├── src ├── __init__.py ├── bleu_scorer.py ├── srilm.py ├── query_comparer.py ├── smt_semparse_config.py ├── config.py ├── evaluator.py ├── util.py ├── smt_semparse_experiment.py ├── functionalizer.py ├── geo_world.py ├── moses.py ├── nl_reweighter.py └── extractor.py ├── .gitignore ├── .gitmodules ├── data └── geo │ ├── folds600 │ ├── geo600cv-ids.zip │ ├── fold-1-test.ids │ ├── fold-2-test.ids │ ├── fold-8-test.ids │ ├── fold-3-test.ids │ ├── fold-4-test.ids │ ├── fold-5-test.ids │ ├── fold-6-test.ids │ ├── fold-7-test.ids │ ├── fold-9-test.ids │ ├── fold-0-test.ids │ ├── fold-0-train.ids │ ├── fold-3-train.ids │ ├── fold-4-train.ids │ ├── fold-5-train.ids │ ├── fold-6-train.ids │ ├── fold-7-train.ids │ ├── fold-9-train.ids │ ├── fold-1-train.ids │ ├── fold-2-train.ids │ └── fold-8-train.ids │ ├── split880 │ ├── fold-0-tune.ids │ ├── fold-0-tune-alt.ids │ ├── fold-0-test.ids │ └── fold-0-train.ids │ ├── geoquery.train.en.txt │ └── geoquery.train.sem ├── dependencies.yaml ├── filter.py ├── settings.yaml ├── demo.py ├── run.py └── README.md /src/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /.gitignore: -------------------------------------------------------------------------------- 1 | acl/* 2 | others/* 3 | latest 4 | work/* 5 | *.pyc 6 | .*.swp 7 | -------------------------------------------------------------------------------- /.gitmodules: -------------------------------------------------------------------------------- 1 | [submodule "nlp_tools"] 2 | path = nlp_tools 3 | url = https://github.com/jacobandreas/nlp_tools.git 4 | -------------------------------------------------------------------------------- /data/geo/folds600/geo600cv-ids.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jacobandreas/smt-semparse/HEAD/data/geo/folds600/geo600cv-ids.zip -------------------------------------------------------------------------------- /dependencies.yaml: -------------------------------------------------------------------------------- 1 | smt_semparse: /home/jacob/src/smt-semparse 2 | 3 | moses: /home/jacob/src/3p/mosesdecoder 4 | srilm: /home/jacob/src/3p/srilm1.6.0 5 | prolog: /usr/bin/swipl 6 | wasp: /home/jacob/src/3p/wasp-1.0 7 | 8 | srilm_arch: i686-m64 9 | -------------------------------------------------------------------------------- /src/bleu_scorer.py: -------------------------------------------------------------------------------- 1 | import os 2 | import subprocess 3 | import sys 4 | 5 | class BLEUScorer: 6 | 7 | def __init__(self, config): 8 | self.config = config 9 | 10 | def run(self): 11 | args = [self.config.bleu_eval, '%s/test.nl' % self.config.experiment_dir] 12 | infile = open('%s/hyp.nl' % self.config.experiment_dir) 13 | nullfile = open(os.devnull, 'w') 14 | p = subprocess.Popen(args, stdin=infile, stdout=sys.stdout, stderr=nullfile) 15 | p.wait() 16 | infile.close() 17 | nullfile.close() 18 | -------------------------------------------------------------------------------- /data/geo/split880/fold-0-tune.ids: -------------------------------------------------------------------------------- 1 | 859 2 | 683 3 | 697 4 | 223 5 | 118 6 | 488 7 | 584 8 | 5 9 | 122 10 | 736 11 | 555 12 | 221 13 | 462 14 | 24 15 | 113 16 | 32 17 | 430 18 | 567 19 | 439 20 | 632 21 | 357 22 | 95 23 | 109 24 | 116 25 | 619 26 | 21 27 | 128 28 | 789 29 | 496 30 | 177 31 | 318 32 | 102 33 | 358 34 | 685 35 | 362 36 | 324 37 | 290 38 | 127 39 | 503 40 | 453 41 | 157 42 | 540 43 | 557 44 | 393 45 | 153 46 | 480 47 | 622 48 | 522 49 | 535 50 | 562 51 | 11 52 | 65 53 | 264 54 | 103 55 | 20 56 | 171 57 | 71 58 | 36 59 | 450 60 | 383 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-1-test.ids: -------------------------------------------------------------------------------- 1 | 4 2 | 7 3 | 12 4 | 23 5 | 41 6 | 52 7 | 68 8 | 70 9 | 77 10 | 120 11 | 133 12 | 142 13 | 143 14 | 164 15 | 171 16 | 180 17 | 254 18 | 261 19 | 263 20 | 269 21 | 274 22 | 294 23 | 310 24 | 314 25 | 353 26 | 393 27 | 404 28 | 419 29 | 453 30 | 460 31 | 461 32 | 484 33 | 487 34 | 493 35 | 514 36 | 559 37 | 564 38 | 575 39 | 591 40 | 602 41 | 619 42 | 648 43 | 660 44 | 674 45 | 682 46 | 683 47 | 730 48 | 734 49 | 738 50 | 749 51 | 750 52 | 784 53 | 814 54 | 820 55 | 834 56 | 841 57 | 842 58 | 858 59 | 859 60 | 877 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-2-test.ids: -------------------------------------------------------------------------------- 1 | 0 2 | 2 3 | 8 4 | 22 5 | 30 6 | 43 7 | 92 8 | 97 9 | 103 10 | 111 11 | 119 12 | 137 13 | 156 14 | 178 15 | 192 16 | 221 17 | 252 18 | 256 19 | 260 20 | 271 21 | 288 22 | 293 23 | 298 24 | 308 25 | 309 26 | 318 27 | 322 28 | 346 29 | 384 30 | 411 31 | 442 32 | 452 33 | 470 34 | 471 35 | 478 36 | 490 37 | 492 38 | 506 39 | 513 40 | 535 41 | 553 42 | 557 43 | 562 44 | 568 45 | 574 46 | 579 47 | 583 48 | 613 49 | 634 50 | 643 51 | 653 52 | 695 53 | 699 54 | 706 55 | 758 56 | 759 57 | 768 58 | 771 59 | 795 60 | 866 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-8-test.ids: -------------------------------------------------------------------------------- 1 | 9 2 | 13 3 | 14 4 | 28 5 | 58 6 | 65 7 | 66 8 | 69 9 | 72 10 | 78 11 | 102 12 | 145 13 | 186 14 | 189 15 | 217 16 | 244 17 | 267 18 | 306 19 | 327 20 | 330 21 | 351 22 | 362 23 | 367 24 | 407 25 | 410 26 | 415 27 | 430 28 | 447 29 | 465 30 | 473 31 | 474 32 | 512 33 | 527 34 | 530 35 | 540 36 | 541 37 | 560 38 | 561 39 | 567 40 | 569 41 | 584 42 | 587 43 | 607 44 | 609 45 | 614 46 | 624 47 | 647 48 | 651 49 | 655 50 | 681 51 | 691 52 | 726 53 | 727 54 | 752 55 | 790 56 | 817 57 | 846 58 | 848 59 | 854 60 | 856 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-3-test.ids: -------------------------------------------------------------------------------- 1 | 17 2 | 44 3 | 49 4 | 55 5 | 59 6 | 61 7 | 62 8 | 95 9 | 100 10 | 121 11 | 136 12 | 155 13 | 185 14 | 227 15 | 230 16 | 257 17 | 266 18 | 282 19 | 289 20 | 291 21 | 324 22 | 337 23 | 342 24 | 345 25 | 355 26 | 357 27 | 364 28 | 397 29 | 400 30 | 423 31 | 429 32 | 444 33 | 463 34 | 503 35 | 505 36 | 507 37 | 519 38 | 520 39 | 529 40 | 538 41 | 545 42 | 563 43 | 593 44 | 605 45 | 632 46 | 646 47 | 665 48 | 675 49 | 690 50 | 704 51 | 710 52 | 715 53 | 740 54 | 747 55 | 755 56 | 765 57 | 779 58 | 780 59 | 822 60 | 864 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-4-test.ids: -------------------------------------------------------------------------------- 1 | 21 2 | 24 3 | 36 4 | 67 5 | 75 6 | 79 7 | 83 8 | 90 9 | 112 10 | 144 11 | 154 12 | 160 13 | 165 14 | 170 15 | 176 16 | 215 17 | 237 18 | 258 19 | 262 20 | 265 21 | 278 22 | 279 23 | 299 24 | 312 25 | 338 26 | 360 27 | 361 28 | 371 29 | 392 30 | 427 31 | 441 32 | 466 33 | 476 34 | 480 35 | 494 36 | 501 37 | 509 38 | 510 39 | 528 40 | 580 41 | 597 42 | 644 43 | 652 44 | 673 45 | 680 46 | 686 47 | 693 48 | 700 49 | 709 50 | 739 51 | 751 52 | 773 53 | 783 54 | 800 55 | 805 56 | 807 57 | 855 58 | 857 59 | 863 60 | 873 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-5-test.ids: -------------------------------------------------------------------------------- 1 | 10 2 | 11 3 | 18 4 | 20 5 | 54 6 | 57 7 | 74 8 | 130 9 | 140 10 | 150 11 | 159 12 | 169 13 | 182 14 | 205 15 | 212 16 | 216 17 | 222 18 | 276 19 | 302 20 | 303 21 | 316 22 | 340 23 | 344 24 | 352 25 | 354 26 | 377 27 | 379 28 | 383 29 | 388 30 | 389 31 | 424 32 | 431 33 | 434 34 | 449 35 | 456 36 | 479 37 | 533 38 | 536 39 | 544 40 | 555 41 | 566 42 | 595 43 | 603 44 | 612 45 | 630 46 | 650 47 | 668 48 | 670 49 | 677 50 | 694 51 | 697 52 | 702 53 | 708 54 | 712 55 | 718 56 | 756 57 | 766 58 | 835 59 | 839 60 | 845 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-6-test.ids: -------------------------------------------------------------------------------- 1 | 19 2 | 31 3 | 32 4 | 56 5 | 86 6 | 89 7 | 94 8 | 106 9 | 113 10 | 174 11 | 193 12 | 194 13 | 202 14 | 248 15 | 259 16 | 264 17 | 280 18 | 307 19 | 366 20 | 370 21 | 376 22 | 385 23 | 394 24 | 443 25 | 445 26 | 448 27 | 450 28 | 462 29 | 481 30 | 496 31 | 497 32 | 518 33 | 523 34 | 525 35 | 556 36 | 578 37 | 589 38 | 594 39 | 610 40 | 623 41 | 625 42 | 638 43 | 667 44 | 679 45 | 728 46 | 733 47 | 736 48 | 748 49 | 777 50 | 789 51 | 797 52 | 801 53 | 806 54 | 823 55 | 830 56 | 833 57 | 838 58 | 847 59 | 867 60 | 872 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-7-test.ids: -------------------------------------------------------------------------------- 1 | 5 2 | 47 3 | 48 4 | 73 5 | 76 6 | 81 7 | 85 8 | 91 9 | 118 10 | 126 11 | 128 12 | 138 13 | 139 14 | 147 15 | 153 16 | 163 17 | 173 18 | 191 19 | 201 20 | 206 21 | 211 22 | 218 23 | 223 24 | 233 25 | 234 26 | 236 27 | 239 28 | 240 29 | 241 30 | 246 31 | 311 32 | 317 33 | 343 34 | 363 35 | 387 36 | 391 37 | 396 38 | 401 39 | 418 40 | 426 41 | 439 42 | 457 43 | 502 44 | 549 45 | 565 46 | 585 47 | 590 48 | 600 49 | 659 50 | 661 51 | 688 52 | 689 53 | 761 54 | 762 55 | 763 56 | 767 57 | 804 58 | 853 59 | 871 60 | 876 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-9-test.ids: -------------------------------------------------------------------------------- 1 | 27 2 | 42 3 | 71 4 | 80 5 | 96 6 | 98 7 | 109 8 | 123 9 | 124 10 | 129 11 | 175 12 | 177 13 | 197 14 | 198 15 | 219 16 | 235 17 | 268 18 | 277 19 | 284 20 | 285 21 | 297 22 | 315 23 | 326 24 | 329 25 | 335 26 | 374 27 | 421 28 | 458 29 | 488 30 | 499 31 | 532 32 | 539 33 | 543 34 | 570 35 | 576 36 | 588 37 | 601 38 | 606 39 | 622 40 | 626 41 | 627 42 | 628 43 | 629 44 | 637 45 | 641 46 | 654 47 | 658 48 | 671 49 | 672 50 | 685 51 | 714 52 | 717 53 | 720 54 | 741 55 | 764 56 | 770 57 | 772 58 | 821 59 | 844 60 | 878 61 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-0-test.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | -------------------------------------------------------------------------------- /filter.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python2 2 | 3 | import sys 4 | 5 | while True: 6 | lfrac = sys.stdin.readline() 7 | if not lfrac: 8 | break 9 | monolingual = sys.stdin.readline() 10 | ul_only = sys.stdin.readline() 11 | 12 | print lfrac, monolingual, ul_only, 13 | 14 | p = 0 15 | r = 0 16 | f = 0 17 | 18 | for i in range(10): 19 | lp = float(sys.stdin.readline().split()[1]) 20 | lr = float(sys.stdin.readline().split()[1]) 21 | lf = float(sys.stdin.readline().split()[1]) 22 | 23 | p += lp 24 | r += lr 25 | f += lf 26 | 27 | p /= 10 28 | r /= 10 29 | f /= 10 30 | 31 | print 'p:', p 32 | print 'r:', r 33 | print 'f:', f 34 | -------------------------------------------------------------------------------- /src/srilm.py: -------------------------------------------------------------------------------- 1 | import logging 2 | import subprocess 3 | 4 | class SRILM: 5 | 6 | def __init__(self, config): 7 | self.config = config 8 | 9 | def run_ngram_count(self): 10 | log = open('%s/lm.log' % self.config.experiment_dir, 'w') 11 | p = subprocess.Popen([self.config.srilm_ngram_count, 12 | '-text', '%s/train.%s.lm' % (self.config.experiment_dir, self.config.tgt), 13 | '-order', '3', 14 | '-no-sos', 15 | '-no-eos', 16 | '-lm', '%s/%s.arpa' % (self.config.experiment_dir, self.config.tgt), 17 | '-unk'], 18 | stderr=log) 19 | p.wait() 20 | log.close() 21 | -------------------------------------------------------------------------------- /src/query_comparer.py: -------------------------------------------------------------------------------- 1 | class QueryComparer: 2 | 3 | def __init__(self, config): 4 | self.config = config 5 | 6 | def run(self): 7 | 8 | hyp_file = open('%s/hyp.fun' % self.config.experiment_dir) 9 | ref_file = open('%s/test.fun' % self.config.experiment_dir) 10 | out_file = open('%s/eval.scored' % self.config.experiment_dir, 'w') 11 | 12 | hyps = {} 13 | for line in hyp_file: 14 | idx, hyp, scores1, scores2 = line.split(' ||| ') 15 | hyps[int(idx)] = hyp 16 | 17 | i = -1 18 | for line in ref_file: 19 | i += 1 20 | if i not in hyps: 21 | print >>out_file, 'empty' 22 | continue 23 | test = line.strip() 24 | if hyps[i] == test: 25 | print >>out_file, 'yes', 0 26 | else: 27 | print >>out_file, 'no', 0 28 | 29 | hyp_file.close() 30 | ref_file.close() 31 | out_file.close() 32 | -------------------------------------------------------------------------------- /data/geo/split880/fold-0-tune-alt.ids: -------------------------------------------------------------------------------- 1 | 621 2 | 244 3 | 354 4 | 308 5 | 578 6 | 718 7 | 303 8 | 131 9 | 9 10 | 583 11 | 297 12 | 634 13 | 293 14 | 493 15 | 106 16 | 410 17 | 527 18 | 644 19 | 215 20 | 353 21 | 236 22 | 187 23 | 660 24 | 27 25 | 444 26 | 690 27 | 647 28 | 322 29 | 316 30 | 414 31 | 69 32 | 646 33 | 415 34 | 123 35 | 423 36 | 426 37 | 505 38 | 112 39 | 310 40 | 859 41 | 683 42 | 697 43 | 223 44 | 118 45 | 488 46 | 584 47 | 5 48 | 122 49 | 736 50 | 555 51 | 221 52 | 462 53 | 24 54 | 113 55 | 32 56 | 430 57 | 567 58 | 439 59 | 632 60 | 357 61 | 95 62 | 109 63 | 116 64 | 619 65 | 21 66 | 128 67 | 789 68 | 496 69 | 177 70 | 318 71 | 102 72 | 358 73 | 685 74 | 362 75 | 324 76 | 290 77 | 127 78 | 503 79 | 453 80 | 157 81 | 540 82 | 557 83 | 393 84 | 153 85 | 480 86 | 622 87 | 522 88 | 535 89 | 562 90 | 11 91 | 65 92 | 264 93 | 103 94 | 20 95 | 171 96 | 71 97 | 36 98 | 450 99 | 383 100 | -------------------------------------------------------------------------------- /settings.yaml: -------------------------------------------------------------------------------- 1 | nbest: 100 # how many entries in the nbest list? 2 | corpus: geo # which corpus? [geo, robo] 3 | lang: en # which language? [en, de, el, th] 4 | stem: false # run the stemmer? 5 | symm: srctotgt # which symmetrization? [e.g. srctotgt, tgttosrc, grow, ...] 6 | np: true # use NP list? 7 | np_type: all # what version of NP list? 8 | model: hier # which machine translation model? [phrase, hier] 9 | run: test # which experiment? [dev, test, debug] 10 | workdir: work # where? 11 | 12 | # experimental, and unrelated to published work 13 | retrain: false # after tuning, re-extract phrases from tune and train data 14 | filter: false # filter malformed trees from phrase table? 15 | lfrac: 1.0 # what fraction of training sentences should be labeled? 16 | monolingual: false # use monolingual data? 17 | ul_only: false # reweight only with unlabeled data 18 | nlg: false # do MRL->NL rather than semantic parsing 19 | -------------------------------------------------------------------------------- /src/smt_semparse_config.py: -------------------------------------------------------------------------------- 1 | from config import Config 2 | 3 | class SMTSemparseConfig(Config): 4 | 5 | def __init__(self, settings_path, dependencies_path): 6 | Config.__init__(self, settings_path, dependencies_path) 7 | 8 | self.put('data_dir', '%s/data/%s' % (self.smt_semparse, self.corpus)) 9 | 10 | if self.np: 11 | self.train_name = 'train.np' 12 | else: 13 | self.train_name = 'train' 14 | 15 | self.put('srilm_ngram_count', '%s/bin/%s/ngram-count' % \ 16 | (self.srilm, self.srilm_arch)) 17 | 18 | self.put('moses_train', '%s/scripts/training/train-model.perl' % self.moses) 19 | self.put('moses_tune', '%s/scripts/training/mert-moses.pl' % self.moses) 20 | self.put('moses_decode_phrase', '%s/dist/bin/moses' % self.moses) 21 | self.put('moses_decode_hier', '%s/dist/bin/moses_chart' % self.moses) 22 | self.put('bleu_eval', '%s/scripts/generic/multi-bleu.perl' % self.moses) 23 | 24 | self.put('wasp_eval', '%s/data/geo-funql/eval/eval.pl' % self.wasp) 25 | 26 | if self.nlg: 27 | self.put('src', 'mrl') 28 | self.put('tgt', 'nl') 29 | else: 30 | self.put('src', 'nl') 31 | self.put('tgt', 'mrl') 32 | -------------------------------------------------------------------------------- /src/config.py: -------------------------------------------------------------------------------- 1 | import yaml 2 | import logging 3 | 4 | class Config: 5 | 6 | def __init__(self, settings_path, dependencies_path): 7 | with open(settings_path) as settings_file: 8 | settings = yaml.load(settings_file) 9 | with open(dependencies_path) as dependencies_file: 10 | dependencies = yaml.load(dependencies_file) 11 | 12 | self.entries = {} 13 | 14 | for config in (settings, dependencies): 15 | for key, value in config.items(): 16 | self.put(key, value) 17 | 18 | def __hasattr__(self, key): 19 | return key in self.entries 20 | 21 | def __getattr__(self, key): 22 | if key not in self.entries: 23 | raise Exception('No such key: %s' % key) 24 | return self.entries[key] 25 | 26 | def put(self, key, value): 27 | if key in self.entries: 28 | logging.warn('changing value of %s' % key) 29 | self.entries[key] = value 30 | 31 | def __repr__(self): 32 | return '%s(%d items)' % (self.__class__, len(self.keys)) 33 | 34 | def __str__(self): 35 | s = [] 36 | s.append('%s:' % self.__class__.__name__) 37 | for key in sorted(self.entries.keys()): 38 | s.append(' %s: %s' % (key, getattr(self, key))) 39 | return '\n'.join(s) 40 | -------------------------------------------------------------------------------- /src/evaluator.py: -------------------------------------------------------------------------------- 1 | class Evaluator: 2 | 3 | def __init__(self, config): 4 | self.config = config 5 | 6 | def run(self): 7 | if self.config.run == 'debug': 8 | s_p, s_r, s_f = self.score('%s/1' % self.config.work_dir) 9 | elif self.config.run == 'dev': 10 | s_p = 0 11 | s_r = 0 12 | s_f = 0 13 | for i in range(10): 14 | p, r, f = self.score('%s/%d' % (self.config.work_dir, i)) 15 | s_p += p 16 | s_r += r 17 | s_f += f 18 | s_p /= 10 19 | s_r /= 10 20 | s_f /= 10 21 | elif self.config.run == 'test': 22 | s_p, s_r, s_f = self.score(self.config.work_dir) 23 | 24 | print 'p: %f\nr: %f\nf: %f' % (s_p, s_r, s_f) 25 | 26 | def score(self, experiment_dir): 27 | result_file = open('%s/eval.scored' % (experiment_dir)) 28 | tp = 0 29 | fp = 0 30 | count = 0 31 | for line in result_file.readlines(): 32 | count += 1 33 | tag = line.strip() 34 | if tag == 'empty': 35 | continue 36 | tag, score = tag.split() 37 | score = float(score) 38 | if tag == 'yes': 39 | tp += 1 40 | elif tag == 'no': 41 | fp += 1 42 | 43 | p = 1.0 * tp / (tp + fp) 44 | r = 1.0 * tp / count 45 | f = 2.0 * p * r / (p + r) 46 | 47 | return (p, r, f) 48 | -------------------------------------------------------------------------------- /demo.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python2 2 | 3 | import sys 4 | import subprocess 5 | from nltk.stem.porter import PorterStemmer 6 | from src.functionalizer import Functionalizer 7 | import re 8 | import os 9 | 10 | def pretty_print_prolog(ans): 11 | ans = re.sub(r'\w+\(([^)]+)\)', r'\1', ans) 12 | parts = ans[1:-2].split(',') 13 | print '\n'.join(parts) 14 | #for part in parts: 15 | # if 'stateid' in part: 16 | # part = part[8:-1] 17 | # print part 18 | 19 | MOSES='/home/jacob/src/3p/mosesdecoder/dist/bin/moses_chart' 20 | #WORK_DIR='/home/jacob/src/smt-semparse/work/DEMO' 21 | WORK_DIR=os.path.realpath('latest') 22 | 23 | fcr = Functionalizer(None) 24 | 25 | moses_args = [MOSES, 26 | '-drop-unknown', 27 | '-f', '%s/mert-work/moses.ini' % WORK_DIR] 28 | 29 | moses = subprocess.Popen(moses_args, stdin=subprocess.PIPE, stdout=subprocess.PIPE, 30 | stderr=subprocess.PIPE) 31 | 32 | prolog_args = ['/usr/bin/swipl', 33 | '-l', '/home/jacob/src/3p/wasp-1.0/data/geo-funql/eval/eval.pl'] 34 | 35 | prolog = subprocess.Popen(prolog_args, stdin=subprocess.PIPE, 36 | stdout=subprocess.PIPE, stderr=subprocess.PIPE) 37 | 38 | while True: 39 | 40 | print '\n\n? ', 41 | line = sys.stdin.readline() 42 | print 43 | print >>moses.stdin, line 44 | mrl = moses.stdout.readline().strip() 45 | moses.stdout.readline() 46 | 47 | fun = fcr.functionalize(mrl) 48 | print '!', fun 49 | 50 | plg = 'execute_funql_query(%s, A), print(A), nl.\n' % fun 51 | print >>prolog.stdin, plg 52 | answer = prolog.stdout.readline() 53 | print 54 | pretty_print_prolog(answer) 55 | -------------------------------------------------------------------------------- /run.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python2 2 | 3 | import os 4 | import datetime 5 | import logging 6 | from src.evaluator import Evaluator 7 | from src.smt_semparse_config import SMTSemparseConfig 8 | from src.smt_semparse_experiment import SMTSemparseExperiment 9 | 10 | LOGFILE_NAME = 'run.log' 11 | 12 | def run_one(config): 13 | # create work dir for this run 14 | # moses can't handle paths with colons 15 | timestamp = datetime.datetime.now().strftime('%Y-%m-%dT%H.%M.