
267 | what state borders the state with the smallest population
268 | what is the total area of the usa
269 | what is the population of seattle washington
270 | what is the size of the largest state in the usa
271 | what state has the capital salem
272 | which is the lowest point of the states that the mississippi runs through
273 | how many major cities are in texas
274 | what is the capital city of the largest state in the us
275 | what are the major cities in rhode island
276 | what state has the most people
277 | what is the largest city of kansas
278 | what is the area of the state with the capital albany
279 | what is the longest river that flows through colorado
280 | how many rivers does alaska have
281 | how big is massachusetts
282 | how large is the largest city in alaska
283 | how many cities are there in usa
284 | what states capital is dover
285 | what states border new hampshire
286 | what is the shortest river in nebraska
287 | how many states border hawaii
288 | what state is dallas in
289 | what city has the least population
290 | how many people stay in utah
291 | what state has the sparsest population density
292 | what is the largest state that borders the state with the lowest point in the usa
293 | what is the largest city in texas
294 | what is the largest state in the us
295 | which state has the most people
296 | what rivers are in new mexico
297 | what is the area of maryland in square kilometers
298 | how many states are there in united states
299 | how many major cities are in states bordering nebraska
300 | what is the population of the largest state
301 | what is the size of florida
302 | how many rivers are in missouri
303 | how many rivers are there in texas
304 | what is the highest point in the state with the capital des moines
305 | what is the population of seattle
306 | what is the highest point in colorado
307 | which states border arizona
308 | what rivers run through the state with the lowest point in the usa
309 | what is the population of minnesota
310 | what state has the city with the most population
311 | which states have a major city named austin
312 | which states have points higher than the highest point in colorado
313 | what is the highest point in the state with the smallest population
314 | where is new hampshire
315 | which state borders florida
316 | how many rivers in texas are longer than the red
317 | how many rivers do not traverse the state with the capital albany
318 | what are the populations of states through which the mississippi river runs
319 | through which states does the mississippi run
320 | what states are next to the mississippi
321 | give me the cities in virginia
322 | what are the capital cities of the states which border texas
323 | what state that borders texas has the highest population
324 | what state is the state with the most rivers
325 | what state has the least population density
326 | what are the major cities in ohio
327 | which states does the missouri river run through
328 | what is the biggest city in arizona
329 | how many people live in hawaii
330 | how many people live in the smallest state bordering wyoming
331 | what is the name of the state with the lowest point
332 | what rivers flow through missouri
333 | what is the elevation of death valley
334 | what river flows through texas
335 | how high are the highest points of all the states
336 | what is the capital of new hampshire
337 | how long is the rio grande river
338 | which state borders most states
339 | how many states does missouri border
340 | where is austin
341 | how high is the highest point of delaware
342 | where is the highest point in montana
343 | what states border states that border the state with the largest population
344 | what is the height of the highest mountain in texas
345 | what state has the city flint
346 | what is the state with the largest density in usa
347 | what cities in texas have the highest number of citizens
348 | what states border missouri
349 | give me the largest state
350 | which state has the sparsest population density
351 | which states border alabama
352 | what rivers flow through states that alabama borders
353 | what are the major cities in wyoming
354 | what are the highest points of states surrounding mississippi
355 | through which states does the mississippi flow
356 | where is scotts valley
357 | what are the major lakes in united states
358 | what is the largest city in missouri
359 | what states border alaska
360 | what state has the largest city
361 | what rivers run through maine
362 | give me the lakes in california
363 | what is the combined population of all 50 states
364 | how high is the highest point of louisiana
365 | what is the longest river in pennsylvania
366 | what is the capital of maryland
367 | what state is the biggest
368 | which states border iowa
369 | which states border alaska
370 | what is the largest state in usa
371 | what are the major cities in california
372 | what is the largest state traversed by the mississippi river
373 | which rivers run through states bordering new mexico
374 | what is the lowest point in the state of texas
375 | what is the smallest state bordering ohio
376 | how many states are next to major rivers
377 | what is the lowest point of the us
378 | which state has the greatest density
379 | how many states border the largest state
380 | what is the longest river that does not run through texas
381 | give me all the states of usa
382 | what is the density of texas
383 | what is the smallest city of the smallest state in the us
384 | what is the highest point in kansas
385 | what is the population in boston
386 | how many people are in the state of nevada
387 | what is the population density of texas
388 | how many people live in washington dc
389 | give me the cities in texas
390 | how long is the shortest river in the usa
391 | how many states have major rivers
392 | what is the population density of the smallest state
393 | which states border michigan
394 | what cities in texas have the highest populations
395 | what rivers run through the states that border the state with the capital atlanta
396 | what is the highest point in the country
397 | how many people live in kalamazoo
398 | how many major cities are in florida
399 | what state has the greatest population density
400 | how many rivers are found in colorado
401 | what is the lowest point of the state with the largest area
402 | what states border texas
403 | how many states border at least one other state
404 | which states border no other states
405 | what rivers run through austin texas
