├── LICENSE.txt ├── README.rst ├── boxplot.ipynb ├── figs ├── bad_bar_chart.gif ├── bad_graph_2.png ├── boxplot1.png ├── boxplot2.png ├── boxplot3.png ├── boxplot4.png ├── boxplot5.png ├── composite_tasks.png ├── compositing.png ├── example1_boxplot.png ├── example1_color.png ├── example2.png ├── example2_bis.png ├── example2_heatmap.png ├── example2_lims.png ├── first_plot.png ├── jobs_graph.gif ├── jobs_graph.png ├── medians1.png ├── medians2.png ├── medians3.png ├── new_york_weather.gif ├── plosone.png ├── plot_fit_mod.png ├── tufte_bar_chart.png ├── tufte_book_cover.png ├── variance.png ├── variance_colors.png ├── variance_matplotlib.png ├── variance_subplot.png ├── variance_subplot_bis.png ├── variance_subplot_ter.png ├── variance_white.png └── wikipedia_boxplot.png └── src ├── boxplot.py ├── boxplot2.py ├── boxplot3.py ├── boxplot4.py ├── boxplot5.py ├── data ├── data.tar.gz ├── high_mut │ ├── exp_0 │ │ └── node10_2014-07-15_16_42_46_18276 │ │ │ └── bestfit.dat │ ├── exp_1 │ │ └── node09_2014-07-15_16_42_46_7728 │ │ │ └── bestfit.dat │ ├── exp_10 │ │ └── node11_2014-07-15_16_42_48_27645 │ │ │ └── bestfit.dat │ ├── exp_11 │ │ └── node08_2014-07-15_16_42_48_8689 │ │ │ └── bestfit.dat │ ├── exp_12 │ │ └── node09_2014-07-15_16_42_48_7770 │ │ │ └── bestfit.dat │ ├── exp_13 │ │ └── node07_2014-07-15_16_42_49_31391 │ │ │ └── bestfit.dat │ ├── exp_14 │ │ └── node05_2014-07-15_16_42_49_5191 │ │ │ └── bestfit.dat │ ├── exp_15 │ │ └── node02_2014-07-15_16_42_49_19225 │ │ │ └── bestfit.dat │ ├── exp_16 │ │ └── node07_2014-07-15_16_42_50_31406 │ │ │ └── bestfit.dat │ ├── exp_17 │ │ └── node10_2014-07-15_16_42_50_18304 │ │ │ └── bestfit.dat │ ├── exp_18 │ │ └── node11_2014-07-15_16_42_50_27673 │ │ │ └── bestfit.dat │ ├── exp_19 │ │ └── node05_2014-07-15_16_42_50_5203 │ │ │ └── bestfit.dat │ ├── exp_2 │ │ └── node07_2014-07-15_16_42_46_31338 │ │ │ └── bestfit.dat │ ├── exp_20 │ │ └── node02_2014-07-15_16_42_51_19250 │ │ │ └── bestfit.dat │ ├── exp_21 │ │ └── node07_2014-07-15_16_42_51_31418 │ │ │ └── bestfit.dat │ ├── exp_22 │ │ └── node08_2014-07-15_16_42_51_8715 │ │ │ └── bestfit.dat │ ├── exp_23 │ │ └── node11_2014-07-15_16_42_51_27701 │ │ │ └── bestfit.dat │ ├── exp_24 │ │ └── node04_2014-07-15_16_42_52_11737 │ │ │ └── bestfit.dat │ ├── exp_25 │ │ └── node02_2014-07-15_16_42_52_19277 │ │ │ └── bestfit.dat │ ├── exp_26 │ │ └── node11_2014-07-15_16_42_52_27715 │ │ │ └── bestfit.dat │ ├── exp_27 │ │ └── node08_2014-07-15_16_42_52_8739 │ │ │ └── bestfit.dat │ ├── exp_28 │ │ └── node10_2014-07-15_16_42_53_18332 │ │ │ └── bestfit.dat │ ├── exp_29 │ │ └── node11_2014-07-15_16_42_53_27728 │ │ │ └── bestfit.dat │ ├── exp_3 │ │ └── node05_2014-07-15_16_42_47_5162 │ │ │ └── bestfit.dat │ ├── exp_4 │ │ └── node02_2014-07-15_16_42_47_19172 │ │ │ └── bestfit.dat │ ├── exp_5 │ │ └── node08_2014-07-15_16_42_47_8665 │ │ │ └── bestfit.dat │ ├── exp_6 │ │ └── node09_2014-07-15_16_42_47_7752 │ │ │ └── bestfit.dat │ ├── exp_7 │ │ └── node04_2014-07-15_16_42_47_11645 │ │ │ └── bestfit.dat │ ├── exp_8 │ │ └── node07_2014-07-15_16_42_48_31371 │ │ │ └── bestfit.dat │ └── exp_9 │ │ └── node02_2014-07-15_16_42_48_19196 │ │ └── bestfit.dat └── low_mut │ ├── exp_0 │ └── node04_2014-07-15_16_42_46_11616 │ │ └── bestfit.dat │ ├── exp_1 │ └── node10_2014-07-15_16_42_46_18277 │ │ └── bestfit.dat │ ├── exp_10 │ └── node11_2014-07-15_16_42_48_27642 │ │ └── bestfit.dat │ ├── exp_11 │ └── node02_2014-07-15_16_42_48_19205 │ │ └── bestfit.dat │ ├── exp_12 │ └── node08_2014-07-15_16_42_48_8693 │ │ └── bestfit.dat │ ├── exp_13 │ └── node07_2014-07-15_16_42_49_31387 │ │ └── bestfit.dat │ ├── exp_14 │ └── node04_2014-07-15_16_42_49_11678 │ │ └── bestfit.dat │ ├── exp_15 │ └── node02_2014-07-15_16_42_49_19221 │ │ └── bestfit.dat │ ├── exp_16 │ └── node09_2014-07-15_16_42_50_7783 │ │ └── bestfit.dat │ ├── exp_17 │ └── node10_2014-07-15_16_42_50_18301 │ │ └── bestfit.dat │ ├── exp_18 │ └── node11_2014-07-15_16_42_50_27668 │ │ └── bestfit.dat │ ├── exp_19 │ └── node04_2014-07-15_16_42_50_11699 │ │ └── bestfit.dat │ ├── exp_2 │ └── node09_2014-07-15_16_42_46_7731 │ │ └── bestfit.dat │ ├── exp_20 │ └── node02_2014-07-15_16_42_50_19247 │ │ └── bestfit.dat │ ├── exp_21 │ └── node09_2014-07-15_16_42_51_7796 │ │ └── bestfit.dat │ ├── exp_22 │ └── node11_2014-07-15_16_42_51_27692 │ │ └── bestfit.dat │ ├── exp_23 │ └── node08_2014-07-15_16_42_51_8722 │ │ └── bestfit.dat │ ├── exp_24 │ └── node05_2014-07-15_16_42_51_5216 │ │ └── bestfit.dat │ ├── exp_25 │ └── node02_2014-07-15_16_42_52_19272 │ │ └── bestfit.dat │ ├── exp_26 │ └── node09_2014-07-15_16_42_52_7809 │ │ └── bestfit.dat │ ├── exp_27 │ └── node07_2014-07-15_16_42_52_31432 │ │ └── bestfit.dat │ ├── exp_28 │ └── node10_2014-07-15_16_42_52_18328 │ │ └── bestfit.dat │ ├── exp_29 │ └── node08_2014-07-15_16_42_53_8749 │ │ └── bestfit.dat │ ├── exp_3 │ └── node07_2014-07-15_16_42_46_31343 │ │ └── bestfit.dat │ ├── exp_4 │ └── node05_2014-07-15_16_42_47_5165 │ │ └── bestfit.dat │ ├── exp_5 │ └── node02_2014-07-15_16_42_47_19176 │ │ └── bestfit.dat │ ├── exp_6 │ └── node08_2014-07-15_16_42_47_8668 │ │ └── bestfit.dat │ ├── exp_7 │ └── node09_2014-07-15_16_42_47_7756 │ │ └── bestfit.dat │ ├── exp_8 │ └── node07_2014-07-15_16_42_47_31364 │ │ └── bestfit.dat │ └── exp_9 │ └── node05_2014-07-15_16_42_48_5178 │ └── bestfit.dat ├── example1.py ├── example1_bis.py ├── example1_color.py ├── example2.py ├── example2_bis.py ├── example2_colors.py ├── example2_lims.py ├── file.dat ├── file2.dat ├── load_data.py ├── load_data2.py ├── plot_medians.py ├── plot_medians2.py ├── plot_medians3.py ├── plot_variance.py ├── plot_variance_matplotlib.py ├── plot_variance_matplotlib_white.py ├── plot_variance_mpl.py ├── plot_variance_subplots.py ├── plot_variance_subplots_bis.py ├── plot_variance_subplots_ter.py └── plot_variance_white.py /figs/bad_bar_chart.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/bad_bar_chart.gif -------------------------------------------------------------------------------- /figs/bad_graph_2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/bad_graph_2.png -------------------------------------------------------------------------------- /figs/boxplot1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/boxplot1.png -------------------------------------------------------------------------------- /figs/boxplot2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/boxplot2.png -------------------------------------------------------------------------------- /figs/boxplot3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/boxplot3.png -------------------------------------------------------------------------------- /figs/boxplot4.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/boxplot4.png -------------------------------------------------------------------------------- /figs/boxplot5.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/boxplot5.png -------------------------------------------------------------------------------- /figs/composite_tasks.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/composite_tasks.png -------------------------------------------------------------------------------- /figs/compositing.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/compositing.png -------------------------------------------------------------------------------- /figs/example1_boxplot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/example1_boxplot.png -------------------------------------------------------------------------------- /figs/example1_color.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/example1_color.png -------------------------------------------------------------------------------- /figs/example2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/example2.png -------------------------------------------------------------------------------- /figs/example2_bis.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/example2_bis.png -------------------------------------------------------------------------------- /figs/example2_heatmap.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/example2_heatmap.png -------------------------------------------------------------------------------- /figs/example2_lims.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/example2_lims.png -------------------------------------------------------------------------------- /figs/first_plot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/first_plot.png -------------------------------------------------------------------------------- /figs/jobs_graph.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/jobs_graph.gif -------------------------------------------------------------------------------- /figs/jobs_graph.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/jobs_graph.png -------------------------------------------------------------------------------- /figs/medians1.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/medians1.png -------------------------------------------------------------------------------- /figs/medians2.