%S') 16 | run_work_dir = os.path.join(base_work_dir, timestamp) 17 | assert not os.path.exists(run_work_dir) 18 | os.makedirs(run_work_dir) 19 | config.put('work_dir', run_work_dir) 20 | if os.path.exists('latest'): 21 | os.remove('latest') 22 | os.symlink(run_work_dir, 'latest') 23 | 24 | # set up logging 25 | if config.run == 'debug': 26 | logging.basicConfig(level=logging.DEBUG) 27 | else: 28 | log_path = os.path.join(run_work_dir, LOGFILE_NAME) 29 | logging.basicConfig(filename=log_path, level=logging.INFO) 30 | 31 | experiment = SMTSemparseExperiment(config) 32 | if config.run == 'debug': 33 | experiment.run_fold(1) 34 | elif config.run == 'dev': 35 | for i in range(10): 36 | experiment.run_fold(i) 37 | elif config.run == 'test': 38 | experiment.run_split() 39 | else: 40 | assert False 41 | 42 | if not config.nlg: 43 | logging.info('evaluating') 44 | Evaluator(config).run() 45 | 46 | if __name__ == '__main__': 47 | 48 | # load config 49 | config = SMTSemparseConfig('settings.yaml', 'dependencies.yaml') 50 | 51 | # create base work dir if it doesn't exist 52 | base_work_dir = os.path.join(config.smt_semparse, config.workdir) 53 | if not os.path.exists(base_work_dir): 54 | os.makedirs(base_work_dir) 55 | 56 | run_one(config) 57 | -------------------------------------------------------------------------------- /src/util.py: -------------------------------------------------------------------------------- 1 | import re 2 | from collections import defaultdict 3 | 4 | ARITY_SEP = '@' 5 | ARITY_STR = 's' 6 | ARITY_ANY = '*' 7 | 8 | def after_nth(mrl, token, n): 9 | #print mrl, token 10 | while n > 0: 11 | m = re.search(r'\b%s\b' % token, mrl) 12 | #m = re.search(r'(^|[(, ])%s[(),]' % token, mrl) 13 | mrl = mrl[m.end()-1:] 14 | n = n - 1; 15 | return mrl 16 | 17 | def count_arguments(s): 18 | args = False; 19 | parens = 0; 20 | commas = 0; 21 | i = 0 22 | #while parens >= 0 and i < len(s): 23 | while i < len(s) and ((not args and parens == 0) or (args and parens > 0)): 24 | c = s[i:i+1] 25 | if c == '(': 26 | args = True 27 | parens += 1 28 | elif c == ')': 29 | parens -= 1 30 | elif parens == 1 and c == ',': 31 | commas += 1 32 | elif parens < 1 and c == ',': 33 | break 34 | i += 1 35 | if args: 36 | return commas + 1 37 | else: 38 | assert commas == 0 39 | return 0 40 | 41 | def fun_to_mrl(mrl, star_top=False): 42 | mrl = mrl.strip() 43 | 44 | mrl = re.sub(r"' *([A-Za-z0-9_ ]+?) *'", lambda x: '%s%s%s' % (x.group(1).replace(' ', '_'), ARITY_SEP, ARITY_STR), mrl) 45 | mrl = re.sub(r'\s+', ' ', mrl) 46 | mrl_noparens = re.sub(r'[\(\)]', ' ', mrl) 47 | mrl_noparens = re.sub(r'\s+', ' ', mrl_noparens) 48 | mrl_nocommas = re.sub(r',', ' ', mrl_noparens) 49 | mrl_nocommas = re.sub(r'\s+', ' ', mrl_nocommas) 50 | 51 | mrl_labeled_tokens = [] 52 | seen = defaultdict(lambda:0) 53 | for token in mrl_nocommas.split(): 54 | seen[token] += 1 55 | args = count_arguments(after_nth(mrl, token, seen[token])) 56 | #print token, args, after_nth(mrl, token, seen[token]) 57 | if token[-len(ARITY_SEP)-len(ARITY_STR):] == '%s%s' % (ARITY_SEP, ARITY_STR): 58 | mrl_labeled_tokens.append(token) 59 | else: 60 | mrl_labeled_tokens.append('%s%s%d' % (token, ARITY_SEP, args)) 61 | 62 | if star_top: 63 | tok = mrl_labeled_tokens[0] 64 | sep = tok.rindex(ARITY_SEP) 65 | mrl_labeled_tokens[0] = tok[:sep] + ARITY_SEP + ARITY_ANY 66 | 67 | return ' '.join(mrl_labeled_tokens) 68 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Semantic parsing as machine translation 2 | 3 | Most work on semantic parsing, even in variable-free formulations, has focused 4 | on developing task- and formalism-specific models, often with expensive 5 | training and decoding procedures. Can we use standard machine translation tools 6 | to perform the same task? 7 | 8 | Yes. 9 | 10 | For a description of the system (it's really not complicated), see: 11 | 12 | - J Andreas, A Vlachos and S Clark. "Semantic Parsing as Machine 13 | Translation". In ACL-short 2013. 14 | http://www.cs.berkeley.edu/~jda/papers/avc_smt_semparse.pdf 15 | 16 | You should also check out Carolin Lawrence's cdec-based reimplementation at 17 | https://github.com/carhaas/cdec-semparse. 18 | 19 | ### Getting started 20 | 21 | Edit `dependencies.yaml` to reflect the configuration of your system. 22 | `smt_semparse` should be set to the location of the repository root, the 23 | `moses`, `srilm`, etc. entries to the roots of the corresponding external 24 | dependencies, and `srilm_arch` to your machine architecture. 25 | 26 | ### Reproducing the ACL13 paper 27 | 28 | Edit settings.yaml to choose a language and translation model for the particular 29 | experiment you want to run. Use the following additional settings: 30 | 31 | lang=en -> stem=true, symm=srctotgt 32 | lang=de -> stem=true, symm=tgttosrc 33 | lang=el -> stem=false, symm=tgttosrc 34 | lang=th -> stem=false, symm=tgttosrc 35 | 36 | Note that due to random MERT initialization your exact accuracy and F1 values 37 | may differ slightly from those in the paper. 38 | 39 | ### Experimental things 40 | 41 | Additional settings also allow you to do the following: 42 | 43 | - Rebuild the phrase table after running MERT to squeeze a few more translation 44 | rules out of the training data. (Should give a nearly-imperceptible 45 | improvement in accuracy.) 46 | 47 | - Filter rules which correspond to multi-rooted forests from the phrase table. 48 | (Should decrease accuracy.) 49 | 50 | - Do full-supervised training on only a fraction of the dataset, and use the 51 | remaining monolingual data to reweight rules. (Mostly garbage---this data set 52 | is already too small to permit experiments which require holding out even more 53 | data.) 54 | 55 | ### Not implemented 56 | 57 | MRL-to-NL à la Lu & Ng 2011. 58 | 59 | ### Using a new dataset 60 | 61 | Update `extractor.py` to create appropriately-formatted files in the working 62 | directory. See the existing GeoQuery extractor for an example. 63 | -------------------------------------------------------------------------------- /src/smt_semparse_experiment.py: -------------------------------------------------------------------------------- 1 | import logging 2 | import os 3 | from extractor import Extractor 4 | from functionalizer import Functionalizer 5 | #from slot_checker import SlotChecker 6 | from srilm import SRILM 7 | from moses import Moses 8 | from nl_reweighter import NLReweighter 9 | from geo_world import GeoWorld 10 | from query_comparer import QueryComparer 11 | from bleu_scorer import BLEUScorer 12 | 13 | class SMTSemparseExperiment: 14 | 15 | def __init__(self, config): 16 | self.config = config 17 | 18 | def run_fold(self, fold): 19 | logging.info('running fold %d', fold) 20 | self.config.put('fold', fold) 21 | fold_dir = os.path.join(self.config.work_dir, str(fold)) 22 | self.config.put('experiment_dir', fold_dir) 23 | os.makedirs(fold_dir) 24 | self.run() 25 | 26 | def run_split(self): 27 | logging.info('running split') 28 | self.config.put('experiment_dir', self.config.work_dir) 29 | self.run() 30 | 31 | def run(self): 32 | logging.info('working dir is %s', self.config.experiment_dir) 33 | 34 | # get data 35 | logging.info('extracting data') 36 | Extractor(self.config).run() 37 | 38 | # learn lm 39 | logging.info('learning LM') 40 | SRILM(self.config).run_ngram_count() 41 | 42 | # train moses 43 | moses = Moses(self.config) 44 | logging.info('training TM') 45 | moses.run_train() 46 | 47 | # reweight using monolingual data 48 | if self.config.monolingual: 49 | logging.info('learning from monolingual data') 50 | NLReweighter(self.config).run() 51 | 52 | # filter disconnected rules 53 | if self.config.filter: 54 | logging.info('filtering disconnected rules') 55 | moses.filter_phrase_table() 56 | 57 | # tune moses 58 | if self.config.run == 'test': 59 | logging.info('tuning TM') 60 | moses.run_tune() 61 | 62 | if self.config.retrain: 63 | logging.info('retraining TM') 64 | moses.run_retrain() 65 | 66 | # decode input 67 | logging.info('decoding') 68 | moses.run_decode() 69 | 70 | if self.config.nlg: 71 | logging.info('running BLEU') 72 | BLEUScorer(self.config).run() 73 | pass 74 | 75 | else: 76 | # functionalize 77 | logging.info('functionalizing') 78 | Functionalizer(self.config).run() 79 | 80 | # compare answers 81 | logging.info('executing queries') 82 | if self.config.corpus == 'geo': 83 | GeoWorld(self.config).run() 84 | #elif self.config.corpus == 'atis': 85 | # SlotChecker(self.config).run() 86 | else: 87 | QueryComparer(self.config).run() 88 | -------------------------------------------------------------------------------- /data/geo/split880/fold-0-test.ids: -------------------------------------------------------------------------------- 1 | 3 2 | 6 3 | 15 4 | 16 5 | 25 6 | 26 7 | 29 8 | 33 9 | 34 10 | 37 11 | 38 12 | 39 13 | 40 14 | 45 15 | 46 16 | 50 17 | 53 18 | 60 19 | 64 20 | 82 21 | 84 22 | 87 23 | 88 24 | 93 25 | 99 26 | 101 27 | 104 28 | 107 29 | 108 30 | 110 31 | 114 32 | 117 33 | 125 34 | 132 35 | 134 36 | 135 37 | 141 38 | 148 39 | 149 40 | 152 41 | 158 42 | 161 43 | 166 44 | 167 45 | 168 46 | 172 47 | 179 48 | 183 49 | 184 50 | 188 51 | 190 52 | 195 53 | 196 54 | 199 55 | 203 56 | 204 57 | 207 58 | 208 59 | 209 60 | 213 61 | 214 62 | 220 63 | 225 64 | 229 65 | 231 66 | 232 67 | 238 68 | 242 69 | 243 70 | 245 71 | 247 72 | 249 73 | 250 74 | 255 75 | 272 76 | 273 77 | 275 78 | 281 79 | 286 80 | 295 81 | 296 82 | 300 83 | 301 84 | 304 85 | 305 86 | 319 87 | 320 88 | 323 89 | 325 90 | 328 91 | 331 92 | 332 93 | 333 94 | 334 95 | 336 96 | 339 97 | 341 98 | 347 99 | 348 100 | 349 101 | 350 102 | 356 103 | 359 104 | 365 105 | 368 106 | 369 107 | 372 108 | 373 109 | 375 110 | 378 111 | 380 112 | 381 113 | 382 114 | 386 115 | 390 116 | 395 117 | 398 118 | 399 119 | 402 120 | 403 121 | 405 122 | 408 123 | 412 124 | 413 125 | 416 126 | 420 127 | 422 128 | 428 129 | 432 130 | 433 131 | 436 132 | 437 133 | 438 134 | 440 135 | 446 136 | 451 137 | 454 138 | 455 139 | 459 140 | 464 141 | 467 142 | 468 143 | 469 144 | 472 145 | 475 146 | 477 147 | 482 148 | 483 149 | 486 150 | 489 151 | 491 152 | 495 153 | 498 154 | 504 155 | 511 156 | 515 157 | 516 158 | 517 159 | 521 160 | 524 161 | 526 162 | 531 163 | 537 164 | 542 165 | 546 166 | 547 167 | 548 168 | 550 169 | 551 170 | 552 171 | 572 172 | 573 173 | 577 174 | 581 175 | 582 176 | 586 177 | 592 178 | 596 179 | 598 180 | 599 181 | 604 182 | 608 183 | 611 184 | 615 185 | 616 186 | 618 187 | 631 188 | 635 189 | 636 190 | 639 191 | 642 192 | 645 193 | 656 194 | 657 195 | 663 196 | 664 197 | 666 198 | 669 199 | 676 200 | 678 201 | 684 202 | 687 203 | 692 204 | 698 205 | 701 206 | 703 207 | 705 208 | 707 209 | 711 210 | 716 211 | 719 212 | 721 213 | 722 214 | 723 215 | 724 216 | 725 217 | 729 218 | 731 219 | 732 220 | 735 221 | 737 222 | 742 223 | 743 224 | 744 225 | 745 226 | 746 227 | 754 228 | 757 229 | 760 230 | 769 231 | 774 232 | 775 233 | 776 234 | 778 235 | 781 236 | 782 237 | 785 238 | 786 239 | 787 240 | 788 241 | 791 242 | 792 243 | 793 244 | 794 245 | 796 246 | 798 247 | 799 248 | 802 249 | 803 250 | 808 251 | 810 252 | 811 253 | 813 254 | 815 255 | 816 256 | 818 257 | 819 258 | 824 259 | 825 260 | 826 261 | 827 262 | 828 263 | 829 264 | 831 265 | 832 266 | 836 267 | 837 268 | 840 269 | 843 270 | 850 271 | 852 272 | 860 273 | 861 274 | 862 275 | 865 276 | 868 277 | 870 278 | 874 279 | 875 280 | 879 281 | -------------------------------------------------------------------------------- /src/functionalizer.py: -------------------------------------------------------------------------------- 1 | import logging 2 | import util 3 | import sys 4 | 5 | class Functionalizer: 6 | 7 | def __init__(self, config): 8 | self.config = config 9 | 10 | def run(self): 11 | hyp_file = open('%s/hyp.mrl.nbest' % self.config.experiment_dir) 12 | fun_file = open('%s/hyp.fun' % self.config.experiment_dir, 'w') 13 | 14 | hypsets = [] 15 | hypset = [] 16 | last_eid = 0 17 | for line in hyp_file: 18 | parts = line.split('|||') 19 | eid = int(parts[0]) 20 | if eid != last_eid: 21 | hypsets.append(hypset) 22 | hypset = [] 23 | last_eid = eid 24 | score = parts[2] + ' ||| ' + parts[3].strip() 25 | hyp = parts[1].strip() 26 | hypset.append((hyp,score)) 27 | hypsets.append(hypset) 28 | 29 | counter = 0 30 | for hypset in hypsets: 31 | hypset = list(reversed(hypset)) 32 | while hypset: 33 | hyp, score = hypset.pop() 34 | fun = self.functionalize(hyp) 35 | if fun: 36 | print >>fun_file, counter, '|||', fun, '|||', score 37 | break 38 | counter += 1 39 | 40 | #xc = 0 41 | def functionalize(self, mrl): 42 | 43 | #if '_@0' in mrl and 'cityid@2' in mrl: 44 | # #print '===' 45 | # #print mrl 46 | # self.xc += 1 47 | # if self.xc > 5: 48 | # exit() 49 | 50 | stack = [] 51 | r = [] 52 | tokens = list(reversed(mrl.split())) 53 | 54 | #print tokens 55 | 56 | while tokens: 57 | it = tokens.pop() 58 | #print it 59 | if util.ARITY_SEP not in it: 60 | token = it 61 | arity = util.ARITY_STR 62 | logging.warn('unrecognized token: %s', it) 63 | else: 64 | token, arity = it.rsplit(util.ARITY_SEP) 65 | if arity == util.ARITY_STR: 66 | arity = 0 67 | arity_str = True 68 | elif not (arity == util.ARITY_ANY): 69 | arity = int(arity) 70 | arity_str = False 71 | 72 | if arity == util.ARITY_ANY or arity > 0: 73 | r.append(token) 74 | r.append('(') 75 | stack.append(arity) 76 | else: 77 | assert arity == 0 78 | if arity_str: 79 | r.append("'%s'" % token.replace('_', ' ')) 80 | else: 81 | r.append(token) 82 | #print r 83 | while stack: 84 | top = stack.pop() 85 | if top == util.ARITY_ANY and tokens: 86 | r.append(',') 87 | stack.append(util.ARITY_ANY) 88 | break 89 | elif top != util.ARITY_ANY and top > 1: 90 | r.append(',') 91 | stack.append(top - 1) 92 | break 93 | else: 94 | r.append(')') 95 | 96 | if not stack and tokens: 97 | return None 98 | 99 | if stack: 100 | return None 101 | 102 | r = ''.join(r) 103 | 104 | # nasty hacks to fix misplaced _ 105 | if '(_' in r: 106 | return None 107 | if ',_' in r and not ('cityid' in r): 108 | return None 109 | if '_),_)' in r: 110 | return None 111 | 112 | return r 113 | -------------------------------------------------------------------------------- /src/geo_world.py: -------------------------------------------------------------------------------- 1 | import subprocess 2 | 3 | class GeoWorld: 4 | 5 | def __init__(self, config): 6 | self.config = config 7 | 8 | def run(self): 9 | self.write_queries() 10 | 11 | infile = open('%s/eval.pl' % self.config.experiment_dir) 12 | log = open('%s/prolog.log' % self.config.experiment_dir, 'w') 13 | outfile = open('%s/eval.out' % self.config.experiment_dir, 'w') 14 | p = subprocess.Popen([self.config.prolog, 15 | '-l', self.config.wasp_eval], 16 | stdin=infile, 17 | stdout=outfile, 18 | stderr=log) 19 | p.wait() 20 | infile.close() 21 | log.close() 22 | outfile.close() 23 | 24 | self.extract_results() 25 | 26 | def write_queries(self): 27 | 28 | hyp_file = open('%s/hyp.fun' % self.config.experiment_dir) 29 | ref_file = open('%s/test.fun' % self.config.experiment_dir) 30 | query_file = open('%s/eval.pl' % self.config.experiment_dir, 'w') 31 | 32 | examples = [] 33 | hyp_list = [] 34 | last_idx = 0 35 | for hyp_line in hyp_file.readlines(): 36 | idx, hyp, scoreparts, score = hyp_line.split('|||') 37 | idx = int(idx) 38 | hyp = hyp.strip() 39 | if idx != last_idx: 40 | examples.append(hyp_list) 41 | for i in range(last_idx, idx-1): 42 | examples.append([]) 43 | hyp_list = [] 44 | last_idx = idx 45 | hyp_list.append((hyp,float(score))) 46 | examples.append(hyp_list) 47 | 48 | i = 0 49 | for ref, hyp_list in zip(ref_file.readlines(), examples): 50 | ref = ref.strip() 51 | for hyp, score in hyp_list: 52 | print >>query_file, \ 53 | 'catch(call_with_time_limit(1,eval([%d,%f,%s,%s])),E,writeln(\'error\')).\n' \ 54 | % (i, score, ref, hyp) 55 | i += 1 56 | 57 | hyp_file.close() 58 | ref_file.close() 59 | query_file.close() 60 | 61 | def extract_results(self): 62 | 63 | eval_file = open('%s/eval.out' % self.config.experiment_dir) 64 | result_file = open('%s/eval.scored' % self.config.experiment_dir, 'w') 65 | 66 | examples = [] 67 | hyp_list = [] 68 | last_idx = 0 69 | for line in eval_file.readlines(): 70 | if line == 'error\n': 71 | continue 72 | idx, score, result = line.split() 73 | idx = int(idx) 74 | score = float(score) 75 | if idx > last_idx: 76 | examples.append(hyp_list) 77 | last_idx += 1 78 | while idx > last_idx: 79 | examples.append([]) 80 | last_idx += 1 81 | hyp_list = [] 82 | hyp_list.append((result,score)) 83 | examples.append(hyp_list) 84 | last_idx += 1 85 | 86 | if self.config.corpus == 'geo' and self.config.run in ('debug', 'dev'): 87 | top = 60 88 | elif self.config.corpus == 'geo' and self.config.run == 'test': 89 | top = 280 90 | else: 91 | assert False 92 | while top > last_idx: 93 | examples.append([]) 94 | last_idx += 1 95 | 96 | for hyp_list in examples: 97 | if len(hyp_list) == 0: 98 | print >>result_file, 'empty' 99 | continue 100 | 101 | choice, score = hyp_list[0] 102 | if choice == 'y': 103 | print >>result_file, 'yes', score 104 | else: 105 | print >>result_file, 'no', score 106 | 107 | eval_file.close() 108 | result_file.close() 109 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-0-train.ids: -------------------------------------------------------------------------------- 1 | 4 2 | 7 3 | 12 4 | 23 5 | 41 6 | 52 7 | 68 8 | 70 9 | 77 10 | 120 11 | 133 12 | 142 13 | 143 14 | 164 15 | 171 16 | 180 17 | 254 18 | 261 19 | 263 20 | 269 21 | 274 22 | 294 23 | 310 24 | 314 25 | 353 26 | 393 27 | 404 28 | 419 29 | 453 30 | 460 31 | 461 32 | 484 33 | 487 34 | 493 35 | 514 36 | 559 37 | 564 38 | 575 39 | 591 40 | 602 41 | 619 42 | 648 43 | 660 44 | 674 45 | 682 46 | 683 47 | 730 48 | 734 49 | 738 50 | 749 51 | 750 52 | 784 53 | 814 54 | 820 55 | 834 56 | 841 57 | 842 58 | 858 59 | 859 60 | 877 61 | 0 62 | 2 63 | 8 64 | 22 65 | 30 66 | 43 67 | 92 68 | 97 69 | 103 70 | 111 71 | 119 72 | 137 73 | 156 74 | 178 75 | 192 76 | 221 77 | 252 78 | 256 79 | 260 80 | 271 81 | 288 82 | 293 83 | 298 84 | 308 85 | 309 86 | 318 87 | 322 88 | 346 89 | 384 90 | 411 91 | 442 92 | 452 93 | 470 94 | 471 95 | 478 96 | 490 97 | 492 98 | 506 99 | 513 100 | 535 101 | 553 102 | 557 103 | 562 104 | 568 105 | 574 106 | 579 107 | 583 108 | 613 109 | 634 110 | 643 111 | 653 112 | 695 113 | 699 114 | 706 115 | 758 116 | 759 117 | 768 118 | 771 119 | 795 120 | 866 121 | 17 122 | 44 123 | 49 124 | 55 125 | 59 126 | 61 127 | 62 128 | 95 129 | 100 130 | 121 131 | 136 132 | 155 133 | 185 134 | 227 135 | 230 136 | 257 137 | 266 138 | 282 139 | 289 140 | 291 141 | 324 142 | 337 143 | 342 144 | 345 145 | 355 146 | 357 147 | 364 148 | 397 149 | 400 150 | 423 151 | 429 152 | 444 153 | 463 154 | 503 155 | 505 156 | 507 157 | 519 158 | 520 159 | 529 160 | 538 161 | 545 162 | 563 163 | 593 164 | 605 165 | 632 166 | 646 167 | 665 168 | 675 169 | 690 170 | 704 171 | 710 172 | 715 173 | 740 174 | 747 175 | 755 176 | 765 177 | 779 178 | 780 179 | 822 180 | 864 181 | 21 182 | 24 183 | 36 184 | 67 185 | 75 186 | 79 187 | 83 188 | 90 189 | 112 190 | 144 191 | 154 192 | 160 193 | 165 194 | 170 195 | 176 196 | 215 197 | 237 198 | 258 199 | 262 200 | 265 201 | 278 202 | 279 203 | 299 204 | 312 205 | 338 206 | 360 207 | 361 208 | 371 209 | 392 210 | 427 211 | 441 212 | 466 213 | 476 214 | 480 215 | 494 216 | 501 217 | 509 218 | 510 219 | 528 220 | 580 221 | 597 222 | 644 223 | 652 224 | 673 225 | 680 226 | 686 227 | 693 228 | 700 229 | 709 230 | 739 231 | 751 232 | 773 233 | 783 234 | 800 235 | 805 236 | 807 237 | 855 238 | 857 239 | 863 240 | 873 241 | 10 242 | 11 243 | 18 244 | 20 245 | 54 246 | 57 247 | 74 248 | 130 249 | 140 250 | 150 251 | 159 252 | 169 253 | 182 254 | 205 255 | 212 256 | 216 257 | 222 258 | 276 259 | 302 260 | 303 261 | 316 262 | 340 263 | 344 264 | 352 265 | 354 266 | 377 267 | 379 268 | 383 269 | 388 270 | 389 271 | 424 272 | 431 273 | 434 274 | 449 275 | 456 276 | 479 277 | 533 278 | 536 279 | 544 280 | 555 281 | 566 282 | 595 283 | 603 284 | 612 285 | 630 286 | 650 287 | 668 288 | 670 289 | 677 290 | 694 291 | 697 292 | 702 293 | 708 294 | 712 295 | 718 296 | 756 297 | 766 298 | 835 299 | 839 300 | 845 301 | 19 302 | 31 303 | 32 304 | 56 305 | 86 306 | 89 307 | 94 308 | 106 309 | 113 310 | 174 311 | 193 312 | 194 313 | 202 314 | 248 315 | 259 316 | 264 317 | 280 318 | 307 319 | 366 320 | 370 321 | 376 322 | 385 323 | 394 324 | 443 325 | 445 326 | 448 327 | 450 328 | 462 329 | 481 330 | 496 331 | 497 332 | 518 333 | 523 334 | 525 335 | 556 336 | 578 337 | 589 338 | 594 339 | 610 340 | 623 341 | 625 342 | 638 343 | 667 344 | 679 345 | 728 346 | 733 347 | 736 348 | 748 349 | 777 350 | 789 351 | 797 352 | 801 353 | 806 354 | 823 355 | 830 356 | 833 357 | 838 358 | 847 359 | 867 360 | 872 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-3-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 21 182 | 24 183 | 36 184 | 67 185 | 75 186 | 79 187 | 83 188 | 90 189 | 112 190 | 144 191 | 154 192 | 160 193 | 165 194 | 170 195 | 176 196 | 215 197 | 237 198 | 258 199 | 262 200 | 265 201 | 278 202 | 279 203 | 299 204 | 312 205 | 338 