406 | how many people live in new hampshire
407 | what is the capital of indiana
408 | what states border the states with the most cities
409 | what is the area of the smallest state
410 | which states border new york
411 | what is the population of maine
412 | what is the biggest city in the smallest state
413 | what is the elevation of the highest point in the usa
414 | what state borders the least states excluding alaska and excluding hawaii
415 | what is the highest point in new mexico
416 | what is the biggest state
417 | how many people live in spokane washington
418 | what states does the shortest river run through
419 | how long is rio grande
420 | how many people live in texas
421 | where is the lowest spot in iowa
422 | what are the populations of the states through which the mississippi river runs
423 | what is the lowest point in oregon
424 | what is the shortest river in alaska
425 | how many states border the mississippi river
426 | what is the most populated capital in the usa
427 | what is the highest point in ohio
428 | what states border wisconsin
429 | what states have a capital that is the highest point in the state
430 | how many states border colorado and border new mexico
431 | what are the major cities in missouri
432 | what are the major cities of texas
433 | how many rivers are called color
434 | how high is the highest point in montana
435 | how many states have cities named austin
436 | which states does the missouri river pass through
437 | what is the biggest city in the us
438 | how big is new mexico
439 | how many people live in south dakota
440 | what state is pittsburgh in
441 | what rivers run through arizona
442 | how many major rivers cross ohio
443 | how many people in boulder
444 | how many rivers are there in idaho
445 | sacramento is the capital of which state
446 | how many cities are there in us
447 | how many citizens live in california
448 | what state has the largest urban population
449 | what states border the mississippi river
450 | what can you tell me about the population of missouri
451 | what rivers do not run through tennessee
452 | what is the largest city in a state that borders texas
453 | name the longest river in us
454 | how many states does the mississippi run through
455 | what is the largest of the states that the rio grande runs through
456 | what is the size of the capital of texas
457 | what states have rivers running through them
458 | what states border hawaii
459 | how many citizens in boulder
460 | what states border states that border states that border florida
461 | which states border the longest river in the usa
462 | what is the population density of wyoming
463 | how many people are there in iowa
464 | what is the highest point in the state with the most rivers
465 | number of citizens in boulder
466 | what are the rivers of montana
467 | how many states border on the state whose capital is boston
468 | how many people live in washington
469 | what is the largest state capital in population
470 | what is the largest city in states that border california
471 | what is the most populous city in wyoming
472 | what is the population density in the state with capital austin
473 | what is the population of portland maine
474 | which state is kalamazoo in
475 | what is the population of the largest state that borders texas
476 | what states border ohio
477 | what river is the longest one in the united states
478 | what is the population density of the state with the smallest area
479 | what is the largest capital
480 | what state has the smallest capital
481 | how many big cities are in pennsylvania
482 | which states lie on the largest river in the united states
483 | where is houston
484 | what rivers flow through states that border the state with the largest population
485 | what is the highest point in the smallest state
486 | what river runs through virginia
487 | what state borders michigan
488 | name the major lakes in michigan
489 | give me the cities in virginia
490 | which river runs through the most states
491 | how many people live in new mexico
492 | what is the largest city in alabama
493 | how many people live in san francisco
494 | what is the population of the capital of the largest state
495 | what is the longest river in the us
496 | what is the largest state that borders the state with the highest population
497 | show me all the major lakes in the us
498 | where is springfield
499 | what state is des moines located in
500 | how many cities does texas have
501 | what state is boston in
502 | which rivers run through the state with the largest city in the us
503 | states bordering iowa
504 | what states have no bordering state
505 | where is the lowest point in the us
506 | what are the major cities in oklahoma
507 | which state has the smallest area that borders texas
508 | what is the capital of the state with the highest elevation
509 | what states does the mississippi run through
510 | where is mount whitney located
511 | which state has the largest density
512 | what is the smallest city in washington
513 | what are the major cities in new mexico
514 | how many people live in the capital of georgia
515 | what state which the mississippi runs through has the largest population
516 | state the state with the largest area
517 | how many people live in riverside
518 | what is the area of seattle
519 | what capital has the largest population
520 | what is the capital of the state that borders the most states
521 | how many rivers run through the states bordering colorado
522 | what are the cities in california
523 | what state is austin the capital of
524 | how many people live in kansas
525 | what state borders the least states
526 | which states border south dakota
527 | name the rivers in arkansas
528 | how long is the mississippi river in miles
529 | what is the shortest river in the us
530 | what is the biggest city in usa
531 | what is the capital of washington
532 | how many cities are in montana
533 | what is the capital of the state texas
534 | what is the height of mount mckinley
535 | what is the city with the smallest population
536 | what is the biggest state in the usa
537 | how many major cities are in states bordering utah
538 | how many states border tennessee
539 | what states does the ohio river go through
540 | what is the longest river in the smallest state in the usa
541 | what is the smallest state by area
542 | what is the population of the capital of the largest state through which the mississippi runs
543 | what is the population of boston massachusetts
544 | what cities in california