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/medians2.png -------------------------------------------------------------------------------- /figs/medians3.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/medians3.png -------------------------------------------------------------------------------- /figs/new_york_weather.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/new_york_weather.gif -------------------------------------------------------------------------------- /figs/plosone.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/plosone.png -------------------------------------------------------------------------------- /figs/plot_fit_mod.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/plot_fit_mod.png -------------------------------------------------------------------------------- /figs/tufte_bar_chart.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/tufte_bar_chart.png -------------------------------------------------------------------------------- /figs/tufte_book_cover.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/tufte_book_cover.png -------------------------------------------------------------------------------- /figs/variance.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance.png -------------------------------------------------------------------------------- /figs/variance_colors.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance_colors.png -------------------------------------------------------------------------------- /figs/variance_matplotlib.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance_matplotlib.png -------------------------------------------------------------------------------- /figs/variance_subplot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance_subplot.png -------------------------------------------------------------------------------- /figs/variance_subplot_bis.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance_subplot_bis.png -------------------------------------------------------------------------------- /figs/variance_subplot_ter.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance_subplot_ter.png -------------------------------------------------------------------------------- /figs/variance_white.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/variance_white.png -------------------------------------------------------------------------------- /figs/wikipedia_boxplot.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/figs/wikipedia_boxplot.png -------------------------------------------------------------------------------- /src/boxplot.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | 5 | def load(dir): 6 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 7 | num_lines = sum(1 for line in open(f_list[0])) 8 | i = 0 9 | data = np.zeros((len(f_list), num_lines)) 10 | for f in f_list: 11 | data[i, :] = np.loadtxt(f)[:, 1] 12 | i += 1 13 | return data 14 | 15 | 16 | data_low_mut = load('data/low_mut') 17 | data_high_mut = load('data/high_mut') 18 | low_mut_100 = data_low_mut[:, 100] 19 | high_mut_100 = data_high_mut[:, 100] 20 | 21 | fig = figure() 22 | ax = fig.add_subplot(111) 23 | 24 | bp = ax.boxplot([low_mut_100, high_mut_100], notch=0, sym='b+', vert=1, whis=1.5, 25 | positions=None, widths=0.6) 26 | 27 | savefig('boxplot1.png') 28 | -------------------------------------------------------------------------------- /src/boxplot2.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | params = { 5 | 'axes.labelsize': 8, 6 | 'font.size': 8, 7 | 'legend.fontsize': 10, 8 | 'xtick.labelsize': 10, 9 | 'ytick.labelsize': 10, 10 | 'text.usetex': False, 11 | 'figure.figsize': [2.5, 4.5] 12 | } 13 | rcParams.update(params) 14 | 15 | 16 | def load(dir): 17 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 18 | num_lines = sum(1 for line in open(f_list[0])) 19 | i = 0 20 | data = np.zeros((len(f_list), num_lines)) 21 | for f in f_list: 22 | data[i, :] = np.loadtxt(f)[:, 1] 23 | i += 1 24 | return data 25 | 26 | 27 | data_low_mut = load('data/low_mut') 28 | data_high_mut = load('data/high_mut') 29 | low_mut_100 = data_low_mut[:, 100] 30 | high_mut_100 = data_high_mut[:, 100] 31 | 32 | fig = figure() 33 | ax = fig.add_subplot(111) 34 | 35 | bp = ax.boxplot([low_mut_100, high_mut_100], notch=0, sym='b+', vert=1, whis=1.5, 36 | positions=None, widths=0.6) 37 | 38 | # now all plot function should be applied to ax 39 | ax.spines['top'].set_visible(False) 40 | ax.spines['right'].set_visible(False) 41 | ax.spines['left'].set_visible(False) 42 | ax.get_xaxis().tick_bottom() 43 | ax.get_yaxis().tick_left() 44 | ax.tick_params(axis='x', direction='out') 45 | ax.tick_params(axis='y', length=0) 46 | 47 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 48 | ax.set_axisbelow(True) 49 | 50 | 51 | savefig('boxplot2.png') 52 | -------------------------------------------------------------------------------- /src/boxplot3.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [2.5, 4.5] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | data_low_mut = load('data/low_mut') 32 | data_high_mut = load('data/high_mut') 33 | low_mut_100 = data_low_mut[:, 100] 34 | high_mut_100 = data_high_mut[:, 100] 35 | 36 | fig = figure() 37 | ax = fig.add_subplot(111) 38 | 39 | bp = ax.boxplot([low_mut_100, high_mut_100], notch=0, sym='b+', vert=1, whis=1.5, 40 | positions=None, widths=0.6) 41 | 42 | for i in range(0, len(bp['boxes'])): 43 | bp['boxes'][i].set_color(colors[i]) 44 | # we have two whiskers! 45 | bp['whiskers'][i*2].set_color(colors[i]) 46 | bp['whiskers'][i*2 + 1].set_color(colors[i]) 47 | bp['whiskers'][i*2].set_linewidth(2) 48 | bp['whiskers'][i*2 + 1].set_linewidth(2) 49 | # fliers 50 | bp['fliers'][i].set(markerfacecolor=colors[i], 51 | marker='o', alpha=0.75, markersize=6, 52 | markeredgecolor='none') 53 | bp['medians'][i].set_color('black') 54 | bp['medians'][i].set_linewidth(3) 55 | # and 4 caps to remove 56 | for c in bp['caps']: 57 | c.set_linewidth(0) 58 | 59 | ax.spines['top'].set_visible(False) 60 | ax.spines['right'].set_visible(False) 61 | ax.spines['left'].set_visible(False) 62 | ax.get_xaxis().tick_bottom() 63 | ax.get_yaxis().tick_left() 64 | ax.tick_params(axis='x', direction='out') 65 | ax.tick_params(axis='y', length=0) 66 | 67 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 68 | ax.set_axisbelow(True) 69 | 70 | 71 | savefig('boxplot3.png') 72 | -------------------------------------------------------------------------------- /src/boxplot4.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [2.5, 4.5] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | data_low_mut = load('data/low_mut') 32 | data_high_mut = load('data/high_mut') 33 | low_mut_100 = data_low_mut[:, 100] 34 | high_mut_100 = data_high_mut[:, 100] 35 | 36 | fig = figure() 37 | ax = fig.add_subplot(111) 38 | 39 | bp = ax.boxplot([low_mut_100, high_mut_100], notch=0, sym='b+', vert=1, whis=1.5, 40 | positions=None, widths=0.6) 41 | 42 | 43 | for i in range(len(bp['boxes'])): 44 | box = bp['boxes'][i] 45 | box.set_linewidth(0) 46 | boxX = [] 47 | boxY = [] 48 | for j in range(5): 49 | boxX.append(box.get_xdata()[j]) 50 | boxY.append(box.get_ydata()[j]) 51 | boxCoords = list(zip(boxX, boxY)) 52 | boxPolygon = Polygon(boxCoords, facecolor=colors[i % len(colors)], linewidth=0) 53 | ax.add_patch(boxPolygon) 54 | 55 | for i in range(0, len(bp['boxes'])): 56 | bp['boxes'][i].set_color(colors[i]) 57 | # we have two whiskers! 58 | bp['whiskers'][i*2].set_color(colors[i]) 59 | bp['whiskers'][i*2 + 1].set_color(colors[i]) 60 | bp['whiskers'][i*2].set_linewidth(2) 61 | bp['whiskers'][i*2 + 1].set_linewidth(2) 62 | # fliers 63 | bp['fliers'][i].set(markerfacecolor=colors[i], 64 | marker='o', alpha=0.75, markersize=6, 65 | markeredgecolor='none') 66 | bp['medians'][i].set_color('black') 67 | bp['medians'][i].set_linewidth(3) 68 | # and 4 caps to remove 69 | for c in bp['caps']: 70 | c.set_linewidth(0) 71 | 72 | 73 | ax.spines['top'].set_visible(False) 74 | ax.spines['right'].set_visible(False) 75 | ax.spines['left'].set_visible(False) 76 | ax.get_xaxis().tick_bottom() 77 | ax.get_yaxis().tick_left() 78 | ax.tick_params(axis='x', direction='out') 79 | ax.tick_params(axis='y', length=0) 80 | 81 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 82 | ax.set_axisbelow(True) 83 | 84 | ax.set_xticklabels(['low\nmutation', 'high\nmutation']) 85 | 86 | fig.subplots_adjust(left=0.2) 87 | 88 | 89 | savefig('boxplot4.png') 90 | -------------------------------------------------------------------------------- /src/boxplot5.