206 | 360 207 | 361 208 | 371 209 | 392 210 | 427 211 | 441 212 | 466 213 | 476 214 | 480 215 | 494 216 | 501 217 | 509 218 | 510 219 | 528 220 | 580 221 | 597 222 | 644 223 | 652 224 | 673 225 | 680 226 | 686 227 | 693 228 | 700 229 | 709 230 | 739 231 | 751 232 | 773 233 | 783 234 | 800 235 | 805 236 | 807 237 | 855 238 | 857 239 | 863 240 | 873 241 | 10 242 | 11 243 | 18 244 | 20 245 | 54 246 | 57 247 | 74 248 | 130 249 | 140 250 | 150 251 | 159 252 | 169 253 | 182 254 | 205 255 | 212 256 | 216 257 | 222 258 | 276 259 | 302 260 | 303 261 | 316 262 | 340 263 | 344 264 | 352 265 | 354 266 | 377 267 | 379 268 | 383 269 | 388 270 | 389 271 | 424 272 | 431 273 | 434 274 | 449 275 | 456 276 | 479 277 | 533 278 | 536 279 | 544 280 | 555 281 | 566 282 | 595 283 | 603 284 | 612 285 | 630 286 | 650 287 | 668 288 | 670 289 | 677 290 | 694 291 | 697 292 | 702 293 | 708 294 | 712 295 | 718 296 | 756 297 | 766 298 | 835 299 | 839 300 | 845 301 | 19 302 | 31 303 | 32 304 | 56 305 | 86 306 | 89 307 | 94 308 | 106 309 | 113 310 | 174 311 | 193 312 | 194 313 | 202 314 | 248 315 | 259 316 | 264 317 | 280 318 | 307 319 | 366 320 | 370 321 | 376 322 | 385 323 | 394 324 | 443 325 | 445 326 | 448 327 | 450 328 | 462 329 | 481 330 | 496 331 | 497 332 | 518 333 | 523 334 | 525 335 | 556 336 | 578 337 | 589 338 | 594 339 | 610 340 | 623 341 | 625 342 | 638 343 | 667 344 | 679 345 | 728 346 | 733 347 | 736 348 | 748 349 | 777 350 | 789 351 | 797 352 | 801 353 | 806 354 | 823 355 | 830 356 | 833 357 | 838 358 | 847 359 | 867 360 | 872 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-4-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 17 182 | 44 183 | 49 184 | 55 185 | 59 186 | 61 187 | 62 188 | 95 189 | 100 190 | 121 191 | 136 192 | 155 193 | 185 194 | 227 195 | 230 196 | 257 197 | 266 198 | 282 199 | 289 200 | 291 201 | 324 202 | 337 203 | 342 204 | 345 205 | 355 206 | 357 207 | 364 208 | 397 209 | 400 210 | 423 211 | 429 212 | 444 213 | 463 214 | 503 215 | 505 216 | 507 217 | 519 218 | 520 219 | 529 220 | 538 221 | 545 222 | 563 223 | 593 224 | 605 225 | 632 226 | 646 227 | 665 228 | 675 229 | 690 230 | 704 231 | 710 232 | 715 233 | 740 234 | 747 235 | 755 236 | 765 237 | 779 238 | 780 239 | 822 240 | 864 241 | 10 242 | 11 243 | 18 244 | 20 245 | 54 246 | 57 247 | 74 248 | 130 249 | 140 250 | 150 251 | 159 252 | 169 253 | 182 254 | 205 255 | 212 256 | 216 257 | 222 258 | 276 259 | 302 260 | 303 261 | 316 262 | 340 263 | 344 264 | 352 265 | 354 266 | 377 267 | 379 268 | 383 269 | 388 270 | 389 271 | 424 272 | 431 273 | 434 274 | 449 275 | 456 276 | 479 277 | 533 278 | 536 279 | 544 280 | 555 281 | 566 282 | 595 283 | 603 284 | 612 285 | 630 286 | 650 287 | 668 288 | 670 289 | 677 290 | 694 291 | 697 292 | 702 293 | 708 294 | 712 295 | 718 296 | 756 297 | 766 298 | 835 299 | 839 300 | 845 301 | 19 302 | 31 303 | 32 304 | 56 305 | 86 306 | 89 307 | 94 308 | 106 309 | 113 310 | 174 311 | 193 312 | 194 313 | 202 314 | 248 315 | 259 316 | 264 317 | 280 318 | 307 319 | 366 320 | 370 321 | 376 322 | 385 323 | 394 324 | 443 325 | 445 326 | 448 327 | 450 328 | 462 329 | 481 330 | 496 331 | 497 332 | 518 333 | 523 334 | 525 335 | 556 336 | 578 337 | 589 338 | 594 339 | 610 340 | 623 341 | 625 342 | 638 343 | 667 344 | 679 345 | 728 346 | 733 347 | 736 348 | 748 349 | 777 350 | 789 351 | 797 352 | 801 353 | 806 354 | 823 355 | 830 356 | 833 357 | 838 358 | 847 359 | 867 360 | 872 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-5-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 17 182 | 44 183 | 49 184 | 55 185 | 59 186 | 61 187 | 62 188 | 95 189 | 100 190 | 121 191 | 136 192 | 155 193 | 185 194 | 227 195 | 230 196 | 257 197 | 266 198 | 282 199 | 289 200 | 291 201 | 324 202 | 337 203 | 342 204 | 345 205 | 355 206 | 357 207 | 364 208 | 397 209 | 400 210 | 423 211 | 429 212 | 444 213 | 463 214 | 503 215 | 505 216 | 507 217 | 519 218 | 520 219 | 529 220 | 538 221 | 545 222 | 563 223 | 593 224 | 605 225 | 632 226 | 646 227 | 665 228 | 675 229 | 690 230 | 704 231 | 710 232 | 715 233 | 740 234 | 747 235 | 755 236 | 765 237 | 779 238 | 780 239 | 822 240 | 864 241 | 21 242 | 24 243 | 36 244 | 67 245 | 75 246 | 79 247 | 83 248 | 90 249 | 112 250 | 144 251 | 154 252 | 160 253 | 165 254 | 170 255 | 176 256 | 215 257 | 237 258 | 258 259 | 262 260 | 265 261 | 278 262 | 279 263 | 299 264 | 312 265 | 338 266 | 360 267 | 361 268 | 371 269 | 392 270 | 427 271 | 441 272 | 466 273 | 476 274 | 480 275 | 494 276 | 501 277 | 509 278 | 510 279 | 528 280 | 580 281 | 597 282 | 644 283 | 652 284 | 673 285 | 680 286 | 686 287 | 693 288 | 700 289 | 709 290 | 739 291 | 751 292 | 773 293 | 783 294 | 800 295 | 805 296 | 807 297 | 855 298 | 857 299 | 863 300 | 873 301 | 19 302 | 31 303 | 32 304 | 56 305 | 86 306 | 89 307 | 94 308 | 106 309 | 113 310 | 174 311 | 193 312 | 194 313 | 202 314 | 248 315 | 259 316 | 264 317 | 280 318 | 307 319 | 366 320 | 370 321 | 376 322 | 385 323 | 394 324 | 443 325 | 445 326 | 448 327 | 450 328 | 462 329 | 481 330 | 496 331 | 497 332 | 518 333 | 523 334 | 525 335 | 556 336 | 578 337 | 589 338 | 594 339 | 610 340 | 623 341 | 625 342 | 638 343 | 667 344 | 679 345 | 728 346 | 733 347 | 736 348 | 748 349 | 777 350 | 789 351 | 797 352 | 801 353 | 806 354 | 823 355 | 830 356 | 833 357 | 838 358 | 847 359 | 867 360 | 872 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-6-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 17 182 | 44 183 | 49 184 | 55 185 | 59 186 | 61 187 | 62 188 | 95 189 | 100 190 | 121 191 | 136 192 | 155 193 | 185 194 | 227 195 | 230 196 | 257 197 | 266 198 | 282 199 | 289 200 | 291 201 | 324 202 | 337 203 | 342 204 | 345 205 | 355 206 | 357 207 | 364 208 | 397 209 | 400 210 | 423 211 | 429 212 | 444 213 | 463 214 | 503 215 | 505 216 | 507 217 | 519 218 | 520 219 | 529 220 | 538 221 | 545 222 | 563 223 | 593 224 | 605 225 | 632 226 | 646 227 | 665 228 | 675 229 | 690 230 | 704 231 | 710 232 | 715 233 | 740 234 | 747 235 | 755 236 | 765 237 | 779 238 | 780 239 | 822 240 | 864 241 | 21 242 | 24 243 | 36 244 | 67 245 | 75 246 | 79 247 | 83 248 | 90 249 | 112 250 | 144 251 | 154 252 | 160 253 | 165 254 | 170 255 | 176 256 | 215 257 | 237 258 | 258 259 | 262 260 | 265 261 | 278 262 | 279 263 | 299 264 | 312 265 | 338 266 | 360 267 | 361 268 | 371 269 | 392 270 | 427 271 | 441 272 | 466 273 | 476 274 | 480 275 | 494 276 | 501 277 | 509 278 | 510 279 | 528 280 | 580 281 | 597 282 | 644 283 | 652 284 | 673 285 | 680 286 | 686 287 | 693 288 | 700 289 | 709 290 | 739 291 | 751 292 | 773 293 | 783 294 | 800 295 | 805 296 | 807 297 | 855 298 | 857 299 | 863 300 | 873 301 | 10 302 | 11 303 | 18 304 | 20 305 | 54 306 | 57 307 | 74 308 | 130 309 | 140 310 | 150 311 | 159 312 | 169 313 | 182 314 | 205 315 | 212 316 | 216 317 | 222 318 | 276 319 | 302 320 | 303 321 | 316 322 | 340 323 | 344 324 | 352 325 | 354 326 | 377 327 | 379 328 | 383 329 | 388 330 | 389 331 | 424 332 | 431 333 | 434 334 | 449 335 | 456 336 | 479 337 | 533 338 | 536 339 | 544 340 | 555 341 | 566 342 | 595 343 | 603 344 | 612 345 | 630 346 | 650 347 | 668 348 | 670 349 | 677 350 | 694 351 | 697 352 | 702 353 | 708 354 | 712 355 | 718 356 | 756 357 | 766 358 | 835 359 | 839 360 | 845 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-7-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 17 182 | 44 183 | 49 184 | 55 185 | 59 186 | 61 187 | 62 188 | 95 189 | 100 190 | 121 191 | 136 192 | 155 193 | 185 194 | 227 195 | 230 196 | 257 197 | 266 198 | 282 199 | 289 200 | 291 201 | 324 202 | 337 203 | 342 204 | 345 205 | 355 206 | 357 207 | 364 208 | 397 209 | 400 210 | 423 211 | 429 212 | 444 213 | 463 214 | 503 215 | 505 216 | 507 217 | 519 218 | 520 219 | 529 220 | 538 221 | 545 222 | 563 223 | 593 224 | 605 225 | 632 226 | 646 227 | 665 228 | 675 229 | 690 230 | 704 231 | 710 232 | 715 233 | 740 234 | 747 235 | 755 236 | 765 237 | 779 238 | 780 239 | 822 240 | 864 241 | 21 242 | 24 243 | 36 244 | 67 245 | 75 246 | 79 247 | 83 248 | 90 249 | 112 250 | 144 251 | 154 252 | 160 253 | 165 254 | 170 255 | 176 256 | 215 257 | 237 258 | 258 259 | 262 260 | 265 261 | 278 262 | 279 263 | 299 264 | 312 265 | 338 266 | 360 267 | 361 268 | 371 269 | 392 270 | 427 271 | 441 272 | 466 273 | 476 274 | 480 275 | 494 276 | 501 277 | 509 278 | 510 279 | 528 280 | 580 281 | 597 282 | 644 283 | 652 284 | 673 285 | 680 286 | 686 287 | 693 288 | 700 289 | 709 290 | 739 291 | 751 292 | 773 293 | 783 294 | 800 295 | 805 296 | 807 297 | 855 298 | 857 299 | 863 300 | 873 301 | 10 302 | 11 303 | 18 304 | 20 305 | 54 306 | 57 307 | 74 308 | 130 309 | 140 310 | 150 311 | 159 312 | 169 313 | 182 314 | 205 315 | 212 316 | 216 317 | 222 318 | 276 319 | 302 320 | 303 321 | 316 322 | 340 323 | 344 324 | 352 325 | 354 326 | 377 327 | 379 328 | 383 329 | 388 330 | 389 331 | 424 332 | 431 333 | 434 334 | 449 335 | 456 336 | 479 337 | 533 338 | 536 339 | 544 340 | 555 341 | 566 342 | 595 343 | 603 344 | 612 345 | 630 346 | 650 347 | 668 348 | 670 349 | 677 350 | 694 351 | 697 352 | 702 353 | 708 354 | 712 355 | 718 356 | 756 357 | 766 358 | 835 359 | 839 360 | 845 361 | 19 362 | 31 363 | 32 364 | 56 365 | 86 366 | 89 367 | 94 368 | 106 369 | 113 370 | 174 371 | 193 372 | 194 373 | 202 374 | 248 375 | 259 376 | 264 377 | 280 378 | 307 379 | 366 380 | 370 381 | 376 382 | 385 383 | 394 384 | 443 385 | 445 386 | 448 387 | 450 388 | 462 389 | 481 390 | 496 391 | 497 392 | 518 393 | 523 394 | 525 395 | 556 396 | 578 397 | 589 398 | 594 399 | 610 400 | 623 401 | 625 402 | 638 403 | 667 404 | 679 405 | 728 406 | 733 407 | 736 408 | 748 409 | 777 410 | 789 411 | 797 412 | 801 413 | 806 414 | 823 415 | 830 416 | 833 417 | 838 418 | 847 419 | 867 420 | 872 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-9-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 17 182 | 44 183 | 49 184 | 55 185 | 59 186 | 61 187 | 62 188 | 95 189 | 100 190 | 121 191 | 136 192 | 155 193 | 185 194 | 227 195 | 230 196 | 257 197 | 266 198 | 282 199 | 289 200 | 291 201 | 324 202 | 337 203 | 342 204 | 345 205 | 355 206 | 357 207 | 364 208 | 397 209 | 400 210 | 423 211 | 429 212 | 444 213 | 463 214 | 503 215 | 505 216 | 507 217 | 519 218 | 520 219 | 529 220 | 538 221 | 545 222 | 563 223 | 593 224 | 605 225 | 632 226 | 646 227 | 665 228 | 675 229 | 690 230 | 704 231 | 710 232 | 715 233 | 740 234 | 747 235 | 755 236 | 765 237 | 779 238 | 780 239 | 822 240 | 864 241 | 21 242 | 24 243 | 36 244 | 67 245 | 75 246 | 79 247 | 83 248 | 90 249 | 112 250 | 144 251 | 154 252 | 160 253 | 165 254 | 170 255 | 176 256 | 215 257 | 237 258 | 258 259 | 262 260 | 265 261 | 278 262 | 279 263 | 299 264 | 312 265 | 338 266 | 360 267 | 361 268 | 371 269 | 392 270 | 427 271 | 441 272 | 466 273 | 476 274 | 480 275 | 494 276 | 501 277 | 509 278 | 510 279 | 528 280 | 580 281 | 597 282 | 644 283 | 652 284 | 673 285 | 680 286 | 686 287 | 693 288 | 700 289 | 709 290 | 739 291 | 751 292 | 773 293 | 783 294 | 800 295 | 805 296 | 807 297 | 855 298 | 857 299 | 863 300 | 873 301 | 10 302 | 11 303 | 18 304 | 20 305 | 54 306 | 57 307 | 74 308 | 130 309 | 140 310 | 150 311 | 159 312 | 169 313 | 182 314 | 205 315 | 212 316 | 216 317 | 222 318 | 276 319 | 302 320 | 303 321 | 316 322 | 340 323 | 344 324 | 352 325 | 354 326 | 377 327 | 379 328 | 383 329 | 388 330 | 389 331 | 424 332 | 431 333 | 434 334 | 449 335 | 456 336 | 479 337 | 533 338 | 536 339 | 544 340 | 555 341 | 566 342 | 595 343 | 603 344 | 612 345 | 630 346 | 650 347 | 668 348 | 670 349 | 677 350 | 694 351 | 697 352 | 702 353 | 708 354 | 712 355 | 718 356 | 756 357 | 766 358 | 835 359 | 839 360 | 845 361 | 19 362 | 31 363 | 32 364 | 56 365 | 86 366 | 89 367 | 94 368 | 106 369 | 113 370 | 174 371 | 193 372 | 194 373 | 202 374 | 248 375 | 259 376 | 264 377 | 280 378 | 307 379 | 366 380 | 370 381 | 376 382 | 385 383 | 394 384 | 443 385 | 445 386 | 448 387 | 450 388 | 462 389 | 481 390 | 496 391 | 497 392 | 518 393 | 523 394 | 525 395 | 556 396 | 578 397 | 589 398 | 594 399 | 610 400 | 623 401 | 625 402 | 638 403 | 667 404 | 679 405 | 728 406 | 733 407 | 736 408 | 748 409 | 777 410 | 789 411 | 797 412 | 801 413 | 806 414 | 823 415 | 830 416 | 833 417 | 838 418 | 847 419 | 867 420 | 872 421 | 5 422 | 47 423 | 48 424 | 73 425 | 76 426 | 81 427 | 85 428 | 91 429 | 118 430 | 126 431 | 128 432 | 138 433 | 139 434 | 147 435 | 153 436 | 163 437 | 173 438 | 191 439 | 201 440 | 206 441 | 211 442 | 218 443 | 223 444 | 233 445 | 234 446 | 236 447 | 239 448 | 240 449 | 241 450 | 246 451 | 311 452 | 317 453 | 343 454 | 363 455 | 387 456 | 391 457 | 396 458 | 401 459 | 418 460 | 426 461 | 439 462 | 457 463 | 502 464 | 549 465 | 565 466 | 585 467 | 590 468 | 600 469 | 659 470 | 661 471 | 688 472 | 689 473 | 761 474 | 762 475 | 763 476 | 767 477 | 804 478 | 853 479 | 871 480 | 876 481 | 9 482 | 13 483 | 14 484 | 28 485 | 58 486 | 65 487 | 66 488 | 69 489 | 72 490 | 78 491 | 102 492 | 145 493 | 186 494 | 189 495 | 217 496 | 244 497 | 267 498 | 306 499 | 327 500 | 330 501 | 351 502 | 362 503 | 367 504 | 407 505 | 410 506 | 415 507 | 430 508 | 447 509 | 465 510 | 473 511 | 474 512 | 512 513 | 527 514 | 530 515 | 540 516 | 541 517 | 560 518 | 561 519 | 567 520 | 569 521 | 584 522 | 587 523 | 607 524 | 609 525 | 614 526 | 624 527 | 647 528 | 651 529 | 655 530 | 681 531 | 691 532 | 726 533 | 727 534 | 752 535 | 790 536 | 817 537 | 846 538 | 848 539 | 854 540 | 856 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-1-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 0 62 | 2 63 | 8 64 | 22 65 | 30 66 | 43 67 | 92 68 | 97 69 | 103 70 | 111 71 | 119 72 | 137 73 | 156 74 | 178 75 | 192 76 | 221 77 | 252 78 | 256 79 | 260 80 | 271 81 | 288 82 | 293 83 | 298 84 | 308 85 | 309 86 | 318 87 | 322 88 | 346 89 | 384 90 | 411 91 | 442 92 | 452 93 | 470 94 | 471 95 | 478 96 | 490 97 | 492 98 | 506 99 | 513 100 | 535 101 | 553 102 | 557 103 | 562 104 | 568 105 | 574 106 | 579 107 | 583 108 | 613 109 | 634 110 | 643 111 | 653 112 | 695 113 | 699 114 | 706 115 | 758 116 | 759 117 | 768 118 | 771 119 | 795 120 | 866 121 | 17 122 | 44 123 | 49 124 | 55 125 | 59 126 | 61 127 | 62 128 | 95 129 | 100 130 | 121 131 | 136 132 | 155 133 | 185 134 | 227 135 | 230 136 | 257 137 | 266 138 | 282 139 | 289 140 | 291 141 | 324 142 | 337 143 | 342 144 | 345 145 | 355 146 | 357 147 | 364 148 | 397 149 | 400 150 | 423 151 | 429 152 | 444 153 | 463 154 | 503 155 | 505 156 | 507 157 | 519 158 | 520 159 | 529 160 | 538 161 | 545 162 | 563 163 | 593 164 | 605 165 | 632 166 | 646 167 | 665 168 | 675 169 | 690 170 | 704 171 | 710 172 | 715 173 | 740 174 | 747 175 | 755 176 | 765 177 | 779 178 | 780 179 | 822 180 | 864 181 | 21 182 | 24 183 | 36 184 | 67 185 | 75 186 | 79 187 | 83 188 | 90 189 | 112 190 | 144 191 | 154 192 | 160 193 | 165 194 | 170 195 | 176 196 | 215 197 | 237 198 | 258 199 | 262 200 | 265 201 | 278 202 | 279 203 | 299 204 | 312 205 | 338 206 | 360 207 | 361 208 | 371 209 | 392 210 | 427 211 | 441 212 | 466 213 | 476 214 | 480 215 | 494 216 | 501 217 | 509 218 | 510 219 | 528 220 | 580 221 | 597 222 | 644 223 | 652 224 | 673 225 | 680 226 | 686 227 | 693 228 | 700 229 | 709 230 | 739 231 | 751 232 | 773 233 | 783 234 | 800 235 | 805 236 | 807 237 | 855 238 | 857 239 | 863 240 | 873 241 | 10 242 | 11 243 | 18 244 | 20 245 | 54 246 | 57 247 | 74 248 | 130 249 | 140 250 | 150 251 | 159 252 | 169 253 | 182 254 | 205 255 | 212 256 | 216 257 | 222 258 | 276 259 | 302 260 | 303 261 | 316 262 | 340 263 | 344 264 | 352 265 | 354 266 | 377 267 | 379 268 | 383 269 | 388 270 | 389 271 | 424 272 | 431 273 | 434 274 | 449 275 | 456 276 | 479 277 | 533 278 | 536 279 | 544 280 | 555 281 | 566 282 | 595 283 | 603 284 | 612 285 | 630 286 | 650 287 | 668 288 | 670 289 | 677 290 | 694 291 | 697 292 | 702 293 | 708 294 | 712 295 | 718 296 | 756 297 | 766 298 | 835 299 | 839 300 | 845 301 | 19 302 | 31 303 | 32 304 | 56 305 | 86 306 | 89 307 | 94 308 | 106 309 | 113 310 | 174 311 | 193 312 | 194 313 | 202 314 | 248 315 | 259 316 | 264 317 | 280 318 | 307 319 | 366 320 | 370 321 | 376 322 | 385 323 | 394 324 | 443 325 | 445 326 | 448 327 | 450 328 | 462 329 | 481 330 | 496 331 | 497 332 | 518 333 | 523 334 | 525 335 | 556 336 | 578 337 | 589 338 | 594 339 | 610 340 | 623 341 | 625 342 | 638 343 | 667 344 | 679 345 | 728 346 | 733 347 | 736 348 | 748 349 | 777 350 | 789 351 | 797 352 | 801 353 | 806 354 | 823 355 | 830 356 | 833 357 | 838 358 | 847 359 | 867 360 | 872 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-2-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 17 122 | 44 123 | 49 124 | 55 125 | 59 126 | 61 127 | 62 128 | 95 129 | 100 130 | 121 131 | 136 132 | 155 133 | 185 134 | 227 135 | 230 136 | 257 137 | 266 138 | 282 139 | 289 140 | 291 141 | 324 142 | 337 143 | 342 144 | 345 145 | 355 146 | 357 147 | 364 148 | 397 149 | 400 150 | 423 151 | 429 152 | 444 153 | 463 154 | 503 155 | 505 156 | 507 157 | 519 158 | 520 159 | 529 160 | 538 161 | 545 162 | 563 163 | 593 164 | 605 165 | 632 166 | 646 167 | 665 168 | 675 169 | 690 170 | 704 171 | 710 172 | 715 173 | 740 174 | 747 175 | 755 176 | 765 177 | 779 178 | 780 179 | 822 180 | 864 181 | 21 182 | 24 183 | 36 184 | 67 185 | 75 186 | 79 187 | 83 188 | 90 189 | 112 190 | 144 191 | 154 192 | 160 193 | 165 194 | 170 195 | 176 196 | 215 197 | 237 198 | 258 199 | 262 200 | 265 201 | 278 202 | 279 203 | 299 204 | 312 205 | 338 206 | 360 207 | 361 208 | 371 209 | 392 210 | 427 211 | 441 212 | 466 213 | 476 214 | 480 215 | 494 216 | 501 217 | 509 218 | 510 219 | 528 220 | 580 221 | 597 222 | 644 223 | 652 224 | 673 225 | 680 226 | 686 227 | 693 228 | 700 229 | 709 230 | 739 231 | 751 232 | 773 233 | 783 234 | 800 235 | 805 236 | 807 237 | 855 238 | 857 239 | 863 240 | 873 241 | 10 242 | 11 243 | 18 244 | 20 245 | 54 246 | 57 247 | 74 248 | 130 249 | 140 250 | 150 251 | 159 252 | 169 253 | 182 254 | 205 255 | 212 256 | 216 257 | 222 258 | 276 259 | 302 260 | 303 261 | 316 262 | 340 263 | 344 264 | 352 265 | 354 266 | 377 267 | 379 268 | 383 269 | 388 270 | 389 271 | 424 272 | 431 273 | 434 274 | 449 275 | 456 276 | 479 277 | 533 278 | 536 279 | 544 280 | 555 281 | 566 282 | 595 283 | 603 284 | 612 285 | 630 286 | 650 287 | 668 288 | 670 289 | 677 290 | 694 291 | 697 292 | 702 293 | 708 294 | 712 295 | 718 296 | 756 297 | 766 298 | 835 299 | 839 300 | 845 301 | 19 302 | 31 303 | 32 304 | 56 305 | 86 306 | 89 307 | 94 308 | 106 309 | 113 310 | 174 311 | 193 312 | 194 313 | 202 314 | 248 315 | 259 316 | 264 317 | 280 318 | 307 319 | 366 320 | 370 321 | 376 322 | 385 323 | 394 324 | 443 325 | 445 326 | 448 327 | 450 328 | 462 329 | 481 330 | 496 331 | 497 332 | 518 333 | 523 334 | 525 335 | 556 336 | 578 337 | 589 338 | 594 339 | 610 340 | 623 341 | 625 342 | 638 343 | 667 344 | 679 345 | 728 346 | 733 347 | 736 348 | 748 349 | 777 350 | 789 351 | 797 352 | 801 353 | 806 354 | 823 355 | 830 356 | 833 357 | 838 358 | 847 359 | 867 360 | 872 361 | 5 362 | 47 363 | 48 364 | 73 365 | 76 366 | 81 367 | 85 368 | 91 369 | 118 370 | 126 371 | 128 372 | 138 373 | 139 374 | 147 375 | 153 376 | 163 377 | 173 378 | 191 379 | 201 380 | 206 381 | 211 382 | 218 383 | 223 384 | 233 385 | 234 386 | 236 387 | 239 388 | 240 389 | 241 390 | 246 391 | 311 392 | 317 393 | 343 394 | 363 395 | 387 396 | 391 397 | 396 398 | 401 399 | 418 400 | 426 401 | 439 402 | 457 403 | 502 404 | 549 405 | 565 406 | 585 407 | 590 408 | 600 409 | 659 410 | 661 411 | 688 412 | 689 413 | 761 414 | 762 415 | 763 416 | 767 417 | 804 418 | 853 419 | 871 420 | 876 421 | 9 422 | 13 423 | 14 424 | 28 425 | 58 426 | 65 427 | 66 428 | 69 429 | 72 430 | 78 431 | 102 432 | 145 433 | 186 434 | 189 435 | 217 436 | 244 437 | 267 438 | 306 439 | 327 440 | 330 441 | 351 442 | 362 443 | 367 444 | 407 445 | 410 446 | 415 447 | 430 448 | 447 449 | 465 450 | 473 451 | 474 452 | 512 453 | 527 454 | 530 455 | 540 456 | 541 457 | 560 458 | 561 459 | 567 460 | 569 461 | 584 462 | 587 463 | 607 464 | 609 465 | 614 466 | 624 467 | 647 468 | 651 469 | 655 470 | 681 471 | 691 472 | 726 473 | 727 474 | 752 475 | 790 476 | 817 477 | 846 478 | 848 479 | 854 480 | 856 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /data/geo/folds600/fold-8-train.ids: -------------------------------------------------------------------------------- 1 | 1 2 | 35 3 | 51 4 | 63 5 | 105 6 | 115 7 | 116 8 | 122 9 | 127 10 | 131 11 | 146 12 | 151 13 | 157 14 | 162 15 | 181 16 | 187 17 | 200 18 | 210 19 | 224 20 | 226 21 | 228 22 | 251 23 | 253 24 | 270 25 | 283 26 | 287 27 | 290 28 | 292 29 | 313 30 | 321 31 | 358 32 | 406 33 | 409 34 | 414 35 | 417 36 | 425 37 | 435 38 | 485 39 | 500 40 | 508 41 | 522 42 | 534 43 | 554 44 | 558 45 | 571 46 | 617 47 | 620 48 | 621 49 | 633 50 | 640 51 | 649 52 | 662 53 | 696 54 | 713 55 | 753 56 | 809 57 | 812 58 | 849 59 | 851 60 | 869 61 | 4 62 | 7 63 | 12 64 | 23 65 | 41 66 | 52 67 | 68 68 | 70 69 | 77 70 | 120 71 | 133 72 | 142 73 | 143 