├── .gitignore
├── README.md
├── deepnote
└── MedML Workshops in Deepnote
│ ├── Notebook 1.ipynb
│ ├── Init notebook.ipynb
│ ├── Cells PCA.ipynb
│ └── medml-workshops-deepnote-MedML Workshops in Deepnote-Cells PCA.ipynb
├── jupyter-introduction.ipynb
└── cells-pca.ipynb
/.gitignore:
--------------------------------------------------------------------------------
1 | .ipynb_checkpoints/
2 |
3 | *.sw*
4 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Medical data processing and ML workshops
2 |
3 |
4 |
5 |
6 | Workshop for medical students interested in data processing and machine learning, for ML students interested in medical data and for anyone with programming or data analysis background interested in ML.
7 |
8 |
9 | We'll introduce Python basics, tools for processing and visualizing data, dive into ML and DL basics, play with CNNs and GANs.
10 |
11 | WIP
12 |
13 |
14 | ### Parts
15 |
16 | 1. [Introduction — motivation, data and tools](./introduction.ipynb) [
](https://beta.deepnote.com/project/a53ef107-6e31-47d1-87c3-dd74da9267fe#%2Fmedical-data.ipynb)
17 | 2. CNNs, organ segmentation, tumours
18 | 3. Augmenting data with GANs
19 |
20 |
21 | ### WIP Notebooks
22 |
23 | - [Jupyter notebooks and Google Colaboratory intro](./jupyter-introduction.ipynb)
24 | - [Cell data and PCA](./cells-pca.ipynb)
25 | - [Keras and CNNs](./colab-keras-intro.ipynb)
26 | - [Kidney tumours](./kidney-tumours.ipynb)
27 | - [PPG/ECG data playground](./ppg-ecg-playground.ipynb) [
](https://beta.deepnote.com/project/a53ef107-6e31-47d1-87c3-dd74da9267fe#%2Fppg-ecg-playground.ipynb)
28 |
29 |
30 | ### My other courses
31 |
32 | - [Git workshop](https://github.com/webdev-js-evenings/git-workshop)
33 | - [Testing workshop](https://github.com/webdev-js-evenings/testing-workshop)
34 | - [BI-SVZ](https://github.com/ImprolabFIT/BI-SVZ-coursework/blob/master/tutorials/index.adoc)
35 |
--------------------------------------------------------------------------------
/deepnote/MedML Workshops in Deepnote/Notebook 1.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "source": "# Start writing code here...",
6 | "metadata": {
7 | "cell_id": "7f43fcba11414416ac7885d6ddd7235f",
8 | "deepnote_cell_type": "code"
9 | },
10 | "outputs": [],
11 | "execution_count": null
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "source": "\n
\nCreated in Deepnote",
16 | "metadata": {
17 | "created_in_deepnote_cell": true,
18 | "deepnote_cell_type": "markdown"
19 | }
20 | }
21 | ],
22 | "nbformat": 4,
23 | "nbformat_minor": 0,
24 | "metadata": {
25 | "deepnote": {},
26 | "orig_nbformat": 2,
27 | "deepnote_notebook_id": "9cd814aab02642d494ca9c05bd4327a3",
28 | "deepnote_execution_queue": []
29 | }
30 | }
--------------------------------------------------------------------------------
/deepnote/MedML Workshops in Deepnote/Init notebook.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "source": "## Initialization Notebook\nThis is your initialization notebook.\n\n**What's this for?**\n\nYou can put custom code you want us to run every time we setup your environment in here. \n\n**Awesome! Anything I should not put in here?**\n\nPlease don't install `jupyter` or `jedi` packages, they would break your Deepnote environment. Also, no need to put `!pip install`s here, we already save those automatically!\n\n**I want to learn more!**\n\nGreat! Just [head over to our docs](https://deepnote.com/docs/custom-initialization).",
6 | "metadata": {
7 | "cell_id": "2e2531b70da94854b2e75f90c8d04cbd",
8 | "deepnote_cell_type": "markdown"
9 | }
10 | },
11 | {
12 | "cell_type": "code",
13 | "source": "%%bash\n# If your project has a 'requirements.txt' file, we'll install it here apart from blacklisted packages that interfere with Deepnote (see above).\nif test -f requirements.txt\n then\n sed -i '/jedi/d;/jupyter/d;' ./requirements.txt\n pip install -r ./requirements.txt\n else echo \"There's no requirements.txt, so nothing to install. This is the case with most projects.\"\nfi",
14 | "metadata": {
15 | "cell_id": "8383d6218a2d4a288fca52318919eb82",
16 | "source_hash": "60b37886",
17 | "execution_start": 1684228235183,
18 | "execution_millis": 51,
19 | "deepnote_to_be_reexecuted": false,
20 | "deepnote_cell_type": "code"
21 | },
22 | "outputs": [
23 | {
24 | "name": "stdout",
25 | "text": "There's no requirements.txt, so nothing to install. This is the case with most projects.\n",
26 | "output_type": "stream"
27 | }
28 | ],
29 | "execution_count": 1
30 | },
31 | {
32 | "cell_type": "markdown",
33 | "source": "\n
\nCreated in Deepnote",
34 | "metadata": {
35 | "created_in_deepnote_cell": true,
36 | "deepnote_cell_type": "markdown"
37 | }
38 | }
39 | ],
40 | "nbformat": 4,
41 | "nbformat_minor": 0,
42 | "metadata": {
43 | "deepnote": {},
44 | "orig_nbformat": 2,
45 | "deepnote_notebook_id": "e367197ec2af40d2ac8f2f2851db3243",
46 | "deepnote_execution_queue": []
47 | }
48 | }
--------------------------------------------------------------------------------
/jupyter-introduction.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "slideshow": {
7 | "slide_type": "slide"
8 | }
9 | },
10 | "source": [
11 | "\n",
12 | "# Práce s Jupyter notebooky\n"
13 | ]
14 | },
15 | {
16 | "cell_type": "markdown",
17 | "metadata": {},
18 | "source": [
19 | "# Co je Jupyter a IPython?"
20 | ]
21 | },
22 | {
23 | "cell_type": "markdown",
24 | "metadata": {},
25 | "source": [
26 | "
"
27 | ]
28 | },
29 | {
30 | "cell_type": "markdown",
31 | "metadata": {},
32 | "source": [
33 | "Jupyter notebook je webová aplikace pro interaktivní programování, zaznamenávání, vizualizaci a prezentace výsledků. Typicky se používá při analýze dat, problémech počítačového vidění, ale také pro matematické úkoly a třeba i trénovaní neurónových sítí.\n",
34 | "\n",
35 | "Jupyter je platforma kolem Jupyter notebooku, která se kromě notebooku stará o různá rozšírení, kolaboraci a nasazení do různých prostrředí. Více detailů na webu [jupyter.org](https://jupyter.org)\n",
36 | "\n",
37 | "Jupyter vznikl jako nadstavba nad IPython notebook, který v \"data\" světě začali používat také programátori v Julii a Rku. Proto Ju(lia) - Py(thon) - e(R) = Jupyter.\n",
38 | "\n",
39 | "V Jupyter notebooku se používají dva typy buněk — textové a kód. Kód je v našem případe Pythoní, no ve standardní instalaci Jupyteru je možné přepnout na jazyk Julia a nebo R. Existují také rozšíření do pro další jazyky.\n",
40 | "\n",
41 | "Kromě kódu a text v markdownu je možné použít HTML a zpouštět také systémové příkazy.\n",
42 | "\n",
43 | "## Zkratky\n",
44 | "\n",
45 | "Jupyter rozlišuje dva módy - **Command** a **Edit**. V Command módu jsou jedno a více-písmenové zkratky na zrychlení práce pro úpravu buněk, evaluaci a pod.\n",
46 | "\n",
47 | "- přístup ke všem příkazům `CTRL`+`SHIFT`+`P`\n",
48 | "\n",
49 | "\n",
50 | "- přepnutí mezi módy Command -> Edit `ENTER`\n",
51 | "\n",
52 | "\n",
53 | "- přepnutí mezi módy Edit -> Command `ESC`\n",
54 | "\n",
55 | "\n",
56 | "- šipky zaručí pohyb mezi buňkami\n",
57 | "\n",
58 | "\n",
59 | "- vložení buňky\n",
60 | " - `A` nad aktuální\n",
61 | " - `B` pod aktuální\n",
62 | " - `SHIFT`+`M` spojení buňek\n",
63 | "\n",
64 | "\n",
65 | "- zmazání buňky `d d`\n",
66 | "\n",
67 | "\n",
68 | "- změna typu buňky\n",
69 | " - `M` markdown\n",
70 | " - `Y` code\n",
71 | " - `1` nadpis 1\n",
72 | " - `2` nadpis 2\n",
73 | "\n",
74 | "\n",
75 | "- evaluace\n",
76 | " - `SHIFT`+`ENTER` evaluace aktuální buňky\n",
77 | " - `CTRL`+`ENTER` evaluace označených buněk"
78 | ]
79 | },
80 | {
81 | "cell_type": "markdown",
82 | "metadata": {},
83 | "source": [
84 | "## IPython triky\n",
85 | "\n",
86 | "- magické příkazy\n",
87 | " - load externého skriptu (třeba s definicemi funkcí)\n",
88 | " - interaktivní matplotlib\n",
89 | " - timing\n",
90 | " - html\n",
91 | " - aliasy, makra, debugger, pip, conda\n",
92 | " - celý seznam [v dokumentaci](https://ipython.readthedocs.io/en/stable/interactive/magics.html)\n",
93 | "\n",
94 | "\n",
95 | "- snapshoty a uložení výsledků\n",
96 | "\n",
97 | "- nápověda příkazem `?`"
98 | ]
99 | },
100 | {
101 | "cell_type": "code",
102 | "execution_count": 2,
103 | "metadata": {
104 | "code_folding": []
105 | },
106 | "outputs": [
107 | {
108 | "data": {
109 | "text/html": [
110 | "\n",
111 | "\n",
112 | "
\n",
113 | "
HTML v notebooku:\n",
114 | "
\n",
115 | "
\n",
116 | "
"
117 | ],
118 | "text/plain": [
119 | ""
120 | ]
121 | },
122 | "metadata": {},
123 | "output_type": "display_data"
124 | }
125 | ],
126 | "source": [
127 | "%%html\n",
128 | "\n",
129 | "\n",
130 | "\n",
131 | "
HTML v notebooku:\n",
132 | "
\n",
133 | "
\n",
134 | "
"
135 | ]
136 | },
137 | {
138 | "cell_type": "markdown",
139 | "metadata": {},
140 | "source": [
141 | "## Jupyter extensions\n",
142 | "\n",
143 | "Umožňují rozšíření funkcí notebooku, jako třeba možnosti skrýt bloky textu a kódu, hezky zobrazit určité typy dat, měřit čas evaluaci buňky, a pod.\n",
144 | "\n",
145 | "Instalace:\n",
146 | "\n",
147 | "```\n",
148 | "pip install jupyter_nbextensions_configurator jupyter_contrib_nbextensions\n",
149 | "jupyter contrib nbextension install --user\n",
150 | "jupyter nbextensions_configurator enable --user\n",
151 | "```\n",
152 | "\n",
153 | "Ukázka: Codefolding, Collapsible Headings - [Nbextensions](http://localhost:8888/tree#nbextensions_configurator)"
154 | ]
155 | },
156 | {
157 | "cell_type": "markdown",
158 | "metadata": {},
159 | "source": [
160 | "## Google Colab\n",
161 | "\n",
162 | "- Jupyter prostředí na steroidech v Google Cloudu\n",
163 | "- propojení přes GitHub\n",
164 | "- dostupné zdroje na běh zdarma, pro univerzity a výzkum navyše dostupné extra zdroje\n",
165 | "\n",
166 | "\n",
167 | "- trénovaní NNs na GPU/TPU\n",
168 | " - MNIST + jednoduchá konvoluční neurónová síť\n",
169 | "\n",
170 | "\n",
171 | "- dotazování na BigQuery datasety\n",
172 | " - počet .js filů ve všetch JS repozitářích na GitHubu\n",
173 | " - zkoumání variantů genómů"
174 | ]
175 | },
176 | {
177 | "cell_type": "code",
178 | "execution_count": 3,
179 | "metadata": {},
180 | "outputs": [
181 | {
182 | "data": {
183 | "text/html": [
184 | "Open in Colab badge:\n",
185 | "
"
186 | ],
187 | "text/plain": [
188 | ""
189 | ]
190 | },
191 | "metadata": {},
192 | "output_type": "display_data"
193 | }
194 | ],
195 | "source": [
196 | "%%html\n",
197 | "Open in Colab badge:\n",
198 | "
"
199 | ]
200 | },
201 | {
202 | "cell_type": "markdown",
203 | "metadata": {},
204 | "source": [
205 | "# Příklady\n"
206 | ]
207 | },
208 | {
209 | "cell_type": "markdown",
210 | "metadata": {},
211 | "source": [
212 | "## Vektor a vypsaní grafu z minulého cvičení"
213 | ]
214 | },
215 | {
216 | "cell_type": "code",
217 | "execution_count": null,
218 | "metadata": {},
219 | "outputs": [],
220 | "source": [
221 | "import numpy as np\n",
222 | "\n",
223 | "def generate_vector(start, end, step):\n",
224 | " return np.arange(start, end, step)\n",
225 | "\n",
226 | "start = -4*np.pi\n",
227 | "end = 4*np.pi\n",
228 | "step = 0.01\n",
229 | "\n",
230 | "x = generate_vector(start, end, step)"
231 | ]
232 | },
233 | {
234 | "cell_type": "code",
235 | "execution_count": null,
236 | "metadata": {},
237 | "outputs": [],
238 | "source": [
239 | "# magický příkaz v akci\n",
240 | "%matplotlib inline\n",
241 | "\n",
242 | "import numpy as np\n",
243 | "import matplotlib.pyplot as plt\n",
244 | "\n",
245 | "y = np.sin(x)\n",
246 | "plt.title('Funkce sin(x)')\n",
247 | "plt.plot(x, y)"
248 | ]
249 | },
250 | {
251 | "cell_type": "markdown",
252 | "metadata": {},
253 | "source": [
254 | "### Systémové příkazy"
255 | ]
256 | },
257 | {
258 | "cell_type": "code",
259 | "execution_count": null,
260 | "metadata": {},
261 | "outputs": [],
262 | "source": [
263 | "pwd"
264 | ]
265 | },
266 | {
267 | "cell_type": "code",
268 | "execution_count": null,
269 | "metadata": {},
270 | "outputs": [],
271 | "source": [
272 | "# znovu magický příkaz\n",
273 | "%cd .."
274 | ]
275 | },
276 | {
277 | "cell_type": "code",
278 | "execution_count": null,
279 | "metadata": {},
280 | "outputs": [],
281 | "source": [
282 | "pwd"
283 | ]
284 | },
285 | {
286 | "cell_type": "code",
287 | "execution_count": null,
288 | "metadata": {},
289 | "outputs": [],
290 | "source": [
291 | "cd \"H:\\\\Documents\\\\bi-svz\\\\tutorials\\\\files\\\\2\\\\\""
292 | ]
293 | },
294 | {
295 | "cell_type": "code",
296 | "execution_count": null,
297 | "metadata": {},
298 | "outputs": [],
299 | "source": [
300 | "alias home cd \"H:\\\\Documents\\\\bi-svz\\\\tutorials\\\\files\\\\2\\\\\""
301 | ]
302 | },
303 | {
304 | "cell_type": "code",
305 | "execution_count": null,
306 | "metadata": {},
307 | "outputs": [],
308 | "source": [
309 | "home"
310 | ]
311 | },
312 | {
313 | "cell_type": "markdown",
314 | "metadata": {},
315 | "source": [
316 | "### Načení obrázku z disku\n",
317 | "\n",
318 | "Vyzkoušíme si načíst obrázek z disku a jednoduché transformace pomocí knihoven matplotlib a OpenCV. V BI-SVZ budeme používat OpenCV hodně, takže je vhodné se s ní seznámit.\n",
319 | "\n",
320 | "Můžete se podívat na široké možnosti knihovny v její [dokumentaci](https://docs.opencv.org/master/). OpenCV je napsaná v C++, proto definice její API je zdokumentovaná taky pro C++. My budeme používat wrapper pro Python (`opencv-python`), který podporuje ty samé funkce."
321 | ]
322 | },
323 | {
324 | "cell_type": "code",
325 | "execution_count": null,
326 | "metadata": {},
327 | "outputs": [],
328 | "source": [
329 | "imgPath = 'images/metal.jpg'"
330 | ]
331 | },
332 | {
333 | "cell_type": "code",
334 | "execution_count": null,
335 | "metadata": {},
336 | "outputs": [],
337 | "source": [
338 | "import matplotlib.pyplot as plt\n",
339 | "import matplotlib.image as mpimg\n",
340 | "\n",
341 | "img = mpimg.imread(imgPath)\n",
342 | "imgplot = plt.imshow(img)\n",
343 | "\n",
344 | "plt.colorbar()\n",
345 | "plt.show() "
346 | ]
347 | },
348 | {
349 | "cell_type": "code",
350 | "execution_count": null,
351 | "metadata": {},
352 | "outputs": [],
353 | "source": [
354 | "lum_img = img[:,:,0]\n",
355 | "imgplot = plt.imshow(lum_img)\n",
356 | "plt.show()"
357 | ]
358 | },
359 | {
360 | "cell_type": "code",
361 | "execution_count": null,
362 | "metadata": {},
363 | "outputs": [],
364 | "source": [
365 | "plt.imshow(lum_img, cmap=\"hot\")\n",
366 | "plt.colorbar()\n",
367 | "plt.show()"
368 | ]
369 | },
370 | {
371 | "cell_type": "code",
372 | "execution_count": null,
373 | "metadata": {},
374 | "outputs": [],
375 | "source": [
376 | "plt.hist(img.ravel())\n",
377 | "plt.show()"
378 | ]
379 | },
380 | {
381 | "cell_type": "code",
382 | "execution_count": null,
383 | "metadata": {},
384 | "outputs": [],
385 | "source": [
386 | "# přes OpenCV (z minulého cvičení)\n",
387 | "\n",
388 | "import cv2\n",
389 | "image = cv2.imread(imgPath)\n",
390 | "\n",
391 | "cv2.cvtColor(image, cv2.COLOR_BGR2RGB, image)\n",
392 | "\n",
393 | "plt.imshow(image, interpolation='bilinear')\n",
394 | "plt.show()"
395 | ]
396 | },
397 | {
398 | "cell_type": "code",
399 | "execution_count": null,
400 | "metadata": {},
401 | "outputs": [],
402 | "source": [
403 | "# histogram\n",
404 | "\n",
405 | "color = ('b','g','r')\n",
406 | "for i,col in enumerate(color):\n",
407 | " histr = cv2.calcHist([image],[i],None,[256],[0,256])\n",
408 | " plt.plot(histr,color = col)\n",
409 | " plt.xlim([0,256])\n",
410 | " plt.ylim([0,8000])\n",
411 | "\n",
412 | "plt.show()"
413 | ]
414 | },
415 | {
416 | "cell_type": "markdown",
417 | "metadata": {},
418 | "source": [
419 | "# Zdroje pro samostudium\n",
420 | "\n",
421 | "- Python zpracování obrazu — [opencv](https://opencv-python-tutroals.readthedocs.io/en/latest/py_tutorials/py_imgproc/py_geometric_transformations/py_geometric_transformations.html#geometric-transformations), [tesseract](https://github.com/tesseract-ocr/tesseract)\n",
422 | "- Python data a strojové učení — pandas, matplotlib, numpy, scipy, scikit, pytorch, tensorflow\n",
423 | "- [Markdown cheatsheet](https://www.markdownguide.org/cheat-sheet)"
424 | ]
425 | }
426 | ],
427 | "metadata": {
428 | "kernelspec": {
429 | "display_name": "Python 3",
430 | "language": "python",
431 | "name": "python3"
432 | },
433 | "language_info": {
434 | "codemirror_mode": {
435 | "name": "ipython",
436 | "version": 3
437 | },
438 | "file_extension": ".py",
439 | "mimetype": "text/x-python",
440 | "name": "python",
441 | "nbconvert_exporter": "python",
442 | "pygments_lexer": "ipython3",
443 | "version": "3.7.0"
444 | },
445 | "varInspector": {
446 | "cols": {
447 | "lenName": 16,
448 | "lenType": 16,
449 | "lenVar": 40
450 | },
451 | "kernels_config": {
452 | "python": {
453 | "delete_cmd_postfix": "",
454 | "delete_cmd_prefix": "del ",
455 | "library": "var_list.py",
456 | "varRefreshCmd": "print(var_dic_list())"
457 | },
458 | "r": {
459 | "delete_cmd_postfix": ") ",
460 | "delete_cmd_prefix": "rm(",
461 | "library": "var_list.r",
462 | "varRefreshCmd": "cat(var_dic_list()) "
463 | }
464 | },
465 | "types_to_exclude": [
466 | "module",
467 | "function",
468 | "builtin_function_or_method",
469 | "instance",
470 | "_Feature"
471 | ],
472 | "window_display": false
473 | }
474 | },
475 | "nbformat": 4,
476 | "nbformat_minor": 2
477 | }
478 |
--------------------------------------------------------------------------------
/cells-pca.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "colab_type": "text",
7 | "id": "Q1kApdvezk6Z"
8 | },
9 | "source": [
10 | "## Connect sheet and load data\n",
11 | "\n",
12 | "- sheet data - TODO\n",
13 | "- [python sheets api docs](https://github.com/burnash/gspread#more-examples)\n",
14 | "- [pandas dataframe docs](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)"
15 | ]
16 | },
17 | {
18 | "cell_type": "code",
19 | "execution_count": 0,
20 | "metadata": {
21 | "colab": {},
22 | "colab_type": "code",
23 | "id": "eDs_CZhNzSXl"
24 | },
25 | "outputs": [],
26 | "source": [
27 | "from google.colab import auth\n",
28 | "auth.authenticate_user()"
29 | ]
30 | },
31 | {
32 | "cell_type": "code",
33 | "execution_count": 0,
34 | "metadata": {
35 | "colab": {},
36 | "colab_type": "code",
37 | "id": "sSOKw9s-zoL3"
38 | },
39 | "outputs": [],
40 | "source": [
41 | "import gspread\n",
42 | "from oauth2client.client import GoogleCredentials\n",
43 | "\n",
44 | "gc = gspread.authorize(GoogleCredentials.get_application_default())"
45 | ]
46 | },
47 | {
48 | "cell_type": "code",
49 | "execution_count": null,
50 | "metadata": {
51 | "colab": {},
52 | "colab_type": "code",
53 | "id": "s8tkAT_Ozyp-"
54 | },
55 | "outputs": [],
56 | "source": [
57 | "bunky_sheet_url = '' # TODO\n",
58 | "sheet = gc.open_by_url(bunky_sheet_url)\n",
59 | "worksheet = sheet.get_worksheet(0)\n",
60 | "worksheet_hypo = sheet.get_worksheet(0)\n",
61 | "worksheet_draslik = sheet.get_worksheet(1)"
62 | ]
63 | },
64 | {
65 | "cell_type": "code",
66 | "execution_count": 0,
67 | "metadata": {
68 | "colab": {},
69 | "colab_type": "code",
70 | "id": "nv8fMNORAP_V"
71 | },
72 | "outputs": [],
73 | "source": [
74 | "import pandas as pd\n",
75 | "from sklearn.preprocessing import StandardScaler\n",
76 | "from sklearn.decomposition import PCA\n",
77 | "\n",
78 | "import matplotlib\n",
79 | "import matplotlib.pyplot as plt\n",
80 | "\n",
81 | "matplotlib.rcParams['figure.dpi'] = 150"
82 | ]
83 | },
84 | {
85 | "cell_type": "code",
86 | "execution_count": 0,
87 | "metadata": {
88 | "colab": {},
89 | "colab_type": "code",
90 | "id": "MfVS_YVfz5ud"
91 | },
92 | "outputs": [],
93 | "source": [
94 | "# raw data\n",
95 | "\n",
96 | "data_hypo = worksheet_hypo.get_all_values()\n",
97 | "features_hypo = data_hypo[0]\n",
98 | "clean_data_hypo = data_hypo[1:]\n",
99 | "\n",
100 | "data_draslik = worksheet_draslik.get_all_values()\n",
101 | "features_draslik = data_draslik[0]\n",
102 | "clean_data_draslik = data_draslik[1:]"
103 | ]
104 | },
105 | {
106 | "cell_type": "code",
107 | "execution_count": 0,
108 | "metadata": {
109 | "colab": {},
110 | "colab_type": "code",
111 | "id": "5AEKQY6Sz_3f"
112 | },
113 | "outputs": [],
114 | "source": [
115 | "# pandas dataframe and clean\n",
116 | "\n",
117 | "def fixCell(cell):\n",
118 | " try:\n",
119 | " return float(cell.replace(',','.'))\n",
120 | " except ValueError:\n",
121 | " return 0 if cell == '' else cell\n",
122 | "\n",
123 | "\n",
124 | "# pandata_full = pd.DataFrame.from_records(clean_data)# , columns=features)\n",
125 | "\n",
126 | "pandata_hypo = pd.DataFrame.from_records(clean_data_hypo)\n",
127 | "pandata_hypo = pandata_hypo.drop(0, axis=1)\n",
128 | "\n",
129 | "pandata_draslik = pd.DataFrame.from_records(clean_data_draslik)\n",
130 | "pandata_draslik = pandata_draslik.drop(0, axis=1)\n"
131 | ]
132 | },
133 | {
134 | "cell_type": "code",
135 | "execution_count": 0,
136 | "metadata": {
137 | "colab": {},
138 | "colab_type": "code",
139 | "id": "VhW09zyB6j0g"
140 | },
141 | "outputs": [],
142 | "source": [
143 | "pandata_hypo = pandata_hypo.applymap(fixCell)\n",
144 | "pandata_draslik = pandata_draslik.applymap(fixCell)"
145 | ]
146 | },
147 | {
148 | "cell_type": "code",
149 | "execution_count": 0,
150 | "metadata": {
151 | "colab": {},
152 | "colab_type": "code",
153 | "id": "GgCpqhsW3LZ8"
154 | },
155 | "outputs": [],
156 | "source": [
157 | "pandata_draslik"
158 | ]
159 | },
160 | {
161 | "cell_type": "code",
162 | "execution_count": 0,
163 | "metadata": {
164 | "colab": {},
165 | "colab_type": "code",
166 | "id": "cqJwRBNl0W1A"
167 | },
168 | "outputs": [],
169 | "source": [
170 | "# normalize\n",
171 | "\n",
172 | "pandata_hypo_norm = pandata_hypo.loc[:, [1, 2, 3, 4]].values\n",
173 | "pandata_hypo_norm = StandardScaler().fit_transform(pandata_hypo_norm)\n",
174 | "\n",
175 | "pandata_draslik_norm = pandata_draslik.loc[:, [1, 2, 3, 4]].values\n",
176 | "pandata_draslik_norm = StandardScaler().fit_transform(pandata_draslik_norm)"
177 | ]
178 | },
179 | {
180 | "cell_type": "markdown",
181 | "metadata": {
182 | "colab_type": "text",
183 | "id": "Lz-SwUU9B4yb"
184 | },
185 | "source": [
186 | "## Try PCA\n",
187 | "[inspiration](http://bit.ly/2HkM0xP)"
188 | ]
189 | },
190 | {
191 | "cell_type": "code",
192 | "execution_count": 0,
193 | "metadata": {
194 | "colab": {},
195 | "colab_type": "code",
196 | "id": "sTmZwhIo1H2X"
197 | },
198 | "outputs": [],
199 | "source": [
200 | "pca = PCA(n_components=2)\n",
201 | "pc_hypo_raw = pca.fit_transform(pandata_hypo_norm)\n",
202 | "pc_hypo = pd.DataFrame(data = pc_hypo_raw, columns = ['pc1', 'pc2'])\n",
203 | "\n",
204 | "pc_draslik_raw = pca.fit_transform(pandata_draslik_norm)\n",
205 | "pc_draslik = pd.DataFrame(data = pc_draslik_raw, columns = ['pc1', 'pc2'])\n",
206 | "\n",
207 | "\n",
208 | "#finalDf = pd.concat([principalDf, pandata_full[[0]]], axis = 1)"
209 | ]
210 | },
211 | {
212 | "cell_type": "markdown",
213 | "metadata": {
214 | "colab_type": "text",
215 | "id": "ERRyhh2_E5vI"
216 | },
217 | "source": [
218 | "## Plot"
219 | ]
220 | },
221 | {
222 | "cell_type": "code",
223 | "execution_count": 0,
224 | "metadata": {
225 | "colab": {
226 | "base_uri": "https://localhost:8080/",
227 | "height": 635
228 | },
229 | "colab_type": "code",
230 | "id": "eexDBCO39Xyv",
231 | "outputId": "05e30c67-5f01-4bc7-e1a2-79cd14c5a8a0"
232 | },
233 | "outputs": [
234 | {
235 | "data": {
236 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAJCCAYAAABkseCpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XucVPV9//H3dxdd7nJZvO4SCHIJ\nBNGEtUlaBQ0Yk8bEEoWYS2vaJqnR/toS8zM2TZq0fVSSKM2vSVqU2JimVcFLb6ZExehikhogRLEg\noMsSd72ysNyWi8h+f3/MhdnZM3POmTlnzmVez8djH8PumTnznQsz38/3+/l+vsZaKwAAAACQpIao\nGwAAAAAgPggQAAAAAOQRIAAAAADII0AAAAAAkEeAAAAAACCPAAEAAABAHgECAAAAgDwCBAAAAAB5\nBAgAAAAA8ggQAAAAAOQRIAAAAADII0AAAAAAkEeAAAAAACCPAAEAAABAHgECACA1jDGfNsZYY8wu\nY8xZUbcHAJKIAAEA4Em2422NMfMDOt+1uc58QOebI+nvJfVKer+19pUgzltPjDHzc69z1G0BEB0C\nBACRM8Z81WunxBgzqaCjem0NmlcT2efgq8aYSVG3JYmMMaMl3SfJSPqwtfa5iJsUuOx7/6vGmK9G\n3RYA6TYk6gYAACRJf5m9fELSruiaUdb27OXhSFvh7HuSpkhaYq19MurGhGSSTr5PvhpdMwCkHQEC\nAMATa+2MqNvgxBgzUdJWSauttfdH3R4ASDoCBABAollrXxQj6gAQGNYgAEgFY8yMgrUJF7pc94fZ\n6z1R8LfCtQ2TjDFTjTF3GWO6jTHHjDEvGmNWGGPOdjn3acaYrxhjNhljDhhjjhhjnjfG/KMx5q0O\n17+raO3F4wXtcFzA6/c+Cm6XX2RsjBlljPkbY8y27O33GGMeMsb8hpfbl7nOZcaYe40xv86ed68x\nZrMx5tvGmHeXfOKczzXJGLM9e5+bjDFnVPs6e7zPwvfBFGPMHcaYzuz7YJfDbeYbY+4zxryUvU6P\nMeYxY8ynjDGNJa5vPf5cm73NLkmPF5yj+Hp3OdzPlOx74vnsa3Eg+zx+JbtmwzdjzHhjzP9k77PT\nGDOtkvMAiDdmEACkgrV2mzGmXdI8SZ+RtN7pesaYsZKuyv56R4nT/YaklZJGSTok6YSkVkmflXS1\nMWahtXaTw7lnSfqxpJbsn45KOi7p3OzPp4wxH7fWPlBws/2SXpN0Rvb3XklvFBzfHcB9FDtL0qbs\n9Y9K6pc0TtJvS1pojLnCWvtImdsPYowZLukuSVcX/PmgMgNRs7M/F0k63+P5zpe0RtKZktZKWmSt\nPSjptQBfZzfvkXS7pJHKrLs47nA/yyX9WfZXq8zrOUbSpdmfTxhjrsy2PecNZV7zUoZIGl/0t92S\nRksam/29+Pb7i9q1WNI/S2rK/umgpFMlXZD9+UNjzPv8LOY2xrxFmffeDEnPiEpRQHpZa/nhhx9+\nIv1RJj3EZj6SXK87KXddSdcWHVuS/fshSaNK3P6Ps9fpkdRU4rz7lOkAXZg9ZiRdJunX2eO/Lj6/\nMsHEzuzxbkkfkNSQPTZH0v9kjx2VNMehXbn7nl/msQd1H3slbZF0iTIdeCOpTdK27PFdufN6baOk\nVdljJyQtk9RScKxZ0sck/WPRba7N3V/R3y9RpsNrJd0j6dSgXmef76+Dkp6SNLfg+LSCf99QcN3b\nJZ2Z/fsISX+qTEBhJd3r8//Dv2Zv1ytpasHf58vD/xNJ71AmCLGSfippdvbvDZKukPRy9tgLkkYW\n3dbxPiSdJ+ml7LGfSBodxmcBP/zwE4+fyBvADz/88KOCAEHSqy4/uwuue23ReU5RZmTVSvpsifva\nnD1+W9HfCzuGPZJOd7jt2yQdy17nC0XHbsr+/Q1Jb3e47ShJndnrPORw3EuAENR9vF7i8c0uuM5v\nem2jpPcWHLvOx+t+rYoCBGU6/7nn+O8kGYfbVfw6e2hT4ftgV3EHuuB6wyTtyV7v7hLX+eOCc73T\n4/1/LXv945IWFB2bnzufyznWZK/3vKThDscv0Mng5Ua3+1BmtmZf9u+r5SPg4ocffpL5wxoEAHFz\nhstPc6kbWmuPS7oz++tnio8bY96lTCdYKp92ssJa+7rD+Z+TlKuS89Giw0uyl/dba//X4bYHJX0j\n++v7jTGnlbn/UoK6jztKPL5nlQkwpMyIsVe/n738X2vtP/q43QDGmP+jzIzBKZJustb+mbXWOrQz\nqNfZzXestYdKHFuoTFqWVHqB9D9IyqXgfMztzowxn5T0leyv11tr13psZ+E5xkh6X/bXb1prB5Wk\ntdb+StKD2V+vcTnfVZIelnSapO9I+qi19pjfdgFIFgIEALFirTXlfiRNdjnFHcrk1L/DGPOOomOf\nzl62W2u3q7SfeDh2njHmFEkyxpyqkx3qcp26R7OXDcqkgXgW8H38osztX85ejitznWLvyV4+5OM2\nAxhjlkn6f8qkKF1rrf2Gy02CeJ3d/KzMsbnZyy5r7Q6nK1hrT+jk+2Wu03VyjDEXKbOXgyQtt9ZW\nGti8Q5mUMcnb+yT/PnZo0/XKpI41SfqStfaPrbX9FbYLQIIQIABIFWvtLmVGPKWC0eVs1ZbcCPzt\nLqd5ycOxITrZiR4nqbHouJPugn+f7tKGYkHex8ESf5ekN7OXjp3GEs7MXv7ax20KvUWZ9ClJutla\n+89uNwjodXYzaJalQO65LfdaSCdfj5KvtzFmqqR/U2YR8X9J+oLXBpZpl1vbcu0qfB8X+44y/YTv\nWmv/too2AUgYAgQAaZRLc/mYMWZE7t/KLB7do5PpFQjGoDQgn16V9Fj233/hVr60QNiv84kqb+/K\nGDNO0o+UqVr0tKRrYjRK/y/Zy08bY66ItCUAaooAAUAa/bekLmUW7ebWCuTSTu7ykEN9jodjbypT\nDUjZy1xnsmXQLU4qPFZudNpJLe6jUq9mL99S4e2PKVNd5xFlct0f9bhnQrWvczVyz22516Lw+KDX\nIps29qCkqcqsVbjCWtsXULvc2pY7Vvg+LvZ7kn6gzMzGA8aYK6tsG4CEIEAAkDrZ3O9cDvdnsjnq\nuTx1L7ndl3g4tjm7WFbW2jeUqZojZSr6lLIge9mvzD4EA5qdvTRyENB9hOXn2cuKR5mttUckfViZ\nCjyjJT1sjPlNl9tU+zpXY2P2sqXUZmHZTdJy75cNDldZqUyFoCOSPmSt7Xa4TqH8zIIxxvF9osxr\nnruel/fJM7n3cbHsTMbvS/onZVLOVhtjPuLSRgApQIAAIK3uVGZ09EJlymVKmUWrjgtKi/yRMWZQ\ntSRjzHSd3HxrVdHhe7OXVxlj3u5w25GS/m/21/+21u4vusqB7OWYMu2q9j7CkqsoNMsYc12lJ7HW\nHpX0O8qk3IyS9GNjzMUe7rvS17kajyqTxiSVrmL0WUm5nbfvKTxgjPmypN9VJjD8pLV2o9wdKPi3\n4/vEWrtPJ9dmfCG7gd0Axpg5knId/XuKjxedr1/SHyoTcJ0i6d7sJmwAUowAAUAq2cwOr/+R/TXX\nyfS6aPUUZdJc2qTMaK0xZoEyHa8mZdJaVhTd5h+VKRF6iqQ1xpj3G2Masrefnb3tZGXSaf7C4T5z\nZUs/7tSpC+g+QmGtfVwng5fvGGNuMcbk01uMMc3GmD80xtzpfIYB5zomaZGk/1RmB+P/NsaUnNGp\n8nWuWHbG46vZX68xxqwwxpwhZXaVzpZs/Vb2+Cpr7S9ztzXGXK3MfgeS9Oe2/K7XhXbo5C7bf1hm\nFuEvdHJ37Yez7w0ZYxqMMR9QJjVriKQOeXiusqVm/0iZsq1DJN1tjClbHhVAwkW9EQM//PDDjwLa\nSdnhuoUbeJXdUbfovEuUGa3N7abbV3CsVwU76xad4+3KVIfJXfeITu4IbJXZ4fiqErf9RMH13sie\nZ5eknwZ4H142Y3sie52v+rm9pOGSHii4js22a1/B708X3eZaOeyknD12SsH5Dkt6bxCvs8/31yQP\n119ecP1+ZfL5jxf87ScavOv2XQXH3TYGXFJ02+8V3LZPmcpRuyTdWnS9wg3ncq/FkYLfX5T0NofH\nMz93nRKP9++zx9+U9ImgPwv44YefePwwgwAgzX6ikwsw77LeF63+Qpm69f+sTMdqiDIlI1dKmm1L\npIPYzOZls5QJeJ5WphPVpMxI7QpJs6y195e47b9I+qSknyrTIT5LmUW/LUXXq/g+wmStPWyt/Yik\nDypTsvNlSUOz7dusTMdy0KZmZc53XJlO7n3K7Fr8kDHmshJXr/R1rpq1dqmkS5UJZl5TZtbjoKTH\nlcnfX2gzG9iV4rYx4LCi61+vzGv/bPb3icq8TwakxFlrVynzPrldmfdGkzKvxdOS/lKZnbifq+Dx\n/h9lUrkaJf3AGHOt33MAiD9jbbXV6QAgnowx79TJxaTTbZm8dGPMJJ3cRXiyzdTZRwL4eZ0BAO6Y\nQQCQZn+cvfwJncZU43UGgAARIABIpexizE9kf701yrYgPLzOABC8IVE3AACCkq2c81NlFsxOyP75\nIWvtmuhahaDxOgNAuAgQAKTJEGUWbFplKv3cL+nLkbYIYeB1BoAQsUgZAAAAQB5rEAAAAADkESAA\nAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQF5dlTk1xryqTN3srqjbAgAAAASoVdJha+2Z1Z6orsqc\nGmMONDU1jZoyZUrUTQEAAAAC09HRoWPHjh201o6u9lx1NYMgqWvKlCkzt2zZEnU7AAAAgMDMmjVL\nW7duDSRLhjUIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIC8\netsHAQAAoG5Za1VPm+QmkTFGxphI20CAAAAAkFLWWh08eFAHDhzQ4cOHdeLEiaibBA9OPfVUjRo1\nSuPHj1djY2PN758AAQAAIIX6+/v16quvav