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | import scipy.stats 4 | 5 | # import colors 6 | from palettable.colorbrewer.qualitative import Set2_7 7 | colors = Set2_7.mpl_colors 8 | 9 | params = { 10 | 'axes.labelsize': 8, 11 | 'font.size': 8, 12 | 'legend.fontsize': 10, 13 | 'xtick.labelsize': 10, 14 | 'ytick.labelsize': 10, 15 | 'text.usetex': False, 16 | 'figure.figsize': [2.5, 4.5] 17 | } 18 | rcParams.update(params) 19 | 20 | 21 | def load(dir): 22 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 23 | num_lines = sum(1 for line in open(f_list[0])) 24 | i = 0 25 | data = np.zeros((len(f_list), num_lines)) 26 | for f in f_list: 27 | data[i, :] = np.loadtxt(f)[:, 1] 28 | i += 1 29 | return data 30 | 31 | 32 | def stars(p): 33 | if p < 0.0001: 34 | return "****" 35 | elif (p < 0.001): 36 | return "***" 37 | elif (p < 0.01): 38 | return "**" 39 | elif (p < 0.05): 40 | return "*" 41 | else: 42 | return "-" 43 | 44 | 45 | data_low_mut = load('data/low_mut') 46 | data_high_mut = load('data/high_mut') 47 | low_mut_100 = data_low_mut[:, 100] 48 | high_mut_100 = data_high_mut[:, 100] 49 | 50 | fig = figure() 51 | ax = fig.add_subplot(111) 52 | 53 | bp = ax.boxplot([low_mut_100, high_mut_100], notch=0, sym='b+', vert=1, whis=1.5, 54 | positions=None, widths=0.6) 55 | 56 | 57 | for i in range(len(bp['boxes'])): 58 | box = bp['boxes'][i] 59 | box.set_linewidth(0) 60 | boxX = [] 61 | boxY = [] 62 | for j in range(5): 63 | boxX.append(box.get_xdata()[j]) 64 | boxY.append(box.get_ydata()[j]) 65 | boxCoords = list(zip(boxX, boxY)) 66 | boxPolygon = Polygon(boxCoords, facecolor=colors[i % len(colors)], linewidth=0) 67 | ax.add_patch(boxPolygon) 68 | 69 | for i in range(0, len(bp['boxes'])): 70 | bp['boxes'][i].set_color(colors[i]) 71 | # we have two whiskers! 72 | bp['whiskers'][i*2].set_color(colors[i]) 73 | bp['whiskers'][i*2 + 1].set_color(colors[i]) 74 | bp['whiskers'][i*2].set_linewidth(2) 75 | bp['whiskers'][i*2 + 1].set_linewidth(2) 76 | # fliers 77 | bp['fliers'][i].set(markerfacecolor=colors[i], 78 | marker='o', alpha=0.75, markersize=6, 79 | markeredgecolor='none') 80 | bp['medians'][i].set_color('black') 81 | bp['medians'][i].set_linewidth(3) 82 | # and 4 caps to remove 83 | for c in bp['caps']: 84 | c.set_linewidth(0) 85 | 86 | 87 | ax.spines['top'].set_visible(False) 88 | ax.spines['right'].set_visible(False) 89 | ax.spines['left'].set_visible(False) 90 | ax.get_xaxis().tick_bottom() 91 | ax.get_yaxis().tick_left() 92 | ax.tick_params(axis='x', direction='out') 93 | ax.tick_params(axis='y', length=0) 94 | 95 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 96 | ax.set_axisbelow(True) 97 | 98 | ax.set_xticklabels(['low\nmutation', 'high\nmutation']) 99 | 100 | # the stars 101 | z, p = scipy.stats.mannwhitneyu(low_mut_100, high_mut_100) 102 | p_value = p * 2 103 | s = stars(p) 104 | 105 | y_max = np.max(np.concatenate((low_mut_100, high_mut_100))) 106 | y_min = np.min(np.concatenate((low_mut_100, high_mut_100))) 107 | # print(y_max) 108 | ax.annotate("", xy=(1, y_max), xycoords='data', 109 | xytext=(2, y_max), textcoords='data', 110 | arrowprops=dict(arrowstyle="-", ec='#aaaaaa', 111 | connectionstyle="bar,fraction=0.2")) 112 | ax.text(1.5, y_max + abs(y_max - y_min)*0.1, stars(p_value), 113 | horizontalalignment='center', 114 | verticalalignment='center') 115 | 116 | 117 | fig.subplots_adjust(left=0.2) 118 | 119 | 120 | savefig('boxplot5.png') 121 | -------------------------------------------------------------------------------- /src/data/data.tar.gz: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jbmouret/matplotlib_for_papers/c2c8747b72b639068efd3b0a57aaa7d42feda0b2/src/data/data.tar.gz -------------------------------------------------------------------------------- /src/data/high_mut/exp_23/node11_2014-07-15_16_42_51_27701/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -4931.08 2 | 1 -4931.08 3 | 2 -4931.08 4 | 3 -4931.08 5 | 4 -4931.08 6 | 5 -4931.08 7 | 6 -4931.08 8 | 7 -4931.08 9 | 8 -4931.08 10 | 9 -4931.08 11 | 10 -4931.08 12 | 11 -4931.08 13 | 12 -4931.08 14 | 13 -4931.08 15 | 14 -4931.08 16 | 15 -4931.08 17 | 16 -4931.08 18 | 17 -4931.08 19 | 18 -4931.08 20 | 19 -4931.08 21 | 20 -4931.08 22 | 21 -4931.08 23 | 22 -4931.08 24 | 23 -4931.08 25 | 24 -4931.08 26 | 25 -4931.08 27 | 26 -4931.08 28 | 27 -4931.08 29 | 28 -4931.08 30 | 29 -4931.08 31 | 30 -4931.08 32 | 31 -4931.08 33 | 32 -4931.08 34 | 33 -3230.6 35 | 34 -3230.6 36 | 35 -3230.6 37 | 36 -3230.6 38 | 37 -3230.6 39 | 38 -3230.6 40 | 39 -3230.6 41 | 40 -3230.6 42 | 41 -3230.6 43 | 42 -3230.6 44 | 43 -3230.6 45 | 44 -3230.6 46 | 45 -3230.6 47 | 46 -3230.6 48 | 47 -3230.6 49 | 48 -3230.6 50 | 49 -3230.6 51 | 50 -3230.6 52 | 51 -3230.6 53 | 52 -2807.32 54 | 53 -2807.32 55 | 54 -2807.32 56 | 55 -2807.32 57 | 56 -2807.32 58 | 57 -2807.32 59 | 58 -2807.32 60 | 59 -1712.55 61 | 60 -1712.55 62 | 61 -1712.55 63 | 62 -1712.55 64 | 63 -1712.55 65 | 64 -1712.55 66 | 65 -1712.55 67 | 66 -1712.55 68 | 67 -1712.55 69 | 68 -1533.69 70 | 69 -1533.69 71 | 70 -1533.69 72 | 71 -1533.69 73 | 72 -1501.77 74 | 73 -1501.77 75 | 74 -1501.77 76 | 75 -1501.77 77 | 76 -747.695 78 | 77 -747.695 79 | 78 -747.695 80 | 79 -747.695 81 | 80 -747.695 82 | 81 -747.695 83 | 82 -747.695 84 | 83 -747.695 85 | 84 -747.695 86 | 85 -747.695 87 | 86 -747.695 88 | 87 -747.695 89 | 88 -747.695 90 | 89 -747.695 91 | 90 -747.695 92 | 91 -747.695 93 | 92 -747.695 94 | 93 -747.695 95 | 94 -670.93 96 | 95 -670.93 97 | 96 -670.93 98 | 97 -670.93 99 | 98 -670.93 100 | 99 -670.93 101 | 100 -670.93 102 | 101 -670.93 103 | 102 -670.93 104 | 103 -670.93 105 | 104 -670.93 106 | 105 -670.93 107 | 106 -670.93 108 | 107 -670.93 109 | 108 -660.787 110 | 109 -660.787 111 | 110 -660.787 112 | 111 -660.787 113 | 112 -660.787 114 | 113 -648.349 115 | 114 -648.349 116 | 115 -418.979 117 | 116 -418.979 118 | 117 -418.979 119 | 118 -317.295 120 | 119 -317.295 121 | 120 -317.295 122 | 121 -317.295 123 | 122 -317.295 124 | 123 -317.295 125 | 124 -317.295 126 | 125 -317.295 127 | 126 -317.295 128 | 127 -317.295 129 | 128 -317.295 130 | 129 -317.295 131 | 130 -317.295 132 | 131 -317.295 133 | 132 -317.295 134 | 133 -317.295 135 | 134 -317.295 136 | 135 -317.295 137 | 136 -317.295 138 | 137 -317.295 139 | 138 -317.295 140 | 139 -240.501 141 | 140 -240.501 142 | 141 -240.501 143 | 142 -240.501 144 | 143 -240.501 145 | 144 -240.501 146 | 145 -240.501 147 | 146 -206.561 148 | 147 -206.561 149 | 148 -206.561 150 | 149 -206.561 151 | 150 -206.561 152 | 151 -206.561 153 | 152 -192.221 154 | 153 -192.221 155 | 154 -192.221 156 | 155 -192.221 157 | 156 -192.221 158 | 157 -94.1933 159 | 158 -94.1933 160 | 159 -94.1933 161 | 160 -94.1933 162 | 161 -94.1933 163 | 162 -86.607 164 | 163 -86.607 165 | 164 -86.607 166 | 165 -86.607 167 | 166 -86.607 168 | 167 -86.607 169 | 168 -78.2209 170 | 169 -78.2209 171 | 170 -78.2209 172 | 171 -78.2209 173 | 172 -78.2209 174 | 173 -78.2209 175 | 174 -78.2209 176 | 175 -78.2209 177 | 176 -64.8407 178 | 177 -64.8407 179 | 178 -44.8975 180 | 179 -44.8975 181 | 180 -44.8975 182 | 181 -44.8975 183 | 182 -44.8975 184 | 183 -44.8975 185 | 184 -44.8975 186 | 185 -23.0783 187 | 186 -23.0783 188 | 187 -23.0783 189 | 188 -23.0783 190 | 189 -23.0783 191 | 190 -23.0783 192 | 191 -23.0783 193 | 192 -23.0783 194 | 193 -23.0783 195 | 194 -23.0783 196 | 195 -16.888 197 | 196 -16.888 198 | 197 -16.888 199 | 198 -16.888 200 | 199 -16.888 201 | 200 -16.888 202 | 201 -16.888 203 | 202 -16.888 204 | 203 -16.888 205 | 204 -16.888 206 | 205 -16.888 207 | 206 -16.888 208 | 207 -16.888 209 | 208 -16.888 210 | 209 -16.888 211 | 210 -16.888 212 | 211 -16.888 213 | 212 -16.888 214 | 213 -16.888 215 | 214 -16.888 216 | 215 -16.888 217 | 216 -16.888 218 | 217 -16.888 219 | 218 -16.888 220 | 219 -16.888 221 | 220 -16.888 222 | 221 -16.888 223 | 222 -16.888 224 | 223 -16.888 225 | 224 -16.888 226 | 225 -16.888 227 | 226 -16.888 228 | 227 -16.888 229 | 228 -16.888 230 | 229 -16.888 231 | 230 -16.888 232 | 231 -16.888 233 | 232 -16.888 234 | 233 -16.888 235 | 234 -16.888 236 | 235 -16.888 237 | 236 -16.888 238 | 237 -16.888 239 | 238 -16.888 240 | 239 -16.888 241 | 240 -16.888 242 | 241 -16.888 243 | 242 -16.4132 244 | 243 -16.4132 245 | 244 -16.4132 246 | 245 -16.4132 247 | 246 -16.4132 248 | 247 -16.4132 249 | 248 -16.4132 250 | 249 -16.4132 251 | 250 -16.4132 252 | 251 -16.4132 253 | 252 -16.4132 254 | 253 -15.5789 255 | 254 -15.5789 256 | 255 -15.5789 257 | 256 -14.2082 258 | 257 -14.2082 259 | 258 -14.2082 260 | 259 -11.9012 261 | 260 -11.9012 262 | 261 -11.9012 263 | 262 -11.9012 264 | 263 -11.9012 265 | 264 -11.9012 266 | 265 -11.9012 267 | 266 -11.9012 268 | 267 -11.9012 269 | 268 -11.9012 270 | 269 -11.9012 271 | 270 -11.9012 272 | 271 -11.9012 273 | 272 -11.9012 274 | 273 -11.9012 275 | 274 -11.9012 276 | 275 -10.6506 277 | 276 -10.6506 278 | 277 -10.6506 279 | 278 -10.6506 280 | 279 -10.6506 281 | 280 -10.6506 282 | 281 -10.6506 283 | 282 -10.6506 284 | 283 -10.6506 285 | 284 -10.6506 286 | 285 -10.6506 287 | 286 -10.6506 288 | 287 -10.6506 289 | 288 -10.6506 290 | 289 -10.6506 291 | 290 -10.6506 292 | 291 -10.6506 293 | 292 -9.70576 294 | 293 -9.70576 295 | 294 -9.70576 296 | 295 -9.70576 297 | 296 -9.70576 298 | 297 -9.70576 299 | 298 -9.70576 300 | 299 -9.70576 301 | 300 -9.70576 302 | 301 -9.70576 303 | 302 -9.70576 304 | 303 -9.70576 305 | 304 -9.70576 306 | 305 -9.70576 307 | 306 -9.70576 308 | 307 -9.70576 309 | 308 -9.70576 310 | 309 -9.70576 311 | 310 -9.70576 312 | 311 -9.70576 313 | 312 -9.70576 314 | 313 -9.70576 315 | 314 -9.70576 316 | 315 -9.70576 317 | 316 -9.70576 318 | 317 -9.70576 