74 | 164 75 | 171 76 | 180 77 | 254 78 | 261 79 | 263 80 | 269 81 | 274 82 | 294 83 | 310 84 | 314 85 | 353 86 | 393 87 | 404 88 | 419 89 | 453 90 | 460 91 | 461 92 | 484 93 | 487 94 | 493 95 | 514 96 | 559 97 | 564 98 | 575 99 | 591 100 | 602 101 | 619 102 | 648 103 | 660 104 | 674 105 | 682 106 | 683 107 | 730 108 | 734 109 | 738 110 | 749 111 | 750 112 | 784 113 | 814 114 | 820 115 | 834 116 | 841 117 | 842 118 | 858 119 | 859 120 | 877 121 | 0 122 | 2 123 | 8 124 | 22 125 | 30 126 | 43 127 | 92 128 | 97 129 | 103 130 | 111 131 | 119 132 | 137 133 | 156 134 | 178 135 | 192 136 | 221 137 | 252 138 | 256 139 | 260 140 | 271 141 | 288 142 | 293 143 | 298 144 | 308 145 | 309 146 | 318 147 | 322 148 | 346 149 | 384 150 | 411 151 | 442 152 | 452 153 | 470 154 | 471 155 | 478 156 | 490 157 | 492 158 | 506 159 | 513 160 | 535 161 | 553 162 | 557 163 | 562 164 | 568 165 | 574 166 | 579 167 | 583 168 | 613 169 | 634 170 | 643 171 | 653 172 | 695 173 | 699 174 | 706 175 | 758 176 | 759 177 | 768 178 | 771 179 | 795 180 | 866 181 | 17 182 | 44 183 | 49 184 | 55 185 | 59 186 | 61 187 | 62 188 | 95 189 | 100 190 | 121 191 | 136 192 | 155 193 | 185 194 | 227 195 | 230 196 | 257 197 | 266 198 | 282 199 | 289 200 | 291 201 | 324 202 | 337 203 | 342 204 | 345 205 | 355 206 | 357 207 | 364 208 | 397 209 | 400 210 | 423 211 | 429 212 | 444 213 | 463 214 | 503 215 | 505 216 | 507 217 | 519 218 | 520 219 | 529 220 | 538 221 | 545 222 | 563 223 | 593 224 | 605 225 | 632 226 | 646 227 | 665 228 | 675 229 | 690 230 | 704 231 | 710 232 | 715 233 | 740 234 | 747 235 | 755 236 | 765 237 | 779 238 | 780 239 | 822 240 | 864 241 | 21 242 | 24 243 | 36 244 | 67 245 | 75 246 | 79 247 | 83 248 | 90 249 | 112 250 | 144 251 | 154 252 | 160 253 | 165 254 | 170 255 | 176 256 | 215 257 | 237 258 | 258 259 | 262 260 | 265 261 | 278 262 | 279 263 | 299 264 | 312 265 | 338 266 | 360 267 | 361 268 | 371 269 | 392 270 | 427 271 | 441 272 | 466 273 | 476 274 | 480 275 | 494 276 | 501 277 | 509 278 | 510 279 | 528 280 | 580 281 | 597 282 | 644 283 | 652 284 | 673 285 | 680 286 | 686 287 | 693 288 | 700 289 | 709 290 | 739 291 | 751 292 | 773 293 | 783 294 | 800 295 | 805 296 | 807 297 | 855 298 | 857 299 | 863 300 | 873 301 | 10 302 | 11 303 | 18 304 | 20 305 | 54 306 | 57 307 | 74 308 | 130 309 | 140 310 | 150 311 | 159 312 | 169 313 | 182 314 | 205 315 | 212 316 | 216 317 | 222 318 | 276 319 | 302 320 | 303 321 | 316 322 | 340 323 | 344 324 | 352 325 | 354 326 | 377 327 | 379 328 | 383 329 | 388 330 | 389 331 | 424 332 | 431 333 | 434 334 | 449 335 | 456 336 | 479 337 | 533 338 | 536 339 | 544 340 | 555 341 | 566 342 | 595 343 | 603 344 | 612 345 | 630 346 | 650 347 | 668 348 | 670 349 | 677 350 | 694 351 | 697 352 | 702 353 | 708 354 | 712 355 | 718 356 | 756 357 | 766 358 | 835 359 | 839 360 | 845 361 | 19 362 | 31 363 | 32 364 | 56 365 | 86 366 | 89 367 | 94 368 | 106 369 | 113 370 | 174 371 | 193 372 | 194 373 | 202 374 | 248 375 | 259 376 | 264 377 | 280 378 | 307 379 | 366 380 | 370 381 | 376 382 | 385 383 | 394 384 | 443 385 | 445 386 | 448 387 | 450 388 | 462 389 | 481 390 | 496 391 | 497 392 | 518 393 | 523 394 | 525 395 | 556 396 | 578 397 | 589 398 | 594 399 | 610 400 | 623 401 | 625 402 | 638 403 | 667 404 | 679 405 | 728 406 | 733 407 | 736 408 | 748 409 | 777 410 | 789 411 | 797 412 | 801 413 | 806 414 | 823 415 | 830 416 | 833 417 | 838 418 | 847 419 | 867 420 | 872 421 | 5 422 | 47 423 | 48 424 | 73 425 | 76 426 | 81 427 | 85 428 | 91 429 | 118 430 | 126 431 | 128 432 | 138 433 | 139 434 | 147 435 | 153 436 | 163 437 | 173 438 | 191 439 | 201 440 | 206 441 | 211 442 | 218 443 | 223 444 | 233 445 | 234 446 | 236 447 | 239 448 | 240 449 | 241 450 | 246 451 | 311 452 | 317 453 | 343 454 | 363 455 | 387 456 | 391 457 | 396 458 | 401 459 | 418 460 | 426 461 | 439 462 | 457 463 | 502 464 | 549 465 | 565 466 | 585 467 | 590 468 | 600 469 | 659 470 | 661 471 | 688 472 | 689 473 | 761 474 | 762 475 | 763 476 | 767 477 | 804 478 | 853 479 | 871 480 | 876 481 | 27 482 | 42 483 | 71 484 | 80 485 | 96 486 | 98 487 | 109 488 | 123 489 | 124 490 | 129 491 | 175 492 | 177 493 | 197 494 | 198 495 | 219 496 | 235 497 | 268 498 | 277 499 | 284 500 | 285 501 | 297 502 | 315 503 | 326 504 | 329 505 | 335 506 | 374 507 | 421 508 | 458 509 | 488 510 | 499 511 | 532 512 | 539 513 | 543 514 | 570 515 | 576 516 | 588 517 | 601 518 | 606 519 | 622 520 | 626 521 | 627 522 | 628 523 | 629 524 | 637 525 | 641 526 | 654 527 | 658 528 | 671 529 | 672 530 | 685 531 | 714 532 | 717 533 | 720 534 | 741 535 | 764 536 | 770 537 | 772 538 | 821 539 | 844 540 | 878 541 | -------------------------------------------------------------------------------- /src/moses.py: -------------------------------------------------------------------------------- 1 | import logging 2 | import os 3 | import subprocess 4 | import gzip 5 | 6 | class Moses: 7 | 8 | def __init__(self, config): 9 | self.config = config 10 | 11 | def run_train(self): 12 | args = [self.config.moses_train, 13 | '--root-dir', self.config.experiment_dir, 14 | '--corpus', '%s/%s' % (self.config.experiment_dir, 15 | self.config.train_name), 16 | '--f', self.config.src, 17 | '--e', self.config.tgt, 18 | '--lm', '0:3:%s/%s.arpa' % (self.config.experiment_dir, self.config.tgt), 19 | #'-score-options', "'--OnlyDirect --NoPhraseCount'" 20 | '--alignment', self.config.symm] 21 | if self.config.model == 'hier': 22 | args += ['-hierarchical', '-glue-grammar'] 23 | 24 | logging.info(' '.join(args)) 25 | 26 | log = open('%s/train.log' % self.config.experiment_dir, 'w') 27 | p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=log) 28 | p.wait() 29 | log.close() 30 | 31 | def run_retrain(self): 32 | old_train_nl = '%s/%s.nl' % (self.config.experiment_dir, 33 | self.config.train_name) 34 | old_train_mrl = '%s/%s.mrl' % (self.config.experiment_dir, 35 | self.config.train_name) 36 | moved_train_nl = '%s.notune' % old_train_nl 37 | moved_train_mrl = '%s.notune' % old_train_mrl 38 | tune_nl = '%s/tune.nl' % self.config.experiment_dir 39 | tune_mrl = '%s/tune.mrl' % self.config.experiment_dir 40 | os.rename(old_train_nl, moved_train_nl) 41 | os.rename(old_train_mrl, moved_train_mrl) 42 | with open(old_train_nl, 'w') as rt_train_nl: 43 | subprocess.call(['cat', moved_train_nl, tune_nl], stdout=rt_train_nl) 44 | with open(old_train_mrl, 'w') as rt_train_mrl: 45 | subprocess.call(['cat', moved_train_mrl, tune_mrl], stdout=rt_train_mrl) 46 | 47 | os.remove('%s/model/extract.inv.gz' % self.config.experiment_dir) 48 | os.remove('%s/model/extract.gz' % self.config.experiment_dir) 49 | if self.config.model == 'hier': 50 | os.remove('%s/model/rule-table.gz' % self.config.experiment_dir) 51 | else: 52 | os.remove('%s/model/phrase-table.gz' % self.config.experiment_dir) 53 | 54 | self.run_train() 55 | 56 | def parens_ok(self, line): 57 | mrl_part = line.split(' ||| ')[1] 58 | tokens = [t[-1] for t in mrl_part.split() if t[-2] == '@'] 59 | tokens.reverse() 60 | stack = [] 61 | while tokens: 62 | t = tokens.pop() 63 | assert t != '*' 64 | if t == 's': 65 | t = 0 66 | t = int(t) 67 | if t > 0: 68 | stack.append(t) 69 | else: 70 | while stack: 71 | top = stack.pop() 72 | if top > 1: 73 | stack.append(top - 1) 74 | break 75 | if tokens and not stack: 76 | return False 77 | return True 78 | 79 | def filter_phrase_table(self): 80 | table_name = 'phrase' if self.config.model == 'phrase' else 'rule' 81 | oldname = '%s/model/%s-table.gz' % (self.config.experiment_dir, table_name) 82 | newname = '%s/model/%s-table.old.gz' % (self.config.experiment_dir, table_name) 83 | os.rename(oldname, newname) 84 | 85 | with gzip.open(oldname, 'w') as filtered_table_f: 86 | with gzip.open(newname, 'r') as old_table_f: 87 | for line in old_table_f: 88 | if self.parens_ok(line): 89 | print >>filtered_table_f, line, 90 | 91 | def run_tune(self): 92 | wd = os.getcwd() 93 | os.chdir(self.config.experiment_dir) 94 | args = [self.config.moses_tune, 95 | '%s/tune.%s' % (self.config.experiment_dir, self.config.src), 96 | '%s/tune.%s' % (self.config.experiment_dir, self.config.tgt)] 97 | if self.config.model == 'hier': 98 | args += [self.config.moses_decode_hier] 99 | else: 100 | args += [self.config.moses_decode_phrase] 101 | args += ['%s/model/moses.ini' % self.config.experiment_dir, 102 | '--mertdir', '%s/dist/bin' % self.config.moses] 103 | if self.config.model == 'hier': 104 | args += ['--filtercmd', 105 | '%s/scripts/training/filter-model-given-input.pl --Hierarchical'\ 106 | % self.config.moses] 107 | 108 | log = open('%s/tune.log' % self.config.experiment_dir, 'w') 109 | p = subprocess.Popen(args, stdout=subprocess.PIPE, stderr=log) 110 | p.wait() 111 | log.close() 112 | os.chdir(wd) 113 | 114 | def run_decode(self): 115 | if self.config.model == 'phrase': 116 | args = [self.config.moses_decode_phrase] 117 | elif self.config.model == 'hier': 118 | args = [self.config.moses_decode_hier] 119 | else: 120 | assert False 121 | 122 | if self.config.run == 'test': 123 | args += ['-f', '%s/mert-work/moses.ini' % self.config.experiment_dir] 124 | else: 125 | args += ['-f', '%s/model/moses.ini' % self.config.experiment_dir] 126 | #args += ['-f', '%s/model/moses.ini' % self.config.experiment_dir] 127 | 128 | args += ['-drop-unknown', 129 | '-n-best-list', '%s/hyp.%s.nbest' % (self.config.experiment_dir, self.config.tgt), 130 | str(self.config.nbest), 'distinct', 131 | '-threads', '3'] 132 | 133 | #nullfile = open(os.devnull, 'w') 134 | infile = open('%s/test.%s' % (self.config.experiment_dir, self.config.src)) 135 | outfile = open('%s/hyp.%s' % (self.config.experiment_dir, self.config.tgt), 'w') 136 | log = open('%s/decode.log' % self.config.experiment_dir, 'w') 137 | p = subprocess.Popen(args, stdin=infile, stdout=outfile, stderr=log) 138 | p.wait() 139 | infile.close() 140 | log.close() 141 | outfile.close() 142 | -------------------------------------------------------------------------------- /data/geo/split880/fold-0-train.ids: -------------------------------------------------------------------------------- 1 | 0 2 | 1 3 | 2 4 | 4 5 | 5 6 | 7 7 | 8 8 | 9 9 | 10 10 | 11 11 | 12 12 | 13 13 | 14 14 | 17 15 | 18 16 | 19 17 | 20 18 | 21 19 | 22 20 | 23 21 | 24 22 | 27 23 | 28 24 | 30 25 | 31 26 | 32 27 | 35 28 | 36 29 | 41 30 | 42 31 | 43 32 | 44 33 | 47 34 | 48 35 | 49 36 | 51 37 | 52 38 | 54 39 | 55 40 | 56 41 | 57 42 | 58 43 | 59 44 | 61 45 | 62 46 | 63 47 | 65 48 | 66 49 | 67 50 | 68 51 | 69 52 | 70 53 | 71 54 | 72 55 | 73 56 | 74 57 | 75 58 | 76 59 | 77 60 | 78 61 | 79 62 | 80 63 | 81 64 | 83 65 | 85 66 | 86 67 | 89 68 | 90 69 | 91 70 | 92 71 | 94 72 | 95 73 | 96 74 | 97 75 | 98 76 | 100 77 | 102 78 | 103 79 | 105 80 | 106 81 | 109 82 | 111 83 | 112 84 | 113 85 | 115 86 | 116 87 | 118 88 | 119 89 | 120 90 | 121 91 | 122 92 | 123 93 | 124 94 | 126 95 | 127 96 | 128 97 | 129 98 | 130 99 | 131 100 | 133 101 | 136 102 | 137 103 | 138 104 | 139 105 | 140 106 | 142 107 | 143 108 | 144 109 | 145 110 | 146 111 | 147 112 | 150 113 | 151 114 | 153 115 | 154 116 | 155 117 | 156 118 | 157 119 | 159 120 | 160 121 | 162 122 | 163 123 | 164 124 | 165 125 | 169 126 | 170 127 | 171 128 | 173 129 | 174 130 | 175 131 | 176 132 | 177 133 | 178 134 | 180 135 | 181 136 | 182 137 | 185 138 | 186 139 | 187 140 | 189 141 | 191 142 | 192 143 | 193 144 | 194 145 | 197 146 | 198 147 | 200 148 | 201 149 | 202 150 | 205 151 | 206 152 | 210 153 | 211 154 | 212 155 | 215 156 | 216 157 | 217 158 | 218 159 | 219 160 | 221 161 | 222 162 | 223 163 | 224 164 | 226 165 | 227 166 | 228 167 | 230 168 | 233 169 | 234 170 | 235 171 | 236 172 | 237 173 | 239 174 | 240 175 | 241 176 | 244 177 | 246 178 | 248 179 | 251 180 | 252 181 | 253 182 | 254 183 | 256 184 | 257 185 | 258 186 | 259 187 | 260 188 | 261 189 | 262 190 | 263 191 | 264 192 | 265 193 | 266 194 | 267 195 | 268 196 | 269 197 | 270 198 | 271 199 | 274 200 | 276 201 | 277 202 | 278 203 | 279 204 | 280 205 | 282 206 | 283 207 | 284 208 | 285 209 | 287 210 | 288 211 | 289 212 | 290 213 | 291 214 | 292 215 | 293 216 | 294 217 | 297 218 | 298 219 | 299 220 | 302 221 | 303 222 | 306 223 | 307 224 | 308 225 | 309 226 | 310 227 | 311 228 | 312 229 | 313 230 | 314 231 | 315 232 | 316 233 | 317 234 | 318 235 | 321 236 | 322 237 | 324 238 | 326 239 | 327 240 | 329 241 | 330 242 | 335 243 | 337 244 | 338 245 | 340 246 | 342 247 | 343 248 | 344 249 | 345 250 | 346 251 | 351 252 | 352 253 | 353 254 | 354 255 | 355 256 | 357 257 | 358 258 | 360 259 | 361 260 | 362 261 | 363 262 | 364 263 | 366 264 | 367 265 | 370 266 | 371 267 | 374 268 | 376 269 | 377 270 | 379 271 | 383 272 | 384 273 | 385 274 | 387 275 | 388 276 | 389 277 | 391 278 | 392 279 | 393 280 | 394 281 | 396 282 | 397 283 | 400 284 | 401 285 | 404 286 | 406 287 | 407 288 | 409 289 | 410 290 | 411 291 | 414 292 | 415 293 | 417 294 | 418 295 | 419 296 | 421 297 | 423 298 | 424 299 | 425 300 | 426 301 | 427 302 | 429 303 | 430 304 | 431 305 | 434 306 | 435 307 | 439 308 | 441 309 | 442 310 | 443 311 | 444 312 | 445 313 | 447 314 | 448 315 | 449 316 | 450 317 | 452 318 | 453 319 | 456 320 | 457 321 | 458 322 | 460 323 | 461 324 | 462 325 | 463 326 | 465 327 | 466 328 | 470 329 | 471 330 | 473 331 | 474 332 | 476 333 | 478 334 | 479 335 | 480 336 | 481 337 | 484 338 | 485 339 | 487 340 | 488 341 | 490 342 | 492 343 | 493 344 | 494 345 | 496 346 | 497 347 | 499 348 | 500 349 | 501 350 | 502 351 | 503 352 | 505 353 | 506 354 | 507 355 | 508 356 | 509 357 | 510 358 | 512 359 | 513 360 | 514 361 | 518 362 | 519 363 | 520 364 | 522 365 | 523 366 | 525 367 | 527 368 | 528 369 | 529 370 | 530 371 | 532 372 | 533 373 | 534 374 | 535 375 | 536 376 | 538 377 | 539 378 | 540 379 | 541 380 | 543 381 | 544 382 | 545 383 | 549 384 | 553 385 | 554 386 | 555 387 | 556 388 | 557 389 | 558 390 | 559 391 | 560 392 | 561 393 | 562 394 | 563 395 | 564 396 | 565 397 | 566 398 | 567 399 | 568 400 | 569 401 | 570 402 | 571 403 | 574 404 | 575 405 | 576 406 | 578 407 | 579 408 | 580 409 | 583 410 | 584 411 | 585 412 | 587 413 | 588 414 | 589 415 | 590 416 | 591 417 | 593 418 | 594 419 | 595 420 | 597 421 | 600 422 | 601 423 | 602 424 | 603 425 | 605 426 | 606 427 | 607 428 | 609 429 | 610 430 | 612 431 | 613 432 | 614 433 | 617 434 | 619 435 | 620 436 | 621 437 | 622 438 | 623 439 | 624 440 | 625 441 | 626 442 | 627 443 | 628 444 | 629 445 | 630 446 | 632 447 | 633 448 | 634 449 | 637 450 | 638 451 | 640 452 | 641 453 | 643 454 | 644 455 | 646 456 | 647 457 | 648 458 | 649 459 | 650 460 | 651 461 | 652 462 | 653 463 | 654 464 | 655 465 | 658 466 | 659 467 | 660 468 | 661 469 | 662 470 | 665 471 | 667 472 | 668 473 | 670 474 | 671 475 | 672 476 | 673 477 | 674 478 | 675 479 | 677 480 | 679 481 | 680 482 | 681 483 | 682 484 | 683 485 | 685 486 | 686 487 | 688 488 | 689 489 | 690 490 | 691 491 | 693 492 | 694 493 | 695 494 | 696 495 | 697 496 | 699 497 | 700 498 | 702 499 | 704 500 | 706 501 | 708 502 | 709 503 | 710 504 | 712 505 | 713 506 | 714 507 | 715 508 | 717 509 | 718 510 | 720 511 | 726 512 | 727 513 | 728 514 | 730 515 | 733 516 | 734 517 | 736 518 | 738 519 | 739 520 | 740 521 | 741 522 | 747 523 | 748 524 | 749 525 | 750 526 | 751 527 | 752 528 | 753 529 | 755 530 | 756 531 | 758 532 | 759 533 | 761 534 | 762 535 | 763 536 | 764 537 | 765 538 | 766 539 | 767 540 | 768 541 | 770 542 | 771 543 | 772 544 | 773 545 | 777 546 | 779 547 | 780 548 | 783 549 | 784 550 | 789 551 | 790 552 | 795 553 | 797 554 | 800 555 | 801 556 | 804 557 | 805 558 | 806 559 | 807 560 | 809 561 | 812 562 | 814 563 | 817 564 | 820 565 | 821 566 | 822 567 | 823 568 | 830 569 | 833 570 | 834 571 | 835 572 | 838 573 | 839 574 | 841 575 | 842 576 | 844 577 | 845 578 | 846 579 | 847 580 | 848 581 | 849 582 | 851 583 | 853 584 | 854 585 | 855 586 | 856 587 | 857 588 | 858 589 | 859 590 | 863 591 | 864 592 | 866 593 | 867 594 | 869 595 | 871 596 | 872 597 | 873 598 | 876 599 | 877 600 | 878 601 | -------------------------------------------------------------------------------- /src/nl_reweighter.py: -------------------------------------------------------------------------------- 1 | import gzip 2 | import re 3 | from nlp_tools.hypergraph import Hypergraph 4 | import itertools 5 | import logging 6 | from collections import defaultdict 7 | import os 8 | 9 | class Rule: 10 | 11 | MOSES_SYMBOL = '[X]' 12 | 13 | def __init__(self, rule_id, symbol, src, tgt, coindexing): 14 | self.rule_id = rule_id 15 | self.symbol = symbol 16 | self.src = src 17 | self.tgt = tgt 18 | self.coindexing = coindexing 19 | self.degree = len(self.coindexing) 20 | 21 | @classmethod 22 | def from_moses(cls, rule_id, rule_table_line): 23 | nl, mrl, scores, alignments, counts = re.split(r'\ ?\|\|\|\ ?', 24 | rule_table_line.strip()) 25 | nl = nl.split()[:-1] 26 | nl = [cls.MOSES_SYMBOL if t == '[X][X]' else t for t in nl] 27 | mrl = mrl.split()[:-1] 28 | mrl = [cls.MOSES_SYMBOL if t == '[X][X]' else t for t in mrl] 29 | coindexing = [] 30 | for pair in alignments.split(): 31 | i_s, i_t = pair.split('-') 32 | coindexing.append((int(i_s), int(i_t))) 33 | return Rule(rule_id, cls.MOSES_SYMBOL, nl, mrl, coindexing) 34 | 35 | @classmethod 36 | def glue(cls, rule_id): 37 | return Rule(rule_id, cls.MOSES_SYMBOL, [cls.MOSES_SYMBOL, cls.MOSES_SYMBOL], 38 | [cls.MOSES_SYMBOL, cls.MOSES_SYMBOL], [(0,0), (1,1)]) 39 | 40 | def __eq__(self, other): 41 | return other.__class__ == self.__class__ and self.rule_id == other.rule_id 42 | 43 | def __hash__(self): 44 | return self.rule_id 45 | 46 | def __repr__(self): 47 | return 'Rule<(%d) %s -> %s : %s>' % (self.rule_id, self.symbol, self.src, 48 | self.tgt) 49 | 50 | class NLReweighter: 51 | 52 | def __init__(self, config): 53 | self.config = config 54 | 55 | def run(self): 56 | rules = self.load_rule_table() 57 | glue = Rule.glue(len(rules)) 58 | all_counts = defaultdict(lambda: 0) 59 | successful_counts = defaultdict(lambda: 0) 60 | 61 | with open('%s/unlabeled.nl' % self.config.experiment_dir) as ul_f: 62 | for line in ul_f: 63 | toks = line.strip().split() 64 | chart = self.parse(toks, rules, glue) 65 | if not chart: 66 | continue 67 | self.collect_all_counts(all_counts, chart) 68 | self.collect_successful_counts(successful_counts, chart, toks) 69 | 70 | if not self.config.ul_only: 71 | with open('%s/train.nl' % self.config.experiment_dir) as t_f: 72 | for line in t_f: 73 | toks = line.strip().split() 74 | chart = self.parse(toks, rules, glue) 75 | # TODO is this an OOV issue? 76 | if not chart: 77 | continue 78 | self.collect_all_counts(all_counts, chart) 79 | self.collect_successful_counts(successful_counts, chart, toks) 80 | 81 | #self.write_updated_model(all_counts) 82 | self.write_updated_model(successful_counts) 83 | 84 | def load_rule_table(self): 85 | rule_table_path = '%s/model/rule-table.gz' % self.config.experiment_dir 86 | rules = {} 87 | with gzip.open(rule_table_path) as rule_table_f: 88 | for line in rule_table_f.readlines(): 89 | rule = Rule.from_moses(len(rules), line) 90 | rules[rule.rule_id] = rule 91 | return rules 92 | 93 | def write_updated_model(self, counts): 94 | old_rule_table_path = '%s/model/rule-table.gz' % self.config.experiment_dir 95 | new_rule_table_path = '%s/model/rule-table-new.gz' % self.config.experiment_dir 96 | counter = 0 97 | with gzip.open(old_rule_table_path) as old_rule_table_f: 98 | with gzip.open(new_rule_table_path, 'w') as new_rule_table_f: 99 | for line in old_rule_table_f: 100 | nl, mrl, scores, alignments, rule_counts = re.split(r'\ ?