545 | how big is the city of new york
546 | what state has the most cities
547 | what is the longest river in the us
548 | name the 50 capitals in the usa
549 | what is the capital of the state that borders the state that borders texas
550 | which state has the red river
551 | how many people live in chicago
552 | what is the smallest city in alaska
553 | list the states
554 | what is the biggest city in georgia
555 | what states border states which the mississippi runs through
556 | how many cities are there in the us
557 | how big is texas
558 | what is the height of the highest point in the usa
559 | what are the populations of the states through which the mississippi runs
560 | what state has the smallest population
561 | how many states border texas
562 | which states do colorado river flow through
563 | what is the highest point in texas
564 | what is the longest river in california
565 | what is the length of the river that runs through the most number of states
566 | what is the most populous state in the us
567 | what is the capital of georgia
568 | what is the average population of the us by state
569 | what is the area of new mexico
570 | what is the longest river in texas
571 | how many major cities are there
572 | how many rivers are in the state with the largest population
573 | what is the major cities in montana
574 | what is the population of the major cities in wisconsin
575 | which states does not border texas
576 | what river traverses the most states
577 | what is the state with the lowest population density
578 | what states does the missouri river run through
579 | how many rivers are in colorado
580 | what is the shortest river in iowa
581 | what states border states that the mississippi runs through
582 | how many people are there in new york
583 | what is the city in texas with the largest population
584 | what is the highest elevation in new mexico
585 | what is the highest point in the united states
586 | what is the population of the state with the largest area
587 | where is baton rouge
588 | what states in the united states have a city of springfield
589 | how many cities are in louisiana
590 | how many states are in the united states
591 | what rivers run through louisiana
592 | how many people live in the state with the largest population density
593 | what is the state with the highest elevation in the united states
594 | what state borders most other states
595 | which states adjoin alabama
596 | what is the length of the colorado river in texas
597 | what state has the highest population
598 | what is the state that contains the highest point
599 | what is the population density of south dakota
600 | what states have cities named austin
601 | how many people live in montana
602 |
--------------------------------------------------------------------------------
/data/geo/geoquery.train.sem:
--------------------------------------------------------------------------------
1 | (answer (lake (loc_2 (countryid usa:e))))
2 | (answer (highest (place (loc_2 (stateid florida:e)))))
3 | (answer (high_point_1 (state (next_to_2 (stateid mississippi:e)))))
4 | (answer (state (loc_1 (shortest (river all:e)))))
5 | (answer (highest (mountain (loc_2 (countryid usa:e)))))
6 | (answer (capital (loc_2 (stateid maine:e))))
7 | (answer (population_1 (state (traverse_1 (riverid mississippi:e)))))
8 | (answer (lake (loc_2 (countryid usa:e))))
9 | (answer (state (next_to_2 (state (traverse_1 (riverid mississippi:e))))))
10 | (answer (highest (mountain (loc_2 (stateid alaska:e)))))
11 | (answer (population_1 (stateid illinois:e)))
12 | (answer (river (loc_2 (stateid colorado:e))))
13 | (answer (state (loc_1 (highest (place (loc_2 (countryid usa:e)))))))
14 | (answer (state (loc_1 (cityid denver:e _:e))))
15 | (answer (lowest (place (loc_2 (stateid texas:e)))))
16 | (answer (count (state (loc_1 (city (cityid rochester:e _:e))))))
17 | (answer (capital (loc_2 (state (next_to_2 (stateid texas:e))))))
18 | (answer (population_1 (cityid austin:e _:e)))
19 | (answer (state (loc_1 (river (riverid colorado:e)))))
20 | (answer (size (stateid texas:e)))
21 | (answer (shortest (river (loc_2 (countryid usa:e)))))
22 | (answer (major (city (loc_2 (countryid usa:e)))))
23 | (answer (state (next_to_2 (stateid kentucky:e))))
24 | (answer (population_1 (stateid oregon:e)))
25 | (answer (state (loc_1 (city (cityid austin:e _:e)))))
26 | (answer (highest (place (loc_2 (stateid south_carolina:e)))))
27 | (answer (population_1 (cityid austin:e tx:e)))
28 | (answer (river (loc_2 (stateid texas:e))))
29 | (answer (lowest (place (loc_2 (stateid colorado:e)))))
30 | (answer (population_1 (cityid atlanta:e _:e)))
31 | (answer (river (loc_2 (stateid utah:e))))
32 | (answer (most (river (traverse_2 (state all:e)))))
33 | (answer (population_1 (cityid sacramento:e _:e)))
34 | (answer (highest (place (loc_2 (stateid oregon:e)))))
35 | (answer (state (traverse_1 (riverid mississippi:e))))
36 | (answer (major (city (loc_2 (smallest (state (loc_2 (countryid usa:e))))))))
37 | (answer (elevation_1 (placeid guadalupe_peak:e)))
38 | (answer (river (traverse_2 (stateid illinois:e))))
39 | (answer (len (riverid mississippi:e)))
40 | (answer (elevation_1 (highest (place (loc_2 (largest (state all:e)))))))
41 | (answer (area_1 (stateid south_carolina:e)))
42 | (answer (state (traverse_1 (longest (river all:e)))))
43 | (answer (loc_1 (cityid new_orleans:e _:e)))
44 | (answer (state (loc_1 (placeid mount_mckinley:e))))
45 | (answer (state (loc_1 (highest (place all:e)))))
46 | (answer (size (stateid california:e)))
47 | (answer (smallest (state (next_to_2 (stateid texas:e)))))
48 | (answer (population_1 (stateid alabama:e)))
49 | (answer (state (loc_1 (cityid rochester:e _:e))))
50 | (answer (count (intersection (state (loc_2 (countryid usa:e))) (traverse_1 (shortest (river all:e))))))
51 | (answer (largest (state (loc_2 (countryid usa:e)))))
52 | (answer (area_1 (largest (state all:e))))
53 | (answer (loc_1 (placeid mount_whitney:e)))
54 | (answer (count (state (next_to_1 (stateid iowa:e)))))
55 | (answer (state (traverse_1 (longest (river all:e)))))
56 | (answer (river (traverse_2 (stateid kansas:e))))
57 | (answer (population_1 (cityid austin:e tx:e)))
58 | (answer (capital (loc_2 (stateid vermont:e))))
59 | (answer (state (next_to_2 (stateid colorado:e))))
60 | (answer (len (riverid mississippi:e)))
61 | (answer (largest_one (density_1 (state all:e))))
62 | (answer (state (next_to_2 (stateid georgia:e))))
63 | (answer (capital (loc_2 (stateid pennsylvania:e))))
64 | (answer (longest (river (loc_2 (stateid texas:e)))))