/+/VE3BT698cYb2rNnj/r6+jRx4sSaBwkECAAAACm0\nf//+fHAwbtw4jRo1Sk1NTZGnr6C8/v5+9fX16bXXXtPRo0e1Z88enX766TVtAwECAABACvX29kqS\nTj/9dI0fPz7i1sCrhoYGnXbaaZKkl19+WQcPHqx5gEAVIwAAgJSx1urYsWOSpNGjR0fcGlRixIgR\nkjLpRrVeWE6AAAAAkDKFHcooFrmieg0NJ7vpBAgAAAAAIsMaBKDGOnv6tGpDl7p7D6tl7HAtaWvV\n5OYRUTcLAABAEgECUFOrN3bp5gef1Yn+k1OFK5/cqVsWzdbiua0RtgwAACCDFCOgRjp7+gYFB5J0\not/q5gefVWdPX0QtAwAAQfrRj36kL33pS1qwYIHGjBkjY4zmz58fdbM8YwYBqJFVG7oGBQc5J/qt\nVm/s0k2Xz6hxqwAAQNA+/vGPJ3qDOgIEoEa6ew+7HD9So5YAAIAwfeQjH9Hb3vY2zZ07V8ePH9dl\nl10WdZN8IUAAaqRl7HCX48Nq1BIAABCmO++8M//vp556KsKWVIY1CECNLGlrVWOD8/b2jQ2GRcoA\nANTArl278msCDhw4oD/5kz9Ra2urhg4dqre97W36u7/7O/X39w+6XV9fn77+9a9r7ty5Gj16tEaM\nGKEZM2bo+uuv144dOyJ4JOFhBgGokcnNI3TLotmDFio3NhgtWzSbUqcAgMRLUinvY8eO6dJLL1VH\nR4cuvfRSvfHGG3rssce0dOlSPfPMM7rrrrvy133llVe0cOFCbdmyRWPHjtX8+fPV1NSknTt3asWK\nFZo6daqmTZsW3YMJGAECUEOL57aqbdI4rd7Ype7eI2oZO0yL58b3wxMAAK+SVsr7qaee0nnnnafn\nn39ezc3NkqSOjg5dfPHF+sEPfqArr7xSV155pSTpk5/8pLZs2aLFixfrzjvv1MiRI/Pn2bVrlw4c\nOBDJYwgLAQJQY5ObR1CtCACQKm6lvNsmjYvlYNitt96aDw4kacqUKfryl7+s6667Tt/5znd05ZVX\nav369Xrsscd0+umn63vf+96A4ECSJk2aVONWh481CAAAAKiKl1LecTNu3DgtXLhw0N+vueYaSdLP\nf/5z9ff3a+3atfm/jxo1qqZtjAozCABSKUl5sACQdEks5f2Wt7zF8e+nnXaaxowZo3379qm3t1dd\nXZngZsqUKbVsXqQIEACkTtLyYAEg6SjlnS6xTDEyxkwwxtxqjNlujDlijNlrjNlkjPlm1G0DEG9u\nebCdPX0RtQwA0iuJpbxffPFFx78fOHBA+/bt07BhwzRmzBi1tmba3tHRUcvmRSp2AYIx5p2SnpP0\neUnHJf2HpKckjZP0ZxE2DUACJDEPFgCSLlfKuzhIiHMp7z179uixxx4b9Pd7771XkvTud79bjY2N\nWrBggSTpnnvu0aFDh2raxqjEKsXIGDNB0o8lDZP0YWvtfxYdvzCShgFIjCTmwQJAGiSxlPeNN96o\ntWvXavz48ZKkzs5O/dVf/ZUk6frrr5ckXXjhhbrkkkv0+OOP6zOf+YxWrlypESNOPqZdu3bp4MGD\nmj17du0fQEhiFSBI+pqkZknXFwcHkmStXV/7JgFIEvJgASA6SSrl/a53vUtvvPGGzj33XF166aU6\nfvy4HnvsMR0+fFif+MQntGjRovx1f/jDH+q9732v7rnnHj388MP6rd/6LTU1Namjo0NPP/20brvt\ntgEBwl//9V/rRz/6kSTlZx02bdqkd73rXfnr/Nu//ZvOOuusGj1af2ITIBhjhkn6hKQ+Sd+PuDkA\nEmpJW6tWPrnTMc0ornmwAIDaa2pq0o9//GP9+Z//uf793/9dPT09mjx5sj796U/rT//0Twdc95xz\nztGGDRv0rW99S/fff78effRRNTY2qqWlRZ/73Of0wQ9+cMD1Ozo69Itf/GLA3w4ePDjgb8eOHQvv\nwVXJWOucq1trxpiLJK2T9FNr7UXGmPdLWihpqKQdklZba1+u8j62zJw5c+aWLVuqbzCA2HKqYpTL\ng72aAAFAHejv79f27dslSdOnT1dDQ+yWnUZm165dmjx5subNm6cnnngi6uaU5Pc1nDVrlrZu3brV\nWjur2vuOzQyCpJnZy9eNMf8u6cNFx//WGPMH1tp73E5kjCkVAdRPAVugjiUxDxYAgLiIU4AwNnv5\nIUknJF0v6T5JwyXdIOlGST8wxjxnrX06miYCSIok5cECABAncQoQcvMmQyR9yVr7DwXHvmCMeYuk\nqyV9QdLHy52o1NRKdmZhptMxAAAAAPEKEAoLyzotUv6+MgHCvNo0BwAAAGkzadIkxWUNblzFacXK\nr7OXh621ux2O78penl6b5gAAAAD1J04zCL/KXg4zxjRZa4trP43LXtbHFnYAQtPZ06dVG7rU3XtY\nLWOHa0kbC5gBAMiJTYBgrX3RGPOMpDnKpBE9UnSVXGrRrwQAFXIqgbryyZ26ZdFs9kgAAEDxSjGS\npG9kL281xuS3ljPGnC/p89lfV9S8VQBSobOnb1BwIEkn+q1ufvBZdfb0RdQyAAiWMSb/7xMnTkTY\nElSqv78//+/C17MWYhUgWGvvlvQDSbMlbTXG/MgY8xNJTymTYrTSWntflG0EkFyrNnQ57rAsZYKE\n1Ru7atwiAAiHMUZNTU2SpAMHDkTcGlSiry8zaHXqqafWPECITYpRgU9J+pmkz0qaL8lK2iTpdmvt\nDyJsF4CE6+497HL8SI1aAgDhGzt2rF599VW9/vrrevPNNzVq1Cg1NTXVvLMJf/r7+9XX16fXXntN\nkjRq1KiatyF2AYLN1J1amf0BgMC0jB3ucnxYjVoCAOE77bTTdPToUe3bt0979+7V3r17o24SfBo6\ndKjGjx9f8/uNVYoRAIRpSVurGhucR84aGwyLlAGkSkNDg84880ydc845Gj16tBobG6NuEjw69dRT\nNX78eE2cODGS1y12MwgAEJbJzSN0y6LZgxYqNzYYLVs0m1KnAFLHGKPRo0dr9OjRkiRrLZuExZwx\nJvI0MAIEAHVl8dxWtU0ap9Ubu9Tde0QtY4dp8Vz2QQBQH+LQ+UT8ESAAqDuTm0fopstnRN0MAABi\niTUIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIA8AgQAAAAA\neQQIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIA8AgQAAAAA\neQQIAAAAAPIIEAAAAADkESAAAAAAyBsSdQMAIGidPX1ataFL3b2H1TJ2uJa0tWpy84iomwUAQCIQ\nIABIldUbu3Tzg8/qRL/N/23lkzt1y6LZWjy3NcKWAQCQDKQYAUiNzp6+QcGBJJ3ot7r5wWfV2dMX\nUcsAAEgOAgQAqbFqQ9eg4CDnRL/V6o1dNW4RAADJQ4AAIDW6ew+7HD9So5YAAJBcBAgAUqNl7HCX\n48Nq1BIAAJKLAAFAaixpa1Vjg3E81thgWKQMAIAHBAgAUmNy8wjdsmj2oCChscFo2aLZlDoFAMAD\nypwCdSbtewQsntuqtknjtHpjl7p7j6hl7DAtnpuuxwgAQJgIEIA6Ui97BExuHqGbLp8RdTMAAEgk\nUoyAOsEeAQAAwAsCBKBOsEcAAADwghQjoE6wRwBQXtrX5wCAVwQIQJ1gjwCgtHpZnwMAXpBiBNQJ\n9ggAnLE+BwAGIkAA6gR7BADOWJ8DAAORYgTUEfYIAAZjfQ4ADESAANQZ9ggABmJ9DgAMRIoRAKCu\nsT4HAAYiQAAA1DXW5wDAQKQYoW5R8xxADutzAOAkAgTUJWqeAyjG+hwAyCDFCHWHmucAAAClESCg\n7lDzHAAAoDQCBNQdap4DAACURoCAukPNcwAAgNIIEFB3qHkOAABQGgEC6g41zwEAAEqjzCnqEjXP\nAQAAnBEgoG5R8xwAAGAwAgRUjJ2IAQAA0ocAARVhJ2IAAIB0YpEyfGMnYgAAgPSKbYBgjBlvjHnd\nGGONMS9E3R6cxE7EAAAA6RXbAEHSbZKao24EBmMnYgAAgPSKZYBgjHmvpN+TtDLqtmAwdiIGAABI\nr9gFCMaYYZJul7RV0q0RNwcO2IkYAAAgvWIXIEj6S0lvlfRHko5H3BY4YCdiAACA9IpVmVNjzHmS\nPi/p+9baJ40xk6JtEUphJ2IAAIB0ik2AYIxpkPQ9Sfsk/d+ImwMP2IkYAAAgfWITIEj6Y0ltkj5l\nrd1TzYmMMVtKHJpSzXkBAACAtIvFGgRjzERJfyOp3Vp7V8TNAQAAAOpWXGYQvivpVGUWJlfNWjvL\n6e/ZmYWZQdwHAAAAkEZxCRA+qMzagxXGDKiMMzR7eY4x5onsvz9qrX21hm0DAAAA6kZcAgRJGiNp\nXoljQwuODS1xHQAAAABVikWAYK113HUrW+a0U1KHtfbcWrYJqKXOnj6t2tCl7t7Dahk7XEvaKBkL\nAACiEYsAAahnqzd26eYHn9WJfpv/28ond+qWRbPZlRoAANRcLKoYAfWqs6dvUHAgSSf6rW5+8Fl1\n9vRF1DIAAFCvCBCACK3a0DUoOMg50W+1emNXjVsEAADqXaxTjKy1uyQ5rk8A0qC797DL8SM1agm8\nYK0IAKAexDpAANKuZexwl+PDatQSuGGtCACgXpBiBERoSVurGhucJ8kaGwwdz5hgrQgAoJ4QIAAR\nmtw8Qrcsmj0oSGhsMFq2aDbpKzHBWhEAQD0hxQiI2OK5rWqbNE6rN3apu/eIWsYO0+K55LbHSVzX\nirAmAgAQBgIEIAYmN4/QTZfPiLoZKCGOa0VYEwEACAspRgDgIm5rRVgTAQAIEwECALiI21oR1kQA\nAMJEihEAeBCntSJxXRMBAEgHAgQA8Cgua0XiuCYCAJAeBAgA6loSKwEtaWvVyid3OqYZsX8GAKBa\nBAgA6lZSKwHl1kQUt539MwAAQSBAAFCX3CoBtU0aF+uOdpzWRAAA0oUAAUBd8lIJKA7rDcqJy5oI\nAEC6ECAACZbE/Pm4oBIQAADOCBCAhEpq/nxcUAkIAABnbJQGJBA76Vav3O7IRtIT21/Xe255TFd+\n92d68vndtW0cAAARIkAAEoiddKtXandkSbKSnnvloF7ef1RPd+3TJ+9cry/c/0ztGwkAQARIMQIS\niPz5YBRXArK2Xw9tftXxuvdt7NaH5pyti6ZOqHErAQCoLWYQgAQifz44uUpA377mAnX3Hi173eWP\n7qhRqwAAiA4BApBA5fLn2Um3cq8fKB8gvHbgWI1aAgBAdAgQgAQqlT/PTrrVOX300LLHzxjdVKOW\nAAAQHdYgAAnFTrrB+/xl0/TJO9eXPL504bQatgYAgGgQIAAJxk66wbpo6gRdPbdF923sHnRs8dwW\nFigDAOoCAQIAFPjmVXP0oTlna/mjO/TagWM6Y3STli6cRnAAAKgbBAgAUOSiqRMICAAAdYsAAQhI\nZ0+fVm3oUnfvYbWMHa4lbawHAAAAyUOAAARg9cYu3fzgswN2N1755E7dsmg2JUdRFwiQASA9CBCA\nKnX29A0KDiTpRL/VzQ8+q7ZJ4+goIdUIkAEgXdgHAajSqg1dg4KDnBP9Vqs3dtW4ReHq7OnTsjXb\ndMPdm7RszTZ19vRF3SREyC1A5v0BAMnDDAJQpe7ewy7Hj9SoJeFjpBjFvATIlOIFgGRhBgGoUsvY\n4S7Hh9WoJeFipBhO6ilABoB6wQwCUqfWiyWXtLVq5ZM7HUdRGxtMokfWC5/L7t4jjBRjkHoJkAGg\nnhAgIFWiSIGZ3DxCtyyaPeh+GxuMli2andgFyk7PZTmMFNenNAfIAFCvCBCQGlFWE1o8t1Vtk8Zp\n9cYudfceUcvYYVo8N7llHks9l+UwUlyf0hogA0A9I0BAakS9WHJy84jUpNiUey6dNBgxUlzH0hYg\nA0C9I0BAarBYMjhuz2UxK2nDrr10COtYmgJkAKh3VDFCarBYMjhuz2Uxa0UlIwAAUoIAAamxpK1V\njQ3G8RiLJf0p91yWksZN4QAAqEcECEiN3GLJ4o4tiyX9K/VcuoUMpHEBAJB8rEFAqrBYMjhOz2Vv\n3xu6d0PpWQLSuAAASD4CBKQOiyWDU/xcdvb06b5fdlPzHgCAFCPFCIBnpHEBAJB+zCAA8IU0LgAA\n0o0AAYBvpHEBAJBepBgBAAA7uNgjAAAgAElEQVQAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB6LlIEU\n6ezp06oNXeruPayWscO1pI3qQgAAwB8CBCAlVm/s0s0PPjtgE7OVT+7ULYtm18UGZgRHAAAEgwAB\nqIGwO6+dPX2DggNJOtFvdfODz6pt0rhUd5brPTgCACBIBAhAyGrReV21oWtQcJBzot9q9cau1O5b\nUO/BEQAAQWORMhAit85rZ09fIPfT3XvY5fiRQO4njrwERwAAwDsCBCBEteq8towd7nJ8WCD3E0f1\nHBwBABAGAgQgRLXqvC5pa1Vjg3E81thgUp2HX8/BEQAAYSBAAEJUq87r5OYRumXR7EFBQmOD0bJF\ns1Odg1/PwVEadPb0admabbrh7k1atmZbYGl3AIDKsUgZCNGStlatfHKnY5pR0J3XxXNb1TZpnFZv\n7FJ37xG1jB2mxXPTX+ozFxwVr/Woh+Ao6ag+BQDxFJsAwRgzXNJlkq6Q9FuS3iLphKQXJD0gabm1\n9lB0LQT8q3XndXLziNRWKyqnXoOjJKP6FADEV2wCBEkfk7Qy++/nJP2npNGS3iPpa5KuMcbMs9a+\nHlH7gIrQea2Neg2OkqqeS/MCQNzFKUA4LukOSd+y1j6X+6Mx5ixJP5J0gaRvKRNIAIlC5xUYiOpT\nABBfsVmkbK39gbX2s4XBQfbvr0i6PvvrImPMqbVvHQAgSFSfAoD4ik2A4OKZ7GWTpPFRNgQAUD2q\nTwFAfCUlQHhr9vK4pL1RNgQAUL16Ls0LAHEXpzUI5fxJ9vLH1tpjkbYEgevs6dOqDV3q7j2slrHD\ntaSNBbxAPWABPwDEU+wDBGPMByT9gTKzB1/2eJstJQ5NCapdCAZ10IH6xgJ+AIifWKcYGWNmSPoX\nSUbSF6y1z7jcBAniVgedHVUBAABqL7YBgjHmHEk/ljRWmU3S/p/X21prZzn9SOoIq73wz0sddAAA\nANRWLFOMjDHjJD2izG7K35d0Y7QtQhiog54ucVhLEoc2AACQdLELEIwxIyWtkTRT0oOSPm2tdR5m\nRqJRBz094rCWJA5tqCWCIQBAWGKVYmSMaZL0H5IulPSwpGustSeibRXCQh30dIjDWpI4tKGWVm/s\n0oLl7VrR3qGHNr+iFe0dWrC8nbQ8AEAgYhMgGGMaJd0j6VJJT0paZK19I9pWIUzUQU+HOKwliUMb\ninX29GnZmm264e5NWrZmW2BBSr0FQwCA2otTitENkn4n++8eSf9gjOPo8o3W2p6atQqhog568sVh\nLUkc2lAo6HSnwnSi7t4jrsEQZUMBANWIU4AwtuDfv1PyWtJXlQkgkBLUQU+2OKwliUMbctxG+Nsm\njfMVADsFG+WwuB8AUK3YpBhZa79qrTUefnZF3VYAJ8VhLUmt21AufSjIdKdSwUY51QRDYaVFAQCS\nJU4zCABirlTlnFsWzR7Uka3lWpJatsEtfSjIdKdywYaTaoKheqsCBQAojQABgCduHcio15LUog1e\n0oeCTHdyCzYKVRMMBZ0WBQBINgIEoAaSXrPeawcy6rUkYbfBS/rQkrZWrXxyp+P1/I7wuwUbF0wc\no5axw6sOhrw8rqhfWwBA7RAgACFzG3lPQvBABzLDS/pQkOlObsHG8sXnB/JeiVsVKABAtAgQgBC5\njbzvPnhMyx/dEfu87zR2ICsJzLymDwWV7uQ12Kg2yIxTFSgAQPQIEIAQuY283/rwdhUfjWPed9o6\nkJUuyPWTPhRUupNbsBHE4uIg06IAAMkXmzKnQBq5jbyXqk/jVg6z1uUo41DKNCjV7EQc1e7fuWDj\n29dcoJsunzFg5iCIXZXZ1RwAUIgZBCBEbiPv5ZRK24miHGUcSpkGpdr1FHGo2JQT5NqQOD0uAEC0\nCBCAEJVL3TAqPYMgOaftRFmOMi0dyCDWU8ShYpMU/NqQuDwuAKhXcSlcQoAAhKjcyPuNl03TrY/s\n8JX3HXU1oTR0INO0niJNjwUA6l2cNqwkQABCVm7kffzIJl9pO2msJlRraVqQm6bHAgD1LG4bVhIg\nADVQauTdb9oOI8bVS9N6ijQ9FgCoZ1FnCBQjQAAi5idthxHjYKRlPYWUrscCAPUqbhkCBAhAiIJe\nbMSIcXDSsJ4iJ02PBQDqUdwyBAgQgJCEtdiIEWMAANIlbhkCBAhACMJebMSIMQAA6RG3DAECBCAE\ncVtsBAAA4i1OGQIECEAI4rbYCAAAxF9cMgQIEIASqllgHLfFRvAm6EXlcdkREwAAPwgQAAfVLjCO\n22IjuAt6UXmcdsQEAMAPAgSkRlCjtUEsMI7bYqOgBflcx2GEPehF5XHbERMAAD8IEJAKQY7W3rGu\nI5AFxnFabBSkoJ7rOI2wB72onEXqAIAkI0BA4gU5Wrt6Y5fuXd9V9jp+FhjHZbFRUIJ6ruM2wh70\nonIWqSMnLrNkAOBHQ9QNAKrlZbTWi1yn1flMJxUuMO7s6dOyNdt0w92btGzNNnX29HltdiIF9VwH\ndZ6gBL2onEXqkDIDDguWt2tFe4ce2vyKVrR3aMHy9pq/vwHAL2YQkHhBjdaW67TmFC4wriRFJumj\niUE913EbYQ96UTmL1BG3WTIA8IMZBCReUKO1bp1WI+UXGLt9+TvNJKRhNDGo5zpuI+y5ReWNDWbA\n3ytdVB70+fyqt5mtOIrbLBkA+MEMAhIvqNFat07rRy9s1dXZc/ldhJqW0cSgnuuwR9grmakJelF5\nVIvU47T4u57FbZYMQLp19vSp59AxNY6a0BLE+QgQkHhBlRR167R+5uIp+d/9fvkHVdUmqhSlwvu9\naGqz1u3YrcKH4/e5DrMMrFMH+Y51Hbp42gSNbBpS9nkLelF5rReppyUQTYO4zZIBSK/c915v33E1\nnDpsdBDnJEBAKgQxWuun0+r3yz+I0cSoRoad7rfBSJdMn6CRQ0+peGQ8jBH2Uh3kfis9sX13/ve0\njqhTXjU+WIcCoBZKfe9ViwABqRHEaK3XTqvfL/9qRxOjGhku1+Fe93yP1i6dV9X9Bj3C7mWhuZTe\nEXXSWuIj7ZslAohH4RGv33t+ESAARbx0Wv1++Vc7mhjVyHDSRqTdOsiFqm1/HL4YipHWEi9p3SwR\nQHzWe/n53vODAAGokJ8v/2pHE6MaGU7aiLRbB7lYpe2PyxdDMdJa4idtmyUCiNd6L7/fe14RIABV\n8PPlX81oYpgjw+VGwpM2Il2ug+ykkvbH6YuhGGktABC+OM2u+/3e84oAAaihSkcTwxoZdhsJT9qI\ndKkOspNK2x+nLwYnpLUAQLjiNLte+L0XJAIEJE4cc7/D5mVk2O/z4nUkPGkj0sUd5ENHj6u9yrKs\nheL0xVAKaS0AEJ64za7nvvfe9a+naE/v/gNBnJMAAQPEvfMd19zvWig3MlzJ8+J1JDyJI9LFHeTO\nnr7A2h+3LwYAQG3FcXZ9cvMINY9s0usv9nQHcT4CBOTFvfMd59zvWnEaGa70efEzEl7NiHQcgs4g\nR9TLfTEYSb19b6izpy/170UAqFdJnF33iwABkpLR+Y5L7nccOryFKn1eajESHvegsxLl1jlYSfdu\n6NJ9v+xO9GMEAJSXxNl1PwgQICk+ne9y4pD77afDW6tAotLnJewp0jCDzqiDtNwXw8p1O3XP+hdV\n/Aye6Le66f7N+tWLvfrMxVNS84UBADgpzeu9CBAgKR6dbzdhj3i7dTr9dHhrOXJe6fMS9hRpWEFn\nXGYlJjeP0OhhpwwKDnKspHvWd2n1RmYTAADJQoAASclYeBnmiLeXTqfXDm+t07W85sTnHkNhAFTJ\nFKnX0fswgs64pcJ52cEyTml6AAB4QYAASfFckV8srBFvr51Orx3eWqdrecmJX72xS1aSLThcGADl\n2uPW+fczeh9G0BnkcxtEmpLXHSzjkqYHAIAXBAiQlJwV+WEsCvLa6fTa4Y0iXcstJ97p4RUHQG6d\nf7+j92EEnW7P7QO/7FbXXvcOf1BpSn52sIxDmh4AAF4QICAvKSvyg14U5LVD77XDG1W6lltOvJNc\nALR4bqtr59/v6P3k5hFaunCabn14+4A2VRN0uj23rx88poc2vyKp/OLxoNKU/OzcHIc0PQAAvGiI\nugGIl1zn+9vXXKCbLp8Ru+AgDF479LnOYGODGXC8uMO7pK110HUKrxtmupaXnPjBtzniqfPvd2Zk\n9cYuLX90x4DgwEj6/MJpurrC52BJW6ucn9nBch3+3PqLHC+P1Y/Fc1u1duk8XXNh6bbFJU0PAAAv\nmEFA3fOTCuNlliXKdC2vOfEDbzNMXXvdO/9+ZkZKjdJbSbc9ukPvn32W4/Pgti5gcvMInddymp7p\n3u/hkTnPbISRApZ5zc/TBRPHBvq6R13OFQBQnwgQUPf8dui9pDhFla7lJydeOhkArdpQftQ8136v\ngVQli4m9rgt495RmzwGCNLjDH2YKWJCve1zKuQIA6o+x1k/GcrIZY7bMnDlz5pYtW6JuCmKos6cv\n9usvvHDqWDYYDapilAuArs4uQF6wvL1k53/t0nklFzIbSX940WQ1NjTkR7q3v3pAj2/fXbKN504Y\nqRlnjcqPikvydP+SyrbVyXXzpwwIRrw+1igloY0AgHiZNWuWtm7dutVaO6vaczGDAGSlYUfEzp4+\n7dzdp4unNmvf4eMaM+JUzThzVH7E2SkAyqWxvP3s0drcvb/sguLFc1u1++CxAQuPraSVT3YOaIfb\nOoEXdh/SC7sPScqMil80tdnzjIOfhcFOuf9JqNiVhJ3NAQDpRYAABMTLTsxe88kryT13Gt1vbDB6\n/9vPzN/WS1qPkXRe62l6z5TmQbMonT19gxYeO/FbSam9zGyDNDhNqDiV59DR42rfsXtAOddyHf64\nV+xKws7mAID0IkAAAuCWL+4nn7yS3PNKSneWW0j8vy8d0LeWXDDoNuVGtp0YeQsW3K7jtC6geMbH\nb4pYnGeMkrCzOQAgvShzClTJrXP+5PO7yx4vLMPpdq7ikp05lZTurOQ2fsuozp9xuq6bP0VXzDlb\nUyaUH52vtERoZ0+flq3Zptse2S5rpaULpyW+RG+UpXIBACBAQORyHbwb7t6kZWu2lewEx5VbR3v5\nIzs8d8QrrdFfSUpKJbfxW0Z1X98b6tp7WOeMGaa3nTWq7HXnT5/gusdEsdUbu7RgebtWtHfooc2v\naEV7hxYsb/e9l0HceN1zAwCAMJBihEhVU8oxLjXi3Trarx086nL7IwX/riz3vJKUlEpu47eM6q+6\n9ulXXftcr9fYYPSVKzJFF7ymCQW5I3IcxX2dBABgsLj0TapFgIDI+O3gFf6nO3TsTa0rWpQaVY14\nt472GaOG6uV9pYOEwo54pbnnfjZ783ub4g+7pQunafmjpWdF/GowGjAq7nVdQD1U+onzOgkAwEBp\n2r+GAAGR8dPBc/pP53SbKEaO3TraSy+bpmu/v8FT572Sjr5UunRng5Eumtqs2x7ZPmgkw0u5z1KV\nkT6/cJq6eg9rQ2evJGnGWSM1euipOnjsTXXvPexp1qDwMV9dwQcnlX4AAHGRtlltAgRExmsHr9R/\nOidRjByX62jfeNk0/eyFPZ72GHA7l1vueanSn08UlBAtHskol8ZS7sPum49sl5HyMzgv7D6kxgaj\nWxbN1rodu30FCIeOnfB83UJU+gEAVCuolKC0zWrHLkAwxgyTdLOkj0qaKGmvpB9L+rK19qUo24Zg\nee3g+S2tGcXIsVNHe2TTEN1atEC53B4D5c71ninj9bMX9uiGuzeV/QDLpaTkduItftqcRjJKpbGU\ne96tHVyaNHfuxXNbyj9ZRSrtyFc62wIAgBRsSlDaZrVjVcXIGDNU0k8kfVnSSEn/IalL0qck/coY\n89YIm4eAeS3l6Le0ZlQjx7mO9revuUCL57Y65unn9hjwWqP/29dk9iK49vsbfFXqqbQaUiG/z3vu\n3JJKvq7FqunIU+kHAFCpSsuKl5K2We1YBQiS/kLSuyT9j6Rp1tol1trfkPR5SRMk/VOUjUOwvHbw\n/JTWjMvIcRAddKnyD7AgRjL8ljTNOXTshOPrWqxUR95P2dvFc1u1dum8/F4L182forVL51W0pgEA\nUD+C+p7OSdv+NbFJMTLGnCrphuyv11trD+WOWWuXG2N+T9I8Y8w7rbW/jKSRCJyXUo5L2lp1e3uH\n6267cRo5DmqqsdKcxiBGMvyWNC08d6k0qZ937ClbsrOS6d64V/pJS8k7AEiToFOCqllDGEexCRAk\n/aak0yR1WGt/5XD8fknnSbpCEgFCirh18CY3j9CN75uubz683fG4kfTRC1v1mYunxOY/YFBTjZV+\ngPnJzy/VgS1XGUnSoPUNxed2el0vmjqh5GNJWwUIKV0l7wAgTcJICUrT/jVxChDmZC83lTie+/t5\nNWgLYub6S86VkfTNh7c7VgIKKqUkqNHeoBbQVvoB5nUkw60DW+rDbsOuvYGOknT29OnPVj1ddrZk\n5bqdGj3slMSMxKcx4AGAtAir0EXcZ7W9ilOAMDF72V3ieO7vb6lBWxBDn7vkXL1/9lmhReZBjvYG\nNdVYzQeY20iGnw6stZK1VtZ6O7cfXva4kKR71r84IDiM+0h82kreAUCapC0lKGhxChBGZi9L5VTk\nViqOcjuRMWZLiUNT/DYK8RJWZB7GaG8QnehqP8DKPV9eOrCTm0eUDZqqfS06e/r0xQc2O6YrFStV\nVjWuI/FpK3kHAGmTppSgoMUpQAAiE9ZobxABjZcPsEpSo9w6sNtfPag71g2evQiyY/61/9riKTgo\nJciR+KAXE6et5B0ApFFaUoKCFqcAIVe1qNS3au6b+qDbiay1s5z+np1ZmOm/aUi7uIz2llswXOoD\nbPXGrkGj8Hes69Cyj5xXNv3GrQPb2/dGqCkynT19A3Z5LsVo8OxBoSBemzAWE7ORGwAgqeK0D8KL\n2ctS27Dm/v7rGrQFdSYOo72rN3ZpwfJ2XxuilUrR6bfSFx/YXHYPAbeazacNP6Vse6vtmH/tv0pl\nAp50wcQxWtJWviNd7WsT9GY5OWzkBgDx5Ge/nXoVpxmEZ7KX7yhxPPf3zTVoC+rMb547vuReC7UY\n7a10DcQd6zpKpuj0W2nlup3620WzHY+7rW/o2F1+hL+ajnlnT5/aXWYPjKTli8+XJN33y+7QRuLD\nXEwcdn4reywAgD+Un/YmTgHCzyTtlzTFGHO+tfbpouNXZS//q7bNQpJ19vTpjnUdWt/ZK8mqbdI4\nfXbewP0Sch8WpYKDWoz2VtpJzTyu0tY+95r+Vs4BgiS1TRqnq9/Zog279srI6MLJ4/Tpi9+qyc0j\n8s+dU7MajKr6IF21oct147vWcZkAJOxKE2Gnl4WV38qXHAD4Q/lp72ITIFhr3zDGfEfSlyR91xhz\nmbW2T5KMMUuV2f+gnV2U4ZVTbn7H7j7du6FL86dP0MimIRo1dIhWbehy7AQbSXd9qq3s5l5BqbyT\nWr6b/frBY+rs6XP8wHPqYHbu6dP5E8ecLG/q4V7DWCAtSS/uPaIFy9vzHd6wRuLjkF7mF19yAOAf\n5ae9i02AkPU3khZIeo+k540xTyqz78FvSNot6fcjbBsSxK18ppfFsVbSzzv21CRAqLST2jZpnDp2\nl8+ddPrA89LBXLWhK7/vQTFr5akMaunHU/7xOrUnrJH4JC4m5ksOAPyLS0GSJIjTImVZa49KukTS\nXyuzH8KVygQId0l6h7V2Z3StQ5KUmhXwq1YfFm4Lhkt1Un/7vLNcz+30GLx0MN0+SLe9erDixb3l\nHm+p9oQliYuJvZSoZQEeAAyUxBnjqMQqQJAka+0Ra+1XrLXnWmubrLVnWWs/Za0ttcMyMIiXFBYv\navVhUWkn9Wcv7HE9t9Nj8DKK4vZBuuWl/a5BRimlHm+59oRp8dxWrV06T9fNn6Ir5pyt6+ZP0dql\n83R1DGcPJPcvuce3ve6rGhYA1INKB+PqUdxSjFDngqrK4jWFpZxaf1hUsiHa9lcPlD2nkfNiYi+j\nKIvnlk69kTLrG8px69QXPt5Ht7ymF3YfKnndWgRqtdgsJ6j3d7m0KCl5u04DQC2EXfQiTYwtlWSc\nQsaYLTNnzpy5ZYt7/XXUntOi2cYGU1FVls6ePr33ticqTjPKfVjEaQTZ6flx20TskukT9P1PXTjo\n7509fVqwvL1k3v3apfM0uXmE4316dd38KZ473F7bk2SVvL/LBRSVvB/8vCYAkFadPX2hlZ+O0qxZ\ns7R169atpTYM9oMZBMRC0FVZJjeP0LKPnFd2oXKhBpMZlT107EQsPyxKPT/lHlqDkb5yhfNnhNdR\nlNwo/9JVT+tXXft8tXlUk/ePl7SP6lTy/nYrY+o04/TcKwfKLsBnAR4A1GbGOOkIEBALYVRlyXWg\nVq7bqfW79kqSxo84RRt29Q4IGsKeLQgiraTc8yMNHjluMNLF0ybotke2l7xPr6VDJzeP0Dljh/kO\nEG57dIfeP/ssT4+1s6dPO3f36aKpzdp/+LjGjjhV088cFbtArVJ+399eA4riL7lla7aFtrkdAKB+\nECAgFsIqPTa5ecSgnYRrObUY1GZWbs/P/Bmna8aZo9Tde0SHjh5X+47dAzqKpe7T6yhKJWs6TvRb\nLV31tM4ZO6xsYFQq9ebyt5+ZiuBA8v/+rjRgTmLJVgBA/MSuihHqUy1Lj+U6xd++5gLddPmM0Dqh\nbqPAfkpPuj0/M84cpZsun6GlC6dp3fM9g9KqKrnPQn7Kkhb6Vde+spV0gnyO4szv+7vSgDmJJVsB\nAPFDgIBYSFrpsc6ePtc6815Ggb3y+vwEeZ+FSnU8/YQMTp3+Stvr5fmPE7/v72oC5qSVbAUAxA8p\nRghUpfn2SVqk6jVtKMi0Ka/PT5i7RDqtWXjPlPG69vsbPFc5Kk6PqaS9QaVt1ZLf93e1qUIswAMA\nVIMAAYGptuPmddFslPxUowk6bcrL8+N2n1tf3q9la7ZVXH/fqePp1PEtp7DT7/c5CrraVS35eX8n\nKWAGAKQPAQICEVTHLe4jn24pMSvX7dToYaeou/ewRjYNUYORY5nVxgaj90wZr+v/9Zf62Qt79Ga/\nVeu4YfrzD7xNF02d4Hj+4tkZp86l2wZaHbv71NHeMShw6+zp0x3rOrS+s1eSVdukcfrsvCmeXrPi\njm/33sNlKx4Vdvr9jpSHUe2qlvy8v5MQMAMA0okAAYFIesfNK7eUmHvWvzig3KgxGhQkNDYYfeQd\n5+iTd64fcNvnXjmoT965XlfPbdE3r5oz4JjX2ZlSI8/FCgO3Dbv2DtovomN3n1Zt7NLXP3Ke6+zP\n4MClpWTaUXGn3+9IeZgpVHEU94AZAJBOBAgIRL103NxSYoq7xNZmgoSPXThRB4+9mc/b/92i4KDQ\nfRu79aE5Z+dnEp58frduun/zoHOf6Le66f7NWvPsK5p+5uh82lDhyPOjW17TC7sPOd7PiX6rO9Z1\naNWGLsdZDmulLz6wuezsT6nAZdE7ztGDm17y1On3M1Jey2pXAADUKwIEBCKojlsQm4qFyS2Fx0m/\nlU4bfkp+P4Zla7aV3QFZkv72v5/Tmj+ZkJl5cQgOcqykx7fv1uPbdw+YUciNPHftPVwyQJCkDZ29\nZXea7rcqOftTLq3swU0v6a5PtennHXs8pcd4HSmnzj8AAOEjQEAggui4JaE6TamUmOKdjIsVzqC4\nzbZImXSj7z7+gpY/usM1mMjJzSicddrQ/OyDW+DWc+iY63kf3fKaY+feLa3s5x17Ak+PYfEuAADh\nI0BAIKrtuAVZnSbsWQinlJjevjd074bSewwUzqB43ZX41oe3ew4Ocqyk371zvb5+VWbtgNuMx74j\nx13P+cLuQ1qwvF23LJqttknj8s/tc68cLHu7sNLKWLwLAEC4CBAQmGo6bkEtcq7VLERxSkxnT5/u\n+2W3pxmUJW2tur29w7Xz7zc4KLxdYVDltwypkxP9Vl98YLMk56pMTsJcD1CLxbtxT3cDACAsBAgI\nVLmOW7kOVxCLnKOske9nBmVy8wh9/arz9H/v3xxKW6SBQZXfMqSl+IkvjKR9h9/QDXdvSmTn2inQ\nvL29Q19433R97pJzI2wZAADhI0BATbiN7AexyDnqUqt+ZlBy1/3df/qFuvaGk4pTGFQVBm433L2p\nogDBDyvpnvUnU67itpaknFKBppX0jWza1/UECQAQGGZs44cAAaHzMrIfxCLnOJRa9ZP6smHXXr0U\nYptaxg5z/ND1ugYiSEnY6TinXKApZdaGfGD2WbF9HHzRAkiSJBQoqUcNUTcA6edlZD+XotPYYAYc\n91OdJkk18nNBU6XLAhqMNKdldNnjv/x1ry699QmtaO/QQ5tf0Yr2Di1Y3q5RQ4cMep5rIfdax51b\noGml2D6O1Ru7tGB5+6DXPK7tBVDf3AYQO3v6ImoZCBAQOq8j+4vntmrt0nm6bv4UXTHnbF03f4rW\nLp2nqz2OICxpay3Z8Y1bjXy3UWonF0wcoyvmnK1LpmdKmD7TfcDxesZkOrHrO/c6bq62/NEd+vzC\nab6ChKDiiV+92BvMiULkZYYljhv/8UULIGm8DCAiGgQICJ2fkf1cis63r7lAN10+w1dqRBCzELXi\nZS+EQo0NRssXn6+lC6dp3fM9jjMPRtIHzzsrsydDmdjjRL/VwWNvDgjGLmgdU/b+p58xylM73eKI\np3bu1Rfuf8bTuaKypK3V9XHEaTYqhy9aAEkTh9RgOGMNAkJXy91vk1Ij3886gMIAZ9mabSU7gVbS\nS71HPKUtdfce8bVwef/R8vslnD1mmD58/tl6z5Txuvb7G8rOjty3sVsfmnN2fjM3r2qVWz+5eYS+\n8L7p+sbD2x2Px202KocvWgBJk6TU4HpDgIDQ1Xr321zHN9ehvO2R7ZEt1izVqS0XNDUY6aNtE3Xw\n2JuDAhy3TuBrB496alfxh67bh/QZo4bq5X2lz/3h88/OBxu3LJrtWsJ1+aM7fAUItV7E9rlLzpXV\n4M3q4jgblcMXLYCkqQQfplEAAB7ISURBVOUAIvwhQEBN1HpkP+wOpZfRbLc2lAuaSq27cOsEvnnC\nffrA6UPX7UN66WXTSs4MFJ9v8dxW3frjbXr90Bsl2/DagWOu7cyJan+L6y85Vx+YfVbsZ6Ny+KIF\nkDS1HkCEdwQIqJla7H4rhd+h9BJ8eGlDJUFTuU6gJL1+sHzHu8HI8UPX7UP6oqkTfH2Inz12eNkA\n4YzRTZK8BVpR7W9R3LY4BwcSX7QAkikpqcH1xthyqxlTxhizZebMmTO3bNkSdVMQomVrtmlFe0fJ\n49fNn1Jxh7Kzp08LlreXHKVdu3Refq1AWG1wClDcGEnzp0/QV66YVfZDt7Onr+yHtNvxnCef361P\n3rm+5P388A8u1Cv7jzp2ZotneW64e5Me2vxKyXNdMedsffuaC0oer4TTc+zUtjjy+hoBANJl1qxZ\n2rp161Zr7axqz8UMAlInzMWaXkezw2xDbrRl6aqnyy4sHjPsFI0eeopGDh2iM0Y3afqZpfdNyHGb\n5fE6C3TR1Am6em6L7tvY7dD+FrWMHe6YsuQ0y1Pr3PqoUpqCUquZOgBAelHmFKkTZIeys6dPy9Zs\n0w13b9KyNdu0/VXnvQdych3/sDu1k5tH6ByXc+w7clwv9h7W1lcO6PHtu2u+adY3r5qjH/7Bhbpg\n4hidPWaYLpg4Rj/8gwv1javm+CrJWev9LSgXCgCod8wgIHWCWqzplGbitT6+3zZUUsLTT6nUnFqP\ngl80dYJjtSI/Myy53PovPrB5QAnXUuspquW2mRvlQgEAaccMAlIniA3TSqWZlMv6L+z4+2nD6o1d\nWrC8XSvaO/TQ5lc8j/SXG1kvJw6j4EHNsAS9guoL9z+jX3TuLXsdyoUCANKOGQSkUrVVEcqlmUiZ\nmQS3+vhe2lBNvnupqjVeVDMKHsSGZX5mWHLPUfFV+60CnQ158vndjmsmyrUNAIA0IkBAalWzWNMt\nBWb+jNM148xRrsGHWxuqLeFZGIQ8uuU1vbD7UNl251Q6Ch7U/hJ+SnLWqszpbY/scL2O35SmWu3+\nDABAkAgQAAduKTAzzhwVSKc0iGpHuSBk8dzWkiVYC1U6Ch50dR+vszxhVoQq9PqB8rtQnz6qqeQG\ndk5qvfszAABBYQ0C4KBWlXOCrHZUat1DodwIvaQB1Zk6e/pczx9GdZ9ccPPtay7QTZfPcAwwalXm\n9PTRQ8sed6saVcgtmPLyfAMAEBUCBMBBEAudvQg6EMns0NyicyeM1LkTRuqD552pj104UVfMOVsf\nu3Cirn5ni/7lqV/r0luf8L0oulYj+cVqFax9/rJpZY8vXVj+eCFKpQIAkowUI6CEWmz/7icXvzCf\nfdTQIbJWOnTszXxu+4Zdewedp3NPn27JzhiUW8zsJU3I70h+UPn3k5tHaNE7znFcQPyRd5wT2Ovh\ntrmbU7nWUqIKpgAACAIBAlBGLXal9RKIOOWzF7pjXYesJFt0+ES/1Rcf2CxJg6oAFXNb8Oun8lCQ\n+fedPX16cNNLjsce2PSSrpt/bmBBwjevmqMPzTlbyx/dodcOHNMZo5u0dOE0X8GBVPvdnwEACBIB\nAhAD5QKRUvnshcp1/v1UQC03su11tsPLYmZJnmcXalXFKKfU5m5+BLVZHwAAUSBAQCqlqbyk254M\nQcqNbOeev22vHtC+w8c1dvgpmn7maC1pa9XapfPKzna4dej/6r+2aN3zPZ5nF5KYruMndQwAgLgh\nQEDqpK28pFsHOSi5ke3VG7v0xQc2D5p5eHz77vzzWG7E3q29T2zfPWgH5HJrIJKarlOLNSwAAISB\nAAGpEnSt/jhw6yC7yRUAKjcJ0dhgdONl03THug7ds750hZ0gFjOXakapdKGg03VqObtUizUsAAAE\njQChjqQp7aaUWuerB6Xca1Oug1zIKRDIpbRYDa5iZCTNaT1N757SrJFNQ3TrIzs8pTJVs5jZqHSA\nIDmnCwWZrpO22SUAAMJAgFAn6qVjVIt89aADLafX5vb2Ds2bPkF/ecWskh3kQrkZgF/vOawNu/bK\nyOjCyeP06Yvfmm9bqXSXzp4+TzswF6p0MfPFU5v1+PbdJW9bKl0oiHSdNM4uAQAQBgKEOlBPHaNq\n8tW9dPyDDrRKvTZWmVz99u1PaN70CRrZNERXv7NFDcbo4LE3NappiKysDh07oZaxwxxnAHb2HNLL\n+49oZNOQ/ONxGvWvZBG0W95/qQ69JK173jkYcUsXqjZdJ6mzSwAA1BoBQh2op45RpfnqXjr+QQZa\nuWDk0a2vlu2c5wKFnAYjXTxtgqy1ahk7XJ+5ONM2pxmAfjvwtqUCmW2vHvDU5hyvef+lOvRRVfdJ\nYjUkAACiQIBQB+qpY1RJvrrXjn9QgZbbpmflOHX6L5ra7HntQHEgs3pjl9rLpPwUazCquiMfVXWf\npFZDAgCg1ggQ6kC9dYz8dkC9dvyDCLS8bHrmx4l+66uDX/h4cm3x2pJLpk/QV7JrIqoVRXUfNi8D\nAMAbAoQ6UI8dIz8dUK8d/yACrTA2PfN7ttzj8dKW81vH6N1Txqeifj+blwEA4A0BQh2gY1Se145/\nEIFWWJueuZUPLZR7PG5tuXTG6fqna9uqalfcSuuyeRkAlBa3z2xEhwChTtAxKs1rxz+IQKvaTc9K\nmT99gtY93+M6I1D4eNzaMv3MUVW1KS6ldZ2+8NKyKB8AghKXz2zEg7E22HSHODPGbJk5c+bMLVu2\nRN0UxIzTB2Ou43910QdjZ09fxYFWuT0HGhuM7vpUm37esUfdvUd06Ohxte/YXXYH5Nzt1i6dl38c\n2149qI7XD+rFvUcGXa/w8bi1Ze3SeRUHkGGe249SrytfeABwUlw+s1GdWbNmaevWrVuttbOqPRcz\nCEi8IKZEy9XtX7Zmm7p7D2vU0CGyVjp07E21jB2upQun+b4ft1mIi6ZO0EVTJwx4bLk2OQUMxbMX\nk5tH6I51A2dDjDIzDMULjMNMPYtDad162v8DAKoRh89sxAsBAhItyCnR4oXNbuVIK70fP+lexW0q\nN3tRbtO1dc/3VN0WP+JQWpcvPADwJg6f2YgXAgQkVpgjxF7KkVZzP5WW+Sx3u0o7xGGUHI1DaV2+\n8ADAmzh8ZiNeGqJuAFApLx3iMM4d5P0EKU4d4iVtrWpsMI7HalValy88APAmDp/ZiBcCBCRWmB1i\nP+VI4zISHacOcW59Q/EXTi1L6/KFBwDexOEzG/ESixQjY8wMSR+WdLmk2ZJOk7RH0s8l/Z219skI\nm4eYCrND7KccacvYYbGoHb2krVV3rOtwrHoURYc46tK67P8BAN5F/ZmNeIlFgCBpraRzJB2S9JSk\nvZJmSvodSVcaY5Zaa78VYfsQQ2HuEF3u3MX3M7JpyKDycFHUjt6wa6/jZmkNRpF1iMNY31DILTDj\nCw8AvAv7MxvJEYt9EIwxayX9QNJ91tqjBX//rKQVkk5IOs9au7XK+2EfhJTxs39BEOcu1NhgdONl\n03TrIzsirx1droZ1g5Ee+/z81HWK2eMAAICTUrcPgrV2QYm/326MWSTpMklXS/paTRuG2AtzhLj4\n3KOahsjK6tCxE/n7iUspzXLt6LdKXUlP9jgAACA8sQgQXDyjTIBwdtQNQTyFOSXqdu64VA6KSzvC\nVJhO1N17JBaBGQAAaZSEAOGt2ctXI20F4CAulYPi0o6wuKV7FUtDQAQg/eJQ4AJwEusAwRgzRdIH\ns7/+p4/blVpkMKXqRgEFwlwoncR2hMHLpnXFkh4QAUg/p4GPKApcAE5iuw+CMWaIpLskNUlaZa39\nZbQtAgaLS+3ouLQjDF43rcspDIg6e/q0bM023XD3Ji1bs02dPX1hNRMAPHNbR8VnFaIWyAyCMebf\nJL3N581+11q7vszxv5f0W5J2SvqcnxOXWr2dnVmY6edcgJu4lNKMSzuq4TTd7mfTusKAiNE5AHEV\nlwIXQClBpRhNljTd521KJk0bY74k6TpJr0l6n7V2bxVtA0IXl9rRcWlHJUp16C+a2lz2dhdMHKOW\nscMHBERUOQIQZ/VQWALJFkiAYK09P4jzSJIx5o8k/Y2k/ZIut9a+ENS5AcRTuQ79uh271WBUcofo\n5YvPH9TZZ3QOQJylvbAEki9WaxCMMR+V9F1JhyX9trX26YibBKAG3PZxmDdtgq/1FYzOAYizJW2t\ngz7TcpJeWALpEJsqRsaYD0j6Z0lvSvoda+3Pann/lBoDouPWoR859BStXTrP8/oKRucA1JLfPkSu\nsITTbvBJLyyBdIhFgGCM+U1J90sykhZbax+p5f2zmBGIlpcOvZ/1FWku+wogXirtQ6ShsATSKxYB\ngqSHJA2T1CnpSmPMlQ7X+am19ntB3zGLGZFWSZoVC7pDz+gcgFqotg+R5MISSLe4BAhjspeTsz+l\nBB4gsJgRaZS0WbEwOvSMzgEIG30IpFUsAgRrrfNKnRpgMSPSJqmzYmF06BmdAxAm+hBIq1gECFFi\nMSOSzCmNKMkjWnToASQJfQikVd0FCK/sP6pla7bl87FZzIikKpVG9PazR5e9XRJGtJK0fgJA/aIP\ngbSK1T4ItXDo6Jta0d6hBcvbtXpjVz732U+NdSBq5dKINnfvL3vbIEe0Onv6tGzNNt1w9yYtW7NN\nnT19VZ9z9cYuLVjerhXtHXpo8ysD/r8CQJzQh0Ba1d0MQk5hPjaLGZE05dKIrDL1gp2OBjmiFcZC\n6KSunwBQv+hDII3qNkCQBuZjk/uMJHFbGHde6xj970v7QyvxGVZHPsnrJwDUL/oQSJu6DhCkZORj\nA8XcFsa9Z8p4fWvJ+aGNaIXVkaciCAAA0av7AIEKA0giLwvjwhzRCqsjT0UQAACiV3eLlAtRYQBJ\nFfXCuLA68kvaWgc9phz+vwIAUBt1O4NAhQEkXZQL48Iq7RfGjsoAAMCfugsQRg0douvmT6HCAFIh\nrDQit30IwuzIUxEEAIBoGWudFxqmkTFmy8yZM2du2bIl6qYAseVUvrSxwTiWL+3s6aMjDwBADMya\nNUtbt27daq2dVe256m4GAUBpfsuXUtoPAID0qetFygAG8lK+FAAApBszCADy2IcAQNK5raEC8P/b\nu/cgvcr6DuDfX6JiEqRGohVJlJBRUSaKmqDVabVeWkbb0WYsqB2EGey0te1Yb0XGS1GnQjvVQVud\nDtRLKx2H1AFtdbRaFaQtKrEOUkcFIdKNl8rW4CWBiOHpH++7x5hssrnsvufNvp/PzM7JOee9fHd4\nE/a753nOMzcFAehYhwA4ms02h+qya2+ddQ4VsH+GGAEd6xAAR6u55lBtnd7RUzI4+igIQKfvBdgA\nDpc5VDB/DDECfs6B1iEwthcYV+ZQwfxREIB9zHb7UmN7gXFmDhXMH0OMgDkZ2wuMO3OoYP4oCMCc\njO0Fxt3+5lAtqeSXH74qb/3E13Pxx77mFxpwEAwxAuZkbC9wNNh7DtWP77o719x0e67++u3dYwyN\nhLm5ggDMydhe4GgxM4fqFc96RD5783T2vvhpaCTMTUEA5mRsL3C0MTQSDp+CAMzJ+gjA0cbQSDh8\n5iAAB+VA6yMAjBtDI+HwKQjAQZttfQSAcXTWxjW57NpbZx1mZGgkHJghRgDAomNoJBw+VxAAgEXJ\n0Eg4PAoCALBoGRoJh84QIwAAoKMgAAAAHQUBAADoKAgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0\nLJQGAMBB2Tq9I1dcP5Vt23dm9crlOWujlakXIwUBAIA5bd4ylQuuvDG772ndscuuvTUXbVqfMzes\n6TEZ880QIwAADmjr9I59ykGS7L6n5YIrb8zW6R09JWMhKAgAABzQFddP7VMOZuy+p2XzlqkRJ2Ih\nKQgAABzQtu075zh/54iSMAoKAgAAB7R65fI5zi8bURJGQUEAAOCAztq4JkuX1Kznli4pk5QXGQUB\nAIADWrtqRS7atH6fkrB0SeXiTevd6nSRcZtTAADmdOaGNdl40gOyectUtm2/M6tXLsuZG6yDsBgp\nCAAAHJS1q1bk/DNO6TsGC8wQIwAAoOMKAgBMuK3TO3LF9VPZtn1nVq9cnrM2GjYCk0xBAIAJtnnL\n1D4r5F527a25aNN6d6aBCWWIEQBMqK3TO/YpB8lgZdwLrrwxW6d39JQM6JOCAAAT6orrp/YpBzN2\n39OyecvUiBMB40BBAIAJtW37zjnO3zmiJMA4URAAYEKtXrl8jvPLRpQEGCcKAgBMqLM2rtlnZdwZ\nS5eUScowoRQEAJhQa1etyEWb1u9TEpYuqVy8ab1bncKEGtvbnFbV65O8abh7dmvt8j7zAMBidOaG\nNdl40gOyectUtm2/M6tXLsuZG6yDAJNsLAtCVT0yyWuTtCSzX/sEAObF2lUrcv4Zp/QdAxgTYzfE\nqKoqyaVJ7kjyzz3HAQCAiTJ2BSHJS5L8SpJXZlASAACAERmrglBVD07yl0k+1Vr7x77zAADApBmr\ngpDkHUmWJfmDvoMAAMAkGptJylX1G0l+O8mftdZuPsLX+sp+Tq07ktcFAIDFbiyuIFTVsUneleSm\nJH/RcxwAAJhY83IFoaquSvKoQ3zai1trXxj++S1J1iR5Rmtt15Hmaa2dOtvx4ZWFRx/p6wMAwGI1\nX0OM1iZ55CE+Z3mSVNXpSf4wyftba5+epzwAAMBhmJeC0Fo77Qie/uwMhjqtr6qr9zo3s2rLa6vq\nJUk+3lq7+AjeCwAAOICxmaSc5EAl45Th1zdHEwUAACZT75OUW2sXttZqtq8kfz982NnDY+f2GBUA\nABa93gsCAAAwPhQEAACgoyAAAACdcZqkvI/hnINze44BAAATwxUEAACgoyAAAAAdBQEAAOgoCAAA\nQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAAHQUBAADoKAgAAEDnXn0HAFhoW6d35Irr\np7Jt+86sXrk8Z21ck7WrVvQdCwDGkoIALGqbt0zlgitvzO57WnfssmtvzUWb1ufMDWt6TAYA48kQ\nI2DR2jq9Y59ykCS772m54Mobs3V6R0/JAGB8KQjAonXF9VP7lIMZu+9p2bxlasSJAGD8KQjAorVt\n+845zt85oiQAcPRQEIBFa/XK5XOcXzaiJABw9FAQgEXrrI1rsnRJzXpu6ZIySRkAZqEgAIvW2lUr\nctGm9fuUhKVLKhdvWu9WpwAwC7c5BRa1MzesycaTHpDNW6aybfudWb1yWc7cYB0EANgfBQFY9Nau\nWpHzzzil7xgAcFQwxAgAAOgoCAAAQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAAHQUB\nAADoKAgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0qrXWd4aRqaofHnPMMfdbt25d31EAAGDe3HLL\nLdm1a9ePWmvHHelrTVpB+G6S5Umm+s4yYWYa2S29pmAc+Cwww2eBPfk8MMNn4fCtSbKztfbgI32h\niSoI9KOqvpIkrbVT+85Cv3wWmOGzwJ58HpjhszAezEEAAAA6CgIAANBREAAAgI6CAAAAdBQEAACg\n4y5GAABAxxUEAACgoyAAAAAdBQEAAOgoCAAAQEdBAAAAOgoCAADQURAAAICOgsDIVdWKqjq7qv66\nqj5fVbuqqlXVhX1nY2FU1bKqelNV3VRVd1XVt6vqPVV1Yt/ZGJ2qekJVvaaqrqyqbcO/9xbjmUBV\ntbyqnldV766qrw//XdhRVTdU1Ruq6ti+MzI6VfWK4b8LN1fVD4Y/F9xWVf9QVev7zjeJLJTGyFXV\naUm+NMupN7bWLhxxHBZYVd03yWeSPCnJd5Jcm+SkJKcnuT3Jk1prt/YWkJGpqg8lee7ex1tr1UMc\nelRVL0ly2XD3q0n+O8lxSZ6c5H5Jvpbkqa217/WTkFGqqukkK5J8Ocm3hodPTfKIJHcn2dRa+0hP\n8SbSvfoOwET6UZJ3J7l++PWcJG/qNREL6XUZlIPrkvxaa+3HyeA3RknemuQ9SZ7WWzpG6boMfgCY\n+bv/zSTH9BmI3tyd5NIkl7TWvjpzsKpOSPLRJI9LckmSF/UTjxF7bpIvttbu2vNgVb00yTuT/F1V\nrW6t/bSXdBPIFQR6V1WvSXJRXEFYdKrqPkm+l+QXkjy+tfalvc7fkOQxSTa01r7YQ0R6VFV3JTnG\nFQT2VFW/lOQ/k+xKclxr7Sc9R6JHVfWNJOuSPLa19uW+80wKcxCAhfSUDMrBLXuXg6EPDre/ObpI\nwJi7Ybg9JsnxfQZhLNw93CqKI6QgAAvpscPtf+3n/Mzxx4wgC3B0OHm4vTvJ9/sMQr+q6uwkj0xy\n8/CLETEHAVhIDx1ut+3n/Mzxh40gC3B0eNlw+/HW2q5ekzBSVfXqDCYnr0jyqOGfv53kha213X1m\nmzQKArCQZm5VuHM/53cMt/cbQRZgzFXVs5Ocl8HVg9f3HIfR+/Ukz9hj/7YkLzZHbfQUBA5ZVV2V\nQbM/FC9urX1hIfIAcPSrqlOSXJ6kkry6tXbDHE9hkWmtPTNJqur+SdYneUOSa6rqda21P+813IRR\nEDgcazMYE3goli9EEMbej4fb/f33XzHc/mgEWYAxNVw08eNJViZ5W2vt7T1HokettTuSXDu8onRd\nkjdX1Sdaa9f3HG1iKAgcstbaaX1n4KjxP8Pt6v2cnzl+2wiyAGOoqh6Q5BMZzEV6b5JX9ZuIcdFa\nu7uqrkjyhAzudqcgjIi7GAELaWaIwOP3c37muHtbwwSqqmOTfCzJo5NcmeR3mwWa+HnTw+0De00x\nYRQEYCH9R5IfJFlXVbNdeXr+cPsvo4sEjIOqOibJh5OcnuRf4041zO6pw+0tvaaYMAoCsGCGK6D+\nzXD3nVU1M+cgVfWKDNY/uMYdKmCyVNXSJB9I8vQk1ybZZMXkyVRVT6mqM6pqyV7H711Vf5zk7CR3\nJrmil4ATqlzJow/DOyGdMNx9SJI1Sb6Vn90X/zuttd/qIxvzq6rum+TqJE9M8p0Mfhh42HD/9iRP\naq3d2ltARqaqnpOfv3Xl6Rncsebzexx7c2vtoyMNxshV1cuSXDLcvSrJD/fz0Fe11qb3c45FoKrO\nzWDuyXSSLyb5vySrMriL0QlJ7kpyTmttc18ZJ5FJyvTlcdl3cawTh1+JSauLRmvtrqr61SQXJHlR\nkudlsDrq+5K8vrW2v0XUWHwemEEx3NsT93oMi9/KPf58oF8GXZifjUFncbomyVsyGEr0mAzKwU+S\nfDPJB5O8o7X2jd7STShXEAAAgI45CAAAQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAA\nHQUBAADoKAgAAEBHQQAAADoKAgAA0FEQAOhFVf1iVZ1XVVdV1baq+klV3VFV11TVOVVVfWcEmETV\nWus7AwATqKouT/I7SX6aZEuS25KcmOTJGfwC64NJXtBa291bSIAJpCAA0IuqenuS/01yWWvt9j2O\nb0zyb0mOS/J7rbVLe4oIMJEUBADGTlVdkOQtSa5urf1q33kAJok5CADMqqpOqqpWVVdX1XFV9faq\nmqqqu6rqq1X18qra5/8jVbWiqs6vqi1V9cOq2lFVX6uqd1bVIw7y7W8Ybh8yf98RAAfjXn0HAGDs\nHZPk00nWDbf3SfKMJG9L8tgk5848sKpOSPLJJKcm2Z7k6iS7kpyc5PeT3JzkpoN4z5OH2+/OQ34A\nDoGCAMBcnpTky0ke3lqbTpKqWpfks0nOqaoPtdY+NHzs+zMoB5uTnNda+/HMi1TVSRnMKzigqrp3\nkpcOdz88T98DAAfJECMADsarZspBkrTWbkny5uHuHyVJVZ2ewZWF7yV5yZ7lYPicb7bWvnwQ7/Xm\nJI9KsjXJ385DdgAOgYIAwFy+31r75CzHPzDcPnk4F+GZM8dbaz86nDeqqhck+dMkdyV5UWtt5+G8\nDgCHT0EAYC63zXawtfaDJHckWZZkZZI1w1O3HM6bVNXTk7wvyT1JXtha+9zhvA4AR8YcBAB6N1z7\n4MMZTIA+b485DQCMmIIAwFweOtvBqjouyf2T3JnBlYSp4al1h/LiVfXoJB9LcmySl7fW3nv4UQE4\nUoYYATCX46vqGbMcf8Fwe11rbXcGqx8nyQur6tiDeeHhnY0+keT4JBe21i45wqwAHCEFAYCD8VdV\ndfzMTlWtTfKG4e47k6S19oUkn0nyoCSXVtWKPV9guPDa+j32H5RBOTgxyVtba29c2G8BgINRrbW+\nMwAwhoa/3d+a5HMZzA04OYOF0u6dwe1Mlye5vLV29h7POTHJp5I8Msn3k/x7BgulrUtyWpJXzlwl\nqKqrkjwvyc4k/7SfGNOttVfN87cGwAGYgwDAXHYlOSPJWzL4gX5VBsXhsiQ/NySotfat4YTjP0ny\n/CTPSrI7ybYk70rykT0evnK4XZ7knP28921JFASAEXIFAYBZ7XEF4ZrW2tN6DQPAyJiDAAAAdBQE\nAACgoyAAAAAdcxAAAICOKwgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0FAQAAKCjIAAAAB0FAQAA\n6CgIAABAR0EAAAA6CgIAANBREAAAgI6CAAAAdBQEAACg8/8k4CJtX7miIwAAAABJRU5ErkJggg==\n",