\|\|\|\ ?', 101 | line.strip()) 102 | scores = '%s %f' % (scores, counts[counter]) 103 | newline = ' ||| '.join([nl, mrl, scores, alignments, rule_counts]) 104 | newline = re.sub(r'\s+', ' ', newline) 105 | print >>new_rule_table_f, newline 106 | counter += 1 107 | 108 | old_config_path = '%s/model/moses.ini' % self.config.experiment_dir 109 | new_config_path = '%s/model/moses-new.ini' % self.config.experiment_dir 110 | with open(old_config_path) as old_config_f: 111 | with open(new_config_path, 'w') as new_config_f: 112 | for line in old_config_f: 113 | if line[-14:-1] == 'rule-table.gz': 114 | line = line[:6] + '6' + line[7:] 115 | #line[6] = '6' 116 | print >>new_config_f, line, 117 | if line == '[weight-t]\n': 118 | print >>new_config_f, '0.20' 119 | 120 | os.rename(new_rule_table_path, old_rule_table_path) 121 | os.rename(new_config_path, old_config_path) 122 | 123 | def parse(self, sent, grammar, glue): 124 | chart = dict() 125 | 126 | for span in range(1, len(sent)+1): 127 | for start in range(len(sent)+1-span): 128 | chart[start,span] = list() 129 | for rule in grammar.values(): 130 | matches = self.match(sent, rule, start, span, chart) 131 | chart[start,span] += matches 132 | 133 | for i in range(1, len(sent)): 134 | if chart[0,i] and chart[i,len(sent)-i]: 135 | psets = [(c1, c2) for c1 in chart[0,i] for c2 in chart[i,len(sent)-i]] 136 | chart[0,len(sent)].append(Hypergraph(glue, psets)) 137 | 138 | if not chart[0,len(sent)]: 139 | #logging.debug('failed to parse') 140 | return None 141 | else: 142 | #logging.debug('parse OK!') 143 | return chart 144 | 145 | def match(self, sent, rule, start, span, chart): 146 | 147 | if rule.degree == 0: 148 | if span != len(rule.src): 149 | return [] 150 | if sent[start:start+span] != rule.src: 151 | return [] 152 | return [Hypergraph(rule, [])] 153 | 154 | elif rule.degree == 1: 155 | nt_start = start + rule.coindexing[0][0] 156 | nt_span = span - len(rule.src) + 1 157 | if nt_span <= 0: 158 | return [] 159 | if sent[start:nt_start] != rule.src[0:rule.coindexing[0][0]]: 160 | return [] 161 | if sent[nt_start+nt_span:start+span] != rule.src[rule.coindexing[0][0]+1:]: 162 | return [] 163 | 164 | pointer_sets = [i for i in chart[nt_start, nt_span] if i.label.symbol == 165 | rule.src[rule.coindexing[0][0]]] 166 | ## if not chart[nt_start, nt_span]: 167 | ## return [] 168 | if not pointer_sets: 169 | return [] 170 | return [Hypergraph(rule, [(i,) for i in pointer_sets])] 171 | 172 | elif rule.degree == 2: 173 | matches = [] 174 | before_dist = rule.coindexing[0][0] 175 | between_dist = rule.coindexing[1][0] - rule.coindexing[0][0] - 1 176 | before_2_dist = rule.coindexing[1][0] 177 | nt_total_span = span - len(rule.src) + 2 178 | if nt_total_span <= 0: 179 | return [] 180 | nt1_start = start + before_dist 181 | for nt1_span in range(1,nt_total_span): 182 | nt2_start = nt1_start + nt1_span + between_dist 183 | nt2_span = nt_total_span - nt1_span 184 | 185 | if sent[start:nt1_start] != rule.src[0:before_dist]: 186 | continue 187 | if sent[nt1_start+nt1_span:nt2_start] != rule.src[before_dist+1:before_2_dist]: 188 | continue 189 | if sent[nt2_start+nt2_span:start+span] != rule.src[before_2_dist+1:]: 190 | continue 191 | 192 | pointer_sets_1 = [i for i in chart[nt1_start,nt1_span] if i.label.symbol == 193 | rule.src[rule.coindexing[0][0]]] 194 | pointer_sets_2 = [i for i in chart[nt2_start,nt2_span] if i.label.symbol == 195 | rule.src[rule.coindexing[1][0]]] 196 | 197 | if not (pointer_sets_1 and pointer_sets_2): 198 | continue 199 | 200 | matches.append(Hypergraph(rule, list(itertools.product(pointer_sets_1, 201 | pointer_sets_2)))) 202 | #matches.append(rule.rule_id) 203 | 204 | return matches 205 | 206 | assert False 207 | 208 | def collect_all_counts(self, counts, chart): 209 | for cell in chart.values(): 210 | for node in cell: 211 | counts[node.label.rule_id] += 1 212 | 213 | def collect_successful_counts(self, counts, chart, sent): 214 | used = set() 215 | for cell in chart[0, len(sent)]: 216 | self.mark_used(used, cell) 217 | for cell in chart.values(): 218 | for node in cell: 219 | if node in used: 220 | counts[node.label.rule_id] += 1 221 | 222 | def mark_used(self, used, cell): 223 | for edge in cell.edges: 224 | for ccell in edge: 225 | if ccell not in used: 226 | self.mark_used(used, ccell) 227 | used.add(cell) 228 | -------------------------------------------------------------------------------- /src/extractor.py: -------------------------------------------------------------------------------- 1 | from nltk.stem.porter import PorterStemmer 2 | from nltk.stem.snowball import GermanStemmer 3 | import os 4 | import re 5 | import util 6 | import xml.etree.ElementTree as ET 7 | 8 | class IdStemmer: 9 | def stem(self, word): 10 | return word 11 | 12 | class Extractor: 13 | 14 | NP_WEIGHT = 50 15 | 16 | def __init__(self, config): 17 | self.config = config 18 | if config.stem: 19 | if config.lang == 'en': 20 | self.stemmer = PorterStemmer() 21 | elif config.lang == 'de': 22 | self.stemmer = GermanStemmer() 23 | else: 24 | self.stemmer = IdStemmer() 25 | 26 | def run(self): 27 | if self.config.corpus == 'geo': 28 | self.run_geo() 29 | elif self.config.corpus == 'robo': 30 | self.run_robo() 31 | elif self.config.corpus == 'atis': 32 | self.run_atis() 33 | else: 34 | assert False 35 | 36 | def run_atis(self): 37 | 38 | train_nl = open('%s/train.nl' % self.config.experiment_dir, 'w') 39 | train_nl_lm = open('%s/train.nl.lm' % self.config.experiment_dir, 'w') 40 | train_nl_np = open('%s/train.np.nl' % self.config.experiment_dir, 'w') 41 | train_mrl = open('%s/train.mrl' % self.config.experiment_dir, 'w') 42 | train_mrl_lm = open('%s/train.mrl.lm' % self.config.experiment_dir, 'w') 43 | train_mrl_np = open('%s/train.np.mrl' % self.config.experiment_dir, 'w') 44 | train_fun = open('%s/train.fun' % self.config.experiment_dir, 'w') 45 | tune_nl = open('%s/tune.nl' % self.config.experiment_dir, 'w') 46 | tune_mrl = open('%s/tune.mrl' % self.config.experiment_dir, 'w') 47 | test_nl = open('%s/test.nl' % self.config.experiment_dir, 'w') 48 | test_mrl = open('%s/test.mrl' % self.config.experiment_dir, 'w') 49 | test_fun = open('%s/test.fun' % self.config.experiment_dir, 'w') 50 | 51 | if self.config.run == 'debug': 52 | with open('%s/atis-train.sem' % self.config.data_dir) as data_file: 53 | counter = 0 54 | for line in data_file: 55 | nl, slot = line.split('<=>', 1) 56 | nl = self.preprocess_nl(nl) 57 | slot = self.replace_specials(slot) 58 | fun = self.slot_to_fun(slot) 59 | mrl = util.fun_to_mrl(fun, True) 60 | if counter % 4 in (0,1): 61 | print >>train_nl, nl 62 | print >>train_mrl, mrl 63 | print >>train_fun, fun 64 | print >>train_nl_np, nl 65 | print >>train_mrl_np, mrl 66 | print >>train_nl_lm, '', nl, '' 67 | print >>train_mrl_lm, '', mrl, '' 68 | elif counter % 4 == 2: 69 | print >>tune_nl, nl 70 | print >>tune_mrl, mrl 71 | else: 72 | print >>test_nl, nl 73 | print >>test_mrl, mrl 74 | print >>test_fun, fun 75 | counter += 1 76 | 77 | else: 78 | train_path = '%s/atis-train.sem' % self.config.data_dir 79 | if self.config.run == 'dev': 80 | tune_path = train_path 81 | test_path = '%s/atis-dev.sem' % self.config.data_dir 82 | elif self.config.run == 'test': 83 | tune_path = '%s/atis-dev.sem' % self.config.data_dir 84 | test_path = '%s/atis-test.sem' % self.config.data_dir 85 | 86 | with open(train_path) as train_file: 87 | for line in train_file: 88 | nl, slot = line.split('<=>', 1) 89 | nl = self.preprocess_nl(nl) 90 | slot = self.replace_specials(slot) 91 | fun = self.slot_to_fun(slot) 92 | mrl = util.fun_to_mrl(fun, True) 93 | print >>train_nl, nl 94 | print >>train_mrl, mrl 95 | print >>train_fun, fun 96 | print >>train_nl_np, nl 97 | print >>train_mrl_np, mrl 98 | print >>train_nl_lm, '', nl, '' 99 | print >>train_mrl_lm, '', mrl, '' 100 | 101 | with open(tune_path) as tune_file: 102 | for line in tune_file: 103 | nl, slot = line.split('<=>', 1) 104 | nl = self.preprocess_nl(nl) 105 | slot = self.replace_specials(slot) 106 | fun = self.slot_to_fun(slot) 107 | mrl = util.fun_to_mrl(fun, True) 108 | print >>tune_nl, nl 109 | print >>tune_mrl, mrl 110 | 111 | with open(test_path) as test_file: 112 | for line in test_file: 113 | nl, slot = line.split('<=>', 1) 114 | nl = self.preprocess_nl(nl) 115 | slot = self.replace_specials(slot) 116 | fun = self.slot_to_fun(slot) 117 | mrl = util.fun_to_mrl(fun, True) 118 | print >>test_nl, nl 119 | print >>test_mrl, mrl 120 | print >>test_fun, fun 121 | 122 | for np_name in os.listdir('%s/db' % self.config.data_dir): 123 | np_path = '%s/db/%s' % (self.config.data_dir, np_name) 124 | with open(np_path) as np_file: 125 | for line in np_file: 126 | names = re.findall(r'"([^"]+)"', line) 127 | for name in names: 128 | nl = name 129 | mrl = "%s" % self.replace_specials(name) 130 | mrl = mrl.replace(' ', '_') 131 | mrl = mrl + '@s' 132 | print >>train_nl_np, nl 133 | print >>train_mrl_np, mrl 134 | print >>train_nl_lm, nl 135 | print >>train_mrl_lm, mrl 136 | 137 | train_nl.close() 138 | train_nl_lm.close() 139 | train_mrl.close() 140 | train_mrl_lm.close() 141 | train_fun.close() 142 | test_nl.close() 143 | test_mrl.close() 144 | test_fun.close() 145 | tune_nl.close() 146 | tune_mrl.close() 147 | 148 | def run_robo(self): 149 | 150 | train_ids, tune_ids, test_ids = self.get_folds() 151 | tune_ids = test_ids 152 | 153 | train_nl = open('%s/train.nl' % self.config.experiment_dir, 'w') 154 | train_nl_lm = open('%s/train.nl.lm' % self.config.experiment_dir, 'w') 155 | train_nl_np = open('%s/train.np.nl' % self.config.experiment_dir, 'w') 156 | train_mrl = open('%s/train.mrl' % self.config.experiment_dir, 'w') 157 | train_mrl_lm = open('%s/train.mrl.lm' % self.config.experiment_dir, 'w') 158 | train_mrl_np = open('%s/train.np.mrl' % self.config.experiment_dir, 'w') 159 | train_fun = open('%s/train.fun' % self.config.experiment_dir, 'w') 160 | tune_nl = open('%s/tune.nl' % self.config.experiment_dir, 'w') 161 | tune_mrl = open('%s/tune.mrl' % self.config.experiment_dir, 'w') 162 | test_nl = open('%s/test.nl' % self.config.experiment_dir, 'w') 163 | test_mrl = open('%s/test.mrl' % self.config.experiment_dir, 'w') 164 | test_fun = open('%s/test.fun' % self.config.experiment_dir, 'w') 165 | 166 | corpus = ET.parse('%s/corpus.xml' % self.config.data_dir) 167 | corpus_root = corpus.getroot() 168 | 169 | for node in corpus_root.findall('example'): 170 | nl = node.find("nl[@lang='%s']" % self.config.lang).text 171 | nl = self.preprocess_nl(nl) 172 | clang = node.find("mrl[@lang='robocup-clang']").text 173 | clang = self.replace_specials(clang) 174 | fun = self.clang_to_fun(clang) 175 | #print fun 176 | mrl = util.fun_to_mrl(fun) 177 | eid = int(node.attrib['id']) 178 | 179 | if eid in tune_ids: 180 | print >>tune_nl, nl 181 | print >>tune_mrl, mrl 182 | elif eid in train_ids: 183 | print >>train_nl, nl 184 | print >>train_mrl, mrl 185 | print >>train_fun, fun 186 | print >>train_nl_np, nl 187 | print >>train_mrl_np, mrl 188 | print >>train_nl_lm, '', nl, '' 189 | print >>train_mrl_lm, '', mrl, '' 190 | if eid in test_ids: 191 | #elif eid in test_ids: 192 | print >>test_nl, nl 193 | print >>test_mrl, mrl 194 | print >>test_fun, fun 195 | 196 | nps_file = open('%s/names' % self.config.data_dir) 197 | while True: 198 | line = nps_file.readline() 199 | if not line: 200 | break 201 | nl = nps_file.readline().strip()[3:] 202 | nl = self.preprocess_nl(nl) 203 | nps_file.readline() 204 | nps_file.readline() 205 | while True: 206 | line = nps_file.readline().strip() 207 | if line == '': 208 | break 209 | m = re.match('^\*n:(Num|Unum|Ident) -> \(\{ (\S+) \}\)$', line) 210 | mrl = m.group(2) + '@0' 211 | for i in range(self.NP_WEIGHT): 212 | print >>train_nl_np, nl 213 | print >>train_mrl_np, mrl 214 | print >>train_nl_lm, nl 215 | print >>train_mrl_lm, mrl 216 | 217 | train_nl.close() 218 | train_nl_lm.close() 219 | train_mrl.close() 220 | train_mrl_lm.close() 221 | train_fun.close() 222 | test_nl.close() 223 | test_mrl.close() 224 | test_fun.close() 225 | tune_nl.close() 226 | tune_mrl.close() 227 | 228 | def run_geo(self): 229 | train_ids, tune_ids, test_ids = self.get_folds() 230 | 231 | train_nl = open('%s/train.nl' % self.config.experiment_dir, 'w') 232 | train_nl_lm = open('%s/train.nl.lm' % self.config.experiment_dir, 'w') 233 | train_nl_np = open('%s/train.np.nl' % self.config.experiment_dir, 'w') 234 | train_mrl = open('%s/train.mrl' % self.config.experiment_dir, 'w') 235 | train_mrl_lm = open('%s/train.mrl.lm' % self.config.experiment_dir, 'w') 236 | train_mrl_np = open('%s/train.np.mrl' % self.config.experiment_dir, 'w') 237 | train_fun = open('%s/train.fun' % self.config.experiment_dir, 'w') 238 | unlabeled_nl = open('%s/unlabeled.nl' % self.config.experiment_dir, 'w') 239 | tune_nl = open('%s/tune.nl' % self.config.experiment_dir, 'w') 240 | tune_mrl = open('%s/tune.mrl' % self.config.experiment_dir, 'w') 241 | test_nl = open('%s/test.nl' % self.config.experiment_dir, 'w') 242 | test_mrl = open('%s/test.mrl' % self.config.experiment_dir, 'w') 243 | test_fun = open('%s/test.fun' % self.config.experiment_dir, 'w') 244 | 245 | corpus = ET.parse('%s/corpus-true.xml' % self.config.data_dir) 246 | corpus_root = corpus.getroot() 247 | 248 | counter = 0 249 | #stop_labeling = False 250 | for node in corpus_root.findall('example'): 251 | nl = node.find("nl[@lang='%s']" % self.config.lang).text 252 | nl = self.preprocess_nl(nl) 253 | fun = node.find("mrl[@lang='geo-funql']").text 254 | fun = self.preprocess_fun(fun) 255 | #fun = self.replace_specials(fun) 256 | mrl = util.fun_to_mrl(fun) 257 | eid = int(node.attrib['id']) 258 | 259 | unlabel_this = (counter >= 10 * self.config.lfrac) 260 | counter += 1 261 | counter %= 10 262 | 263 | if eid in tune_ids: 264 | print >>tune_nl, nl 265 | print >>tune_mrl, mrl 266 | elif eid in train_ids and not unlabel_this: 267 | print >>train_nl, nl 268 | print >>train_mrl, mrl 269 | print >>train_fun, fun 270 | print >>train_nl_np, nl 271 | print >>train_mrl_np, mrl 272 | print >>train_nl_lm, '', nl, '' 273 | print >>train_mrl_lm, '', mrl, '' 274 | elif eid in train_ids and unlabel_this: 275 | print >>unlabeled_nl, nl 276 | elif eid in test_ids: 277 | print >>test_nl, nl 278 | print >>test_mrl, mrl 279 | print >>test_fun, fun 280 | 281 | nplist = ET.parse('%s/nps-true.xml' % self.config.data_dir) 282 | nplist_root = nplist.getroot() 283 | for node in nplist_root.findall('example'): 284 | fun = node.find("mrl[@lang='geo-funql']").text 285 | fun = self.preprocess_fun(fun) 286 | #fun = self.replace_specials(fun) 287 | mrl = util.fun_to_mrl(fun) 288 | big_np = len(mrl.split()) > 1 289 | if (self.config.np_type == 'big' and not big_np) or \ 290 | (self.config.np_type == 'small' and big_np): 291 | continue 292 | for nl_node in node.findall("nl[@lang='%s']" % self.config.lang): 293 | nl = nl_node.text 294 | nl = self.preprocess_nl(nl) 295 | for i in range(self.NP_WEIGHT): 296 | print >>train_nl_np, nl 297 | print >>train_mrl_np, mrl 298 | print >>train_nl_lm, nl 299 | print >>train_mrl_lm, mrl 300 | 301 | train_nl.close() 302 | train_nl_lm.close() 303 | train_mrl.close() 304 | train_mrl_lm.close() 305 | train_fun.close() 306 | test_nl.close() 307 | test_mrl.close() 308 | test_fun.close() 309 | tune_nl.close() 310 | tune_mrl.close() 311 | 312 | def get_folds(self): 313 | 314 | if self.config.corpus == 'geo': 315 | if self.config.run in ('debug', 'dev'): 316 | train_ids_file = '%s/folds600/fold-%d-train.ids' \ 317 | % (self.config.data_dir, self.config.fold) 318 | tune_ids_file = None 319 | test_ids_file = '%s/folds600/fold-%d-test.ids' \ 320 | % (self.config.data_dir, self.config.fold) 321 | elif self.config.run == 'test': 322 | train_ids_file = '%s/split880/fold-0-train.ids' % self.config.data_dir 323 | tune_ids_file = '%s/split880/fold-0-tune.ids' % self.config.data_dir 324 | test_ids_file = '%s/split880/fold-0-test.ids' % self.config.data_dir 325 | 326 | elif self.config.corpus == 'robo': 327 | if self.config.run in ('debug', 'dev'): 328 | train_ids_file = '%s/split-300/run-0/fold-%d/train-N270' \ 329 | % (self.config.data_dir, self.config.fold) 330 | tune_ids_file = None 331 | test_ids_file = '%s/split-300/run-0/fold-%d/test' \ 332 | % (self.config.data_dir, self.config.fold) 333 | else: 334 | assert False 335 | 336 | train_ids = set() 337 | tune_ids = set() 338 | test_ids = set() 339 | with open(train_ids_file) as fold_file: 340 | for line in fold_file.readlines(): 341 | train_ids.add(int(line)) 342 | if tune_ids_file: 343 | with open(tune_ids_file) as fold_file: 344 | for line in fold_file.readlines(): 345 | tune_ids.add(int(line)) 346 | with open(test_ids_file) as fold_file: 347 | for line in fold_file.readlines(): 348 | test_ids.add(int(line)) 349 | 350 | return train_ids, tune_ids, test_ids 351 | 352 | def preprocess_nl(self, nl): 353 | nl = nl.strip().lower() 354 | if self.config.stem and self.config.lang == 'de': 355 | # German stemmer can't handle UTF-8 356 | nl = nl.encode('ascii', 'ignore') 357 | else: 358 | nl = nl.encode('utf-8', 'ignore') 359 | if nl[-2:] == ' .' or nl[-2:] == ' ?': 360 | nl = nl[:-2] 361 | if self.config.stem: 362 | nl = ' '.join([self.stemmer.stem(tok) for tok in nl.split()]) 363 | return nl 364 | 365 | def preprocess_fun(self, fun): 366 | return fun.strip() 367 | 368 | def replace_specials(self, mrl): 369 | mrl = mrl.replace('.', 'xxd') 370 | mrl = mrl.replace("'", 'xxq') 371 | mrl = mrl.replace('/', 'xxs') 372 | #mrl = re.sub(r"(' *[^'()]*)\'([^'()]* *')", r'\1_q_\2', mrl) 373 | #mrl = re.sub(r"(' *[^'()]*)\.([^'()]* *')", r'\1_dot_\2', mrl) 374 | #mrl = re.sub(r"(' *[^'()]*)\/([^'()]* *')", r'\1_slash_\2', mrl) 375 | return mrl 376 | 377 | def clang_to_fun(self, clang): 378 | clang = clang.strip() 379 | clang = re.sub(r'\s+', ' ', clang) 380 | clang = re.sub(r'\{([\d|X]+( [\d|X]+)*)\}', r'(set \1)', clang) 381 | clang = re.sub(r'\(([\w.-]+) ?', r'\1(', clang) 382 | clang = self.strip_bare_parens(clang) 383 | clang = clang.replace('()', '') 384 | clang = clang.replace(' ', ',') 385 | clang = clang.replace('"', '') 386 | 387 | clang = re.sub(r'definerule\([^,]+,[^,]+,', r'definerule(', clang) 388 | 389 | return clang 390 | 391 | def strip_bare_parens(self, clang): 392 | try: 393 | start = clang.index(' (')+1 394 | except ValueError: 395 | return clang 396 | 397 | end = start+1 398 | pcounter = 0 399 | while pcounter >= 0: 400 | c = clang[end:end+1] 401 | if c == '(': 402 | pcounter += 1 403 | elif c == ')': 404 | pcounter -= 1 405 | end += 1 406 | end -= 1 407 | 408 | r = clang[:start] + clang[start+1:end] + clang[end+1:] 409 | return r 410 | 411 | def slot_to_fun(self, slot): 412 | slot = slot.strip() 413 | slot = slot.replace('value', '"value"') 414 | slot = slot.replace('="', "('") 415 | slot = slot.replace('",', "'),") 416 | slot = slot.replace('")', "'))") 417 | slot = slot.replace("'value'", 'value') 418 | return slot 419 | -------------------------------------------------------------------------------- /data/geo/geoquery.train.en.txt: -------------------------------------------------------------------------------- 1 | name all the lakes of us 2 | what is the highest point in florida 3 | what are the high points of states surrounding mississippi 4 | what state has the shortest river 5 | what is the tallest mountain in the united states 6 | what is the capital of maine 7 | what are the populations of states through which the mississippi river runs 8 | name all the lakes of us 9 | which states border states through which the mississippi traverses 10 | what is the highest mountain in alaska 11 | what is the population of illinois 12 | name all the rivers in colorado 13 | in which state does the highest point in usa exist 14 | which state is the city denver located in 15 | what is the lowest point in texas 16 | how many states have a city called rochester 17 | which capitals are in the states that border texas 18 | how many people live in austin 19 | what states have rivers named colorado 20 | what is the size of texas 21 | what is the shortest river in the usa 22 | what are the major cities of the us 23 | which state border kentucky 24 | what is the population of oregon 25 | what states have a city named austin 26 | what is the highest elevation in south carolina 27 | how many people live in austin texas 28 | what are the rivers in the state of texas 29 | what is the lowest point of colorado 30 | what is the population of atlanta 31 | what rivers are in utah 32 | what river runs through the most states 33 | what is the population of sacramento 34 | could you tell me what is the highest point in the state of oregon 35 | which states does the mississippi river run through 36 | what are the major cities in the smallest state in the us 37 | how high is guadalupe peak 38 | what river runs through illinois 39 | how long is the mississippi river 40 | how high is the highest point in the largest state 41 | what is the area of south carolina 42 | what are the states through which the longest river runs 43 | where is new orleans 44 | in what state is mount mckinley 45 | what state has highest elevation 46 | what is the size of california 47 | what is the smallest state that borders texas 48 | how many citizens in alabama 49 | in which state is rochester 50 | how many states in the us does the shortest river run through 51 | what is the biggest state in continental us 52 | what is the area of the largest state 53 | where is mount whitney 54 | how many states does iowa border 55 | which states does the longest river cross 56 | what river flows through kansas 57 | what is the population of austin texas 58 | what is the capital of vermont 59 | which states border colorado 60 | how long is the mississippi 61 | what state has the largest population density 62 | what states border georgia 63 | what is the capital of pennsylvania 64 | what are the biggest rivers in texas 65 | what is the longest river in the united states 66 | what is the capital of utah 67 | what state has the smallest population density 68 | which capitals are not major cities 69 | what is the biggest city in nebraska 70 | what is the population of texas 71 | what is the