319 | 318 -9.70576 320 | 319 -9.70576 321 | 320 -9.70576 322 | 321 -9.70576 323 | 322 -9.70576 324 | 323 -9.70576 325 | 324 -9.70576 326 | 325 -9.70576 327 | 326 -9.70576 328 | 327 -9.70576 329 | 328 -9.70576 330 | 329 -9.70576 331 | 330 -9.70576 332 | 331 -9.70576 333 | 332 -9.70576 334 | 333 -9.70576 335 | 334 -9.70576 336 | 335 -9.70576 337 | 336 -9.70576 338 | 337 -9.70576 339 | 338 -9.68741 340 | 339 -9.68741 341 | 340 -9.66976 342 | 341 -9.66976 343 | 342 -9.66976 344 | 343 -9.66976 345 | 344 -9.66976 346 | 345 -9.66976 347 | 346 -9.54714 348 | 347 -9.54714 349 | 348 -9.54714 350 | 349 -9.54714 351 | 350 -9.54714 352 | 351 -9.54714 353 | 352 -9.54714 354 | 353 -9.54714 355 | 354 -9.54714 356 | 355 -9.54714 357 | 356 -9.54714 358 | 357 -9.54714 359 | 358 -9.54714 360 | 359 -9.54714 361 | 360 -9.54714 362 | 361 -9.54714 363 | 362 -9.54714 364 | 363 -9.54714 365 | 364 -9.54714 366 | 365 -9.54714 367 | 366 -9.54714 368 | 367 -9.54714 369 | 368 -9.54714 370 | 369 -9.54714 371 | 370 -9.54714 372 | 371 -9.54714 373 | 372 -9.54714 374 | 373 -9.54714 375 | 374 -9.54714 376 | 375 -9.54714 377 | 376 -9.54714 378 | 377 -9.54714 379 | 378 -9.54714 380 | 379 -9.54714 381 | 380 -9.54714 382 | 381 -9.54714 383 | 382 -9.54714 384 | 383 -9.54714 385 | 384 -9.54714 386 | 385 -9.54714 387 | 386 -9.54714 388 | 387 -9.54714 389 | 388 -9.54714 390 | 389 -9.54714 391 | 390 -9.54714 392 | 391 -9.54714 393 | 392 -9.54714 394 | 393 -9.54714 395 | 394 -9.54714 396 | 395 -9.54714 397 | 396 -9.54714 398 | 397 -9.54714 399 | 398 -9.54714 400 | 399 -9.54714 401 | 400 -9.54714 402 | 401 -9.54714 403 | 402 -9.54714 404 | 403 -9.54714 405 | 404 -9.54714 406 | 405 -9.54714 407 | 406 -9.54714 408 | 407 -9.54714 409 | 408 -9.54714 410 | 409 -9.54714 411 | 410 -9.54714 412 | 411 -9.54714 413 | 412 -9.54714 414 | 413 -9.54714 415 | 414 -9.54714 416 | 415 -9.54714 417 | 416 -9.54714 418 | 417 -9.54714 419 | 418 -9.54714 420 | 419 -9.54714 421 | 420 -9.54714 422 | 421 -9.54714 423 | 422 -9.54714 424 | 423 -9.54714 425 | 424 -9.54714 426 | 425 -9.54714 427 | 426 -9.54714 428 | 427 -9.54714 429 | 428 -9.54714 430 | 429 -9.54714 431 | 430 -9.54714 432 | 431 -9.54714 433 | 432 -9.54714 434 | 433 -9.54714 435 | 434 -9.54714 436 | 435 -9.54714 437 | 436 -9.54714 438 | 437 -9.54714 439 | 438 -9.54714 440 | 439 -9.54714 441 | 440 -9.54714 442 | 441 -9.54714 443 | 442 -9.54714 444 | 443 -9.54714 445 | 444 -9.54714 446 | 445 -9.54714 447 | 446 -9.52872 448 | 447 -9.52872 449 | 448 -9.52872 450 | 449 -9.52872 451 | 450 -9.52872 452 | 451 -9.52872 453 | 452 -9.52872 454 | 453 -9.52872 455 | 454 -9.52872 456 | 455 -9.52872 457 | 456 -9.52872 458 | 457 -9.52872 459 | 458 -9.52872 460 | 459 -9.52872 461 | 460 -9.52872 462 | 461 -9.52872 463 | 462 -9.52872 464 | 463 -9.52872 465 | 464 -9.52872 466 | 465 -9.52872 467 | 466 -9.52872 468 | 467 -9.52872 469 | 468 -9.52872 470 | 469 -9.52872 471 | 470 -9.52872 472 | 471 -9.52872 473 | 472 -9.52872 474 | 473 -9.52872 475 | 474 -9.52872 476 | 475 -9.52872 477 | 476 -9.52872 478 | 477 -9.52872 479 | 478 -9.52872 480 | 479 -9.52872 481 | 480 -9.52872 482 | 481 -9.52872 483 | 482 -9.52872 484 | 483 -9.52872 485 | 484 -9.52872 486 | 485 -9.52872 487 | 486 -9.52872 488 | 487 -9.52872 489 | 488 -9.52872 490 | 489 -9.52872 491 | 490 -9.52872 492 | 491 -9.52872 493 | 492 -9.52872 494 | 493 -9.52872 495 | 494 -9.52872 496 | 495 -9.52872 497 | 496 -9.52872 498 | 497 -9.52872 499 | 498 -9.52872 500 | 499 -9.5238 501 | 500 -9.5238 502 | 501 -9.5238 503 | 502 -9.5238 504 | 503 -9.5238 505 | 504 -9.5238 506 | 505 -9.5238 507 | 506 -9.5238 508 | 507 -9.5238 509 | 508 -9.5238 510 | 509 -9.51556 511 | 510 -9.51556 512 | 511 -9.51556 513 | 512 -9.51556 514 | 513 -9.51556 515 | 514 -9.51556 516 | 515 -9.51556 517 | 516 -9.51556 518 | 517 -9.51556 519 | 518 -9.51556 520 | 519 -9.51556 521 | 520 -9.51556 522 | 521 -9.51556 523 | 522 -9.51556 524 | 523 -9.51556 525 | 524 -9.51556 526 | 525 -9.51556 527 | 526 -9.51152 528 | 527 -9.51152 529 | 528 -9.51152 530 | 529 -9.51152 531 | 530 -9.51152 532 | 531 -9.51152 533 | 532 -9.51152 534 | 533 -9.51152 535 | 534 -9.51152 536 | 535 -9.51152 537 | 536 -9.51152 538 | 537 -9.51152 539 | 538 -9.51152 540 | 539 -9.51152 541 | 540 -9.5079 542 | 541 -9.5079 543 | 542 -9.49826 544 | 543 -9.49826 545 | 544 -9.49826 546 | 545 -9.49826 547 | 546 -9.49826 548 | 547 -9.48993 549 | 548 -9.48993 550 | 549 -9.48993 551 | 550 -9.48993 552 | 551 -9.48993 553 | 552 -9.48993 554 | 553 -9.48993 555 | 554 -9.48993 556 | 555 -9.48993 557 | 556 -9.48993 558 | 557 -9.48993 559 | 558 -9.4827 560 | 559 -9.4827 561 | 560 -9.4827 562 | 561 -9.4827 563 | 562 -9.4827 564 | 563 -9.4827 565 | 564 -9.47492 566 | 565 -9.47492 567 | 566 -9.47492 568 | 567 -9.47492 569 | 568 -9.47492 570 | 569 -9.47492 571 | 570 -9.47061 572 | 571 -9.47061 573 | 572 -9.47061 574 | 573 -9.47061 575 | 574 -9.47061 576 | 575 -9.47061 577 | 576 -9.47061 578 | 577 -9.47061 579 | 578 -9.47061 580 | 579 -9.47061 581 | 580 -9.47061 582 | 581 -9.47061 583 | 582 -9.47061 584 | 583 -9.47061 585 | 584 -9.47061 586 | 585 -9.47061 587 | 586 -9.47061 588 | 587 -9.47061 589 | 588 -9.47061 590 | 589 -9.47061 591 | 590 -9.47061 592 | 591 -9.47061 593 | 592 -9.47061 594 | 593 -9.47061 595 | 594 -9.47061 596 | 595 -9.47061 597 | 596 -9.47061 598 | 597 -9.47061 599 | 598 -9.44706 600 | 599 -9.44706 601 | 600 -9.44706 602 | 601 -9.44706 603 | 602 -9.44706 604 | 603 -9.44706 605 | 604 -9.44706 606 | 605 -9.44706 607 | 606 -9.44706 608 | 607 -9.44706 609 | 608 -9.44706 610 | 609 -9.44706 611 | 610 -9.44706 612 | 611 -9.44706 613 | 612 -9.44706 614 | 613 -9.44706 615 | 614 -9.44706 616 | 615 -9.44706 617 | 616 -9.44706 618 | 617 -9.44706 619 | 618 -9.44706 620 | 619 -9.44706 621 | 620 -9.44706 622 | 621 -9.44706 623 | 622 -9.44706 624 | 623 -9.44706 625 | 624 -9.44706 626 | 625 -9.44706 627 | 626 -9.44706 628 | 627 -9.44706 629 | 628 -9.44706 630 | 629 -9.44706 631 | 630 -9.44706 632 | 631 -9.44706 633 | 632 -9.44706 634 | 633 -9.44706 635 | 634 -9.44706 636 | 635 -9.44706 637 | 636 -9.44706 638 | 637 -9.44706 639 | 638 -9.44706 640 | 639 -9.44706 641 | 640 -9.44706 642 | 641 -9.44706 643 | 642 -9.44706 644 | 643 -9.44706 645 | 644 -9.44706 646 | 645 -9.44706 647 | 646 -9.44706 648 | 647 -9.44706 649 | 648 -9.44706 650 | 649 -9.44706 651 | 650 -9.44706 652 | 651 -9.44706 653 | 652 -9.44706 654 | 653 -9.44706 655 | 654 -9.44706 656 | 655 -9.44706 657 | 656 -9.44706 658 | 657 -9.44706 659 | 658 -9.44706 660 | 659 -9.44706 661 | 660 -9.44706 662 | 661 -9.44706 663 | 662 -9.44706 664 | 663 -9.44706 665 | 664 -9.44706 666 | 665 -9.44706 667 | 666 -9.44706 668 | 667 -9.44706 669 | 668 -9.44706 670 | 669 -9.44706 671 | 670 -9.44706 672 | 671 -9.44706 673 | 672 -9.44706 674 | 673 -9.44706 675 | 674 -9.44706 676 | 675 -9.44706 677 | 676 -9.44706 678 | 677 -9.44706 679 | 678 -9.44706 680 | 679 -9.44706 681 | 680 -9.44706 682 | 681 -9.44706 683 | 682 -9.44706 684 | 683 -9.44706 685 | 684 -9.44706 686 | 685 -9.44706 687 | 686 -9.44706 688 | 687 -9.44706 689 | 688 -9.44706 690 | 689 -9.44706 691 | 690 -9.44706 692 | 691 -9.44706 693 | 692 -9.44499 694 | 693 -9.44499 695 | 694 -9.44499 696 | 695 -9.44499 697 | 696 -9.44499 698 | 697 -9.44499 699 | 698 -9.44499 700 | 699 -9.43222 701 | 700 -9.43222 702 | 701 -9.43222 703 | 702 -9.43222 704 | 703 -9.43222 705 | 704 -9.43222 706 | 705 -9.43222 707 | 706 -9.43222 708 | 707 -9.43222 709 | 708 -9.43222 710 | 709 -9.43222 711 | 710 -9.43222 712 | 711 -9.43222 713 | 712 -9.43222 714 | 713 -9.43222 715 | 714 -9.43222 716 | 715 -9.43222 717 | 716 -9.43222 718 | 717 -9.43222 719 | 718 -9.43222 720 | 719 -9.43222 721 | 720 -9.43222 722 | 721 -9.43222 723 | 722 -9.43222 724 | 723 -9.43222 725 | 724 -9.43222 726 | 725 -9.43222 727 | 726 -9.43222 728 | 727 -9.43222 729 | 728 -9.43222 730 | 729 -9.43222 731 | 730 -9.43222 732 | 731 -9.43222 733 | 732 -9.43222 734 | 733 -9.43222 735 | 734 -9.43222 736 | 735 -9.43222 737 | 736 -9.43222 738 | 737 -9.43222 739 | 738 -9.43222 740 | 739 -9.43222 741 | 740 -9.43222 742 | 741 -9.43222 743 | 742 -9.43222 744 | 743 -9.43222 745 | 744 -9.43222 746 | 745 -9.43222 747 | 746 -9.43222 748 | 747 -9.43222 749 | 748 -9.43222 750 | 749 -9.43222 751 | 750 -9.43222 752 | 751 -9.43222 753 | 752 -9.43222 754 | 753 -9.43222 755 | 754 -9.43222 756 | 755 -9.43222 757 | 756 -9.43222 758 | 757 -9.43222 759 | 758 -9.43222 760 | 759 -9.43222 761 | 760 -9.43222 762 | 761 -9.43222 763 | 762 -9.43222 764 | 763 -9.43222 765 | 764 -9.43222 766 | 765 -9.43222 767 | 766 -9.43222 768 | 767 -9.43222 769 | 768 -9.43222 770 | 769 -9.43222 771 | 770 -9.43222 772 | 771 -9.43222 773 | 772 -9.43222 774 | 773 -9.43222 775 | 774 -9.43222 776 | 775 -9.43222 777 | 776 -9.43222 778 | 777 -9.43222 779 | 778 -9.43222 780 | 779 -9.43222 781 | 780 -9.43222 782 | 781 -9.43222 783 | 782 -9.43222 784 | 783 -9.43222 785 | 784 -9.43222 786 | 785 -9.43222 787 | 786 -9.43222 788 | 787 -9.43222 789 | 788 -9.43222 790 | 789 -9.43222 791 | 790 -9.43222 792 | 791 -9.43222 793 | 792 -9.43222 794 | 793 -9.43222 795 | 794 -9.43222 796 | 795 -9.43222 