65 | (answer (longest (river (loc_2 (countryid usa:e)))))
66 | (answer (capital (loc_2 (stateid utah:e))))
67 | (answer (smallest_one (density_1 (state all:e))))
68 | (answer (exclude (capital all:e) (major (city all:e))))
69 | (answer (largest (city (loc_2 (stateid nebraska:e)))))
70 | (answer (population_1 (stateid texas:e)))
71 | (answer (shortest (river (loc_2 (countryid usa:e)))))
72 | (answer (population_1 (stateid rhode_island:e)))
73 | (answer (state (loc_1 (lowest (place all:e)))))
74 | (answer (longest (river (loc_2 (stateid new_york:e)))))
75 | (answer (longest (river (traverse_2 (state (next_to_2 (stateid tennessee:e)))))))
76 | (answer (count (major (city (loc_2 (stateid arizona:e))))))
77 | (answer (state (next_to_2 (stateid michigan:e))))
78 | (answer (largest (state (next_to_2 (stateid texas:e)))))
79 | (answer (shortest (river all:e)))
80 | (answer (count (state (next_to_2 (most (state (next_to_2 (state all:e))))))))
81 | (answer (state (loc_1 (largest (city (loc_2 (stateid montana:e)))))))
82 | (answer (population_1 (cityid washington:e dc:e)))
83 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e))))))
84 | (answer (capital (loc_2 (stateid hawaii:e))))
85 | (answer (capital (loc_2 (stateid iowa:e))))
86 | (answer (loc_1 (cityid san_diego:e _:e)))
87 | (answer (major (city (loc_2 (stateid delaware:e)))))
88 | (answer (lowest (place (loc_2 (stateid louisiana:e)))))
89 | (answer (state (loc_1 (highest (place all:e)))))
90 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e))))))
91 | (answer (largest (capital (loc_2 (countryid usa:e)))))
92 | (answer (population_1 (stateid new_york:e)))
93 | (answer (population_1 (capital (loc_2 (smallest (state all:e))))))
94 | (answer (area_1 (stateid alaska:e)))
95 | (answer (population_1 (stateid california:e)))
96 | (answer (state (loc_1 (longest (river all:e)))))
97 | (answer (capital (loc_2 (stateid texas:e))))
98 | (answer (city (loc_2 (stateid texas:e))))
99 | (answer (state (next_to_2 (stateid kentucky:e))))
100 | (answer (elevation_1 (highest (place (loc_2 (stateid florida:e))))))
101 | (answer (major (city (loc_2 (stateid north_carolina:e)))))
102 | (answer (highest (place (loc_2 (state (loc_1 (capital (cityid des_moines:e _:e))))))))
103 | (answer (lowest (place (loc_2 (stateid california:e)))))
104 | (answer (largest (city (loc_2 (stateid wyoming:e)))))
105 | (answer (largest (state (next_to_2 (stateid texas:e)))))
106 | (answer (smallest (city (loc_2 (stateid hawaii:e)))))
107 | (answer (area_1 (state all:e)))
108 | (answer (area_1 (stateid idaho:e)))
109 | (answer (most (state (traverse_1 (river all:e)))))
110 | (answer (population_1 (cityid springfield:e mo:e)))
111 | (answer (largest_one (population_1 (state (next_to_2 (stateid oklahoma:e))))))
112 | (answer (count (state (next_to_2 (stateid kentucky:e)))))
113 | (answer (density_1 (stateid pennsylvania:e)))
114 | (answer (largest_one (density_1 (state all:e))))
115 | (answer (highest (mountain (loc_2 (countryid usa:e)))))
116 | (answer (highest (place (loc_2 (largest_one (area_1 (state all:e)))))))
117 | (answer (state all:e))
118 | (answer (count (river (loc_2 (stateid washington:e)))))
119 | (answer (population_1 (state (traverse_1 (riverid mississippi:e)))))
120 | (answer (longest (river (loc_2 (stateid illinois:e)))))
121 | (answer (capital (loc_2 (stateid michigan:e))))
122 | (answer (sum (population_1 (state (next_to_2 (stateid texas:e))))))
123 | (answer (state (next_to_2 (stateid rhode_island:e))))
124 | (answer (largest (city (loc_2 (stateid oregon:e)))))
125 | (answer (lowest (place (loc_2 (stateid wisconsin:e)))))
126 | (answer (river (loc_2 (stateid indiana:e))))
127 | (answer (population_1 (cityid austin:e _:e)))
128 | (answer (smallest (city (loc_2 (stateid arkansas:e)))))
129 | (answer (longest (river (traverse_2 (countryid usa:e)))))
130 | (answer (len (riverid missouri:e)))
131 | (answer (state (loc_1 (largest (city all:e)))))
132 | (answer (lowest (place (loc_2 (stateid pennsylvania:e)))))
133 | (answer (longest (river (loc_2 (state (loc_1 (highest (place all:e))))))))
134 | (answer (state (traverse_1 (riverid colorado:e))))
135 | (answer (state (traverse_1 (riverid potomac:e))))
136 | (answer (largest (city (loc_2 (countryid usa:e)))))
137 | (answer (exclude (state all:e) (loc_1 (river all:e))))
138 | (answer (highest (place (loc_2 (stateid rhode_island:e)))))
139 | (answer (exclude (state all:e) (next_to_2 (state all:e))))
140 | (answer (population_1 (cityid atlanta:e ga:e)))
141 | (answer (area_1 (countryid usa:e)))
142 | (answer (population_1 (stateid idaho:e)))
143 | (answer (state (next_to_2 (stateid california:e))))
144 | (answer (smallest (state (traverse_1 (longest (river all:e))))))
145 | (answer (major (city (loc_2 (stateid illinois:e)))))
146 | (answer (count (state (traverse_1 (riverid colorado:e)))))
147 | (answer (count (state (traverse_1 (riverid colorado:e)))))
148 | (answer (major (city (loc_2 (stateid kansas:e)))))
149 | (answer (state (next_to_2 (stateid texas:e))))
150 | (answer (population_1 (stateid new_york:e)))
151 | (answer (largest (city (loc_2 (state (next_to_2 (largest (state all:e))))))))
152 | (answer (state (loc_1 (place (higher_2 (highest (place (loc_2 (stateid texas:e)))))))))
153 | (answer (river (traverse_2 (stateid ohio:e))))
154 | (answer (largest (city (loc_2 (stateid michigan:e)))))
155 | (answer (count (river (loc_2 (state (loc_1 (highest (place all:e))))))))
156 | (answer (city (loc_2 (stateid pennsylvania:e))))
157 | (answer (smallest_one (population_1 (state all:e))))
158 | (answer (highest (place (loc_2 (state (loc_1 (lowest (place (elevation_2 0:e)))))))))
159 | (answer (city (loc_2 (countryid usa:e))))
160 | (answer (count (state (traverse_1 (riverid missouri:e)))))
161 | (answer (state (loc_1 (largest_one (population_1 (city all:e))))))
162 | (answer (shortest (river all:e)))
163 | (answer (count (state (next_to_2 (stateid alaska:e)))))
164 | (answer (population_1 (cityid dallas:e _:e)))
165 | (answer (loc_1 (cityid san_jose:e _:e)))
166 | (answer (state (next_to_2 (state (next_to_2 (stateid colorado:e))))))
167 | (answer (river (traverse_2 (largest_one (population_1 (state all:e))))))
168 | (answer (largest (city all:e)))
169 | (answer (capital (loc_2 (stateid alabama:e))))
170 | (answer (state (next_to_2 (stateid arkansas:e))))
171 | (answer (population_1 (cityid denver:e _:e)))
172 | (answer (longest (river (loc_2 (countryid usa:e)))))
173 | (answer (loc_1 (stateid massachusetts:e)))
174 | (answer (smallest_one (area_1 (state all:e))))
175 | (answer (major (river (traverse_2 (stateid illinois:e)))))