shortest river in the united states 72 | what is the population of rhode island 73 | what is the state with the lowest point 74 | what is the longest river in new york 75 | what is the longest river that runs through a state that borders tennessee 76 | how many major cities are in arizona 77 | what are the neighboring states for michigan 78 | what state that borders texas is the largest 79 | what is the shortest river 80 | how many states border the state that borders the most states 81 | which state is the largest city in montana in 82 | what is the population of washington dc 83 | what is the most populous city in texas 84 | what is the capital of hawaii 85 | what is capital of iowa 86 | where is san diego 87 | what are the major cities in delaware 88 | what is the lowest point in louisiana 89 | which state has the highest peak in the country 90 | what texas city has the largest population 91 | what capital is the largest in the us 92 | what is the population of new york 93 | what is the population of the capital of the smallest state 94 | what is the area of alaska 95 | what is the population of california 96 | which state has the longest river 97 | what is the capital of texas 98 | give me the cities which are in texas 99 | what states border kentucky 100 | how high is the highest point of florida 101 | what are the major cities in north carolina 102 | what is the highest point in the state with capital des moines 103 | what is the lowest point in california 104 | what is the biggest city in wyoming 105 | what is the largest state bordering texas 106 | what is the smallest city in hawaii 107 | what is the area of the states 108 | what is the area of idaho 109 | what state has the most rivers running through it 110 | what is the population of springfield missouri 111 | what is the most populated state bordering oklahoma 112 | what is the number of neighboring states for kentucky 113 | what is the average population per square km in pennsylvania 114 | what state has the highest population density 115 | what is the tallest mountain in america 116 | what is the highest point of the state with the largest area 117 | what are the states 118 | how many rivers in washington 119 | what are the populations of states through which the mississippi river runs 120 | what is the biggest river in illinois 121 | what is the capital of michigan 122 | what is the total population of the states that border texas 123 | what states border rhode island 124 | what is the biggest city in oregon 125 | what is the lowest point in wisconsin 126 | what are the rivers in the state of indiana 127 | what is the population of austin 128 | what is the smallest city in arkansas 129 | give me the longest river that passes through the us 130 | how long is the missouri river 131 | which state has the largest city 132 | what is the lowest elevation in pennsylvania 133 | what is the longest river in the state with the highest point 134 | what states does the colorado river run through 135 | what are the states that the potomac runs through 136 | what is the biggest city in the usa 137 | what state has no rivers 138 | what is the highest point in rhode island 139 | name the states which have no surrounding states 140 | what is the population of atlanta ga 141 | how many square kilometers in the us 142 | what is the population of idaho 143 | what is the adjacent state of california 144 | what is the smallest state through which the longest river runs 145 | what are the names of the major cities in illinois 146 | how many states does the colorado river run through 147 | how many states does the colorado river flow through 148 | what are the major cities in kansas 149 | which states border texas 150 | how many people live in new york 151 | what are the largest cities in the states that border the largest state 152 | which states have points that are higher than the highest point in texas 153 | what is the river that cross over ohio 154 | what is the largest city in michigan 155 | how many rivers are in the state with the highest point 156 | what cities are located in pennsylvania 157 | what is the state with the lowest population 158 | what is the highest point in each state whose lowest point is sea level 159 | give me the cities in usa 160 | how many states does the missouri river run through 161 | what state has the city with the largest population 162 | which is the shortest river 163 | how many states border alaska 164 | what is the population of dallas 165 | where is san jose 166 | what states border states that border colorado 167 | what rivers flow through the state with the largest population 168 | whats the largest city 169 | what is the capital of the alabama state 170 | what states border arkansas 171 | what is the population of denver 172 | what is the longest river in america 173 | where is massachusetts 174 | what state has the smallest area 175 | what major rivers run through illinois 176 | how many cities does the usa have 177 | how many people live in california 178 | what are the major rivers in the us 179 | how many states does the mississippi river run through 180 | what is the area of texas 181 | what is the length of the river that traverses the most states 182 | what is the length of the longest river in the usa 183 | can you tell me the capital of texas 184 | what is the largest city in minnesota by population 185 | what is the smallest state in the usa 186 | what states neighbor maine 187 | what states high point is higher than that of colorado 188 | what is the highest mountain in texas 189 | what are the major cities in texas 190 | what are the states that border the state with the greatest population 191 | what rivers run through colorado 192 | how many rivers are there in us 193 | how many rivers are in new york 194 | which rivers are in alaska 195 | what is the longest river flowing through new york 196 | what rivers run through west virginia 197 | what are the capitals of the states that border texas 198 | what is the area of california 199 | how many states have a city named springfield 200 | what is the biggest city in texas 201 | how many cities named austin are there in the usa 202 | what are the major cities in the largest state 203 | which states does the colorado river run through 204 | what is the largest city in wisconsin 205 | how big is alaska 206 | what state contains the highest point in the us 207 | how big is north dakota 208 | which rivers flow through alaska 209 | what is the highest point in the us 210 | what is the shortest river in texas 211 | what are the major cities in the states through which the major river in virginia runs 212 | what rivers are in oregon 213 | what is the lowest point in the united states 214 | how many states have cities or towns named springfield 215 | what is the population of south dakota 216 | what is the capital of the state with the highest point 217 | what state has the highest elevation 218 | what states are next to texas 219 | what is the longest river that passes the states that border the state that borders the most states 220 | which states border hawaii 221 | how many major cities are there in oregon 222 | what is the population of springfield south dakota 223 | how many rivers run through texas 224 | what state has the most major rivers running through it 225 | what are the lakes in states bordering texas 226 | people in boulder 227 | what rivers are in nevada 228 | where is fort wayne 229 | where is indianapolis 230 | what states border states that border states that border states that border texas 231 | population of boulder 232 | what are the major cities of the united states 233 | show major cities in colorado 234 | what state is columbus the capital of 235 | what is the area of all the states combined 236 | what is the average population per square km in the us 237 | what is the largest state that borders california 238 | what is the population of montana 239 | what are the populations of all the major cities in montana 240 | which rivers run through the state with the lowest elevation in the usa 241 | what rivers flow through the largest state 242 | what is the area of maine 243 | what are major rivers in texas 244 | what is the population density of the state with the smallest population 245 | what is the highest point in wyoming 246 | what states border delaware 247 | which state has the most rivers running through it 248 | what is largest capital 249 | what is the state with the largest population density 250 | what states have towns named springfield 251 | what is the smallest city in the largest state 252 | what mountains are in alaska 253 | what rivers flow through colorado 254 | which state has the least population density 255 | how many inhabitants does montgomery have 256 | what city has the largest population 257 | what is the largest state 258 | of the states washed by the mississippi river which has the lowest point 259 | what is the area of the state with the smallest population density 260 | which state contains most rivers 261 | what is the longest river in mississippi 262 | what is the capital of the largest state 263 | what state has the largest population 264 | name the rivers in arkansas 265 | what are the populations of states through which the mississippi river runs 266 | what is the population of arizona 267 | what state borders the state with the smallest population 268 | what is the total area of the usa 269 | what is the population of seattle washington 270 | what is the size of the largest state in the usa 271 | what state has the capital salem 272 | which is the lowest point of the states that the mississippi runs through 273 | how many major cities are in texas 274 | what is the capital city of the largest state in the us 275 | what are the major cities in rhode island 276 | what state has the most people 277 | what is the largest city of kansas 278 | what is the area of the state with the capital albany 279 | what is the longest river that flows through colorado 280 | how many rivers does alaska have 281 | how big is massachusetts 282 | how large is the largest city in alaska 283 | how many cities are there in usa 284 | what states capital is dover 285 | what states border new hampshire 286 | what is the shortest river in nebraska 287 | how many states border hawaii 288 | what state is dallas in 289 | what city has the least population 290 | how many people stay in utah 291 | what state has the sparsest population density 292 | what is the largest state that borders the state with the lowest point in the usa 293 | what is the largest city in texas 294 | what is the largest state in the us 295 | which state has the most people 296 | what rivers are in new mexico 297 | what is the area of maryland in square kilometers 298 | how many states are there in united states 299 | how many major cities are in states bordering nebraska 300 | what is the population of the largest state 301 | what is the size of florida 302 | how many rivers are in missouri 303 | how many rivers are there in texas 304 | what is the highest point in the state with the capital des moines 305 | what is the population of seattle 306 | what is the highest point in colorado 307 | which states border arizona 308 | what rivers run through the state with the lowest point in the usa 309 | what is the population of minnesota 310 | what state has the city with the most population 311 | which states have a major city named austin 312 | which states have points higher than the highest point in colorado 313 | what is the highest point in the state with the smallest population 314 | where is new hampshire 315 | which state borders florida 316 | how many rivers in texas are longer than the red 317 | how many rivers do not traverse the state with the capital albany 318 | what are the populations of states through which the mississippi river runs 319 | through which states does the mississippi run 320 | what states are next to the mississippi 321 | give me the cities in virginia 322 | what are the capital cities of the states which border texas 323 | what state that borders texas has the highest population 324 | what state is the state with the most rivers 325 | what state has the least population density 326 | what are the major cities in ohio 327 | which states does the missouri river run through 328 | what is the biggest city in arizona 329 | how many people live in hawaii 330 | how many people live in the smallest state bordering wyoming 331 | what is the name of the state with the lowest point 332 | what rivers flow through missouri 333 | what is the elevation of death valley 334 | what river flows through texas 335 | how high are the highest points of all the states 336 | what is the capital of new hampshire 337 | how long is the rio grande river 338 | which state borders most states 339 | how many states does missouri border 340 | where is austin 341 | how high is the highest point of delaware 342 | where is the highest point in montana 343 | what states border states that border the state with the largest population 344 | what is the height of the highest mountain in texas 345 | what state has the city flint 346 | what is the state with the largest density in usa 347 | what cities in texas have the highest number of citizens 348 | what states border missouri 349 | give me the largest state 350 | which state has the sparsest population density 351 | which states border alabama 352 | what rivers flow through states that alabama borders 353 | what are the major cities in wyoming 354 | what are the highest points of states surrounding mississippi 355 | through which states does the mississippi flow 356 | where is scotts valley 357 | what are the major lakes in united states 358 | what is the largest city in missouri 359 | what states border alaska 360 | what state has the largest city 361 | what rivers run through maine 362 | give me the lakes in california 363 | what is the combined population of all 50 states 364 | how high is the highest point of louisiana 365 | what is the longest river in pennsylvania 366 | what is the capital of maryland 367 | what state is the biggest 368 | which states border iowa 369 | which states border alaska 370 | what is the largest state in usa 371 | what are the major cities in california 372 | what is the largest state traversed by the mississippi river 373 | which rivers run through states bordering new mexico 374 | what is the lowest point in the state of texas 375 | what is the smallest state bordering ohio 376 | how many states are next to major rivers 377 | what is the lowest point of the us 378 | which state has the greatest density 379 | how many states border the largest state 380 | what is the longest river that does not run through texas 381 | give me all the states of usa 382 | what is the density of texas 383 | what is the smallest city of the smallest state in the us 384 | what is the highest point in kansas 385 | what is the population in boston 386 | how many people are in the state of nevada 387 | what is the population density of texas 388 | how many people live in washington dc 389 | give me the cities in texas 390 | how long is the shortest river in the usa 391 | how many states have major rivers 392 | what is the population density of the smallest state 393 | which states border michigan 394 | what cities in texas have the highest populations 395 | what rivers run through the states that border the state with the capital atlanta 396 | what is the highest point in the country 397 | how many people live in kalamazoo 398 | how many major cities are in florida 399 | what state has the greatest population density 400 | how many rivers are found in colorado 401 | what is the lowest point of the state with the largest area 402 | what states border texas 403 | how many states border at least one other state 404 | which states border no other states 405 | what rivers run through austin texas 406 | how many people live in new hampshire 407 | what is the capital of indiana 408 | what states border the states with the most cities 409 | what is the area of the smallest state 410 | which states border new york 411 | what is the population of maine 412 | what is the biggest city in the smallest state 413 | what is the elevation of the highest point in the usa 414 | what state borders the least states excluding alaska and excluding hawaii 415 | what is the highest point in new mexico 416 | what is the biggest state 417 | how many people live in spokane washington 418 | what states does the shortest river run through 419 | how long is rio grande 420 | how many people live in texas 421 | where is the lowest spot in iowa 422 | what are the populations of the states through which the mississippi river runs 423 | what is the lowest point in oregon 424 | what is the shortest river in alaska 425 | how many states border the mississippi river 426 | what is the most populated capital in the usa 427 | what is the highest point in ohio 428 | what states border wisconsin 429 | what states have a capital that is the highest point in the state 430 | how many states border colorado and border new mexico 431 | what are the major cities in missouri 432 | what are the major cities of texas 433 | how many rivers are called color 434 | how high is the highest point in montana 435 | how many states have cities named austin 436 | which states does the missouri river pass through 437 | what is the biggest city in the us 438 | how big is new mexico 439 | how many people live in south dakota 440 | what state is pittsburgh in 441 | what rivers run through arizona 442 | how many major rivers cross ohio 443 | how many people in boulder 444 | how many rivers are there in idaho 445 | sacramento is the capital of which state 446 | how many cities are there in us 447 | how many citizens live in california 448 | what state has the largest urban population 449 | what states border the mississippi river 450 | what can you tell me about the population of missouri 451 | what rivers do not run through tennessee 452 | what is the largest city in a state that borders texas 453 | name the longest river in us 454 | how many states does the mississippi run through 455 | what is the largest of the states that the rio grande runs through 456 | what is the size of the capital of texas 457 | what states have rivers running through them 458 | what states border hawaii 459 | how many citizens in boulder 460 | what states border states that border states that border florida 461 | which states border the longest river in the usa 462 | what is the population density of wyoming 463 | how many people are there in iowa 464 | what is the highest point in the state with the most rivers 465 | number of citizens in boulder 466 | what are the rivers of montana 467 | how many states border on the state whose capital is boston 468 | how many people live in washington 469 | what is the largest state capital in population 470 | what is the largest city in states that border california 471 | what is the most populous city in wyoming 472 | what is the population density in the state with capital austin 473 | what is the population of portland maine 474 | which state is kalamazoo in 475 | what is the population of the largest state that borders texas 476 | what states border ohio 477 | what river is the longest one in the united states 478 | what is the population density of the state with the smallest area 479 | what is the largest capital 480 | what state has the smallest capital 481 | how many big cities are in pennsylvania 482 | which states lie on the largest river in the united states 483 | where is houston 484 | what rivers flow through states that border the state with the largest population 485 | what is the highest point in the smallest state 486 | what river runs through virginia 487 | what state borders michigan 488 | name the major lakes in michigan 489 | give me the cities in virginia 490 | which river runs through the most states 491 | how many people live in new mexico 492 | what is the largest city in alabama 493 | how many people live in san francisco 494 | what is the population of the capital of the largest state 495 | what is the longest river in the us 496 | what is the largest state that borders the state with the highest population 497 | show me all the major lakes in the us 498 | where is springfield 499 | what state is des moines located in 500 | how many cities does texas have 501 | what state is boston in 502 | which rivers run through the state with the largest city in the us 503 | states bordering iowa 504 | what states have no bordering state 505 | where is the lowest point in the us 506 | what are the major cities in oklahoma 507 | which state has