237 | "text/plain": [
238 | ""
239 | ]
240 | },
241 | "metadata": {
242 | "tags": []
243 | },
244 | "output_type": "display_data"
245 | }
246 | ],
247 | "source": [
248 | "pc_hypo.plot(y='pc1', x='pc2', style='.', title=worksheet_hypo.title)\n",
249 | "plt.show()"
250 | ]
251 | },
252 | {
253 | "cell_type": "code",
254 | "execution_count": 0,
255 | "metadata": {
256 | "colab": {
257 | "base_uri": "https://localhost:8080/",
258 | "height": 614
259 | },
260 | "colab_type": "code",
261 | "id": "QeHqPX3z-Bw2",
262 | "outputId": "8edc5527-02e0-40aa-df35-c9ebc7580022"
263 | },
264 | "outputs": [
265 | {
266 | "data": {
267 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAJBCAYAAADiJZIHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuYXWV5///PPSM5TQI5A5KBxBEI\nSYPYzvClVkzEQGkrLUZJpB4K1doi9NteEZumVqvWXxOrRn+19ReNFKwtmIjRVmlUgjCkWiURJTEh\nASdDmZSDmRBzmBzJPL8/9oHJzD6svfc6PGvt9+u65toze+299rP3DOS513Pfz23OOQEAAACAJLUk\nPQAAAAAA/iBAAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAAAARQQIAAAAAIoIEAAAAAAU\nESAAAAAAKCJAAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAGJgZmeZWY+ZOTP7v0mPBwDK\nIUAAAHglP4F2ZrYg6bEEZWY35cf8VIWH3SXpFZI+6Zz7h/zzPpx/3kPRjxIAgiFAAIAShkz4qn0t\nrHKeDjP7vJn1mtkxM9trZt8xszfH9V7KjOvDw97HWwM8575hz5kZ/UizwczeJ+l6SV+R9BcJDwcA\nKnpZ0gMAAM8NStpb4fjxcgfM7LclfVXSuPxdByVNlnSNpGvM7E5J73LOuZDG2oiblZu8lmRmL5f0\nm/ENJzvM7DWSVkp6SNJNnvy+AaAsVhAAoLI+59w5Fb42lXqSmc2StE654OD7ki52zp0l6SxJH80/\n7GZJ74/jTVTQL2lA0kIzm1Hhce+U1CrpqTgGlTGXSPpbSW9yzpUNKAHAFwQIABCNj0pqk/ScpDc6\n556QJOfcYefc30j6Qv5xHzCzSQmNUcoFB/cq9+/BTRUed3P+9q6Ix5M5zrk7nHMfdc79MumxAEAQ\nBAgAEDIza5NUqDH4/8pMDFfkb89ULjd96PNnDs3zN7MLzGyNmT2dr2PoMbOP5V+n8JxfMbN/NbO+\n/GOeNLO/NrMzAgz5zvztTWXez2slXSRpt6SHA5yvIjObZGafyL+PY2b2rJl91cx+rcrzFhQ+l/zP\nrzazfzOzPWZ2cmihr5mdY2Z/amb/bmaPm9kBMztqZj83sy+a2dwqr/WbZrY+f+4TZnbQzHab2XfN\n7HYzm1zD+w1SwFzuua82s+fyz/+OmY2v9RwAUCsCBAAI32sljc1/v6HUA5xzT0l6PP/jNRXO9auS\nfirp3cqlJ71MuZ1wPiBpg5mdYWa/I+lHkt4maYKkUZJeqVxay5cDjPdhST2SOszsdSWOD109aCh/\nPl/Y/BNJtyv3Pky5NKy3SPqBmf1uwPO8Wbn3/PvKvecXhz1kpaR/kPS7yn0WLyr32XVIepekH5cr\nFDezD0n6tqQ3STpP0sn8OGdJulrSJyRdGmScjcgXwHdLOlvSvyq3EnU46tcFAAIEAKhsmpn92MwO\n569A785fqV9Q4Tm/MuT7n1V4XOFYpavZd0j6saS5+RqGCZL+r6RTkq6U9CFJ/ybpm5JmOucmKrcq\n8f/kn7+k2k5L+aLZu/I//uHQY/lVisXKFWvfpQaYWatyRdsXSNqfP29b/n3NVW7C/6WAp7tL0v2S\nLnHOneWcGyvpj4Yc/7ly9R3zJI11zk2RNFq5382/5b//Ur74eugYL5D0N/kfV0k6zznX5pybIGmi\ncp/55yQdquGt18zMbpR0n3K/709Jeqdz7mSUrwkABQQIAFDZOOWu4p9Q7v+Zs5S7Uv+gmf2zmZXa\nDa4w6dzvnDta4dz/O+zx5R7zO865HZLknDvqnPuspLvzx/9a0iOSbnTO/U/+MYedc38tqVBAXXUL\nU+Um5oOS3jIsjWWxpPGSHnDO9QU4TyVvltSZ//4G59xXnXMv5se8Q9K1kvYFPNcOSb/rnNtZuMM5\n9+SQ7z/mnPukc+5nQ15j0Dm33Tn3duUm320aFhBJ+j/K/Z6fcM69zzn3zJBzHnDO/Zdz7lbn3I9r\neeO1MLOlygUxZ0h6n3PudnY+AhAnAgQAKO0ZSR+R9CpJY5xzk5ULFn5D0sb8Y26W9OkSz52Qvz1S\n5TUKxydUeMyny+x8850h368sM4EsPKZqOkx+8r9RuUnz4iGHCulF/1ztHAEUApXvO+ceKDGGI5L+\nPuC5PuGcO9XAWO7L37522P2FepEJQ2s84mA5n1BuxeBFSW93zq2KcwwAIBEgAEBJzrnvOuc+7Jzb\nWpigO+dOOed+oFw/gH/PP/S9ZnZhhEN5pMz9zw/5fnOVxwTdJalQrPyHkmRmr1QupWa/pG8EPEcl\nhdWD71V4TKVjQ32/2gPM7FVm9jkz25ovMh4cUuT8ufzDhm/t+ohyW7+eK+lHZnabmc02Mws4rnqd\nIelflKvNOKzcqtHdlZ8CANEgQACAGjnnBpWbyEm5/49eN+whhfz0caqscLxSPnu5Y8WiXOdctccE\n2clIkr6uXDDwG/mgp7B6cI9z7ljAc1QyPX/7vxUesyfguX5R6aCZ3SbpUUm3KFeHMF7SAeWCpueV\na1on5VZMivI7Tt2oXHO8uZI+q1wx+X4z+w8ze3vAnaFq9RpJb89/f7Nz7v4IXgMAAiFAAIA6OOd+\nrtyVZim3G89Qhbz1SWY2VuWdN+zxicqvlNyT//HdyjVHk15aWfBGpfQiM7tE0meU+zfuq5IuVy5N\nbFKhwZ2kpYWHlzj3RuVqTd6pXG3Gk8rtIHWdcrtC/cTMzhv+vAZtk7Q1//0qM+sI+fwAEBgBAgCE\nb+jORb9S9lEvHdse4VhqVQgG/ly59JufOee2hHTuwlX/SpPrMCbeb1Gu6/Pjkt7qnNvsnDsx7DHn\nVDqBc27AOfdl59xNzrmLlPsslkk6ppdWFsL0gqSrlNvStl1St5ldFPJrAEAgBAgAUIf8Fd6p+R97\nhx3+L0mF3YuuLfP8CyRdkv/xu6EPsE75YGCbcr0UpHCKkwsKgcbrKzzmqhBepz1/+1g+HayUilu/\nDuec+1/n3N8rV0As5fohhMo5t0/SG5RLjTpP0kNmdnHYrwMA1RAgAMAw1QpS88c/kf9xUNK3hh53\nzg1I+lr+x1vM7KwSp1mWvz2kcAqAw7RMuYnwp5Rr0BWWtfnb15bqI5FPx3p/CK9zIH87r9Tv0sx+\nS9KI188fG13l3IXAr1zg0RDn3AvKBQmblSuUfiifMgUAsSFAAICRLjCzR8zsj83sFYVJppm1mNkV\nynVHflP+sZ93zu0qcY4PSRpQbpL3zcJOR2bWlu/U+yf5x33MObc/0ndTI+fchvze+7c75/aGeOqv\nKXd1XJK+ZmZvzjdPK9QNbJA0LYTX+Xb+dq6kfzKzyfnXaDOzP5Z0r8r3W1hmZhvM7B1mVtzhyMxG\nm9livRTA3Ff66Y3LF0pfLemHyqVCPWRmlVLVACBUpRr8AACkrvyXJB03s0PK9SsYeoX5TuW6Go/g\nnOvNTyi/qtxWoU+Y2QHldtNpHfL8T5R6fhY55140sxskPaRcGtC9yn22x5QrAj4h6Qa9tIVsva/z\ngJl9Rbm+C7cot4rzS+V+f63Kdaa+S6XrCFqUSwu7VpLM7KhyqwaT9FJB8+N6qcg5Es65A2Z2jXLB\nzmuUa8z3Bufc1ipPBYCGsYIAACM9L+lPletWvEO5LTEnSjopaadyefmvdc79YaFLbynOuf9UrknZ\nGklPSRqj3Dai90t6S/75TdUh1zm3W9JlklYpV7thyhX+3ivpNc65/wjppd6mXKH1VknHlQsMtkla\nrlyzu8NlnvcFSe9RbjennynXzO5M5X5vm/Ln/FXn3HMhjbOs/Pa1v5l/3amSvmdmr476dQHAmuzf\nJgAAAAAVsIIAAAAAoIgAAQAAAEARAQIAAACAIgIEAAAAAEVeBghmNs3MPmlmu8zsqJm9YGaPmlnT\nbAcIAAAAJMG7XYzM7NckfUfSFEnbldtm7kxJcyTNcM7RuwEAAACIiFeTbTObplxTmLGSfm/4fthm\ndnkiAwMAAACahFcBgqSPKNcM5tZSzXKcc4/EPyQAAACgeXiTYmRmY5XrXtoiaZpz7mjCQwIAAACa\njk8rCJ2SJkj6L+fcUTP7LUlXSxoj6QlJ65xzzyQ5QAAAACDrfAoQ5uRvf2Fm35D0e8OO/52Zvcs5\nd0+9L2Bmz0kaJ6mv3nMAAAAAHmqXdMQ5d06jJ/IpQJiUv/1dSack3Srpq8pN6G+TdLukL5nZ4865\nn1Y6kZltL3No2ujRo1s6OjrmlDkOAAAApE5PT4+OHz8eyrl8ChAKPRleJukDzrnPDTn2fjO7QNIN\nkt4v6W11vsbJjo6O0du3l4sfAAAAgPSZO3euduzYEUqWjE8BwuEh399Z4vidygUI86udyDk3t9T9\n+ZUFVg8AAACAMnzqpPw/+dsjzrm9JY4/lb+dHs9wAAAAgObjU4Dwk/ztWDMbXeL45Pzt4RLHAAAA\nAITAmwDBOfe0pMckmUqnERXu+0mJYwAAAABC4E2AkPf3+dtPmtm5hTvN7DJJ78v/uDr2UQEAAABN\nwqciZTnn7jazayT9gaQdZvYDSWMlvUbSaElrnHNfTXKMAAAAQJZ5FSDk3Szp+5L+WNICSU7So5I+\n75z7UoLjAgAAADLPuwDBOeckrcl/AQAAAIiRbzUIAAAAABJEgAAAAACgiAABAAAAQBEBAgAAAIAi\nAgQAAAAARQQIAAAAAIoIEAAAAAAUESAAAAAAKdbbP6D+w8fVOmHajDDOR4AAAAAApNS6LX1auKpb\n+wdOqmXU2DPDOCcBAgAAAJBCvf0DWr5+m04NulDPS4AAAAAApNDazX2hBwcSAQIAAACQSnv2H4nk\nvAQIAAAAQArNmDQukvMSIAAAAAAptKSrXa0tFvp5CRAAAACAFJo1tU0rFs0LPUggQAAAAABSanFn\nuzYuna9JbWdo8MSRg2GckwABAAAASLFZU9s0dfxonTrUvyeM8xEgAAAAACgiQAAAAABQRIAAAAAA\noIgAAQAAAEARAQIAAACAIgIEAAAAAEUECAAAAACKCBAAAAAAFBEgAAAAACh6WdIDAOCf3v4Brd3c\npz37j2jGpHFa0tWuWVPbkh4WAACIAQFCE2Lyh0rWbenT8vXbdGrQFe9bs2m3Viyap8Wd7QmODAAA\nxIEAockw+UMlvf0DI/4+JOnUoNPy9dvUNXMywSQAABlHDUITqTb56+0fSGhk8MXazX0j/j4KTg06\nrdvSF/OIAABA3AgQmgiTP1SzZ/+RKsePxjQSAACQFAKEJsLkD9XMmDSuyvGxMY0EAAAkhQChiTD5\nQzVLutrV2mIlj7W2GHUqAAA0AQKEJsLkD9XMmtqmFYvmjfg7aW0xrVw0jwJlAACaALsYNZHC5G94\noTKTPwy1uLNdXTMna92WPu3Zf1QzJo3V4k62wgUAoFkQIDQZJn8IYtbUNi27dnbSwwAAAAkgQGhC\nTP4AAABQDgECACAV6AIPAPEgQAAAeI8u8AAQH3YxAgB4jS7wABAvAgQAgNfoAg8A8SJAAAB4jS7w\nABAvAgQAgNfoAg8A8SJAAAB4jS7wABAvAgQAgNcKXeCHBwl0gQeAaLDNKQDAe3SBB4D4ECAAAFKB\nLvAAEA8CBACRovstAADpQoAAIDJ0vwUAIH0oUgYQCbrfAgCQTgQIACJB91sAANKJAAFAJOh+CwBA\nOhEgAIgE3W8BAEgnAgQAkaD7LQAA6USAACASdL8FACCd2OYUQGTofgsAQPoQIACIFN1vAQBIF1KM\nAAAAABQRIAAAAAAoIkAAAAAAUESAAAAAAKCIAAEAAABAEbsYAcAQvf0DWru5T3v2H9GMSeO0pItt\nWQEAzYUAAUAosjCxXrelT8vXb9OpQVe8b82m3VqxaB6dnwEATYMAAUDDsjCx7u0fGPEeJOnUoNPy\n9dvUNXNy6gIeAADqQYAAoCbDVwp+45VTMjGxXru5b8R7KDg16LRuSx8N3wAATYEAAUBgpVYKPt/d\no9LT6nRNrPfsP1Ll+NGYRgIAQLK83cXIzKaY2S/MzJnZz5MeD9DsyqXglAsOCtIysZ4xaVyV42Nj\nGgkAAMnyNkCQ9ClJU5MeBICcSik4laRlYr2kq12tLVbyWGuLpaaWAgCARnkZIJjZGyT9gaQ1SY8F\nQE61FJxS0jSxnjW1TSsWzRsRJLS2mFYumpeKOgoAAMLgXQ2CmY2V9HlJOyR9UtJ7kh0RAKl6Co7p\n9HSjNE6sF3e2q2vmZK3b0qc9+49qxqSxWtyZvu1aAQBohHcBgqS/kfQKSfMlnUx4LADylnS1a82m\n3SXTjFpbTHfd3KUf9OxL/cR61tS2VBRVAwAQFa8CBDO7VNL7JN3pnNtkZjOTHRGAgkIKzvBC5cJK\nwZUXTtOVF05LcIQAACAM3gQIZtYi6YuSfinpLxIeDoASSMEBACD7vAkQJP2ppC5JNzvn9jVyIjPb\nXuZQRyPnBUAKDgAAWefFLkZmdr6kj0nqds7dlfBwAAAAgKblywrCP0kaJelPwjiZc25uqfvzKwtz\nwngNAAAAIIt8CRDeqFztwWqz0/YgH5O/Pc/MHsp//1bn3HMxjg0AMqW3f0BrN/dpz/4jmjFpnJZ0\nUUcCAHiJLwGCJE1UbmvTUsYMOTamzGMAAFWs29I3YieqNZt2a8WiealpagcAiJYXNQjOOSv1JWlW\n/iE9Q+5/KsGhAkBq9fYPjAgOJOnUoNPy9dvU2z+Q0MgAAD7xIkAAAERv7ea+ko3upFyQsG5LX8wj\nAgD4iAABAJrEnv1Hqhw/GtNIAAA+I0AAgCYxY9K4KsfHxjQSAIDPvA4QnHNP5esOXhnWOZ89cEwr\nN+wk1xZA01nS1a7WFit5rLXFKFIGAEjyPECIwuFjL2p1d48Wruom3xZAU5k1tU0rFs0bESS0tphW\nLprHVqcAAEl+bXMaq8KuHV0zJ/OPIoCmsbizXV0zJ2vdlj7t2X9UMyaN1eJO+iAAAF7StAGC9NKu\nHcuunZ30UAAgNrOmtvH/PQBAWU2XYjQcu3YAAAAAL2n6AIFdOwAAAICXNHWAwK4dAAAAwOmaNkBg\n1w4AAABgpKYrUp4w5mW6ZUEHu3YAAAAAJTRdgHDOWWPYvQMAAAAoo2lTjAAAAACMRIAAAAAAoIgA\nAQAAAEARAQIAAACAIgIEAAAAAEUECAAAAACKCBAAAAAAFBEgAAAAAChqukZpQFJ6+we0dnOf9uw/\nohmTxmlJF928AQCAfwgQgBis29Kn5eu36dSgK963ZtNurVg0T4s72xMcGQAAwOlIMQIi1ts/MCI4\nkKRTg07L129Tb/9AQiMDAAAYiQABiNjazX0jgoOCU4NO67b0xTwiAACA8ggQgIjt2X+kyvGjMY0E\nAACgOgIEIGIzJo2rcnxsTCMBAACojgABiNiSrna1tljJY60tRpEyAADwCgECELFZU9u0YtG8EUFC\na4tp5aJ5bHUKAAC8wjanQAwWd7ara+ZkrdvSpz37j2rGpLFa3EkfBAAA4B8CBCAms6a2adm1s5Me\nRuJoGAcAgN8IEADEhoZxAAD4jxoEALGgYRwAAOlAgAAgFjSMAwAgHQgQAMSChnEAAKQDAQKAWNAw\nDgCAdCBAABALGsYBAJAOBAgAYkHDOAAA0oFtToGM8rHfAA3jAADwHwECkEE+9xugYRwAAH4jQAAy\nplK/gWX3btV/bntWs88504sVBQAA4B9qEICMqdRvwEl6aNdere7u0cJV3fQeAAAAIxAgABlTrd9A\nAR2MAQBAKQQIQMZU6zcwFB2MAQDAcAQIQMZU6jdQCh2MAQDAUBQpAxlT6DdQqlC5lCx3MPZxq1cA\nAHxHgABEJMnJ6dB+A7ueO6QHd/5CpUKFLHcw9nmrVwAAfEaAAETAh8np0H4DpcaT5Q7GlbZ6Xb5+\nm7pmTs7k+0btWGUCgJEIEICQ+Tg5bbYOxpW2ei0UZtOsDT4E8gDgIwIEZIoPVwOTmJwGed/N1MG4\n2lavFGbDx0AeAHxBgIDM8OVqYNyTU1/et0+qbfWa5cJsBMMqEwCUxzanyIRqVwPjbAYW5+TUp/ft\nk0pbvWa5MBvBscoEAOURICATglwNjEuck1Of3rdPClu9Dv89ZLkwG7VhlQkAyiPFCJng09XAcn0I\nwpqcDq03ePzZgxUf28xXQZutMBu1WdLVrjWbdpcMsFllAtDsCBCQCb5dDYxqclqq3qCSZr8K2kyF\n2ahN1IE8AKQZAQIywcergWFPTsvVG5TDVVCgMlaZAKA0AgRkQjNcDaxUbzBcI+/bh61igbiwygQA\nIxEgIDOyfjWwWp3FK6eP1yXnntnQ+2bLVAAAQICATMny1cBqdRZXzzm7ofdO4ygAACCxzSmQGlFv\nn8qWqQAAQCJAAFIj6r39fdoqFgAAJIcUI8Bzw4uG77q5Sz/o2Rd6nYVvW8UCAIBkECCgaaVht55K\nRcNh11r4uFUsAACIHylGaErrtvRp4apure7u0be2PqvV3T1auKrbqzz7akXDvf0Dob5e1ClMAAAg\nHVhBQNNJy249QYqGw15FyPpWsQAAoDoCBDSdJCbe9UiqaDjLW8UCAIDqSDFC00nLbj0UDQMAgCQQ\nIKDppGXiHXXfAwAAgFIIENB00jLxzmrRcG//gFZu2Knb7n5UKzfsDL3YGgAANIYaBDSdwsR7eKGy\njxPvrBUNV9q21ZfADACAZkeAkJeGPfERnjRNvLNSNJyW3aMAAGh23gQIZjZO0jWSrpP0WkkXSDol\n6eeSviZplXPucBSvzVXN5pSViXdapGX3KAAAmp03AYKk35e0Jv/945L+Q9KZkl4j6SOSbjSz+c65\nX4T5olzVBOKRlt2jgmLVEQCQVT4FCCclfUHSZ5xzjxfuNLNzJd0n6dWSPqNcIBEarmoC8UjL7lFB\nsOoIAMgyb3Yxcs59yTn3x0ODg/z9z0q6Nf/jIjMbFebrZu2qJuCrtOweVU21VUd2ZQIApJ03AUIV\nj+VvR0uaEuaJs3RVE/BZVrZtDbLqCABAmvmUYlTJK/K3JyW9EOaJl3S1a82m3SX/wU/TVU0gDdK0\ne1Q5rDoCALIuLQHCn+Vvv+2cO17twWa2vcyhjuF3pGlPfCAL0r57FKuOAICs8z5AMLPflvQu5VYP\nPhjFa2ThqiaAeLDqCADIOq8DBDObLelfJZmk9zvnHqvyFEmSc25umfNtlzSn1LG0X9UEEA9WHQEA\nWedtgGBm50n6tqRJyjVJ+38THhIASGLVEQCQbV4GCGY2WdJ3leumfKek25MdEQCcjlVHAEBWebfN\nqZmNl7RBuVSg9ZL+yDlXek9BAAAAAKHyKkAws9GS/l3S5ZK+I+lG59ypZEcFAAAANA9vAgQza5V0\nj6SrJG2StMg5dyLZUQEAAADNxacahNskvSn/fb+kz5lZqcfd7pzrj21UAAAAQBPxKUCYNOT7N5V9\nlPRh5QIIAAAAACHzJsXIOfdh55wF+Hoq6bECAAAAWeVNgAAAAAAgeT6lGAEAEJre/gGt3dynPfuP\naMakcVrSRTM7AAiCAAGAF5jMIUzrtvRp+fptOjX4UhudNZt2a8WieVrc2Z7gyADAfwQIABLHZA5h\n6u0fGPH3JEmnBp2Wr9+mrpmTCT4BoAJqEADUrLd/QCs37NRtdz+qlRt2qrd/oKFzVZrMNXJuNKe1\nm/tG/D0VnBp0WrelL+YRAUC6sIIAoCZhX+0PMplbdu3suseL5rNn/5Eqx4/GNBIASCdWEAAEFsXV\nfiZzCNuMSeOqHB8b00gAIJ0IEIAmEUZaUBSpG0zmELYlXe1qbbGSx1pbjLoWAKiCFCOgRmncbSes\ntKAorvYv6WrXmk27SwYeTOZQj1lT27Ri0bwRf/OtLaaVi+Z5/98rACSNAAGoQRp32wlzR5corvZX\nm8xJ0soNO1MVkCF5izvb1TVzstZt6dOe/Uc1Y9JYLe7kbwcAgiBAAAJK69aJYRYBR3W1v9xkbvNT\nL2jhqu5UBWTwx6ypbRS4A0AdqEEAAkrr1olhpgUVrvYPz+8OI3WjMJn77I2vLk7q2P4UAID4sYIA\nBJTW3XbCTguKK3WD7U8BAEgGAQJik8bi3qHSuttOFGlBcaRupDUgAwAg7UgxQizWbenTwlXdWt3d\no29tfVaru3u0cFW3t2k5paR168Qo04KilNaADACAtGMFAZFLa3HvcGneOjGNO7qw/SkAAMkgQEDk\nspRLnsaJdkHadnSJMiDzNd3N13EBAJoLAQIil7Vc8uET7UKHYiZ14YsiIPO1l4Wv4wIANB8CBEQu\ny7nkTOqiF+bKh6/pbr6OCwDQnChSRuTSWtxbTbVJHfv0+8fXXha+jgsA0JwIEBC5tO6iUw2TuvTx\nNd3N13GFoZCCd9vdj2rlhp0EzgCQAqQYIRZpLu4tJ8uTuqzyNd3N13E1ihQ8AEgnAgTEJm276FST\n1Uldlvm6daqv42oEdRUAkF6kGAF1ymptRZb5mu7m67gaQQoeAKQXKwhAndLcOK2Z+Zru5uu46kUK\nHgCkFwEC0IBGJnU0xUqOr+luvo6rHqTgAUB6ESAADapnUkfxJrIui3UVANAsqEEAYkb/BDSDLNZV\nAECzYAUBiFmQ4s00p5mQOoWCrNVVAECzIEAAYpbl4k1SpzBcluoqAKBZkGIExCyrxZukTgEAkA0E\nCEDMsto/wbd973v7B7Ryw07ddvejWrlhJwEKAAABkWIExCyr/RN8Sp0i1QkAgPoRIAAJyGLxpi+p\nU9VSnbpmTk715wwAQNQIEICEZK1405d978PeJYpdmQAAzYYAAU2HCV80fEmdCjPViVQlAEAzIkBA\nU2HCFy0fUqfCSnUiVQkA0KwIENA0sjDhS8PqR9KpU42mOhU+4/t3PJfphnYAAJRDgICmkfYOxqx+\nBNNIqlOpz7icNDe0AwCgEgIENA2ftuGsVRZWP+JUT6pTuc+4nLQ2tAMAoBoCBDSNarnpjz9zUCs3\n7PQybSftqx9JqDXVqdJnPFylVKU0pIEBAFAJAQKaRqXcdEn6+d7D+nn3YS/TdtK8+lGObxPpap9x\nQaVUJdLAAABZQICAplEuN304H9N2fGlC1oihAcHh4y/q4Sf2auivIemJdLXP+JXTx+vqOWeXTVUi\nDQwAkBUtSQ8AiNPiznZtXDohLAKkAAAgAElEQVRftyzo0CunjS/7uELaji+WdLWrtcVKHouzCVm9\n1m3p08JV3Vrd3aNvbX1WD+06PTiQXppI9/YPJDLGap/xmnd2atm1s8tO8oOkgQEAkAYECGg6hdz0\n2edOqPg4n9J2CqsfwyewcTchq0ctxb9JTqQb/YyzmAYGAGhOpBihaaUtbceHJmT1qKX4V2p8It1I\nbUMjn3Fcf0++1W4AALKHAAFNq9GGWklIuglZPYIW/xY0MpEOo0i43s84jr8niqABAHEgxQhNK81p\nO2lS7cr6UI1MpKsVCUdd2xD131PS7w8A0DxYQUBTS2vaTppU2162oNGJtA+9IqL8e/Lh/QEAmgMB\nAppeGtN20qTc9rItJs2/aJrGjzkjlIl0EkXC5eoBovh7oggaABAXAgQAkYtjpSbuovO46wHSVlQP\nAEgvAgQAsYh6pSbOovMkmqKlsageAJBOFCkDGdHbP6CVG3bqtrsf1coNO5uuaDXOovMkmqJRVA8A\niAsrCEAGsP1lTlxF50nVA1BUDwCIAwECkHJJpLv4LI6i8zjrAUoVQlNUDwCIEilGQMolke7S7JZ0\ntY9I9SkwSfsHToSS4rVuS58WrurW6u4efWvrs1rd3aOFq7r5nQIAIkWAAKQc21/Gr1w9gCQ5SV/Z\n3NfwRJ7GaACApBAgACnH9pfJWNzZro1L5+v3Lz9fpdYSGp3IszIEAEgKAQKQcpXSXdj+Mlqzprbp\nzLFnqFyP6EYm8qwMAQCSQoAApBzbXyYrqok8K0MAgKSwixGQAWx/mZyoJvI0RgMAJIUAAciIOLb3\nxEhRTeQLK0PDC5VZGQIARI0AAQAaEOVEnpUhAEASCBAApFapJmJJTJ6jnMizMgQAiBsBAoBUWrel\nb8RV+8939+jSGWfp1zumxh4sMJEHAGQFAQKA1CnXRMxJemzPAT2254DWbNqtFYvmZbKY15eVEwBA\nNhEgoOkx2UpGI597pSZiBYVGZV0zJ2fq91lq5STLwRAAIH7eBQhmNlbScklvlXS+pBckfVvSB51z\n/5vk2JA9TLaS0ejnXq33QEGhUVkUqT9JBJblVk6yGgwBAJLhVYBgZmMkfU/SFZKelfTvkmZKulnS\nG83sCufc7uRGiCxhspWMMD73ar0HhqqnUVm1yX9SgWWllZMogyEAQHPxKkCQ9NfKBQf/Leka59xh\nSTKzpZI+JemfJS1IbHTIFCZb0ag2uW7kcy+ce9dzB2XK1RxUM2PS2Jqu9leb/CcZWEbVtRkAgKG8\nCRDMbJSk2/I/3loIDiTJObfKzP5A0nwz+zXn3I8TGSQypdpka+dzh7Ryw86mr00Ic3It1T7JLbz+\nf/f0a+ueA4GCgoLWFtP40S/TwlXdga72B5n8JxlYRtW1GQCAobwJECT9hqSzJPU4535S4vi9ki6V\ndJ0kAgQ0rNpk66Gdv9CDO39R/LkZaxNqSaUJemW9lkluqdcfziRdfM4E7Xru0GnBQ2uL6fZrLtIn\nv/tE4Kv9QSb/jV7Fb6R2IaquzQAADNWS9ACGeFX+9tEyxwv3XxrDWNAElnS1q7XFyh4fPgUrTCp7\n+weiHZgnqk34h38OQSbXUuXPfegkt9zrD+ckvX72dH3v9gW6ZUGHrnvVy3XLgg5tXDpfB46+GGhM\nBUEm/41cxV+3pU8LV3VrdXePvrX1Wa3u7tHCVd0jxlFOoWvz8M8vjK7NAAAU+LSCcH7+dk+Z44X7\nL6h2IjPbXuZQR62DQnYVJlvDJ6GVctubqTah1lSaoFfWy33uwye5QbYyHXruUo3Kar3aH2Tyv7iz\nvqv4YdUuRNm1GQAAya8AYXz+tty/6IXLlRNiGAuaRKnJ1s5nD+rBXXvLPqdZCkGjmFwXBJnkBt3K\ndPi5axnT4WMnT/s5SApP0ABnuGoB19K1P9V5k8YGSjuiazMAIEo+BQihcc7NLXV/fmVhTszDgeeG\nT7ZWbthZMUBolkLQWlNpas2PrzbJDbqVaaWr9ku62vWFh3tUbiGi+4m96u0fKE7Gg07+67mKXy3g\n+UnfL/WTvl9Kas56FwCAP3yqQSjsWlRuVlD4l/dQDGNBEwuaI591tX4OYefHV6sRCXLuWVPb9LqL\nppV9/qDTiPz/xZ3t2rh0/oh6hhvKBDifvfHVWnbt7FB7NzRbvQsAwC8+BQhP529nlDleuP9/YhgL\nmhiFoDnlPgeT9CsvP1NrN/eNmMAu7mzXXTd36dXtE/Xys8bo1e0TddfNXSMm142+/mXtZ5WduA83\nfnTlhdJSKWO1Tv6DCBLwDFWqiBoAgDj4lGL0WP72V8scL9y/NYaxoMlRCJoz9HP4QU+/tvbl+hA8\ntueAHttzYEQqzPBtSZ85cEw33bm57nSZMH4PvvQOKJe+VEmz1LsAAPziU4DwfUkHJHWY2WXOuZ8O\nO/6W/O034x0WmhWFoDmzprZpcWe7vvDw7rJbv3bNnCxJkXQYbvT34FPvgOEBz54XjhTrDkpplnoX\nAIBfvEkxcs6dkPSP+R//ycyKMwkzW6pc/4NuuigD8Quy5WnQPghx8y1lbGj60qollzVU79LbP6CV\nG3bqtrsf1coNO6lZAACEwqcVBEn6mKSFkl4j6Ukz26Rc34P/I2mvpD9McGxATRrpmOubIFueOlc5\nbSbJdBlfU8bq3TJVqq3LNQAAtfAqQHDOHTOz10taLun3JV0v6QVJd0n6oHOuXBM1wCtZm7wFyeOv\nEh8kni7ja8pYPcFLWE3X6pWl4BcAMJJXAYIkOeeOSvpQ/gtInaQnb1EImsfvS65/2tQavNTa5TpM\nWQt+AQAjeVODAGSFr7n4jQiSx+9brn+W1drlOizVgt9GayCoqQAAP3i3ggCkXVKTt6gFSYXxNdc/\na5LaujXKlQtWJgDAHwQIQMh82Xc/CkFSYeLK9Y86D963PPuh4xk/+mVqsVwn6OGiTOeKKvjNYloe\nAKQZAQIQMp/23c+qRq42B5n4+3Y1u9R4zDQiSIg6nSuq4DfJmgoAwEgECEDIGtm6EtU1crU5yMTf\nt6vZ5cbjXC5I+P3Lz9eh4y9Gls41NKCaMCaalYuspuUBQFoRIAARiCsX37c0mDjUe7U56MTft6vZ\nlcYz6KSzxp2hv1s0L5LXLhVQtVguMHEhrlxkOS0PANKIAAGISJS5+L39A/rIN7ere9deDZ06NkNR\nZ71Xm4NO/H27mu3bjkWDLhckvPXydh0+fiqU4Je0PADwCwECkDLrtvTpL7+2tWSax6lBp2X3btVP\nnt6v97yuI5OrCfVebQ460fbtaraPOxYNOmniuFFasSicAJi0PADwCwECkCKFq7pl5m2SJCfpnkf6\ntG7LntStJlRLmertH9CBoydkkkp9BJWuNgedaPt2NTup8cS9csEWuQDgDwIEIEUqXdUdLm1bRFYr\nIC51fKhqV5uDTrR9u5qd1HiSWLmIa4tcAEBlBAhAilS7qjtckltE1lJAXa2A+NyzxpQNDky5fPhq\nKVW1TLR9u5qdxHh8W0kBAMSHAAFIkWpXdUtJYovIWvsIVCsgXvXdJ8oed8rlwweZLNcy0fbtanbc\n4/FtJQUAEB8CBCBFKl3VLSfuotp6+ghUWxl5/tCxisdrCYJ8m/j7zLeVFABAPAgQgJS58sKpI7Y3\nLSeJVJB6+ghUWxk5e8IYPfPL8kFC0CCoGftGNIqACgCaDwECEIIwJ57lzlUqbcckLbh4mrpmTtan\n7n/Ci1SQena/qZbvvvSai3TTnZvryocvfJ7/3dOvrXsONF3fCAAAakWAADSo1nz7es619OqLtOr+\nkXn4TtLDT/brQ9fN1W/NO9eLVJB6dr+plu9+5YXT6sqHr7bzUdp2egIAIA7mXPBc5rQzs+1z5syZ\ns3379qSHgozo7R/QwlXdZa9sb1w6P/DEs9K5yu37X3DLgg5v0kAa+Ux6+wcqBjnVjgcdx3A+fX4A\nANRj7ty52rFjxw7n3NxGz8UKAtCAevLt6zlXtSluEjsVldPI7jdD893LpVqF8XkO59PnBwBA0ggQ\ngAaE2W221h4HQ8W9U1E1je5+E0baVi2fp2+fHwAASSJAABoQZrfZaucql2Y0tEg3jmLpoOrd/aae\nbVJLCdozgqZftWEnKADIPgIEoAFhdputdq73XX1RxZ2K4iiWrvVc9Uwmw0rbWtLVri883KNKWUal\n0p6YAJcX5t8YAMBfBAhAA8LsNlvtXDd0tpfdqSisq+5SeFfw651MhpW2tfmpF8rWblzWPlG/3jFl\nRNoTE+DywvwbAwD4jQABaFCY3Warnatc2k5cxdJBz9XIZDKMtK3C65fapK3FpE8vuWzE6zMBrizM\nvzEAgN8IEIAQhNlttp5zxVksXe5cQ1Nz9uw/WvdkMoy0rUqT2UGnkq+f1AQ4LSlN1f4u7t/+fGK9\nNwAA4SJAABrkwwQvzmLpUueq1pBsuEoBSxhpW/UEOWEGWUGlKaWp2t/Fz/ce1sJV3V6OHQBQGwIE\noAG+TPDiLJYefq5yqTmVTBhd+X89jaZt1RPkhBlkBZG2lKZKfxcFvo4dAFCblqQHAKRVtQleb/9A\nbGMpXHVvbbHT7m+kWDrouWppSFbwlc1Pa92WvqrjWHbtbH32xldr2bWza3oPS7raR4y/oFzAVM9z\nGhEkpckn5f4uhvNx7ACA2rCCgKYTVkqQb0WbcRZLD1VPg7dBp0ivNNeTphTmjlRBJJHS1KjC38W7\nv7RZPXvLB8A+jh0AEBwBAppKmClBjU7woqhdSKJYOmhDsuGGB1GFz2PXcwe1/8hJTRx3hmafc2bd\nn0s9AVOYQVY1cac0hWXW1DZdPecc9XT3lH2Mr2MHAARDgICmEXbOdyMTPF9qF8JQKTe9XPfngkIQ\nVa7I+aFdexv6XOoJmMIMsioJs24kbmkeOwCgOmoQ0DTCzvmuN2fdp9qFMJTLTW8xacbkyleSZ0wa\nW7XIOa2fSzVh1o3ELc1jBwBUxwoCmkbYOd/15qz7VrsQhuGpOYePnVT3E3vV90L5z7QQRAUpco7q\nc0l6i9o4U5rCluaxAwAqI0BA04gi57ueSVJailNrnTwXUnN6+we0cFW3Ks35hwZRQYucw/5cfEnz\nCprSlHQwU0pc6VgAgHgRIKBpRJU3XeskKQ3FqY1MnoOsCCy9+iLdkD9P0CLnMD+XtPUg8CWYAQA0\nB2oQ0DR8yZuOe7/9WjVaIxFkRWDV/U8Uz1Pp8ygI+3Oplub1hYfL79ATt6zVrAAA/EeAgKayuLNd\nG5fO1y0LOnTdq16uWxZ0aOPS+cWr2XHwJVApp9Fi7iArAkPPU60BVxSfy67nDlY8fs8jfd40+0pb\nQzUAQPqRYoSm40PetM8Fno3WSFRK5Sp3nqGfx67nDmn/kROaOG6UZp8zIZLPZf+Rk1Uf40uqUVpq\nVgAA2UGAACTEh0CllEZrJAorAsvu3VqxB8Lw88T5eUwcd0bVx/iyo1QaalYAANlCihGA04RRI7G4\ns13/8q7LVa6yIOlai9nnnBnocbueOxTxSKrzvWYFAJA9BAhAxvX2D2jlhp267e5HtXLDzqpFrWHV\nSFx54TR9/C2XellrEaQwWpL2HzkRw2gq871mBQCQPaQYARlW7/aYYdVIhFlrEWYfgMKk+y/u3Vrx\ncRPHjarr/GHzuWYFAJA95lzlQsIsMbPtc+bMmbN9+/akhwJErtCwrFzfh7tu7tL3f77Pq8Zb5ZQK\ndFpbrOE+AMvXb9U9j5TfBeiWBR2J1yAAABDE3LlztWPHjh3OubmNnosVBCCjqm2P+c47HjmtiLjS\nykKSXXyjbGr2ntd1aN2WPaE3zwMAIM2oQQAyqtr2mMOnxOUab63b0qeFq7q1urtH39r6rFZ392jh\nqu7Y9t+Psg8A+f0AAIzECgKQUUEalg03fGvPKK/eBxV1HwDy+wEAOB0BApBRQRuWDTd0wh3k6n3U\nOfpx9AGo1oMhyRQrAADiRooRkFHl0meqbe45dMLtQxffpPsAJJ1iBQBA3FhBADKsVPrMazqm6KY7\nNwcqzPWhi28h0Cm1i1HUdQKVUqyW3btV5541RldeOC2y1wcAIAkECEDGlUqfCTrhrpSmFOcuP0nV\nCVRKsXKS3nnHI/r4Wy5ltyMAQKYQIAAZUGuOfNAJd5JX74erVicQhSA7QcVVrA0AQFwIEACPBZn4\n19stOeiEu5l3+QmyE1RcxdoAAMSFAAHwVJCJf1zbkCZx9T6IRnYXCvLcoDtBxVGsDQBAXAgQAA8F\nnfj7sA1pUupdOanluYUUq2X3bh3RWG6oOIq1a8G2rACARrDNKeChoN2DfdiGNAnVAqjh3aAbee7i\nznb9y7suL7s9bJzF2kGwLSsAoFEECICHgk78fdiGtFG9/QNauWGnbrv7Ua3csLPi5L4gaAAV1nOv\nvHCaPv6WS0f0Y0iiWLuSRgInAAAKSDECPBR04u/LNqSlbHpyrz713Sf0i4PHNP3MMXrfNRed1jOg\nt39AH/nmdnXv2nta+k6QNKFGVk7qfW4airWbOeUMABAeAgTAQ0En/j5tQzrU++99TF/dsqf48zMH\njukddzyii8+ZoAunj9fh4y+OCAwKghRYN7Jy0shzfS3WLmjWlDMAQLhIMQI8VJj4B0lpWdzZro1L\n5+uWBR267lUv1y0LOrRx6XzdkNDqwaYn954WHAy167lD+tbWZ/VQmeCgoFqa0JKu9hGfTUG1lZNG\nnuu7LKScAQCSxwoC4KlaUlp8urL9qe8+Ecp5Kl3tbmTlxNdVlzD4nHIGAEgPAgTAYz5N/IP6xcFj\noZyn2tXuRmoC0lBPUI8sBz8AgPgQIABNKqq98qefOUbPHGg8SJgwuvr/nhoJoNIYfAWR1eAHABAf\nc65yh9AsMbPtc+bMmbN9+/akhwJEJsjEv1SjsNYWC9RkrJpNT+7VO+54pKFzFMazcel8JrYAAAQw\nd+5c7dixY4dzbm6j52IFAciQIB2Cg3ZprteVF07TDZ0zyhYqB8W2nH6gKzMANB92MQIyImiTrEaa\njAX1ibe8Sl9+1+V69fkT9fKJY3X+5LEjOhG3mDR9wuiK52FbzmTRlRkAmhMrCEBGBG2SFdde+Vde\nOE1XXjiteAV653MHdeDISU1qG6WLz5mgxZ3tWru5T6u7e8qeg205kxP1ShMAwF8ECEBGBJ3417NX\nfr1pJuVqHa79lXM0a2ob23J6jK7MANC8vEgxMrPZZrbMzB40s34zO2lmz5nZejO7MunxAWkQdOJf\na6OwetNMevsH9Jdf21ox5amWhnCIF12ZAaB5+bKCsFHSeZIOS/qhpBckzZH0JknXm9lS59xnEhwf\n4L2gV+Nr2Su/kTSTj3xzu8pcgD7tCnRc23JSbFsbujIDQPPyJUDYKWm5pK8654obqJvZH0taLemT\nZvZd59yOpAYI+K6WiX/QSXm9aSa9/QPq3rW34niHXoGOuidBkN2dwpb2gIT0LwBoXl4ECM65hWXu\n/7yZLZJ0jaQbJH0k1oEBKVPL1fggk/J600zWbu5TtQ4rcV2BDrIKIinUyXypgOQLD/fodRdN0/jR\nL0tFwEBXZgBoXl4ECFU8plyA8PKkBwKkQZhX4+tNM6kWWJgU2xXoaqsgH/3mdj38ZH9oqwvlApJB\nJz00ZFUl6hWMMNCVGQCaUxoChFfkb59LdBRAE6o1zaSQVvP4swcrnnfBxdNim2RWC1Ye2rV3xGpH\nI1t5VgpIwnqNOEWd/gUA8I8XuxiVY2Ydkt6Y//E/khwL0Ixq2WVo6G5HPXsHyp6zxaQPXddwF/jA\nqq2ClJvK19s0rlpAEsZrAAAQJW9XEMzsZZLukjRa0lrn3I9reO72Moc6Qhga0FSCpJmUS6sZziTN\nv2hayWNRFfVWWgUxlQ8QpPq28qwWkITxGgAARCmUAMHMvi7pkhqf9k7n3CMVjv+DpNdK2i3pvfWO\nDUDjqqWZBE2rcZIe3LVXDz/ZfVr+fZS7DFUqtr3ywqmn1QUMV6mQulxAUykgqfU1AABIQlgrCLMk\nXVzjc8peZjOzD0i6RdLzkn7TOfdCLSd2zpXMX8ivLMyp5VwAqqslrUYauYNQvb0Wgiq3CiJJm57s\nrnkrz2oBTamApBS2CwUA+CiUAME5d1kY55EkM/sTSR+TdEDStc65n4d1bgDRqDWtRnop/9451dVr\noVblVkFq3cozyLapwwOSw8dOqvuJvac1jmO7UACAr7yqQTCzt0r6J0lHJP2Oc+6nCQ8JQAC1ptUU\n7HrukMaNaq34mKhz9GvdyjNo87jhAUlv/wDbhQIAUsGbAMHMflvSv0h6UdKbnHPfT3hIAAIql+df\nrQj4wZ2/0PyLSxctF8SRo1/LVp71No9ju1AAQFp4ESCY2W9Iulf5/knOue8mPCQANSp1Jf41HVN0\n052by15xd5IefmKvWkwq9RAfc/TrbR4HAEBaeBEgSPqWpLGSeiVdb2bXl3jMfznnvhjvsADUotRV\n8hWL5mnZvVvLriQMOun1F08b0c3Y1xz9WpvHAQCQNr4ECBPzt7PyX+UQIAAps7izXf+57dmK24mO\nH3OGNi6dH0mOftj9FSptm+pjQAMAQK28CBCcc1b9UQDSavY5Z1btNxBFjn5U/RVqLWwGACBNvAgQ\nAGRbEmk5lbYj/cuvbW24vwJFxwCArGpJegAAsq+QltPacvpiYZRpOZW2Ix100ke/uT301wQAIAtY\nQQAQi7jTcqptR/rQrr3q7R8gLQgAgGEIEADEJs60nGrbkToptC7NAABkCSlGADJpSVe7qu1+EHWX\nZgAA0ogAAUAmzZra5kWXZgAA0oYAAUBm/c11c9VSZhmBpmYAAJRGgAAgs2ZNbdPKN18a6+5JAACk\nHUXKADKNpmYAANSGAAGA93r7B7R2c5/27D+iGZPGaUlXbRN8mpoBABAcAQIAr63b0jeiI/KaTbu1\nYtE8aggAAIgANQgAvNXbPzAiOJCkU4NOy9dvU2//QEIjAwAgu1hBACLWaHpMM1u7uW9EcFBwatDR\n6AwAgAgQIAARIj2mMXv2H6lynEZnAACEjRQjICKkxzRuxqRxVY7T6AwAgLARIAARCZIeg8qWdLWP\n6GFQQKMzAACiQYAARIT0mMbNmtqmFYvm0egMAIAYUYMARIT0mHDQ6AwAgHgRIAARWdLVrjWbdpdM\nMyI9pjY0OgMAID6kGAERIT0GAACkESsIQIRIjwEAAGlDgABEjPQYAACQJqQYAQAAACgiQAAAAABQ\nRIAAAAAAoIgAAQAAAEARAQIAAACAInYxAuCl3v4Brd3cpz37j2jGpHFa0sX2sAAAxIEAAYB31m3p\n0/L1207rQr1m026tWDSPDtQAAESMFCMAXuntHxgRHEjSqUGn5eu3qbd/IKGRAQDQHAgQAHhl7ea+\nEcFBwalBp3Vb+mIeEQAAzYUAAYBX9uw/UuX40ZhGAgBAcyJAAOCVGZPGVTk+NqaRAADQnAgQAHhl\nSVe7Wlus5LHWFqNIGQCAiBEgAPDKrKltWrFo3oggobXFtHLRPLY6BQAgYmxzCsA7izvb1TVzstZt\n6dOe/Uc1Y9JYLe6kDwIAAHEgQADgpVlT27Ts2tlJDwMAgKZDgAAgdnRJBgDAXwQIAGJFl2QAAPxG\ngAAgNNVWBqp1Se6aOZmVBAAAEkaAACAUQVYGgnRJpu4AAIBksc0pgIZVWxno7R+QRJdkAADSgAAB\nQMOCrAxIdEkGACANCBAANCzoygBdkgEA8B8BAoCGBV0ZoEsyAAD+o0gZQMOWdLVrzabdJdOMhq8M\n0CUZAAC/ESAAaFhhZWB4oXK5lQG6JAMA4C8CBAChYGUAAIBsIEAAYlCtgVhWsDIAAED6ESAAEQvS\nQAwAAMAX7GIERChoAzEAAABfECAAEQraQAwAAMAXBAhAhII2EAMAAPAFAQIQoaANxAAAAHxBgABE\naElX+4iuwQXDG4gBAAD4gAABiFChgdjwIKFcAzEAAICksc0pEDEaiAEAgDQhQABiQAMxAACQFqQY\nAQAAAChiBSEg55ycK72fPfxhZjIrXRQMAACA6ggQKjh16pT27dunQ4cO6cSJE0kPBwGNGjVKEyZM\n0JQpU9Ta2pr0cAAAAFKFAKGMU6dO6emnn9axY8eSHgpqdOLECe3bt08DAwM6//zzCRIAAABqQIBQ\nxr59+3Ts2DG1trbq7LPPVltbm1paKNnw3eDgoAYGBvT888/r2LFj2rdvn6ZPn570sAAAAFKDAKGM\nQ4cOSZLOPvtsnXXWWQmPBkG1tLQUf1/PPPOMDh06RIAAAABQAy6Jl+CcK9YctLWxV30aFX5vJ06c\noLgcAACgBgQIJQydUJJWlE5Df28ECAAAAMEx+wUAAABQ5G2AYGYfNDOX/3p70uMBAAAAmoGXAYKZ\nXSzpA5LIDQEAAABi5F2AYLk2uF+Q9EtJ/5HwcAAAAICm4l2AIOndkl4n6X3KBQloIvfdd58+8IEP\naOHChZo4caLMTAsWLEh6WAAAAE3Dqz4IZnaOpL+X9IBz7t/M7Oqkx4R4ve1tb9OBAweSHgYAAEDT\n8ipAkPQPksZKuiXpgSAZb37zm3XJJZeos7NTJ0+e1DXXXJP0kAAAAJqKNwGCmb1R0g2S/sY592TS\n40Ey7rjjjuL3P/zhDxMcCQAAQHPyogbBzMZL+pykJyR9PITzbS/1Jamj0XNHpbd/QCs37NRtdz+q\nlRt2qrd/IOkhjfDUU08VawIOHjyoP/uzP1N7e7vGjBmjSy65RJ/+9Kc1ODg44nkDAwP6+Mc/rs7O\nTp155plqa2vT7Nmzdeutt+qJJ55I4J0AAACgnFBWEMzs65IuqfFp73TOPZL//u8ktUt6g3PueBhj\nSpN1W/q0fP02nRp8aVfXNZt2a8WieVrc2Z7gyEo7fvy4rrrqKvX09Oiqq67SiRMn9MADD2jp0qV6\n7LHHdNdddxUf++yzz+rqq6/W9u3bNWnSJC1YsECjR4/W7t27tXr1al144YW66KKLknszAAAAOE1Y\nKUazJF1c43PGSZKZXUfJ4dAAAA7lSURBVC7pVklfds59L4zBOOfmlro/v4owJ4zXCEtv/8CI4ECS\nTg06LV+/TV0zJ2vW1LaERlfaD3/4Q1166aV68sknNXXqVElST0+PXve61+lLX/qSrr/+el1//fWS\npHe84x3avn27Fi9erDvuuEPjx48vnuepp57SwYMHE3kPAAAAKC2UFCPn3GXOOavx66H80387P455\nZvbQ0C9J1+Yf84H8fX8Zxnh9snZz34jgoODUoNO6LX0xjyiYT37yk8XgQJI6Ojr0wQ9+UJL0j//4\nj5KkRx55RA888ICmT5+uL37xi6cFB5I0c+ZMXXrppfENGgAAAFV5UYOQd5mk+cO+zs4fm53/eXYy\nQ4vOnv1Hqhw/GtNIgps8ebKuvnrkDrQ33nijJOkHP/iBBgcHtXHjxuL9EyZMiHWMAAAAqE/iAYJz\n7sPlVhkkfSn/sHfk77spwaFGYsakcVWOj41pJMFdcMEFJe8/66yzNHHiRB09elT79+9XX19u9aOj\nw9vacAAAAAyTeIDQ7JZ0tau1xUoea20xL4uUAQAAkF0ECAmbNbVNKxbNGxEktLaYVi6a512BsiQ9\n/fTTJe8/ePCgfvnLX2rs2LGaOHGi2ttzwU1PT0+cwwMAAEADCBA8sLizXRuXztctCzp03aterlsW\ndGjj0vm6wdPVg3379umBBx4Ycf9XvvIVSdKv//qvq7W1VQsXLpQk3XPPPTp8+HCsYwQAAEB9vOmk\nXEq+5uCmhIcRi1lT27Ts2vTUYN9+++3auHGjpkyZIknq7e3VRz/6UUnSrbfeKkm6/PLL9frXv14P\nPvig3vOe92jNmjVqa3tpReSpp57SoUOHNG/evPjfALzX2z+gtZv7tGf/Ec2YNE5Lutq9XFEDACBr\nvA4Q4KcrrrhCJ06c0Ctf+UpdddVVOnnypB544AEdOXJEb3/727Vo0aLiY7/85S/rDW94g+655x59\n5zvf0Wtf+1qNHj1aPT09+ulPf6pPfepTpwUIf/u3f6v77rtPkoqrDo8++qiuuOKK4mO+/vWv69xz\nz43p3SIJaWseCABAlhAgoGajR4/Wt7/9bf3VX/2VvvGNb6i/v1+zZs3SH/3RH+nP//zPT3vseeed\np82bN+szn/mM7r33Xt1///1qbW3VjBkz9N73vldvfOMbT3t8T0+PfvSjH51236FDh0677/jxpmu2\n3VTS2DwQAIAsMedKN+nKIjPbPmfOnDnbt2+v+LjBwUHt2rVLknTxxRerpYVSDSmXEjRr1izNnz9f\nDz30UNLDqYjfYXqt3LBTq7vLF7bfsqAjVel4AADEYe7cudqxY8cO59zcRs/FrAmAV9LYPBAAgCwh\nQADglTQ2DwQAIEsIEAB4heaBAAAkiwABgc2cOVPOOe/rD5BuaWweCABAlrCLEQDvLO5sV9fMyVq3\npU979h/VjEljtbiTPggAAMSBAAGAl9LWPBAAgKwgxQgAAABAEQFCCWYv5T4PDg4mOBLUa+jvbejv\nEwAAAJURIJRgZho1apQkaWBgIOHRoB6F39uoUaMIEAAAAGpADUIZEyZM0L59+/T8889Lktra2ujG\nmwKDg4MaGBgo/t4mTJiQ8IgAAADShQChjClTpmhgYEDHjh3TM888k/RwUIcxY8ZoypQpSQ8DAAAg\nVQgQymhtbdX555+vffv26dChQzpx4kTSQ0JAo0aN0oQJEzRlyhS1trYmPRwAAIBUIUCooLW1VdOn\nT9f06dPlnJNzLukhoQozo+YAAACgAQQIATHxBAAAQDOg6hYAAABAEQECAAAAgCICBAAAAABFBAgA\nAAAAiggQAAAAABQRIAAAAAAosmba29/MDo4ePXpCR0dH0kMBAAAAQtPT06Pjx48fcs6d2ei5mi1A\neE7SOEl9SY8FDSlEeD2JjgJR4HebXfxus4vfbXbxu02XdklHnHPnNHqipgoQkA1mtl2SnHNzkx4L\nwsXvNrv43WYXv9vs4nfbvKhBAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAAAARexiBAAA\nAKCIFQQAAAAARQQIAAAAAIoIEAAAAAAUESAAAAAAKCJAAAAAAFBEgAAAAACgiAABAAAAQBEBAlLP\nzNrM7B1m9lkz+5GZHTczZ2YfTnpsCMbMxprZR83sCTM7ZmbPmNk/m9l5SY8N9TOzXzOzvzSz9Wa2\nJ//fJc13Us7MxpnZ9WZ2h5ntyv83O2Bmj5nZh8xsfNJjRP3MbGn+v9knzexA/t/U/zGzfzGzeUmP\nD/GgURpSz8wuk/STEoc+4pz7cMzDQY3MbIykByVdIelZSZskzZR0uaS9kq5wzu1ObICom5l9Q9Lv\nDb/fOWcJDAchMbN3S1qT//FxST+TdKak10j/f3v3FmNXVcdx/PtToEqhUguYUq5tBIFwVQHhgZsX\nIjEi4QEwUJJqNESDaFFJgKCN+CKkGGsMqJBIQkBiIUJA8NKKWuSiaV8gQoUKiEJF7rSU+vdh7zkM\npdPOdGbOHqbfT3KyZq99Zp//SdPM+Z2111rsCDwEHFtVT3dToUYjyWpgKrACeLLtPhDYF1gHnFpV\nt3ZUnvpkm64LkMbAi8BPgPvax8nAtzutSCNxEU04WAZ8vKpeguZbLOBy4KfAcZ1Vp9FYRvMhY+D/\n5mPAlC4L0phYB1wFLKyqBwc6k8wEbgMOAxYCZ3ZTnkbp08ADVbVmcGeSc4FFwI+T7F5Vr3dSnfrC\nEQRNOkm+CXwXRxAmvCTbAU8D7wEOr6q/bnB+OXAw8KGqeqCDEjWGkqwBpjiCMHkl+QjwJ2AtMK2q\nXuu4JI2hJI8Ac4BDqmpF1/Vo/DgHQVKXjqEJBys3DAetm9r2U/0rSdIoLG/bKcCMLgvRuFjXtga/\nSc6AIKlLh7TtX4Y4P9B/cB9qkTR6s9t2HfBsl4VobCU5C9gPeLh9aBJzDoKkLu3Ztk8McX6gf68+\n1CJp9M5r2zuqam2nlWhUklxAMzl5KrB/+/M/gTOqan2XtWn8GRAkdWlgOcRXhjj/ctvu2IdaJI1C\nkk8C82hGDy7uuByN3ieAEwcdrwLOdj7Y1sGAoM4lWUzz7cRInF1V945HPZKkkUnyAeA6IMAFVbV8\nM7+iCa6qPgqQZCfgIOASYGmSi6rqO50Wp3FnQNBEsA/NfY0jsf14FKK+e6lth/r3nNq2L/ahFklb\noN3Q8A5gOnBFVV3ZcUkaQ1X1HHB3O0K0DFiQ5M6quq/j0jSODAjqXFUd2nUN6sw/2nb3Ic4P9K/q\nQy2SRijJe4E7aeYJXQPM77YijZeqWpfkBuCDNCvLGRAmMVcxktSlgdsQDh/i/EC/621LE0ySHYDb\ngQOAXwCfLzdXmuxWt+0unVahcWdAkNSlPwLPA3OSbGwk6bS2/WX/SpK0OUmmALcARwC/wpVtthbH\ntu3KTqvQuDMgSOpMu8vqD9rDRUkG5hyQ5Ks0+x8sddUMaeJI8k7geuAE4G7gVHdMnhySHJPkpCTv\n2KB/2yRfBs4CXgVu6KRA9U0cDdRk0K6ENLM93A3YA3iSN9bRf6qqPtNFbdq0JO8ClgBHAk/RfODY\nqz1+Bjiqqv7eWYHaYklO5s3LXR5Bs8rNnwf1Laiq2/pamEYlyXnAwvZwMfDCEE+dX1WrhzinCSjJ\nOTRzSVYDDwD/AXamWcVoJrAGmFtVN3ZVo/rDScqaLA7jrZtpzWof4CTXCauq1iQ5HrgQOBM4hWYH\n1muBi6tqqE3UNPHtQhP0NnTkBs/R28v0QT9v6ouXS3njnnW9PSwFLqO5lehgmnDwGvAYcBPw/ap6\npLPq1DeOIEiSJEnqcQ6CJEmSpB4DgiRJkqQeA4IkSZKkHgOCJEmSpB4DgiRJkqQeA4IkSZKkHgOC\nJEmSpB4DgiRJkqQeA4IkSZKkHgOCJEmSpB4DgiRJkqQeA4IkqRNJ3pdkXpLFSZ5I8lqS55IsTTI3\nSbquUZK2RqmqrmuQJG2FklwHfBZ4HbgfWAXMAo6m+QLrJuD0qlrfWZGStBUyIEiSOpHkSuDfwNVV\n9cyg/g8DvwamAV+oqqs6KlGStkoGBEnShJPkQuAyYElVHd91PZK0NXEOgiRpo5LsnaSSLEkyLcmV\nSR5PsibJg0nOT/KWvyNJpib5RpL7k7yQ5OUkDyVZlGTfYb788rbdbezekSRpOLbpugBJ0oQ3Bfgt\nMKdttwNOBK4ADgHOGXhikpnAXcCBwH+BJcBaYDbwReBh4G/DeM3ZbfuvMahfkjQCBgRJ0uYcBawA\n3l9VqwGSzAF+D8xNcnNV3dw+92c04eBGYF5VvTRwkSR708wr2KQk2wLntoe3jNF7kCQNk7cYSZKG\nY/5AOACoqpXAgvbwSwBJjqAZWXga+NzgcND+zmNVtWIYr7UA2B94FPjRGNQuSRoBA4IkaXOeraq7\nNtJ/fdse3c5F+OhAf1W9uCUvlOR04OvAGuDMqnplS64jSdpyBgRJ0uas2lhnVT0PPAe8G5gO7NGe\nWrklL5LkBOBa4H/AGVV1z5ZcR5I0Os5BkCR1rt374BaaCdDzBs1pkCT1mQFBkrQ5e26sM8k0YCfg\nVZqRhMfbU3NGcvEkBwC3AzsA51fVNVteqiRptLzFSJK0OTOSnLiR/tPbdllVrafZ/RjgjCQ7DOfC\n7cpGdwIzgEurauEoa5UkjZIBQZI0HN9LMmPgIMk+wCXt4SKAqroX+B2wK3BVkqmDL9BuvHbQoONd\nacLBLODyqvrW+L4FSdJwpKq6rkGSNAG13+4/CtxDMzdgNs1GadvSLGe6PXBdVZ016HdmAb8B9gOe\nBf5As1HaHOBQ4GsDowRJFgOnAK8APx+ijNVVNX+M35okaROcgyBJ2py1wEnAZTQf6HemCQ5XA2+6\nJaiqnmwnHH8FOA34GLAeeAL4IXDroKdPb9vtgblDvPYqwIAgSX3kCIIkaaMGjSAsrarjOi1GktQ3\nzkGQJEmS1GNAkCRJktRjQJAkSZLU4xwESZIkST2OIEiSJEnqMSBIkiRJ6jEgSJIkSeoxIEiSJEnq\nMSBIkiRJ6jEgSJIkSeoxIEiSJEnqMSBIkiRJ6jEgSJIkSeoxIEiSJEnqMSBIkiRJ6jEgSJIkSeox\nIEiSJEnqMSBIkiRJ6vk/nVkat6JpPHsAAAAASUVORK5CYII=\n",