176 | (answer (count (city (loc_2 (countryid usa:e)))))
177 | (answer (population_1 (stateid california:e)))
178 | (answer (major (river (loc_2 (countryid usa:e)))))
179 | (answer (count (state (traverse_1 (riverid mississippi:e)))))
180 | (answer (area_1 (stateid texas:e)))
181 | (answer (len (most (river (traverse_2 (state all:e))))))
182 | (answer (len (longest (river (loc_2 (countryid usa:e))))))
183 | (answer (capital (loc_2 (stateid texas:e))))
184 | (answer (largest_one (population_1 (city (loc_2 (stateid minnesota:e))))))
185 | (answer (smallest (state (loc_2 (countryid usa:e)))))
186 | (answer (state (next_to_2 (stateid maine:e))))
187 | (answer (state (high_point_2 (higher_2 (high_point_1 (stateid colorado:e))))))
188 | (answer (highest (mountain (loc_2 (stateid texas:e)))))
189 | (answer (major (city (loc_2 (stateid texas:e)))))
190 | (answer (state (next_to_2 (largest_one (population_1 (state all:e))))))
191 | (answer (river (traverse_2 (stateid colorado:e))))
192 | (answer (count (river (loc_2 (countryid usa:e)))))
193 | (answer (count (river (loc_2 (stateid new_york:e)))))
194 | (answer (river (loc_2 (stateid alaska:e))))
195 | (answer (longest (river (traverse_2 (stateid new_york:e)))))
196 | (answer (river (traverse_2 (stateid west_virginia:e))))
197 | (answer (capital (loc_2 (state (next_to_2 (stateid texas:e))))))
198 | (answer (area_1 (stateid california:e)))
199 | (answer (count (state (loc_1 (city (cityid springfield:e _:e))))))
200 | (answer (largest (city (loc_2 (stateid texas:e)))))
201 | (answer (count (intersection (city (cityid austin:e _:e)) (loc_2 (countryid usa:e)))))
202 | (answer (major (city (loc_2 (largest (state all:e))))))
203 | (answer (state (traverse_1 (riverid colorado:e))))
204 | (answer (largest (city (loc_2 (stateid wisconsin:e)))))
205 | (answer (size (stateid alaska:e)))
206 | (answer (state (loc_1 (highest (place (loc_2 (countryid usa:e)))))))
207 | (answer (size (stateid north_dakota:e)))
208 | (answer (river (traverse_2 (stateid alaska:e))))
209 | (answer (highest (place (loc_2 (countryid usa:e)))))
210 | (answer (shortest (river (loc_2 (stateid texas:e)))))
211 | (answer (major (city (loc_2 (state (traverse_1 (major (river (loc_2 (stateid virginia:e))))))))))
212 | (answer (river (loc_2 (stateid oregon:e))))
213 | (answer (lowest (place (loc_2 (countryid usa:e)))))
214 | (answer (count (state (loc_1 (city (cityid springfield:e _:e))))))
215 | (answer (population_1 (stateid south_dakota:e)))
216 | (answer (capital (loc_2 (state (loc_1 (highest (place all:e)))))))
217 | (answer (state (loc_1 (highest (place all:e)))))
218 | (answer (state (next_to_2 (stateid texas:e))))
219 | (answer (longest (river (traverse_2 (state (next_to_2 (most (state (next_to_2 (state all:e))))))))))
220 | (answer (state (next_to_2 (stateid hawaii:e))))
221 | (answer (count (major (city (loc_2 (stateid oregon:e))))))
222 | (answer (population_1 (cityid springfield:e sd:e)))
223 | (answer (count (river (traverse_2 (stateid texas:e)))))
224 | (answer (most (state (traverse_1 (major (river all:e))))))
225 | (answer (lake (loc_2 (state (next_to_2 (stateid texas:e))))))
226 | (answer (population_1 (cityid boulder:e _:e)))
227 | (answer (river (loc_2 (stateid nevada:e))))
228 | (answer (loc_1 (cityid fort_wayne:e _:e)))
229 | (answer (loc_1 (cityid indianapolis:e _:e)))
230 | (answer (state (next_to_2 (state (next_to_2 (state (next_to_2 (state (next_to_2 (stateid texas:e))))))))))
231 | (answer (population_1 (cityid boulder:e _:e)))
232 | (answer (major (city (loc_2 (countryid usa:e)))))
233 | (answer (major (city (loc_2 (stateid colorado:e)))))
234 | (answer (state (loc_1 (capital (cityid columbus:e _:e)))))
235 | (answer (sum (area_1 (state all:e))))
236 | (answer (density_1 (countryid usa:e)))
237 | (answer (largest (state (next_to_2 (stateid california:e)))))
238 | (answer (population_1 (stateid montana:e)))
239 | (answer (population_1 (major (city (loc_2 (stateid montana:e))))))
240 | (answer (river (traverse_2 (state (loc_1 (lowest (place (loc_2 (countryid usa:e)))))))))
241 | (answer (river (traverse_2 (largest (state all:e)))))
242 | (answer (area_1 (stateid maine:e)))
243 | (answer (major (river (loc_2 (stateid texas:e)))))
244 | (answer (density_1 (smallest_one (population_1 (state all:e)))))
245 | (answer (highest (place (loc_2 (stateid wyoming:e)))))
246 | (answer (state (next_to_2 (stateid delaware:e))))
247 | (answer (most (state (traverse_1 (river all:e)))))
248 | (answer (largest (capital all:e)))
249 | (answer (largest_one (density_1 (state all:e))))
250 | (answer (state (loc_1 (city (cityid springfield:e _:e)))))
251 | (answer (smallest (city (loc_2 (largest (state all:e))))))
252 | (answer (mountain (loc_2 (stateid alaska:e))))
253 | (answer (river (traverse_2 (stateid colorado:e))))
254 | (answer (smallest_one (density_1 (state all:e))))
255 | (answer (population_1 (cityid montgomery:e _:e)))
256 | (answer (largest_one (population_1 (city all:e))))
257 | (answer (largest (state all:e)))
258 | (answer (state (loc_1 (lowest (place (loc_2 (state (traverse_1 (riverid mississippi:e)))))))))
259 | (answer (area_1 (smallest_one (density_1 (state all:e)))))
260 | (answer (most (state (loc_1 (river all:e)))))
261 | (answer (longest (river (loc_2 (stateid mississippi:e)))))
262 | (answer (capital (loc_2 (largest (state all:e)))))
263 | (answer (largest_one (population_1 (state all:e))))
264 | (answer (river (loc_2 (stateid arkansas:e))))
265 | (answer (population_1 (state (traverse_1 (riverid mississippi:e)))))
266 | (answer (population_1 (stateid arizona:e)))
267 | (answer (state (next_to_2 (smallest_one (population_1 (state all:e))))))
268 | (answer (area_1 (countryid usa:e)))
269 | (answer (population_1 (cityid seattle:e wa:e)))
270 | (answer (size (largest (state (loc_2 (countryid usa:e))))))
271 | (answer (state (loc_1 (capital (cityid salem:e _:e)))))
272 | (answer (lowest (place (loc_2 (state (traverse_1 (riverid mississippi:e)))))))
273 | (answer (count (major (city (loc_2 (stateid texas:e))))))
274 | (answer (capital (city (loc_2 (largest (state (loc_2 (countryid usa:e))))))))
275 | (answer (major (city (loc_2 (stateid rhode_island:e)))))
276 | (answer (largest_one (population_1 (state all:e))))
277 | (answer (largest (city (loc_2 (stateid kansas:e)))))
278 | (answer (area_1 (state (loc_1 (capital (cityid albany:e _:e))))))
279 | (answer (longest (river (traverse_2 (stateid colorado:e)))))
280 | (answer (count (river (loc_2 (stateid alaska:e)))))
281 | (answer (size (stateid massachusetts:e)))
282 | (answer (size (largest (city (loc_2 (stateid alaska:e))))))
283 | (answer (count (city (loc_2 (countryid usa:e)))))