the smallest area that borders texas 508 | what is the capital of the state with the highest elevation 509 | what states does the mississippi run through 510 | where is mount whitney located 511 | which state has the largest density 512 | what is the smallest city in washington 513 | what are the major cities in new mexico 514 | how many people live in the capital of georgia 515 | what state which the mississippi runs through has the largest population 516 | state the state with the largest area 517 | how many people live in riverside 518 | what is the area of seattle 519 | what capital has the largest population 520 | what is the capital of the state that borders the most states 521 | how many rivers run through the states bordering colorado 522 | what are the cities in california 523 | what state is austin the capital of 524 | how many people live in kansas 525 | what state borders the least states 526 | which states border south dakota 527 | name the rivers in arkansas 528 | how long is the mississippi river in miles 529 | what is the shortest river in the us 530 | what is the biggest city in usa 531 | what is the capital of washington 532 | how many cities are in montana 533 | what is the capital of the state texas 534 | what is the height of mount mckinley 535 | what is the city with the smallest population 536 | what is the biggest state in the usa 537 | how many major cities are in states bordering utah 538 | how many states border tennessee 539 | what states does the ohio river go through 540 | what is the longest river in the smallest state in the usa 541 | what is the smallest state by area 542 | what is the population of the capital of the largest state through which the mississippi runs 543 | what is the population of boston massachusetts 544 | what cities in california 545 | how big is the city of new york 546 | what state has the most cities 547 | what is the longest river in the us 548 | name the 50 capitals in the usa 549 | what is the capital of the state that borders the state that borders texas 550 | which state has the red river 551 | how many people live in chicago 552 | what is the smallest city in alaska 553 | list the states 554 | what is the biggest city in georgia 555 | what states border states which the mississippi runs through 556 | how many cities are there in the us 557 | how big is texas 558 | what is the height of the highest point in the usa 559 | what are the populations of the states through which the mississippi runs 560 | what state has the smallest population 561 | how many states border texas 562 | which states do colorado river flow through 563 | what is the highest point in texas 564 | what is the longest river in california 565 | what is the length of the river that runs through the most number of states 566 | what is the most populous state in the us 567 | what is the capital of georgia 568 | what is the average population of the us by state 569 | what is the area of new mexico 570 | what is the longest river in texas 571 | how many major cities are there 572 | how many rivers are in the state with the largest population 573 | what is the major cities in montana 574 | what is the population of the major cities in wisconsin 575 | which states does not border texas 576 | what river traverses the most states 577 | what is the state with the lowest population density 578 | what states does the missouri river run through 579 | how many rivers are in colorado 580 | what is the shortest river in iowa 581 | what states border states that the mississippi runs through 582 | how many people are there in new york 583 | what is the city in texas with the largest population 584 | what is the highest elevation in new mexico 585 | what is the highest point in the united states 586 | what is the population of the state with the largest area 587 | where is baton rouge 588 | what states in the united states have a city of springfield 589 | how many cities are in louisiana 590 | how many states are in the united states 591 | what rivers run through louisiana 592 | how many people live in the state with the largest population density 593 | what is the state with the highest elevation in the united states 594 | what state borders most other states 595 | which states adjoin alabama 596 | what is the length of the colorado river in texas 597 | what state has the highest population 598 | what is the state that contains the highest point 599 | what is the population density of south dakota 600 | what states have cities named austin 601 | how many people live in montana 602 | -------------------------------------------------------------------------------- /data/geo/geoquery.train.sem: -------------------------------------------------------------------------------- 1 | (answer (lake (loc_2 (countryid usa:e)))) 2 | (answer (highest (place (loc_2 (stateid florida:e))))) 3 | (answer (high_point_1 (state (next_to_2 (stateid mississippi:e))))) 4 | (answer (state (loc_1 (shortest (river all:e))))) 5 | (answer (highest (mountain (loc_2 (countryid usa:e))))) 6 | (answer (capital (loc_2 (stateid maine:e)))) 7 | (answer (population_1 (state (traverse_1 (riverid mississippi:e))))) 8 | (answer (lake (loc_2 (countryid usa:e)))) 9 | (answer (state (next_to_2 (state (traverse_1 (riverid mississippi:e)))))) 10 | (answer (highest (mountain (loc_2 (stateid alaska:e))))) 11 | (answer (population_1 (stateid illinois:e))) 12 | (answer (river (loc_2 (stateid colorado:e)))) 13 | (answer (state (loc_1 (highest (place (loc_2 (countryid usa:e))))))) 14 | (answer (state (loc_1 (cityid denver:e _:e)))) 15 | (answer (lowest (place (loc_2 (stateid texas:e))))) 16 | (answer (count (state (loc_1 (city (cityid rochester:e _:e)))))) 17 | (answer (capital (loc_2 (state (next_to_2 (stateid texas:e)))))) 18 | (answer (population_1 (cityid austin:e _:e))) 19 | (answer (state (loc_1 (river (riverid colorado:e))))) 20 | (answer (size (stateid texas:e))) 21 | (answer (shortest (river (loc_2 (countryid usa:e))))) 22 | (answer (major (city (loc_2 (countryid usa:e))))) 23 | (answer (state (next_to_2 (stateid kentucky:e)))) 24 | (answer (population_1 (stateid oregon:e))) 25 | (answer (state (loc_1 (city (cityid austin:e _:e))))) 26 | (answer (highest (place (loc_2 (stateid south_carolina:e))))) 27 | (answer (population_1 (cityid austin:e tx:e))) 28 | (answer (river (loc_2 (stateid texas:e)))) 29 | (answer (lowest (place (loc_2 (stateid colorado:e))))) 30 | (answer (population_1 (cityid atlanta:e _:e))) 31 | (answer (river (loc_2 (stateid utah:e)))) 32 | (answer (most (river (traverse_2 (state all:e))))) 33 | (answer (population_1 (cityid sacramento:e _:e))) 34 | (answer (highest (place (loc_2 (stateid oregon:e))))) 35 | (answer (state (traverse_1 (riverid mississippi:e)))) 36 | (answer (major (city (loc_2 (smallest (state (loc_2 (countryid usa:e)))))))) 37 | (answer (elevation_1 (placeid guadalupe_peak:e))) 38 | (answer (river (traverse_2 (stateid illinois:e)))) 39 | (answer (len (riverid mississippi:e))) 40 | (answer (elevation_1 (highest (place (loc_2 (largest (state all:e))))))) 41 | (answer (area_1 (stateid south_carolina:e))) 42 | (answer (state (traverse_1 (longest (river all:e))))) 43 | (answer (loc_1 (cityid new_orleans:e _:e))) 44 | (answer (state (loc_1 (placeid mount_mckinley:e)))) 45 | (answer (state (loc_1 (highest (place all:e))))) 46 | (answer (size (stateid california:e))) 47 | (answer (smallest (state (next_to_2 (stateid texas:e))))) 48 | (answer (population_1 (stateid alabama:e))) 49 | (answer (state (loc_1 (cityid rochester:e _:e)))) 50 | (answer (count (intersection (state (loc_2 (countryid usa:e))) (traverse_1 (shortest (river all:e)))))) 51 | (answer (largest (state (loc_2 (countryid usa:e))))) 52 | (answer (area_1 (largest (state all:e)))) 53 | (answer (loc_1 (placeid mount_whitney:e))) 54 | (answer (count (state (next_to_1 (stateid iowa:e))))) 55 | (answer (state (traverse_1 (longest (river all:e))))) 56 | (answer (river (traverse_2 (stateid kansas:e)))) 57 | (answer (population_1 (cityid austin:e tx:e))) 58 | (answer (capital (loc_2 (stateid vermont:e)))) 59 | (answer (state (next_to_2 (stateid colorado:e)))) 60 | (answer (len (riverid mississippi:e))) 61 | (answer (largest_one (density_1 (state all:e)))) 62 | (answer (state (next_to_2 (stateid georgia:e)))) 63 | (answer (capital (loc_2 (stateid pennsylvania:e)))) 64 | (answer (longest (river (loc_2 (stateid texas:e))))) 65 | (answer (longest (river (loc_2 (countryid usa:e))))) 66 | (answer (capital (loc_2 (stateid utah:e)))) 67 | (answer (smallest_one (density_1 (state all:e)))) 68 | (answer (exclude (capital all:e) (major (city all:e)))) 69 | (answer (largest (city (loc_2 (stateid nebraska:e))))) 70 | (answer (population_1 (stateid texas:e))) 71 | (answer (shortest (river (loc_2 (countryid usa:e))))) 72 | (answer (population_1 (stateid rhode_island:e))) 73 | (answer (state (loc_1 (lowest (place all:e))))) 74 | (answer (longest (river (loc_2 (stateid new_york:e))))) 75 | (answer (longest (river (traverse_2 (state (next_to_2 (stateid tennessee:e))))))) 76 | (answer (count (major (city (loc_2 (stateid arizona:e)))))) 77 | (answer (state (next_to_2 (stateid michigan:e)))) 78 | (answer (largest (state (next_to_2 (stateid texas:e))))) 79 | (answer (shortest (river all:e))) 80 | (answer (count (state (next_to_2 (most (state (next_to_2 (state all:e)))))))) 81 | (answer (state (loc_1 (largest (city (loc_2 (stateid montana:e))))))) 82 | (answer (population_1 (cityid washington:e dc:e))) 83 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e)))))) 84 | (answer (capital (loc_2 (stateid hawaii:e)))) 85 | (answer (capital (loc_2 (stateid iowa:e)))) 86 | (answer (loc_1 (cityid san_diego:e _:e))) 87 | (answer (major (city (loc_2 (stateid delaware:e))))) 88 | (answer (lowest (place (loc_2 (stateid louisiana:e))))) 89 | (answer (state (loc_1 (highest (place all:e))))) 90 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e)))))) 91 | (answer (largest (capital (loc_2 (countryid usa:e))))) 92 | (answer (population_1 (stateid new_york:e))) 93 | (answer (population_1 (capital (loc_2 (smallest (state all:e)))))) 94 | (answer (area_1 (stateid alaska:e))) 95 | (answer (population_1 (stateid california:e))) 96 | (answer (state (loc_1 (longest (river all:e))))) 97 | (answer (capital (loc_2 (stateid texas:e)))) 98 | (answer (city (loc_2 (stateid texas:e)))) 99 | (answer (state (next_to_2 (stateid kentucky:e)))) 100 | (answer (elevation_1 (highest (place (loc_2 (stateid florida:e)))))) 101 | (answer (major (city (loc_2 (stateid north_carolina:e))))) 102 | (answer (highest (place (loc_2 (state (loc_1 (capital (cityid des_moines:e _:e)))))))) 103 | (answer (lowest (place (loc_2 (stateid california:e))))) 104 | (answer (largest (city (loc_2 (stateid wyoming:e))))) 105 | (answer (largest (state (next_to_2 (stateid texas:e))))) 106 | (answer (smallest (city (loc_2 (stateid hawaii:e))))) 107 | (answer (area_1 (state all:e))) 108 | (answer (area_1 (stateid idaho:e))) 109 | (answer (most (state (traverse_1 (river all:e))))) 110 | (answer (population_1 (cityid springfield:e mo:e))) 111 | (answer (largest_one (population_1 (state (next_to_2 (stateid oklahoma:e)))))) 112 | (answer (count (state (next_to_2 (stateid kentucky:e))))) 113 | (answer (density_1 (stateid pennsylvania:e))) 114 | (answer (largest_one (density_1 (state all:e)))) 115 | (answer (highest (mountain (loc_2 (countryid usa:e))))) 116 | (answer (highest (place (loc_2 (largest_one (area_1 (state all:e))))))) 117 | (answer (state all:e)) 118 | (answer (count (river (loc_2 (stateid washington:e))))) 119 | (answer (population_1 (state (traverse_1 (riverid mississippi:e))))) 120 | (answer (longest (river (loc_2 (stateid illinois:e))))) 121 | (answer (capital (loc_2 (stateid michigan:e)))) 122 | (answer (sum (population_1 (state (next_to_2 (stateid texas:e)))))) 123 | (answer (state (next_to_2 (stateid rhode_island:e)))) 124 | (answer (largest (city (loc_2 (stateid oregon:e))))) 125 | (answer (lowest (place (loc_2 (stateid wisconsin:e))))) 126 | (answer (river (loc_2 (stateid indiana:e)))) 127 | (answer (population_1 (cityid austin:e _:e))) 128 | (answer (smallest (city (loc_2 (stateid arkansas:e))))) 129 | (answer (longest (river (traverse_2 (countryid usa:e))))) 130 | (answer (len (riverid missouri:e))) 131 | (answer (state (loc_1 (largest (city all:e))))) 132 | (answer (lowest (place (loc_2 (stateid pennsylvania:e))))) 133 | (answer (longest (river (loc_2 (state (loc_1 (highest (place all:e)))))))) 134 | (answer (state (traverse_1 (riverid colorado:e)))) 135 | (answer (state (traverse_1 (riverid potomac:e)))) 136 | (answer (largest (city (loc_2 (countryid usa:e))))) 137 | (answer (exclude (state all:e) (loc_1 (river all:e)))) 138 | (answer (highest (place (loc_2 (stateid rhode_island:e))))) 139 | (answer (exclude (state all:e) (next_to_2 (state all:e)))) 140 | (answer (population_1 (cityid atlanta:e ga:e))) 141 | (answer (area_1 (countryid usa:e))) 142 | (answer (population_1 (stateid idaho:e))) 143 | (answer (state (next_to_2 (stateid california:e)))) 144 | (answer (smallest (state (traverse_1 (longest (river all:e)))))) 145 | (answer (major (city (loc_2 (stateid illinois:e))))) 146 | (answer (count (state (traverse_1 (riverid colorado:e))))) 147 | (answer (count (state (traverse_1 (riverid colorado:e))))) 148 | (answer (major (city (loc_2 (stateid kansas:e))))) 149 | (answer (state (next_to_2 (stateid texas:e)))) 150 | (answer (population_1 (stateid new_york:e))) 151 | (answer (largest (city (loc_2 (state (next_to_2 (largest (state all:e)))))))) 152 | (answer (state (loc_1 (place (higher_2 (highest (place (loc_2 (stateid texas:e))))))))) 153 | (answer (river (traverse_2 (stateid ohio:e)))) 154 | (answer (largest (city (loc_2 (stateid michigan:e))))) 155 | (answer (count (river (loc_2 (state (loc_1 (highest (place all:e)))))))) 156 | (answer (city (loc_2 (stateid pennsylvania:e)))) 157 | (answer (smallest_one (population_1 (state all:e)))) 158 | (answer (highest (place (loc_2 (state (loc_1 (lowest (place (elevation_2 0:e))))))))) 159 | (answer (city (loc_2 (countryid usa:e)))) 160 | (answer (count (state (traverse_1 (riverid missouri:e))))) 161 | (answer (state (loc_1 (largest_one (population_1 (city all:e)))))) 162 | (answer (shortest (river all:e))) 163 | (answer (count (state (next_to_2 (stateid alaska:e))))) 164 | (answer (population_1 (cityid dallas:e _:e))) 165 | (answer (loc_1 (cityid san_jose:e _:e))) 166 | (answer (state (next_to_2 (state (next_to_2 (stateid colorado:e)))))) 167 | (answer (river (traverse_2 (largest_one (population_1 (state all:e)))))) 168 | (answer (largest (city all:e))) 169 | (answer (capital (loc_2 (stateid alabama:e)))) 170 | (answer (state (next_to_2 (stateid arkansas:e)))) 171 | (answer (population_1 (cityid denver:e _:e))) 172 | (answer (longest (river (loc_2 (countryid usa:e))))) 173 | (answer (loc_1 (stateid massachusetts:e))) 174 | (answer (smallest_one (area_1 (state all:e)))) 175 | (answer (major (river (traverse_2 (stateid illinois:e))))) 176 | (answer (count (city (loc_2 (countryid usa:e))))) 177 | (answer (population_1 (stateid california:e))) 178 | (answer (major (river (loc_2 (countryid usa:e))))) 179 | (answer (count (state (traverse_1 (riverid mississippi:e))))) 180 | (answer (area_1 (stateid texas:e))) 181 | (answer (len (most (river (traverse_2 (state all:e)))))) 182 | (answer (len (longest (river (loc_2 (countryid usa:e)))))) 183 | (answer (capital (loc_2 (stateid texas:e)))) 184 | (answer (largest_one (population_1 (city (loc_2 (stateid minnesota:e)))))) 185 | (answer (smallest (state (loc_2 (countryid usa:e))))) 186 | (answer (state (next_to_2 (stateid maine:e)))) 187 | (answer (state (high_point_2 (higher_2 (high_point_1 (stateid colorado:e)))))) 188 | (answer (highest (mountain (loc_2 (stateid texas:e))))) 189 | (answer (major (city (loc_2 (stateid texas:e))))) 190 | (answer (state (next_to_2 (largest_one (population_1 (state all:e)))))) 191 | (answer (river (traverse_2 (stateid colorado:e)))) 192 | (answer (count (river (loc_2 (countryid usa:e))))) 193 | (answer (count (river (loc_2 (stateid new_york:e))))) 194 | (answer (river (loc_2 (stateid alaska:e)))) 195 | (answer (longest (river (traverse_2 (stateid new_york:e))))) 196 | (answer (river (traverse_2 (stateid west_virginia:e)))) 197 | (answer (capital (loc_2 (state (next_to_2 (stateid texas:e)))))) 198 | (answer (area_1 (stateid california:e))) 199 | (answer (count (state (loc_1 (city (cityid springfield:e _:e)))))) 200 | (answer (largest (city (loc_2 (stateid texas:e))))) 201 | (answer (count (intersection (city (cityid austin:e _:e)) (loc_2 (countryid usa:e))))) 202 | (answer (major (city (loc_2 (largest (state all:e)))))) 203 | (answer (state (traverse_1 (riverid colorado:e)))) 204 | (answer (largest (city (loc_2 (stateid wisconsin:e))))) 205 | (answer (size (stateid alaska:e))) 206 | (answer (state (loc_1 (highest (place (loc_2 (countryid usa:e))))))) 207 | (answer (size (stateid north_dakota:e))) 208 | (answer (river (traverse_2 (stateid alaska:e)))) 209 | (answer (highest (place (loc_2 (countryid usa:e))))) 210 | (answer (shortest (river (loc_2 (stateid texas:e))))) 211 | (answer (major (city (loc_2 (state (traverse_1 (major (river (loc_2 (stateid virginia:e)))))))))) 212 | (answer (river (loc_2 (stateid oregon:e)))) 213 | (answer (lowest (place (loc_2 (countryid usa:e))))) 214 | (answer (count (state (loc_1 (city (cityid springfield:e _:e)))))) 215 | (answer (population_1 (stateid south_dakota:e))) 216 | (answer (capital (loc_2 (state (loc_1 (highest (place all:e))))))) 217 | (answer (state (loc_1 (highest (place all:e))))) 218 | (answer (state (next_to_2 (stateid texas:e)))) 219 | (answer (longest (river (traverse_2 (state (next_to_2 (most (state (next_to_2 (state all:e)))))))))) 220 | (answer (state (next_to_2 (stateid hawaii:e)))) 221 | (answer (count (major (city (loc_2 (stateid oregon:e)))))) 222 | (answer (population_1 (cityid springfield:e sd:e))) 223 | (answer (count (river (traverse_2 (stateid texas:e))))) 224 | (answer (most (state (traverse_1 (major (river all:e)))))) 225 | (answer (lake (loc_2 (state (next_to_2 (stateid texas:e)))))) 226 | (answer (population_1 (cityid boulder:e _:e))) 227 | (answer (river (loc_2 (stateid nevada:e)))) 228 | (answer (loc_1 (cityid fort_wayne:e _:e))) 229 | (answer (loc_1 (cityid indianapolis:e _:e))) 230 | (answer (state (next_to_2 (state (next_to_2 (state (next_to_2 (state (next_to_2 (stateid texas:e)))))))))) 231 | (answer (population_1 (cityid boulder:e _:e))) 232 | (answer (major (city (loc_2 (countryid usa:e))))) 233 | (answer (major (city (loc_2 (stateid colorado:e))))) 234 | (answer (state (loc_1 (capital (cityid columbus:e _:e))))) 235 | (answer (sum (area_1 (state all:e)))) 236 | (answer (density_1 (countryid usa:e))) 237 | (answer (largest (state (next_to_2 (stateid california:e))))) 238 | (answer (population_1 (stateid montana:e))) 239 | (answer (population_1 (major (city (loc_2 (stateid montana:e)))))) 240 | (answer (river (traverse_2 (state (loc_1 (lowest (place (loc_2 (countryid usa:e))))))))) 241 | (answer (river (traverse_2 (largest (state all:e))))) 242 | (answer (area_1 (stateid maine:e))) 243 | (answer (major (river (loc_2 (stateid texas:e))))) 244 | (answer (density_1 (smallest_one (population_1 (state all:e))))) 245 | (answer (highest (place (loc_2 (stateid wyoming:e))))) 246 | (answer (state (next_to_2 (stateid delaware:e)))) 247 | (answer (most (state (traverse_1 (river all:e))))) 248 | (answer (largest (capital all:e))) 249 | (answer (largest_one (density_1 (state all:e)))) 250 | (answer (state (loc_1 (city (cityid springfield:e _:e))))) 251 | (answer (smallest (city (loc_2 (largest (state all:e)))))) 252 | (answer (mountain (loc_2 (stateid alaska:e)))) 253 | (answer (river (traverse_2 (stateid colorado:e)))) 254 | (answer (smallest_one (density_1 (state all:e)))) 255 | (answer (population_1 (cityid montgomery:e _:e))) 256 | (answer (largest_one (population_1 (city all:e)))) 257 | (answer (largest (state all:e))) 258 | (answer (state (loc_1 (lowest (place (loc_2 (state (traverse_1 (riverid mississippi:e))))))))) 259 | (answer (area_1 (smallest_one (density_1 (state all:e))))) 260 | (answer (most (state (loc_1 (river all:e))))) 261 | (answer (longest (river (loc_2 (stateid mississippi:e))))) 262 | (answer (capital (loc_2 (largest (state all:e))))) 263 | (answer (largest_one (population_1 (state all:e)))) 264 | (answer (river (loc_2 (stateid arkansas:e)))) 265 | (answer (population_1 (state (traverse_1 (riverid mississippi:e))))) 266 | (answer (population_1 (stateid arizona:e))) 267 | (answer (state (next_to_2 (smallest_one (population_1 (state all:e)))))) 268 | (answer (area_1 (countryid usa:e))) 269 | (answer (population_1 (cityid seattle:e wa:e))) 270 | (answer (size (largest (state (loc_2 (countryid usa:e)))))) 271 | (answer (state (loc_1 (capital (cityid salem:e _:e))))) 272 | (answer (lowest (place (loc_2 (state (traverse_1 (riverid mississippi:e))))))) 273 | (answer (count (major (city (loc_2 (stateid texas:e)))))) 274 | (answer (capital (city (loc_2 (largest (state (loc_2 (countryid usa:e)))))))) 275 | (answer (major (city (loc_2 (stateid rhode_island:e))))) 276 | (answer (largest_one (population_1 (state all:e)))) 277 | (answer (largest (city (loc_2 (stateid kansas:e))))) 278 | (answer (area_1 (state (loc_1 (capital (cityid albany:e _:e)))))) 279 | (answer (longest (river (traverse_2 (stateid colorado:e))))) 280 | (answer (count (river (loc_2 (stateid alaska:e))))) 281 | (answer (size (stateid massachusetts:e))) 282 | (answer (size (largest (city (loc_2 (stateid alaska:e)))))) 283 | (answer (count (city (loc_2 (countryid usa:e))))) 284 | (answer (state (capital_2 (cityid dover:e _:e)))) 285 | (answer (state (next_to_2 (stateid new_hampshire:e)))) 286 | (answer (shortest (river (loc_2 (stateid nebraska:e))))) 287 | (answer (count (state (next_to_2 (stateid hawaii:e))))) 288 | (answer (state (loc_1 (cityid dallas:e _:e)))) 289 | (answer (smallest_one (population_1 (city all:e)))) 290 | (answer (population_1 (stateid utah:e))) 291 | (answer (smallest_one (density_1 (state all:e)))) 292 | (answer (largest (state (next_to_2 (state (loc_1 (lowest (place (loc_2 (countryid usa:e)))))))))) 293 | (answer (largest (city (loc_2 (stateid texas:e))))) 294 | (answer (largest (state (loc_2 (countryid usa:e))))) 295 | (answer (largest_one (population_1 (state all:e)))) 296 | (answer (river (loc_2 (stateid new_mexico:e)))) 297 | (answer (area_1 (stateid maryland:e))) 298 | (answer (count (state (loc_2 (countryid usa:e))))) 299 | (answer (count (major (city (loc_2 (state (next_to_2 (stateid nebraska:e)))))))) 300 | (answer (population_1 (largest (state all:e)))) 301 | (answer (size (stateid florida:e))) 302 | (answer (count (river (loc_2 (stateid missouri:e))))) 303 | (answer (count (river (loc_2 (stateid texas:e))))) 304 | (answer (highest (place (loc_2 (state (loc_1 (capital (cityid des_moines:e _:e)))))))) 305 | (answer (population_1 (cityid seattle:e _:e))) 306 | (answer (highest (place (loc_2 (stateid colorado:e))))) 307 | (answer (state (next_to_2 (stateid arizona:e)))) 308 | (answer (river (traverse_2 (state (loc_1 (lowest (place (loc_2 (countryid usa:e))))))))) 309 | (answer (population_1 (stateid minnesota:e))) 310 | (answer (state (loc_1 (largest_one (population_1 (city all:e)))))) 311 | (answer (state (loc_1 (major (city (cityid austin:e _:e)))))) 312 | (answer (state (loc_1 (place (higher_2 (highest (place (loc_2 (stateid colorado:e))))))))) 313 | (answer (highest (place (loc_2 (smallest_one (population_1 (state all:e))))))) 314 | (answer (loc_1 (stateid new_hampshire:e))) 315 | (answer (state (next_to_2 (stateid florida:e)))) 316 | (answer (count (intersection (river (loc_2 (stateid texas:e))) (longer (riverid red:e))))) 317 | (answer (count (exclude (river all:e) (traverse_2 (state (loc_1 (capital (cityid albany:e _:e)))))))) 318 | (answer (population_1 (state (traverse_1 (riverid mississippi:e))))) 319 | (answer (state (traverse_1 (riverid mississippi:e)))) 320 | (answer (state (next_to_2 (riverid mississippi:e)))) 321 | (answer (city (loc_2 (stateid virginia:e)))) 322 | (answer (capital (city (loc_2 (state (next_to_2 (stateid texas:e))))))) 323 | (answer (largest_one (population_1 (state (next_to_2 (stateid texas:e)))))) 324 | (answer (state (most (state (loc_1 (river all:e)))))) 325 | (answer (smallest_one (density_1 (state all:e)))) 326 | (answer (major (city (loc_2 (stateid ohio:e))))) 327 | (answer (state (traverse_1 (riverid missouri:e)))) 328 | (answer (largest (city (loc_2 (stateid arizona:e))))) 329 | (answer (population_1 (stateid hawaii:e))) 330 | (answer (population_1 (smallest (state (next_to_2 (stateid wyoming:e)))))) 331 | (answer (state (loc_1 (lowest (place all:e))))) 332 | (answer (river (traverse_2 (stateid missouri:e)))) 333 | (answer (elevation_1 (placeid death_valley:e))) 334 | (answer (river (traverse_2 (stateid texas:e)))) 335 | (answer (elevation_1 (highest (place (loc_2 (state all:e)))))) 336 | (answer (capital (loc_2 (stateid new_hampshire:e)))) 337 | (answer (len (riverid rio_grande:e))) 338 | (answer (most (state (next_to_2 (state all:e))))) 339 | (answer (count (state (next_to_1 (stateid missouri:e))))) 340 | (answer (loc_1 (cityid austin:e _:e))) 341 | (answer (elevation_1 (highest (place (loc_2 (stateid delaware:e)))))) 342 | (answer (loc_1 (highest (place (loc_2 (stateid montana:e)))))) 343 | (answer (state (next_to_2 (state (next_to_2 (largest_one (population_1 (state all:e)))))))) 344 | (answer (elevation_1 (highest (mountain (loc_2 (stateid texas:e)))))) 345 | (answer (state (loc_1 (cityid flint:e _:e)))) 346 | (answer (largest_one (density_1 (state (loc_2 (countryid usa:e)))))) 347 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e)))))) 348 | (answer (state (next_to_2 (stateid missouri:e)))) 349 | (answer (largest (state all:e))) 350 | (answer (smallest_one (density_1 (state all:e)))) 351 | (answer (state (next_to_2 (stateid alabama:e)))) 352 | (answer (river (traverse_2 (state (next_to_1 (stateid alabama:e)))))) 353 | (answer (major (city (loc_2 (stateid wyoming:e))))) 354 | (answer (highest (place (loc_2 (state (next_to_2 (stateid mississippi:e))))))) 355 | (answer (state (traverse_1 (riverid mississippi:e)))) 356 | (answer (loc_1 (cityid scotts_valley:e _:e))) 357 | (answer (major (lake (loc_2 (countryid usa:e))))) 358 | (answer (largest (city (loc_2 (stateid missouri:e))))) 359 | (answer (state (next_to_2 (stateid alaska:e)))) 360 | (answer (state (loc_1 (largest (city all:e))))) 361 | (answer (river (traverse_2 (stateid maine:e)))) 362 | (answer (lake (loc_2 (stateid california:e)))) 363 | (answer (sum (population_1 (state all:e)))) 364 | (answer (elevation_1 (highest (place (loc_2 (stateid louisiana:e)))))) 365 | (answer (longest (river (loc_2 (stateid pennsylvania:e))))) 366 | (answer (capital (loc_2 (stateid maryland:e)))) 367 | (answer (largest (state all:e))) 368 | (answer (state (next_to_2 (stateid iowa:e)))) 369 | (answer (state (next_to_2 (stateid alaska:e)))) 370 | (answer (largest (state (loc_2 (countryid usa:e))))) 371 | (answer (major (city (loc_2 (stateid california:e))))) 372 | (answer (largest (state (traverse_1 (riverid mississippi:e))))) 373 | (answer (river (traverse_2 (state (next_to_2 (stateid new_mexico:e)))))) 374 | (answer (lowest (place (loc_2 (stateid texas:e))))) 375 | (answer (smallest (state (next_to_2 (stateid ohio:e))))) 376 | (answer (count (state (next_to_2 (major (river all:e)))))) 377 | (answer (lowest (place (loc_2 (countryid usa:e))))) 378 | (answer (largest_one (density_1 (state all:e)))) 379 | (answer (count (state (next_to_2 (largest (state all:e)))))) 380 | (answer (longest (exclude (river all:e) (traverse_2 (stateid texas:e))))) 381 | (answer (state (loc_2 (countryid usa:e)))) 382 | (answer (density_1 (stateid texas:e))) 383 | (answer (smallest (city (loc_2 (smallest (state (loc_2 (countryid usa:e)))))))) 384 | (answer (highest (place (loc_2 (stateid kansas:e))))) 385 | (answer (population_1 (cityid boston:e _:e))) 386 | (answer (population_1 (stateid nevada:e))) 387 | (answer (density_1 (stateid texas:e))) 388 | (answer (population_1 (cityid washington:e dc:e))) 389 | (answer (city (loc_2 (stateid texas:e)))) 390 | (answer (len (shortest (river (loc_2 (countryid usa:e)))))) 391 | (answer (count (state (loc_1 (major (river all:e)))))) 392 | (answer (density_1 (smallest (state all:e)))) 393 | (answer (state (next_to_2 (stateid michigan:e)))) 394 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e)))))) 395 | (answer (river (traverse_2 (state (next_to_2 (state (loc_1 (capital (cityid atlanta:e _:e))))))))) 396 | (answer (highest (place (loc_2 (countryid usa:e))))) 397 | (answer (population_1 (cityid kalamazoo:e _:e))) 398 | (answer (count (major (city (loc_2 (stateid florida:e)))))) 399 | (answer (largest_one (density_1 (state all:e)))) 400 | (answer (count (river (loc_2 (stateid colorado:e))))) 401 | (answer (lowest (place (loc_2 (largest_one (area_1 (state all:e))))))) 402 | (answer (state (next_to_2 (stateid texas:e)))) 403 | (answer (count (state (next_to_2 (state all:e))))) 404 | (answer (exclude (state all:e) (next_to_2 (state all:e)))) 405 | (answer (river (traverse_2 (cityid austin:e tx:e)))) 406 | (answer (population_1 (stateid new_hampshire:e))) 407 | (answer (capital (loc_2 (stateid indiana:e)))) 408 | (answer (state (next_to_2 (most (state (loc_1 (city all:e))))))) 409 | (answer (area_1 (smallest (state all:e)))) 410 | (answer (state (next_to_2 (stateid new_york:e)))) 411 | (answer (population_1 (stateid maine:e))) 412 | (answer (largest (city (loc_2 (smallest (state all:e)))))) 413 | (answer (elevation_1 (highest (place (loc_2 (countryid usa:e)))))) 414 | (answer (fewest (state (next_to_2 (exclude (exclude (state all:e) (stateid alaska:e)) (stateid hawaii:e)))))) 415 | (answer (highest (place (loc_2 (stateid new_mexico:e))))) 416 | (answer (largest (state all:e))) 417 | (answer (population_1 (cityid spokane:e wa:e))) 418 | (answer (state (traverse_1 (shortest (river all:e))))) 419 | (answer (len (riverid rio_grande:e))) 420 | (answer (population_1 (stateid texas:e))) 421 | (answer (loc_1 (lowest (place (loc_2 (stateid iowa:e)))))) 422 | (answer (population_1 (state (traverse_1 (riverid mississippi:e))))) 423 | (answer (lowest (place (loc_2 (stateid oregon:e))))) 424 | (answer (shortest (river (loc_2 (stateid alaska:e))))) 425 | (answer (count (state (next_to_2 (riverid mississippi:e))))) 426 | (answer (largest_one (population_1 (capital (loc_2 (countryid usa:e)))))) 427 | (answer (highest (place (loc_2 (stateid ohio:e))))) 428 | (answer (state (next_to_2 (stateid wisconsin:e)))) 429 | (answer (state (loc_1 (capital (highest (place all:e)))))) 430 | (answer (count (state (intersection (next_to_2 (stateid colorado:e)) (next_to_2 (stateid new_mexico:e)))))) 431 | (answer (major (city (loc_2 (stateid missouri:e))))) 432 | (answer (major (city (loc_2 (stateid texas:e))))) 433 | (answer (count (river (riverid colorado:e)))) 434 | (answer (elevation_1 (highest (place (loc_2 (stateid montana:e)))))) 435 | (answer (count (state (loc_1 (city (cityid austin:e _:e)))))) 436 | (answer (state (traverse_1 (riverid missouri:e)))) 437 | (answer (largest (city (loc_2 (countryid usa:e))))) 438 | (answer (size (stateid new_mexico:e))) 439 | (answer (population_1 (stateid south_dakota:e))) 440 | (answer (state (loc_1 (cityid pittsburgh:e _:e)))) 441 | (answer (river (traverse_2 (stateid arizona:e)))) 442 | (answer (count (major (river (traverse_2 (stateid ohio:e)))))) 443 | (answer (population_1 (cityid boulder:e _:e))) 444 | (answer (count (river (loc_2 (stateid idaho:e))))) 445 | (answer (state (loc_1 (capital (cityid sacramento:e _:e))))) 446 | (answer (count (city (loc_2 (countryid usa:e))))) 447 | (answer (population_1 (stateid california:e))) 448 | (answer (largest_one (population_1 (state all:e)))) 449 | (answer (state (next_to_2 (riverid mississippi:e)))) 450 | (answer (population_1 (stateid missouri:e))) 451 | (answer (exclude (river all:e) (traverse_2 (stateid tennessee:e)))) 452 | (answer (largest (city (loc_2 (state (next_to_2 (stateid texas:e))))))) 453 | (answer (longest (river (loc_2 (countryid usa:e))))) 454 | (answer (count (state (traverse_1 (riverid mississippi:e))))) 455 | (answer (largest (state (traverse_1 (riverid rio_grande:e))))) 456 | (answer (size (capital (loc_2 (stateid texas:e))))) 457 | (answer (state (traverse_1 (river all:e)))) 458 | (answer (state (next_to_2 (stateid hawaii:e)))) 459 | (answer (population_1 (cityid boulder:e _:e))) 460 | (answer (state (next_to_2 (state (next_to_2 (state (next_to_2 (stateid florida:e)))))))) 461 | (answer (state (next_to_2 (longest (river (loc_2 (countryid usa:e))))))) 462 | (answer (density_1 (stateid wyoming:e))) 463 | (answer (population_1 (stateid iowa:e))) 464 | (answer (highest (place (loc_2 (most (state (traverse_1 (river all:e)))))))) 465 | (answer (population_1 (cityid boulder:e _:e))) 466 | (answer (river (loc_2 (stateid montana:e)))) 467 | (answer (count (state (next_to_2 (state (loc_1 (capital (cityid boston:e _:e)))))))) 468 | (answer (population_1 (stateid washington:e))) 469 | (answer (largest_one (population_1 (capital_1 (state all:e))))) 470 | (answer (largest (city (loc_2 (state (next_to_2 (stateid california:e))))))) 471 | (answer (largest_one (population_1 (city (loc_2 (stateid wyoming:e)))))) 472 | (answer (density_1 (state (loc_1 (capital (cityid austin:e _:e)))))) 473 | (answer (population_1 (cityid portland:e me:e))) 474 | (answer (state (loc_1 (cityid kalamazoo:e _:e)))) 475 | (answer (population_1 (largest (state (next_to_2 (stateid texas:e)))))) 476 | (answer (state (next_to_2 (stateid ohio:e)))) 477 | (answer (longest (river (loc_2 (countryid usa:e))))) 478 | (answer (density_1 (smallest_one (area_1 (state all:e))))) 479 | (answer (largest (capital all:e))) 480 | (answer (state (loc_1 (smallest (capital all:e))))) 481 | (answer (count (major (city (loc_2 (stateid pennsylvania:e)))))) 482 | (answer (state (traverse_1 (longest (river (loc_2 (countryid usa:e))))))) 483 | (answer (loc_1 (cityid houston:e _:e))) 484 | (answer (river (traverse_2 (state (next_to_2 (largest_one (population_1 (state all:e)))))))) 485 | (answer (highest (place (loc_2 (smallest (state all:e)))))) 486 | (answer (river (traverse_2 (stateid virginia:e)))) 487 | (answer (state (next_to_2 (stateid michigan:e)))) 488 | (answer (major (lake (loc_2 (stateid michigan:e))))) 489 | (answer (city (loc_2 (stateid virginia:e)))) 490 | (answer (most (river (traverse_2 (state all:e))))) 491 | (answer (population_1 (stateid new_mexico:e))) 492 | (answer (largest (city (loc_2 (stateid alabama:e))))) 493 | (answer (population_1 (cityid san_francisco:e _:e))) 494 | (answer (population_1 (capital (loc_2 (largest (state all:e)))))) 495 | (answer (longest (river (loc_2 (countryid usa:e))))) 496 | (answer (largest (state (next_to_2 (largest_one (population_1 (state all:e))))))) 497 | (answer (major (lake (loc_2 (countryid usa:e))))) 498 | (answer (loc_1 (cityid springfield:e _:e))) 499 | (answer (state (loc_1 (cityid des_moines:e _:e)))) 500 | (answer (count (city (loc_2 (stateid texas:e))))) 501 | (answer (state (loc_1 (cityid boston:e _:e)))) 502 | (answer (river (traverse_2 (state (loc_1 (largest (city (loc_2 (countryid usa:e))))))))) 503 | (answer (state (next_to_2 (stateid iowa:e)))) 504 | (answer (exclude (state all:e) (next_to_2 (state all:e)))) 505 | (answer (loc_1 (lowest (place (loc_2 (countryid usa:e)))))) 506 | (answer (major (city (loc_2 (stateid oklahoma:e))))) 507 | (answer (smallest_one (area_1 (state (next_to_2 (stateid texas:e)))))) 508 | (answer (capital (loc_2 (state (loc_1 (highest (place all:e))))))) 509 | (answer (state (traverse_1 (riverid mississippi:e)))) 510 | (answer (loc_1 (placeid mount_whitney:e))) 511 | (answer (largest_one (density_1 (state all:e)))) 512 | (answer (smallest (city (loc_2 (stateid washington:e))))) 513 | (answer (major (city (loc_2 (stateid new_mexico:e))))) 514 | (answer (population_1 (capital (loc_2 (stateid georgia:e))))) 515 | (answer (largest_one (population_1 (state (traverse_1 (riverid mississippi:e)))))) 516 | (answer (largest_one (area_1 (state all:e)))) 517 | (answer (population_1 (cityid riverside:e _:e))) 518 | (answer (area_1 (cityid seattle:e _:e))) 519 | (answer (largest_one (population_1 (capital all:e)))) 520 | (answer (capital (loc_2 (most (state (next_to_2 (state all:e))))))) 521 | (answer (count (river (traverse_2 (state (next_to_2 (stateid colorado:e))))))) 522 | (answer (city (loc_2 (stateid california:e)))) 523 | (answer (state (loc_1 (capital (cityid austin:e _:e))))) 524 | (answer (population_1 (stateid kansas:e))) 525 | (answer (fewest (state (next_to_2 (state all:e))))) 526 | (answer (state (next_to_2 (stateid south_dakota:e)))) 527 | (answer (river (loc_2 (stateid arkansas:e)))) 528 | (answer (len (riverid mississippi:e))) 529 | (answer (shortest (river (loc_2 (countryid usa:e))))) 530 | (answer (largest (city (loc_2 (countryid usa:e))))) 531 | (answer (capital (loc_2 (stateid washington:e)))) 532 | (answer (count (city (loc_2 (stateid montana:e))))) 533 | (answer (capital (loc_2 (stateid texas:e)))) 534 | (answer (elevation_1 (placeid mount_mckinley:e))) 535 | (answer (smallest_one (population_1 (city all:e)))) 536 | (answer (largest (state (loc_2 (countryid usa:e))))) 537 | (answer (count (major (city (loc_2 (state (next_to_2 (stateid utah:e)))))))) 538 | (answer (count (state (next_to_2 (stateid tennessee:e))))) 539 | (answer (state (traverse_1 (riverid ohio:e)))) 540 | (answer (longest (river (loc_2 (smallest (state (loc_2 (countryid usa:e)))))))) 541 | (answer (smallest_one (area_1 (state all:e)))) 542 | (answer (population_1 (capital (loc_2 (largest (state (traverse_1 (riverid mississippi:e)))))))) 543 | (answer (population_1 (cityid boston:e ma:e))) 544 | (answer (city (loc_2 (stateid california:e)))) 545 | (answer (size (cityid new_york:e _:e))) 546 | (answer (most (state (loc_1 (city all:e))))) 547 | (answer (longest (river (loc_2 (countryid usa:e))))) 548 | (answer (capital (loc_2 (countryid usa:e)))) 549 | (answer (capital (loc_2 (state (next_to_2 (state (next_to_2 (stateid texas:e)))))))) 550 | (answer (state (loc_1 (riverid red:e)))) 551 | (answer (population_1 (cityid chicago:e _:e))) 552 | (answer (smallest (city (loc_2 (stateid alaska:e))))) 553 | (answer (state all:e)) 554 | (answer (largest (city (loc_2 (stateid georgia:e))))) 555 | (answer (state (next_to_2 (state (traverse_1 (riverid mississippi:e)))))) 556 | (answer (count (city (loc_2 (countryid usa:e))))) 557 | (answer (size (stateid texas:e))) 558 | (answer (elevation_1 (highest (place (loc_2 (countryid usa:e)))))) 559 | (answer (population_1 (state (traverse_1 (riverid mississippi:e))))) 560 | (answer (smallest_one (population_1 (state all:e)))) 561 | (answer (count (state (next_to_2 (stateid texas:e))))) 562 | (answer (state (traverse_1 (riverid colorado:e)))) 563 | (answer (highest (place (loc_2 (stateid texas:e))))) 564 | (answer (longest (river (loc_2 (stateid california:e))))) 565 | (answer (len (most (river (traverse_2 (state all:e)))))) 566 | (answer (largest_one (population_1 (state (loc_2 (countryid usa:e)))))) 567 | (answer (capital (loc_2 (stateid georgia:e)))) 568 | (answer (density_1 (countryid usa:e))) 569 | (answer (area_1 (stateid new_mexico:e))) 570 | (answer (longest (river (loc_2 (stateid texas:e))))) 571 | (answer (count (major (city all:e)))) 572 | (answer (count (river (loc_2 (largest_one (population_1 (state all:e))))))) 573 | (answer (major (city (loc_2 (stateid montana:e))))) 574 | (answer (population_1 (major (city (loc_2 (stateid wisconsin:e)))))) 575 | (answer (exclude (state all:e) (next_to_2 (stateid texas:e)))) 576 | (answer (most (river (traverse_2 (state all:e))))) 577 | (answer (smallest_one (density_1 (state all:e)))) 578 | (answer (state (traverse_1 (riverid missouri:e)))) 579 | (answer (count (river (loc_2 (stateid colorado:e))))) 580 | (answer (shortest (river (loc_2 (stateid iowa:e))))) 581 | (answer (state (next_to_2 (state (traverse_1 (riverid mississippi:e)))))) 582 | (answer (population_1 (stateid new_york:e))) 583 | (answer (largest_one (population_1 (city (loc_2 (stateid texas:e)))))) 584 | (answer (highest (place (loc_2 (stateid new_mexico:e))))) 585 | (answer (highest (place (loc_2 (countryid usa:e))))) 586 | (answer (population_1 (largest_one (area_1 (state all:e))))) 587 | (answer (loc_1 (cityid baton_rouge:e _:e))) 588 | (answer (intersection (state (loc_2 (countryid usa:e))) (loc_1 (city (cityid springfield:e _:e))))) 589 | (answer (count (city (loc_2 (stateid louisiana:e))))) 590 | (answer (count (state (loc_2 (countryid usa:e))))) 591 | (answer (river (traverse_2 (stateid louisiana:e)))) 592 | (answer (population_1 (largest_one (density_1 (state all:e))))) 593 | (answer (state (loc_1 (highest (place (loc_2 (countryid usa:e))))))) 594 | (answer (most (state (next_to_2 (state all:e))))) 595 | (answer (state (next_to_2 (stateid alabama:e)))) 596 | (answer (len (intersection (riverid colorado:e) (river (loc_2 (stateid texas:e)))))) 597 | (answer (largest_one (population_1 (state all:e)))) 598 | (answer (state (loc_1 (highest (place all:e))))) 599 | (answer (density_1 (stateid south_dakota:e))) 600 | (answer (state (loc_1 (city (cityid austin:e _:e))))) 601 | (answer (population_1 (stateid montana:e))) 602 | --------------------------------------------------------------------------------