268 | "text/plain": [
269 | ""
270 | ]
271 | },
272 | "metadata": {
273 | "tags": []
274 | },
275 | "output_type": "display_data"
276 | }
277 | ],
278 | "source": [
279 | "pc_draslik.plot(y='pc1', x='pc2', style='.', title=worksheet_draslik.title)\n",
280 | "plt.show()"
281 | ]
282 | }
283 | ],
284 | "metadata": {
285 | "colab": {
286 | "collapsed_sections": [
287 | "Q1kApdvezk6Z",
288 | "Lz-SwUU9B4yb"
289 | ],
290 | "name": "bunky.ipynb",
291 | "provenance": [],
292 | "version": "0.3.2"
293 | },
294 | "kernelspec": {
295 | "display_name": "Python 3",
296 | "language": "python",
297 | "name": "python3"
298 | },
299 | "language_info": {
300 | "codemirror_mode": {
301 | "name": "ipython",
302 | "version": 3
303 | },
304 | "file_extension": ".py",
305 | "mimetype": "text/x-python",
306 | "name": "python",
307 | "nbconvert_exporter": "python",
308 | "pygments_lexer": "ipython3",
309 | "version": "3.7.0"
310 | }
311 | },
312 | "nbformat": 4,
313 | "nbformat_minor": 1
314 | }
315 |
--------------------------------------------------------------------------------
/deepnote/MedML Workshops in Deepnote/Cells PCA.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "source": "## Connect sheet and load data\n\n- sheet data - TODO\n- [python sheets api docs](https://github.com/burnash/gspread#more-examples)\n- [pandas dataframe docs](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)",
6 | "metadata": {
7 | "id": "Q1kApdvezk6Z",
8 | "cell_id": "05d65120eb764555aa91a6a11bfc3ce2",
9 | "colab_type": "text",
10 | "deepnote_cell_type": "markdown"
11 | }
12 | },
13 | {
14 | "cell_type": "code",
15 | "source": "from google.colab import auth\nauth.authenticate_user()",
16 | "metadata": {
17 | "id": "eDs_CZhNzSXl",
18 | "colab": {},
19 | "cell_id": "ddc497290ece4f12a188f8fb1cf4ed56",
20 | "colab_type": "code",
21 | "deepnote_cell_type": "code"
22 | },
23 | "outputs": [],
24 | "execution_count": 0
25 | },
26 | {
27 | "cell_type": "code",
28 | "source": "import gspread\nfrom oauth2client.client import GoogleCredentials\n\ngc = gspread.authorize(GoogleCredentials.get_application_default())",
29 | "metadata": {
30 | "id": "sSOKw9s-zoL3",
31 | "colab": {},
32 | "cell_id": "136f2300c2af4abd91094ad117beccf8",
33 | "colab_type": "code",
34 | "deepnote_cell_type": "code"
35 | },
36 | "outputs": [],
37 | "execution_count": 0
38 | },
39 | {
40 | "cell_type": "code",
41 | "source": "bunky_sheet_url = '' # TODO\nsheet = gc.open_by_url(bunky_sheet_url)\nworksheet = sheet.get_worksheet(0)\nworksheet_hypo = sheet.get_worksheet(0)\nworksheet_draslik = sheet.get_worksheet(1)",
42 | "metadata": {
43 | "id": "s8tkAT_Ozyp-",
44 | "colab": {},
45 | "cell_id": "b62baf117c0c4ba28c54201e797fac19",
46 | "colab_type": "code",
47 | "deepnote_cell_type": "code"
48 | },
49 | "outputs": [],
50 | "execution_count": null
51 | },
52 | {
53 | "cell_type": "code",
54 | "source": "import pandas as pd\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.decomposition import PCA\n\nimport matplotlib\nimport matplotlib.pyplot as plt\n\nmatplotlib.rcParams['figure.dpi'] = 150",
55 | "metadata": {
56 | "id": "nv8fMNORAP_V",
57 | "colab": {},
58 | "cell_id": "38a978de8cad40adaf53c35edfccb8f4",
59 | "colab_type": "code",
60 | "deepnote_cell_type": "code"
61 | },
62 | "outputs": [],
63 | "execution_count": 0
64 | },
65 | {
66 | "cell_type": "code",
67 | "source": "# raw data\n\ndata_hypo = worksheet_hypo.get_all_values()\nfeatures_hypo = data_hypo[0]\nclean_data_hypo = data_hypo[1:]\n\ndata_draslik = worksheet_draslik.get_all_values()\nfeatures_draslik = data_draslik[0]\nclean_data_draslik = data_draslik[1:]",
68 | "metadata": {
69 | "id": "MfVS_YVfz5ud",
70 | "colab": {},
71 | "cell_id": "3a746dbd20da4893921b77bd9f3c3382",
72 | "colab_type": "code",
73 | "deepnote_cell_type": "code"
74 | },
75 | "outputs": [],
76 | "execution_count": 0
77 | },
78 | {
79 | "cell_type": "code",
80 | "source": "# pandas dataframe and clean\n\ndef fixCell(cell):\n try:\n return float(cell.replace(',','.'))\n except ValueError:\n return 0 if cell == '' else cell\n\n\n# pandata_full = pd.DataFrame.from_records(clean_data)# , columns=features)\n\npandata_hypo = pd.DataFrame.from_records(clean_data_hypo)\npandata_hypo = pandata_hypo.drop(0, axis=1)\n\npandata_draslik = pd.DataFrame.from_records(clean_data_draslik)\npandata_draslik = pandata_draslik.drop(0, axis=1)\n",
81 | "metadata": {
82 | "id": "5AEKQY6Sz_3f",
83 | "colab": {},
84 | "cell_id": "b26bcc7a8bba40baa80440f628579980",
85 | "colab_type": "code",
86 | "deepnote_cell_type": "code"
87 | },
88 | "outputs": [],
89 | "execution_count": 0
90 | },
91 | {
92 | "cell_type": "code",
93 | "source": "pandata_hypo = pandata_hypo.applymap(fixCell)\npandata_draslik = pandata_draslik.applymap(fixCell)",
94 | "metadata": {
95 | "id": "VhW09zyB6j0g",
96 | "colab": {},
97 | "cell_id": "6261a178a43b4ffcb313231aee9eefda",
98 | "colab_type": "code",
99 | "deepnote_cell_type": "code"
100 | },
101 | "outputs": [],
102 | "execution_count": 0
103 | },
104 | {
105 | "cell_type": "code",
106 | "source": "pandata_draslik",
107 | "metadata": {
108 | "id": "GgCpqhsW3LZ8",
109 | "colab": {},
110 | "cell_id": "402088f1f96b447ab77fbb9a217cdefc",
111 | "colab_type": "code",
112 | "deepnote_cell_type": "code"
113 | },
114 | "outputs": [],
115 | "execution_count": 0
116 | },
117 | {
118 | "cell_type": "code",
119 | "source": "# normalize\n\npandata_hypo_norm = pandata_hypo.loc[:, [1, 2, 3, 4]].values\npandata_hypo_norm = StandardScaler().fit_transform(pandata_hypo_norm)\n\npandata_draslik_norm = pandata_draslik.loc[:, [1, 2, 3, 4]].values\npandata_draslik_norm = StandardScaler().fit_transform(pandata_draslik_norm)",
120 | "metadata": {
121 | "id": "cqJwRBNl0W1A",
122 | "colab": {},
123 | "cell_id": "ec21806b5e5b4e6eafe0b1006b469566",
124 | "colab_type": "code",
125 | "deepnote_cell_type": "code"
126 | },
127 | "outputs": [],
128 | "execution_count": 0
129 | },
130 | {
131 | "cell_type": "markdown",
132 | "source": "## Try PCA\n[inspiration](http://bit.ly/2HkM0xP)",
133 | "metadata": {
134 | "colab_type": "text",
135 | "id": "Lz-SwUU9B4yb",
136 | "cell_id": "04d077e473894d9eb6412215b74979c6",
137 | "deepnote_cell_type": "markdown"
138 | }
139 | },
140 | {
141 | "cell_type": "code",
142 | "source": "pca = PCA(n_components=2)\npc_hypo_raw = pca.fit_transform(pandata_hypo_norm)\npc_hypo = pd.DataFrame(data = pc_hypo_raw, columns = ['pc1', 'pc2'])\n\npc_draslik_raw = pca.fit_transform(pandata_draslik_norm)\npc_draslik = pd.DataFrame(data = pc_draslik_raw, columns = ['pc1', 'pc2'])\n\n\n#finalDf = pd.concat([principalDf, pandata_full[[0]]], axis = 1)",
143 | "metadata": {
144 | "id": "sTmZwhIo1H2X",
145 | "colab": {},
146 | "cell_id": "ad22de4f6a174dcaa6c1e89e2021e0a8",
147 | "colab_type": "code",
148 | "deepnote_cell_type": "code"
149 | },
150 | "outputs": [],
151 | "execution_count": 0
152 | },
153 | {
154 | "cell_type": "markdown",
155 | "source": "## Plot",
156 | "metadata": {
157 | "colab_type": "text",
158 | "id": "ERRyhh2_E5vI",
159 | "cell_id": "e3f47e9d61e54fb3a76ef37f6378ec11",
160 | "deepnote_cell_type": "markdown"
161 | }
162 | },
163 | {
164 | "cell_type": "code",
165 | "source": "pc_hypo.plot(y='pc1', x='pc2', style='.', title=worksheet_hypo.title)\nplt.show()",
166 | "metadata": {
167 | "id": "eexDBCO39Xyv",
168 | "colab": {
169 | "height": 635,
170 | "base_uri": "https://localhost:8080/"
171 | },
172 | "cell_id": "0399435a21634eeda662a07ee60bfd0e",
173 | "outputId": "05e30c67-5f01-4bc7-e1a2-79cd14c5a8a0",
174 | "colab_type": "code",
175 | "deepnote_cell_type": "code"
176 | },
177 | "outputs": [
178 | {
179 | "data": {
180 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAJCCAYAAABkseCpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XucVPV9//H3dxdd7nJZvO4SCHIJ\nBNGEtUlaBQ0Yk8bEEoWYS2vaJqnR/toS8zM2TZq0fVSSKM2vSVqU2JimVcFLb6ZExehikhogRLEg\noMsSd72ysNyWi8h+f3/MhdnZM3POmTlnzmVez8djH8PumTnznQsz38/3+/l+vsZaKwAAAACQpIao\nGwAAAAAgPggQAAAAAOQRIAAAAADII0AAAAAAkEeAAAAAACCPAAEAAABAHgECAAAAgDwCBAAAAAB5\nBAgAAAAA8ggQAAAAAOQRIAAAAADII0AAAAAAkEeAAAAAACCPAAEAAABAHgECACA1jDGfNsZYY8wu\nY8xZUbcHAJKIAAEA4Em2422NMfMDOt+1uc58QOebI+nvJfVKer+19pUgzltPjDHzc69z1G0BEB0C\nBACRM8Z81WunxBgzqaCjem0NmlcT2efgq8aYSVG3JYmMMaMl3SfJSPqwtfa5iJsUuOx7/6vGmK9G\n3RYA6TYk6gYAACRJf5m9fELSruiaUdb27OXhSFvh7HuSpkhaYq19MurGhGSSTr5PvhpdMwCkHQEC\nAMATa+2MqNvgxBgzUdJWSauttfdH3R4ASDoCBABAollrXxQj6gAQGNYgAEgFY8yMgrUJF7pc94fZ\n6z1R8LfCtQ2TjDFTjTF3GWO6jTHHjDEvGmNWGGPOdjn3acaYrxhjNhljDhhjjhhjnjfG/KMx5q0O\n17+raO3F4wXtcFzA6/c+Cm6XX2RsjBlljPkbY8y27O33GGMeMsb8hpfbl7nOZcaYe40xv86ed68x\nZrMx5tvGmHeXfOKczzXJGLM9e5+bjDFnVPs6e7zPwvfBFGPMHcaYzuz7YJfDbeYbY+4zxryUvU6P\nMeYxY8ynjDGNJa5vPf5cm73NLkmPF5yj+Hp3OdzPlOx74vnsa3Eg+zx+JbtmwzdjzHhjzP9k77PT\nGDOtkvMAiDdmEACkgrV2mzGmXdI8SZ+RtN7pesaYsZKuyv56R4nT/YaklZJGSTok6YSkVkmflXS1\nMWahtXaTw7lnSfqxpJbsn45KOi7p3OzPp4wxH7fWPlBws/2SXpN0Rvb3XklvFBzfHcB9FDtL0qbs\n9Y9K6pc0TtJvS1pojLnCWvtImdsPYowZLukuSVcX/PmgMgNRs7M/F0k63+P5zpe0RtKZktZKWmSt\nPSjptQBfZzfvkXS7pJHKrLs47nA/yyX9WfZXq8zrOUbSpdmfTxhjrsy2PecNZV7zUoZIGl/0t92S\nRksam/29+Pb7i9q1WNI/S2rK/umgpFMlXZD9+UNjzPv8LOY2xrxFmffeDEnPiEpRQHpZa/nhhx9+\nIv1RJj3EZj6SXK87KXddSdcWHVuS/fshSaNK3P6Ps9fpkdRU4rz7lOkAXZg9ZiRdJunX2eO/Lj6/\nMsHEzuzxbkkfkNSQPTZH0v9kjx2VNMehXbn7nl/msQd1H3slbZF0iTIdeCOpTdK27PFdufN6baOk\nVdljJyQtk9RScKxZ0sck/WPRba7N3V/R3y9RpsNrJd0j6dSgXmef76+Dkp6SNLfg+LSCf99QcN3b\nJZ2Z/fsISX+qTEBhJd3r8//Dv2Zv1ytpasHf58vD/xNJ71AmCLGSfippdvbvDZKukPRy9tgLkkYW\n3dbxPiSdJ+ml7LGfSBodxmcBP/zwE4+fyBvADz/88KOCAEHSqy4/uwuue23ReU5RZmTVSvpsifva\nnD1+W9HfCzuGPZJOd7jt2yQdy17nC0XHbsr+/Q1Jb3e47ShJndnrPORw3EuAENR9vF7i8c0uuM5v\nem2jpPcWHLvOx+t+rYoCBGU6/7nn+O8kGYfbVfw6e2hT4ftgV3EHuuB6wyTtyV7v7hLX+eOCc73T\n4/1/LXv945IWFB2bnzufyznWZK/3vKThDscv0Mng5Ua3+1BmtmZf9u+r5SPg4ocffpL5wxoEAHFz\nhstPc6kbWmuPS7oz++tnio8bY96lTCdYKp92ssJa+7rD+Z+TlKuS89Giw0uyl/dba//X4bYHJX0j\n++v7jTGnlbn/UoK6jztKPL5nlQkwpMyIsVe/n738X2vtP/q43QDGmP+jzIzBKZJustb+mbXWOrQz\nqNfZzXestYdKHFuoTFqWVHqB9D9IyqXgfMztzowxn5T0leyv11tr13psZ+E5xkh6X/bXb1prB5Wk\ntdb+StKD2V+vcTnfVZIelnSapO9I+qi19pjfdgFIFgIEALFirTXlfiRNdjnFHcrk1L/DGPOOomOf\nzl62W2u3q7SfeDh2njHmFEkyxpyqkx3qcp26R7OXDcqkgXgW8H38osztX85ejitznWLvyV4+5OM2\nAxhjlkn6f8qkKF1rrf2Gy02CeJ3d/KzMsbnZyy5r7Q6nK1hrT+jk+2Wu03VyjDEXKbOXgyQtt9ZW\nGti8Q5mUMcnb+yT/PnZo0/XKpI41SfqStfaPrbX9FbYLQIIQIABIFWvtLmVGPKWC0eVs1ZbcCPzt\nLqd5ycOxITrZiR4nqbHouJPugn+f7tKGYkHex8ESf5ekN7OXjp3GEs7MXv7ax20KvUWZ9ClJutla\n+89uNwjodXYzaJalQO65LfdaSCdfj5KvtzFmqqR/U2YR8X9J+oLXBpZpl1vbcu0qfB8X+44y/YTv\nWmv/too2AUgYAgQAaZRLc/mYMWZE7t/KLB7do5PpFQjGoDQgn16V9Fj233/hVr60QNiv84kqb+/K\nGDNO0o+UqVr0tKRrYjRK/y/Zy08bY66ItCUAaooAAUAa/bekLmUW7ebWCuTSTu7ykEN9jodjbypT\nDUjZy1xnsmXQLU4qPFZudNpJLe6jUq9mL99S4e2PKVNd5xFlct0f9bhnQrWvczVyz22516Lw+KDX\nIps29qCkqcqsVbjCWtsXULvc2pY7Vvg+LvZ7kn6gzMzGA8aYK6tsG4CEIEAAkDrZ3O9cDvdnsjnq\nuTx1L7ndl3g4tjm7WFbW2jeUqZojZSr6lLIge9mvzD4EA5qdvTRyENB9hOXn2cuKR5mttUckfViZ\nCjyjJT1sjPlNl9tU+zpXY2P2sqXUZmHZTdJy75cNDldZqUyFoCOSPmSt7Xa4TqH8zIIxxvF9osxr\nnruel/fJM7n3cbHsTMbvS/onZVLOVhtjPuLSRgApQIAAIK3uVGZ09EJlymVKmUWrjgtKi/yRMWZQ\ntSRjzHSd3HxrVdHhe7OXVxlj3u5w25GS/m/21/+21u4vusqB7OWYMu2q9j7CkqsoNMsYc12lJ7HW\nHpX0O8qk3IyS9GNjzMUe7rvS17kajyqTxiSVrmL0WUm5nbfvKTxgjPmypN9VJjD8pLV2o9wdKPi3\n4/vEWrtPJ9dmfCG7gd0Axpg5knId/XuKjxedr1/SHyoTcJ0i6d7sJmwAUowAAUAq2cwOr/+R/TXX\nyfS6aPUUZdJc2qTMaK0xZoEyHa8mZdJaVhTd5h+VKRF6iqQ1xpj3G2Masrefnb3tZGXSaf7C4T5z\nZUs/7tSpC+g+QmGtfVwng5fvGGNuMcbk01uMMc3GmD80xtzpfIYB5zomaZGk/1RmB+P/NsaUnNGp\n8nWuWHbG46vZX68xxqwwxpwhZXaVzpZs/Vb2+Cpr7S9ztzXGXK3MfgeS9Oe2/K7XhXbo5C7bf1hm\nFuEvdHJ37Yez7w0ZYxqMMR9QJjVriKQOeXiusqVm/0iZsq1DJN1tjClbHhVAwkW9EQM//PDDjwLa\nSdnhuoUbeJXdUbfovEuUGa3N7abbV3CsVwU76xad4+3KVIfJXfeITu4IbJXZ4fiqErf9RMH13sie\nZ5eknwZ4H142Y3sie52v+rm9pOGSHii4js22a1/B708X3eZaOeyknD12SsH5Dkt6bxCvs8/31yQP\n119ecP1+ZfL5jxf87ScavOv2XQXH3TYGXFJ02+8V3LZPmcpRuyTdWnS9wg3ncq/FkYLfX5T0NofH\nMz93nRKP9++zx9+U9ImgPwv44YefePwwgwAgzX6ikwsw77LeF63+Qpm69f+sTMdqiDIlI1dKmm1L\npIPYzOZls5QJeJ5WphPVpMxI7QpJs6y195e47b9I+qSknyrTIT5LmUW/LUXXq/g+wmStPWyt/Yik\nDypTsvNlSUOz7dusTMdy0KZmZc53XJlO7n3K7Fr8kDHmshJXr/R1rpq1dqmkS5UJZl5TZtbjoKTH\nlcnfX2gzG9iV4rYx4LCi61+vzGv/bPb3icq8TwakxFlrVynzPrldmfdGkzKvxdOS/lKZnbifq+Dx\n/h9lUrkaJf3AGHOt33MAiD9jbbXV6QAgnowx79TJxaTTbZm8dGPMJJ3cRXiyzdTZRwL4eZ0BAO6Y\nQQCQZn+cvfwJncZU43UGgAARIABIpexizE9kf701yrYgPLzOABC8IVE3AACCkq2c81NlFsxOyP75\nIWvtmuhahaDxOgNAuAgQAKTJEGUWbFplKv3cL+nLkbYIYeB1BoAQsUgZAAAAQB5rEAAAAADkESAA\nAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQF5dlTk1xryqTN3srqjbAgAAAASoVdJha+2Z1Z6orsqc\nGmMONDU1jZoyZUrUTQEAAAAC09HRoWPHjh201o6u9lx1NYMgqWvKlCkzt2zZEnU7AAAAgMDMmjVL\nW7duDSRLhjUIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIC8\netsHAQAAoG5Za1VPm+QmkTFGxphI20CAAAAAkFLWWh08eFAHDhzQ4cOHdeLEiaibBA9OPfVUjRo1\nSuPHj1djY2PN758AAQAAIIX6+/v16quvav/+/VE3BT698cYb2rNnj/r6+jRx4sSaBwkECAAAACm0\nf//+fHAwbtw4jRo1Sk1NTZGnr6C8/v5+9fX16bXXXtPRo0e1Z88enX766TVtAwECAABACvX29kqS\nTj/9dI0fPz7i1sCrhoYGnXbaaZKkl19+WQcPHqx5gEAVIwAAgJSx1urYsWOSpNGjR0fcGlRixIgR\nkjLpRrVeWE6AAAAAkDKFHcooFrmieg0NJ7vpBAgAAAAAIsMaBKDGOnv6tGpDl7p7D6tl7HAtaWvV\n5OYRUTcLAABAEgECUFOrN3bp5gef1Yn+k1OFK5/cqVsWzdbiua0RtgwAACCDFCOgRjp7+gYFB5J0\not/q5gefVWdPX0QtAwAAQfrRj36kL33pS1qwYIHGjBkjY4zmz58fdbM8YwYBqJFVG7oGBQc5J/qt\nVm/s0k2Xz6hxqwAAQNA+/vGPJ3qDOgIEoEa6ew+7HD9So5YAAIAwfeQjH9Hb3vY2zZ07V8ePH9dl\nl10WdZN8IUAAaqRl7HCX48Nq1BIAABCmO++8M//vp556KsKWVIY1CECNLGlrVWOD8/b2jQ2GRcoA\nANTArl278msCDhw4oD/5kz9Ra2urhg4dqre97W36u7/7O/X39w+6XV9fn77+9a9r7ty5Gj16tEaM\nGKEZM2bo+uuv144dOyJ4JOFhBgGokcnNI3TLotmDFio3NhgtWzSbUqcAgMRLUinvY8eO6dJLL1VH\nR4cuvfRSvfHGG3rssce0dOlSPfPMM7rrrrvy133llVe0cOFCbdmyRWPHjtX8+fPV1NSknTt3asWK\nFZo6daqmTZsW3YMJGAECUEOL57aqbdI4rd7Ype7eI2oZO0yL58b3wxMAAK+SVsr7qaee0nnnnafn\nn39ezc3NkqSOjg5dfPHF+sEPfqArr7xSV155pSTpk5/8pLZs2aLFixfrzjvv1MiRI/Pn2bVrlw4c\nOBDJYwgLAQJQY5ObR1CtCACQKm6lvNsmjYvlYNitt96aDw4kacqUKfryl7+s6667Tt/5znd05ZVX\nav369Xrsscd0+umn63vf+96A4ECSJk2aVONWh481CAAAAKiKl1LecTNu3DgtXLhw0N+vueYaSdLP\nf/5z9ff3a+3atfm/jxo1qqZtjAozCABSKUl5sACQdEks5f2Wt7zF8e+nnXaaxowZo3379qm3t1dd\nXZngZsqUKbVsXqQIEACkTtLyYAEg6SjlnS6xTDEyxkwwxtxqjNlujDlijNlrjNlkjPlm1G0DEG9u\nebCdPX0RtQwA0iuJpbxffPFFx78fOHBA+/bt07BhwzRmzBi1tmba3tHRUcvmRSp2AYIx5p2SnpP0\neUnHJf2HpKckjZP0ZxE2DUACJDEPFgCSLlfKuzhIiHMp7z179uixxx4b9Pd7771XkvTud79bjY2N\nWrBggSTpnnvu0aFDh2raxqjEKsXIGDNB0o8lDZP0YWvtfxYdvzCShgFIjCTmwQJAGiSxlPeNN96o\ntWvXavz48ZKkzs5O/dVf/ZUk6frrr5ckXXjhhbrkkkv0+OOP6zOf+YxWrlypESNOPqZdu3bp4MGD\nmj17du0fQEhiFSBI+pqkZknXFwcHkmStXV/7JgFIEvJgASA6SSrl/a53vUtvvPGGzj33XF166aU6\nfvy4HnvsMR0+fFif+MQntGjRovx1f/jDH+q9732v7rnnHj388MP6rd/6LTU1Namjo0NPP/20brvt\ntgEBwl//9V/rRz/6kSTlZx02bdqkd73rXfnr/Nu//ZvOOuusGj1af2ITIBhjhkn6hKQ+Sd+PuDkA\nEmpJW6tWPrnTMc0ornmwAIDaa2pq0o9//GP9+Z//uf793/9dPT09mjx5sj796U/rT//0Twdc95xz\nztGGDRv0rW99S/fff78effRRNTY2qqWlRZ/73Of0wQ9+cMD1Ozo69Itf/GLA3w4ePDjgb8eOHQvv\nwVXJWOucq1trxpiLJK2T9FNr7UXGmPdLWihpqKQdklZba1+u8j62zJw5c+aWLVuqbzCA2HKqYpTL\ng72aAAFAHejv79f27dslSdOnT1dDQ+yWnUZm165dmjx5subNm6cnnngi6uaU5Pc1nDVrlrZu3brV\nWjur2vuOzQyCpJnZy9eNMf8u6cNFx//WGPMH1tp73E5kjCkVAdRPAVugjiUxDxYAgLiIU4AwNnv5\nIUknJF0v6T5JwyXdIOlGST8wxjxnrX06miYCSIok5cECABAncQoQcvMmQyR9yVr7DwXHvmCMeYuk\nqyV9QdLHy52o1NRKdmZhptMxAAAAAPEKEAoLyzotUv6+MgHCvNo0BwAAAGkzadIkxWUNblzFacXK\nr7OXh621ux2O78penl6b5gAAAAD1J04zCL/KXg4zxjRZa4trP43LXtbHFnYAQtPZ06dVG7rU3XtY\nLWOHa0kbC5gBAMiJTYBgrX3RGPOMpDnKpBE9UnSVXGrRrwQAFXIqgbryyZ26ZdFs9kgAAEDxSjGS\npG9kL281xuS3ljPGnC/p89lfV9S8VQBSobOnb1BwIEkn+q1ufvBZdfb0RdQyAAiWMSb/7xMnTkTY\nElSqv78//+/C17MWYhUgWGvvlvQDSbMlbTXG/MgY8xNJTymTYrTSWntflG0EkFyrNnQ57rAsZYKE\n1Ru7atwiAAiHMUZNTU2SpAMHDkTcGlSiry8zaHXqqafWPECITYpRgU9J+pmkz0qaL8lK2iTpdmvt\nDyJsF4CE6+497HL8SI1aAgDhGzt2rF599VW9/vrrevPNNzVq1Cg1NTXVvLMJf/r7+9XX16fXXntN\nkjRq1KiatyF2AYLN1J1amf0BgMC0jB3ucnxYjVoCAOE77bTTdPToUe3bt0979+7V3r17o24SfBo6\ndKjGjx9f8/uNVYoRAIRpSVurGhucR84aGwyLlAGkSkNDg84880ydc845Gj16tBobG6NuEjw69dRT\nNX78eE2cODGS1y12MwgAEJbJzSN0y6LZgxYqNzYYLVs0m1KnAFLHGKPRo0dr9OjRkiRrLZuExZwx\nJvI0MAIEAHVl8dxWtU0ap9Ubu9Tde0QtY4dp8Vz2QQBQH+LQ+UT8ESAAqDuTm0fopstnRN0MAABi\niTUIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIA8AgQAAAAA\neQQIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIA8AgQAAAAA\neQQIAAAAAPIIEAAAAADkESAAAAAAyBsSdQMAIGidPX1ataFL3b2H1TJ2uJa0tWpy84iomwUAQCIQ\nIABIldUbu3Tzg8/qRL/N/23lkzt1y6LZWjy3NcKWAQCQDKQYAUiNzp6+QcGBJJ3ot7r5wWfV2dMX\nUcsAAEgOAgQAqbFqQ9eg4CDnRL/V6o1dNW4RAADJQ4AAIDW6ew+7HD9So5YAAJBcBAgAUqNl7HCX\n48Nq1BIAAJKLAAFAaixpa1Vjg3E81thgWKQMAIAHBAgAUmNy8wjdsmj2oCChscFo2aLZlDoFAMAD\nypwCdSbtewQsntuqtknjtHpjl7p7j6hl7DAtnpuuxwgAQJgIEIA6Ui97BExuHqGbLp8RdTMAAEgk\nUoyAOsEeAQAAwAsCBKBOsEcAAADwghQjoE6wRwBQXtrX5wCAVwQIQJ1gjwCgtHpZnwMAXpBiBNQJ\n9ggAnLE+BwAGIkAA6gR7BADOWJ8DAAORYgTUEfYIAAZjfQ4ADESAANQZ9ggABmJ9DgAMRIoRAKCu\nsT4HAAYiQAAA1DXW5wDAQKQYoW5R8xxADutzAOAkAgTUJWqeAyjG+hwAyCDFCHWHmucAAAClESCg\n7lDzHAAAoDQCBNQdap4DAACURoCAukPNcwAAgNIIEFB3qHkOAABQGgEC6g41zwEAAEqjzCnqEjXP\nAQAAnBEgoG5R8xwAAGAwAgRUjJ2IAQAA0ocAARVhJ2IAAIB0YpEyfGMnYgAAgPSKbYBgjBlvjHnd\nGGONMS9E3R6cxE7EAAAA6RXbAEHSbZKao24EBmMnYgAAgPSKZYBgjHmvpN+TtDLqtmAwdiIGAABI\nr9gFCMaYYZJul7RV0q0RNwcO2IkYAAAgvWIXIEj6S0lvlfRHko5H3BY4YCdiAACA9IpVmVNjzHmS\nPi/p+9baJ40xk6JtEUphJ2IAAIB0ik2AYIxpkPQ9Sfsk/d+ImwMP2IkYAAAgfWITIEj6Y0ltkj5l\nrd1TzYmMMVtKHJpSzXkBAACAtIvFGgRjzERJfyOp3Vp7V8TNAQAAAOpWXGYQvivpVGUWJlfNWjvL\n6e/ZmYWZQdwHAAAAkEZxCRA+qMzagxXGDKiMMzR7eY4x5onsvz9qrX21hm0DAAAA6kZcAgRJGiNp\nXoljQwuODS1xHQAAAABVikWAYK113HUrW+a0U1KHtfbcWrYJqKXOnj6t2tCl7t7Dahk7XEvaKBkL\nAACiEYsAAahnqzd26eYHn9WJfpv/28ond+qWRbPZlRoAANRcLKoYAfWqs6dvUHAgSSf6rW5+8Fl1\n9vRF1DIAAFCvCBCACK3a0DUoOMg50W+1emNXjVsEAADqXaxTjKy1uyQ5rk8A0qC797DL8SM1agm8\nYK0IAKAexDpAANKuZexwl+PDatQSuGGtCACgXpBiBERoSVurGhucJ8kaGwwdz5hgrQgAoJ4QIAAR\nmtw8Qrcsmj0oSGhsMFq2aDbpKzHBWhEAQD0hxQiI2OK5rWqbNE6rN3apu/eIWsYO0+K55LbHSVzX\nirAmAgAQBgIEIAYmN4/QTZfPiLoZKCGOa0VYEwEACAspRgDgIm5rRVgTAQAIEwECALiI21oR1kQA\nAMJEihEAeBCntSJxXRMBAEgHAgQA8Cgua0XiuCYCAJAeBAgA6loSKwEtaWvVyid3OqYZsX8GAKBa\nBAgA6lZSKwHl1kQUt539MwAAQSBAAFCX3CoBtU0aF+uOdpzWRAAA0oUAAUBd8lIJKA7rDcqJy5oI\nAEC6ECAACZbE/Pm4oBIQAADOCBCAhEpq/nxcUAkIAABnbJQGJBA76Vav3O7IRtIT21/Xe255TFd+\n92d68vndtW0cAAARIkAAEoiddKtXandkSbKSnnvloF7ef1RPd+3TJ+9cry/c/0ztGwkAQARIMQIS\niPz5YBRXArK2Xw9tftXxuvdt7NaH5pyti6ZOqHErAQCoLWYQgAQifz44uUpA377mAnX3Hi173eWP\n7qhRqwAAiA4BApBA5fLn2Um3cq8fKB8gvHbgWI1aAgBAdAgQgAQqlT/PTrrVOX300LLHzxjdVKOW\nAAAQHdYgAAnFTrrB+/xl0/TJO9eXPL504bQatgYAgGgQIAAJxk66wbpo6gRdPbdF923sHnRs8dwW\nFigDAOoCAQIAFPjmVXP0oTlna/mjO/TagWM6Y3STli6cRnAAAKgbBAgAUOSiqRMICAAAdYsAAQhI\nZ0+fVm3oUnfvYbWMHa4lbawHAAAAyUOAAARg9cYu3fzgswN2N1755E7dsmg2JUdRFwiQASA9CBCA\nKnX29A0KDiTpRL/VzQ8+q7ZJ4+goIdUIkAEgXdgHAajSqg1dg4KDnBP9Vqs3dtW4ReHq7OnTsjXb\ndMPdm7RszTZ19vRF3SREyC1A5v0BAMnDDAJQpe7ewy7Hj9SoJeFjpBjFvATIlOIFgGRhBgGoUsvY\n4S7Hh9WoJeFipBhO6ilABoB6wQwCUqfWiyWXtLVq5ZM7HUdRGxtMokfWC5/L7t4jjBRjkHoJkAGg\nnhAgIFWiSIGZ3DxCtyyaPeh+GxuMli2andgFyk7PZTmMFNenNAfIAFCvCBCQGlFWE1o8t1Vtk8Zp\n9cYudfceUcvYYVo8N7llHks9l+UwUlyf0hogA0A9I0BAakS9WHJy84jUpNiUey6dNBgxUlzH0hYg\nA0C9I0BAarBYMjhuz2UxK2nDrr10COtYmgJkAKh3VDFCarBYMjhuz2Uxa0UlIwAAUoIAAamxpK1V\njQ3G8RiLJf0p91yWksZN4QAAqEcECEiN3GLJ4o4tiyX9K/VcuoUMpHEBAJB8rEFAqrBYMjhOz2Vv\n3xu6d0PpWQLSuAAASD4CBKQOiyWDU/xcdvb06b5fdlPzHgCAFCPFCIBnpHEBAJB+zCAA8IU0LgAA\n0o0AAYBvpHEBAJBepBgBAAA7uNgjAAAgAElEQVQAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB6LlIEU\n6ezp06oNXeruPayWscO1pI3qQgAAwB8CBCAlVm/s0s0PPjtgE7OVT+7ULYtm18UGZgRHAAAEgwAB\nqIGwO6+dPX2DggNJOtFvdfODz6pt0rhUd5brPTgCACBIBAhAyGrReV21oWtQcJBzot9q9cau1O5b\nUO/BEQAAQWORMhAit85rZ09fIPfT3XvY5fiRQO4njrwERwAAwDsCBCBEteq8towd7nJ8WCD3E0f1\nHBwBABAGAgQgRLXqvC5pa1Vjg3E81thgUp2HX8/BEQAAYSBAAEJUq87r5OYRumXR7EFBQmOD0bJF\ns1Odg1/PwVEadPb0admabbrh7k1atmZbYGl3AIDKsUgZCNGStlatfHKnY5pR0J3XxXNb1TZpnFZv\n7FJ37xG1jB2mxXPTX+ozFxwVr/Woh+Ao6ag+BQDxFJsAwRgzXNJlkq6Q9FuS3iLphKQXJD0gabm1\n9lB0LQT8q3XndXLziNRWKyqnXoOjJKP6FADEV2wCBEkfk7Qy++/nJP2npNGS3iPpa5KuMcbMs9a+\nHlH7gIrQea2Neg2OkqqeS/MCQNzFKUA4LukOSd+y1j6X+6Mx5ixJP5J0gaRvKRNIAIlC5xUYiOpT\nABBfsVmkbK39gbX2s4XBQfbvr0i6PvvrImPMqbVvHQAgSFSfAoD4ik2A4OKZ7GWTpPFRNgQAUD2q\nTwFAfCUlQHhr9vK4pL1RNgQAUL16Ls0LAHEXpzUI5fxJ9vLH1tpjkbYEgevs6dOqDV3q7j2slrHD\ntaSNBbxAPWABPwDEU+wDBGPMByT9gTKzB1/2eJstJQ5NCapdCAZ10IH6xgJ+AIifWKcYGWNmSPoX\nSUbSF6y1z7jcBAniVgedHVUBAABqL7YBgjHmHEk/ljRWmU3S/p/X21prZzn9SOoIq73wz0sddAAA\nANRWLFOMjDHjJD2izG7K35d0Y7QtQhiog54ucVhLEoc2AACQdLELEIwxIyWtkTRT0oOSPm2tdR5m\nRqJRBz094rCWJA5tqCWCIQBAWGKVYmSMaZL0H5IulPSwpGustSeibRXCQh30dIjDWpI4tKGWVm/s\n0oLl7VrR3qGHNr+iFe0dWrC8nbQ8AEAgYhMgGGMaJd0j6VJJT0paZK19I9pWIUzUQU+HOKwliUMb\ninX29GnZmm264e5NWrZmW2BBSr0FQwCA2otTitENkn4n++8eSf9gjOPo8o3W2p6atQqhog568sVh\nLUkc2lAo6HSnwnSi7t4jrsEQZUMBANWIU4AwtuDfv1PyWtJXlQkgkBLUQU+2OKwliUMbctxG+Nsm\njfMVADsFG+WwuB8AUK3YpBhZa79qrTUefnZF3VYAJ8VhLUmt21AufSjIdKdSwUY51QRDYaVFAQCS\nJU4zCABirlTlnFsWzR7Uka3lWpJatsEtfSjIdKdywYaTaoKheqsCBQAojQABgCduHcio15LUog1e\n0oeCTHdyCzYKVRMMBZ0WBQBINgIEoAaSXrPeawcy6rUkYbfBS/rQkrZWrXxyp+P1/I7wuwUbF0wc\no5axw6sOhrw8rqhfWwBA7RAgACFzG3lPQvBABzLDS/pQkOlObsHG8sXnB/JeiVsVKABAtAgQgBC5\njbzvPnhMyx/dEfu87zR2ICsJzLymDwWV7uQ12Kg2yIxTFSgAQPQIEIAQuY283/rwdhUfjWPed9o6\nkJUuyPWTPhRUupNbsBHE4uIg06IAAMkXmzKnQBq5jbyXqk/jVg6z1uUo41DKNCjV7EQc1e7fuWDj\n29dcoJsunzFg5iCIXZXZ1RwAUIgZBCBEbiPv5ZRK24miHGUcSpkGpdr1FHGo2JQT5NqQOD0uAEC0\nCBCAEJVL3TAqPYMgOaftRFmOMi0dyCDWU8ShYpMU/NqQuDwuAKhXcSlcQoAAhKjcyPuNl03TrY/s\n8JX3HXU1oTR0INO0niJNjwUA6l2cNqwkQABCVm7kffzIJl9pO2msJlRraVqQm6bHAgD1LG4bVhIg\nADVQauTdb9oOI8bVS9N6ijQ9FgCoZ1FnCBQjQAAi5idthxHjYKRlPYWUrscCAPUqbhkCBAhAiIJe\nbMSIcXDSsJ4iJ02PBQDqUdwyBAgQgJCEtdiIEWMAANIlbhkCBAhACMJebMSIMQAA6RG3DAECBCAE\ncVtsBAAA4i1OGQIECEAI4rbYCAAAxF9cMgQIEIASqllgHLfFRvAm6EXlcdkREwAAPwgQAAfVLjCO\n22IjuAt6UXmcdsQEAMAPAgSkRlCjtUEsMI7bYqOgBflcx2GEPehF5XHbERMAAD8IEJAKQY7W3rGu\nI5AFxnFabBSkoJ7rOI2wB72onEXqAIAkI0BA4gU5Wrt6Y5fuXd9V9jp+FhjHZbFRUIJ6ruM2wh70\nonIWqSMnLrNkAOBHQ9QNAKrlZbTWi1yn1flMJxUuMO7s6dOyNdt0w92btGzNNnX29HltdiIF9VwH\ndZ6gBL2onEXqkDIDDguWt2tFe4ce2vyKVrR3aMHy9pq/vwHAL2YQkHhBjdaW67TmFC4wriRFJumj\niUE913EbYQ96UTmL1BG3WTIA8IMZBCReUKO1bp1WI+UXGLt9+TvNJKRhNDGo5zpuI+y5ReWNDWbA\n3ytdVB70+fyqt5mtOIrbLBkA+MEMAhIvqNFat07rRy9s1dXZc/ldhJqW0cSgnuuwR9grmakJelF5\nVIvU47T4u57FbZYMQLp19vSp59AxNY6a0BLE+QgQkHhBlRR167R+5uIp+d/9fvkHVdUmqhSlwvu9\naGqz1u3YrcKH4/e5DrMMrFMH+Y51Hbp42gSNbBpS9nkLelF5rReppyUQTYO4zZIBSK/c915v33E1\nnDpsdBDnJEBAKgQxWuun0+r3yz+I0cSoRoad7rfBSJdMn6CRQ0+peGQ8jBH2Uh3kfis9sX13/ve0\njqhTXjU+WIcCoBZKfe9ViwABqRHEaK3XTqvfL/9qRxOjGhku1+Fe93yP1i6dV9X9Bj3C7mWhuZTe\nEXXSWuIj7ZslAohH4RGv33t+ESAARbx0Wv1++Vc7mhjVyHDSRqTdOsiFqm1/HL4YipHWEi9p3SwR\nQHzWe/n53vODAAGokJ8v/2pHE6MaGU7aiLRbB7lYpe2PyxdDMdJa4idtmyUCiNd6L7/fe14RIABV\n8PPlX81oYpgjw+VGwpM2Il2ug+ykkvbH6YuhGGktABC+OM2u+/3e84oAAaihSkcTwxoZdhsJT9qI\ndKkOspNK2x+nLwYnpLUAQLjiNLte+L0XJAIEJE4cc7/D5mVk2O/z4nUkPGkj0sUd5ENHj6u9yrKs\nheL0xVAKaS0AEJ64za7nvvfe9a+naE/v/gNBnJMAAQPEvfMd19zvWig3MlzJ8+J1JDyJI9LFHeTO\nnr7A2h+3LwYAQG3FcXZ9cvMINY9s0usv9nQHcT4CBOTFvfMd59zvWnEaGa70efEzEl7NiHQcgs4g\nR9TLfTEYSb19b6izpy/170UAqFdJnF33iwABkpLR+Y5L7nccOryFKn1eajESHvegsxLl1jlYSfdu\n6NJ9v+xO9GMEAJSXxNl1PwgQICk+ne9y4pD77afDW6tAotLnJewp0jCDzqiDtNwXw8p1O3XP+hdV\n/Aye6Le66f7N+tWLvfrMxVNS84UBADgpzeu9CBAgKR6dbzdhj3i7dTr9dHhrOXJe6fMS9hRpWEFn\nXGYlJjeP0OhhpwwKDnKspHvWd2n1RmYTAADJQoAASclYeBnmiLeXTqfXDm+t07W85sTnHkNhAFTJ\nFKnX0fswgs64pcJ52cEyTml6AAB4QYAASfFckV8srBFvr51Orx3eWqdrecmJX72xS1aSLThcGADl\n2uPW+fczeh9G0BnkcxtEmpLXHSzjkqYHAIAXBAiQlJwV+WEsCvLa6fTa4Y0iXcstJ97p4RUHQG6d\nf7+j92EEnW7P7QO/7FbXXvcOf1BpSn52sIxDmh4AAF4QICAvKSvyg14U5LVD77XDG1W6lltOvJNc\nALR4bqtr59/v6P3k5hFaunCabn14+4A2VRN0uj23rx88poc2vyKp/OLxoNKU/OzcHIc0PQAAvGiI\nugGIl1zn+9vXXKCbLp8Ru+AgDF479LnOYGODGXC8uMO7pK110HUKrxtmupaXnPjBtzniqfPvd2Zk\n9cYuLX90x4DgwEj6/MJpurrC52BJW6ucn9nBch3+3PqLHC+P1Y/Fc1u1duk8XXNh6bbFJU0PAAAv\nmEFA3fOTCuNlliXKdC2vOfEDbzNMXXvdO/9+ZkZKjdJbSbc9ukPvn32W4/Pgti5gcvMInddymp7p\n3u/hkTnPbISRApZ5zc/TBRPHBvq6R13OFQBQnwgQUPf8dui9pDhFla7lJydeOhkArdpQftQ8136v\ngVQli4m9rgt495RmzwGCNLjDH2YKWJCve1zKuQIA6o+x1k/GcrIZY7bMnDlz5pYtW6JuCmKos6cv\n9usvvHDqWDYYDapilAuArs4uQF6wvL1k53/t0nklFzIbSX940WQ1NjTkR7q3v3pAj2/fXbKN504Y\nqRlnjcqPikvydP+SyrbVyXXzpwwIRrw+1igloY0AgHiZNWuWtm7dutVaO6vaczGDAGSlYUfEzp4+\n7dzdp4unNmvf4eMaM+JUzThzVH7E2SkAyqWxvP3s0drcvb/sguLFc1u1++CxAQuPraSVT3YOaIfb\nOoEXdh/SC7sPScqMil80tdnzjIOfhcFOuf9JqNiVhJ3NAQDpRYAABMTLTsxe88kryT13Gt1vbDB6\n/9vPzN/WS1qPkXRe62l6z5TmQbMonT19gxYeO/FbSam9zGyDNDhNqDiV59DR42rfsXtAOddyHf64\nV+xKws7mAID0IkAAAuCWL+4nn7yS3PNKSneWW0j8vy8d0LeWXDDoNuVGtp0YeQsW3K7jtC6geMbH\nb4pYnGeMkrCzOQAgvShzClTJrXP+5PO7yx4vLMPpdq7ikp05lZTurOQ2fsuozp9xuq6bP0VXzDlb\nUyaUH52vtERoZ0+flq3Zptse2S5rpaULpyW+RG+UpXIBACBAQORyHbwb7t6kZWu2lewEx5VbR3v5\nIzs8d8QrrdFfSUpKJbfxW0Z1X98b6tp7WOeMGaa3nTWq7HXnT5/gusdEsdUbu7RgebtWtHfooc2v\naEV7hxYsb/e9l0HceN1zAwCAMJBihEhVU8oxLjXi3Trarx086nL7IwX/riz3vJKUlEpu47eM6q+6\n9ulXXftcr9fYYPSVKzJFF7ymCQW5I3IcxX2dBABgsLj0TapFgIDI+O3gFf6nO3TsTa0rWpQaVY14\nt472GaOG6uV9pYOEwo54pbnnfjZ783ub4g+7pQunafmjpWdF/GowGjAq7nVdQD1U+onzOgkAwEBp\n2r+GAAGR8dPBc/pP53SbKEaO3TraSy+bpmu/v8FT572Sjr5UunRng5Eumtqs2x7ZPmgkw0u5z1KV\nkT6/cJq6eg9rQ2evJGnGWSM1euipOnjsTXXvPexp1qDwMV9dwQcnlX4AAHGRtlltAgRExmsHr9R/\nOidRjByX62jfeNk0/eyFPZ72GHA7l1vueanSn08UlBAtHskol8ZS7sPum49sl5HyMzgv7D6kxgaj\nWxbN1rodu30FCIeOnfB83UJU+gEAVCuolKC0zWrHLkAwxgyTdLOkj0qaKGmvpB9L+rK19qUo24Zg\nee3g+S2tGcXIsVNHe2TTEN1atEC53B4D5c71ninj9bMX9uiGuzeV/QDLpaTkduItftqcRjJKpbGU\ne96tHVyaNHfuxXNbyj9ZRSrtyFc62wIAgBRsSlDaZrVjVcXIGDNU0k8kfVnSSEn/IalL0qck/coY\n89YIm4eAeS3l6Le0ZlQjx7mO9revuUCL57Y65unn9hjwWqP/29dk9iK49vsbfFXqqbQaUiG/z3vu\n3JJKvq7FqunIU+kHAFCpSsuKl5K2We1YBQiS/kLSuyT9j6Rp1tol1trfkPR5SRMk/VOUjUOwvHbw\n/JTWjMvIcRAddKnyD7AgRjL8ljTNOXTshOPrWqxUR95P2dvFc1u1dum8/F4L182forVL51W0pgEA\nUD+C+p7OSdv+NbFJMTLGnCrphuyv11trD+WOWWuXG2N+T9I8Y8w7rbW/jKSRCJyXUo5L2lp1e3uH\n6267cRo5DmqqsdKcxiBGMvyWNC08d6k0qZ937ClbsrOS6d64V/pJS8k7AEiToFOCqllDGEexCRAk\n/aak0yR1WGt/5XD8fknnSbpCEgFCirh18CY3j9CN75uubz683fG4kfTRC1v1mYunxOY/YFBTjZV+\ngPnJzy/VgS1XGUnSoPUNxed2el0vmjqh5GNJWwUIKV0l7wAgTcJICUrT/jVxChDmZC83lTie+/t5\nNWgLYub6S86VkfTNh7c7VgIKKqUkqNHeoBbQVvoB5nUkw60DW+rDbsOuvYGOknT29OnPVj1ddrZk\n5bqdGj3slMSMxKcx4AGAtAir0EXcZ7W9ilOAMDF72V3ieO7vb6lBWxBDn7vkXL1/9lmhReZBjvYG\nNdVYzQeY20iGnw6stZK1VtZ6O7cfXva4kKR71r84IDiM+0h82kreAUCapC0lKGhxChBGZi9L5VTk\nViqOcjuRMWZLiUNT/DYK8RJWZB7GaG8QnehqP8DKPV9eOrCTm0eUDZqqfS06e/r0xQc2O6YrFStV\nVjWuI/FpK3kHAGmTppSgoMUpQAAiE9ZobxABjZcPsEpSo9w6sNtfPag71g2evQiyY/61/9riKTgo\nJciR+KAXE6et5B0ApFFaUoKCFqcAIVe1qNS3au6b+qDbiay1s5z+np1ZmOm/aUi7uIz2llswXOoD\nbPXGrkGj8Hes69Cyj5xXNv3GrQPb2/dGqCkynT19A3Z5LsVo8OxBoSBemzAWE7ORGwAgqeK0D8KL\n2ctS27Dm/v7rGrQFdSYOo72rN3ZpwfJ2XxuilUrR6bfSFx/YXHYPAbeazacNP6Vse6vtmH/tv0pl\nAp50wcQxWtJWviNd7WsT9GY5OWzkBgDx5Ge/nXoVpxmEZ7KX7yhxPPf3zTVoC+rMb547vuReC7UY\n7a10DcQd6zpKpuj0W2nlup3620WzHY+7rW/o2F1+hL+ajnlnT5/aXWYPjKTli8+XJN33y+7QRuLD\nXEwcdn4reywAgD+Un/YmTgHCzyTtlzTFGHO+tfbpouNXZS//q7bNQpJ19vTpjnUdWt/ZK8mqbdI4\nfXbewP0Sch8WpYKDWoz2VtpJzTyu0tY+95r+Vs4BgiS1TRqnq9/Zog279srI6MLJ4/Tpi9+qyc0j\n8s+dU7MajKr6IF21oct147vWcZkAJOxKE2Gnl4WV38qXHAD4Q/lp72ITIFhr3zDGfEfSlyR91xhz\nmbW2T5KMMUuV2f+gnV2U4ZVTbn7H7j7du6FL86dP0MimIRo1dIhWbehy7AQbSXd9qq3s5l5BqbyT\nWr6b/frBY+rs6XP8wHPqYHbu6dP5E8ecLG/q4V7DWCAtSS/uPaIFy9vzHd6wRuLjkF7mF19yAOAf\n5ae9i02AkPU3khZIeo+k540xTyqz78FvSNot6fcjbBsSxK18ppfFsVbSzzv21CRAqLST2jZpnDp2\nl8+ddPrA89LBXLWhK7/vQTFr5akMaunHU/7xOrUnrJH4JC4m5ksOAPyLS0GSJIjTImVZa49KukTS\nXyuzH8KVygQId0l6h7V2Z3StQ5KUmhXwq1YfFm4Lhkt1Un/7vLNcz+30GLx0MN0+SLe9erDixb3l\nHm+p9oQliYuJvZSoZQEeAAyUxBnjqMQqQJAka+0Ra+1XrLXnWmubrLVnWWs/Za0ttcMyMIiXFBYv\navVhUWkn9Wcv7HE9t9Nj8DKK4vZBuuWl/a5BRimlHm+59oRp8dxWrV06T9fNn6Ir5pyt6+ZP0dql\n83R1DGcPJPcvuce3ve6rGhYA1INKB+PqUdxSjFDngqrK4jWFpZxaf1hUsiHa9lcPlD2nkfNiYi+j\nKIvnlk69kTLrG8px69QXPt5Ht7ymF3YfKnndWgRqtdgsJ6j3d7m0KCl5u04DQC2EXfQiTYwtlWSc\nQsaYLTNnzpy5ZYt7/XXUntOi2cYGU1FVls6ePr33ticqTjPKfVjEaQTZ6flx20TskukT9P1PXTjo\n7509fVqwvL1k3v3apfM0uXmE4316dd38KZ473F7bk2SVvL/LBRSVvB/8vCYAkFadPX2hlZ+O0qxZ\ns7R169atpTYM9oMZBMRC0FVZJjeP0LKPnFd2oXKhBpMZlT107EQsPyxKPT/lHlqDkb5yhfNnhNdR\nlNwo/9JVT+tXXft8tXlUk/ePl7SP6lTy/nYrY+o04/TcKwfKLsBnAR4A1GbGOOkIEBALYVRlyXWg\nVq7bqfW79kqSxo84RRt29Q4IGsKeLQgiraTc8yMNHjluMNLF0ybotke2l7xPr6VDJzeP0Dljh/kO\nEG57dIfeP/ssT4+1s6dPO3f36aKpzdp/+LjGjjhV088cFbtArVJ+399eA4riL7lla7aFtrkdAKB+\nECAgFsIqPTa5ecSgnYRrObUY1GZWbs/P/Bmna8aZo9Tde0SHjh5X+47dAzqKpe7T6yhKJWs6TvRb\nLV31tM4ZO6xsYFQq9ebyt5+ZiuBA8v/+rjRgTmLJVgBA/MSuihHqUy1Lj+U6xd++5gLddPmM0Dqh\nbqPAfkpPuj0/M84cpZsun6GlC6dp3fM9g9KqKrnPQn7Kkhb