284 | (answer (state (capital_2 (cityid dover:e _:e))))
285 | (answer (state (next_to_2 (stateid new_hampshire:e))))
286 | (answer (shortest (river (loc_2 (stateid nebraska:e)))))
287 | (answer (count (state (next_to_2 (stateid hawaii:e)))))
288 | (answer (state (loc_1 (cityid dallas:e _:e))))
289 | (answer (smallest_one (population_1 (city all:e))))
290 | (answer (population_1 (stateid utah:e)))
291 | (answer (smallest_one (density_1 (state all:e))))
292 | (answer (largest (state (next_to_2 (state (loc_1 (lowest (place (loc_2 (countryid usa:e))))))))))
293 | (answer (largest (city (loc_2 (stateid texas:e)))))
294 | (answer (largest (state (loc_2 (countryid usa:e)))))
295 | (answer (largest_one (population_1 (state all:e))))
296 | (answer (river (loc_2 (stateid new_mexico:e))))
297 | (answer (area_1 (stateid maryland:e)))
298 | (answer (count (state (loc_2 (countryid usa:e)))))
299 | (answer (count (major (city (loc_2 (state (next_to_2 (stateid nebraska:e))))))))
300 | (answer (population_1 (largest (state all:e))))
301 | (answer (size (stateid florida:e)))
302 | (answer (count (river (loc_2 (stateid missouri:e)))))
303 | (answer (count (river (loc_2 (stateid texas:e)))))
304 | (answer (highest (place (loc_2 (state (loc_1 (capital (cityid des_moines:e _:e))))))))
305 | (answer (population_1 (cityid seattle:e _:e)))
306 | (answer (highest (place (loc_2 (stateid colorado:e)))))
307 | (answer (state (next_to_2 (stateid arizona:e))))
308 | (answer (river (traverse_2 (state (loc_1 (lowest (place (loc_2 (countryid usa:e)))))))))
309 | (answer (population_1 (stateid minnesota:e)))
310 | (answer (state (loc_1 (largest_one (population_1 (city all:e))))))
311 | (answer (state (loc_1 (major (city (cityid austin:e _:e))))))
312 | (answer (state (loc_1 (place (higher_2 (highest (place (loc_2 (stateid colorado:e)))))))))
313 | (answer (highest (place (loc_2 (smallest_one (population_1 (state all:e)))))))
314 | (answer (loc_1 (stateid new_hampshire:e)))
315 | (answer (state (next_to_2 (stateid florida:e))))
316 | (answer (count (intersection (river (loc_2 (stateid texas:e))) (longer (riverid red:e)))))
317 | (answer (count (exclude (river all:e) (traverse_2 (state (loc_1 (capital (cityid albany:e _:e))))))))
318 | (answer (population_1 (state (traverse_1 (riverid mississippi:e)))))
319 | (answer (state (traverse_1 (riverid mississippi:e))))
320 | (answer (state (next_to_2 (riverid mississippi:e))))
321 | (answer (city (loc_2 (stateid virginia:e))))
322 | (answer (capital (city (loc_2 (state (next_to_2 (stateid texas:e)))))))
323 | (answer (largest_one (population_1 (state (next_to_2 (stateid texas:e))))))
324 | (answer (state (most (state (loc_1 (river all:e))))))
325 | (answer (smallest_one (density_1 (state all:e))))
326 | (answer (major (city (loc_2 (stateid ohio:e)))))
327 | (answer (state (traverse_1 (riverid missouri:e))))
328 | (answer (largest (city (loc_2 (stateid arizona:e)))))
329 | (answer (population_1 (stateid hawaii:e)))
330 | (answer (population_1 (smallest (state (next_to_2 (stateid wyoming:e))))))
331 | (answer (state (loc_1 (lowest (place all:e)))))
332 | (answer (river (traverse_2 (stateid missouri:e))))
333 | (answer (elevation_1 (placeid death_valley:e)))
334 | (answer (river (traverse_2 (stateid texas:e))))
335 | (answer (elevation_1 (highest (place (loc_2 (state all:e))))))
336 | (answer (capital (loc_2 (stateid new_hampshire:e))))
337 | (answer (len (riverid rio_grande:e)))
338 | (answer (most (state (next_to_2 (state all:e)))))
339 | (answer (count (state (next_to_1 (stateid missouri:e)))))
340 | (answer (loc_1 (cityid austin:e _:e)))
341 | (answer (elevation_1 (highest (place (loc_2 (stateid delaware:e))))))
342 | (answer (loc_1 (highest (place (loc_2 (stateid montana:e))))))
343 | (answer (state (next_to_2 (state (next_to_2 (largest_one (population_1 (state all:e))))))))
344 | (answer (elevation_1 (highest (mountain (loc_2 (stateid texas:e))))))
345 | (answer (state (loc_1 (cityid flint:e _:e))))
346 | (answer (largest_one (density_1 (state (loc_2 (countryid usa:e))))))
347 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e))))))
348 | (answer (state (next_to_2 (stateid missouri:e))))
349 | (answer (largest (state all:e)))
350 | (answer (smallest_one (density_1 (state all:e))))
351 | (answer (state (next_to_2 (stateid alabama:e))))
352 | (answer (river (traverse_2 (state (next_to_1 (stateid alabama:e))))))
353 | (answer (major (city (loc_2 (stateid wyoming:e)))))
354 | (answer (highest (place (loc_2 (state (next_to_2 (stateid mississippi:e)))))))
355 | (answer (state (traverse_1 (riverid mississippi:e))))
356 | (answer (loc_1 (cityid scotts_valley:e _:e)))
357 | (answer (major (lake (loc_2 (countryid usa:e)))))
358 | (answer (largest (city (loc_2 (stateid missouri:e)))))
359 | (answer (state (next_to_2 (stateid alaska:e))))
360 | (answer (state (loc_1 (largest (city all:e)))))
361 | (answer (river (traverse_2 (stateid maine:e))))
362 | (answer (lake (loc_2 (stateid california:e))))
363 | (answer (sum (population_1 (state all:e))))
364 | (answer (elevation_1 (highest (place (loc_2 (stateid louisiana:e))))))
365 | (answer (longest (river (loc_2 (stateid pennsylvania:e)))))
366 | (answer (capital (loc_2 (stateid maryland:e))))
367 | (answer (largest (state all:e)))
368 | (answer (state (next_to_2 (stateid iowa:e))))
369 | (answer (state (next_to_2 (stateid alaska:e))))
370 | (answer (largest (state (loc_2 (countryid usa:e)))))
371 | (answer (major (city (loc_2 (stateid california:e)))))
372 | (answer (largest (state (traverse_1 (riverid mississippi:e)))))
373 | (answer (river (traverse_2 (state (next_to_2 (stateid new_mexico:e))))))
374 | (answer (lowest (place (loc_2 (stateid texas:e)))))
375 | (answer (smallest (state (next_to_2 (stateid ohio:e)))))
376 | (answer (count (state (next_to_2 (major (river all:e))))))
377 | (answer (lowest (place (loc_2 (countryid usa:e)))))
378 | (answer (largest_one (density_1 (state all:e))))
379 | (answer (count (state (next_to_2 (largest (state all:e))))))
380 | (answer (longest (exclude (river all:e) (traverse_2 (stateid texas:e)))))
381 | (answer (state (loc_2 (countryid usa:e))))
382 | (answer (density_1 (stateid texas:e)))
383 | (answer (smallest (city (loc_2 (smallest (state (loc_2 (countryid usa:e))))))))
384 | (answer (highest (place (loc_2 (stateid kansas:e)))))
385 | (answer (population_1 (cityid boston:e _:e)))
386 | (answer (population_1 (stateid nevada:e)))
387 | (answer (density_1 (stateid texas:e)))
388 | (answer (population_1 (cityid washington:e dc:e)))
389 | (answer (city (loc_2 (stateid texas:e))))