797 | 796 -9.43222 798 | 797 -9.43222 799 | 798 -9.43222 800 | 799 -9.43222 801 | 800 -9.43222 802 | 801 -9.43222 803 | 802 -9.43222 804 | 803 -9.43222 805 | 804 -9.43222 806 | 805 -9.43222 807 | 806 -9.43222 808 | 807 -9.43222 809 | 808 -9.43222 810 | 809 -9.43222 811 | 810 -9.43222 812 | 811 -9.43222 813 | 812 -9.43222 814 | 813 -9.43222 815 | 814 -9.43222 816 | 815 -9.43222 817 | 816 -9.42135 818 | 817 -9.42135 819 | 818 -9.42135 820 | 819 -9.42135 821 | 820 -9.42135 822 | 821 -9.42135 823 | 822 -9.42135 824 | 823 -9.42135 825 | 824 -9.42135 826 | 825 -9.42135 827 | 826 -9.42135 828 | 827 -9.42135 829 | 828 -9.42135 830 | 829 -9.42135 831 | 830 -9.42135 832 | 831 -9.42135 833 | 832 -9.42135 834 | 833 -9.42135 835 | 834 -9.42135 836 | 835 -9.42135 837 | 836 -9.42135 838 | 837 -9.42135 839 | 838 -9.42135 840 | 839 -9.42135 841 | 840 -9.42135 842 | 841 -9.42135 843 | 842 -9.42135 844 | 843 -9.42135 845 | 844 -9.42135 846 | 845 -9.42135 847 | 846 -9.42135 848 | 847 -9.42135 849 | 848 -9.42135 850 | 849 -9.42135 851 | 850 -9.42135 852 | 851 -9.42135 853 | 852 -9.42135 854 | 853 -9.42135 855 | 854 -9.42135 856 | 855 -9.42135 857 | 856 -9.42135 858 | 857 -9.42135 859 | 858 -9.42135 860 | 859 -9.42135 861 | 860 -9.42135 862 | 861 -9.42135 863 | 862 -9.42135 864 | 863 -9.42135 865 | 864 -9.42135 866 | 865 -9.42135 867 | 866 -9.42135 868 | 867 -9.42135 869 | 868 -9.42135 870 | 869 -9.42135 871 | 870 -9.42135 872 | 871 -9.42135 873 | 872 -9.42135 874 | 873 -9.42135 875 | 874 -9.42135 876 | 875 -9.42135 877 | 876 -9.42135 878 | 877 -9.42135 879 | 878 -9.42135 880 | 879 -9.42135 881 | 880 -9.42135 882 | 881 -9.42135 883 | 882 -9.42135 884 | 883 -9.42135 885 | 884 -9.42135 886 | 885 -9.42135 887 | 886 -9.42135 888 | 887 -9.42135 889 | 888 -9.42135 890 | 889 -9.42135 891 | 890 -9.42135 892 | 891 -9.42135 893 | 892 -9.42135 894 | 893 -9.42135 895 | 894 -9.42135 896 | 895 -9.4193 897 | 896 -9.4193 898 | 897 -9.4193 899 | 898 -9.4193 900 | 899 -9.4193 901 | 900 -9.4193 902 | 901 -9.4193 903 | 902 -9.4193 904 | 903 -9.4193 905 | 904 -9.4193 906 | 905 -9.4193 907 | 906 -9.4193 908 | 907 -9.4193 909 | 908 -9.4193 910 | 909 -9.4193 911 | 910 -9.4193 912 | 911 -9.4193 913 | 912 -9.4193 914 | 913 -9.4193 915 | 914 -9.4193 916 | 915 -9.4193 917 | 916 -9.4193 918 | 917 -9.4193 919 | 918 -9.4193 920 | 919 -9.4193 921 | 920 -9.4193 922 | 921 -9.4193 923 | 922 -9.4193 924 | 923 -9.4193 925 | 924 -9.4193 926 | 925 -9.4193 927 | 926 -9.4193 928 | 927 -9.4193 929 | 928 -9.4193 930 | 929 -9.4193 931 | 930 -9.4193 932 | 931 -9.4193 933 | 932 -9.4193 934 | 933 -9.4193 935 | 934 -9.4193 936 | 935 -9.4193 937 | 936 -9.4193 938 | 937 -9.4193 939 | 938 -9.4193 940 | 939 -9.4193 941 | 940 -9.4193 942 | 941 -9.4193 943 | 942 -9.4193 944 | 943 -9.4193 945 | 944 -9.4193 946 | 945 -9.4193 947 | 946 -9.4193 948 | 947 -9.4193 949 | 948 -9.4193 950 | 949 -9.4193 951 | 950 -9.4193 952 | 951 -9.4193 953 | 952 -9.4193 954 | 953 -9.4193 955 | 954 -9.4193 956 | 955 -9.4193 957 | 956 -9.4193 958 | 957 -9.4193 959 | 958 -9.4193 960 | 959 -9.4193 961 | 960 -9.4193 962 | 961 -9.4193 963 | 962 -9.4193 964 | 963 -9.4193 965 | 964 -9.4193 966 | 965 -9.4193 967 | 966 -9.4193 968 | 967 -9.4193 969 | 968 -9.4193 970 | 969 -9.4193 971 | 970 -9.4193 972 | 971 -9.4193 973 | 972 -9.4193 974 | 973 -9.4193 975 | 974 -9.4193 976 | 975 -9.4193 977 | 976 -9.4193 978 | 977 -9.4193 979 | 978 -9.4193 980 | 979 -9.4193 981 | 980 -9.4193 982 | 981 -9.4193 983 | 982 -9.4193 984 | 983 -9.4193 985 | 984 -9.4193 986 | 985 -9.4193 987 | 986 -9.4193 988 | 987 -9.4193 989 | 988 -9.4193 990 | 989 -9.4193 991 | 990 -9.4193 992 | 991 -9.4193 993 | 992 -9.4193 994 | 993 -9.4193 995 | 994 -9.4193 996 | 995 -9.4193 997 | 996 -9.4193 998 | 997 -9.4193 999 | 998 -9.4193 1000 | 999 -9.4193 1001 | -------------------------------------------------------------------------------- /src/data/high_mut/exp_24/node04_2014-07-15_16_42_52_11737/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -1926.76 2 | 1 -1926.76 3 | 2 -1926.76 4 | 3 -1926.76 5 | 4 -1926.76 6 | 5 -1926.76 7 | 6 -1926.76 8 | 7 -1926.76 9 | 8 -1926.76 10 | 9 -1926.76 11 | 10 -1926.76 12 | 11 -1926.76 13 | 12 -1926.76 14 | 13 -1926.76 15 | 14 -1926.76 16 | 15 -1926.76 17 | 16 -1926.76 18 | 17 -1926.76 19 | 18 -1926.76 20 | 19 -1926.76 21 | 20 -1926.76 22 | 21 -1926.76 23 | 22 -1926.76 24 | 23 -1926.76 25 | 24 -1926.76 26 | 25 -1926.76 27 | 26 -1926.76 28 | 27 -1926.76 29 | 28 -1926.76 30 | 29 -1926.76 31 | 30 -1926.76 32 | 31 -1926.76 33 | 32 -1926.76 34 | 33 -1926.76 35 | 34 -1926.76 36 | 35 -1926.76 37 | 36 -1926.76 38 | 37 -1926.76 39 | 38 -1926.76 40 | 39 -1926.76 41 | 40 -1926.76 42 | 41 -1926.76 43 | 42 -1926.76 44 | 43 -1926.76 45 | 44 -1926.76 46 | 45 -1926.76 47 | 46 -1926.76 48 | 47 -1926.76 49 | 48 -1926.76 50 | 49 -1926.76 51 | 50 -1926.76 52 | 51 -1926.76 53 | 52 -1926.76 54 | 53 -1926.76 55 | 54 -1926.76 56 | 55 -1926.76 57 | 56 -1926.76 58 | 57 -1926.76 59 | 58 -1926.76 60 | 59 -1926.76 61 | 60 -1926.76 62 | 61 -1926.76 63 | 62 -1926.76 64 | 63 -1645.63 65 | 64 -1645.63 66 | 65 -1645.63 67 | 66 -1622.44 68 | 67 -1622.44 69 | 68 -1622.44 70 | 69 -1622.44 71 | 70 -754.4 72 | 71 -754.4 73 | 72 -754.4 74 | 73 -754.4 75 | 74 -754.4 76 | 75 -754.4 77 | 76 -754.4 78 | 77 -754.4 79 | 78 -754.4 80 | 79 -754.4 81 | 80 -627.514 82 | 81 -627.514 83 | 82 -627.514 84 | 83 -627.514 85 | 84 -627.514 86 | 85 -627.514 87 | 86 -627.514 88 | 87 -627.514 89 | 88 -627.514 90 | 89 -627.514 91 | 90 -627.514 92 | 91 -627.514 93 | 92 -627.514 94 | 93 -627.514 95 | 94 -574.097 96 | 95 -574.097 97 | 96 -574.097 98 | 97 -574.097 99 | 98 -574.097 100 | 99 -574.097 101 | 100 -574.097 102 | 101 -574.097 103 | 102 -563 104 | 103 -563 105 | 104 -563 106 | 105 -563 107 | 106 -563 108 | 107 -563 109 | 108 -563 110 | 109 -563 111 | 110 -563 112 | 111 -563 113 | 112 -563 114 | 113 -563 115 | 114 -563 116 | 115 -563 117 | 116 -563 118 | 117 -553.664 119 | 118 -519.294 120 | 119 -502.948 121 | 120 -502.948 122 | 121 -409.881 123 | 122 -409.881 124 | 123 -409.881 125 | 124 -409.16 126 | 125 -409.16 127 | 126 -409.16 128 | 127 -388.336 129 | 128 -334.141 130 | 129 -334.141 131 | 130 -334.141 132 | 131 -332.224 133 | 132 -310.145 134 | 133 -310.145 135 | 134 -310.145 136 | 135 -310.145 137 | 136 -310.145 138 | 137 -271.996 139 | 138 -271.996 140 | 139 -271.996 141 | 140 -271.996 142 | 141 -271.996 143 | 142 -271.996 144 | 143 -271.996 145 | 144 -271.996 146 | 145 -185.076 147 | 146 -185.076 148 | 147 -185.076 149 | 148 -185.076 150 | 149 -185.076 151 | 150 -71.5646 152 | 151 -71.5646 153 | 152 -71.5646 154 | 153 -71.5646 155 | 154 -71.5646 156 | 155 -71.5646 157 | 156 -71.5646 158 | 157 -71.5646 159 | 158 -71.5646 160 | 159 -71.5646 161 | 160 -71.5646 162 | 161 -71.5646 163 | 162 -71.5646 164 | 163 -71.5646 165 | 164 -71.5646 166 | 165 -71.5646 167 | 166 -71.5646 168 | 167 -71.5646 169 | 168 -71.5646 170 | 169 -71.5646 171 | 170 -71.5646 172 | 171 -71.5646 173 | 172 -71.5646 174 | 173 -71.5646 175 | 174 -71.5646 176 | 175 -71.5646 177 | 176 -71.5646 178 | 177 -71.5646 179 | 178 -70.5373 180 | 179 -70.5373 181 | 180 -67.606 182 | 181 -50.2194 183 | 182 -50.2194 184 | 183 -50.2194 185 | 184 -50.2194 186 | 185 -50.2194 187 | 186 -50.2194 188 | 187 -50.2194 189 | 188 -50.2194 190 | 189 -50.2194 191 | 190 -50.2194 192 | 191 -50.2194 193 | 192 -50.2194 194 | 193 -50.2194 195 | 194 -33.7714 196 | 195 -33.7714 197 | 196 -33.7714 198 | 197 -33.7714 199 | 198 -33.7714 200 | 199 -33.7714 201 | 200 -33.7714 202 | 201 -33.7714 203 | 202 -33.7714 204 | 203 -33.7714 205 | 204 -33.7714 206 | 205 -33.7714 207 | 206 -33.7714 208 | 207 -33.7714 209 | 208 -33.7714 210 | 209 -33.7714 211 | 210 -33.7714 212 | 211 -33.7714 213 | 212 -33.7714 214 | 213 -33.7714 215 | 214 -33.7714 216 | 215 -33.7714 217 | 216 -33.7714 218 | 217 -25.7771 219 | 218 -25.7771 220 | 219 -25.7771 221 | 220 -25.7771 222 | 221 -25.7771 223 | 222 -25.7771 224 | 223 -13.41 225 | 224 -13.41 226 | 225 -13.41 227 | 226 -13.41 228 | 227 -13.41 229 | 228 -13.41 230 | 229 -13.41 231 | 230 -13.41 232 | 231 -13.41 233 | 232 -13.41 234 | 233 -13.41 235 | 234 -13.41 236 | 235 -13.41 237 | 236 -13.41 238 | 237 -13.41 239 | 238 -13.41 240 | 239 -13.41 241 | 240 -13.41 242 | 241 -13.41 243 | 242 -13.41 244 | 243 -13.41 245 | 244 -13.41 246 | 245 -13.41 247 | 246 -13.41 248 | 247 -13.41 249 | 248 -13.41 250 | 249 -13.41 251 | 250 -13.41 252 | 251 -13.41 253 | 252 -13.41 254 | 253 -13.41 255 | 254 -13.41 256 | 255 -13.41 257 | 256 -13.41 258 | 257 -13.41 259 | 258 -13.41 260 | 259 -13.41 261 | 260 -13.41 262 | 261 -13.41 263 | 262 -13.41 264 | 263 -13.41 265 | 264 -13.41 266 | 265 -13.41 267 | 266 -13.41 268 | 267 -13.41 269 | 268 -13.2105 270 | 269 -13.2105 271 | 270 -13.2105 272 | 271 -11.3979 273 | 272 -11.3979 274 | 273 -11.3979 275 | 274 -11.3979 276 | 275 -11.3979 277 | 276 -11.3979 278 | 277 -11.3979 279 | 278 -11.3979 280 | 279 -11.3979 281 | 280 -11.3979 282 | 281 -10.8582 283 | 282 -10.8582 284 | 283 -10.8582 285 | 284 -10.8582 286 | 285 -9.69142 287 | 286 -9.69142 288 | 287 -9.69142 289 | 288 -9.69142 290 | 289 -9.69142 291 | 290 -9.69142 292 | 291 -9.69142 293 | 292 -9.69142 294 | 293 -9.69142 295 | 294 -9.69142 296 | 295 -9.69142 297 | 296 -9.69142 298 | 297 -9.69142 299 | 298 -9.69142 300 | 299 -9.69142 301 | 300 -9.69142 302 | 301 -9.69142 303 | 302 -9.69142 304 | 303 -9.69142 305 | 304 -9.69142 306 | 305 -9.69142 307 | 306 -9.69142 308 | 307 -9.6264 309 | 308 -9.6264 310 | 309 -9.6264 311 | 310 -9.6264 312 | 311 -9.6264 313 | 312 -9.6264 314 | 313 -9.6264 315 | 314 -9.6264 316 | 315 -9.6264 317 | 316 -9.6264 318 | 317 -9.6264 319 | 318 -9.6264 320 | 319 -9.6264 321 | 320 -9.6264 322 | 321 -9.6264 323 | 322 -9.6264 324 | 323 -9.6264 325 | 324 -9.6264 326 | 325 -9.6264 327 | 326 -9.6264 328 | 327 -9.6264 329 | 328 -9.6264 330 | 329 -9.6264 331 | 330 -9.6264 332 | 331 -9.6264 333 | 332 -9.6264 334 | 333 -9.6264 335 | 334 -9.6264 336 | 335 -9.6264 337 | 336 -9.6264 338 | 337 -9.6264 339 | 338 -9.6264 340 | 339 -9.6264 341 | 340 -9.6264 342 | 341 -9.61453 343 | 342 -9.61453 344 | 343 -9.61453 345 | 344 -9.61453 346 | 345 -9.61453 347 | 346 -9.49327 348 | 347 -9.49327 349 | 348 -9.49327 350 | 349 -9.49327 351 | 350 -9.49327 352 | 351 -9.49327 353 | 352 -9.49327 354 | 353 -9.49327 355 | 354 -9.49327 356 | 355 -9.49327 357 | 356 -9.49327 358 | 357 -9.49327 359 | 358 -9.49327 360 | 359 -9.49327 361 | 360 -9.49327 362 | 361 -9.49327 363 | 362 -9.49327 364 | 363 -9.49327 365 | 364 -9.49327 366 | 365 -9.49327 367 | 366 -9.49327 368 | 367 -9.49327 369 | 368 -9.49327 370 | 369 -9.49327 371 | 370 -9.49327 372 | 371 -9.49327 373 | 372 -9.49327 374 | 373 -9.49327 375 | 374 -9.49327 376 | 375 -9.49327 377 | 376 -9.49327 378 | 377 -9.49327 379 | 378 -9.49327 380 | 379 -9.49327 381 | 380 -9.49327 382 | 381 -9.49327 383 | 382 -9.49327 384 | 383 -9.49327 385 | 384 -9.49327 386 | 385 -9.49327 387 | 386 -9.49327 388 | 387 -9.49327 389 | 388 -9.49327 390 | 389 -9.49327 391 | 390 -9.49327 392 | 391 -9.49327 393 | 392 -9.49327 394 | 393 -9.49327 395 | 394 -9.49327 396 | 395 -9.49327 397 | 396 -9.49327 398 | 397 -9.49327 399 | 398 -9.49327 400 | 399 -9.49327 401 | 400 -9.49327 402 | 401 -9.49327 403 | 402 -9.49327 404 | 403 -9.49327 405 | 404 -9.49327 406 | 405 -9.49327 407 | 406 -9.49327 408 | 407 -9.49327 409 | 408 -9.49327 410 | 409 -9.49327 411 | 410 -9.49327 412 | 411 -9.49327 413 | 412 -9.49327 414 | 413 -9.49327 415 | 414 -9.49327 416 | 415 -9.49327 417 | 416 -9.49327 418 | 417 -9.49327 419 | 418 -9.49327 420 | 419 -9.49327 421 | 420 -9.49327 422 | 421 -9.49327 423 | 422 -9.49327 424 | 423 -9.49327 425 | 424 -9.49327 426 | 425 -9.49327 427 | 426 -9.49327 428 | 427 -9.49327 429 | 428 -9.49327 430 | 429 -9.49327 431 | 430 -9.49327 432 | 431 -9.49327 433 | 432 -9.49327 434 | 433 -9.49327 435 | 434 -9.49327 436 | 435 -9.49327 437 | 436 -9.49327 438 | 437 -9.49327 439 | 438 -9.49327 440 | 439 -9.49327 441 | 440 -9.49327 442 | 441 -9.49327 443 | 442 -9.49327 444 | 443 -9.49327 445 | 444 -9.49327 446 | 445 -9.49327 447 | 446 -9.49327 448 | 447 -9.49327 449 | 448 -9.49327 450 | 449 -9.49327 451 | 450 -9.49327 452 | 451 -9.49327 453 | 452 -9.49327 454 | 453 -9.49327 455 | 454 -9.49327 456 | 455 -9.49327 457 | 456 -9.49327 458 | 457 -9.49327 459 | 458 -9.49327 460 | 459 -9.49327 461 | 460 -9.49327 462 | 461 -9.49327 463 | 462 -9.49327 464 | 463 -9.49327 465 | 464 -9.49327 466 | 465 -9.49327 467 | 466 -9.49327 468 | 467 -9.49327 469 | 468 -9.49327 470 | 469 -9.49327 471 | 470 -9.49327 472 | 471 -9.49327 473 | 472 -9.49327 474 | 473 -9.49327 475 | 474 -9.49327 476 | 475 -9.49327 477 | 476 -9.49327 478 | 477 -9.49327 479 | 478 -9.49327 480 | 479 -9.49327 481 | 480 -9.49327 482 | 481 -9.49327 483 | 482 -9.49327 484 | 483 -9.49327 485 | 484 -9.49327 486 | 485 -9.49327 487 | 486 -9.49327 488 | 487 -9.49327 489 | 488 -9.49327 490 | 489 -9.48869 491 | 490 -9.48869 492 | 491 -9.48869 493 | 492 -9.48869 494 | 493 -9.48869 495 | 494 -9.48869 496 | 495 -9.48869 497 | 496 -9.48869 498 | 497 -9.48869 499 | 498 -9.48869 500 | 499 -9.48869 501 | 500 -9.48869 502 | 501 -9.48869 503 | 502 -9.48869 504 | 503 -9.48869 505 | 504 -9.48869 506 | 505 -9.48869 507 | 506 -9.48869 508 | 507 -9.48869 509 | 508 -9.46678 510 | 509 -9.46678 511 | 510 -9.46678 512 | 511 -9.46678 513 | 512 -9.46678 514 | 513 -9.46678 515 | 514 -9.46678 516 | 515 -9.46678 517 | 516 -9.46678 518 | 517 -9.46678 519 | 518 -9.46678 520 | 519 -9.46678 521 | 520 -9.46678 522 | 521 -9.46678 523 | 522 -9.46678 524 | 523 -9.46678 525 | 524 -9.46678 526 | 525 -9.46678 527 | 526 -9.46678 528 | 527 -9.46678 529 | 528 -9.46678 530 | 529 -9.4662 531 | 530 -9.4623 532 | 531 -9.4623 533 | 532 -9.4623 534 | 533 -9.4623 535 | 534 -9.4623 536 | 535 -9.4623 537 | 536 -9.4623 538 | 537 -9.4623 539 | 538 -9.4623 540 | 539 -9.4623 541 | 540 -9.4623 542 | 541 -9.4623 543 | 542 -9.4623 544 | 543 -9.4623 545 | 544 -9.4623 546 | 545 -9.4623 547 | 546 -9.4623 548 | 547 -9.4623 549 | 548 -9.4623 550 | 549 -9.4623 551 | 550 -9.4623 552 | 551 -9.4623 553 | 552 -9.4623 554 | 553 -9.4623 555 | 554 -9.4623 556 | 555 -9.4623 557 | 556 -9.4623 558 | 557 -9.4623 559 | 558 -9.45852 560 | 559 -9.45852 561 | 560 -9.45852 562 | 561 -9.45852 563 | 562 -9.45767 564 | 563 -9.45767 565 | 564 -9.45767 566 | 565 -9.45767 567 | 566 -9.45767 568 | 567 -9.45767 569 | 568 -9.45767 570 | 569 -9.45767 571 | 570 -9.45767 572 | 571 -9.45767 573 | 572 -9.44911 574 | 573 -9.44911 575 | 574 -9.44911 576 | 575 -9.44911 577 | 576 -9.44911 578 | 577 -9.44911 579 | 578 -9.44911 580 | 579 -9.44911 581 | 580 -9.44911 582 | 581 -9.44911 583 | 582 -9.44911 584 | 583 -9.44911 585 | 584 -9.44911 586 | 585 -9.44911 587 | 586 -9.44911 588 | 587 -9.44911 589 | 588 -9.44911 590 | 589 -9.44911 591 | 590 -9.44911 592 | 591 -9.44911 593 | 592 -9.44911 594 | 593 -9.44911 595 | 594 -9.44911 596 | 595 -9.44911 597 | 596 -9.44911 598 | 597 -9.44911 599 | 598 -9.44911 600 | 599 -9.44911 601 | 600 -9.44902 602 | 601 -9.44902 603 | 602 -9.44902 604 | 603 -9.44902 605 | 604 -9.44902 606 | 605 -9.44902 607 | 606 -9.44902 608 | 607 -9.44902 609 | 608 -9.44902 610 | 609 -9.44902 611 | 610 -9.44902 612 | 611 -9.44902 613 | 612 -9.44902 614 | 613 -9.44902 615 | 614 -9.44902 616 | 615 -9.44902 617 | 616 -9.44036 618 | 617 -9.44036 619 | 618 -9.44036 620 | 619 -9.44036 621 | 620 -9.44036 622 | 621 -9.44036 623 | 622 -9.44036 624 | 623 -9.44036 625 | 624 -9.44036 626 | 625 -9.44036 627 | 626 -9.44036 628 | 627 -9.44036 629 | 628 -9.44036 630 | 629 -9.44036 631 | 630 -9.44036 632 | 631 -9.44036 633 | 632 -9.44036 634 | 633 -9.44036 635 | 634 -9.44036 636 | 635 -9.44036 637 | 636 -9.44036 638 | 637 -9.44036 639 | 638 -9.44036 640 | 639 -9.44036 641 | 640 -9.44036 642 | 641 -9.44036 643 | 642 -9.44036 644 | 643 -9.44036 645 | 644 -9.44036 646 | 645 -9.44036 647 | 646 -9.44036 648 | 647 -9.44036 649 | 648 -9.44036 650 | 649 -9.44036 651 | 650 -9.44036 652 | 651 -9.44036 653 | 652 -9.44036 654 | 653 -9.44036 655 | 654 -9.44036 656 | 655 -9.44036 657 | 656 -9.44036 658 | 657 -9.44036 659 | 658 -9.44036 660 | 659 -9.44036 661 | 660 -9.43327 662 | 661 -9.43327 663 | 662 -9.43327 664 | 663 -9.43327 665 | 664 -9.43327 666 | 665 -9.43327 667 | 666 -9.43327 668 | 667 -9.43327 669 | 668 -9.43327 670 | 669 -9.43327 671 | 670 -9.43327 672 | 671 -9.43327 673 | 672 -9.43327 674 | 673 -9.43327 675 | 674 -9.43327 676 | 675 -9.43327 677 | 676 -9.43327 678 | 677 -9.43327 679 | 678 -9.43327 680 | 679 -9.43164 681 | 680 -9.43164 682 | 681 -9.43164 683 | 682 -9.43164 684 | 683 -9.43164 685 | 684 -9.43164 686 | 685 -9.43164 687 | 686 -9.43164 688 | 687 -9.43164 689 | 688 -9.43164 690 | 689 -9.43164 691 | 690 -9.43164 692 | 691 -9.43164 693 | 692 -9.43164 694 | 693 -9.43164 695 | 694 -9.43164 696 | 695 -9.43164 697 | 696 -9.43164 698 | 697 -9.43164 699 | 698 -9.43164 700 | 699 -9.43164 701 | 700 -9.43164 702 | 701 -9.43164 703 | 702 -9.43164 704 | 703 -9.43164 705 | 704 -9.43164 706 | 705 -9.43164 707 | 706 -9.43164 708 | 707 -9.43164 709 | 708 -9.43164 710 | 709 -9.43164 711 | 710 -9.43164 712 | 711 -9.43164 713 | 712 -9.43164 714 | 713 -9.43164 715 | 714 -9.43164 716 | 715 -9.43164 717 | 716 -9.43164 718 | 717 -9.43164 719 | 718 -9.43164 720 | 719 -9.43164 721 | 720 -9.43164 722 | 721 -9.43164 723 | 722 -9.43164 724 | 723 -9.4304 725 | 724 -9.4304 726 | 725 -9.4304 727 | 726 -9.4304 728 | 727 -9.4304 729 | 728 -9.4304 730 | 729 -9.4304 731 | 730 -9.4304 732 | 731 -9.4304 733 | 732 -9.4304 734 | 733 -9.4304 735 | 734 -9.4304 736 | 735 -9.4304 737 | 736 -9.4304 738 | 737 -9.4304 739 | 738 -9.4304 740 | 739 -9.4304 741 | 740 -9.4304 742 | 741 -9.4304 743 | 742 -9.4304 744 | 743 -9.4304 745 | 744 -9.4304 746 | 745 -9.4304 747 | 746 -9.4304 748 | 747 -9.4304 749 | 748 -9.4304 750 | 749 -9.4304 751 | 750 -9.4304 752 | 751 -9.4304 753 | 752 -9.4304 754 | 753 -9.4304 755 | 754 -9.4304 756 | 755 -9.4304 757 | 756 -9.4304 758 | 757 -9.4304 759 | 758 -9.4304 760 | 759 -9.4304 761 | 760 -9.4304 762 | 761 -9.4304 763 | 762 -9.4304 764 | 763 -9.4304 765 | 764 -9.4304 766 | 765 -9.4304 767 | 766 -9.4304 768 | 767 -9.4304 769 | 768 -9.4304 770 | 769 -9.4304 771 | 770 -9.4304 772 | 