6Vde+spV0gnyO4szv+7vSgDmJJVsB\nAPFDgIBYSFrpsc6ePtc6815Ggb3y+vwEeZ+FSnU8/YQMTp3+Stvr5fmPE7/v72oC5qSVbAUAxA8p\nRghUpfn2SVqk6jVtKMi0Ka/PT5i7RDqtWXjPlPG69vsbPFc5Kk6PqaS9QaVt1ZLf93e1qUIswAMA\nVIMAAYGptuPmddFslPxUowk6bcrL8+N2n1tf3q9la7ZVXH/fqePp1PEtp7DT7/c5CrraVS35eX8n\nKWAGAKQPAQICEVTHLe4jn24pMSvX7dToYaeou/ewRjYNUYORY5nVxgaj90wZr+v/9Zf62Qt79Ga/\nVeu4YfrzD7xNF02d4Hj+4tkZp86l2wZaHbv71NHeMShw6+zp0x3rOrS+s1eSVdukcfrsvCmeXrPi\njm/33sNlKx4Vdvr9jpSHUe2qlvy8v5MQMAMA0okAAYFIesfNK7eUmHvWvzig3KgxGhQkNDYYfeQd\n5+iTd64fcNvnXjmoT965XlfPbdE3r5oz4JjX2ZlSI8/FCgO3Dbv2DtovomN3n1Zt7NLXP3Ke6+zP\n4MClpWTaUXGn3+9IeZgpVHEU94AZAJBOBAgIRL103NxSYoq7xNZmgoSPXThRB4+9mc/b/92i4KDQ\nfRu79aE5Z+dnEp58frduun/zoHOf6Le66f7NWvPsK5p+5uh82lDhyPOjW17TC7sPOd7PiX6rO9Z1\naNWGLsdZDmulLz6wuezsT6nAZdE7ztGDm17y1On3M1Jey2pXAADUKwIEBCKojlsQm4qFyS2Fx0m/\nlU4bfkp+P4Zla7aV3QFZkv72v5/Tmj+ZkJl5cQgOcqykx7fv1uPbdw+YUciNPHftPVwyQJCkDZ29\nZXea7rcqOftTLq3swU0v6a5PtennHXs8pcd4HSmnzj8AAOEjQEAggui4JaE6TamUmOKdjIsVzqC4\nzbZImXSj7z7+gpY/usM1mMjJzSicddrQ/OyDW+DWc+iY63kf3fKaY+feLa3s5x17Ak+PYfEuAADh\nI0BAIKrtuAVZnSbsWQinlJjevjd074bSewwUzqB43ZX41oe3ew4Ocqyk371zvb5+VWbtgNuMx74j\nx13P+cLuQ1qwvF23LJqttknj8s/tc68cLHu7sNLKWLwLAEC4CBAQmGo6bkEtcq7VLERxSkxnT5/u\n+2W3pxmUJW2tur29w7Xz7zc4KLxdYVDltwypkxP9Vl98YLMk56pMTsJcD1CLxbtxT3cDACAsBAgI\nVLmOW7kOVxCLnKOske9nBmVy8wh9/arz9H/v3xxKW6SBQZXfMqSl+IkvjKR9h9/QDXdvSmTn2inQ\nvL29Q19433R97pJzI2wZAADhI0BATbiN7AexyDnqUqt+ZlBy1/3df/qFuvaGk4pTGFQVBm433L2p\nogDBDyvpnvUnU67itpaknFKBppX0jWza1/UECQAQGGZs44cAAaHzMrIfxCLnOJRa9ZP6smHXXr0U\nYptaxg5z/ND1ugYiSEnY6TinXKApZdaGfGD2WbF9HHzRAkiSJBQoqUcNUTcA6edlZD+XotPYYAYc\n91OdJkk18nNBU6XLAhqMNKdldNnjv/x1ry699QmtaO/QQ5tf0Yr2Di1Y3q5RQ4cMep5rIfdax51b\noGml2D6O1Ru7tGB5+6DXPK7tBVDf3AYQO3v6ImoZCBAQOq8j+4vntmrt0nm6bv4UXTHnbF03f4rW\nLp2nqz2OICxpay3Z8Y1bjXy3UWonF0wcoyvmnK1LpmdKmD7TfcDxesZkOrHrO/c6bq62/NEd+vzC\nab6ChKDiiV+92BvMiULkZYYljhv/8UULIGm8DCAiGgQICJ2fkf1cis63r7lAN10+w1dqRBCzELXi\nZS+EQo0NRssXn6+lC6dp3fM9jjMPRtIHzzsrsydDmdjjRL/VwWNvDgjGLmgdU/b+p58xylM73eKI\np3bu1Rfuf8bTuaKypK3V9XHEaTYqhy9aAEkTh9RgOGMNAkJXy91vk1Ij3886gMIAZ9mabSU7gVbS\nS71HPKUtdfce8bVwef/R8vslnD1mmD58/tl6z5Txuvb7G8rOjty3sVsfmnN2fjM3r2qVWz+5eYS+\n8L7p+sbD2x2Px202KocvWgBJk6TU4HpDgIDQ1Xr321zHN9ehvO2R7ZEt1izVqS0XNDUY6aNtE3Xw\n2JuDAhy3TuBrB496alfxh67bh/QZo4bq5X2lz/3h88/OBxu3LJrtWsJ1+aM7fAUItV7E9rlLzpXV\n4M3q4jgblcMXLYCkqQQfplEAAB7ISURBVOUAIvwhQEBN1HpkP+wOpZfRbLc2lAuaSq27cOsEvnnC\nffrA6UPX7UN66WXTSs4MFJ9v8dxW3frjbXr90Bsl2/DagWOu7cyJan+L6y85Vx+YfVbsZ6Ny+KIF\nkDS1HkCEdwQIqJla7H4rhd+h9BJ8eGlDJUFTuU6gJL1+sHzHu8HI8UPX7UP6oqkTfH2Inz12eNkA\n4YzRTZK8BVpR7W9R3LY4BwcSX7QAkikpqcH1xthyqxlTxhizZebMmTO3bNkSdVMQomVrtmlFe0fJ\n49fNn1Jxh7Kzp08LlreXHKVdu3Refq1AWG1wClDcGEnzp0/QV66YVfZDt7Onr+yHtNvxnCef361P\n3rm+5P388A8u1Cv7jzp2ZotneW64e5Me2vxKyXNdMedsffuaC0oer4TTc+zUtjjy+hoBANJl1qxZ\n2rp161Zr7axqz8UMAlInzMWaXkezw2xDbrRl6aqnyy4sHjPsFI0eeopGDh2iM0Y3afqZpfdNyHGb\n5fE6C3TR1Am6em6L7tvY7dD+FrWMHe6YsuQ0y1Pr3PqoUpqCUquZOgBAelHmFKkTZIeys6dPy9Zs\n0w13b9KyNdu0/VXnvQdych3/sDu1k5tH6ByXc+w7clwv9h7W1lcO6PHtu2u+adY3r5qjH/7Bhbpg\n4hidPWaYLpg4Rj/8gwv1javm+CrJWev9LSgXCgCod8wgIHWCWqzplGbitT6+3zZUUsLTT6nUnFqP\ngl80dYJjtSI/Myy53PovPrB5QAnXUuspquW2mRvlQgEAaccMAlIniA3TSqWZlMv6L+z4+2nD6o1d\nWrC8XSvaO/TQ5lc8j/SXG1kvJw6j4EHNsAS9guoL9z+jX3TuLXsdyoUCANKOGQSkUrVVEcqlmUiZ\nmQS3+vhe2lBNvnupqjVeVDMKHsSGZX5mWHLPUfFV+60CnQ158vndjmsmyrUNAIA0IkBAalWzWNMt\nBWb+jNM148xRrsGHWxuqLeFZGIQ8uuU1vbD7UNl251Q6Ch7U/hJ+SnLWqszpbY/scL2O35SmWu3+\nDABAkAgQAAduKTAzzhwVSKc0iGpHuSBk8dzWkiVYC1U6Ch50dR+vszxhVoQq9PqB8rtQnz6qqeQG\ndk5qvfszAABBYQ0C4KBWlXOCrHZUat1DodwIvaQB1Zk6e/pczx9GdZ9ccPPtay7QTZfPcAwwalXm\n9PTRQ8sed6saVcgtmPLyfAMAEBUCBMBBEAudvQg6EMns0NyicyeM1LkTRuqD552pj104UVfMOVsf\nu3Cirn5ni/7lqV/r0luf8L0oulYj+cVqFax9/rJpZY8vXVj+eCFKpQIAkowUI6CEWmz/7icXvzCf\nfdTQIbJWOnTszXxu+4Zdewedp3NPn27JzhiUW8zsJU3I70h+UPn3k5tHaNE7znFcQPyRd5wT2Ovh\ntrmbU7nWUqIKpgAACAIBAlBGLXal9RKIOOWzF7pjXYesJFt0+ES/1Rcf2CxJg6oAFXNb8Oun8lCQ\n+fedPX16cNNLjsce2PSSrpt/bmBBwjevmqMPzTlbyx/dodcOHNMZo5u0dOE0X8GBVPvdnwEACBIB\nAhAD5QKRUvnshcp1/v1UQC03su11tsPLYmZJnmcXalXFKKfU5m5+BLVZHwAAUSBAQCqlqbyk254M\nQcqNbOeev22vHtC+w8c1dvgpmn7maC1pa9XapfPKzna4dej/6r+2aN3zPZ5nF5KYruMndQwAgLgh\nQEDqpK28pFsHOSi5ke3VG7v0xQc2D5p5eHz77vzzWG7E3q29T2zfPWgH5HJrIJKarlOLNSwAAISB\nAAGpEnSt/jhw6yC7yRUAKjcJ0dhgdONl03THug7ds750hZ0gFjOXakapdKGg03VqObtUizUsAAAE\njQChjqQp7aaUWuerB6Xca1Oug1zIKRDIpbRYDa5iZCTNaT1N757SrJFNQ3TrIzs8pTJVs5jZqHSA\nIDmnCwWZrpO22SUAAMJAgFAn6qVjVIt89aADLafX5vb2Ds2bPkF/ecWskh3kQrkZgF/vOawNu/bK\nyOjCyeP06Yvfmm9bqXSXzp4+TzswF6p0MfPFU5v1+PbdJW9bKl0oiHSdNM4uAQAQBgKEOlBPHaNq\n8tW9dPyDDrRKvTZWmVz99u1PaN70CRrZNERXv7NFDcbo4LE3NappiKysDh07oZaxwxxnAHb2HNLL\n+49oZNOQ/ONxGvWvZBG0W95/qQ69JK173jkYcUsXqjZdJ6mzSwAA1BoBQh2op45RpfnqXjr+QQZa\nuWDk0a2vlu2c5wKFnAYjXTxtgqy1ahk7XJ+5ONM2pxmAfjvwtqUCmW2vHvDU5hyvef+lOvRRVfdJ\nYjUkAACiQIBQB+qpY1RJvrrXjn9QgZbbpmflOHX6L5ra7HntQHEgs3pjl9rLpPwUazCquiMfVXWf\npFZDAgCg1ggQ6kC9dYz8dkC9dvyDCLS8bHrmx4l+66uDX/h4cm3x2pJLpk/QV7JrIqoVRXUfNi8D\nAMAbAoQ6UI8dIz8dUK8d/yACrTA2PfN7ttzj8dKW81vH6N1Txqeifj+blwEA4A0BQh2gY1Se145/\nEIFWWJueuZUPLZR7PG5tuXTG6fqna9uqalfcSuuyeRkAlBa3z2xEhwChTtAxKs1rxz+IQKvaTc9K\nmT99gtY93+M6I1D4eNzaMv3MUVW1KS6ldZ2+8NKyKB8AghKXz2zEg7E22HSHODPGbJk5c+bMLVu2\nRN0UxIzTB2Ou43910QdjZ09fxYFWuT0HGhuM7vpUm37esUfdvUd06Ohxte/YXXYH5Nzt1i6dl38c\n2149qI7XD+rFvUcGXa/w8bi1Ze3SeRUHkGGe249SrytfeABwUlw+s1GdWbNmaevWrVuttbOqPRcz\nCEi8IKZEy9XtX7Zmm7p7D2vU0CGyVjp07E21jB2upQun+b4ft1mIi6ZO0EVTJwx4bLk2OQUMxbMX\nk5tH6I51A2dDjDIzDMULjMNMPYtDad162v8DAKoRh89sxAsBAhItyCnR4oXNbuVIK70fP+lexW0q\nN3tRbtO1dc/3VN0WP+JQWpcvPADwJg6f2YgXAgQkVpgjxF7KkVZzP5WW+Sx3u0o7xGGUHI1DaV2+\n8ADAmzh8ZiNeGqJuAFApLx3iMM4d5P0EKU4d4iVtrWpsMI7HalValy88APAmDp/ZiBcCBCRWmB1i\nP+VI4zISHacOcW59Q/EXTi1L6/KFBwDexOEzG/ESixQjY8wMSR+WdLmk2ZJOk7RH0s8l/Z219skI\nm4eYCrND7KccacvYYbGoHb2krVV3rOtwrHoURYc46tK67P8BAN5F/ZmNeIlFgCBpraRzJB2S9JSk\nvZJmSvodSVcaY5Zaa78VYfsQQ2HuEF3u3MX3M7JpyKDycFHUjt6wa6/jZmkNRpF1iMNY31DILTDj\nCw8AvAv7MxvJEYt9EIwxayX9QNJ91tqjBX//rKQVkk5IOs9au7XK+2EfhJTxs39BEOcu1NhgdONl\n03TrIzsirx1droZ1g5Ee+/z81HWK2eMAAICTUrcPgrV2QYm/326MWSTpMklXS/paTRuG2AtzhLj4\n3KOahsjK6tCxE/n7iUspzXLt6LdKXUlP9jgAACA8sQgQXDyjTIBwdtQNQTyFOSXqdu64VA6KSzvC\nVJhO1N17JBaBGQAAaZSEAOGt2ctXI20F4CAulYPi0o6wuKV7FUtDQAQg/eJQ4AJwEusAwRgzRdIH\ns7/+p4/blVpkMKXqRgEFwlwoncR2hMHLpnXFkh4QAUg/p4GPKApcAE5iuw+CMWaIpLskNUlaZa39\nZbQtAgaLS+3ouLQjDF43rcspDIg6e/q0bM023XD3Ji1bs02dPX1hNRMAPHNbR8VnFaIWyAyCMebf\nJL3N581+11q7vszxv5f0W5J2SvqcnxOXWr2dnVmY6edcgJu4lNKMSzuq4TTd7mfTusKAiNE5AHEV\nlwIXQClBpRhNljTd521KJk0bY74k6TpJr0l6n7V2bxVtA0IXl9rRcWlHJUp16C+a2lz2dhdMHKOW\nscMHBERUOQIQZ/VQWALJFkiAYK09P4jzSJIx5o8k/Y2k/ZIut9a+ENS5AcRTuQ79uh271WBUcofo\n5YvPH9TZZ3QOQJylvbAEki9WaxCMMR+V9F1JhyX9trX26YibBKAG3PZxmDdtgq/1FYzOAYizJW2t\ngz7TcpJeWALpEJsqRsaYD0j6Z0lvSvoda+3Pann/lBoDouPWoR859BStXTrP8/oKRucA1JLfPkSu\nsITTbvBJLyyBdIhFgGCM+U1J90sykhZbax+p5f2zmBGIlpcOvZ/1FWku+wogXirtQ6ShsATSKxYB\ngqSHJA2T1CnpSmPMlQ7X+am19ntB3zGLGZFWSZoVC7pDz+gcgFqotg+R5MISSLe4BAhjspeTsz+l\nBB4gsJgRaZS0WbEwOvSMzgEIG30IpFUsAgRrrfNKnRpgMSPSJqmzYmF06BmdAxAm+hBIq1gECFFi\nMSOSzCmNKMkjWnToASQJfQikVd0FCK/sP6pla7bl87FZzIikKpVG9PazR5e9XRJGtJK0fgJA/aIP\ngbSK1T4ItXDo6Jta0d6hBcvbtXpjVz732U+NdSBq5dKINnfvL3vbIEe0Onv6tGzNNt1w9yYtW7NN\nnT19VZ9z9cYuLVjerhXtHXpo8ysD/r8CQJzQh0Ba1d0MQk5hPjaLGZE05dKIrDL1gp2OBjmiFcZC\n6KSunwBQv+hDII3qNkCQBuZjk/uMJHFbGHde6xj970v7QyvxGVZHPsnrJwDUL/oQSJu6DhCkZORj\nA8XcFsa9Z8p4fWvJ+aGNaIXVkaciCAAA0av7AIEKA0giLwvjwhzRCqsjT0UQAACiV3eLlAtRYQBJ\nFfXCuLA68kvaWgc9phz+vwIAUBt1O4NAhQEkXZQL48Iq7RfGjsoAAMCfugsQRg0douvmT6HCAFIh\nrDQit30IwuzIUxEEAIBoGWudFxqmkTFmy8yZM2du2bIl6qYAseVUvrSxwTiWL+3s6aMjDwBADMya\nNUtbt27daq2dVe256m4GAUBpfsuXUtoPAID0qetFygAG8lK+FAAApBszCADy2IcAQNK5raEC8P/b\nu/cgvcr6DuDfX6JiEqRGohVJlJBRUSaKmqDVabVeWkbb0WYsqB2EGey0te1Yb0XGS1GnQjvVQVud\nDtRLKx2H1AFtdbRaFaQtKrEOUkcFIdKNl8rW4CWBiOHpH++7x5hssrnsvufNvp/PzM7JOee9fHd4\nE/a753nOMzcFAehYhwA4ms02h+qya2+ddQ4VsH+GGAEd6xAAR6u55lBtnd7RUzI4+igIQKfvBdgA\nDpc5VDB/DDECfs6B1iEwthcYV+ZQwfxREIB9zHb7UmN7gXFmDhXMH0OMgDkZ2wuMO3OoYP4oCMCc\njO0Fxt3+5lAtqeSXH74qb/3E13Pxx77mFxpwEAwxAuZkbC9wNNh7DtWP77o719x0e67++u3dYwyN\nhLm5ggDMydhe4GgxM4fqFc96RD5783T2vvhpaCTMTUEA5mRsL3C0MTQSDp+CAMzJ+gjA0cbQSDh8\n5iAAB+VA6yMAjBtDI+HwKQjAQZttfQSAcXTWxjW57NpbZx1mZGgkHJghRgDAomNoJBw+VxAAgEXJ\n0Eg4PAoCALBoGRoJh84QIwAAoKMgAAAAHQUBAADoKAgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0\nLJQGAMBB2Tq9I1dcP5Vt23dm9crlOWujlakXIwUBAIA5bd4ylQuuvDG772ndscuuvTUXbVqfMzes\n6TEZ880QIwAADmjr9I59ykGS7L6n5YIrb8zW6R09JWMhKAgAABzQFddP7VMOZuy+p2XzlqkRJ2Ih\nKQgAABzQtu075zh/54iSMAoKAgAAB7R65fI5zi8bURJGQUEAAOCAztq4JkuX1Kznli4pk5QXGQUB\nAIADWrtqRS7atH6fkrB0SeXiTevd6nSRcZtTAADmdOaGNdl40gOyectUtm2/M6tXLsuZG6yDsBgp\nCAAAHJS1q1bk/DNO6TsGC8wQIwAAoOMKAgBMuK3TO3LF9VPZtn1nVq9cnrM2GjYCk0xBAIAJtnnL\n1D4r5F527a25aNN6d6aBCWWIEQBMqK3TO/YpB8lgZdwLrrwxW6d39JQM6JOCAAAT6orrp/YpBzN2\n39OyecvUiBMB40BBAIAJtW37zjnO3zmiJMA4URAAYEKtXrl8jvPLRpQEGCcKAgBMqLM2rtlnZdwZ\nS5eUScowoRQEAJhQa1etyEWb1u9TEpYuqVy8ab1bncKEGtvbnFbV65O8abh7dmvt8j7zAMBidOaG\nNdl40gOyectUtm2/M6tXLsuZG6yDAJNsLAtCVT0yyWuTtCSzX/sEAObF2lUrcv4Zp/QdAxgTYzfE\nqKoqyaVJ7kjyzz3HAQCAiTJ2BSHJS5L8SpJXZlASAACAERmrglBVD07yl0k+1Vr7x77zAADApBmr\ngpDkHUmWJfmDvoMAAMAkGptJylX1G0l+O8mftdZuPsLX+sp+Tq07ktcFAIDFbiyuIFTVsUneleSm\nJH/RcxwAAJhY83IFoaquSvKoQ3zai1trXxj++S1J1iR5Rmtt15Hmaa2dOtvx4ZWFRx/p6wMAwGI1\nX0OM1iZ55CE+Z3mSVNXpSf4wyftba5+epzwAAMBhmJeC0Fo77Qie/uwMhjqtr6qr9zo3s2rLa6vq\nJUk+3lq7+AjeCwAAOICxmaSc5EAl45Th1zdHEwUAACZT75OUW2sXttZqtq8kfz982NnDY+f2GBUA\nABa93gsCAAAwPhQEAACgoyAAAACdcZqkvI/hnINze44BAAATwxUEAACgoyAAAAAdBQEAAOgoCAAA\nQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAAHQUBAADoKAgAAEDnXn0HAFhoW6d35Irr\np7Jt+86sXrk8Z21ck7WrVvQdCwDGkoIALGqbt0zlgitvzO57WnfssmtvzUWb1ufMDWt6TAYA48kQ\nI2DR2jq9Y59ykCS772m54Mobs3V6R0/JAGB8KQjAonXF9VP7lIMZu+9p2bxlasSJAGD8KQjAorVt\n+845zt85oiQAcPRQEIBFa/XK5XOcXzaiJABw9FAQgEXrrI1rsnRJzXpu6ZIySRkAZqEgAIvW2lUr\nctGm9fuUhKVLKhdvWu9WpwAwC7c5BRa1MzesycaTHpDNW6aybfudWb1yWc7cYB0EANgfBQFY9Nau\nWpHzzzil7xgAcFQwxAgAAOgoCAAAQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAAHQUB\nAADoKAgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0qrXWd4aRqaofHnPMMfdbt25d31EAAGDe3HLL\nLdm1a9ePWmvHHelrTVpB+G6S5Umm+s4yYWYa2S29pmAc+Cwww2eBPfk8MMNn4fCtSbKztfbgI32h\niSoI9KOqvpIkrbVT+85Cv3wWmOGzwJ58HpjhszAezEEAAAA6CgIAANBREAAAgI6CAAAAdBQEAACg\n4y5GAABAxxUEAACgoyAAAAAdBQEAAOgoCAAAQEdBAAAAOgoCAADQURAAAICOgsDIVdWKqjq7qv66\nqj5fVbuqqlXVhX1nY2FU1bKqelNV3VRVd1XVt6vqPVV1Yt/ZGJ2qekJVvaaqrqyqbcO/9xbjmUBV\ntbyqnldV766qrw//XdhRVTdU1Ruq6ti+MzI6VfWK4b8LN1fVD4Y/F9xWVf9QVev7zjeJLJTGyFXV\naUm+NMupN7bWLhxxHBZYVd03yWeSPCnJd5Jcm+SkJKcnuT3Jk1prt/YWkJGpqg8lee7ex1tr1UMc\nelRVL0ly2XD3q0n+O8lxSZ6c5H5Jvpbkqa217/WTkFGqqukkK5J8Ocm3hodPTfKIJHcn2dRa+0hP\n8SbSvfoOwET6UZJ3J7l++PWcJG/qNREL6XUZlIPrkvxaa+3HyeA3RknemuQ9SZ7WWzpG6boMfgCY\n+bv/zSTH9BmI3tyd5NIkl7TWvjpzsKpOSPLRJI9LckmSF/UTjxF7bpIvttbu2vNgVb00yTuT/F1V\nrW6t/bSXdBPIFQR6V1WvSXJRXEFYdKrqPkm+l+QXkjy+tfalvc7fkOQxSTa01r7YQ0R6VFV3JTnG\nFQT2VFW/lOQ/k+xKclxr7Sc9R6JHVfWNJOuSPLa19uW+80wKcxCAhfSUDMrBLXuXg6EPDre/ObpI\nwJi7Ybg9JsnxfQZhLNw93CqKI6QgAAvpscPtf+3n/Mzxx4wgC3B0OHm4vTvJ9/sMQr+q6uwkj0xy\n8/CLETEHAVhIDx1ut+3n/Mzxh40gC3B0eNlw+/HW2q5ekzBSVfXqDCYnr0jyqOGfv53kha213X1m\nmzQKArCQZm5VuHM/53cMt/cbQRZgzFXVs5Ocl8HVg9f3HIfR+/Ukz9hj/7YkLzZHbfQUBA5ZVV2V\nQbM/FC9urX1hIfIAcPSrqlOSXJ6kkry6tXbDHE9hkWmtPTNJqur+SdYneUOSa6rqda21P+813IRR\nEDgcazMYE3goli9EEMbej4fb/f33XzHc/mgEWYAxNVw08eNJViZ5W2vt7T1HokettTuSXDu8onRd\nkjdX1Sdaa9f3HG1iKAgcstbaaX1n4KjxP8Pt6v2cnzl+2wiyAGOoqh6Q5BMZzEV6b5JX9ZuIcdFa\nu7uqrkjyhAzudqcgjIi7GAELaWaIwOP3c37muHtbwwSqqmOTfCzJo5NcmeR3mwWa+HnTw+0De00x\nYRQEYCH9R5IfJFlXVbNdeXr+cPsvo4sEjIOqOibJh5OcnuRf4041zO6pw+0tvaaYMAoCsGCGK6D+\nzXD3nVU1M+cgVfWKDNY/uMYdKmCyVNXSJB9I8vQk1ybZZMXkyVRVT6mqM6pqyV7H711Vf5zk7CR3\nJrmil4ATqlzJow/DOyGdMNx9SJI1Sb6Vn90X/zuttd/qIxvzq6rum+TqJE9M8p0Mfhh42HD/9iRP\naq3d2ltARqaqnpOfv3Xl6Rncsebzexx7c2vtoyMNxshV1cuSXDLcvSrJD/fz0Fe11qb3c45FoKrO\nzWDuyXSSLyb5vySrMriL0QlJ7kpyTmttc18ZJ5FJyvTlcdl3cawTh1+JSauLRmvtrqr61SQXJHlR\nkudlsDrq+5K8vrW2v0XUWHwemEEx3NsT93oMi9/KPf58oF8GXZifjUFncbomyVsyGEr0mAzKwU+S\nfDPJB5O8o7X2jd7STShXEAAAgI45CAAAQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAA\nHQUBAADoKAgAAEBHQQAAADoKAgAA0FEQAOhFVf1iVZ1XVVdV1baq+klV3VFV11TVOVVVfWcEmETV\nWus7AwATqKouT/I7SX6aZEuS25KcmOTJGfwC64NJXtBa291bSIAJpCAA0IuqenuS/01yWWvt9j2O\nb0zyb0mOS/J7rbVLe4oIMJEUBADGTlVdkOQtSa5urf1q33kAJok5CADMqqpOqqpWVVdX1XFV9faq\nmqqqu6rqq1X18qra5/8jVbWiqs6vqi1V9cOq2lFVX6uqd1bVIw7y7W8Ybh8yf98RAAfjXn0HAGDs\nHZPk00nWDbf3SfKMJG9L8tgk5848sKpOSPLJJKcm2Z7k6iS7kpyc5PeT3JzkpoN4z5OH2+/OQ34A\nDoGCAMBcnpTky0ke3lqbTpKqWpfks0nOqaoPtdY+NHzs+zMoB5uTnNda+/HMi1TVSRnMKzigqrp3\nkpcOdz88T98DAAfJECMADsarZspBkrTWbkny5uHuHyVJVZ2ewZWF7yV5yZ7lYPicb7bWvnwQ7/Xm\nJI9KsjXJ385DdgAOgYIAwFy+31r75CzHPzDcPnk4F+GZM8dbaz86nDeqqhck+dMkdyV5UWtt5+G8\nDgCHT0EAYC63zXawtfaDJHckWZZkZZI1w1O3HM6bVNXTk7wvyT1JXtha+9zhvA4AR8YcBAB6N1z7\n4MMZTIA+b485DQCMmIIAwFweOtvBqjouyf2T3JnBlYSp4al1h/LiVfXoJB9LcmySl7fW3nv4UQE4\nUoYYATCX46vqGbMcf8Fwe11rbXcGqx8nyQur6tiDeeHhnY0+keT4JBe21i45wqwAHCEFAYCD8VdV\ndfzMTlWtTfKG4e47k6S19oUkn0nyoCSXVtWKPV9guPDa+j32H5RBOTgxyVtba29c2G8BgINRrbW+\nMwAwhoa/3d+a5HMZzA04OYOF0u6dwe1Mlye5vLV29h7POTHJp5I8Msn3k/x7BgulrUtyWpJXzlwl\nqKqrkjwvyc4k/7SfGNOttVfN87cGwAGYgwDAXHYlOSPJWzL4gX5VBsXhsiQ/NySotfat4YTjP0ny\n/CTPSrI7ybYk70rykT0evnK4XZ7knP28921JFASAEXIFAYBZ7XEF4ZrW2tN6DQPAyJiDAAAAdBQE\nAACgoyAAAAAdcxAAAICOKwgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0FAQAAKCjIAAAAB0FAQAA\n6CgIAABAR0EAAAA6CgIAANBREAAAgI6CAAAAdBQEAACg8/8k4CJtX7miIwAAAABJRU5ErkJggg==\n",
181 | "text/plain": ""
182 | },
183 | "metadata": {
184 | "tags": []
185 | },
186 | "output_type": "display_data"
187 | }
188 | ],
189 | "execution_count": 0
190 | },
191 | {
192 | "cell_type": "code",
193 | "source": "pc_draslik.plot(y='pc1', x='pc2', style='.', title=worksheet_draslik.title)\nplt.show()",
194 | "metadata": {
195 | "id": "QeHqPX3z-Bw2",
196 | "colab": {
197 | "height": 614,
198 | "base_uri": "https://localhost:8080/"
199 | },
200 | "cell_id": "fc20e7d2d14b4a70963fa0c52cf8cd7e",
201 | "outputId": "8edc5527-02e0-40aa-df35-c9ebc7580022",
202 | "colab_type": "code",
203 | "deepnote_cell_type": "code"
204 | },
205 | "outputs": [
206 | {
207 | "data": {
208 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAJBCAYAAADiJZIHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuYXWV5///PPSM5TQI5A5KBxBEI\nSYPYzvClVkzEQGkrLUZJpB4K1doi9NteEZumVqvWXxOrRn+19ReNFKwtmIjRVmlUgjCkWiURJTEh\nASdDmZSDmRBzmBzJPL8/9oHJzD6svfc6PGvt9+u65toze+299rP3DOS513Pfz23OOQEAAACAJLUk\nPQAAAAAA/iBAAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAAAARQQIAAAAAIoIEAAAAAAU\nESAAAAAAKCJAAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAGJgZmeZWY+ZOTP7v0mPBwDK\nIUAAAHglP4F2ZrYg6bEEZWY35cf8VIWH3SXpFZI+6Zz7h/zzPpx/3kPRjxIAgiFAAIAShkz4qn0t\nrHKeDjP7vJn1mtkxM9trZt8xszfH9V7KjOvDw97HWwM8575hz5kZ/UizwczeJ+l6SV+R9BcJDwcA\nKnpZ0gMAAM8NStpb4fjxcgfM7LclfVXSuPxdByVNlnSNpGvM7E5J73LOuZDG2oiblZu8lmRmL5f0\nm/ENJzvM7DWSVkp6SNJNnvy+AaAsVhAAoLI+59w5Fb42lXqSmc2StE654OD7ki52zp0l6SxJH80/\n7GZJ74/jTVTQL2lA0kIzm1Hhce+U1CrpqTgGlTGXSPpbSW9yzpUNKAHAFwQIABCNj0pqk/ScpDc6\n556QJOfcYefc30j6Qv5xHzCzSQmNUcoFB/cq9+/BTRUed3P+9q6Ix5M5zrk7nHMfdc79MumxAEAQ\nBAgAEDIza5NUqDH4/8pMDFfkb89ULjd96PNnDs3zN7MLzGyNmT2dr2PoMbOP5V+n8JxfMbN/NbO+\n/GOeNLO/NrMzAgz5zvztTWXez2slXSRpt6SHA5yvIjObZGafyL+PY2b2rJl91cx+rcrzFhQ+l/zP\nrzazfzOzPWZ2cmihr5mdY2Z/amb/bmaPm9kBMztqZj83sy+a2dwqr/WbZrY+f+4TZnbQzHab2XfN\n7HYzm1zD+w1SwFzuua82s+fyz/+OmY2v9RwAUCsCBAAI32sljc1/v6HUA5xzT0l6PP/jNRXO9auS\nfirp3cqlJ71MuZ1wPiBpg5mdYWa/I+lHkt4maYKkUZJeqVxay5cDjPdhST2SOszsdSWOD109aCh/\nPl/Y/BNJtyv3Pky5NKy3SPqBmf1uwPO8Wbn3/PvKvecXhz1kpaR/kPS7yn0WLyr32XVIepekH5cr\nFDezD0n6tqQ3STpP0sn8OGdJulrSJyRdGmScjcgXwHdLOlvSvyq3EnU46tcFAAIEAKhsmpn92MwO\n569A785fqV9Q4Tm/MuT7n1V4XOFYpavZd0j6saS5+RqGCZL+r6RTkq6U9CFJ/ybpm5JmOucmKrcq\n8f/kn7+k2k5L+aLZu/I//uHQY/lVisXKFWvfpQaYWatyRdsXSNqfP29b/n3NVW7C/6WAp7tL0v2S\nLnHOneWcGyvpj4Yc/7ly9R3zJI11zk2RNFq5382/5b//Ur74eugYL5D0N/kfV0k6zznX5pybIGmi\ncp/55yQdquGt18zMbpR0n3K/709Jeqdz7mSUrwkABQQIAFDZOOWu4p9Q7v+Zs5S7Uv+gmf2zmZXa\nDa4w6dzvnDta4dz/O+zx5R7zO865HZLknDvqnPuspLvzx/9a0iOSbnTO/U/+MYedc38tqVBAXXUL\nU+Um5oOS3jIsjWWxpPGSHnDO9QU4TyVvltSZ//4G59xXnXMv5se8Q9K1kvYFPNcOSb/rnNtZuMM5\n9+SQ7z/mnPukc+5nQ15j0Dm33Tn3duUm320aFhBJ+j/K/Z6fcM69zzn3zJBzHnDO/Zdz7lbn3I9r\neeO1MLOlygUxZ0h6n3PudnY+AhAnAgQAKO0ZSR+R9CpJY5xzk5ULFn5D0sb8Y26W9OkSz52Qvz1S\n5TUKxydUeMyny+x8850h368sM4EsPKZqOkx+8r9RuUnz4iGHCulF/1ztHAEUApXvO+ceKDGGI5L+\nPuC5PuGcO9XAWO7L37522P2FepEJQ2s84mA5n1BuxeBFSW93zq2KcwwAIBEgAEBJzrnvOuc+7Jzb\nWpigO+dOOed+oFw/gH/PP/S9ZnZhhEN5pMz9zw/5fnOVxwTdJalQrPyHkmRmr1QupWa/pG8EPEcl\nhdWD71V4TKVjQ32/2gPM7FVm9jkz25ovMh4cUuT8ufzDhm/t+ohyW7+eK+lHZnabmc02Mws4rnqd\nIelflKvNOKzcqtHdlZ8CANEgQACAGjnnBpWbyEm5/49eN+whhfz0caqscLxSPnu5Y8WiXOdctccE\n2clIkr6uXDDwG/mgp7B6cI9z7ljAc1QyPX/7vxUesyfguX5R6aCZ3SbpUUm3KFeHMF7SAeWCpueV\na1on5VZMivI7Tt2oXHO8uZI+q1wx+X4z+w8ze3vAnaFq9RpJb89/f7Nz7v4IXgMAAiFAAIA6OOd+\nrtyVZim3G89Qhbz1SWY2VuWdN+zxicqvlNyT//HdyjVHk15aWfBGpfQiM7tE0meU+zfuq5IuVy5N\nbFKhwZ2kpYWHlzj3RuVqTd6pXG3Gk8rtIHWdcrtC/cTMzhv+vAZtk7Q1//0qM+sI+fwAEBgBAgCE\nb+jORb9S9lEvHdse4VhqVQgG/ly59JufOee2hHTuwlX/SpPrMCbeb1Gu6/Pjkt7qnNvsnDsx7DHn\nVDqBc27AOfdl59xNzrmLlPsslkk6ppdWFsL0gqSrlNvStl1St5ldFPJrAEAgBAgAUIf8Fd6p+R97\nhx3+L0mF3YuuLfP8CyRdkv/xu6EPsE75YGCbcr0UpHCKkwsKgcbrKzzmqhBepz1/+1g+HayUilu/\nDuec+1/n3N8rV0As5fohhMo5t0/SG5RLjTpP0kNmdnHYrwMA1RAgAMAw1QpS88c/kf9xUNK3hh53\nzg1I+lr+x1vM7KwSp1mWvz2kcAqAw7RMuYnwp5Rr0BWWtfnb15bqI5FPx3p/CK9zIH87r9Tv0sx+\nS9KI188fG13l3IXAr1zg0RDn3AvKBQmblSuUfiifMgUAsSFAAICRLjCzR8zsj83sFYVJppm1mNkV\nynVHflP+sZ93zu0qcY4PSRpQbpL3zcJOR2bWlu/U+yf5x33MObc/0ndTI+fchvze+7c75/aGeOqv\nKXd1XJK+ZmZvzjdPK9QNbJA0LYTX+Xb+dq6kfzKzyfnXaDOzP5Z0r8r3W1hmZhvM7B1mVtzhyMxG\nm9livRTA3Ff66Y3LF0pfLemHyqVCPWRmlVLVACBUpRr8AACkrvyXJB03s0PK9SsYeoX5TuW6Go/g\nnOvNTyi/qtxWoU+Y2QHldtNpHfL8T5R6fhY55140sxskPaRcGtC9yn22x5QrAj4h6Qa9tIVsva/z\ngJl9Rbm+C7cot4rzS+V+f63Kdaa+S6XrCFqUSwu7VpLM7KhyqwaT9FJB8+N6qcg5Es65A2Z2jXLB\nzmuUa8z3Bufc1ipPBYCGsYIAACM9L+lPletWvEO5LTEnSjopaadyefmvdc79YaFLbynOuf9UrknZ\nGklPSRqj3Dai90t6S/75TdUh1zm3W9JlklYpV7thyhX+3ivpNc65/wjppd6mXKH1VknHlQsMtkla\nrlyzu8NlnvcFSe9RbjennynXzO5M5X5vm/Ln/FXn3HMhjbOs/Pa1v5l/3amSvmdmr476dQHAmuzf\nJgAAAAAVsIIAAAAAoIgAAQAAAEARAQIAAACAIgIEAAAAAEVeBghmNs3MPmlmu8zsqJm9YGaPmlnT\nbAcIAAAAJMG7XYzM7NckfUfSFEnbldtm7kxJcyTNcM7RuwEAAACIiFeTbTObplxTmLGSfm/4fthm\ndnkiAwMAAACahFcBgqSPKNcM5tZSzXKcc4/EPyQAAACgeXiTYmRmY5XrXtoiaZpz7mjCQwIAAACa\njk8rCJ2SJkj6L+fcUTP7LUlXSxoj6QlJ65xzzyQ5QAAAACDrfAoQ5uRvf2Fm35D0e8OO/52Zvcs5\nd0+9L2Bmz0kaJ6mv3nMAAAAAHmqXdMQ5d06jJ/IpQJiUv/1dSack3Srpq8pN6G+TdLukL5nZ4865\nn1Y6kZltL3No2ujRo1s6OjrmlDkOAAAApE5PT4+OHz8eyrl8ChAKPRleJukDzrnPDTn2fjO7QNIN\nkt4v6W11vsbJjo6O0du3l4sfAAAAgPSZO3euduzYEUqWjE8BwuEh399Z4vidygUI86udyDk3t9T9\n+ZUFVg8AAACAMnzqpPw/+dsjzrm9JY4/lb+dHs9wAAAAgObjU4Dwk/ztWDMbXeL45Pzt4RLHAAAA\nAITAmwDBOfe0pMckmUqnERXu+0mJYwAAAABC4E2AkPf3+dtPmtm5hTvN7DJJ78v/uDr2UQEAAABN\nwqciZTnn7jazayT9gaQdZvYDSWMlvUbSaElrnHNfTXKMAAAAQJZ5FSDk3Szp+5L+WNICSU7So5I+\n75z7UoLjAgAAADLPuwDBOeckrcl/AQAAAIiRbzUIAAAAABJEgAAAAACgiAABAAAAQBEBAgAAAIAi\nAgQAAAAARQQIAAAAAIoIEAAAAAAUESAAAAAAKdbbP6D+w8fVOmHajDDOR4AAAAAApNS6LX1auKpb\n+wdOqmXU2DPDOCcBAgAAAJBCvf0DWr5+m04NulDPS4AAAAAApNDazX2hBwcSAQIAAACQSnv2H4nk\nvAQIAAAAQArNmDQukvMSIAAAAAAptKSrXa0tFvp5CRAAAACAFJo1tU0rFs0LPUggQAAAAABSanFn\nuzYuna9JbWdo8MSRg2GckwABAAAASLFZU9s0dfxonTrUvyeM8xEgAAAAACgiQAAAAABQRIAAAAAA\noIgAAQAAAEARAQIAAACAIgIEAAAAAEUECAAAAACKCBAAAAAAFBEgAAAAACh6WdIDAOCf3v4Brd3c\npz37j2jGpHFa0tWuWVPbkh4WAACIAQFCE2Lyh0rWbenT8vXbdGrQFe9bs2m3Viyap8Wd7QmODAAA\nxIEAockw+UMlvf0DI/4+JOnUoNPy9dvUNXMywSQAABlHDUITqTb56+0fSGhk8MXazX0j/j4KTg06\nrdvSF/OIAABA3AgQmgiTP1SzZ/+RKsePxjQSAACQFAKEJsLkD9XMmDSuyvGxMY0EAAAkhQChiTD5\nQzVLutrV2mIlj7W2GHUqAAA0AQKEJsLkD9XMmtqmFYvmjfg7aW0xrVw0jwJlAACaALsYNZHC5G94\noTKTPwy1uLNdXTMna92WPu3Zf1QzJo3V4k62wgUAoFkQIDQZJn8IYtbUNi27dnbSwwAAAAkgQGhC\nTP4AAABQDgECACAV6AIPAPEgQAAAeI8u8AAQH3YxAgB4jS7wABAvAgQAgNfoAg8A8SJAAAB4jS7w\nABAvAgQAgNfoAg8A8SJAAAB4jS7wABAvAgQAgNcKXeCHBwl0gQeAaLDNKQDAe3SBB4D4ECAAAFKB\nLvAAEA8CBACRovstAADpQoAAIDJ0vwUAIH0oUgYQCbrfAgCQTgQIACJB91sAANKJAAFAJOh+CwBA\nOhEgAIgE3W8BAEgnAgQAkaD7LQAA6USAACASdL8FACCd2OYUQGTofgsAQPoQIACIFN1vAQBIF1KM\nAAAAABQRIAAAAAAoIkAAAAAAUESAAAAAAKCIAAEAAABAEbsYAcAQvf0DWru5T3v2H9GMSeO0pItt\nWQEAzYUAAUAosjCxXrelT8vXb9OpQVe8b82m3VqxaB6dnwEATYMAAUDDsjCx7u0fGPEeJOnUoNPy\n9dvUNXNy6gIeAADqQYAAoCbDVwp+45VTMjGxXru5b8R7KDg16LRuSx8N3wAATYEAAUBgpVYKPt/d\no9LT6nRNrPfsP1Ll+NGYRgIAQLK83cXIzKaY2S/MzJnZz5MeD9DsyqXglAsOCtIysZ4xaVyV42Nj\nGgkAAMnyNkCQ9ClJU5MeBICcSik4laRlYr2kq12tLVbyWGuLpaaWAgCARnkZIJjZGyT9gaQ1SY8F\nQE61FJxS0jSxnjW1TSsWzRsRJLS2mFYumpeKOgoAAMLgXQ2CmY2V9HlJOyR9UtJ7kh0RAKl6Co7p\n9HSjNE6sF3e2q2vmZK3b0qc9+49qxqSxWtyZvu1aAQBohHcBgqS/kfQKSfMlnUx4LADylnS1a82m\n3SXTjFpbTHfd3KUf9OxL/cR61tS2VBRVAwAQFa8CBDO7VNL7JN3pnNtkZjOTHRGAgkIKzvBC5cJK\nwZUXTtOVF05LcIQAACAM3gQIZtYi6YuSfinpLxIeDoASSMEBACD7vAkQJP2ppC5JNzvn9jVyIjPb\nXuZQRyPnBUAKDgAAWefFLkZmdr6kj0nqds7dlfBwAAAAgKblywrCP0kaJelPwjiZc25uqfvzKwtz\nwngNAAAAIIt8CRDeqFztwWqz0/YgH5O/Pc/MHsp//1bn3HMxjg0AMqW3f0BrN/dpz/4jmjFpnJZ0\nUUcCAHiJLwGCJE1UbmvTUsYMOTamzGMAAFWs29I3YieqNZt2a8WiealpagcAiJYXNQjOOSv1JWlW\n/iE9Q+5/KsGhAkBq9fYPjAgOJOnUoNPy9dvU2z+Q0MgAAD7xIkAAAERv7ea+ko3upFyQsG5LX8wj\nAgD4iAABAJrEnv1Hqhw/GtNIAAA+I0AAgCYxY9K4KsfHxjQSAIDPvA4QnHNP5esOXhnWOZ89cEwr\nN+wk1xZA01nS1a7WFit5rLXFKFIGAEjyPECIwuFjL2p1d48Wruom3xZAU5k1tU0rFs0bESS0tphW\nLprHVqcAAEl+bXMaq8KuHV0zJ/OPIoCmsbizXV0zJ2vdlj7t2X9UMyaN1eJO+iAAAF7StAGC9NKu\nHcuunZ30UAAgNrOmtvH/PQBAWU2XYjQcu3YAAAAAL2n6AIFdOwAAAICXNHWAwK4dAAAAwOmaNkBg\n1w4AAABgpKYrUp4w5mW6ZUEHu3YAAAAAJTRdgHDOWWPYvQMAAAAoo2lTjAAAAACMRIAAAAAAoIgA\nAQAAAEARAQIAAACAIgIEAAAAAEUECAAAAACKCBAAAAAAFBEgAAAAAChqukZpQFJ6+we0dnOf9uw/\nohmTxmlJF928AQCAfwgQgBis29Kn5eu36dSgK963ZtNurVg0T4s72xMcGQAAwOlIMQIi1ts/MCI4\nkKRTg07L129Tb/9AQiMDAAAYiQABiNjazX0jgoOCU4NO67b0xTwiAACA8ggQgIjt2X+kyvGjMY0E\nAACgOgIEIGIzJo2rcnxsTCMBAACojgABiNiSrna1tljJY60tRpEyAADwCgECELFZU9u0YtG8EUFC\na4tp5aJ5bHUKAAC8wjanQAwWd7ara+ZkrdvSpz37j2rGpLFa3EkfBAAA4B8CBCAms6a2adm1s5Me\nRuJoGAcAgN8IEADEhoZxAAD4jxoEALGgYRwAAOlAgAAgFjSMAwAgHQgQAMSChnEAAKQDAQKAWNAw\nDgCAdCBAABALGsYBAJAOBAgAYkHDOAAA0oFtToGM8rHfAA3jAADwHwECkEE+9xugYRwAAH4jQAAy\nplK/gWX3btV/bntWs88504sVBQAA4B9qEICMqdRvwEl6aNdere7u0cJV3fQeAAAAIxAgABlTrd9A\nAR2MAQBAKQQIQMZU6zcwFB2MAQDAcAQIQMZU6jdQCh2MAQDAUBQpAxlT6DdQqlC5lCx3MPZxq1cA\nAHxHgABEJMnJ6dB+A7ueO6QHd/5CpUKFLHcw9nmrVwAAfEaAAETAh8np0H4DpcaT5Q7GlbZ6Xb5+\nm7pmTs7k+0btWGUCgJEIEICQ+Tg5bbYOxpW2ei0UZtOsDT4E8gDgIwIEZIoPVwOTmJwGed/N1MG4\n2lavFGbDx0AeAHxBgIDM8OVqYNyTU1/et0+qbfWa5cJsBMMqEwCUxzanyIRqVwPjbAYW5+TUp/ft\nk0pbvWa5MBvBscoEAOURICATglwNjEuck1Of3rdPClu9Dv89ZLkwG7VhlQkAyiPFCJng09XAcn0I\nwpqcDq03ePzZgxUf28xXQZutMBu1WdLVrjWbdpcMsFllAtDsCBCQCb5dDYxqclqq3qCSZr8K2kyF\n2ahN1IE8AKQZAQIywcergWFPTsvVG5TDVVCgMlaZAKA0AgRkQjNcDaxUbzBcI+/bh61igbiwygQA\nIxEgIDOyfjWwWp3FK6eP1yXnntnQ+2bLVAAAQICATMny1cBqdRZXzzm7ofdO4ygAACCxzSmQGlFv\nn8qWqQAAQCJAAFIj6r39fdoqFgAAJIcUI8Bzw4uG77q5Sz/o2Rd6nYVvW8UCAIBkECCgaaVht55K\nRcNh11r4uFUsAACIHylGaErrtvRp4apure7u0be2PqvV3T1auKrbqzz7akXDvf0Dob5e1ClMAAAg\nHVhBQNNJy249QYqGw15FyPpWsQAAoDoCBDSdJCbe9UiqaDjLW8UCAIDqSDFC00nLbj0UDQMAgCQQ\nIKDppGXiHXXfAwAAgFIIENB00jLxzmrRcG//gFZu2Knb7n5UKzfsDL3YGgAANIYaBDSdwsR7eKGy\njxPvrBUNV9q21ZfADACAZkeAkJeGPfERnjRNvLNSNJyW3aMAAGh23gQIZjZO0jWSrpP0WkkXSDol\n6eeSviZplXPucBSvzVXN5pSViXdapGX3KAAAmp03AYKk35e0Jv/945L+Q9KZkl4j6SOSbjSz+c65\nX4T5olzVBOKRlt2jgmLVEQCQVT4FCCclfUHSZ5xzjxfuNLNzJd0n6dWSPqNcIBEarmoC8UjL7lFB\nsOoIAMgyb3Yxcs59yTn3x0ODg/z9z0q6Nf/jIjMbFebrZu2qJuCrtOweVU21VUd2ZQIApJ03AUIV\nj+VvR0uaEuaJs3RVE/BZVrZtDbLqCABAmvmUYlTJK/K3JyW9EOaJl3S1a82m3SX/wU/TVU0gDdK0\ne1Q5rDoCALIuLQHCn+Vvv+2cO17twWa2vcyhjuF3pGlPfCAL0r57FKuOAICs8z5AMLPflvQu5VYP\nPhjFa2ThqiaAeLDqCADIOq8DBDObLelfJZmk9zvnHqvyFEmSc25umfNtlzSn1LG0X9UEEA9WHQEA\nWedtgGBm50n6tqRJyjVJ+38THhIASGLVEQCQbV4GCGY2WdJ3leumfKek25MdEQCcjlVHAEBWebfN\nqZmNl7RBuVSg9ZL+yDlXek9BAAAAAKHyKkAws9GS/l3S5ZK+I+lG59ypZEcFAAAANA9vAgQza5V0\nj6SrJG2StMg5dyLZUQEAAADNxacahNskvSn/fb+kz5lZqcfd7pzrj21UAAAAQBPxKUCYNOT7N5V9\nlPRh5QIIAAAAACHzJsXIOfdh55wF+Hoq6bECAAAAWeVNgAAAAAAgeT6lGAEAEJre/gGt3dynPfuP\naMakcVrSRTM7AAiCAAGAF5jMIUzrtvRp+fptOjX4UhudNZt2a8WieVrc2Z7gyADAfwQIABLHZA5h\n6u0fGPH3JEmnBp2Wr9+mrpmTCT4BoAJqEADUrLd/QCs37NRtdz+qlRt2qrd/oKFzVZrMNXJuNKe1\nm/tG/D0VnBp0WrelL+YRAUC6sIIAoCZhX+0PMplbdu3suseL5rNn/5Eqx4/GNBIASCdWEAAEFsXV\nfiZzCNuMSeOqHB8b00gAIJ0IEIAmEUZaUBSpG0zmELYlXe1qbbGSx1pbjLoWAKiCFCOgRmncbSes\ntKAorvYv6WrXmk27SwYeTOZQj1lT27Ri0bwRf/OtLaaVi+Z5/98rACSNAAGoQRp32wlzR5corvZX\nm8xJ0soNO1MVkCF5izvb1TVzstZt6dOe/Uc1Y9JYLe7kbwcAgiBAAAJK69aJYRYBR3W1v9xkbvNT\nL2jhqu5UBWTwx6ypbRS4A0AdqEEAAkrr1olhpgUVrvYPz+8OI3WjMJn77I2vLk7q2P4UAID4sYIA\nBJTW3XbCTguKK3WD7U8BAEgGAQJik8bi3qHSuttOFGlBcaRupDUgAwAg7UgxQizWbenTwlXdWt3d\no29tfVaru3u0cFW3t2k5paR168Qo04KilNaADACAtGMFAZFLa3HvcGneOjGNO7qw/SkAAMkgQEDk\nspRLnsaJdkHadnSJMiDzNd3N13EBAJoLAQIil7Vc8uET7UKHYiZ14YsiIPO1l4Wv4wIANB8CBEQu\ny7nkTOqiF+bKh6/pbr6OCwDQnChSRuTSWtxbTbVJHfv0+8fXXha+jgsA0JwIEBC5tO6iUw2TuvTx\nNd3N13GFoZCCd9vdj2rlhp0EzgCQAqQYIRZpLu4tJ8uTuqzyNd3N13E1ihQ8AEgnAgTEJm276FST\n1Uldlvm6daqv42oEdRUAkF6kGAF1ymptRZb5mu7m67gaQQoeAKQXKwhAndLcOK2Z+Zru5uu46kUK\nHgCkFwEC0IBGJnU0xUqOr+luvo6rHqTgAUB6ESAADapnUkfxJrIui3UVANAsqEEAYkb/BDSDLNZV\nAECzYAUBiFmQ4s00p5mQOoWCrNVVAECzIEAAYpbl4k1SpzBcluoqAKBZkGIExCyrxZukTgEAkA0E\nCEDMsto/wbd973v7B7Ryw07ddvejWrlhJwEKAAABkWIExCyr/RN8Sp0i1QkAgPoRIAAJyGLxpi+p\nU9VSnbpmTk715wwAQNQIEICEZK1405d978PeJYpdmQAAzYYAAU2HCV80fEmdCjPViVQlAEAzIkBA\nU2HCFy0fUqfCSnUiVQkA0KwIENA0sjDhS8PqR9KpU42mOhU+4/t3PJfphnYAAJRDgICmkfYOxqx+\nBNNIqlOpz7icNDe0AwCgEgIENA2ftuGsVRZWP+JUT6pTuc+4nLQ2tAMAoBoCBDSNarnpjz9zUCs3\n7PQybSftqx9JqDXVqdJnPFylVKU0pIEBAFAJAQKaRqXcdEn6+d7D+nn3YS/TdtK8+lGObxPpap9x\nQaVUJdLAAABZQICAplEuN304H9N2fGlC1oihAcHh4y/q4Sf2auivIemJdLXP+JXTx+vqOWeXTVUi\nDQwAkBUtSQ8AiNPiznZtXDohLAKkAAAgAElEQVRftyzo0CunjS/7uELaji+WdLWrtcVKHouzCVm9\n1m3p08JV3Vrd3aNvbX1WD+06PTiQXppI9/YPJDLGap/xmnd2atm1s8tO8oOkgQEAkAYECGg6hdz0\n2edOqPg4n9J2CqsfwyewcTchq0ctxb9JTqQb/YyzmAYGAGhOpBihaaUtbceHJmT1qKX4V2p8It1I\nbUMjn3Fcf0++1W4AALKHAAFNq9GGWklIuglZPYIW/xY0MpEOo0i43s84jr8niqABAHEgxQhNK81p\nO2lS7cr6UI1MpKsVCUdd2xD131PS7w8A0DxYQUBTS2vaTppU2162oNGJtA+9IqL8e/Lh/QEAmgMB\nAppeGtN20qTc9rItJs2/aJrGjzkjlIl0EkXC5eoBovh7oggaABAXAgQAkYtjpSbuovO46wHSVlQP\nAEgvAgQAsYh6pSbOovMkmqKlsageAJBOFCkDGdHbP6CVG3bqtrsf1coNO5uuaDXOovMkmqJRVA8A\niAsrCEAGsP1lTlxF50nVA1BUDwCIAwECkHJJpLv4LI6i8zjrAUoVQlNUDwCIEilGQMolke7S7JZ0\ntY9I9SkwSfsHToSS4rVuS58WrurW6u4efWvrs1rd3aOFq7r5nQIAIkWAAKQc21/Gr1w9gCQ5SV/Z\n3NfwRJ7GaACApBAgACnH9pfJWNzZro1L5+v3Lz9fpdYSGp3IszIEAEgKAQKQcpXSXdj+Mlqzprbp\nzLFnqFyP6EYm8qwMAQCSQoAApBzbXyYrqok8K0MAgKSwixGQAWx/mZyoJvI0RgMAJIUAAciIOLb3\nxEhRTeQLK0PDC5VZGQIARI0AAQAaEOVEnpUhAEASCBAApFapJmJJTJ6jnMizMgQAiBsBAoBUWrel\nb8RV+8939+jSGWfp1zumxh4sMJEHAGQFAQKA1CnXRMxJemzPAT2254DWbNqtFYvmZbKY15eVEwBA\nNhEgoOkx2UpGI597pSZiBYVGZV0zJ2fq91lq5STLwRAAIH7eBQhmNlbScklvlXS+pBckfVvSB51z\n/5vk2JA9TLaS0ejnXq33QEGhUVkUqT9JBJblVk6yGgwBAJLhVYBgZmMkfU/SFZKelfTvkmZKulnS\nG83sCufc7uRGiCxhspWMMD73ar0HhqqnUVm1yX9SgWWllZMogyEAQHPxKkCQ9NfKBQf/Leka59xh\nSTKzpZI+JemfJS1IbHTIFCZb0ag2uW7kcy+ce9dzB2XK1RxUM2PS2Jqu9leb/CcZWEbVtRkAgKG8\nCRDMbJSk2/I/3loIDiTJObfKzP5A0nwz+zXn3I8TGSQypdpka+dzh7Ryw86mr00Ic3It1T7JLbz+\nf/f0a+ueA4GCgoLWFtP40S/TwlXdga72B5n8JxlYRtW1GQCAobwJECT9hqSzJPU4535S4vi9ki6V\ndJ0kAgQ0rNpk66Gdv9CDO39R/LkZaxNqSaUJemW9lkluqdcfziRdfM4E7Xru0GnBQ2uL6fZrLtIn\nv/tE4Kv9QSb/jV7Fb6R2IaquzQAADNWS9ACGeFX+9tEyxwv3XxrDWNAElnS1q7XFyh4fPgUrTCp7\n+weiHZgnqk34h38OQSbXUuXPfegkt9zrD+ckvX72dH3v9gW6ZUGHrnvVy3XLgg5tXDpfB46+GGhM\nBUEm/41cxV+3pU8LV3VrdXePvrX1Wa3u7tHCVd0jxlFOoWvz8M8vjK7NAAAU+LSCcH7+dk+Z44X7\nL6h2IjPbXuZQR62DQnYVJlvDJ6GVctubqTah1lSaoFfWy33uwye5QbYyHXruUo3Kar3aH2Tyv7iz\nvqv4YdUuRNm1GQAAya8AYXz+tty/6IXLlRNiGAuaRKnJ1s5nD+rBXXvLPqdZCkGjmFwXBJnkBt3K\ndPi5axnT4WMnT/s5SApP0ABnuGoB19K1P9V5k8YGSjuiazMAIEo+BQihcc7NLXV/fmVhTszDgeeG\nT7ZWbthZMUBolkLQWlNpas2PrzbJDbqVaaWr9ku62vWFh3tUbiGi+4m96u0fKE7Gg07+67mKXy3g\n+UnfL/WTvl9Kas56FwCAP3yqQSjsWlRuVlD4l/dQDGNBEwuaI591tX4OYefHV6sRCXLuWVPb9LqL\nppV9/qDTiPz/xZ3t2rh0/oh6hhvKBDifvfHVWnbt7FB7NzRbvQsAwC8+BQhP529nlDleuP9/YhgL\nmhiFoDnlPgeT9CsvP1NrN/eNmMAu7mzXXTd36dXtE/Xys8bo1e0TddfNXSMm142+/mXtZ5WduA83\nfnTlhdJSKWO1Tv6DCBLwDFWqiBoAgDj4lGL0WP72V8scL9y/NYaxoMlRCJoz9HP4QU+/tvbl+hA8\ntueAHttzYEQqzPBtSZ85cEw33bm57nSZMH4PvvQOKJe+VEmz1LsAAPziU4DwfUkHJHWY2WXOuZ8O\nO/6W/O034x0WmhWFoDmzprZpcWe7vvDw7rJbv3bNnCxJkXQYbvT34FPvgOEBz54XjhTrDkpplnoX\nAIBfvEkxcs6dkPSP+R//ycyKMwkzW6pc/4NuuigD8Quy5WnQPghx8y1lbGj60qollzVU79LbP6CV\nG3bqtrsf1coNO6lZAACEwqcVBEn6mKSFkl4j6Ukz26Rc34P/I2mvpD9McGxATRrpmOubIFueOlc5\nbSbJdBlfU8bq3TJVqq3LNQAAtfAqQHDOHTOz10taLun3JV0v6QVJd0n6oHOuXBM1wCtZm7wFyeOv\nEh8kni7ja8pYPcFLWE3X6pWl4BcAMJJXAYIkOeeOSvpQ/gtInaQnb1EImsfvS65/2tQavNTa5TpM\nWQt+AQAjeVODAGSFr7n4jQiSx+9brn+W1drlOizVgt9GayCoqQAAP3i3ggCkXVKTt6gFSYXxNdc/\na5LaujXKlQtWJgDAHwQIQMh82Xc/CkFSYeLK9Y86D963PPuh4xk/+mVqsVwn6OGiTOeKKvjNYloe\nAKQZAQIQMp/23c+qRq42B5n4+3Y1u9R4zDQiSIg6nSuq4DfJmgoAwEgECEDIGtm6EtU1crU5yMTf\nt6vZ5cbjXC5I+P3Lz9eh4y9Gls41NKCaMCaalYuspuUBQFoRIAARiCsX37c0mDjUe7U56MTft6vZ\nlcYz6KSzxp2hv1s0L5LXLhVQtVguMHEhrlxkOS0PANKIAAGISJS5+L39A/rIN7ere9deDZ06NkNR\nZ71Xm4NO/H27mu3bjkWDLhckvPXydh0+fiqU4Je0PADwCwECkDLrtvTpL7+2tWSax6lBp2X3btVP\nnt6v97yuI5OrCfVebQ460fbtaraPOxYNOmniuFFasSicAJi0PADwCwECkCKFq7pl5m2SJCfpnkf6\ntG7LntStJlRLmertH9CBoydkkkp9BJWuNgedaPt2NTup8cS9csEWuQDgDwIEIEUqXdUdLm1bRFYr\nIC51fKhqV5uDTrR9u5qd1HiSWLmIa4tcAEBlBAhAilS7qjtckltE1lJAXa2A+NyzxpQNDky5fPhq\nKVW1TLR9u5qdxHh8W0kBAMSHAAFIkWpXdUtJYovIWvsIVCsgXvXdJ8oed8rlwweZLNcy0fbtanbc\n4/FtJQUAEB8CBCBFKl3VLSfuotp6+ghUWxl5/tCxisdrCYJ8m/j7zLeVFABAPAgQgJS58sKpI7Y3\nLSeJVJB6+ghUWxk5e8IYPfPL8kFC0CCoGftGNIqACgCaDwECEIIwJ57lzlUqbcckLbh4mrpmTtan\n7n/Ci1SQena/qZbvvvSai3TTnZvryocvfJ7/3dOvrXsONF3fCAAAakWAADSo1nz7es619OqLtOr+\nkXn4TtLDT/brQ9fN1W/NO9eLVJB6dr+plu9+5YXT6sqHr7bzUdp2egIAIA7mXPBc5rQzs+1z5syZ\ns3379qSHgozo7R/QwlXdZa9sb1w6P/DEs9K5yu37X3DLgg5v0kAa+Ux6+wcqBjnVjgcdx3A+fX4A\nANRj7ty52rFjxw7n3NxGz8UKAtCAevLt6zlXtSluEjsVldPI7jdD893LpVqF8XkO59PnBwBA0ggQ\ngAaE2W221h4HQ8W9U1E1je5+E0baVi2fp2+fHwAASSJAABoQZrfZaucql2Y0tEg3jmLpoOrd/aae\nbVJLCdozgqZftWEnKADIPgIEoAFhdputdq73XX1RxZ2K4iiWrvVc9Uwmw0rbWtLVri883KNKWUal\n0p6YAJcX5t8YAMBfBAhAA8LsNlvtXDd0tpfdqSisq+5SeFfw651MhpW2tfmpF8rWblzWPlG/3jFl\nRNoTE+DywvwbAwD4jQABaFCY3Warnatc2k5cxdJBz9XIZDKMtK3C65fapK3FpE8vuWzE6zMBrizM\nvzEAgN8IEIAQhNlttp5zxVksXe5cQ1Nz9uw/WvdkMoy0rUqT2UGnkq+f1AQ4LSlN1f4u7t/+fGK9\nNwAA4SJAABrkwwQvzmLpUueq1pBsuEoBSxhpW/UEOWEGWUGlKaWp2t/Fz/ce1sJV3V6OHQBQGwIE\noAG+TPDiLJYefq5yqTmVTBhd+X89jaZt1RPkhBlkBZG2lKZKfxcFvo4dAFCblqQHAKRVtQleb/9A\nbGMpXHVvbbHT7m+kWDrouWppSFbwlc1Pa92WvqrjWHbtbH32xldr2bWza3oPS7raR4y/oFzAVM9z\nGhEkpckn5f4uhvNx7ACA2rCCgKYTVkqQb0WbcRZLD1VPg7dBp0ivNNeTphTmjlRBJJHS1KjC38W7\nv7RZPXvLB8A+jh0AEBwBAppKmClBjU7woqhdSKJYOmhDsuGGB1GFz2PXcwe1/8hJTRx3hmafc2bd\nn0s9AVOYQVY1cac0hWXW1DZdPecc9XT3lH2Mr2MHAARDgICmEXbOdyMTPF9qF8JQKTe9XPfngkIQ\nVa7I+aFdexv6XOoJmMIMsioJs24kbmkeOwCgOmoQ0DTCzvmuN2fdp9qFMJTLTW8xacbkyleSZ0wa\nW7XIOa2fSzVh1o3ELc1jBwBUxwoCmkbYOd/15qz7VrsQhuGpOYePnVT3E3vV90L5z7QQRAUpco7q\nc0l6i9o4U5rCluaxAwAqI0BA04gi57ueSVJailNrnTwXUnN6+we0cFW3Ks35hwZRQYucw/5cfEnz\nCprSlHQwU0pc6VgAgHgRIKBpRJU3XeskKQ3FqY1MnoOsCCy9+iLdkD9P0CLnMD+XtPUg8CWYAQA0\nB2oQ0DR8yZuOe7/9WjVaIxFkRWDV/U8Uz1Pp8ygI+3Oplub1hYfL79ATt6zVrAAA/EeAgKayuLNd\nG5fO1y0LOnTdq16uWxZ0aOPS+cWr2XHwJVApp9Fi7iArAkPPU60BVxSfy67nDlY8fs8jfd40+0pb\nQzUAQPqRYoSm40PetM8Fno3WSFRK5Sp3nqGfx67nDmn/kROaOG6UZp8zIZLPZf+Rk1Uf40uqUVpq\nVgAA2UGAACTEh0CllEZrJAorAsvu3VqxB8Lw88T5eUwcd0bVx/iyo1QaalYAANlCihGA04RRI7G4\ns13/8q7LVa6yIOlai9nnnBnocbueOxTxSKrzvWYFAJA9BAhAxvX2D2jlhp267e5HtXLDzqpFrWHV\nSFx54TR9/C2XellrEaQwWpL2HzkRw2gq871mBQCQPaQYARlW7/aYYdVIhFlrEWYfgMKk+y/u3Vrx\ncRPHjarr/GHzuWYFAJA95lzlQsIsMbPtc+bMmbN9+/akhwJErtCwrFzfh7tu7tL3f77Pq8Zb5ZQK\ndFpbrOE+AMvXb9U9j5TfBeiWBR2J1yAAABDE3LlztWPHjh3OubmNnosVBCCjqm2P+c47HjmtiLjS\nykKSXXyjbGr2ntd1aN2WPaE3zwMAIM2oQQAyqtr2mMOnxOUab63b0qeFq7q1urtH39r6rFZ392jh\nqu7Y9t+Psg8A+f0AAIzECgKQUUEalg03fGvPKK/eBxV1HwDy+wEAOB0BApBRQRuWDTd0wh3k6n3U\nOfpx9AGo1oMhyRQrAADiRooRkFHl0meqbe45dMLtQxffpPsAJJ1iBQBA3FhBADKsVPrMazqm6KY7\nNwcqzPWhi28h0Cm1i1HUdQKVUqyW3btV5541RldeOC2y1wcAIAkECEDGlUqfCTrhrpSmFOcuP0nV\nCVRKsXKS3nnHI/r4Wy5ltyMAQKYQIAAZUGuOfNAJd5JX74erVicQhSA7QcVVrA0AQFwIEACPBZn4\n19stOeiEu5l3+QmyE1RcxdoAAMSFAAHwVJCJf1zbkCZx9T6IRnYXCvLcoDtBxVGsDQBAXAgQAA8F\nnfj7sA1pUupdOanluYUUq2X3bh3RWG6oOIq1a8G2rACARrDNKeChoN2DfdiGNAnVAqjh3aAbee7i\nznb9y7suL7s9bJzF2kGwLSsAoFEECICHgk78fdiGtFG9/QNauWGnbrv7Ua3csLPi5L4gaAAV1nOv\nvHCaPv6WS0f0Y0iiWLuSRgInAAAKSDECPBR04u/LNqSlbHpyrz713Sf0i4PHNP3MMXrfNRed1jOg\nt39AH/nmdnXv2nta+k6QNKFGVk7qfW4airWbOeUMABAeAgTAQ0En/j5tQzrU++99TF/dsqf48zMH\njukddzyii8+ZoAunj9fh4y+OCAwKghRYN7Jy0shzfS3WLmjWlDMAQLhIMQI8VJj4B0lpWdzZro1L\n5+uWBR267lUv1y0LOrRx6XzdkNDqwaYn954WHAy167lD+tbWZ/VQmeCgoFqa0JKu9hGfTUG1lZNG\nnuu7LKScAQCSxwoC4KlaUlp8urL9qe8+Ecp5Kl3tbmTlxNdVlzD4nHIGAEgPAgTAYz5N/IP6xcFj\noZyn2tXuRmoC0lBPUI8sBz8AgPgQIABNKqq98qefOUbPHGg8SJgwuvr/nhoJoNIYfAWR1eAHABAf\nc65yh9AsMbPtc+bMmbN9+/akhwJEJsjEv1SjsNYWC9RkrJpNT+7VO+54pKFzFMazcel8JrYAAAQw\nd+5c7dixY4dzbm6j52IFAciQIB2Cg3ZprteVF07TDZ0zyhYqB8W2nH6gKzMANB92MQIyImiTrEaa\njAX1ibe8Sl9+1+V69fkT9fKJY3X+5LEjOhG3mDR9wuiK52FbzmTRlRkAmhMrCEBGBG2SFdde+Vde\nOE1XXjiteAV653MHdeDISU1qG6WLz5mgxZ3tWru5T6u7e8qeg205kxP1ShMAwF8ECEBGBJ3417NX\nfr1pJuVqHa79lXM0a2ob23J6jK7MANC8vEgxMrPZZrbMzB40s34zO2lmz5nZejO7MunxAWkQdOJf\na6OwetNMevsH9Jdf21ox5amWhnCIF12ZAaB5+bKCsFHSeZIOS/qhpBckzZH0JknXm9lS59xnEhwf\n4L2gV+Nr2Su/kTSTj3xzu8pcgD7tCnRc23JSbFsbujIDQPPyJUDYKWm5pK8654obqJvZH0taLemT\nZvZd59yOpAYI+K6WiX/QSXm9aSa9/QPq3rW34niHXoGOuidBkN2dwpb2gIT0LwBoXl4ECM65hWXu\n/7yZLZJ0jaQbJH0k1oEBKVPL1fggk/J600zWbu5TtQ4rcV2BDrIKIinUyXypgOQLD/fodRdN0/jR\nL0tFwEBXZgBoXl4ECFU8plyA8PKkBwKkQZhX4+tNM6kWWJgU2xXoaqsgH/3mdj38ZH9oqwvlApJB\nJz00ZFUl6hWMMNCVGQCaUxoChFfkb59LdBRAE6o1zaSQVvP4swcrnnfBxdNim2RWC1Ye2rV3xGpH\nI1t5VgpIwnqNOEWd/gUA8I8XuxiVY2Ydkt6Y//E/khwL0Ixq2WVo6G5HPXsHyp6zxaQPXddwF/jA\nqq2ClJvK19s0rlpAEsZrAAAQJW9XEMzsZZLukjRa0lrn3I9reO72Moc6Qhga0FSCpJmUS6sZziTN\nv2hayWNRFfVWWgUxlQ8QpPq28qwWkITxGgAARCmUAMHMvi7pkhqf9k7n3CMVjv+DpNdK2i3pvfWO\nDUDjqqWZBE2rcZIe3LVXDz/ZfVr+fZS7DFUqtr3ywqmn1QUMV6mQulxAUykgqfU1AABIQlgrCLMk\nXVzjc8peZjOzD0i6RdLzkn7TOfdCLSd2zpXMX8ivLMyp5VwAqqslrUYauYNQvb0Wgiq3CiJJm57s\nrnkrz2oBTamApBS2CwUA+CiUAME5d1kY55EkM/sTSR+TdEDStc65n4d1bgDRqDWtRnop/9451dVr\noVblVkFq3cozyLapwwOSw8dOqvuJvac1jmO7UACAr7yqQTCzt0r6J0lHJP2Oc+6nCQ8JQAC1ptUU\n7HrukMaNaq34mKhz9GvdyjNo87jhAUlv/wDbhQIAUsGbAMHMflvSv0h6UdKbnHPfT3hIAAIql+df\nrQj4wZ2/0PyLSxctF8SRo1/LVp71No9ju1AAQFp4ESCY2W9Iulf5/knOue8mPCQANSp1Jf41HVN0\n052by15xd5IefmKvWkwq9RAfc/TrbR4HAEBaeBEgSPqWpLGSeiVdb2bXl3jMfznnvhjvsADUotRV\n8hWL5mnZvVvLriQMOun1F08b0c3Y1xz9WpvHAQCQNr4ECBPzt7PyX+UQIAAps7izXf+57dmK24mO\nH3OGNi6dH0mOftj9FSptm+pjQAMAQK28CBCcc1b9UQDSavY5Z1btNxBFjn5U/RVqLWwGACBNvAgQ\nAGRbEmk5lbYj/cuvbW24vwJFxwCArGpJegAAsq+QltPacvpiYZRpOZW2Ix100ke/uT301wQAIAtY\nQQAQi7jTcqptR/rQrr3q7R8gLQgAgGEIEADEJs60nGrbkToptC7NAABkCSlGADJpSVe7qu1+EHWX\nZgAA0ogAAUAmzZra5kWXZgAA0oYAAUBm/c11c9VSZhmBpmYAAJRGgAAgs2ZNbdPKN18a6+5JAACk\nHUXKADKNpmYAANSGAAGA93r7B7R2c5/27D+iGZPGaUlXbRN8mpoBABAcAQIAr63b0jeiI/KaTbu1\nYtE8aggAAIgANQgAvNXbPzAiOJCkU4NOy9dvU2//QEIjAwAgu1hBACLWaHpMM1u7uW9EcFBwatDR\n6AwAgAgQIAARIj2mMXv2H6lynEZnAACEjRQjICKkxzRuxqRxVY7T6AwAgLARIAARCZIeg8qWdLWP\n6GFQQKMzAACiQYAARIT0mMbNmtqmFYvm0egMAIAYUYMARIT0mHDQ6AwAgHgRIAARWdLVrjWbdpdM\nMyI9pjY0OgMAID6kGAERIT0GAACkESsIQIRIjwEAAGlDgABEjPQYAACQJqQYAQAAACgiQAAAAABQ\nRIAAAAAAoIgAAQAAAEARAQIAAACAInYxAuCl3v4Brd3cpz37j2jGpHFa0sX2sAAAxIEAAYB31m3p\n0/L1207rQr1m026tWDSPDtQAAESMFCMAXuntHxgRHEjSqUGn5eu3qbd/IKGRAQDQHAgQAHhl7ea+\nEcFBwalBp3Vb+mIeEQAAzYUAAYBX9uw/UuX40ZhGAgBAcyJAAOCVGZPGVTk+NqaRAADQnAgQAHhl\nSVe7Wlus5LHWFqNIGQCAiBEgAPDKrKltWrFo3oggobXFtHLRPLY6BQAgYmxzCsA7izvb1TVzstZt\n6dOe/Uc1Y9JYLe6kDwIAAHEgQADgpVlT27Ts2tlJDwMAgKZDgAAgdnRJBgDAXwQIAGJFl2QAAPxG\ngAAgNNVWBqp1Se6aOZmVBAAAEkaAACAUQVYGgnRJpu4AAIBksc0pgIZVWxno7R+QRJdkAADSgAAB\nQMOCrAxIdEkGACANCBAANCzoygBdkgEA8B8BAoCGBV0ZoEsyAAD+o0gZQMOWdLVrzabdJdOMhq8M\n0CUZAAC/ESAAaFhhZWB4oXK5lQG6JAMA4C8CBAChYGUAAIBsIEAAYlCtgVhWsDIAAED6ESAAEQvS\nQAwAAMAX7GIERChoAzEAAABfECAAEQraQAwAAMAXBAhAhII2EAMAAPAFAQIQoaANxAAAAHxBgABE\naElX+4iuwQXDG4gBAAD4gAABiFChgdjwIKFcAzEAAICksc0pEDEaiAEAgDQhQABiQAMxAACQFqQY\nAQAAAChiBSEg55ycK72fPfxhZjIrXRQMAACA6ggQKjh16pT27dunQ4cO6cSJE0kPBwGNGjVKEyZM\n0JQpU9Ta2pr0cAAAAFKFAKGMU6dO6emnn9axY8eSHgpqdOLECe3bt08DAwM6//zzCRIAAABqQIBQ\nxr59+3Ts2DG1trbq7LPPVltbm1paKNnw3eDgoAYGBvT888/r2LFj2rdvn6ZPn570sAAAAFKDAKGM\nQ4cOSZLOPvtsnXXWWQmPBkG1tLQUf1/PPPOMDh06RIAAAABQAy6Jl+CcK9YctLWxV30aFX5vJ06c\noLgcAACgBgQIJQydUJJWlE5Df28ECAAAAMEx+wUAAABQ5G2AYGYfNDOX/3p70uMBAAAAmoGXAYKZ\nXSzpA5LIDQEAAABi5F2AYLk2uF+Q9EtJ/5HwcAAAAICm4l2AIOndkl4n6X3KBQloIvfdd58+8IEP\naOHChZo4caLMTAsWLEh6WAAAAE3Dqz4IZnaOpL+X9IBz7t/M7Oqkx4R4ve1tb9OBAweSHgYAAEDT\n8ipAkPQPksZKuiXpgSAZb37zm3XJJZeos7NTJ0+e1DXXXJP0kAAAAJqKNwGCmb1R0g2S/sY592TS\n40Ey7rjjjuL3P/zhDxMcCQAAQHPyogbBzMZL+pykJyR9PITzbS/1Jamj0XNHpbd/QCs37NRtdz+q\nlRt2qrd/IOkhjfDUU08VawIOHjyoP/uzP1N7e7vGjBmjSy65RJ/+9Kc1ODg44nkDAwP6+Mc/rs7O\nTp155plqa2vT7Nmzdeutt+qJJ55I4J0AAACgnFBWEMzs65IuqfFp73TOPZL//u8ktUt6g3PueBhj\nSpN1W/q0fP02nRp8aVfXNZt2a8WieVrc2Z7gyEo7fvy4rrrqKvX09Oiqq67SiRMn9MADD2jp0qV6\n7LHHdNdddxUf++yzz+rqq6/W9u3bNWnSJC1YsECjR4/W7t27tXr1al144YW66KKLknszAAAAOE1Y\nKUazJF1c43PGSZKZXUfJ4dAAAA7lSURBVC7pVklfds59L4zBOOfmlro/v4owJ4zXCEtv/8CI4ECS\nTg06LV+/TV0zJ2vW1LaERlfaD3/4Q1166aV68sknNXXqVElST0+PXve61+lLX/qSrr/+el1//fWS\npHe84x3avn27Fi9erDvuuEPjx48vnuepp57SwYMHE3kPAAAAKC2UFCPn3GXOOavx66H80387P455\nZvbQ0C9J1+Yf84H8fX8Zxnh9snZz34jgoODUoNO6LX0xjyiYT37yk8XgQJI6Ojr0wQ9+UJL0j//4\nj5KkRx55RA888ICmT5+uL37xi6cFB5I0c+ZMXXrppfENGgAAAFV5UYOQd5mk+cO+zs4fm53/eXYy\nQ4vOnv1Hqhw/GtNIgps8ebKuvnrkDrQ33nijJOkHP/iBBgcHtXHjxuL9EyZMiHWMAAAAqE/iAYJz\n7sPlVhkkfSn/sHfk77spwaFGYsakcVWOj41pJMFdcMEFJe8/66yzNHHiRB09elT79+9XX19u9aOj\nw9vacAAAAAyTeIDQ7JZ0tau1xUoea20xL4uUAQAAkF0ECAmbNbVNKxbNGxEktLaYVi6a512BsiQ9\n/fTTJe8/ePCgfvnLX2rs2LGaOHGi2ttzwU1PT0+cwwMAAEADCBA8sLizXRuXztctCzp03aterlsW\ndGjj0vm6wdPVg3379umBBx4Ycf9XvvIVSdKv//qvq7W1VQsXLpQk3XPPPTp8+HCsYwQAAEB9vOmk\nXEq+5uCmhIcRi1lT27Ts2vTUYN9+++3auHGjpkyZIknq7e3VRz/6UUnSrbfeKkm6/PLL9frXv14P\nPvig3vOe92jNmjVqa3tpReSpp57SoUOHNG/evPjfALzX2z+gtZv7tGf/Ec2YNE5Lutq9XFEDACBr\nvA4Q4KcrrrhCJ06c0Ctf+UpdddVVOnnypB544AEdOXJEb3/727Vo0aLiY7/85S/rDW94g+655x59\n5zvf0Wtf+1qNHj1aPT09+ulPf6pPfepTpwUIf/u3f6v77rtPkoqrDo8++qiuuOKK4mO+/vWv69xz\nz43p3SIJaWseCABAlhAgoGajR4/Wt7/9bf3VX/2VvvGNb6i/v1+zZs3SH/3RH+nP//zPT3vseeed\np82bN+szn/mM7r33Xt1///1qbW3VjBkz9N73vldvfOMbT3t8T0+PfvSjH51236FDh0677/jxpmu2\n3VTS2DwQAIAsMedKN+nKIjPbPmfOnDnbt2+v+LjBwUHt2rVLknTxxRerpYVSDSmXEjRr1izNnz9f\nDz30UNLDqYjfYXqt3LBTq7vLF7bfsqAjVel4AADEYe7cudqxY8cO59zcRs/FrAmAV9LYPBAAgCwh\nQADglTQ2DwQAIEsIEAB4heaBAAAkiwABgc2cOVPOOe/rD5BuaWweCABAlrCLEQDvLO5sV9fMyVq3\npU979h/VjEljtbiTPggAAMSBAAGAl9LWPBAAgKwgxQgAAABAEQFCCWYv5T4PDg4mOBLUa+jvbejv\nEwAAAJURIJRgZho1apQkaWBgIOHRoB6F39uoUaMIEAAAAGpADUIZEyZM0L59+/T8889Lktra2ujG\nmwKDg4MaGBgo/t4mTJiQ8IgAAADShQChjClTpmhgYEDHjh3TM888k/RwUIcxY8ZoypQpSQ8DAAAg\nVQgQymhtbdX555+vffv26dChQzpx4kTSQ0JAo0aN0oQJEzRlyhS1trYmPRwAAIBUIUCooLW1VdOn\nT9f06dPlnJNzLukhoQozo+YAAACgAQQIATHxBAAAQDOg6hYAAABAEQECAAAAgCICBAAAAABFBAgA\nAAAAiggQAAAAABQRIAAAAAAosmba29/MDo4ePXpCR0dH0kMBAAAAQtPT06Pjx48fcs6d2ei5mi1A\neE7SOEl9SY8FDSlEeD2JjgJR4HebXfxus4vfbXbxu02XdklHnHPnNHqipgoQkA1mtl2SnHNzkx4L\nwsXvNrv43WYXv9vs4nfbvKhBAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAAAARexiBAAA\nAKCIFQQAAAAARQQIAAAAAIoIEAAAAAAUESAAAAAAKCJAAAAAAFBEgAAAAACgiAABAAAAQBEBAlLP\nzNrM7B1m9lkz+5GZHTczZ2YfTnpsCMbMxprZR83sCTM7ZmbPmNk/m9l5SY8N9TOzXzOzvzSz9Wa2\nJ//fJc13Us7MxpnZ9WZ2h5ntyv83O2Bmj5nZh8xsfNJjRP3MbGn+v9knzexA/t/U/zGzfzGzeUmP\nD/GgURpSz8wuk/STEoc+4pz7cMzDQY3MbIykByVdIelZSZskzZR0uaS9kq5wzu1ObICom5l9Q9Lv\nDb/fOWcJDAchMbN3S1qT//FxST+TdKak10j/f3v3FmNXVcdx/PtToEqhUguYUq5tBIFwVQHhgZsX\nIjEi4QEwUJJqNESDaFFJgKCN+CKkGGsMqJBIQkBiIUJA8NKKWuSiaV8gQoUKiEJF7rSU+vdh7zkM\npdPOdGbOHqbfT3KyZq99Zp//SdPM+Z2111rsCDwEHFtVT3dToUYjyWpgKrACeLLtPhDYF1gHnFpV\nt3ZUnvpkm64LkMbAi8BPgPvax8nAtzutSCNxEU04WAZ8vKpeguZbLOBy4KfAcZ1Vp9FYRvMhY+D/\n5mPAlC4L0phYB1wFLKyqBwc6k8wEbgMOAxYCZ3ZTnkbp08ADVbVmcGeSc4FFwI+T7F5Vr3dSnfrC\nEQRNOkm+CXwXRxAmvCTbAU8D7wEOr6q/bnB+OXAw8KGqeqCDEjWGkqwBpjiCMHkl+QjwJ2AtMK2q\nXuu4JI2hJI8Ac4BDqmpF1/Vo/DgHQVKXjqEJBys3DAetm9r2U/0rSdIoLG/bKcCMLgvRuFjXtga/\nSc6AIKlLh7TtX4Y4P9B/cB9qkTR6s9t2HfBsl4VobCU5C9gPeLh9aBJzDoKkLu3Ztk8McX6gf68+\n1CJp9M5r2zuqam2nlWhUklxAMzl5KrB/+/M/gTOqan2XtWn8GRAkdWlgOcRXhjj/ctvu2IdaJI1C\nkk8C82hGDy7uuByN3ieAEwcdrwLOdj7Y1sGAoM4lWUzz7cRInF1V945HPZKkkUnyAeA6IMAFVbV8\nM7+iCa6qPgqQZCfgIOASYGmSi6rqO50Wp3FnQNBEsA/NfY0jsf14FKK+e6lth/r3nNq2L/ahFklb\noN3Q8A5gOnBFVV3ZcUkaQ1X1HHB3O0K0DFiQ5M6quq/j0jSODAjqXFUd2nUN6sw/2nb3Ic4P9K/q\nQy2SRijJe4E7aeYJXQPM77YijZeqWpfkBuCDNCvLGRAmMVcxktSlgdsQDh/i/EC/621LE0ySHYDb\ngQOAXwCfLzdXmuxWt+0unVahcWdAkNSlPwLPA3OSbGwk6bS2/WX/SpK0OUmmALcARwC/wpVtthbH\ntu3KTqvQuDMgSOpMu8vqD9rDRUkG5hyQ5Ks0+x8sddUMaeJI8k7geuAE4G7gVHdMnhySHJPkpCTv\n2KB/2yRfBs4CXgVu6KRA9U0cDdRk0K6ENLM93A3YA3iSN9bRf6qqPtNFbdq0JO8ClgBHAk/RfODY\nqz1+Bjiqqv7eWYHaYklO5s3LXR5Bs8rNnwf1Laiq2/pamEYlyXnAwvZwMfDCEE+dX1WrhzinCSjJ\nOTRzSVYDDwD/AXamWcVoJrAGmFtVN3ZVo/rDScqaLA7jrZtpzWof4CTXCauq1iQ5HrgQOBM4hWYH\n1muBi6tqqE3UNPHtQhP0NnTkBs/R28v0QT9v6ouXS3njnnW9PSwFLqO5lehgmnDwGvAYcBPw/ap6\npLPq1DeOIEiSJEnqcQ6CJEmSpB4DgiRJkqQeA4IkSZKkHgOCJEmSpB4DgiRJkqQeA4IkSZKkHgOC\nJEmSpB4DgiRJkqQeA4IkSZKkHgOCJEmSpB4DgiRJkqQeA4IkqRNJ3pdkXpLFSZ5I8lqS55IsTTI3\nSbquUZK2RqmqrmuQJG2FklwHfBZ4HbgfWAXMAo6m+QLrJuD0qlrfWZGStBUyIEiSOpHkSuDfwNVV\n9cyg/g8DvwamAV+oqqs6KlGStkoGBEnShJPkQuAyYElVHd91PZK0NXEOgiRpo5LsnaSSLEkyLcmV\nSR5PsibJg0nOT/KWvyNJpib5RpL7k7yQ5OUkDyVZlGTfYb788rbdbezekSRpOLbpugBJ0oQ3Bfgt\nMKdttwNOBK4ADgHOGXhikpnAXcCBwH+BJcBaYDbwReBh4G/DeM3ZbfuvMahfkjQCBgRJ0uYcBawA\n3l9VqwGSzAF+D8xNcnNV3dw+92c04eBGYF5VvTRwkSR708wr2KQk2wLntoe3jNF7kCQNk7cYSZKG\nY/5AOACoqpXAgvbwSwBJjqAZWXga+NzgcND+zmNVtWIYr7UA2B94FPjRGNQuSRoBA4IkaXOeraq7\nNtJ/fdse3c5F+OhAf1W9uCUvlOR04OvAGuDMqnplS64jSdpyBgRJ0uas2lhnVT0PPAe8G5gO7NGe\nWrklL5LkBOBa4H/AGVV1z5ZcR5I0Os5BkCR1rt374BaaCdDzBs1pkCT1mQFBkrQ5e26sM8k0YCfg\nVZqRhMfbU3NGcvEkBwC3AzsA51fVNVteqiRptLzFSJK0OTOSnLiR/tPbdllVrafZ/RjgjCQ7DOfC\n7cpGdwIzgEurauEoa5UkjZIBQZI0HN9LMmPgIMk+wCXt4SKAqroX+B2wK3BVkqmDL9BuvHbQoONd\nacLBLODyqvrW+L4FSdJwpKq6rkGSNAG13+4/CtxDMzdgNs1GadvSLGe6PXBdVZ016HdmAb8B9gOe\nBf5As1HaHOBQ4GsDowRJFgOnAK8APx+ijNVVNX+M35okaROcgyBJ2py1wEnAZTQf6HemCQ5XA2+6\nJaiqnmwnHH8FOA34GLAeeAL4IXDroKdPb9vtgblDvPYqwIAgSX3kCIIkaaMGjSAsrarjOi1GktQ3\nzkGQJEmS1GNAkCRJktRjQJAkSZLU4xwESZIkST2OIEiSJEnqMSBIkiRJ6jEgSJIkSeoxIEiSJEnq\nMSBIkiRJ6jEgSJIkSeoxIEiSJEnqMSBIkiRJ6jEgSJIkSeoxIEiSJEnqMSBIkiRJ6jEgSJIkSeox\nIEiSJEnqMSBIkiRJ6vk/nVkat6JpPHsAAAAASUVORK5CYII=\n",
209 | "text/plain": ""
210 | },
211 | "metadata": {
212 | "tags": []
213 | },
214 | "output_type": "display_data"
215 | }
216 | ],
217 | "execution_count": 0
218 | },
219 | {
220 | "cell_type": "markdown",
221 | "source": "\n
\nCreated in Deepnote",
222 | "metadata": {
223 | "created_in_deepnote_cell": true,
224 | "deepnote_cell_type": "markdown"
225 | }
226 | }
227 | ],
228 | "nbformat": 4,
229 | "nbformat_minor": 0,
230 | "metadata": {
231 | "colab": {
232 | "collapsed_sections": [
233 | "Q1kApdvezk6Z",
234 | "Lz-SwUU9B4yb"
235 | ],
236 | "name": "bunky.ipynb",
237 | "provenance": [],
238 | "version": "0.3.2"
239 | },
240 | "kernelspec": {
241 | "display_name": "Python 3",
242 | "language": "python",
243 | "name": "python3"
244 | },
245 | "language_info": {
246 | "codemirror_mode": {
247 | "name": "ipython",
248 | "version": 3
249 | },
250 | "file_extension": ".py",
251 | "mimetype": "text/x-python",
252 | "name": "python",
253 | "nbconvert_exporter": "python",
254 | "pygments_lexer": "ipython3",
255 | "version": "3.7.0"
256 | },
257 | "deepnote_notebook_id": "f5f6bc7dbb824febbee273e2591bb6a6",
258 | "deepnote": {},
259 | "deepnote_execution_queue": []
260 | }
261 | }
--------------------------------------------------------------------------------
/deepnote/MedML Workshops in Deepnote/medml-workshops-deepnote-MedML Workshops in Deepnote-Cells PCA.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "source": "## Connect sheet and load data - nested\n\n- sheet data - TODO\n- [python sheets api docs](https://github.com/burnash/gspread#more-examples)\n- [pandas dataframe docs](https://pandas.pydata.org/pandas-docs/stable/reference/api/pandas.DataFrame.html)",
6 | "metadata": {
7 | "id": "Q1kApdvezk6Z",
8 | "cell_id": "334957c3f78447ccbefe32defb17b0a7",
9 | "colab_type": "text",
10 | "deepnote_cell_type": "markdown"
11 | }
12 | },
13 | {
14 | "cell_type": "code",
15 | "source": "from google.colab import auth\nauth.authenticate_user()",
16 | "metadata": {
17 | "id": "eDs_CZhNzSXl",
18 | "colab": {},
19 | "cell_id": "e47c2bbd2bb5442da936d276c47c062e",
20 | "colab_type": "code",
21 | "deepnote_cell_type": "code"
22 | },
23 | "outputs": [],
24 | "execution_count": 0
25 | },
26 | {
27 | "cell_type": "code",
28 | "source": "import gspread\nfrom oauth2client.client import GoogleCredentials\n\ngc = gspread.authorize(GoogleCredentials.get_application_default())",
29 | "metadata": {
30 | "id": "sSOKw9s-zoL3",
31 | "colab": {},
32 | "cell_id": "fc67b3400d73481e927477200c7245dd",
33 | "colab_type": "code",
34 | "deepnote_cell_type": "code"
35 | },
36 | "outputs": [],
37 | "execution_count": 0
38 | },
39 | {
40 | "cell_type": "code",
41 | "source": "bunky_sheet_url = '' # TODO\nsheet = gc.open_by_url(bunky_sheet_url)\nworksheet = sheet.get_worksheet(0)\nworksheet_hypo = sheet.get_worksheet(0)\nworksheet_draslik = sheet.get_worksheet(1)",
42 | "metadata": {
43 | "id": "s8tkAT_Ozyp-",
44 | "colab": {},
45 | "cell_id": "7d8eba92877a47faa5bd6f4bfcc5682c",
46 | "colab_type": "code",
47 | "deepnote_cell_type": "code"
48 | },
49 | "outputs": [],
50 | "execution_count": null
51 | },
52 | {
53 | "cell_type": "code",
54 | "source": "import pandas as pd\nfrom sklearn.preprocessing import StandardScaler\nfrom sklearn.decomposition import PCA\n\nimport matplotlib\nimport matplotlib.pyplot as plt\n\nmatplotlib.rcParams['figure.dpi'] = 150",
55 | "metadata": {
56 | "id": "nv8fMNORAP_V",
57 | "colab": {},
58 | "cell_id": "0e60403d8f3645849163028d3af224bd",
59 | "colab_type": "code",
60 | "deepnote_cell_type": "code"
61 | },
62 | "outputs": [],
63 | "execution_count": 0
64 | },
65 | {
66 | "cell_type": "code",
67 | "source": "# raw data\n\ndata_hypo = worksheet_hypo.get_all_values()\nfeatures_hypo = data_hypo[0]\nclean_data_hypo = data_hypo[1:]\n\ndata_draslik = worksheet_draslik.get_all_values()\nfeatures_draslik = data_draslik[0]\nclean_data_draslik = data_draslik[1:]",
68 | "metadata": {
69 | "id": "MfVS_YVfz5ud",
70 | "colab": {},
71 | "cell_id": "9af6bfd140f6438589f11d1dcc3bb035",
72 | "colab_type": "code",
73 | "deepnote_cell_type": "code"
74 | },
75 | "outputs": [],
76 | "execution_count": 0
77 | },
78 | {
79 | "cell_type": "code",
80 | "source": "# pandas dataframe and clean\n\ndef fixCell(cell):\n try:\n return float(cell.replace(',','.'))\n except ValueError:\n return 0 if cell == '' else cell\n\n\n# pandata_full = pd.DataFrame.from_records(clean_data)# , columns=features)\n\npandata_hypo = pd.DataFrame.from_records(clean_data_hypo)\npandata_hypo = pandata_hypo.drop(0, axis=1)\n\npandata_draslik = pd.DataFrame.from_records(clean_data_draslik)\npandata_draslik = pandata_draslik.drop(0, axis=1)\n",
81 | "metadata": {
82 | "id": "5AEKQY6Sz_3f",
83 | "colab": {},
84 | "cell_id": "774866c4058c4e259c186fbcd96722b2",
85 | "colab_type": "code",
86 | "deepnote_cell_type": "code"
87 | },
88 | "outputs": [],
89 | "execution_count": 0
90 | },
91 | {
92 | "cell_type": "code",
93 | "source": "pandata_hypo = pandata_hypo.applymap(fixCell)\npandata_draslik = pandata_draslik.applymap(fixCell)",
94 | "metadata": {
95 | "id": "VhW09zyB6j0g",
96 | "colab": {},
97 | "cell_id": "5846e519b4884c038621e67008ab7b88",
98 | "colab_type": "code",
99 | "deepnote_cell_type": "code"
100 | },
101 | "outputs": [],
102 | "execution_count": 0
103 | },
104 | {
105 | "cell_type": "code",
106 | "source": "pandata_draslik",
107 | "metadata": {
108 | "id": "GgCpqhsW3LZ8",
109 | "colab": {},
110 | "cell_id": "16f972f231df4a81a948f5d91b8436bd",
111 | "colab_type": "code",
112 | "deepnote_cell_type": "code"
113 | },
114 | "outputs": [],
115 | "execution_count": 0
116 | },
117 | {
118 | "cell_type": "code",
119 | "source": "# normalize\n\npandata_hypo_norm = pandata_hypo.loc[:, [1, 2, 3, 4]].values\npandata_hypo_norm = StandardScaler().fit_transform(pandata_hypo_norm)\n\npandata_draslik_norm = pandata_draslik.loc[:, [1, 2, 3, 4]].values\npandata_draslik_norm = StandardScaler().fit_transform(pandata_draslik_norm)",
120 | "metadata": {
121 | "id": "cqJwRBNl0W1A",
122 | "colab": {},
123 | "cell_id": "1c1149dfafef44c78b2eea4314499b47",
124 | "colab_type": "code",
125 | "deepnote_cell_type": "code"
126 | },
127 | "outputs": [],
128 | "execution_count": 0
129 | },
130 | {
131 | "cell_type": "markdown",
132 | "source": "## Try PCA\n[inspiration](http://bit.ly/2HkM0xP)",
133 | "metadata": {
134 | "colab_type": "text",
135 | "id": "Lz-SwUU9B4yb",
136 | "cell_id": "e831f0712c7f4c58ac184513e6fd3c3d",
137 | "deepnote_cell_type": "markdown"
138 | }
139 | },
140 | {
141 | "cell_type": "code",
142 | "source": "pca = PCA(n_components=2)\npc_hypo_raw = pca.fit_transform(pandata_hypo_norm)\npc_hypo = pd.DataFrame(data = pc_hypo_raw, columns = ['pc1', 'pc2'])\n\npc_draslik_raw = pca.fit_transform(pandata_draslik_norm)\npc_draslik = pd.DataFrame(data = pc_draslik_raw, columns = ['pc1', 'pc2'])\n\n\n#finalDf = pd.concat([principalDf, pandata_full[[0]]], axis = 1)",
143 | "metadata": {
144 | "id": "sTmZwhIo1H2X",
145 | "colab": {},
146 | "cell_id": "2dd69ac217b54412be16a625948c8ea9",
147 | "colab_type": "code",
148 | "deepnote_cell_type": "code"
149 | },
150 | "outputs": [],
151 | "execution_count": 0
152 | },
153 | {
154 | "cell_type": "markdown",
155 | "source": "## Plot",
156 | "metadata": {
157 | "colab_type": "text",
158 | "id": "ERRyhh2_E5vI",
159 | "cell_id": "442ae7493b5b411bb5197cea4ba68bcb",
160 | "deepnote_cell_type": "markdown"
161 | }
162 | },
163 | {
164 | "cell_type": "code",
165 | "source": "pc_hypo.plot(y='pc1', x='pc2', style='.', title=worksheet_hypo.title)\nplt.show()",
166 | "metadata": {
167 | "id": "eexDBCO39Xyv",
168 | "colab": {
169 | "height": 635,
170 | "base_uri": "https://localhost:8080/"
171 | },
172 | "cell_id": "492cf5d8221548189f6fc7e8e1f65aa8",
173 | "outputId": "05e30c67-5f01-4bc7-e1a2-79cd14c5a8a0",
174 | "colab_type": "code",
175 | "deepnote_cell_type": "code"
176 | },
177 | "outputs": [
178 | {
179 | "data": {
180 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAJCCAYAAABkseCpAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XucVPV9//H3dxdd7nJZvO4SCHIJ\nBNGEtUlaBQ0Yk8bEEoWYS2vaJqnR/toS8zM2TZq0fVSSKM2vSVqU2JimVcFLb6ZExehikhogRLEg\noMsSd72ysNyWi8h+f3/MhdnZM3POmTlnzmVez8djH8PumTnznQsz38/3+/l+vsZaKwAAAACQpIao\nGwAAAAAgPggQAAAAAOQRIAAAAADII0AAAAAAkEeAAAAAACCPAAEAAABAHgECAAAAgDwCBAAAAAB5\nBAgAAAAA8ggQAAAAAOQRIAAAAADII0AAAAAAkEeAAAAAACCPAAEAAABAHgECACA1jDGfNsZYY8wu\nY8xZUbcHAJKIAAEA4Em2422NMfMDOt+1uc58QOebI+nvJfVKer+19pUgzltPjDHzc69z1G0BEB0C\nBACRM8Z81WunxBgzqaCjem0NmlcT2efgq8aYSVG3JYmMMaMl3SfJSPqwtfa5iJsUuOx7/6vGmK9G\n3RYA6TYk6gYAACRJf5m9fELSruiaUdb27OXhSFvh7HuSpkhaYq19MurGhGSSTr5PvhpdMwCkHQEC\nAMATa+2MqNvgxBgzUdJWSauttfdH3R4ASDoCBABAollrXxQj6gAQGNYgAEgFY8yMgrUJF7pc94fZ\n6z1R8LfCtQ2TjDFTjTF3GWO6jTHHjDEvGmNWGGPOdjn3acaYrxhjNhljDhhjjhhjnjfG/KMx5q0O\n17+raO3F4wXtcFzA6/c+Cm6XX2RsjBlljPkbY8y27O33GGMeMsb8hpfbl7nOZcaYe40xv86ed68x\nZrMx5tvGmHeXfOKczzXJGLM9e5+bjDFnVPs6e7zPwvfBFGPMHcaYzuz7YJfDbeYbY+4zxryUvU6P\nMeYxY8ynjDGNJa5vPf5cm73NLkmPF5yj+Hp3OdzPlOx74vnsa3Eg+zx+JbtmwzdjzHhjzP9k77PT\nGDOtkvMAiDdmEACkgrV2mzGmXdI8SZ+RtN7pesaYsZKuyv56R4nT/YaklZJGSTok6YSkVkmflXS1\nMWahtXaTw7lnSfqxpJbsn45KOi7p3OzPp4wxH7fWPlBws/2SXpN0Rvb3XklvFBzfHcB9FDtL0qbs\n9Y9K6pc0TtJvS1pojLnCWvtImdsPYowZLukuSVcX/PmgMgNRs7M/F0k63+P5zpe0RtKZktZKWmSt\nPSjptQBfZzfvkXS7pJHKrLs47nA/yyX9WfZXq8zrOUbSpdmfTxhjrsy2PecNZV7zUoZIGl/0t92S\nRksam/29+Pb7i9q1WNI/S2rK/umgpFMlXZD9+UNjzPv8LOY2xrxFmffeDEnPiEpRQHpZa/nhhx9+\nIv1RJj3EZj6SXK87KXddSdcWHVuS/fshSaNK3P6Ps9fpkdRU4rz7lOkAXZg9ZiRdJunX2eO/Lj6/\nMsHEzuzxbkkfkNSQPTZH0v9kjx2VNMehXbn7nl/msQd1H3slbZF0iTIdeCOpTdK27PFdufN6baOk\nVdljJyQtk9RScKxZ0sck/WPRba7N3V/R3y9RpsNrJd0j6dSgXmef76+Dkp6SNLfg+LSCf99QcN3b\nJZ2Z/fsISX+qTEBhJd3r8//Dv2Zv1ytpasHf58vD/xNJ71AmCLGSfippdvbvDZKukPRy9tgLkkYW\n3dbxPiSdJ+ml7LGfSBodxmcBP/zwE4+fyBvADz/88KOCAEHSqy4/uwuue23ReU5RZmTVSvpsifva\nnD1+W9HfCzuGPZJOd7jt2yQdy17nC0XHbsr+/Q1Jb3e47ShJndnrPORw3EuAENR9vF7i8c0uuM5v\nem2jpPcWHLvOx+t+rYoCBGU6/7nn+O8kGYfbVfw6e2hT4ftgV3EHuuB6wyTtyV7v7hLX+eOCc73T\n4/1/LXv945IWFB2bnzufyznWZK/3vKThDscv0Mng5Ua3+1BmtmZf9u+r5SPg4ocffpL5wxoEAHFz\nhstPc6kbWmuPS7oz++tnio8bY96lTCdYKp92ssJa+7rD+Z+TlKuS89Giw0uyl/dba//X4bYHJX0j\n++v7jTGnlbn/UoK6jztKPL5nlQkwpMyIsVe/n738X2vtP/q43QDGmP+jzIzBKZJustb+mbXWOrQz\nqNfZzXestYdKHFuoTFqWVHqB9D9IyqXgfMztzowxn5T0leyv11tr13psZ+E5xkh6X/bXb1prB5Wk\ntdb+StKD2V+vcTnfVZIelnSapO9I+qi19pjfdgFIFgIEALFirTXlfiRNdjnFHcrk1L/DGPOOomOf\nzl62W2u3q7SfeDh2njHmFEkyxpyqkx3qcp26R7OXDcqkgXgW8H38osztX85ejitznWLvyV4+5OM2\nAxhjlkn6f8qkKF1rrf2Gy02CeJ3d/KzMsbnZyy5r7Q6nK1hrT+jk+2Wu03VyjDEXKbOXgyQtt9ZW\nGti8Q5mUMcnb+yT/PnZo0/XKpI41SfqStfaPrbX9FbYLQIIQIABIFWvtLmVGPKWC0eVs1ZbcCPzt\nLqd5ycOxITrZiR4nqbHouJPugn+f7tKGYkHex8ESf5ekN7OXjp3GEs7MXv7ax20KvUWZ9ClJutla\n+89uNwjodXYzaJalQO65LfdaSCdfj5KvtzFmqqR/U2YR8X9J+oLXBpZpl1vbcu0qfB8X+44y/YTv\nWmv/too2AUgYAgQAaZRLc/mYMWZE7t/KLB7do5PpFQjGoDQgn16V9Fj233/hVr60QNiv84kqb+/K\nGDNO0o+UqVr0tKRrYjRK/y/Zy08bY66ItCUAaooAAUAa/bekLmUW7ebWCuTSTu7ykEN9jodjbypT\nDUjZy1xnsmXQLU4qPFZudNpJLe6jUq9mL99S4e2PKVNd5xFlct0f9bhnQrWvczVyz22516Lw+KDX\nIps29qCkqcqsVbjCWtsXULvc2pY7Vvg+LvZ7kn6gzMzGA8aYK6tsG4CEIEAAkDrZ3O9cDvdnsjnq\nuTx1L7ndl3g4tjm7WFbW2jeUqZojZSr6lLIge9mvzD4EA5qdvTRyENB9hOXn2cuKR5mttUckfViZ\nCjyjJT1sjPlNl9tU+zpXY2P2sqXUZmHZTdJy75cNDldZqUyFoCOSPmSt7Xa4TqH8zIIxxvF9osxr\nnruel/fJM7n3cbHsTMbvS/onZVLOVhtjPuLSRgApQIAAIK3uVGZ09EJlymVKmUWrjgtKi/yRMWZQ\ntSRjzHSd3HxrVdHhe7OXVxlj3u5w25GS/m/21/+21u4vusqB7OWYMu2q9j7CkqsoNMsYc12lJ7HW\nHpX0O8qk3IyS9GNjzMUe7rvS17kajyqTxiSVrmL0WUm5nbfvKTxgjPmypN9VJjD8pLV2o9wdKPi3\n4/vEWrtPJ9dmfCG7gd0Axpg5knId/XuKjxedr1/SHyoTcJ0i6d7sJmwAUowAAUAq2cwOr/+R/TXX\nyfS6aPUUZdJc2qTMaK0xZoEyHa8mZdJaVhTd5h+VKRF6iqQ1xpj3G2Masrefnb3tZGXSaf7C4T5z\nZUs/7tSpC+g+QmGtfVwng5fvGGNuMcbk01uMMc3GmD80xtzpfIYB5zomaZGk/1RmB+P/NsaUnNGp\n8nWuWHbG46vZX68xxqwwxpwhZXaVzpZs/Vb2+Cpr7S9ztzXGXK3MfgeS9Oe2/K7XhXbo5C7bf1hm\nFuEvdHJ37Yez7w0ZYxqMMR9QJjVriKQOeXiusqVm/0iZsq1DJN1tjClbHhVAwkW9EQM//PDDjwLa\nSdnhuoUbeJXdUbfovEuUGa3N7abbV3CsVwU76xad4+3KVIfJXfeITu4IbJXZ4fiqErf9RMH13sie\nZ5eknwZ4H142Y3sie52v+rm9pOGSHii4js22a1/B708X3eZaOeyknD12SsH5Dkt6bxCvs8/31yQP\n119ecP1+ZfL5jxf87ScavOv2XQXH3TYGXFJ02+8V3LZPmcpRuyTdWnS9wg3ncq/FkYLfX5T0NofH\nMz93nRKP9++zx9+U9ImgPwv44YefePwwgwAgzX6ikwsw77LeF63+Qpm69f+sTMdqiDIlI1dKmm1L\npIPYzOZls5QJeJ5WphPVpMxI7QpJs6y195e47b9I+qSknyrTIT5LmUW/LUXXq/g+wmStPWyt/Yik\nDypTsvNlSUOz7dusTMdy0KZmZc53XJlO7n3K7Fr8kDHmshJXr/R1rpq1dqmkS5UJZl5TZtbjoKTH\nlcnfX2gzG9iV4rYx4LCi61+vzGv/bPb3icq8TwakxFlrVynzPrldmfdGkzKvxdOS/lKZnbifq+Dx\n/h9lUrkaJf3AGHOt33MAiD9jbbXV6QAgnowx79TJxaTTbZm8dGPMJJ3cRXiyzdTZRwL4eZ0BAO6Y\nQQCQZn+cvfwJncZU43UGgAARIABIpexizE9kf701yrYgPLzOABC8IVE3AACCkq2c81NlFsxOyP75\nIWvtmuhahaDxOgNAuAgQAKTJEGUWbFplKv3cL+nLkbYIYeB1BoAQsUgZAAAAQB5rEAAAAADkESAA\nAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQF5dlTk1xryqTN3srqjbAgAAAASoVdJha+2Z1Z6orsqc\nGmMONDU1jZoyZUrUTQEAAAAC09HRoWPHjh201o6u9lx1NYMgqWvKlCkzt2zZEnU7AAAAgMDMmjVL\nW7duDSRLhjUIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIC8\netsHAQAAoG5Za1VPm+QmkTFGxphI20CAAAAAkFLWWh08eFAHDhzQ4cOHdeLEiaibBA9OPfVUjRo1\nSuPHj1djY2PN758AAQAAIIX6+/v16quvav/+/VE3BT698cYb2rNnj/r6+jRx4sSaBwkECAAAACm0\nf//+fHAwbtw4jRo1Sk1NTZGnr6C8/v5+9fX16bXXXtPRo0e1Z88enX766TVtAwECAABACvX29kqS\nTj/9dI0fPz7i1sCrhoYGnXbaaZKkl19+WQcPHqx5gEAVIwAAgJSx1urYsWOSpNGjR0fcGlRixIgR\nkjLpRrVeWE6AAAAAkDKFHcooFrmieg0NJ7vpBAgAAAAAIsMaBKDGOnv6tGpDl7p7D6tl7HAtaWvV\n5OYRUTcLAABAEgECUFOrN3bp5gef1Yn+k1OFK5/cqVsWzdbiua0RtgwAACCDFCOgRjp7+gYFB5J0\not/q5gefVWdPX0QtAwAAQfrRj36kL33pS1qwYIHGjBkjY4zmz58fdbM8YwYBqJFVG7oGBQc5J/qt\nVm/s0k2Xz6hxqwAAQNA+/vGPJ3qDOgIEoEa6ew+7HD9So5YAAIAwfeQjH9Hb3vY2zZ07V8ePH9dl\nl10WdZN8IUAAaqRl7HCX48Nq1BIAABCmO++8M//vp556KsKWVIY1CECNLGlrVWOD8/b2jQ2GRcoA\nANTArl278msCDhw4oD/5kz9Ra2urhg4dqre97W36u7/7O/X39w+6XV9fn77+9a9r7ty5Gj16tEaM\nGKEZM2bo+uuv144dOyJ4JOFhBgGokcnNI3TLotmDFio3NhgtWzSbUqcAgMRLUinvY8eO6dJLL1VH\nR4cuvfRSvfHGG3rssce0dOlSPfPMM7rrrrvy133llVe0cOFCbdmyRWPHjtX8+fPV1NSknTt3asWK\nFZo6daqmTZsW3YMJGAECUEOL57aqbdI4rd7Ype7eI2oZO0yL58b3wxMAAK+SVsr7qaee0nnnnafn\nn39ezc3NkqSOjg5dfPHF+sEPfqArr7xSV155pSTpk5/8pLZs2aLFixfrzjvv1MiRI/Pn2bVrlw4c\nOBDJYwgLAQJQY5ObR1CtCACQKm6lvNsmjYvlYNitt96aDw4kacqUKfryl7+s6667Tt/5znd05ZVX\nav369Xrsscd0+umn63vf+96A4ECSJk2aVONWh481CAAAAKiKl1LecTNu3DgtXLhw0N+vueYaSdLP\nf/5z9ff3a+3atfm/jxo1qqZtjAozCABSKUl5sACQdEks5f2Wt7zF8e+nnXaaxowZo3379qm3t1dd\nXZngZsqUKbVsXqQIEACkTtLyYAEg6SjlnS6xTDEyxkwwxtxqjNlujDlijNlrjNlkjPlm1G0DEG9u\nebCdPX0RtQwA0iuJpbxffPFFx78fOHBA+/bt07BhwzRmzBi1tmba3tHRUcvmRSp2AYIx5p2SnpP0\neUnHJf2HpKckjZP0ZxE2DUACJDEPFgCSLlfKuzhIiHMp7z179uixxx4b9Pd7771XkvTud79bjY2N\nWrBggSTpnnvu0aFDh2raxqjEKsXIGDNB0o8lDZP0YWvtfxYdvzCShgFIjCTmwQJAGiSxlPeNN96o\ntWvXavz48ZKkzs5O/dVf/ZUk6frrr5ckXXjhhbrkkkv0+OOP6zOf+YxWrlypESNOPqZdu3bp4MGD\nmj17du0fQEhiFSBI+pqkZknXFwcHkmStXV/7JgFIEvJgASA6SSrl/a53vUtvvPGGzj33XF166aU6\nfvy4HnvsMR0+fFif+MQntGjRovx1f/jDH+q9732v7rnnHj388MP6rd/6LTU1Namjo0NPP/20brvt\ntgEBwl//9V/rRz/6kSTlZx02bdqkd73rXfnr/Nu//ZvOOuusGj1af2ITIBhjhkn6hKQ+Sd+PuDkA\nEmpJW6tWPrnTMc0ornmwAIDaa2pq0o9//GP9+Z//uf793/9dPT09mjx5sj796U/rT//0Twdc95xz\nztGGDRv0rW99S/fff78effRRNTY2qqWlRZ/73Of0wQ9+cMD1Ozo69Itf/GLA3w4ePDjgb8eOHQvv\nwVXJWOucq1trxpiLJK2T9FNr7UXGmPdLWihpqKQdklZba1+u8j62zJw5c+aWLVuqbzCA2HKqYpTL\ng72aAAFAHejv79f27dslSdOnT1dDQ+yWnUZm165dmjx5subNm6cnnngi6uaU5Pc1nDVrlrZu3brV\nWjur2vuOzQyCpJnZy9eNMf8u6cNFx//WGPMH1tp73E5kjCkVAdRPAVugjiUxDxYAgLiIU4AwNnv5\nIUknJF0v6T5JwyXdIOlGST8wxjxnrX06miYCSIok5cECABAncQoQcvMmQyR9yVr7DwXHvmCMeYuk\nqyV9QdLHy52o1NRKdmZhptMxAAAAAPEKEAoLyzotUv6+MgHCvNo0BwAAAGkzadIkxWUNblzFacXK\nr7OXh621ux2O78penl6b5gAAAAD1J04zCL/KXg4zxjRZa4trP43LXtbHFnYAQtPZ06dVG7rU3XtY\nLWOHa0kbC5gBAMiJTYBgrX3RGPOMpDnKpBE9UnSVXGrRrwQAFXIqgbryyZ26ZdFs9kgAAEDxSjGS\npG9kL281xuS3ljPGnC/p89lfV9S8VQBSobOnb1BwIEkn+q1ufvBZdfb0RdQyAAiWMSb/7xMnTkTY\nElSqv78//+/C17MWYhUgWGvvlvQDSbMlbTXG/MgY8xNJTymTYrTSWntflG0EkFyrNnQ57rAsZYKE\n1Ru7atwiAAiHMUZNTU2SpAMHDkTcGlSiry8zaHXqqafWPECITYpRgU9J+pmkz0qaL8lK2iTpdmvt\nDyJsF4CE6+497HL8SI1aAgDhGzt2rF599VW9/vrrevPNNzVq1Cg1NTXVvLMJf/r7+9XX16fXXntN\nkjRq1KiatyF2AYLN1J1amf0BgMC0jB3ucnxYjVoCAOE77bTTdPToUe3bt0979+7V3r17o24SfBo6\ndKjGjx9f8/uNVYoRAIRpSVurGhucR84aGwyLlAGkSkNDg84880ydc845Gj16tBobG6NuEjw69dRT\nNX78eE2cODGS1y12MwgAEJbJzSN0y6LZgxYqNzYYLVs0m1KnAFLHGKPRo0dr9OjRkiRrLZuExZwx\nJvI0MAIEAHVl8dxWtU0ap9Ubu9Tde0QtY4dp8Vz2QQBQH+LQ+UT8ESAAqDuTm0fopstnRN0MAABi\niTUIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIA8AgQAAAAA\neQQIAAAAAPIIEAAAAADkESAAAAAAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB4BAgAAAIA8AgQAAAAA\neQQIAAAAAPIIEAAAAADkESAAAAAAyBsSdQMAIGidPX1ataFL3b2H1TJ2uJa0tWpy84iomwUAQCIQ\nIABIldUbu3Tzg8/qRL/N/23lkzt1y6LZWjy3NcKWAQCQDKQYAUiNzp6+QcGBJJ3ot7r5wWfV2dMX\nUcsAAEgOAgQAqbFqQ9eg4CDnRL/V6o1dNW4RAADJQ4AAIDW6ew+7HD9So5YAAJBcBAgAUqNl7HCX\n48Nq1BIAAJKLAAFAaixpa1Vjg3E81thgWKQMAIAHBAgAUmNy8wjdsmj2oCChscFo2aLZlDoFAMAD\nypwCdSbtewQsntuqtknjtHpjl7p7j6hl7DAtnpuuxwgAQJgIEIA6Ui97BExuHqGbLp8RdTMAAEgk\nUoyAOsEeAQAAwAsCBKBOsEcAAADwghQjoE6wRwBQXtrX5wCAVwQIQJ1gjwCgtHpZnwMAXpBiBNQJ\n9ggAnLE+BwAGIkAA6gR7BADOWJ8DAAORYgTUEfYIAAZjfQ4ADESAANQZ9ggABmJ9DgAMRIoRAKCu\nsT4HAAYiQAAA1DXW5wDAQKQYoW5R8xxADutzAOAkAgTUJWqeAyjG+hwAyCDFCHWHmucAAAClESCg\n7lDzHAAAoDQCBNQdap4DAACURoCAukPNcwAAgNIIEFB3qHkOAABQGgEC6g41zwEAAEqjzCnqEjXP\nAQAAnBEgoG5R8xwAAGAwAgRUjJ2IAQAA0ocAARVhJ2IAAIB0YpEyfGMnYgAAgPSKbYBgjBlvjHnd\nGGONMS9E3R6cxE7EAAAA6RXbAEHSbZKao24EBmMnYgAAgPSKZYBgjHmvpN+TtDLqtmAwdiIGAABI\nr9gFCMaYYZJul7RV0q0RNwcO2IkYAAAgvWIXIEj6S0lvlfRHko5H3BY4YCdiAACA9IpVmVNjzHmS\nPi/p+9baJ40xk6JtEUphJ2IAAIB0ik2AYIxpkPQ9Sfsk/d+ImwMP2IkYAAAgfWITIEj6Y0ltkj5l\nrd1TzYmMMVtKHJpSzXkBAACAtIvFGgRjzERJfyOp3Vp7V8TNAQAAAOpWXGYQvivpVGUWJlfNWjvL\n6e/ZmYWZQdwHAAAAkEZxCRA+qMzagxXGDKiMMzR7eY4x5onsvz9qrX21hm0DAAAA6kZcAgRJGiNp\nXoljQwuODS1xHQAAAABVikWAYK113HUrW+a0U1KHtfbcWrYJqKXOnj6t2tCl7t7Dahk7XEvaKBkL\nAACiEYsAAahnqzd26eYHn9WJfpv/28ond+qWRbPZlRoAANRcLKoYAfWqs6dvUHAgSSf6rW5+8Fl1\n9vRF1DIAAFCvCBCACK3a0DUoOMg50W+1emNXjVsEAADqXaxTjKy1uyQ5rk8A0qC797DL8SM1agm8\nYK0IAKAexDpAANKuZexwl+PDatQSuGGtCACgXpBiBERoSVurGhucJ8kaGwwdz5hgrQgAoJ4QIAAR\nmtw8Qrcsmj0oSGhsMFq2aDbpKzHBWhEAQD0hxQiI2OK5rWqbNE6rN3apu/eIWsYO0+K55LbHSVzX\nirAmAgAQBgIEIAYmN4/QTZfPiLoZKCGOa0VYEwEACAspRgDgIm5rRVgTAQAIEwECALiI21oR1kQA\nAMJEihEAeBCntSJxXRMBAEgHAgQA8Cgua0XiuCYCAJAeBAgA6loSKwEtaWvVyid3OqYZsX8GAKBa\nBAgA6lZSKwHl1kQUt539MwAAQSBAAFCX3CoBtU0aF+uOdpzWRAAA0oUAAUBd8lIJKA7rDcqJy5oI\nAEC6ECAACZbE/Pm4oBIQAADOCBCAhEpq/nxcUAkIAABnbJQGJBA76Vav3O7IRtIT21/Xe255TFd+\n92d68vndtW0cAAARIkAAEoiddKtXandkSbKSnnvloF7ef1RPd+3TJ+9cry/c/0ztGwkAQARIMQIS\niPz5YBRXArK2Xw9tftXxuvdt7NaH5pyti6ZOqHErAQCoLWYQgAQifz44uUpA377mAnX3Hi173eWP\n7qhRqwAAiA4BApBA5fLn2Um3cq8fKB8gvHbgWI1aAgBAdAgQgAQqlT/PTrrVOX300LLHzxjdVKOW\nAAAQHdYgAAnFTrrB+/xl0/TJO9eXPL504bQatgYAgGgQIAAJxk66wbpo6gRdPbdF923sHnRs8dwW\nFigDAOoCAQIAFPjmVXP0oTlna/mjO/TagWM6Y3STli6cRnAAAKgbBAgAUOSiqRMICAAAdYsAAQhI\nZ0+fVm3oUnfvYbWMHa4lbawHAAAAyUOAAARg9cYu3fzgswN2N1755E7dsmg2JUdRFwiQASA9CBCA\nKnX29A0KDiTpRL/VzQ8+q7ZJ4+goIdUIkAEgXdgHAajSqg1dg4KDnBP9Vqs3dtW4ReHq7OnTsjXb\ndMPdm7RszTZ19vRF3SREyC1A5v0BAMnDDAJQpe7ewy7Hj9SoJeFjpBjFvATIlOIFgGRhBgGoUsvY\n4S7Hh9WoJeFipBhO6ilABoB6wQwCUqfWiyWXtLVq5ZM7HUdRGxtMokfWC5/L7t4jjBRjkHoJkAGg\nnhAgIFWiSIGZ3DxCtyyaPeh+GxuMli2andgFyk7PZTmMFNenNAfIAFCvCBCQGlFWE1o8t1Vtk8Zp\n9cYudfceUcvYYVo8N7llHks9l+UwUlyf0hogA0A9I0BAakS9WHJy84jUpNiUey6dNBgxUlzH0hYg\nA0C9I0BAarBYMjhuz2UxK2nDrr10COtYmgJkAKh3VDFCarBYMjhuz2Uxa0UlIwAAUoIAAamxpK1V\njQ3G8RiLJf0p91yWksZN4QAAqEcECEiN3GLJ4o4tiyX9K/VcuoUMpHEBAJB8rEFAqrBYMjhOz2Vv\n3xu6d0PpWQLSuAAASD4CBKQOiyWDU/xcdvb06b5fdlPzHgCAFCPFCIBnpHEBAJB+zCAA8IU0LgAA\n0o0AAYBvpHEBAJBepBgBAAA7uNgjAAAgAElEQVQAyCNAAAAAAJBHgAAAAAAgjwABAAAAQB6LlIEU\n6ezp06oNXeruPayWscO1pI3qQgAAwB8CBCAlVm/s0s0PPjtgE7OVT+7ULYtm18UGZgRHAAAEgwAB\nqIGwO6+dPX2DggNJOtFvdfODz6pt0rhUd5brPTgCACBIBAhAyGrReV21oWtQcJBzot9q9cau1O5b\nUO/BEQAAQWORMhAit85rZ09fIPfT3XvY5fiRQO4njrwERwAAwDsCBCBEteq8towd7nJ8WCD3E0f1\nHBwBABAGAgQgRLXqvC5pa1Vjg3E81thgUp2HX8/BEQAAYSBAAEJUq87r5OYRumXR7EFBQmOD0bJF\ns1Odg1/PwVEadPb0admabbrh7k1atmZbYGl3AIDKsUgZCNGStlatfHKnY5pR0J3XxXNb1TZpnFZv\n7FJ37xG1jB2mxXPTX+ozFxwVr/Woh+Ao6ag+BQDxFJsAwRgzXNJlkq6Q9FuS3iLphKQXJD0gabm1\n9lB0LQT8q3XndXLziNRWKyqnXoOjJKP6FADEV2wCBEkfk7Qy++/nJP2npNGS3iPpa5KuMcbMs9a+\nHlH7gIrQea2Neg2OkqqeS/MCQNzFKUA4LukOSd+y1j6X+6Mx5ixJP5J0gaRvKRNIAIlC5xUYiOpT\nABBfsVmkbK39gbX2s4XBQfbvr0i6PvvrImPMqbVvHQAgSFSfAoD4ik2A4OKZ7GWTpPFRNgQAUD2q\nTwFAfCUlQHhr9vK4pL1RNgQAUL16Ls0LAHEXpzUI5fxJ9vLH1tpjkbYEgevs6dOqDV3q7j2slrHD\ntaSNBbxAPWABPwDEU+wDBGPMByT9gTKzB1/2eJstJQ5NCapdCAZ10IH6xgJ+AIifWKcYGWNmSPoX\nSUbSF6y1z7jcBAniVgedHVUBAABqL7YBgjHmHEk/ljRWmU3S/p/X21prZzn9SOoIq73wz0sddAAA\nANRWLFOMjDHjJD2izG7K35d0Y7QtQhiog54ucVhLEoc2AACQdLELEIwxIyWtkTRT0oOSPm2tdR5m\nRqJRBz094rCWJA5tqCWCIQBAWGKVYmSMaZL0H5IulPSwpGustSeibRXCQh30dIjDWpI4tKGWVm/s\n0oLl7VrR3qGHNr+iFe0dWrC8nbQ8AEAgYhMgGGMaJd0j6VJJT0paZK19I9pWIUzUQU+HOKwliUMb\ninX29GnZmm264e5NWrZmW2BBSr0FQwCA2otTitENkn4n++8eSf9gjOPo8o3W2p6atQqhog568sVh\nLUkc2lAo6HSnwnSi7t4jrsEQZUMBANWIU4AwtuDfv1PyWtJXlQkgkBLUQU+2OKwliUMbctxG+Nsm\njfMVADsFG+WwuB8AUK3YpBhZa79qrTUefnZF3VYAJ8VhLUmt21AufSjIdKdSwUY51QRDYaVFAQCS\nJU4zCABirlTlnFsWzR7Uka3lWpJatsEtfSjIdKdywYaTaoKheqsCBQAojQABgCduHcio15LUog1e\n0oeCTHdyCzYKVRMMBZ0WBQBINgIEoAaSXrPeawcy6rUkYbfBS/rQkrZWrXxyp+P1/I7wuwUbF0wc\no5axw6sOhrw8rqhfWwBA7RAgACFzG3lPQvBABzLDS/pQkOlObsHG8sXnB/JeiVsVKABAtAgQgBC5\njbzvPnhMyx/dEfu87zR2ICsJzLymDwWV7uQ12Kg2yIxTFSgAQPQIEIAQuY283/rwdhUfjWPed9o6\nkJUuyPWTPhRUupNbsBHE4uIg06IAAMkXmzKnQBq5jbyXqk/jVg6z1uUo41DKNCjV7EQc1e7fuWDj\n29dcoJsunzFg5iCIXZXZ1RwAUIgZBCBEbiPv5ZRK24miHGUcSpkGpdr1FHGo2JQT5NqQOD0uAEC0\nCBCAEJVL3TAqPYMgOaftRFmOMi0dyCDWU8ShYpMU/NqQuDwuAKhXcSlcQoAAhKjcyPuNl03TrY/s\n8JX3HXU1oTR0INO0niJNjwUA6l2cNqwkQABCVm7kffzIJl9pO2msJlRraVqQm6bHAgD1LG4bVhIg\nADVQauTdb9oOI8bVS9N6ijQ9FgCoZ1FnCBQjQAAi5idthxHjYKRlPYWUrscCAPUqbhkCBAhAiIJe\nbMSIcXDSsJ4iJ02PBQDqUdwyBAgQgJCEtdiIEWMAANIlbhkCBAhACMJebMSIMQAA6RG3DAECBCAE\ncVtsBAAA4i1OGQIECEAI4rbYCAAAxF9cMgQIEIASqllgHLfFRvAm6EXlcdkREwAAPwgQAAfVLjCO\n22IjuAt6UXmcdsQEAMAPAgSkRlCjtUEsMI7bYqOgBflcx2GEPehF5XHbERMAAD8IEJAKQY7W3rGu\nI5AFxnFabBSkoJ7rOI2wB72onEXqAIAkI0BA4gU5Wrt6Y5fuXd9V9jp+FhjHZbFRUIJ6ruM2wh70\nonIWqSMnLrNkAOBHQ9QNAKrlZbTWi1yn1flMJxUuMO7s6dOyNdt0w92btGzNNnX29HltdiIF9VwH\ndZ6gBL2onEXqkDIDDguWt2tFe4ce2vyKVrR3aMHy9pq/vwHAL2YQkHhBjdaW67TmFC4wriRFJumj\niUE913EbYQ96UTmL1BG3WTIA8IMZBCReUKO1bp1WI+UXGLt9+TvNJKRhNDGo5zpuI+y5ReWNDWbA\n3ytdVB70+fyqt5mtOIrbLBkA+MEMAhIvqNFat07rRy9s1dXZc/ldhJqW0cSgnuuwR9grmakJelF5\nVIvU47T4u57FbZYMQLp19vSp59AxNY6a0BLE+QgQkHhBlRR167R+5uIp+d/9fvkHVdUmqhSlwvu9\naGqz1u3YrcKH4/e5DrMMrFMH+Y51Hbp42gSNbBpS9nkLelF5rReppyUQTYO4zZIBSK/c915v33E1\nnDpsdBDnJEBAKgQxWuun0+r3yz+I0cSoRoad7rfBSJdMn6CRQ0+peGQ8jBH2Uh3kfis9sX13/ve0\njqhTXjU+WIcCoBZKfe9ViwABqRHEaK3XTqvfL/9qRxOjGhku1+Fe93yP1i6dV9X9Bj3C7mWhuZTe\nEXXSWuIj7ZslAohH4RGv33t+ESAARbx0Wv1++Vc7mhjVyHDSRqTdOsiFqm1/HL4YipHWEi9p3SwR\nQHzWe/n53vODAAGokJ8v/2pHE6MaGU7aiLRbB7lYpe2PyxdDMdJa4idtmyUCiNd6L7/fe14RIABV\n8PPlX81oYpgjw+VGwpM2Il2ug+ykkvbH6YuhGGktABC+OM2u+/3e84oAAaihSkcTwxoZdhsJT9qI\ndKkOspNK2x+nLwYnpLUAQLjiNLte+L0XJAIEJE4cc7/D5mVk2O/z4nUkPGkj0sUd5ENHj6u9yrKs\nheL0xVAKaS0AEJ64za7nvvfe9a+naE/v/gNBnJMAAQPEvfMd19zvWig3MlzJ8+J1JDyJI9LFHeTO\nnr7A2h+3LwYAQG3FcXZ9cvMINY9s0usv9nQHcT4CBOTFvfMd59zvWnEaGa70efEzEl7NiHQcgs4g\nR9TLfTEYSb19b6izpy/170UAqFdJnF33iwABkpLR+Y5L7nccOryFKn1eajESHvegsxLl1jlYSfdu\n6NJ9v+xO9GMEAJSXxNl1PwgQICk+ne9y4pD77afDW6tAotLnJewp0jCDzqiDtNwXw8p1O3XP+hdV\n/Aye6Le66f7N+tWLvfrMxVNS84UBADgpzeu9CBAgKR6dbzdhj3i7dTr9dHhrOXJe6fMS9hRpWEFn\nXGYlJjeP0OhhpwwKDnKspHvWd2n1RmYTAADJQoAASclYeBnmiLeXTqfXDm+t07W85sTnHkNhAFTJ\nFKnX0fswgs64pcJ52cEyTml6AAB4QYAASfFckV8srBFvr51Orx3eWqdrecmJX72xS1aSLThcGADl\n2uPW+fczeh9G0BnkcxtEmpLXHSzjkqYHAIAXBAiQlJwV+WEsCvLa6fTa4Y0iXcstJ97p4RUHQG6d\nf7+j92EEnW7P7QO/7FbXXvcOf1BpSn52sIxDmh4AAF4QICAvKSvyg14U5LVD77XDG1W6lltOvJNc\nALR4bqtr59/v6P3k5hFaunCabn14+4A2VRN0uj23rx88poc2vyKp/OLxoNKU/OzcHIc0PQAAvGiI\nugGIl1zn+9vXXKCbLp8Ru+AgDF479LnOYGODGXC8uMO7pK110HUKrxtmupaXnPjBtzniqfPvd2Zk\n9cYuLX90x4DgwEj6/MJpurrC52BJW6ucn9nBch3+3PqLHC+P1Y/Fc1u1duk8XXNh6bbFJU0PAAAv\nmEFA3fOTCuNlliXKdC2vOfEDbzNMXXvdO/9+ZkZKjdJbSbc9ukPvn32W4/Pgti5gcvMInddymp7p\n3u/hkTnPbISRApZ5zc/TBRPHBvq6R13OFQBQnwgQUPf8dui9pDhFla7lJydeOhkArdpQftQ8136v\ngVQli4m9rgt495RmzwGCNLjDH2YKWJCve1zKuQIA6o+x1k/GcrIZY7bMnDlz5pYtW6JuCmKos6cv\n9usvvHDqWDYYDapilAuArs4uQF6wvL1k53/t0nklFzIbSX940WQ1NjTkR7q3v3pAj2/fXbKN504Y\nqRlnjcqPikvydP+SyrbVyXXzpwwIRrw+1igloY0AgHiZNWuWtm7dutVaO6vaczGDAGSlYUfEzp4+\n7dzdp4unNmvf4eMaM+JUzThzVH7E2SkAyqWxvP3s0drcvb/sguLFc1u1++CxAQuPraSVT3YOaIfb\nOoEXdh/SC7sPScqMil80tdnzjIOfhcFOuf9JqNiVhJ3NAQDpRYAABMTLTsxe88kryT13Gt1vbDB6\n/9vPzN/WS1qPkXRe62l6z5TmQbMonT19gxYeO/FbSam9zGyDNDhNqDiV59DR42rfsXtAOddyHf64\nV+xKws7mAID0IkAAAuCWL+4nn7yS3PNKSneWW0j8vy8d0LeWXDDoNuVGtp0YeQsW3K7jtC6geMbH\nb4pYnGeMkrCzOQAgvShzClTJrXP+5PO7yx4vLMPpdq7ikp05lZTurOQ2fsuozp9xuq6bP0VXzDlb\nUyaUH52vtERoZ0+flq3Zptse2S5rpaULpyW+RG+UpXIBACBAQORyHbwb7t6kZWu2lewEx5VbR3v5\nIzs8d8QrrdFfSUpKJbfxW0Z1X98b6tp7WOeMGaa3nTWq7HXnT5/gusdEsdUbu7RgebtWtHfooc2v\naEV7hxYsb/e9l0HceN1zAwCAMJBihEhVU8oxLjXi3Trarx086nL7IwX/riz3vJKUlEpu47eM6q+6\n9ulXXftcr9fYYPSVKzJFF7ymCQW5I3IcxX2dBABgsLj0TapFgIDI+O3gFf6nO3TsTa0rWpQaVY14\nt472GaOG6uV9pYOEwo54pbnnfjZ783ub4g+7pQunafmjpWdF/GowGjAq7nVdQD1U+onzOgkAwEBp\n2r+GAAGR8dPBc/pP53SbKEaO3TraSy+bpmu/v8FT572Sjr5UunRng5Eumtqs2x7ZPmgkw0u5z1KV\nkT6/cJq6eg9rQ2evJGnGWSM1euipOnjsTXXvPexp1qDwMV9dwQcnlX4AAHGRtlltAgRExmsHr9R/\nOidRjByX62jfeNk0/eyFPZ72GHA7l1vueanSn08UlBAtHskol8ZS7sPum49sl5HyMzgv7D6kxgaj\nWxbN1rodu30FCIeOnfB83UJU+gEAVCuolKC0zWrHLkAwxgyTdLOkj0qaKGmvpB9L+rK19qUo24Zg\nee3g+S2tGcXIsVNHe2TTEN1atEC53B4D5c71ninj9bMX9uiGuzeV/QDLpaTkduItftqcRjJKpbGU\ne96tHVyaNHfuxXNbyj9ZRSrtyFc62wIAgBRsSlDaZrVjVcXIGDNU0k8kfVnSSEn/IalL0qck/coY\n89YIm4eAeS3l6Le0ZlQjx7mO9revuUCL57Y65unn9hjwWqP/29dk9iK49vsbfFXqqbQaUiG/z3vu\n3JJKvq7FqunIU+kHAFCpSsuKl5K2We1YBQiS/kLSuyT9j6Rp1tol1trfkPR5SRMk/VOUjUOwvHbw\n/JTWjMvIcRAddKnyD7AgRjL8ljTNOXTshOPrWqxUR95P2dvFc1u1dum8/F4L182forVL51W0pgEA\nUD+C+p7OSdv+NbFJMTLGnCrphuyv11trD+WOWWuXG2N+T9I8Y8w7rbW/jKSRCJyXUo5L2lp1e3uH\n6267cRo5DmqqsdKcxiBGMvyWNC08d6k0qZ937ClbsrOS6d64V/pJS8k7AEiToFOCqllDGEexCRAk\n/aak0yR1WGt/5XD8fknnSbpCEgFCirh18CY3j9CN75uubz683fG4kfTRC1v1mYunxOY/YFBTjZV+\ngPnJzy/VgS1XGUnSoPUNxed2el0vmjqh5GNJWwUIKV0l7wAgTcJICUrT/jVxChDmZC83lTie+/t5\nNWgLYub6S86VkfTNh7c7VgIKKqUkqNHeoBbQVvoB5nUkw60DW+rDbsOuvYGOknT29OnPVj1ddrZk\n5bqdGj3slMSMxKcx4AGAtAir0EXcZ7W9ilOAMDF72V3ieO7vb6lBWxBDn7vkXL1/9lmhReZBjvYG\nNdVYzQeY20iGnw6stZK1VtZ6O7cfXva4kKR71r84IDiM+0h82kreAUCapC0lKGhxChBGZi9L5VTk\nViqOcjuRMWZLiUNT/DYK8RJWZB7GaG8QnehqP8DKPV9eOrCTm0eUDZqqfS06e/r0xQc2O6YrFStV\nVjWuI/FpK3kHAGmTppSgoMUpQAAiE9ZobxABjZcPsEpSo9w6sNtfPag71g2evQiyY/61/9riKTgo\nJciR+KAXE6et5B0ApFFaUoKCFqcAIVe1qNS3au6b+qDbiay1s5z+np1ZmOm/aUi7uIz2llswXOoD\nbPXGrkGj8Hes69Cyj5xXNv3GrQPb2/dGqCkynT19A3Z5LsVo8OxBoSBemzAWE7ORGwAgqeK0D8KL\n2ctS27Dm/v7rGrQFdSYOo72rN3ZpwfJ2XxuilUrR6bfSFx/YXHYPAbeazacNP6Vse6vtmH/tv0pl\nAp50wcQxWtJWviNd7WsT9GY5OWzkBgDx5Ge/nXoVpxmEZ7KX7yhxPPf3zTVoC+rMb547vuReC7UY\n7a10DcQd6zpKpuj0W2nlup3620WzHY+7rW/o2F1+hL+ajnlnT5/aXWYPjKTli8+XJN33y+7QRuLD\nXEwcdn4reywAgD+Un/YmTgHCzyTtlzTFGHO+tfbpouNXZS//q7bNQpJ19vTpjnUdWt/ZK8mqbdI4\nfXbewP0Sch8WpYKDWoz2VtpJzTyu0tY+95r+Vs4BgiS1TRqnq9/Zog279srI6MLJ4/Tpi9+qyc0j\n8s+dU7MajKr6IF21oct147vWcZkAJOxKE2Gnl4WV38qXHAD4Q/lp72ITIFhr3zDGfEfSlyR91xhz\nmbW2T5KMMUuV2f+gnV2U4ZVTbn7H7j7du6FL86dP0MimIRo1dIhWbehy7AQbSXd9qq3s5l5BqbyT\nWr6b/frBY+rs6XP8wHPqYHbu6dP5E8ecLG/q4V7DWCAtSS/uPaIFy9vzHd6wRuLjkF7mF19yAOAf\n5ae9i02AkPU3khZIeo+k540xTyqz78FvSNot6fcjbBsSxK18ppfFsVbSzzv21CRAqLST2jZpnDp2\nl8+ddPrA89LBXLWhK7/vQTFr5akMaunHU/7xOrUnrJH4JC4m5ksOAPyLS0GSJIjTImVZa49KukTS\nXyuzH8KVygQId0l6h7V2Z3StQ5KUmhXwq1YfFm4Lhkt1Un/7vLNcz+30GLx0MN0+SLe9erDixb3l\nHm+p9oQliYuJvZSoZQEeAAyUxBnjqMQqQJAka+0Ra+1XrLXnWmubrLVnWWs/Za0ttcMyMIiXFBYv\navVhUWkn9Wcv7HE9t9Nj8DKK4vZBuuWl/a5BRimlHm+59oRp8dxWrV06T9fNn6Ir5pyt6+ZP0dql\n83R1DGcPJPcvuce3ve6rGhYA1INKB+PqUdxSjFDngqrK4jWFpZxaf1hUsiHa9lcPlD2nkfNiYi+j\nKIvnlk69kTLrG8px69QXPt5Ht7ymF3YfKnndWgRqtdgsJ6j3d7m0KCl5u04DQC2EXfQiTYwtlWSc\nQsaYLTNnzpy5ZYt7/XXUntOi2cYGU1FVls6ePr33ticqTjPKfVjEaQTZ6flx20TskukT9P1PXTjo\n7509fVqwvL1k3v3apfM0uXmE4316dd38KZ473F7bk2SVvL/LBRSVvB/8vCYAkFadPX2hlZ+O0qxZ\ns7R169atpTYM9oMZBMRC0FVZJjeP0LKPnFd2oXKhBpMZlT107EQsPyxKPT/lHlqDkb5yhfNnhNdR\nlNwo/9JVT+tXXft8tXlUk/ePl7SP6lTy/nYrY+o04/TcKwfKLsBnAR4A1GbGOOkIEBALYVRlyXWg\nVq7bqfW79kqSxo84RRt29Q4IGsKeLQgiraTc8yMNHjluMNLF0ybotke2l7xPr6VDJzeP0Dljh/kO\nEG57dIfeP/ssT4+1s6dPO3f36aKpzdp/+LjGjjhV088cFbtArVJ+399eA4riL7lla7aFtrkdAKB+\nECAgFsIqPTa5ecSgnYRrObUY1GZWbs/P/Bmna8aZo9Tde0SHjh5X+47dAzqKpe7T6yhKJWs6TvRb\nLV31tM4ZO6xsYFQq9ebyt5+ZiuBA8v/+rjRgTmLJVgBA/MSuihHqUy1Lj+U6xd++5gLddPmM0Dqh\nbqPAfkpPuj0/M84cpZsun6GlC6dp3fM9g9KqKrnPQn7Kkhb6Vde+spV0gnyO4szv+7vSgDmJJVsB\nAPFDgIBYSFrpsc6ePtc6815Ggb3y+vwEeZ+FSnU8/YQMTp3+Stvr5fmPE7/v72oC5qSVbAUAxA8p\nRghUpfn2SVqk6jVtKMi0Ka/PT5i7RDqtWXjPlPG69vsbPFc5Kk6PqaS9QaVt1ZLf93e1qUIswAMA\nVIMAAYGptuPmddFslPxUowk6bcrL8+N2n1tf3q9la7ZVXH/fqePp1PEtp7DT7/c5CrraVS35eX8n\nKWAGAKQPAQICEVTHLe4jn24pMSvX7dToYaeou/ewRjYNUYORY5nVxgaj90wZr+v/9Zf62Qt79Ga/\nVeu4YfrzD7xNF02d4Hj+4tkZp86l2wZaHbv71NHeMShw6+zp0x3rOrS+s1eSVdukcfrsvCmeXrPi\njm/33sNlKx4Vdvr9jpSHUe2qlvy8v5MQMAMA0okAAYFIesfNK7eUmHvWvzig3KgxGhQkNDYYfeQd\n5+iTd64fcNvnXjmoT965XlfPbdE3r5oz4JjX2ZlSI8/FCgO3Dbv2DtovomN3n1Zt7NLXP3Ke6+zP\n4MClpWTaUXGn3+9IeZgpVHEU94AZAJBOBAgIRL103NxSYoq7xNZmgoSPXThRB4+9mc/b/92i4KDQ\nfRu79aE5Z+dnEp58frduun/zoHOf6Le66f7NWvPsK5p+5uh82lDhyPOjW17TC7sPOd7PiX6rO9Z1\naNWGLsdZDmulLz6wuezsT6nAZdE7ztGDm17y1On3M1Jey2pXAADUKwIEBCKojlsQm4qFyS2Fx0m/\nlU4bfkp+P4Zla7aV3QFZkv72v5/Tmj+ZkJl5cQgOcqykx7fv1uPbdw+YUciNPHftPVwyQJCkDZ29\nZXea7rcqOftTLq3swU0v6a5PtennHXs8pcd4HSmnzj8AAOEjQEAggui4JaE6TamUmOKdjIsVzqC4\nzbZImXSj7z7+gpY/usM1mMjJzSicddrQ/OyDW+DWc+iY63kf3fKaY+feLa3s5x17Ak+PYfEuAADh\nI0BAIKrtuAVZnSbsWQinlJjevjd074bSewwUzqB43ZX41oe3ew4Ocqyk371zvb5+VWbtgNuMx74j\nx13P+cLuQ1qwvF23LJqttknj8s/tc68cLHu7sNLKWLwLAEC4CBAQmGo6bkEtcq7VLERxSkxnT5/u\n+2W3pxmUJW2tur29w7Xz7zc4KLxdYVDltwypkxP9Vl98YLMk56pMTsJcD1CLxbtxT3cDACAsBAgI\nVLmOW7kOVxCLnKOske9nBmVy8wh9/arz9H/v3xxKW6SBQZXfMqSl+IkvjKR9h9/QDXdvSmTn2inQ\nvL29Q19433R97pJzI2wZAADhI0BATbiN7AexyDnqUqt+ZlBy1/3df/qFuvaGk4pTGFQVBm433L2p\nogDBDyvpnvUnU67itpaknFKBppX0jWza1/UECQAQGGZs44cAAaHzMrIfxCLnOJRa9ZP6smHXXr0U\nYptaxg5z/ND1ugYiSEnY6TinXKApZdaGfGD2WbF9HHzRAkiSJBQoqUcNUTcA6edlZD+XotPYYAYc\n91OdJkk18nNBU6XLAhqMNKdldNnjv/x1ry699QmtaO/QQ5tf0Yr2Di1Y3q5RQ4cMep5rIfdax51b\noGml2D6O1Ru7tGB5+6DXPK7tBVDf3AYQO3v6ImoZCBAQOq8j+4vntmrt0nm6bv4UXTHnbF03f4rW\nLp2nqz2OICxpay3Z8Y1bjXy3UWonF0wcoyvmnK1LpmdKmD7TfcDxesZkOrHrO/c6bq62/NEd+vzC\nab6ChKDiiV+92BvMiULkZYYljhv/8UULIGm8DCAiGgQICJ2fkf1cis63r7lAN10+w1dqRBCzELXi\nZS+EQo0NRssXn6+lC6dp3fM9jjMPRtIHzzsrsydDmdjjRL/VwWNvDgjGLmgdU/b+p58xylM73eKI\np3bu1Rfuf8bTuaKypK3V9XHEaTYqhy9aAEkTh9RgOGMNAkJXy91vk1Ij3886gMIAZ9mabSU7gVbS\nS71HPKUtdfce8bVwef/R8vslnD1mmD58/tl6z5Txuvb7G8rOjty3sVsfmnN2fjM3r2qVWz+5eYS+\n8L7p+sbD2x2Px202KocvWgBJk6TU4HpDgIDQ1Xr321zHN9ehvO2R7ZEt1izVqS0XNDUY6aNtE3Xw\n2JuDAhy3TuBrB496alfxh67bh/QZo4bq5X2lz/3h88/OBxu3LJrtWsJ1+aM7fAUItV7E9rlLzpXV\n4M3q4jgblcMXLYCkqQQfplEAAB7ISURBVOUAIvwhQEBN1HpkP+wOpZfRbLc2lAuaSq27cOsEvnnC\nffrA6UPX7UN66WXTSs4MFJ9v8dxW3frjbXr90Bsl2/DagWOu7cyJan+L6y85Vx+YfVbsZ6Ny+KIF\nkDS1HkCEdwQIqJla7H4rhd+h9BJ8eGlDJUFTuU6gJL1+sHzHu8HI8UPX7UP6oqkTfH2Inz12eNkA\n4YzRTZK8BVpR7W9R3LY4BwcSX7QAkikpqcH1xthyqxlTxhizZebMmTO3bNkSdVMQomVrtmlFe0fJ\n49fNn1Jxh7Kzp08LlreXHKVdu3Refq1AWG1wClDcGEnzp0/QV66YVfZDt7Onr+yHtNvxnCef361P\n3rm+5P388A8u1Cv7jzp2ZotneW64e5Me2vxKyXNdMedsffuaC0oer4TTc+zUtjjy+hoBANJl1qxZ\n2rp161Zr7axqz8UMAlInzMWaXkezw2xDbrRl6aqnyy4sHjPsFI0eeopGDh2iM0Y3afqZpfdNyHGb\n5fE6C3TR1Am6em6L7tvY7dD+FrWMHe6YsuQ0y1Pr3PqoUpqCUquZOgBAelHmFKkTZIeys6dPy9Zs\n0w13b9KyNdu0/VXnvQdych3/sDu1k5tH6ByXc+w7clwv9h7W1lcO6PHtu2u+adY3r5qjH/7Bhbpg\n4hidPWaYLpg4Rj/8gwv1javm+CrJWev9LSgXCgCod8wgIHWCWqzplGbitT6+3zZUUsLTT6nUnFqP\ngl80dYJjtSI/Myy53PovPrB5QAnXUuspquW2mRvlQgEAaccMAlIniA3TSqWZlMv6L+z4+2nD6o1d\nWrC8XSvaO/TQ5lc8j/SXG1kvJw6j4EHNsAS9guoL9z+jX3TuLXsdyoUCANKOGQSkUrVVEcqlmUiZ\nmQS3+vhe2lBNvnupqjVeVDMKHsSGZX5mWHLPUfFV+60CnQ158vndjmsmyrUNAIA0IkBAalWzWNMt\nBWb+jNM148xRrsGHWxuqLeFZGIQ8uuU1vbD7UNl251Q6Ch7U/hJ+SnLWqszpbY/scL2O35SmWu3+\nDABAkAgQAAduKTAzzhwVSKc0iGpHuSBk8dzWkiVYC1U6Ch50dR+vszxhVoQq9PqB8rtQnz6qqeQG\ndk5qvfszAABBYQ0C4KBWlXOCrHZUat1DodwIvaQB1Zk6e/pczx9GdZ9ccPPtay7QTZfPcAwwalXm\n9PTRQ8sed6saVcgtmPLyfAMAEBUCBMBBEAudvQg6EMns0NyicyeM1LkTRuqD552pj104UVfMOVsf\nu3Cirn5ni/7lqV/r0luf8L0oulYj+cVqFax9/rJpZY8vXVj+eCFKpQIAkowUI6CEWmz/7icXvzCf\nfdTQIbJWOnTszXxu+4Zdewedp3NPn27JzhiUW8zsJU3I70h+UPn3k5tHaNE7znFcQPyRd5wT2Ovh\ntrmbU7nWUqIKpgAACAIBAlBGLXal9RKIOOWzF7pjXYesJFt0+ES/1Rcf2CxJg6oAFXNb8Oun8lCQ\n+fedPX16cNNLjsce2PSSrpt/bmBBwjevmqMPzTlbyx/dodcOHNMZo5u0dOE0X8GBVPvdnwEACBIB\nAhAD5QKRUvnshcp1/v1UQC03su11tsPLYmZJnmcXalXFKKfU5m5+BLVZHwAAUSBAQCqlqbyk254M\nQcqNbOeev22vHtC+w8c1dvgpmn7maC1pa9XapfPKzna4dej/6r+2aN3zPZ5nF5KYruMndQwAgLgh\nQEDqpK28pFsHOSi5ke3VG7v0xQc2D5p5eHz77vzzWG7E3q29T2zfPWgH5HJrIJKarlOLNSwAAISB\nAAGpEnSt/jhw6yC7yRUAKjcJ0dhgdONl03THug7ds750hZ0gFjOXakapdKGg03VqObtUizUsAAAE\njQChjqQp7aaUWuerB6Xca1Oug1zIKRDIpbRYDa5iZCTNaT1N757SrJFNQ3TrIzs8pTJVs5jZqHSA\nIDmnCwWZrpO22SUAAMJAgFAn6qVjVIt89aADLafX5vb2Ds2bPkF/ecWskh3kQrkZgF/vOawNu/bK\nyOjCyeP06Yvfmm9bqXSXzp4+TzswF6p0MfPFU5v1+PbdJW9bKl0oiHSdNM4uAQAQBgKEOlBPHaNq\n8tW9dPyDDrRKvTZWmVz99u1PaN70CRrZNERXv7NFDcbo4LE3NappiKysDh07oZaxwxxnAHb2HNLL\n+49oZNOQ/ONxGvWvZBG0W95/qQ69JK173jkYcUsXqjZdJ6mzSwAA1BoBQh2op45RpfnqXjr+QQZa\nuWDk0a2vlu2c5wKFnAYjXTxtgqy1ahk7XJ+5ONM2pxmAfjvwtqUCmW2vHvDU5hyvef+lOvRRVfdJ\nYjUkAACiQIBQB+qpY1RJvrrXjn9QgZbbpmflOHX6L5ra7HntQHEgs3pjl9rLpPwUazCquiMfVXWf\npFZDAgCg1ggQ6kC9dYz8dkC9dvyDCLS8bHrmx4l+66uDX/h4cm3x2pJLpk/QV7JrIqoVRXUfNi8D\nAMAbAoQ6UI8dIz8dUK8d/yACrTA2PfN7ttzj8dKW81vH6N1Txqeifj+blwEA4A0BQh2gY1Se145/\nEIFWWJueuZUPLZR7PG5tuXTG6fqna9uqalfcSuuyeRkAlBa3z2xEhwChTtAxKs1rxz+IQKvaTc9K\nmT99gtY93+M6I1D4eNzaMv3MUVW1KS6ldZ2+8NKyKB8AghKXz2zEg7E22HSHODPGbJk5c+bMLVu2\nRN0UxIzTB2Ou43910QdjZ09fxYFWuT0HGhuM7vpUm37esUfdvUd06Ohxte/YXXYH5Nzt1i6dl38c\n2149qI7XD+rFvUcGXa/w8bi1Ze3SeRUHkGGe249SrytfeABwUlw+s1GdWbNmaevWrVuttbOqPRcz\nCEi8IKZEy9XtX7Zmm7p7D2vU0CGyVjp07E21jB2upQun+b4ft1mIi6ZO0EVTJwx4bLk2OQUMxbMX\nk5tH6I51A2dDjDIzDMULjMNMPYtDad162v8DAKoRh89sxAsBAhItyCnR4oXNbuVIK70fP+lexW0q\nN3tRbtO1dc/3VN0WP+JQWpcvPADwJg6f2YgXAgQkVpgjxF7KkVZzP5WW+Sx3u0o7xGGUHI1DaV2+\n8ADAmzh8ZiNeGqJuAFApLx3iMM4d5P0EKU4d4iVtrWpsMI7HalValy88APAmDp/ZiBcCBCRWmB1i\nP+VI4zISHacOcW59Q/EXTi1L6/KFBwDexOEzG/ESixQjY8wMSR+WdLmk2ZJOk7RH0s8l/Z219skI\nm4eYCrND7KccacvYYbGoHb2krVV3rOtwrHoURYc46tK67P8BAN5F/ZmNeIlFgCBpraRzJB2S9JSk\nvZJmSvodSVcaY5Zaa78VYfsQQ2HuEF3u3MX3M7JpyKDycFHUjt6wa6/jZmkNRpF1iMNY31DILTDj\nCw8AvAv7MxvJEYt9EIwxayX9QNJ91tqjBX//rKQVkk5IOs9au7XK+2EfhJTxs39BEOcu1NhgdONl\n03TrIzsirx1droZ1g5Ee+/z81HWK2eMAAICTUrcPgrV2QYm/326MWSTpMklXS/paTRuG2AtzhLj4\n3KOahsjK6tCxE/n7iUspzXLt6LdKXUlP9jgAACA8sQgQXDyjTIBwdtQNQTyFOSXqdu64VA6KSzvC\nVJhO1N17JBaBGQAAaZSEAOGt2ctXI20F4CAulYPi0o6wuKV7FUtDQAQg/eJQ4AJwEusAwRgzRdIH\ns7/+p4/blVpkMKXqRgEFwlwoncR2hMHLpnXFkh4QAUg/p4GPKApcAE5iuw+CMWaIpLskNUlaZa39\nZbQtAgaLS+3ouLQjDF43rcspDIg6e/q0bM023XD3Ji1bs02dPX1hNRMAPHNbR8VnFaIWyAyCMebf\nJL3N581+11q7vszxv5f0W5J2SvqcnxOXWr2dnVmY6edcgJu4lNKMSzuq4TTd7mfTusKAiNE5AHEV\nlwIXQClBpRhNljTd521KJk0bY74k6TpJr0l6n7V2bxVtA0IXl9rRcWlHJUp16C+a2lz2dhdMHKOW\nscMHBERUOQIQZ/VQWALJFkiAYK09P4jzSJIx5o8k/Y2k/ZIut9a+ENS5AcRTuQ79uh271WBUcofo\n5YvPH9TZZ3QOQJylvbAEki9WaxCMMR+V9F1JhyX9trX26YibBKAG3PZxmDdtgq/1FYzOAYizJW2t\ngz7TcpJeWALpEJsqRsaYD0j6Z0lvSvoda+3Pann/lBoDouPWoR859BStXTrP8/oKRucA1JLfPkSu\nsITTbvBJLyyBdIhFgGCM+U1J90sykhZbax+p5f2zmBGIlpcOvZ/1FWku+wogXirtQ6ShsATSKxYB\ngqSHJA2T1CnpSmPMlQ7X+am19ntB3zGLGZFWSZoVC7pDz+gcgFqotg+R5MISSLe4BAhjspeTsz+l\nBB4gsJgRaZS0WbEwOvSMzgEIG30IpFUsAgRrrfNKnRpgMSPSJqmzYmF06BmdAxAm+hBIq1gECFFi\nMSOSzCmNKMkjWnToASQJfQikVd0FCK/sP6pla7bl87FZzIikKpVG9PazR5e9XRJGtJK0fgJA/aIP\ngbSK1T4ItXDo6Jta0d6hBcvbtXpjVz732U+NdSBq5dKINnfvL3vbIEe0Onv6tGzNNt1w9yYtW7NN\nnT19VZ9z9cYuLVjerhXtHXpo8ysD/r8CQJzQh0Ba1d0MQk5hPjaLGZE05dKIrDL1gp2OBjmiFcZC\n6KSunwBQv+hDII3qNkCQBuZjk/uMJHFbGHde6xj970v7QyvxGVZHPsnrJwDUL/oQSJu6DhCkZORj\nA8XcFsa9Z8p4fWvJ+aGNaIXVkaciCAAA0av7AIEKA0giLwvjwhzRCqsjT0UQAACiV3eLlAtRYQBJ\nFfXCuLA68kvaWgc9phz+vwIAUBt1O4NAhQEkXZQL48Iq7RfGjsoAAMCfugsQRg0douvmT6HCAFIh\nrDQit30IwuzIUxEEAIBoGWudFxqmkTFmy8yZM2du2bIl6qYAseVUvrSxwTiWL+3s6aMjDwBADMya\nNUtbt27daq2dVe256m4GAUBpfsuXUtoPAID0qetFygAG8lK+FAAApBszCADy2IcAQNK5raEC8P/b\nu/cgvcr6DuDfX6JiEqRGohVJlJBRUSaKmqDVabVeWkbb0WYsqB2EGey0te1Yb0XGS1GnQjvVQVud\nDtRLKx2H1AFtdbRaFaQtKrEOUkcFIdKNl8rW4CWBiOHpH++7x5hssrnsvufNvp/PzM7JOee9fHd4\nE/a753nOMzcFAehYhwA4ms02h+qya2+ddQ4VsH+GGAEd6xAAR6u55lBtnd7RUzI4+igIQKfvBdgA\nDpc5VDB/DDECfs6B1iEwthcYV+ZQwfxREIB9zHb7UmN7gXFmDhXMH0OMgDkZ2wuMO3OoYP4oCMCc\njO0Fxt3+5lAtqeSXH74qb/3E13Pxx77mFxpwEAwxAuZkbC9wNNh7DtWP77o719x0e67++u3dYwyN\nhLm5ggDMydhe4GgxM4fqFc96RD5783T2vvhpaCTMTUEA5mRsL3C0MTQSDp+CAMzJ+gjA0cbQSDh8\n5iAAB+VA6yMAjBtDI+HwKQjAQZttfQSAcXTWxjW57NpbZx1mZGgkHJghRgDAomNoJBw+VxAAgEXJ\n0Eg4PAoCALBoGRoJh84QIwAAoKMgAAAAHQUBAADoKAgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0\nLJQGAMBB2Tq9I1dcP5Vt23dm9crlOWujlakXIwUBAIA5bd4ylQuuvDG772ndscuuvTUXbVqfMzes\n6TEZ880QIwAADmjr9I59ykGS7L6n5YIrb8zW6R09JWMhKAgAABzQFddP7VMOZuy+p2XzlqkRJ2Ih\nKQgAABzQtu075zh/54iSMAoKAgAAB7R65fI5zi8bURJGQUEAAOCAztq4JkuX1Kznli4pk5QXGQUB\nAIADWrtqRS7atH6fkrB0SeXiTevd6nSRcZtTAADmdOaGNdl40gOyectUtm2/M6tXLsuZG6yDsBgp\nCAAAHJS1q1bk/DNO6TsGC8wQIwAAoOMKAgBMuK3TO3LF9VPZtn1nVq9cnrM2GjYCk0xBAIAJtnnL\n1D4r5F527a25aNN6d6aBCWWIEQBMqK3TO/YpB8lgZdwLrrwxW6d39JQM6JOCAAAT6orrp/YpBzN2\n39OyecvUiBMB40BBAIAJtW37zjnO3zmiJMA4URAAYEKtXrl8jvPLRpQEGCcKAgBMqLM2rtlnZdwZ\nS5eUScowoRQEAJhQa1etyEWb1u9TEpYuqVy8ab1bncKEGtvbnFbV65O8abh7dmvt8j7zAMBidOaG\nNdl40gOyectUtm2/M6tXLsuZG6yDAJNsLAtCVT0yyWuTtCSzX/sEAObF2lUrcv4Zp/QdAxgTYzfE\nqKoqyaVJ7kjyzz3HAQCAiTJ2BSHJS5L8SpJXZlASAACAERmrglBVD07yl0k+1Vr7x77zAADApBmr\ngpDkHUmWJfmDvoMAAMAkGptJylX1G0l+O8mftdZuPsLX+sp+Tq07ktcFAIDFbiyuIFTVsUneleSm\nJH/RcxwAAJhY83IFoaquSvKoQ3zai1trXxj++S1J1iR5Rmtt15Hmaa2dOtvx4ZWFRx/p6wMAwGI1\nX0OM1iZ55CE+Z3mSVNXpSf4wyftba5+epzwAAMBhmJeC0Fo77Qie/uwMhjqtr6qr9zo3s2rLa6vq\nJUk+3lq7+AjeCwAAOICxmaSc5EAl45Th1zdHEwUAACZT75OUW2sXttZqtq8kfz982NnDY+f2GBUA\nABa93gsCAAAwPhQEAACgoyAAAACdcZqkvI/hnINze44BAAATwxUEAACgoyAAAAAdBQEAAOgoCAAA\nQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAAHQUBAADoKAgAAEDnXn0HAFhoW6d35Irr\np7Jt+86sXrk8Z21ck7WrVvQdCwDGkoIALGqbt0zlgitvzO57WnfssmtvzUWb1ufMDWt6TAYA48kQ\nI2DR2jq9Y59ykCS772m54Mobs3V6R0/JAGB8KQjAonXF9VP7lIMZu+9p2bxlasSJAGD8KQjAorVt\n+845zt85oiQAcPRQEIBFa/XK5XOcXzaiJABw9FAQgEXrrI1rsnRJzXpu6ZIySRkAZqEgAIvW2lUr\nctGm9fuUhKVLKhdvWu9WpwAwC7c5BRa1MzesycaTHpDNW6aybfudWb1yWc7cYB0EANgfBQFY9Nau\nWpHzzzil7xgAcFQwxAgAAOgoCAAAQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAAHQUB\nAADoKAgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0qrXWd4aRqaofHnPMMfdbt25d31EAAGDe3HLL\nLdm1a9ePWmvHHelrTVpB+G6S5Umm+s4yYWYa2S29pmAc+Cwww2eBPfk8MMNn4fCtSbKztfbgI32h\niSoI9KOqvpIkrbVT+85Cv3wWmOGzwJ58HpjhszAezEEAAAA6CgIAANBREAAAgI6CAAAAdBQEAACg\n4y5GAABAxxUEAACgoyAAAAAdBQEAAOgoCAAAQEdBAAAAOgoCAADQURAAAICOgsDIVdWKqjq7qv66\nqj5fVbuqqlXVhX1nY2FU1bKqelNV3VRVd1XVt6vqPVV1Yt/ZGJ2qekJVvaaqrqyqbcO/9xbjmUBV\ntbyqnldV766qrw//XdhRVTdU1Ruq6ti+MzI6VfWK4b8LN1fVD4Y/F9xWVf9QVev7zjeJLJTGyFXV\naUm+NMupN7bWLhxxHBZYVd03yWeSPCnJd5Jcm+SkJKcnuT3Jk1prt/YWkJGpqg8lee7ex1tr1UMc\nelRVL0ly2XD3q0n+O8lxSZ6c5H5Jvpbkqa217/WTkFGqqukkK5J8Ocm3hodPTfKIJHcn2dRa+0hP\n8SbSvfoOwET6UZJ3J7l++PWcJG/qNREL6XUZlIPrkvxaa+3HyeA3RknemuQ9SZ7WWzpG6boMfgCY\n+bv/zSTH9BmI3tyd5NIkl7TWvjpzsKpOSPLRJI9LckmSF/UTjxF7bpIvttbu2vNgVb00yTuT/F1V\nrW6t/bSXdBPIFQR6V1WvSXJRXEFYdKrqPkm+l+QXkjy+tfalvc7fkOQxSTa01r7YQ0R6VFV3JTnG\nFQT2VFW/lOQ/k+xKclxr7Sc9R6JHVfWNJOuSPLa19uW+80wKcxCAhfSUDMrBLXuXg6EPDre/ObpI\nwJi7Ybg9JsnxfQZhLNw93CqKI6QgAAvpscPtf+3n/Mzxx4wgC3B0OHm4vTvJ9/sMQr+q6uwkj0xy\n8/CLETEHAVhIDx1ut+3n/Mzxh40gC3B0eNlw+/HW2q5ekzBSVfXqDCYnr0jyqOGfv53kha213X1m\nmzQKArCQZm5VuHM/53cMt/cbQRZgzFXVs5Ocl8HVg9f3HIfR+/Ukz9hj/7YkLzZHbfQUBA5ZVV2V\nQbM/FC9urX1hIfIAcPSrqlOSXJ6kkry6tXbDHE9hkWmtPTNJqur+SdYneUOSa6rqda21P+813IRR\nEDgcazMYE3goli9EEMbej4fb/f33XzHc/mgEWYAxNVw08eNJViZ5W2vt7T1HokettTuSXDu8onRd\nkjdX1Sdaa9f3HG1iKAgcstbaaX1n4KjxP8Pt6v2cnzl+2wiyAGOoqh6Q5BMZzEV6b5JX9ZuIcdFa\nu7uqrkjyhAzudqcgjIi7GAELaWaIwOP3c37muHtbwwSqqmOTfCzJo5NcmeR3mwWa+HnTw+0De00x\nYRQEYCH9R5IfJFlXVbNdeXr+cPsvo4sEjIOqOibJh5OcnuRf4041zO6pw+0tvaaYMAoCsGCGK6D+\nzXD3nVU1M+cgVfWKDNY/uMYdKmCyVNXSJB9I8vQk1ybZZMXkyVRVT6mqM6pqyV7H711Vf5zk7CR3\nJrmil4ATqlzJow/DOyGdMNx9SJI1Sb6Vn90X/zuttd/qIxvzq6rum+TqJE9M8p0Mfhh42HD/9iRP\naq3d2ltARqaqnpOfv3Xl6Rncsebzexx7c2vtoyMNxshV1cuSXDLcvSrJD/fz0Fe11qb3c45FoKrO\nzWDuyXSSLyb5vySrMriL0QlJ7kpyTmttc18ZJ5FJyvTlcdl3cawTh1+JSauLRmvtrqr61SQXJHlR\nkudlsDrq+5K8vrW2v0XUWHwemEEx3NsT93oMi9/KPf58oF8GXZifjUFncbomyVsyGEr0mAzKwU+S\nfDPJB5O8o7X2jd7STShXEAAAgI45CAAAQEdBAAAAOgoCAADQURAAAICOggAAAHQUBAAAoKMgAAAA\nHQUBAADoKAgAAEBHQQAAADoKAgAA0FEQAOhFVf1iVZ1XVVdV1baq+klV3VFV11TVOVVVfWcEmETV\nWus7AwATqKouT/I7SX6aZEuS25KcmOTJGfwC64NJXtBa291bSIAJpCAA0IuqenuS/01yWWvt9j2O\nb0zyb0mOS/J7rbVLe4oIMJEUBADGTlVdkOQtSa5urf1q33kAJok5CADMqqpOqqpWVVdX1XFV9faq\nmqqqu6rqq1X18qra5/8jVbWiqs6vqi1V9cOq2lFVX6uqd1bVIw7y7W8Ybh8yf98RAAfjXn0HAGDs\nHZPk00nWDbf3SfKMJG9L8tgk5848sKpOSPLJJKcm2Z7k6iS7kpyc5PeT3JzkpoN4z5OH2+/OQ34A\nDoGCAMBcnpTky0ke3lqbTpKqWpfks0nOqaoPtdY+NHzs+zMoB5uTnNda+/HMi1TVSRnMKzigqrp3\nkpcOdz88T98DAAfJECMADsarZspBkrTWbkny5uHuHyVJVZ2ewZWF7yV5yZ7lYPicb7bWvnwQ7/Xm\nJI9KsjXJ385DdgAOgYIAwFy+31r75CzHPzDcPnk4F+GZM8dbaz86nDeqqhck+dMkdyV5UWtt5+G8\nDgCHT0EAYC63zXawtfaDJHckWZZkZZI1w1O3HM6bVNXTk7wvyT1JXtha+9zhvA4AR8YcBAB6N1z7\n4MMZTIA+b485DQCMmIIAwFweOtvBqjouyf2T3JnBlYSp4al1h/LiVfXoJB9LcmySl7fW3nv4UQE4\nUoYYATCX46vqGbMcf8Fwe11rbXcGqx8nyQur6tiDeeHhnY0+keT4JBe21i45wqwAHCEFAYCD8VdV\ndfzMTlWtTfKG4e47k6S19oUkn0nyoCSXVtWKPV9guPDa+j32H5RBOTgxyVtba29c2G8BgINRrbW+\nMwAwhoa/3d+a5HMZzA04OYOF0u6dwe1Mlye5vLV29h7POTHJp5I8Msn3k/x7BgulrUtyWpJXzlwl\nqKqrkjwvyc4k/7SfGNOttVfN87cGwAGYgwDAXHYlOSPJWzL4gX5VBsXhsiQ/NySotfat4YTjP0ny\n/CTPSrI7ybYk70rykT0evnK4XZ7knP28921JFASAEXIFAYBZ7XEF4ZrW2tN6DQPAyJiDAAAAdBQE\nAACgoyAAAAAdcxAAAICOKwgAAEBHQQAAADoKAgAA0FEQAACAjoIAAAB0FAQAAKCjIAAAAB0FAQAA\n6CgIAABAR0EAAAA6CgIAANBREAAAgI6CAAAAdBQEAACg8/8k4CJtX7miIwAAAABJRU5ErkJggg==\n",
181 | "text/plain": ""
182 | },
183 | "metadata": {
184 | "tags": []
185 | },
186 | "output_type": "display_data"
187 | }
188 | ],
189 | "execution_count": 0
190 | },
191 | {
192 | "cell_type": "code",
193 | "source": "pc_draslik.plot(y='pc1', x='pc2', style='.', title=worksheet_draslik.title)\nplt.show()",
194 | "metadata": {
195 | "id": "QeHqPX3z-Bw2",
196 | "colab": {
197 | "height": 614,
198 | "base_uri": "https://localhost:8080/"
199 | },
200 | "cell_id": "c43c581dbe6d4430bbb9d984163e894d",
201 | "outputId": "8edc5527-02e0-40aa-df35-c9ebc7580022",
202 | "colab_type": "code",
203 | "deepnote_cell_type": "code"
204 | },
205 | "outputs": [
206 | {
207 | "data": {