390 | (answer (len (shortest (river (loc_2 (countryid usa:e))))))
391 | (answer (count (state (loc_1 (major (river all:e))))))
392 | (answer (density_1 (smallest (state all:e))))
393 | (answer (state (next_to_2 (stateid michigan:e))))
394 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e))))))
395 | (answer (river (traverse_2 (state (next_to_2 (state (loc_1 (capital (cityid atlanta:e _:e)))))))))
396 | (answer (highest (place (loc_2 (countryid usa:e)))))
397 | (answer (population_1 (cityid kalamazoo:e _:e)))
398 | (answer (count (major (city (loc_2 (stateid florida:e))))))
399 | (answer (largest_one (density_1 (state all:e))))
400 | (answer (count (river (loc_2 (stateid colorado:e)))))
401 | (answer (lowest (place (loc_2 (largest_one (area_1 (state all:e)))))))
402 | (answer (state (next_to_2 (stateid texas:e))))
403 | (answer (count (state (next_to_2 (state all:e)))))
404 | (answer (exclude (state all:e) (next_to_2 (state all:e))))
405 | (answer (river (traverse_2 (cityid austin:e tx:e))))
406 | (answer (population_1 (stateid new_hampshire:e)))
407 | (answer (capital (loc_2 (stateid indiana:e))))
408 | (answer (state (next_to_2 (most (state (loc_1 (city all:e)))))))
409 | (answer (area_1 (smallest (state all:e))))
410 | (answer (state (next_to_2 (stateid new_york:e))))
411 | (answer (population_1 (stateid maine:e)))
412 | (answer (largest (city (loc_2 (smallest (state all:e))))))
413 | (answer (elevation_1 (highest (place (loc_2 (countryid usa:e))))))
414 | (answer (fewest (state (next_to_2 (exclude (exclude (state all:e) (stateid alaska:e)) (stateid hawaii:e))))))
415 | (answer (highest (place (loc_2 (stateid new_mexico:e)))))
416 | (answer (largest (state all:e)))
417 | (answer (population_1 (cityid spokane:e wa:e)))
418 | (answer (state (traverse_1 (shortest (river all:e)))))
419 | (answer (len (riverid rio_grande:e)))
420 | (answer (population_1 (stateid texas:e)))
421 | (answer (loc_1 (lowest (place (loc_2 (stateid iowa:e))))))
422 | (answer (population_1 (state (traverse_1 (riverid mississippi:e)))))
423 | (answer (lowest (place (loc_2 (stateid oregon:e)))))
424 | (answer (shortest (river (loc_2 (stateid alaska:e)))))
425 | (answer (count (state (next_to_2 (riverid mississippi:e)))))
426 | (answer (largest_one (population_1 (capital (loc_2 (countryid usa:e))))))
427 | (answer (highest (place (loc_2 (stateid ohio:e)))))
428 | (answer (state (next_to_2 (stateid wisconsin:e))))
429 | (answer (state (loc_1 (capital (highest (place all:e))))))
430 | (answer (count (state (intersection (next_to_2 (stateid colorado:e)) (next_to_2 (stateid new_mexico:e))))))
431 | (answer (major (city (loc_2 (stateid missouri:e)))))
432 | (answer (major (city (loc_2 (stateid texas:e)))))
433 | (answer (count (river (riverid colorado:e))))
434 | (answer (elevation_1 (highest (place (loc_2 (stateid montana:e))))))
435 | (answer (count (state (loc_1 (city (cityid austin:e _:e))))))
436 | (answer (state (traverse_1 (riverid missouri:e))))
437 | (answer (largest (city (loc_2 (countryid usa:e)))))
438 | (answer (size (stateid new_mexico:e)))
439 | (answer (population_1 (stateid south_dakota:e)))
440 | (answer (state (loc_1 (cityid pittsburgh:e _:e))))
441 | (answer (river (traverse_2 (stateid arizona:e))))
442 | (answer (count (major (river (traverse_2 (stateid ohio:e))))))
443 | (answer (population_1 (cityid boulder:e _:e)))
444 | (answer (count (river (loc_2 (stateid idaho:e)))))
445 | (answer (state (loc_1 (capital (cityid sacramento:e _:e)))))
446 | (answer (count (city (loc_2 (countryid usa:e)))))
447 | (answer (population_1 (stateid california:e)))
448 | (answer (largest_one (population_1 (state all:e))))
449 | (answer (state (next_to_2 (riverid mississippi:e))))
450 | (answer (population_1 (stateid missouri:e)))
451 | (answer (exclude (river all:e) (traverse_2 (stateid tennessee:e))))
452 | (answer (largest (city (loc_2 (state (next_to_2 (stateid texas:e)))))))
453 | (answer (longest (river (loc_2 (countryid usa:e)))))
454 | (answer (count (state (traverse_1 (riverid mississippi:e)))))
455 | (answer (largest (state (traverse_1 (riverid rio_grande:e)))))
456 | (answer (size (capital (loc_2 (stateid texas:e)))))
457 | (answer (state (traverse_1 (river all:e))))
458 | (answer (state (next_to_2 (stateid hawaii:e))))
459 | (answer (population_1 (cityid boulder:e _:e)))
460 | (answer (state (next_to_2 (state (next_to_2 (state (next_to_2 (stateid florida:e))))))))
461 | (answer (state (next_to_2 (longest (river (loc_2 (countryid usa:e)))))))
462 | (answer (density_1 (stateid wyoming:e)))
463 | (answer (population_1 (stateid iowa:e)))
464 | (answer (highest (place (loc_2 (most (state (traverse_1 (river all:e))))))))
465 | (answer (population_1 (cityid boulder:e _:e)))
466 | (answer (river (loc_2 (stateid montana:e))))
467 | (answer (count (state (next_to_2 (state (loc_1 (capital (cityid boston:e _:e))))))))
468 | (answer (population_1 (stateid washington:e)))
469 | (answer (largest_one (population_1 (capital_1 (state all:e)))))
470 | (answer (largest (city (loc_2 (state (next_to_2 (stateid california:e)))))))
471 | (answer (largest_one (population_1 (city (loc_2 (stateid wyoming:e))))))
472 | (answer (density_1 (state (loc_1 (capital (cityid austin:e _:e))))))
473 | (answer (population_1 (cityid portland:e me:e)))
474 | (answer (state (loc_1 (cityid kalamazoo:e _:e))))
475 | (answer (population_1 (largest (state (next_to_2 (stateid texas:e))))))
476 | (answer (state (next_to_2 (stateid ohio:e))))
477 | (answer (longest (river (loc_2 (countryid usa:e)))))
478 | (answer (density_1 (smallest_one (area_1 (state all:e)))))
479 | (answer (largest (capital all:e)))
480 | (answer (state (loc_1 (smallest (capital all:e)))))
481 | (answer (count (major (city (loc_2 (stateid pennsylvania:e))))))
482 | (answer (state (traverse_1 (longest (river (loc_2 (countryid usa:e)))))))
483 | (answer (loc_1 (cityid houston:e _:e)))
484 | (answer (river (traverse_2 (state (next_to_2 (largest_one (population_1 (state all:e))))))))
485 | (answer (highest (place (loc_2 (smallest (state all:e))))))
486 | (answer (river (traverse_2 (stateid virginia:e))))
487 | (answer (state (next_to_2 (stateid michigan:e))))
488 | (answer (major (lake (loc_2 (stateid michigan:e)))))
489 | (answer (city (loc_2 (stateid virginia:e))))
490 | (answer (most (river (traverse_2 (state all:e)))))
491 | (answer (population_1 (stateid new_mexico:e)))
492 | (answer (largest (city (loc_2 (stateid alabama:e)))))
493 | (answer (population_1 (cityid san_francisco:e _:e)))
494 | (answer (population_1 (capital (loc_2 (largest (state all:e))))))
495 | (answer (longest (river (loc_2 (countryid usa:e)))))