208 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAwgAAAJBCAYAAADiJZIHAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAAXEQAAFxEByibzPwAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4zLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvnQurowAAIABJREFUeJzs3XuYXWV5///PPSM5TQI5A5KBxBEI\nSYPYzvClVkzEQGkrLUZJpB4K1doi9NteEZumVqvWXxOrRn+19ReNFKwtmIjRVmlUgjCkWiURJTEh\nASdDmZSDmRBzmBzJPL8/9oHJzD6svfc6PGvt9+u65toze+299rP3DOS513Pfz23OOQEAAACAJLUk\nPQAAAAAA/iBAAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAAAARQQIAAAAAIoIEAAAAAAU\nESAAAAAAKCJAAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAGJgZmeZWY+ZOTP7v0mPBwDK\nIUAAAHglP4F2ZrYg6bEEZWY35cf8VIWH3SXpFZI+6Zz7h/zzPpx/3kPRjxIAgiFAAIAShkz4qn0t\nrHKeDjP7vJn1mtkxM9trZt8xszfH9V7KjOvDw97HWwM8575hz5kZ/UizwczeJ+l6SV+R9BcJDwcA\nKnpZ0gMAAM8NStpb4fjxcgfM7LclfVXSuPxdByVNlnSNpGvM7E5J73LOuZDG2oiblZu8lmRmL5f0\nm/ENJzvM7DWSVkp6SNJNnvy+AaAsVhAAoLI+59w5Fb42lXqSmc2StE654OD7ki52zp0l6SxJH80/\n7GZJ74/jTVTQL2lA0kIzm1Hhce+U1CrpqTgGlTGXSPpbSW9yzpUNKAHAFwQIABCNj0pqk/ScpDc6\n556QJOfcYefc30j6Qv5xHzCzSQmNUcoFB/cq9+/BTRUed3P+9q6Ix5M5zrk7nHMfdc79MumxAEAQ\nBAgAEDIza5NUqDH4/8pMDFfkb89ULjd96PNnDs3zN7MLzGyNmT2dr2PoMbOP5V+n8JxfMbN/NbO+\n/GOeNLO/NrMzAgz5zvztTWXez2slXSRpt6SHA5yvIjObZGafyL+PY2b2rJl91cx+rcrzFhQ+l/zP\nrzazfzOzPWZ2cmihr5mdY2Z/amb/bmaPm9kBMztqZj83sy+a2dwqr/WbZrY+f+4TZnbQzHab2XfN\n7HYzm1zD+w1SwFzuua82s+fyz/+OmY2v9RwAUCsCBAAI32sljc1/v6HUA5xzT0l6PP/jNRXO9auS\nfirp3cqlJ71MuZ1wPiBpg5mdYWa/I+lHkt4maYKkUZJeqVxay5cDjPdhST2SOszsdSWOD109aCh/\nPl/Y/BNJtyv3Pky5NKy3SPqBmf1uwPO8Wbn3/PvKvecXhz1kpaR/kPS7yn0WLyr32XVIepekH5cr\nFDezD0n6tqQ3STpP0sn8OGdJulrSJyRdGmScjcgXwHdLOlvSvyq3EnU46tcFAAIEAKhsmpn92MwO\n569A785fqV9Q4Tm/MuT7n1V4XOFYpavZd0j6saS5+RqGCZL+r6RTkq6U9CFJ/ybpm5JmOucmKrcq\n8f/kn7+k2k5L+aLZu/I//uHQY/lVisXKFWvfpQaYWatyRdsXSNqfP29b/n3NVW7C/6WAp7tL0v2S\nLnHOneWcGyvpj4Yc/7ly9R3zJI11zk2RNFq5382/5b//Ur74eugYL5D0N/kfV0k6zznX5pybIGmi\ncp/55yQdquGt18zMbpR0n3K/709Jeqdz7mSUrwkABQQIAFDZOOWu4p9Q7v+Zs5S7Uv+gmf2zmZXa\nDa4w6dzvnDta4dz/O+zx5R7zO865HZLknDvqnPuspLvzx/9a0iOSbnTO/U/+MYedc38tqVBAXXUL\nU+Um5oOS3jIsjWWxpPGSHnDO9QU4TyVvltSZ//4G59xXnXMv5se8Q9K1kvYFPNcOSb/rnNtZuMM5\n9+SQ7z/mnPukc+5nQ15j0Dm33Tn3duUm320aFhBJ+j/K/Z6fcM69zzn3zJBzHnDO/Zdz7lbn3I9r\neeO1MLOlygUxZ0h6n3PudnY+AhAnAgQAKO0ZSR+R9CpJY5xzk5ULFn5D0sb8Y26W9OkSz52Qvz1S\n5TUKxydUeMyny+x8850h368sM4EsPKZqOkx+8r9RuUnz4iGHCulF/1ztHAEUApXvO+ceKDGGI5L+\nPuC5PuGcO9XAWO7L37522P2FepEJQ2s84mA5n1BuxeBFSW93zq2KcwwAIBEgAEBJzrnvOuc+7Jzb\nWpigO+dOOed+oFw/gH/PP/S9ZnZhhEN5pMz9zw/5fnOVxwTdJalQrPyHkmRmr1QupWa/pG8EPEcl\nhdWD71V4TKVjQ32/2gPM7FVm9jkz25ovMh4cUuT8ufzDhm/t+ohyW7+eK+lHZnabmc02Mws4rnqd\nIelflKvNOKzcqtHdlZ8CANEgQACAGjnnBpWbyEm5/49eN+whhfz0caqscLxSPnu5Y8WiXOdctccE\n2clIkr6uXDDwG/mgp7B6cI9z7ljAc1QyPX/7vxUesyfguX5R6aCZ3SbpUUm3KFeHMF7SAeWCpueV\na1on5VZMivI7Tt2oXHO8uZI+q1wx+X4z+w8ze3vAnaFq9RpJb89/f7Nz7v4IXgMAAiFAAIA6OOd+\nrtyVZim3G89Qhbz1SWY2VuWdN+zxicqvlNyT//HdyjVHk15aWfBGpfQiM7tE0meU+zfuq5IuVy5N\nbFKhwZ2kpYWHlzj3RuVqTd6pXG3Gk8rtIHWdcrtC/cTMzhv+vAZtk7Q1//0qM+sI+fwAEBgBAgCE\nb+jORb9S9lEvHdse4VhqVQgG/ly59JufOee2hHTuwlX/SpPrMCbeb1Gu6/Pjkt7qnNvsnDsx7DHn\nVDqBc27AOfdl59xNzrmLlPsslkk6ppdWFsL0gqSrlNvStl1St5ldFPJrAEAgBAgAUIf8Fd6p+R97\nhx3+L0mF3YuuLfP8CyRdkv/xu6EPsE75YGCbcr0UpHCKkwsKgcbrKzzmqhBepz1/+1g+HayUilu/\nDuec+1/n3N8rV0As5fohhMo5t0/SG5RLjTpP0kNmdnHYrwMA1RAgAMAw1QpS88c/kf9xUNK3hh53\nzg1I+lr+x1vM7KwSp1mWvz2kcAqAw7RMuYnwp5Rr0BWWtfnb15bqI5FPx3p/CK9zIH87r9Tv0sx+\nS9KI188fG13l3IXAr1zg0RDn3AvKBQmblSuUfiifMgUAsSFAAICRLjCzR8zsj83sFYVJppm1mNkV\nynVHflP+sZ93zu0qcY4PSRpQbpL3zcJOR2bWlu/U+yf5x33MObc/0ndTI+fchvze+7c75/aGeOqv\nKXd1XJK+ZmZvzjdPK9QNbJA0LYTX+Xb+dq6kfzKzyfnXaDOzP5Z0r8r3W1hmZhvM7B1mVtzhyMxG\nm9livRTA3Ff66Y3LF0pfLemHyqVCPWRmlVLVACBUpRr8AACkrvyXJB03s0PK9SsYeoX5TuW6Go/g\nnOvNTyi/qtxWoU+Y2QHldtNpHfL8T5R6fhY55140sxskPaRcGtC9yn22x5QrAj4h6Qa9tIVsva/z\ngJl9Rbm+C7cot4rzS+V+f63Kdaa+S6XrCFqUSwu7VpLM7KhyqwaT9FJB8+N6qcg5Es65A2Z2jXLB\nzmuUa8z3Bufc1ipPBYCGsYIAACM9L+lPletWvEO5LTEnSjopaadyefmvdc79YaFLbynOuf9UrknZ\nGklPSRqj3Dai90t6S/75TdUh1zm3W9JlklYpV7thyhX+3ivpNc65/wjppd6mXKH1VknHlQsMtkla\nrlyzu8NlnvcFSe9RbjennynXzO5M5X5vm/Ln/FXn3HMhjbOs/Pa1v5l/3amSvmdmr476dQHAmuzf\nJgAAAAAVsIIAAAAAoIgAAQAAAEARAQIAAACAIgIEAAAAAEVeBghmNs3MPmlmu8zsqJm9YGaPmlnT\nbAcIAAAAJMG7XYzM7NckfUfSFEnbldtm7kxJcyTNcM7RuwEAAACIiFeTbTObplxTmLGSfm/4fthm\ndnkiAwMAAACahFcBgqSPKNcM5tZSzXKcc4/EPyQAAACgeXiTYmRmY5XrXtoiaZpz7mjCQwIAAACa\njk8rCJ2SJkj6L+fcUTP7LUlXSxoj6QlJ65xzzyQ5QAAAACDrfAoQ5uRvf2Fm35D0e8OO/52Zvcs5\nd0+9L2Bmz0kaJ6mv3nMAAAAAHmqXdMQ5d06jJ/IpQJiUv/1dSack3Srpq8pN6G+TdLukL5nZ4865\nn1Y6kZltL3No2ujRo1s6OjrmlDkOAAAApE5PT4+OHz8eyrl8ChAKPRleJukDzrnPDTn2fjO7QNIN\nkt4v6W11vsbJjo6O0du3l4sfAAAAgPSZO3euduzYEUqWjE8BwuEh399Z4vidygUI86udyDk3t9T9\n+ZUFVg8AAACAMnzqpPw/+dsjzrm9JY4/lb+dHs9wAAAAgObjU4Dwk/ztWDMbXeL45Pzt4RLHAAAA\nAITAmwDBOfe0pMckmUqnERXu+0mJYwAAAABC4E2AkPf3+dtPmtm5hTvN7DJJ78v/uDr2UQEAAABN\nwqciZTnn7jazayT9gaQdZvYDSWMlvUbSaElrnHNfTXKMAAAAQJZ5FSDk3Szp+5L+WNICSU7So5I+\n75z7UoLjAgAAADLPuwDBOeckrcl/AQAAAIiRbzUIAAAAABJEgAAAAACgiAABAAAAQBEBAgAAAIAi\nAgQAAAAARQQIAAAAAIoIEAAAAAAUESAAAAAAKdbbP6D+w8fVOmHajDDOR4AAAAAApNS6LX1auKpb\n+wdOqmXU2DPDOCcBAgAAAJBCvf0DWr5+m04NulDPS4AAAAAApNDazX2hBwcSAQIAAACQSnv2H4nk\nvAQIAAAAQArNmDQukvMSIAAAAAAptKSrXa0tFvp5CRAAAACAFJo1tU0rFs0LPUggQAAAAABSanFn\nuzYuna9JbWdo8MSRg2GckwABAAAASLFZU9s0dfxonTrUvyeM8xEgAAAAACgiQAAAAABQRIAAAAAA\noIgAAQAAAEARAQIAAACAIgIEAAAAAEUECAAAAACKCBAAAAAAFBEgAAAAACh6WdIDAOCf3v4Brd3c\npz37j2jGpHFa0tWuWVPbkh4WAACIAQFCE2Lyh0rWbenT8vXbdGrQFe9bs2m3Viyap8Wd7QmODAAA\nxIEAockw+UMlvf0DI/4+JOnUoNPy9dvUNXMywSQAABlHDUITqTb56+0fSGhk8MXazX0j/j4KTg06\nrdvSF/OIAABA3AgQmgiTP1SzZ/+RKsePxjQSAACQFAKEJsLkD9XMmDSuyvGxMY0EAAAkhQChiTD5\nQzVLutrV2mIlj7W2GHUqAAA0AQKEJsLkD9XMmtqmFYvmjfg7aW0xrVw0jwJlAACaALsYNZHC5G94\noTKTPwy1uLNdXTMna92WPu3Zf1QzJo3V4k62wgUAoFkQIDQZJn8IYtbUNi27dnbSwwAAAAkgQGhC\nTP4AAABQDgECACAV6AIPAPEgQAAAeI8u8AAQH3YxAgB4jS7wABAvAgQAgNfoAg8A8SJAAAB4jS7w\nABAvAgQAgNfoAg8A8SJAAAB4jS7wABAvAgQAgNcKXeCHBwl0gQeAaLDNKQDAe3SBB4D4ECAAAFKB\nLvAAEA8CBACRovstAADpQoAAIDJ0vwUAIH0oUgYQCbrfAgCQTgQIACJB91sAANKJAAFAJOh+CwBA\nOhEgAIgE3W8BAEgnAgQAkaD7LQAA6USAACASdL8FACCd2OYUQGTofgsAQPoQIACIFN1vAQBIF1KM\nAAAAABQRIAAAAAAoIkAAAAAAUESAAAAAAKCIAAEAAABAEbsYAcAQvf0DWru5T3v2H9GMSeO0pItt\nWQEAzYUAAUAosjCxXrelT8vXb9OpQVe8b82m3VqxaB6dnwEATYMAAUDDsjCx7u0fGPEeJOnUoNPy\n9dvUNXNy6gIeAADqQYAAoCbDVwp+45VTMjGxXru5b8R7KDg16LRuSx8N3wAATYEAAUBgpVYKPt/d\no9LT6nRNrPfsP1Ll+NGYRgIAQLK83cXIzKaY2S/MzJnZz5MeD9DsyqXglAsOCtIysZ4xaVyV42Nj\nGgkAAMnyNkCQ9ClJU5MeBICcSik4laRlYr2kq12tLVbyWGuLpaaWAgCARnkZIJjZGyT9gaQ1SY8F\nQE61FJxS0jSxnjW1TSsWzRsRJLS2mFYumpeKOgoAAMLgXQ2CmY2V9HlJOyR9UtJ7kh0RAKl6Co7p\n9HSjNE6sF3e2q2vmZK3b0qc9+49qxqSxWtyZvu1aAQBohHcBgqS/kfQKSfMlnUx4LADylnS1a82m\n3SXTjFpbTHfd3KUf9OxL/cR61tS2VBRVAwAQFa8CBDO7VNL7JN3pnNtkZjOTHRGAgkIKzvBC5cJK\nwZUXTtOVF05LcIQAACAM3gQIZtYi6YuSfinpLxIeDoASSMEBACD7vAkQJP2ppC5JNzvn9jVyIjPb\nXuZQRyPnBUAKDgAAWefFLkZmdr6kj0nqds7dlfBwAAAAgKblywrCP0kaJelPwjiZc25uqfvzKwtz\nwngNAAAAIIt8CRDeqFztwWqz0/YgH5O/Pc/MHsp//1bn3HMxjg0AMqW3f0BrN/dpz/4jmjFpnJZ0\nUUcCAHiJLwGCJE1UbmvTUsYMOTamzGMAAFWs29I3YieqNZt2a8WiealpagcAiJYXNQjOOSv1JWlW\n/iE9Q+5/KsGhAkBq9fYPjAgOJOnUoNPy9dvU2z+Q0MgAAD7xIkAAAERv7ea+ko3upFyQsG5LX8wj\nAgD4iAABAJrEnv1Hqhw/GtNIAAA+I0AAgCYxY9K4KsfHxjQSAIDPvA4QnHNP5esOXhnWOZ89cEwr\nN+wk1xZA01nS1a7WFit5rLXFKFIGAEjyPECIwuFjL2p1d48Wruom3xZAU5k1tU0rFs0bESS0tphW\nLprHVqcAAEl+bXMaq8KuHV0zJ/OPIoCmsbizXV0zJ2vdlj7t2X9UMyaN1eJO+iAAAF7StAGC9NKu\nHcuunZ30UAAgNrOmtvH/PQBAWU2XYjQcu3YAAAAAL2n6AIFdOwAAAICXNHWAwK4dAAAAwOmaNkBg\n1w4AAABgpKYrUp4w5mW6ZUEHu3YAAAAAJTRdgHDOWWPYvQMAAAAoo2lTjAAAAACMRIAAAAAAoIgA\nAQAAAEARAQIAAACAIgIEAAAAAEUECAAAAACKCBAAAAAAFBEgAAAAAChqukZpQFJ6+we0dnOf9uw/\nohmTxmlJF928AQCAfwgQgBis29Kn5eu36dSgK963ZtNurVg0T4s72xMcGQAAwOlIMQIi1ts/MCI4\nkKRTg07L129Tb/9AQiMDAAAYiQABiNjazX0jgoOCU4NO67b0xTwiAACA8ggQgIjt2X+kyvGjMY0E\nAACgOgIEIGIzJo2rcnxsTCMBAACojgABiNiSrna1tljJY60tRpEyAADwCgECELFZU9u0YtG8EUFC\na4tp5aJ5bHUKAAC8wjanQAwWd7ara+ZkrdvSpz37j2rGpLFa3EkfBAAA4B8CBCAms6a2adm1s5Me\nRuJoGAcAgN8IEADEhoZxAAD4jxoEALGgYRwAAOlAgAAgFjSMAwAgHQgQAMSChnEAAKQDAQKAWNAw\nDgCAdCBAABALGsYBAJAOBAgAYkHDOAAA0oFtToGM8rHfAA3jAADwHwECkEE+9xugYRwAAH4jQAAy\nplK/gWX3btV/bntWs88504sVBQAA4B9qEICMqdRvwEl6aNdere7u0cJV3fQeAAAAIxAgABlTrd9A\nAR2MAQBAKQQIQMZU6zcwFB2MAQDAcAQIQMZU6jdQCh2MAQDAUBQpAxlT6DdQqlC5lCx3MPZxq1cA\nAHxHgABEJMnJ6dB+A7ueO6QHd/5CpUKFLHcw9nmrVwAAfEaAAETAh8np0H4DpcaT5Q7GlbZ6Xb5+\nm7pmTs7k+0btWGUCgJEIEICQ+Tg5bbYOxpW2ei0UZtOsDT4E8gDgIwIEZIoPVwOTmJwGed/N1MG4\n2lavFGbDx0AeAHxBgIDM8OVqYNyTU1/et0+qbfWa5cJsBMMqEwCUxzanyIRqVwPjbAYW5+TUp/ft\nk0pbvWa5MBvBscoEAOURICATglwNjEuck1Of3rdPClu9Dv89ZLkwG7VhlQkAyiPFCJng09XAcn0I\nwpqcDq03ePzZgxUf28xXQZutMBu1WdLVrjWbdpcMsFllAtDsCBCQCb5dDYxqclqq3qCSZr8K2kyF\n2ahN1IE8AKQZAQIywcergWFPTsvVG5TDVVCgMlaZAKA0AgRkQjNcDaxUbzBcI+/bh61igbiwygQA\nIxEgIDOyfjWwWp3FK6eP1yXnntnQ+2bLVAAAQICATMny1cBqdRZXzzm7ofdO4ygAACCxzSmQGlFv\nn8qWqQAAQCJAAFIj6r39fdoqFgAAJIcUI8Bzw4uG77q5Sz/o2Rd6nYVvW8UCAIBkECCgaaVht55K\nRcNh11r4uFUsAACIHylGaErrtvRp4apure7u0be2PqvV3T1auKrbqzz7akXDvf0Dob5e1ClMAAAg\nHVhBQNNJy249QYqGw15FyPpWsQAAoDoCBDSdJCbe9UiqaDjLW8UCAIDqSDFC00nLbj0UDQMAgCQQ\nIKDppGXiHXXfAwAAgFIIENB00jLxzmrRcG//gFZu2Knb7n5UKzfsDL3YGgAANIYaBDSdwsR7eKGy\njxPvrBUNV9q21ZfADACAZkeAkJeGPfERnjRNvLNSNJyW3aMAAGh23gQIZjZO0jWSrpP0WkkXSDol\n6eeSviZplXPucBSvzVXN5pSViXdapGX3KAAAmp03AYKk35e0Jv/945L+Q9KZkl4j6SOSbjSz+c65\nX4T5olzVBOKRlt2jgmLVEQCQVT4FCCclfUHSZ5xzjxfuNLNzJd0n6dWSPqNcIBEarmoC8UjL7lFB\nsOoIAMgyb3Yxcs59yTn3x0ODg/z9z0q6Nf/jIjMbFebrZu2qJuCrtOweVU21VUd2ZQIApJ03AUIV\nj+VvR0uaEuaJs3RVE/BZVrZtDbLqCABAmvmUYlTJK/K3JyW9EOaJl3S1a82m3SX/wU/TVU0gDdK0\ne1Q5rDoCALIuLQHCn+Vvv+2cO17twWa2vcyhjuF3pGlPfCAL0r57FKuOAICs8z5AMLPflvQu5VYP\nPhjFa2ThqiaAeLDqCADIOq8DBDObLelfJZmk9zvnHqvyFEmSc25umfNtlzSn1LG0X9UEEA9WHQEA\nWedtgGBm50n6tqRJyjVJ+38THhIASGLVEQCQbV4GCGY2WdJ3leumfKek25MdEQCcjlVHAEBWebfN\nqZmNl7RBuVSg9ZL+yDlXek9BAAAAAKHyKkAws9GS/l3S5ZK+I+lG59ypZEcFAAAANA9vAgQza5V0\nj6SrJG2StMg5dyLZUQEAAADNxacahNskvSn/fb+kz5lZqcfd7pzrj21UAAAAQBPxKUCYNOT7N5V9\nlPRh5QIIAAAAACHzJsXIOfdh55wF+Hoq6bECAAAAWeVNgAAAAAAgeT6lGAEAEJre/gGt3dynPfuP\naMakcVrSRTM7AAiCAAGAF5jMIUzrtvRp+fptOjX4UhudNZt2a8WieVrc2Z7gyADAfwQIABLHZA5h\n6u0fGPH3JEmnBp2Wr9+mrpmTCT4BoAJqEADUrLd/QCs37NRtdz+qlRt2qrd/oKFzVZrMNXJuNKe1\nm/tG/D0VnBp0WrelL+YRAUC6sIIAoCZhX+0PMplbdu3suseL5rNn/5Eqx4/GNBIASCdWEAAEFsXV\nfiZzCNuMSeOqHB8b00gAIJ0IEIAmEUZaUBSpG0zmELYlXe1qbbGSx1pbjLoWAKiCFCOgRmncbSes\ntKAorvYv6WrXmk27SwYeTOZQj1lT27Ri0bwRf/OtLaaVi+Z5/98rACSNAAGoQRp32wlzR5corvZX\nm8xJ0soNO1MVkCF5izvb1TVzstZt6dOe/Uc1Y9JYLe7kbwcAgiBAAAJK69aJYRYBR3W1v9xkbvNT\nL2jhqu5UBWTwx6ypbRS4A0AdqEEAAkrr1olhpgUVrvYPz+8OI3WjMJn77I2vLk7q2P4UAID4sYIA\nBJTW3XbCTguKK3WD7U8BAEgGAQJik8bi3qHSuttOFGlBcaRupDUgAwAg7UgxQizWbenTwlXdWt3d\no29tfVaru3u0cFW3t2k5paR168Qo04KilNaADACAtGMFAZFLa3HvcGneOjGNO7qw/SkAAMkgQEDk\nspRLnsaJdkHadnSJMiDzNd3N13EBAJoLAQIil7Vc8uET7UKHYiZ14YsiIPO1l4Wv4wIANB8CBEQu\ny7nkTOqiF+bKh6/pbr6OCwDQnChSRuTSWtxbTbVJHfv0+8fXXha+jgsA0JwIEBC5tO6iUw2TuvTx\nNd3N13GFoZCCd9vdj2rlhp0EzgCQAqQYIRZpLu4tJ8uTuqzyNd3N13E1ihQ8AEgnAgTEJm276FST\n1Uldlvm6daqv42oEdRUAkF6kGAF1ymptRZb5mu7m67gaQQoeAKQXKwhAndLcOK2Z+Zru5uu46kUK\nHgCkFwEC0IBGJnU0xUqOr+luvo6rHqTgAUB6ESAADapnUkfxJrIui3UVANAsqEEAYkb/BDSDLNZV\nAECzYAUBiFmQ4s00p5mQOoWCrNVVAECzIEAAYpbl4k1SpzBcluoqAKBZkGIExCyrxZukTgEAkA0E\nCEDMsto/wbd973v7B7Ryw07ddvejWrlhJwEKAAABkWIExCyr/RN8Sp0i1QkAgPoRIAAJyGLxpi+p\nU9VSnbpmTk715wwAQNQIEICEZK1405d978PeJYpdmQAAzYYAAU2HCV80fEmdCjPViVQlAEAzIkBA\nU2HCFy0fUqfCSnUiVQkA0KwIENA0sjDhS8PqR9KpU42mOhU+4/t3PJfphnYAAJRDgICmkfYOxqx+\nBNNIqlOpz7icNDe0AwCgEgIENA2ftuGsVRZWP+JUT6pTuc+4nLQ2tAMAoBoCBDSNarnpjz9zUCs3\n7PQybSftqx9JqDXVqdJnPFylVKU0pIEBAFAJAQKaRqXcdEn6+d7D+nn3YS/TdtK8+lGObxPpap9x\nQaVUJdLAAABZQICAplEuN304H9N2fGlC1oihAcHh4y/q4Sf2auivIemJdLXP+JXTx+vqOWeXTVUi\nDQwAkBUtSQ8AiNPiznZtXDohLAKkAAAgAElEQVRftyzo0CunjS/7uELaji+WdLWrtcVKHouzCVm9\n1m3p08JV3Vrd3aNvbX1WD+06PTiQXppI9/YPJDLGap/xmnd2atm1s8tO8oOkgQEAkAYECGg6hdz0\n2edOqPg4n9J2CqsfwyewcTchq0ctxb9JTqQb/YyzmAYGAGhOpBihaaUtbceHJmT1qKX4V2p8It1I\nbUMjn3Fcf0++1W4AALKHAAFNq9GGWklIuglZPYIW/xY0MpEOo0i43s84jr8niqABAHEgxQhNK81p\nO2lS7cr6UI1MpKsVCUdd2xD131PS7w8A0DxYQUBTS2vaTppU2162oNGJtA+9IqL8e/Lh/QEAmgMB\nAppeGtN20qTc9rItJs2/aJrGjzkjlIl0EkXC5eoBovh7oggaABAXAgQAkYtjpSbuovO46wHSVlQP\nAEgvAgQAsYh6pSbOovMkmqKlsageAJBOFCkDGdHbP6CVG3bqtrsf1coNO5uuaDXOovMkmqJRVA8A\niAsrCEAGsP1lTlxF50nVA1BUDwCIAwECkHJJpLv4LI6i8zjrAUoVQlNUDwCIEilGQMolke7S7JZ0\ntY9I9SkwSfsHToSS4rVuS58WrurW6u4efWvrs1rd3aOFq7r5nQIAIkWAAKQc21/Gr1w9gCQ5SV/Z\n3NfwRJ7GaACApBAgACnH9pfJWNzZro1L5+v3Lz9fpdYSGp3IszIEAEgKAQKQcpXSXdj+Mlqzprbp\nzLFnqFyP6EYm8qwMAQCSQoAApBzbXyYrqok8K0MAgKSwixGQAWx/mZyoJvI0RgMAJIUAAciIOLb3\nxEhRTeQLK0PDC5VZGQIARI0AAQAaEOVEnpUhAEASCBAApFapJmJJTJ6jnMizMgQAiBsBAoBUWrel\nb8RV+8939+jSGWfp1zumxh4sMJEHAGQFAQKA1CnXRMxJemzPAT2254DWbNqtFYvmZbKY15eVEwBA\nNhEgoOkx2UpGI597pSZiBYVGZV0zJ2fq91lq5STLwRAAIH7eBQhmNlbScklvlXS+pBckfVvSB51z\n/5vk2JA9TLaS0ejnXq33QEGhUVkUqT9JBJblVk6yGgwBAJLhVYBgZmMkfU/SFZKelfTvkmZKulnS\nG83sCufc7uRGiCxhspWMMD73ar0HhqqnUVm1yX9SgWWllZMogyEAQHPxKkCQ9NfKBQf/Leka59xh\nSTKzpZI+JemfJS1IbHTIFCZb0ag2uW7kcy+ce9dzB2XK1RxUM2PS2Jqu9leb/CcZWEbVtRkAgKG8\nCRDMbJSk2/I/3loIDiTJObfKzP5A0nwz+zXn3I8TGSQypdpka+dzh7Ryw86mr00Ic3It1T7JLbz+\nf/f0a+ueA4GCgoLWFtP40S/TwlXdga72B5n8JxlYRtW1GQCAobwJECT9hqSzJPU4535S4vi9ki6V\ndJ0kAgQ0rNpk66Gdv9CDO39R/LkZaxNqSaUJemW9lkluqdcfziRdfM4E7Xru0GnBQ2uL6fZrLtIn\nv/tE4Kv9QSb/jV7Fb6R2IaquzQAADNWS9ACGeFX+9tEyxwv3XxrDWNAElnS1q7XFyh4fPgUrTCp7\n+weiHZgnqk34h38OQSbXUuXPfegkt9zrD+ckvX72dH3v9gW6ZUGHrnvVy3XLgg5tXDpfB46+GGhM\nBUEm/41cxV+3pU8LV3VrdXePvrX1Wa3u7tHCVd0jxlFOoWvz8M8vjK7NAAAU+LSCcH7+dk+Z44X7\nL6h2IjPbXuZQR62DQnYVJlvDJ6GVctubqTah1lSaoFfWy33uwye5QbYyHXruUo3Kar3aH2Tyv7iz\nvqv4YdUuRNm1GQAAya8AYXz+tty/6IXLlRNiGAuaRKnJ1s5nD+rBXXvLPqdZCkGjmFwXBJnkBt3K\ndPi5axnT4WMnT/s5SApP0ABnuGoB19K1P9V5k8YGSjuiazMAIEo+BQihcc7NLXV/fmVhTszDgeeG\nT7ZWbthZMUBolkLQWlNpas2PrzbJDbqVaaWr9ku62vWFh3tUbiGi+4m96u0fKE7Gg07+67mKXy3g\n+UnfL/WTvl9Kas56FwCAP3yqQSjsWlRuVlD4l/dQDGNBEwuaI591tX4OYefHV6sRCXLuWVPb9LqL\nppV9/qDTiPz/xZ3t2rh0/oh6hhvKBDifvfHVWnbt7FB7NzRbvQsAwC8+BQhP529nlDleuP9/YhgL\nmhiFoDnlPgeT9CsvP1NrN/eNmMAu7mzXXTd36dXtE/Xys8bo1e0TddfNXSMm142+/mXtZ5WduA83\nfnTlhdJSKWO1Tv6DCBLwDFWqiBoAgDj4lGL0WP72V8scL9y/NYaxoMlRCJoz9HP4QU+/tvbl+hA8\ntueAHttzYEQqzPBtSZ85cEw33bm57nSZMH4PvvQOKJe+VEmz1LsAAPziU4DwfUkHJHWY2WXOuZ8O\nO/6W/O034x0WmhWFoDmzprZpcWe7vvDw7rJbv3bNnCxJkXQYbvT34FPvgOEBz54XjhTrDkpplnoX\nAIBfvEkxcs6dkPSP+R//ycyKMwkzW6pc/4NuuigD8Quy5WnQPghx8y1lbGj60qollzVU79LbP6CV\nG3bqtrsf1coNO6lZAACEwqcVBEn6mKSFkl4j6Ukz26Rc34P/I2mvpD9McGxATRrpmOubIFueOlc5\nbSbJdBlfU8bq3TJVqq3LNQAAtfAqQHDOHTOz10taLun3JV0v6QVJd0n6oHOuXBM1wCtZm7wFyeOv\nEh8kni7ja8pYPcFLWE3X6pWl4BcAMJJXAYIkOeeOSvpQ/gtInaQnb1EImsfvS65/2tQavNTa5TpM\nWQt+AQAjeVODAGSFr7n4jQiSx+9brn+W1drlOizVgt9GayCoqQAAP3i3ggCkXVKTt6gFSYXxNdc/\na5LaujXKlQtWJgDAHwQIQMh82Xc/CkFSYeLK9Y86D963PPuh4xk/+mVqsVwn6OGiTOeKKvjNYloe\nAKQZAQIQMp/23c+qRq42B5n4+3Y1u9R4zDQiSIg6nSuq4DfJmgoAwEgECEDIGtm6EtU1crU5yMTf\nt6vZ5cbjXC5I+P3Lz9eh4y9Gls41NKCaMCaalYuspuUBQFoRIAARiCsX37c0mDjUe7U56MTft6vZ\nlcYz6KSzxp2hv1s0L5LXLhVQtVguMHEhrlxkOS0PANKIAAGISJS5+L39A/rIN7ere9deDZ06NkNR\nZ71Xm4NO/H27mu3bjkWDLhckvPXydh0+fiqU4Je0PADwCwECkDLrtvTpL7+2tWSax6lBp2X3btVP\nnt6v97yuI5OrCfVebQ460fbtaraPOxYNOmniuFFasSicAJi0PADwCwECkCKFq7pl5m2SJCfpnkf6\ntG7LntStJlRLmertH9CBoydkkkp9BJWuNgedaPt2NTup8cS9csEWuQDgDwIEIEUqXdUdLm1bRFYr\nIC51fKhqV5uDTrR9u5qd1HiSWLmIa4tcAEBlBAhAilS7qjtckltE1lJAXa2A+NyzxpQNDky5fPhq\nKVW1TLR9u5qdxHh8W0kBAMSHAAFIkWpXdUtJYovIWvsIVCsgXvXdJ8oed8rlwweZLNcy0fbtanbc\n4/FtJQUAEB8CBCBFKl3VLSfuotp6+ghUWxl5/tCxisdrCYJ8m/j7zLeVFABAPAgQgJS58sKpI7Y3\nLSeJVJB6+ghUWxk5e8IYPfPL8kFC0CCoGftGNIqACgCaDwECEIIwJ57lzlUqbcckLbh4mrpmTtan\n7n/Ci1SQena/qZbvvvSai3TTnZvryocvfJ7/3dOvrXsONF3fCAAAakWAADSo1nz7es619OqLtOr+\nkXn4TtLDT/brQ9fN1W/NO9eLVJB6dr+plu9+5YXT6sqHr7bzUdp2egIAIA7mXPBc5rQzs+1z5syZ\ns3379qSHgozo7R/QwlXdZa9sb1w6P/DEs9K5yu37X3DLgg5v0kAa+Ux6+wcqBjnVjgcdx3A+fX4A\nANRj7ty52rFjxw7n3NxGz8UKAtCAevLt6zlXtSluEjsVldPI7jdD893LpVqF8XkO59PnBwBA0ggQ\ngAaE2W221h4HQ8W9U1E1je5+E0baVi2fp2+fHwAASSJAABoQZrfZaucql2Y0tEg3jmLpoOrd/aae\nbVJLCdozgqZftWEnKADIPgIEoAFhdputdq73XX1RxZ2K4iiWrvVc9Uwmw0rbWtLVri883KNKWUal\n0p6YAJcX5t8YAMBfBAhAA8LsNlvtXDd0tpfdqSisq+5SeFfw651MhpW2tfmpF8rWblzWPlG/3jFl\nRNoTE+DywvwbAwD4jQABaFCY3Warnatc2k5cxdJBz9XIZDKMtK3C65fapK3FpE8vuWzE6zMBrizM\nvzEAgN8IEIAQhNlttp5zxVksXe5cQ1Nz9uw/WvdkMoy0rUqT2UGnkq+f1AQ4LSlN1f4u7t/+fGK9\nNwAA4SJAABrkwwQvzmLpUueq1pBsuEoBSxhpW/UEOWEGWUGlKaWp2t/Fz/ce1sJV3V6OHQBQGwIE\noAG+TPDiLJYefq5yqTmVTBhd+X89jaZt1RPkhBlkBZG2lKZKfxcFvo4dAFCblqQHAKRVtQleb/9A\nbGMpXHVvbbHT7m+kWDrouWppSFbwlc1Pa92WvqrjWHbtbH32xldr2bWza3oPS7raR4y/oFzAVM9z\nGhEkpckn5f4uhvNx7ACA2rCCgKYTVkqQb0WbcRZLD1VPg7dBp0ivNNeTphTmjlRBJJHS1KjC38W7\nv7RZPXvLB8A+jh0AEBwBAppKmClBjU7woqhdSKJYOmhDsuGGB1GFz2PXcwe1/8hJTRx3hmafc2bd\nn0s9AVOYQVY1cac0hWXW1DZdPecc9XT3lH2Mr2MHAARDgICmEXbOdyMTPF9qF8JQKTe9XPfngkIQ\nVa7I+aFdexv6XOoJmMIMsioJs24kbmkeOwCgOmoQ0DTCzvmuN2fdp9qFMJTLTW8xacbkyleSZ0wa\nW7XIOa2fSzVh1o3ELc1jBwBUxwoCmkbYOd/15qz7VrsQhuGpOYePnVT3E3vV90L5z7QQRAUpco7q\nc0l6i9o4U5rCluaxAwAqI0BA04gi57ueSVJailNrnTwXUnN6+we0cFW3Ks35hwZRQYucw/5cfEnz\nCprSlHQwU0pc6VgAgHgRIKBpRJU3XeskKQ3FqY1MnoOsCCy9+iLdkD9P0CLnMD+XtPUg8CWYAQA0\nB2oQ0DR8yZuOe7/9WjVaIxFkRWDV/U8Uz1Pp8ygI+3Oplub1hYfL79ATt6zVrAAA/EeAgKayuLNd\nG5fO1y0LOnTdq16uWxZ0aOPS+cWr2XHwJVApp9Fi7iArAkPPU60BVxSfy67nDlY8fs8jfd40+0pb\nQzUAQPqRYoSm40PetM8Fno3WSFRK5Sp3nqGfx67nDmn/kROaOG6UZp8zIZLPZf+Rk1Uf40uqUVpq\nVgAA2UGAACTEh0CllEZrJAorAsvu3VqxB8Lw88T5eUwcd0bVx/iyo1QaalYAANlCihGA04RRI7G4\ns13/8q7LVa6yIOlai9nnnBnocbueOxTxSKrzvWYFAJA9BAhAxvX2D2jlhp267e5HtXLDzqpFrWHV\nSFx54TR9/C2XellrEaQwWpL2HzkRw2gq871mBQCQPaQYARlW7/aYYdVIhFlrEWYfgMKk+y/u3Vrx\ncRPHjarr/GHzuWYFAJA95lzlQsIsMbPtc+bMmbN9+/akhwJErtCwrFzfh7tu7tL3f77Pq8Zb5ZQK\ndFpbrOE+AMvXb9U9j5TfBeiWBR2J1yAAABDE3LlztWPHjh3OubmNnosVBCCjqm2P+c47HjmtiLjS\nykKSXXyjbGr2ntd1aN2WPaE3zwMAIM2oQQAyqtr2mMOnxOUab63b0qeFq7q1urtH39r6rFZ392jh\nqu7Y9t+Psg8A+f0AAIzECgKQUUEalg03fGvPKK/eBxV1HwDy+wEAOB0BApBRQRuWDTd0wh3k6n3U\nOfpx9AGo1oMhyRQrAADiRooRkFHl0meqbe45dMLtQxffpPsAJJ1iBQBA3FhBADKsVPrMazqm6KY7\nNwcqzPWhi28h0Cm1i1HUdQKVUqyW3btV5541RldeOC2y1wcAIAkECEDGlUqfCTrhrpSmFOcuP0nV\nCVRKsXKS3nnHI/r4Wy5ltyMAQKYQIAAZUGuOfNAJd5JX74erVicQhSA7QcVVrA0AQFwIEACPBZn4\n19stOeiEu5l3+QmyE1RcxdoAAMSFAAHwVJCJf1zbkCZx9T6IRnYXCvLcoDtBxVGsDQBAXAgQAA8F\nnfj7sA1pUupdOanluYUUq2X3bh3RWG6oOIq1a8G2rACARrDNKeChoN2DfdiGNAnVAqjh3aAbee7i\nznb9y7suL7s9bJzF2kGwLSsAoFEECICHgk78fdiGtFG9/QNauWGnbrv7Ua3csLPi5L4gaAAV1nOv\nvHCaPv6WS0f0Y0iiWLuSRgInAAAKSDECPBR04u/LNqSlbHpyrz713Sf0i4PHNP3MMXrfNRed1jOg\nt39AH/nmdnXv2nta+k6QNKFGVk7qfW4airWbOeUMABAeAgTAQ0En/j5tQzrU++99TF/dsqf48zMH\njukddzyii8+ZoAunj9fh4y+OCAwKghRYN7Jy0shzfS3WLmjWlDMAQLhIMQI8VJj4B0lpWdzZro1L\n5+uWBR267lUv1y0LOrRx6XzdkNDqwaYn954WHAy167lD+tbWZ/VQmeCgoFqa0JKu9hGfTUG1lZNG\nnuu7LKScAQCSxwoC4KlaUlp8urL9qe8+Ecp5Kl3tbmTlxNdVlzD4nHIGAEgPAgTAYz5N/IP6xcFj\noZyn2tXuRmoC0lBPUI8sBz8AgPgQIABNKqq98qefOUbPHGg8SJgwuvr/nhoJoNIYfAWR1eAHABAf\nc65yh9AsMbPtc+bMmbN9+/akhwJEJsjEv1SjsNYWC9RkrJpNT+7VO+54pKFzFMazcel8JrYAAAQw\nd+5c7dixY4dzbm6j52IFAciQIB2Cg3ZprteVF07TDZ0zyhYqB8W2nH6gKzMANB92MQIyImiTrEaa\njAX1ibe8Sl9+1+V69fkT9fKJY3X+5LEjOhG3mDR9wuiK52FbzmTRlRkAmhMrCEBGBG2SFdde+Vde\nOE1XXjiteAV653MHdeDISU1qG6WLz5mgxZ3tWru5T6u7e8qeg205kxP1ShMAwF8ECEBGBJ3417NX\nfr1pJuVqHa79lXM0a2ob23J6jK7MANC8vEgxMrPZZrbMzB40s34zO2lmz5nZejO7MunxAWkQdOJf\na6OwetNMevsH9Jdf21ox5amWhnCIF12ZAaB5+bKCsFHSeZIOS/qhpBckzZH0JknXm9lS59xnEhwf\n4L2gV+Nr2Su/kTSTj3xzu8pcgD7tCnRc23JSbFsbujIDQPPyJUDYKWm5pK8654obqJvZH0taLemT\nZvZd59yOpAYI+K6WiX/QSXm9aSa9/QPq3rW34niHXoGOuidBkN2dwpb2gIT0LwBoXl4ECM65hWXu\n/7yZLZJ0jaQbJH0k1oEBKVPL1fggk/J600zWbu5TtQ4rcV2BDrIKIinUyXypgOQLD/fodRdN0/jR\nL0tFwEBXZgBoXl4ECFU8plyA8PKkBwKkQZhX4+tNM6kWWJgU2xXoaqsgH/3mdj38ZH9oqwvlApJB\nJz00ZFUl6hWMMNCVGQCaUxoChFfkb59LdBRAE6o1zaSQVvP4swcrnnfBxdNim2RWC1Ye2rV3xGpH\nI1t5VgpIwnqNOEWd/gUA8I8XuxiVY2Ydkt6Y//E/khwL0Ixq2WVo6G5HPXsHyp6zxaQPXddwF/jA\nqq2ClJvK19s0rlpAEsZrAAAQJW9XEMzsZZLukjRa0lrn3I9reO72Moc6Qhga0FSCpJmUS6sZziTN\nv2hayWNRFfVWWgUxlQ8QpPq28qwWkITxGgAARCmUAMHMvi7pkhqf9k7n3CMVjv+DpNdK2i3pvfWO\nDUDjqqWZBE2rcZIe3LVXDz/ZfVr+fZS7DFUqtr3ywqmn1QUMV6mQulxAUykgqfU1AABIQlgrCLMk\nXVzjc8peZjOzD0i6RdLzkn7TOfdCLSd2zpXMX8ivLMyp5VwAqqslrUYauYNQvb0Wgiq3CiJJm57s\nrnkrz2oBTamApBS2CwUA+CiUAME5d1kY55EkM/sTSR+TdEDStc65n4d1bgDRqDWtRnop/9451dVr\noVblVkFq3cozyLapwwOSw8dOqvuJvac1jmO7UACAr7yqQTCzt0r6J0lHJP2Oc+6nCQ8JQAC1ptUU\n7HrukMaNaq34mKhz9GvdyjNo87jhAUlv/wDbhQIAUsGbAMHMflvSv0h6UdKbnHPfT3hIAAIql+df\nrQj4wZ2/0PyLSxctF8SRo1/LVp71No9ju1AAQFp4ESCY2W9Iulf5/knOue8mPCQANSp1Jf41HVN0\n052by15xd5IefmKvWkwq9RAfc/TrbR4HAEBaeBEgSPqWpLGSeiVdb2bXl3jMfznnvhjvsADUotRV\n8hWL5mnZvVvLriQMOun1F08b0c3Y1xz9WpvHAQCQNr4ECBPzt7PyX+UQIAAps7izXf+57dmK24mO\nH3OGNi6dH0mOftj9FSptm+pjQAMAQK28CBCcc1b9UQDSavY5Z1btNxBFjn5U/RVqLWwGACBNvAgQ\nAGRbEmk5lbYj/cuvbW24vwJFxwCArGpJegAAsq+QltPacvpiYZRpOZW2Ix100ke/uT301wQAIAtY\nQQAQi7jTcqptR/rQrr3q7R8gLQgAgGEIEADEJs60nGrbkToptC7NAABkCSlGADJpSVe7qu1+EHWX\nZgAA0ogAAUAmzZra5kWXZgAA0oYAAUBm/c11c9VSZhmBpmYAAJRGgAAgs2ZNbdPKN18a6+5JAACk\nHUXKADKNpmYAANSGAAGA93r7B7R2c5/27D+iGZPGaUlXbRN8mpoBABAcAQIAr63b0jeiI/KaTbu1\nYtE8aggAAIgANQgAvNXbPzAiOJCkU4NOy9dvU2//QEIjAwAgu1hBACLWaHpMM1u7uW9EcFBwatDR\n6AwAgAgQIAARIj2mMXv2H6lynEZnAACEjRQjICKkxzRuxqRxVY7T6AwAgLARIAARCZIeg8qWdLWP\n6GFQQKMzAACiQYAARIT0mMbNmtqmFYvm0egMAIAYUYMARIT0mHDQ6AwAgHgRIAARWdLVrjWbdpdM\nMyI9pjY0OgMAID6kGAERIT0GAACkESsIQIRIjwEAAGlDgABEjPQYAACQJqQYAQAAACgiQAAAAABQ\nRIAAAAAAoIgAAQAAAEARAQIAAACAInYxAuCl3v4Brd3cpz37j2jGpHFa0sX2sAAAxIEAAYB31m3p\n0/L1207rQr1m026tWDSPDtQAAESMFCMAXuntHxgRHEjSqUGn5eu3qbd/IKGRAQDQHAgQAHhl7ea+\nEcFBwalBp3Vb+mIeEQAAzYUAAYBX9uw/UuX40ZhGAgBAcyJAAOCVGZPGVTk+NqaRAADQnAgQAHhl\nSVe7Wlus5LHWFqNIGQCAiBEgAPDKrKltWrFo3oggobXFtHLRPLY6BQAgYmxzCsA7izvb1TVzstZt\n6dOe/Uc1Y9JYLe6kDwIAAHEgQADgpVlT27Ts2tlJDwMAgKZDgAAgdnRJBgDAXwQIAGJFl2QAAPxG\ngAAgNNVWBqp1Se6aOZmVBAAAEkaAACAUQVYGgnRJpu4AAIBksc0pgIZVWxno7R+QRJdkAADSgAAB\nQMOCrAxIdEkGACANCBAANCzoygBdkgEA8B8BAoCGBV0ZoEsyAAD+o0gZQMOWdLVrzabdJdOMhq8M\n0CUZAAC/ESAAaFhhZWB4oXK5lQG6JAMA4C8CBAChYGUAAIBsIEAAYlCtgVhWsDIAAED6ESAAEQvS\nQAwAAMAX7GIERChoAzEAAABfECAAEQraQAwAAMAXBAhAhII2EAMAAPAFAQIQoaANxAAAAHxBgABE\naElX+4iuwQXDG4gBAAD4gAABiFChgdjwIKFcAzEAAICksc0pEDEaiAEAgDQhQABiQAMxAACQFqQY\nAQAAAChiBSEg55ycK72fPfxhZjIrXRQMAACA6ggQKjh16pT27dunQ4cO6cSJE0kPBwGNGjVKEyZM\n0JQpU9Ta2pr0cAAAAFKFAKGMU6dO6emnn9axY8eSHgpqdOLECe3bt08DAwM6//zzCRIAAABqQIBQ\nxr59+3Ts2DG1trbq7LPPVltbm1paKNnw3eDgoAYGBvT888/r2LFj2rdvn6ZPn570sAAAAFKDAKGM\nQ4cOSZLOPvtsnXXWWQmPBkG1tLQUf1/PPPOMDh06RIAAAABQAy6Jl+CcK9YctLWxV30aFX5vJ06c\noLgcAACgBgQIJQydUJJWlE5Df28ECAAAAMEx+wUAAABQ5G2AYGYfNDOX/3p70uMBAAAAmoGXAYKZ\nXSzpA5LIDQEAAABi5F2AYLk2uF+Q9EtJ/5HwcAAAAICm4l2AIOndkl4n6X3KBQloIvfdd58+8IEP\naOHChZo4caLMTAsWLEh6WAAAAE3Dqz4IZnaOpL+X9IBz7t/M7Oqkx4R4ve1tb9OBAweSHgYAAEDT\n8ipAkPQPksZKuiXpgSAZb37zm3XJJZeos7NTJ0+e1DXXXJP0kAAAAJqKNwGCmb1R0g2S/sY592TS\n40Ey7rjjjuL3P/zhDxMcCQAAQHPyogbBzMZL+pykJyR9PITzbS/1Jamj0XNHpbd/QCs37NRtdz+q\nlRt2qrd/IOkhjfDUU08VawIOHjyoP/uzP1N7e7vGjBmjSy65RJ/+9Kc1ODg44nkDAwP6+Mc/rs7O\nTp155plqa2vT7Nmzdeutt+qJJ55I4J0AAACgnFBWEMzs65IuqfFp73TOPZL//u8ktUt6g3PueBhj\nSpN1W/q0fP02nRp8aVfXNZt2a8WieVrc2Z7gyEo7fvy4rrrqKvX09Oiqq67SiRMn9MADD2jp0qV6\n7LHHdNdddxUf++yzz+rqq6/W9u3bNWnSJC1YsECjR4/W7t27tXr1al144YW66KKLknszAAAAOE1Y\nKUazJF1c43PGSZKZXUfJ4dAAAA7lSURBVC7pVklfds59L4zBOOfmlro/v4owJ4zXCEtv/8CI4ECS\nTg06LV+/TV0zJ2vW1LaERlfaD3/4Q1166aV68sknNXXqVElST0+PXve61+lLX/qSrr/+el1//fWS\npHe84x3avn27Fi9erDvuuEPjx48vnuepp57SwYMHE3kPAAAAKC2UFCPn3GXOOavx66H80387P455\nZvbQ0C9J1+Yf84H8fX8Zxnh9snZz34jgoODUoNO6LX0xjyiYT37yk8XgQJI6Ojr0wQ9+UJL0j//4\nj5KkRx55RA888ICmT5+uL37xi6cFB5I0c+ZMXXrppfENGgAAAFV5UYOQd5mk+cO+zs4fm53/eXYy\nQ4vOnv1Hqhw/GtNIgps8ebKuvnrkDrQ33nijJOkHP/iBBgcHtXHjxuL9EyZMiHWMAAAAqE/iAYJz\n7sPlVhkkfSn/sHfk77spwaFGYsakcVWOj41pJMFdcMEFJe8/66yzNHHiRB09elT79+9XX19u9aOj\nw9vacAAAAAyTeIDQ7JZ0tau1xUoea20xL4uUAQAAkF0ECAmbNbVNKxbNGxEktLaYVi6a512BsiQ9\n/fTTJe8/ePCgfvnLX2rs2LGaOHGi2ttzwU1PT0+cwwMAAEADCBA8sLizXRuXztctCzp03aterlsW\ndGjj0vm6wdPVg3379umBBx4Ycf9XvvIVSdKv//qvq7W1VQsXLpQk3XPPPTp8+HCsYwQAAEB9vOmk\nXEq+5uCmhIcRi1lT27Ts2vTUYN9+++3auHGjpkyZIknq7e3VRz/6UUnSrbfeKkm6/PLL9frXv14P\nPvig3vOe92jNmjVqa3tpReSpp57SoUOHNG/evPjfALzX2z+gtZv7tGf/Ec2YNE5Lutq9XFEDACBr\nvA4Q4KcrrrhCJ06c0Ctf+UpdddVVOnnypB544AEdOXJEb3/727Vo0aLiY7/85S/rDW94g+655x59\n5zvf0Wtf+1qNHj1aPT09+ulPf6pPfepTpwUIf/u3f6v77rtPkoqrDo8++qiuuOKK4mO+/vWv69xz\nz43p3SIJaWseCABAlhAgoGajR4/Wt7/9bf3VX/2VvvGNb6i/v1+zZs3SH/3RH+nP//zPT3vseeed\np82bN+szn/mM7r33Xt1///1qbW3VjBkz9N73vldvfOMbT3t8T0+PfvSjH51236FDh0677/jxpmu2\n3VTS2DwQAIAsMedKN+nKIjPbPmfOnDnbt2+v+LjBwUHt2rVLknTxxRerpYVSDSmXEjRr1izNnz9f\nDz30UNLDqYjfYXqt3LBTq7vLF7bfsqAjVel4AADEYe7cudqxY8cO59zcRs/FrAmAV9LYPBAAgCwh\nQADglTQ2DwQAIEsIEAB4heaBAAAkiwABgc2cOVPOOe/rD5BuaWweCABAlrCLEQDvLO5sV9fMyVq3\npU979h/VjEljtbiTPggAAMSBAAGAl9LWPBAAgKwgxQgAAABAEQFCCWYv5T4PDg4mOBLUa+jvbejv\nEwAAAJURIJRgZho1apQkaWBgIOHRoB6F39uoUaMIEAAAAGpADUIZEyZM0L59+/T8889Lktra2ujG\nmwKDg4MaGBgo/t4mTJiQ8IgAAADShQChjClTpmhgYEDHjh3TM888k/RwUIcxY8ZoypQpSQ8DAAAg\nVQgQymhtbdX555+vffv26dChQzpx4kTSQ0JAo0aN0oQJEzRlyhS1trYmPRwAAIBUIUCooLW1VdOn\nT9f06dPlnJNzLukhoQozo+YAAACgAQQIATHxBAAAQDOg6hYAAABAEQECAAAAgCICBAAAAABFBAgA\nAAAAiggQAAAAABQRIAAAAAAosmba29/MDo4ePXpCR0dH0kMBAAAAQtPT06Pjx48fcs6d2ei5mi1A\neE7SOEl9SY8FDSlEeD2JjgJR4HebXfxus4vfbXbxu02XdklHnHPnNHqipgoQkA1mtl2SnHNzkx4L\nwsXvNrv43WYXv9vs4nfbvKhBAAAAAFBEgAAAAACgiAABAAAAQBEBAgAAAIAiAgQAAAAARexiBAAA\nAKCIFQQAAAAARQQIAAAAAIoIEAAAAAAUESAAAAAAKCJAAAAAAFBEgAAAAACgiAABAAAAQBEBAlLP\nzNrM7B1m9lkz+5GZHTczZ2YfTnpsCMbMxprZR83sCTM7ZmbPmNk/m9l5SY8N9TOzXzOzvzSz9Wa2\nJ//fJc13Us7MxpnZ9WZ2h5ntyv83O2Bmj5nZh8xsfNJjRP3MbGn+v9knzexA/t/U/zGzfzGzeUmP\nD/GgURpSz8wuk/STEoc+4pz7cMzDQY3MbIykByVdIelZSZskzZR0uaS9kq5wzu1ObICom5l9Q9Lv\nDb/fOWcJDAchMbN3S1qT//FxST+TdKak10j/f3v3FmNXVcdx/PtToEqhUguYUq5tBIFwVQHhgZsX\nIjEi4QEwUJJqNESDaFFJgKCN+CKkGGsMqJBIQkBiIUJA8NKKWuSiaV8gQoUKiEJF7rSU+vdh7zkM\npdPOdGbOHqbfT3KyZq99Zp//SdPM+Z2111rsCDwEHFtVT3dToUYjyWpgKrACeLLtPhDYF1gHnFpV\nt3ZUnvpkm64LkMbAi8BPgPvax8nAtzutSCNxEU04WAZ8vKpeguZbLOBy4KfAcZ1Vp9FYRvMhY+D/\n5mPAlC4L0phYB1wFLKyqBwc6k8wEbgMOAxYCZ3ZTnkbp08ADVbVmcGeSc4FFwI+T7F5Vr3dSnfrC\nEQRNOkm+CXwXRxAmvCTbAU8D7wEOr6q/bnB+OXAw8KGqeqCDEjWGkqwBpjiCMHkl+QjwJ2AtMK2q\nXuu4JI2hJI8Ac4BDqmpF1/Vo/DgHQVKXjqEJBys3DAetm9r2U/0rSdIoLG/bKcCMLgvRuFjXtga/\nSc6AIKlLh7TtX4Y4P9B/cB9qkTR6s9t2HfBsl4VobCU5C9gPeLh9aBJzDoKkLu3Ztk8McX6gf68+\n1CJp9M5r2zuqam2nlWhUklxAMzl5KrB/+/M/gTOqan2XtWn8GRAkdWlgOcRXhjj/ctvu2IdaJI1C\nkk8C82hGDy7uuByN3ieAEwcdrwLOdj7Y1sGAoM4lWUzz7cRInF1V945HPZKkkUnyAeA6IMAFVbV8\nM7+iCa6qPgqQZCfgIOASYGmSi6rqO50Wp3FnQNBEsA/NfY0jsf14FKK+e6lth/r3nNq2L/ahFklb\noN3Q8A5gOnBFVV3ZcUkaQ1X1HHB3O0K0DFiQ5M6quq/j0jSODAjqXFUd2nUN6sw/2nb3Ic4P9K/q\nQy2SRijJe4E7aeYJXQPM77YijZeqWpfkBuCDNCvLGRAmMVcxktSlgdsQDh/i/EC/621LE0ySHYDb\ngQOAXwCfLzdXmuxWt+0unVahcWdAkNSlPwLPA3OSbGwk6bS2/WX/SpK0OUmmALcARwC/wpVtthbH\ntu3KTqvQuDMgSOpMu8vqD9rDRUkG5hyQ5Ks0+x8sddUMaeJI8k7geuAE4G7gVHdMnhySHJPkpCTv\n2KB/2yRfBs4CXgVu6KRA9U0cDdRk0K6ENLM93A3YA3iSN9bRf6qqPtNFbdq0JO8ClgBHAk/RfODY\nqz1+Bjiqqv7eWYHaYklO5s3LXR5Bs8rNnwf1Laiq2/pamEYlyXnAwvZwMfDCEE+dX1WrhzinCSjJ\nOTRzSVYDDwD/AXamWcVoJrAGmFtVN3ZVo/rDScqaLA7jrZtpzWof4CTXCauq1iQ5HrgQOBM4hWYH\n1muBi6tqqE3UNPHtQhP0NnTkBs/R28v0QT9v6ouXS3njnnW9PSwFLqO5lehgmnDwGvAYcBPw/ap6\npLPq1DeOIEiSJEnqcQ6CJEmSpB4DgiRJkqQeA4IkSZKkHgOCJEmSpB4DgiRJkqQeA4IkSZKkHgOC\nJEmSpB4DgiRJkqQeA4IkSZKkHgOCJEmSpB4DgiRJkqQeA4IkqRNJ3pdkXpLFSZ5I8lqS55IsTTI3\nSbquUZK2RqmqrmuQJG2FklwHfBZ4HbgfWAXMAo6m+QLrJuD0qlrfWZGStBUyIEiSOpHkSuDfwNVV\n9cyg/g8DvwamAV+oqqs6KlGStkoGBEnShJPkQuAyYElVHd91PZK0NXEOgiRpo5LsnaSSLEkyLcmV\nSR5PsibJg0nOT/KWvyNJpib5RpL7k7yQ5OUkDyVZlGTfYb788rbdbezekSRpOLbpugBJ0oQ3Bfgt\nMKdttwNOBK4ADgHOGXhikpnAXcCBwH+BJcBaYDbwReBh4G/DeM3ZbfuvMahfkjQCBgRJ0uYcBawA\n3l9VqwGSzAF+D8xNcnNV3dw+92c04eBGYF5VvTRwkSR708wr2KQk2wLntoe3jNF7kCQNk7cYSZKG\nY/5AOACoqpXAgvbwSwBJjqAZWXga+NzgcND+zmNVtWIYr7UA2B94FPjRGNQuSRoBA4IkaXOeraq7\nNtJ/fdse3c5F+OhAf1W9uCUvlOR04OvAGuDMqnplS64jSdpyBgRJ0uas2lhnVT0PPAe8G5gO7NGe\nWrklL5LkBOBa4H/AGVV1z5ZcR5I0Os5BkCR1rt374BaaCdDzBs1pkCT1mQFBkrQ5e26sM8k0YCfg\nVZqRhMfbU3NGcvEkBwC3AzsA51fVNVteqiRptLzFSJK0OTOSnLiR/tPbdllVrafZ/RjgjCQ7DOfC\n7cpGdwIzgEurauEoa5UkjZIBQZI0HN9LMmPgIMk+wCXt4SKAqroX+B2wK3BVkqmDL9BuvHbQoONd\nacLBLODyqvrW+L4FSdJwpKq6rkGSNAG13+4/CtxDMzdgNs1GadvSLGe6PXBdVZ016HdmAb8B9gOe\nBf5As1HaHOBQ4GsDowRJFgOnAK8APx+ijNVVNX+M35okaROcgyBJ2py1wEnAZTQf6HemCQ5XA2+6\nJaiqnmwnHH8FOA34GLAeeAL4IXDroKdPb9vtgblDvPYqwIAgSX3kCIIkaaMGjSAsrarjOi1GktQ3\nzkGQJEmS1GNAkCRJktRjQJAkSZLU4xwESZIkST2OIEiSJEnqMSBIkiRJ6jEgSJIkSeoxIEiSJEnq\nMSBIkiRJ6jEgSJIkSeoxIEiSJEnqMSBIkiRJ6jEgSJIkSeoxIEiSJEnqMSBIkiRJ6jEgSJIkSeox\nIEiSJEnqMSBIkiRJ6vk/nVkat6JpPHsAAAAASUVORK5CYII=\n",
209 | "text/plain": ""
210 | },
211 | "metadata": {
212 | "tags": []
213 | },
214 | "output_type": "display_data"
215 | }
216 | ],
217 | "execution_count": 0
218 | },
219 | {
220 | "cell_type": "markdown",
221 | "source": "\n
\nCreated in Deepnote",
222 | "metadata": {
223 | "created_in_deepnote_cell": true,
224 | "deepnote_cell_type": "markdown"
225 | }
226 | }
227 | ],
228 | "nbformat": 4,
229 | "nbformat_minor": 0,
230 | "metadata": {
231 | "colab": {
232 | "collapsed_sections": [
233 | "Q1kApdvezk6Z",
234 | "Lz-SwUU9B4yb"
235 | ],
236 | "name": "bunky.ipynb",
237 | "provenance": [],
238 | "version": "0.3.2"
239 | },
240 | "kernelspec": {
241 | "display_name": "Python 3",
242 | "language": "python",
243 | "name": "python3"
244 | },
245 | "language_info": {
246 | "codemirror_mode": {
247 | "name": "ipython",
248 | "version": 3
249 | },
250 | "file_extension": ".py",
251 | "mimetype": "text/x-python",
252 | "name": "python",
253 | "nbconvert_exporter": "python",
254 | "pygments_lexer": "ipython3",
255 | "version": "3.7.0"
256 | },
257 | "deepnote_notebook_id": "a93f220521a141c88caf8f6012ddceaf",
258 | "deepnote": {},
259 | "deepnote_execution_queue": []
260 | }
261 | }
--------------------------------------------------------------------------------