496 | (answer (largest (state (next_to_2 (largest_one (population_1 (state all:e)))))))
497 | (answer (major (lake (loc_2 (countryid usa:e)))))
498 | (answer (loc_1 (cityid springfield:e _:e)))
499 | (answer (state (loc_1 (cityid des_moines:e _:e))))
500 | (answer (count (city (loc_2 (stateid texas:e)))))
501 | (answer (state (loc_1 (cityid boston:e _:e))))
502 | (answer (river (traverse_2 (state (loc_1 (largest (city (loc_2 (countryid usa:e)))))))))
503 | (answer (state (next_to_2 (stateid iowa:e))))
504 | (answer (exclude (state all:e) (next_to_2 (state all:e))))
505 | (answer (loc_1 (lowest (place (loc_2 (countryid usa:e))))))
506 | (answer (major (city (loc_2 (stateid oklahoma:e)))))
507 | (answer (smallest_one (area_1 (state (next_to_2 (stateid texas:e))))))
508 | (answer (capital (loc_2 (state (loc_1 (highest (place all:e)))))))
509 | (answer (state (traverse_1 (riverid mississippi:e))))
510 | (answer (loc_1 (placeid mount_whitney:e)))
511 | (answer (largest_one (density_1 (state all:e))))
512 | (answer (smallest (city (loc_2 (stateid washington:e)))))
513 | (answer (major (city (loc_2 (stateid new_mexico:e)))))
514 | (answer (population_1 (capital (loc_2 (stateid georgia:e)))))
515 | (answer (largest_one (population_1 (state (traverse_1 (riverid mississippi:e))))))
516 | (answer (largest_one (area_1 (state all:e))))
517 | (answer (population_1 (cityid riverside:e _:e)))
518 | (answer (area_1 (cityid seattle:e _:e)))
519 | (answer (largest_one (population_1 (capital all:e))))
520 | (answer (capital (loc_2 (most (state (next_to_2 (state all:e)))))))
521 | (answer (count (river (traverse_2 (state (next_to_2 (stateid colorado:e)))))))
522 | (answer (city (loc_2 (stateid california:e))))
523 | (answer (state (loc_1 (capital (cityid austin:e _:e)))))
524 | (answer (population_1 (stateid kansas:e)))
525 | (answer (fewest (state (next_to_2 (state all:e)))))
526 | (answer (state (next_to_2 (stateid south_dakota:e))))
527 | (answer (river (loc_2 (stateid arkansas:e))))
528 | (answer (len (riverid mississippi:e)))
529 | (answer (shortest (river (loc_2 (countryid usa:e)))))
530 | (answer (largest (city (loc_2 (countryid usa:e)))))
531 | (answer (capital (loc_2 (stateid washington:e))))
532 | (answer (count (city (loc_2 (stateid montana:e)))))
533 | (answer (capital (loc_2 (stateid texas:e))))
534 | (answer (elevation_1 (placeid mount_mckinley:e)))
535 | (answer (smallest_one (population_1 (city all:e))))
536 | (answer (largest (state (loc_2 (countryid usa:e)))))
537 | (answer (count (major (city (loc_2 (state (next_to_2 (stateid utah:e))))))))
538 | (answer (count (state (next_to_2 (stateid tennessee:e)))))
539 | (answer (state (traverse_1 (riverid ohio:e))))
540 | (answer (longest (river (loc_2 (smallest (state (loc_2 (countryid usa:e))))))))
541 | (answer (smallest_one (area_1 (state all:e))))
542 | (answer (population_1 (capital (loc_2 (largest (state (traverse_1 (riverid mississippi:e))))))))
543 | (answer (population_1 (cityid boston:e ma:e)))
544 | (answer (city (loc_2 (stateid california:e))))
545 | (answer (size (cityid new_york:e _:e)))
546 | (answer (most (state (loc_1 (city all:e)))))
547 | (answer (longest (river (loc_2 (countryid usa:e)))))
548 | (answer (capital (loc_2 (countryid usa:e))))
549 | (answer (capital (loc_2 (state (next_to_2 (state (next_to_2 (stateid texas:e))))))))
550 | (answer (state (loc_1 (riverid red:e))))
551 | (answer (population_1 (cityid chicago:e _:e)))
552 | (answer (smallest (city (loc_2 (stateid alaska:e)))))
553 | (answer (state all:e))
554 | (answer (largest (city (loc_2 (stateid georgia:e)))))
555 | (answer (state (next_to_2 (state (traverse_1 (riverid mississippi:e))))))
556 | (answer (count (city (loc_2 (countryid usa:e)))))
557 | (answer (size (stateid texas:e)))
558 | (answer (elevation_1 (highest (place (loc_2 (countryid usa:e))))))
559 | (answer (population_1 (state (traverse_1 (riverid mississippi:e)))))
560 | (answer (smallest_one (population_1 (state all:e))))
561 | (answer (count (state (next_to_2 (stateid texas:e)))))
562 | (answer (state (traverse_1 (riverid colorado:e))))
563 | (answer (highest (place (loc_2 (stateid texas:e)))))
564 | (answer (longest (river (loc_2 (stateid california:e)))))
565 | (answer (len (most (river (traverse_2 (state all:e))))))
566 | (answer (largest_one (population_1 (state (loc_2 (countryid usa:e))))))
567 | (answer (capital (loc_2 (stateid georgia:e))))
568 | (answer (density_1 (countryid usa:e)))
569 | (answer (area_1 (stateid new_mexico:e)))
570 | (answer (longest (river (loc_2 (stateid texas:e)))))
571 | (answer (count (major (city all:e))))
572 | (answer (count (river (loc_2 (largest_one (population_1 (state all:e)))))))
573 | (answer (major (city (loc_2 (stateid montana:e)))))
574 | (answer (population_1 (major (city (loc_2 (stateid wisconsin:e))))))
575 | (answer (exclude (state all:e) (next_to_2 (stateid texas:e))))
576 | (answer (most (river (traverse_2 (state all:e)))))
577 | (answer (smallest_one (density_1 (state all:e))))
578 | (answer (state (traverse_1 (riverid missouri:e))))
579 | (answer (count (river (loc_2 (stateid colorado:e)))))
580 | (answer (shortest (river (loc_2 (stateid iowa:e)))))
581 | (answer (state (next_to_2 (state (traverse_1 (riverid mississippi:e))))))
582 | (answer (population_1 (stateid new_york:e)))
583 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e))))))
584 | (answer (highest (place (loc_2 (stateid new_mexico:e)))))
585 | (answer (highest (place (loc_2 (countryid usa:e)))))
586 | (answer (population_1 (largest_one (area_1 (state all:e)))))
587 | (answer (loc_1 (cityid baton_rouge:e _:e)))
588 | (answer (intersection (state (loc_2 (countryid usa:e))) (loc_1 (city (cityid springfield:e _:e)))))
589 | (answer (count (city (loc_2 (stateid louisiana:e)))))
590 | (answer (count (state (loc_2 (countryid usa:e)))))
591 | (answer (river (traverse_2 (stateid louisiana:e))))
592 | (answer (population_1 (largest_one (density_1 (state all:e)))))
593 | (answer (state (loc_1 (highest (place (loc_2 (countryid usa:e)))))))
594 | (answer (most (state (next_to_2 (state all:e)))))
595 | (answer (state (next_to_2 (stateid alabama:e))))
596 | (answer (len (intersection (riverid colorado:e) (river (loc_2 (stateid texas:e))))))
597 | (answer (largest_one (population_1 (state all:e))))
598 | (answer (state (loc_1 (highest (place all:e)))))
599 | (answer (density_1 (stateid south_dakota:e)))
600 | (answer (state (loc_1 (city (cityid austin:e _:e)))))
601 | (answer (population_1 (stateid montana:e)))
602 |
--------------------------------------------------------------------------------