771 -9.4304 773 | 772 -9.4304 774 | 773 -9.4304 775 | 774 -9.4304 776 | 775 -9.4304 777 | 776 -9.4304 778 | 777 -9.4304 779 | 778 -9.4304 780 | 779 -9.4304 781 | 780 -9.4304 782 | 781 -9.4304 783 | 782 -9.42161 784 | 783 -9.42161 785 | 784 -9.42161 786 | 785 -9.42161 787 | 786 -9.42161 788 | 787 -9.42161 789 | 788 -9.42161 790 | 789 -9.42161 791 | 790 -9.42161 792 | 791 -9.42161 793 | 792 -9.42161 794 | 793 -9.42161 795 | 794 -9.42161 796 | 795 -9.42161 797 | 796 -9.42161 798 | 797 -9.42161 799 | 798 -9.42161 800 | 799 -9.42161 801 | 800 -9.42161 802 | 801 -9.42161 803 | 802 -9.41835 804 | 803 -9.41835 805 | 804 -9.41835 806 | 805 -9.41835 807 | 806 -9.41835 808 | 807 -9.41835 809 | 808 -9.41835 810 | 809 -9.41835 811 | 810 -9.41835 812 | 811 -9.41835 813 | 812 -9.41835 814 | 813 -9.41835 815 | 814 -9.41835 816 | 815 -9.41835 817 | 816 -9.41835 818 | 817 -9.41835 819 | 818 -9.41835 820 | 819 -9.41835 821 | 820 -9.41835 822 | 821 -9.41835 823 | 822 -9.41835 824 | 823 -9.41835 825 | 824 -9.41835 826 | 825 -9.41835 827 | 826 -9.41835 828 | 827 -9.41835 829 | 828 -9.41835 830 | 829 -9.41835 831 | 830 -9.41835 832 | 831 -9.41835 833 | 832 -9.41835 834 | 833 -9.41835 835 | 834 -9.41835 836 | 835 -9.41835 837 | 836 -9.41835 838 | 837 -9.41835 839 | 838 -9.41835 840 | 839 -9.41835 841 | 840 -9.41835 842 | 841 -9.41835 843 | 842 -9.41835 844 | 843 -9.41835 845 | 844 -9.41835 846 | 845 -9.41835 847 | 846 -9.41835 848 | 847 -9.41835 849 | 848 -9.41835 850 | 849 -9.41835 851 | 850 -9.41835 852 | 851 -9.41835 853 | 852 -9.41835 854 | 853 -9.41835 855 | 854 -9.41835 856 | 855 -9.41835 857 | 856 -9.41835 858 | 857 -9.41835 859 | 858 -9.41835 860 | 859 -9.41835 861 | 860 -9.41835 862 | 861 -9.41835 863 | 862 -9.41835 864 | 863 -9.41835 865 | 864 -9.41835 866 | 865 -9.41835 867 | 866 -9.41835 868 | 867 -9.41835 869 | 868 -9.41835 870 | 869 -9.41835 871 | 870 -9.41835 872 | 871 -9.41835 873 | 872 -9.41835 874 | 873 -9.41835 875 | 874 -9.41835 876 | 875 -9.41835 877 | 876 -9.41835 878 | 877 -9.41835 879 | 878 -9.41835 880 | 879 -9.41835 881 | 880 -9.41835 882 | 881 -9.41835 883 | 882 -9.41835 884 | 883 -9.41835 885 | 884 -9.41835 886 | 885 -9.41835 887 | 886 -9.41835 888 | 887 -9.41835 889 | 888 -9.41835 890 | 889 -9.41835 891 | 890 -9.41835 892 | 891 -9.41835 893 | 892 -9.41835 894 | 893 -9.41835 895 | 894 -9.41835 896 | 895 -9.41835 897 | 896 -9.41835 898 | 897 -9.41835 899 | 898 -9.41835 900 | 899 -9.41835 901 | 900 -9.41835 902 | 901 -9.41835 903 | 902 -9.41835 904 | 903 -9.41835 905 | 904 -9.41835 906 | 905 -9.41835 907 | 906 -9.41835 908 | 907 -9.41835 909 | 908 -9.41835 910 | 909 -9.41835 911 | 910 -9.41835 912 | 911 -9.41835 913 | 912 -9.41835 914 | 913 -9.41835 915 | 914 -9.41835 916 | 915 -9.41835 917 | 916 -9.41835 918 | 917 -9.41835 919 | 918 -9.41835 920 | 919 -9.41835 921 | 920 -9.41835 922 | 921 -9.41835 923 | 922 -9.41835 924 | 923 -9.41835 925 | 924 -9.41835 926 | 925 -9.41835 927 | 926 -9.41835 928 | 927 -9.41835 929 | 928 -9.41835 930 | 929 -9.41835 931 | 930 -9.41835 932 | 931 -9.41835 933 | 932 -9.41835 934 | 933 -9.41835 935 | 934 -9.41835 936 | 935 -9.41835 937 | 936 -9.41835 938 | 937 -9.41835 939 | 938 -9.41835 940 | 939 -9.41835 941 | 940 -9.41835 942 | 941 -9.41835 943 | 942 -9.41835 944 | 943 -9.41835 945 | 944 -9.41835 946 | 945 -9.41835 947 | 946 -9.41835 948 | 947 -9.41835 949 | 948 -9.41835 950 | 949 -9.41835 951 | 950 -9.41835 952 | 951 -9.41835 953 | 952 -9.41835 954 | 953 -9.41835 955 | 954 -9.41835 956 | 955 -9.41788 957 | 956 -9.41788 958 | 957 -9.41788 959 | 958 -9.41788 960 | 959 -9.41788 961 | 960 -9.41788 962 | 961 -9.41788 963 | 962 -9.41788 964 | 963 -9.41788 965 | 964 -9.41788 966 | 965 -9.41788 967 | 966 -9.41788 968 | 967 -9.41788 969 | 968 -9.41788 970 | 969 -9.41788 971 | 970 -9.41788 972 | 971 -9.41788 973 | 972 -9.41788 974 | 973 -9.41788 975 | 974 -9.41788 976 | 975 -9.41788 977 | 976 -9.41611 978 | 977 -9.41611 979 | 978 -9.41611 980 | 979 -9.41611 981 | 980 -9.41611 982 | 981 -9.41611 983 | 982 -9.41611 984 | 983 -9.41611 985 | 984 -9.41611 986 | 985 -9.41611 987 | 986 -9.41611 988 | 987 -9.41611 989 | 988 -9.41611 990 | 989 -9.41611 991 | 990 -9.41611 992 | 991 -9.41611 993 | 992 -9.41611 994 | 993 -9.41611 995 | 994 -9.41611 996 | 995 -9.41611 997 | 996 -9.41611 998 | 997 -9.41611 999 | 998 -9.41611 1000 | 999 -9.41611 1001 | -------------------------------------------------------------------------------- /src/data/high_mut/exp_27/node08_2014-07-15_16_42_52_8739/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -5098.02 2 | 1 -5098.02 3 | 2 -5098.02 4 | 3 -5098.02 5 | 4 -5098.02 6 | 5 -5098.02 7 | 6 -5098.02 8 | 7 -5098.02 9 | 8 -5098.02 10 | 9 -5098.02 11 | 10 -5098.02 12 | 11 -5098.02 13 | 12 -5098.02 14 | 13 -5098.02 15 | 14 -5098.02 16 | 15 -5098.02 17 | 16 -5098.02 18 | 17 -5098.02 19 | 18 -5098.02 20 | 19 -5098.02 21 | 20 -5098.02 22 | 21 -5098.02 23 | 22 -5098.02 24 | 23 -5098.02 25 | 24 -5098.02 26 | 25 -5098.02 27 | 26 -4364.78 28 | 27 -4364.78 29 | 28 -4364.78 30 | 29 -4364.78 31 | 30 -4364.78 32 | 31 -4364.78 33 | 32 -4364.78 34 | 33 -3788.71 35 | 34 -3399.6 36 | 35 -3399.6 37 | 36 -3399.6 38 | 37 -3399.6 39 | 38 -3399.6 40 | 39 -3399.6 41 | 40 -2884.26 42 | 41 -2884.26 43 | 42 -2884.26 44 | 43 -2884.26 45 | 44 -2884.26 46 | 45 -1278.69 47 | 46 -1278.69 48 | 47 -1278.69 49 | 48 -1278.69 50 | 49 -1278.69 51 | 50 -1278.69 52 | 51 -1278.69 53 | 52 -1278.69 54 | 53 -1278.69 55 | 54 -1278.69 56 | 55 -1278.69 57 | 56 -1278.69 58 | 57 -1278.69 59 | 58 -1278.69 60 | 59 -1278.69 61 | 60 -1278.69 62 | 61 -1065.22 63 | 62 -1065.22 64 | 63 -1065.22 65 | 64 -1065.22 66 | 65 -1065.22 67 | 66 -1065.22 68 | 67 -1065.22 69 | 68 -1065.22 70 | 69 -1065.22 71 | 70 -1065.22 72 | 71 -1065.22 73 | 72 -1065.22 74 | 73 -1065.22 75 | 74 -1065.22 76 | 75 -1065.22 77 | 76 -1065.22 78 | 77 -1065.22 79 | 78 -1065.22 80 | 79 -1065.22 81 | 80 -1065.22 82 | 81 -1065.22 83 | 82 -1065.22 84 | 83 -1065.22 85 | 84 -1065.22 86 | 85 -1065.22 87 | 86 -1065.22 88 | 87 -683.977 89 | 88 -683.977 90 | 89 -683.977 91 | 90 -683.977 92 | 91 -683.977 93 | 92 -683.977 94 | 93 -683.977 95 | 94 -683.977 96 | 95 -683.977 97 | 96 -683.977 98 | 97 -683.977 99 | 98 -683.977 100 | 99 -683.977 101 | 100 -515.887 102 | 101 -515.887 103 | 102 -515.887 104 | 103 -515.887 105 | 104 -510.372 106 | 105 -510.372 107 | 106 -510.372 108 | 107 -510.372 109 | 108 -510.372 110 | 109 -510.372 111 | 110 -510.372 112 | 111 -434.842 113 | 112 -434.842 114 | 113 -434.842 115 | 114 -434.842 116 | 115 -434.842 117 | 116 -394.558 118 | 117 -394.558 119 | 118 -394.558 120 | 119 -146.277 121 | 120 -146.277 122 | 121 -146.277 123 | 122 -146.277 124 | 123 -146.277 125 | 124 -146.277 126 | 125 -146.277 127 | 126 -146.277 128 | 127 -146.277 129 | 128 -146.277 130 | 129 -146.277 131 | 130 -146.277 132 | 131 -146.277 133 | 132 -146.277 134 | 133 -115.201 135 | 134 -115.201 136 | 135 -115.201 137 | 136 -115.201 138 | 137 -115.201 139 | 138 -115.201 140 | 139 -82.7244 141 | 140 -82.7244 142 | 141 -82.7244 143 | 142 -82.7244 144 | 143 -82.7244 145 | 144 -82.7244 146 | 145 -82.7244 147 | 146 -60.8038 148 | 147 -60.8038 149 | 148 -60.8038 150 | 149 -60.8038 151 | 150 -60.8038 152 | 151 -60.8038 153 | 152 -60.8038 154 | 153 -60.8038 155 | 154 -60.8038 156 | 155 -60.8038 157 | 156 -60.8038 158 | 157 -60.8038 159 | 158 -46.3586 160 | 159 -46.3586 161 | 160 -46.3586 162 | 161 -46.3586 163 | 162 -46.3586 164 | 163 -46.3586 165 | 164 -46.3586 166 | 165 -46.3586 167 | 166 -46.3586 168 | 167 -46.3586 169 | 168 -46.3586 170 | 169 -46.3586 171 | 170 -46.3586 172 | 171 -18.1739 173 | 172 -18.1739 174 | 173 -18.1739 175 | 174 -18.1739 176 | 175 -18.1739 177 | 176 -18.1739 178 | 177 -18.1739 179 | 178 -18.1739 180 | 179 -18.1739 181 | 180 -18.1739 182 | 181 -18.1739 183 | 182 -18.1739 184 | 183 -18.1739 185 | 184 -18.1739 186 | 185 -18.1739 187 | 186 -18.1739 188 | 187 -18.1739 189 | 188 -18.1739 190 | 189 -18.1739 191 | 190 -18.1739 192 | 191 -18.1739 193 | 192 -18.1739 194 | 193 -18.1739 195 | 194 -18.1739 196 | 195 -18.1739 197 | 196 -18.1739 198 | 197 -18.1739 199 | 198 -18.1739 200 | 199 -18.1739 201 | 200 -18.1739 202 | 201 -18.1739 203 | 202 -18.1739 204 | 203 -14.4472 205 | 204 -14.4472 206 | 205 -14.4472 207 | 206 -14.4472 208 | 207 -14.4472 209 | 208 -14.4472 210 | 209 -14.4472 211 | 210 -14.4472 212 | 211 -14.4472 213 | 212 -14.4472 214 | 213 -14.4472 215 | 214 -14.4472 216 | 215 -14.4472 217 | 216 -14.4472 218 | 217 -14.4472 219 | 218 -14.4472 220 | 219 -14.4472 221 | 220 -13.465 222 | 221 -13.465 223 | 222 -13.465 224 | 223 -13.465 225 | 224 -13.465 226 | 225 -13.465 227 | 226 -13.465 228 | 227 -13.465 229 | 228 -13.465 230 | 229 -13.465 231 | 230 -13.465 232 | 231 -13.465 233 | 232 -13.465 234 | 233 -13.465 235 | 234 -13.465 236 | 235 -13.465 237 | 236 -12.0338 238 | 237 -12.0338 239 | 238 -12.0338 240 | 239 -12.0338 241 | 240 -12.0338 242 | 241 -12.0338 243 | 242 -12.0338 244 | 243 -12.0338 245 | 244 -10.5859 246 | 245 -10.5859 247 | 246 -10.5859 248 | 247 -10.5859 249 | 248 -10.5859 250 | 249 -10.5859 251 | 250 -10.5859 252 | 251 -10.5859 253 | 252 -10.5859 254 | 253 -10.5859 255 | 254 -10.5859 256 | 255 -10.5859 257 | 256 -10.5859 258 | 257 -10.5859 259 | 258 -10.5859 260 | 259 -10.5859 261 | 260 -10.5859 262 | 261 -10.5859 263 | 262 -10.5859 264 | 263 -10.5859 265 | 264 -10.5859 266 | 265 -10.5859 267 | 266 -10.5859 268 | 267 -10.5859 269 | 268 -10.5859 270 | 269 -10.5859 271 | 270 -10.5859 272 | 271 -10.5859 273 | 272 -10.5859 274 | 273 -10.5859 275 | 274 -10.5859 276 | 275 -10.5859 277 | 276 -10.5859 278 | 277 -10.5621 279 | 278 -9.90776 280 | 279 -9.90776 281 | 280 -9.90776 282 | 281 -9.90776 283 | 282 -9.64798 284 | 283 -9.64798 285 | 284 -9.64798 286 | 285 -9.64798 287 | 286 -9.64798 288 | 287 -9.64798 289 | 288 -9.64798 290 | 289 -9.64798 291 | 290 -9.64798 292 | 291 -9.64798 293 | 292 -9.64798 294 | 293 -9.64798 295 | 294 -9.64798 296 | 295 -9.64798 297 | 296 -9.64798 298 | 297 -9.64798 299 | 298 -9.64798 300 | 299 -9.64798 301 | 300 -9.64798 302 | 301 -9.64798 303 | 302 -9.64798 304 | 303 -9.64798 305 | 304 -9.64798 306 | 305 -9.64798 307 | 306 -9.64798 308 | 307 -9.64798 309 | 308 -9.64798 310 | 309 -9.64798 311 | 310 -9.64798 312 | 311 -9.64798 313 | 312 -9.64798 314 | 313 -9.64798 315 | 314 -9.64798 316 | 315 -9.64798 317 | 316 -9.64798 318 | 317 -9.64798 319 | 318 -9.64798 320 | 319 -9.64798 321 | 320 -9.64798 322 | 321 -9.64798 323 | 322 -9.64798 324 | 323 -9.64798 325 | 324 -9.64798 326 | 325 -9.64798 327 | 326 -9.64798 328 | 327 -9.64798 329 | 328 -9.64798 330 | 329 -9.64798 331 | 330 -9.64798 332 | 331 -9.64798 333 | 332 -9.64798 334 | 333 -9.64798 335 | 334 -9.64798 336 | 335 -9.64798 337 | 336 -9.64798 338 | 337 -9.64798 339 | 338 -9.64798 340 | 339 -9.64798 341 | 340 -9.64798 342 | 341 -9.64798 343 | 342 -9.64798 344 | 343 -9.64798 345 | 344 -9.64798 346 | 345 -9.64798 347 | 346 -9.64798 348 | 347 -9.64798 349 | 348 -9.64798 350 | 349 -9.64798 351 | 350 -9.64798 352 | 351 -9.64798 353 | 352 -9.64798 354 | 353 -9.64798 355 | 354 -9.64798 356 | 355 -9.64798 357 | 356 -9.64798 358 | 357 -9.64798 359 | 358 -9.64798 360 | 359 -9.64798 361 | 360 -9.64798 362 | 361 -9.64798 363 | 362 -9.64798 364 | 363 -9.64798 365 | 364 -9.64798 366 | 365 -9.64798 367 | 366 -9.64798 368 | 367 -9.64798 369 | 368 -9.64798 370 | 369 -9.64798 371 | 370 -9.64798 372 | 371 -9.64798 373 | 372 -9.64798 374 | 373 -9.64798 375 | 374 -9.64798 376 | 375 -9.64798 377 | 376 -9.64798 378 | 377 -9.64798 379 | 378 -9.64798 380 | 379 -9.64798 381 | 380 -9.64798 382 | 381 -9.64798 383 | 382 -9.61832 384 | 383 -9.61832 385 | 384 -9.61832 386 | 385 -9.61832 387 | 386 -9.61832 388 | 387 -9.61832 389 | 388 -9.61832 390 | 389 -9.61832 391 | 390 -9.61832 392 | 391 -9.61455 393 | 392 -9.61455 394 | 393 -9.61455 395 | 394 -9.61455 396 | 395 -9.61455 397 | 396 -9.61455 398 | 397 -9.61455 399 | 398 -9.61455 400 | 399 -9.61455 401 | 400 -9.61455 402 | 401 -9.61455 403 | 402 -9.61455 404 | 403 -9.61455 405 | 404 -9.61455 406 | 405 -9.61455 407 | 406 -9.61455 408 | 407 -9.61455 409 | 408 -9.61455 410 | 409 -9.61455 411 | 410 -9.61455 412 | 411 -9.61455 413 | 412 -9.61455 414 | 413 -9.61455 415 | 414 -9.61455 416 | 415 -9.61455 417 | 416 -9.61455 418 | 417 -9.61455 419 | 418 -9.61455 420 | 419 -9.61455 421 | 420 -9.61455 422 | 421 -9.553 423 | 422 -9.553 424 | 423 -9.553 425 | 424 -9.553 426 | 425 -9.553 427 | 426 -9.553 428 | 427 -9.553 429 | 428 -9.553 430 | 429 -9.553 431 | 430 -9.553 432 | 431 -9.553 433 | 432 -9.553 434 | 433 -9.553 435 | 434 -9.553 436 | 435 -9.553 437 | 436 -9.553 438 | 437 -9.553 439 | 438 -9.553 440 | 439 -9.553 441 | 440 -9.553 442 | 441 -9.553 443 | 442 -9.553 444 | 443 -9.553 445 | 444 -9.553 446 | 445 -9.553 447 | 446 -9.553 448 | 447 -9.553 449 | 448 -9.553 450 | 449 -9.553 451 | 450 -9.553 452 | 451 -9.553 453 | 452 -9.553 454 | 453 -9.553 455 | 454 -9.553 456 | 455 -9.553 457 | 456 -9.553 458 | 457 -9.553 459 | 458 -9.553 460 | 459 -9.553 461 | 460 -9.553 462 | 461 -9.553 463 | 462 -9.553 464 | 463 -9.553 465 | 464 -9.553 466 | 465 -9.553 467 | 466 -9.553 468 | 467 -9.553 469 | 468 -9.553 470 | 469 -9.553 471 | 470 -9.553 472 | 471 -9.553 473 | 472 -9.553 474 | 473 -9.553 475 | 474 -9.553 476 | 475 -9.553 477 | 476 -9.553 478 | 477 -9.553 479 | 478 -9.553 480 | 479 -9.553 481 | 480 -9.553 482 | 481 -9.553 483 | 482 -9.48808 484 | 483 -9.48808 485 | 484 -9.48808 486 | 485 -9.48808 487 | 486 -9.48808 488 | 487 -9.48808 489 | 488 -9.48808 490 | 489 -9.48808 491 | 490 -9.48808 492 | 491 -9.48808 493 | 492 -9.48808 494 | 493 -9.48808 495 | 494 -9.48808 496 | 495 -9.48808 497 | 496 -9.48808 498 | 497 -9.48808 499 | 498 -9.48808 500 | 499 -9.48808 501 | 500 -9.48808 502 | 501 -9.48808 503 | 502 -9.48808 504 | 503 -9.48808 505 | 504 -9.48808 506 | 505 -9.48808 507 | 506 -9.48808 508 | 507 -9.48808 509 | 508 -9.48808 510 | 509 -9.48808 511 | 510 -9.46701 512 | 511 -9.46701 513 | 512 -9.46701 514 | 513 -9.46701 515 | 514 -9.46701 516 | 515 -9.46701 517 | 516 -9.46701 518 | 517 -9.46701 519 | 518 -9.46701 520 | 519 -9.46701 521 | 520 -9.46701 522 | 521 -9.46701 523 | 522 -9.46701 524 | 523 -9.46701 525 | 524 -9.46701 526 | 525 -9.46701 527 | 526 -9.46701 528 | 527 -9.46701 529 | 528 -9.46701 530 | 529 -9.46701 531 | 530 -9.46701 532 | 531 -9.46701 533 | 532 -9.46701 534 | 533 -9.46701 535 | 534 -9.46701 536 | 535 -9.46701 537 | 536 -9.46701 538 | 537 -9.46701 539 | 538 -9.46701 540 | 539 -9.46701 541 | 540 -9.46701 542 | 541 -9.46701 543 | 542 -9.46701 544 | 543 -9.46701 545 | 544 -9.46701 546 | 545 -9.46701 547 | 546 -9.46701 548 | 547 -9.46701 549 | 548 -9.46701 550 | 549 -9.46701 551 | 550 -9.46701 552 | 551 -9.46701 553 | 552 -9.46701 554 | 553 -9.46701 555 | 554 -9.46701 556 | 555 -9.46701 557 | 556 -9.46701 558 | 557 -9.46701 559 | 558 -9.46701 560 | 559 -9.46701 561 | 560 -9.46701 562 | 561 -9.46701 563 | 562 -9.46701 564 | 563 -9.46701 565 | 564 -9.46701 566 | 565 -9.46701 567 | 566 -9.46701 568 | 567 -9.46701 569 | 568 -9.46701 570 | 569 -9.46701 571 | 570 -9.46701 572 | 571 -9.46701 573 | 572 -9.46701 574 | 573 -9.46701 575 | 574 -9.46701 576 | 575 -9.46701 577 | 576 -9.46701 578 | 577 -9.46701 579 | 578 -9.46701 580 | 579 -9.46701 581 | 580 -9.46701 582 | 581 -9.46701 583 | 582 -9.46701 584 | 583 -9.46701 585 | 584 -9.46701 586 | 585 -9.44902 587 | 586 -9.44902 588 | 587 -9.44902 589 | 588 -9.44902 590 | 589 -9.44902 591 | 590 -9.44902 592 | 591 -9.44902 593 | 592 -9.44902 594 | 593 -9.44902 595 | 594 -9.44902 596 | 595 -9.44902 597 | 596 -9.44902 598 | 597 -9.44902 599 | 598 -9.44902 600 | 599 -9.44902 601 | 600 -9.44902 602 | 601 -9.44902 603 | 602 -9.44902 604 | 603 -9.44902 605 | 604 -9.44902 606 | 605 -9.44902 607 | 606 -9.44902 608 | 607 -9.44902 609 | 608 -9.44902 610 | 609 -9.44902 611 | 610 -9.44902 612 | 611 -9.44902 613 | 612 -9.44902 614 | 613 -9.44902 615 | 614 -9.44902 616 | 615 -9.44902 617 | 616 -9.44902 618 | 617 -9.44902 619 | 618 -9.44902 620 | 619 -9.44902 621 | 620 -9.44902 622 | 621 -9.44902 623 | 622 -9.44902 624 | 623 -9.44902 625 | 624 -9.44902 626 | 625 -9.44902 627 | 626 -9.44902 628 | 627 -9.44902 629 | 628 -9.44902 630 | 629 -9.44902 631 | 630 -9.44902 632 | 631 -9.44902 633 | 632 -9.44902 634 | 633 -9.44902 635 | 634 -9.44902 636 | 635 -9.44902 637 | 636 -9.44902 638 | 637 -9.44902 639 | 638 -9.44902 640 | 639 -9.44902 641 | 640 -9.44902 642 | 641 -9.44902 643 | 642 -9.44902 644 | 643 -9.44902 645 | 644 -9.44902 646 | 645 -9.44902 647 | 646 -9.44902 648 | 647 -9.44902 649 | 648 -9.44902 650 | 649 -9.44902 651 | 650 -9.44902 652 | 651 -9.44902 653 | 652 -9.44902 654 | 653 -9.44902 655 | 654 -9.44902 656 | 655 -9.44902 657 | 656 -9.44902 658 | 657 -9.44902 659 | 658 -9.44902 660 | 659 -9.44902 661 | 660 -9.44902 662 | 661 -9.44902 663 | 662 -9.44902 664 | 663 -9.44902 665 | 664 -9.44902 666 | 665 -9.44902 667 | 666 -9.44902 668 | 667 -9.44902 669 | 668 -9.44466 670 | 669 -9.44466 671 | 670 -9.44466 672 | 671 -9.44466 673 | 672 -9.44466 674 | 673 -9.44338 675 | 674 -9.44338 676 | 675 -9.44338 677 | 676 -9.44338 678 | 677 -9.44338 679 | 678 -9.44338 680 | 679 -9.44338 681 | 680 -9.44338 682 | 681 -9.44338 683 | 682 -9.44338 684 | 683 -9.4308 685 | 684 -9.4308 686 | 685 -9.4308 687 | 686 -9.4308 688 | 687 -9.4308 689 | 688 -9.4308 690 | 689 -9.4308 691 | 690 -9.4308 692 | 691 -9.4308 693 | 692 -9.4308 694 | 693 -9.4308 695 | 694 -9.4308 696 | 695 -9.4308 697 | 696 -9.4308 698 | 697 -9.4308 699 | 698 -9.4308 700 | 699 -9.4308 701 | 700 -9.4308 702 | 701 -9.4308 703 | 702 -9.4308 704 | 703 -9.4308 705 | 704 -9.4308 706 | 705 -9.4308 707 | 706 -9.4308 708 | 707 -9.4308 709 | 708 -9.4308 710 | 709 -9.4308 711 | 710 -9.4308 712 | 711 -9.4308 713 | 712 -9.4308 714 | 713 -9.4308 715 | 714 -9.4308 716 | 715 -9.4308 717 | 716 -9.4308 718 | 717 -9.4308 719 | 718 -9.4308 720 | 719 -9.4308 721 | 720 -9.4308 722 | 721 -9.4308 723 | 722 -9.4308 724 | 723 -9.4308 725 | 724 -9.4308 726 | 725 -9.4308 727 | 726 -9.4308 728 | 727 -9.4308 729 | 728 -9.4308 730 | 729 -9.4308 731 | 730 -9.4308 732 | 731 -9.4308 733 | 732 -9.4308 734 | 733 -9.4308 735 | 734 -9.4308 736 | 735 -9.4308 737 | 736 -9.4308 738 | 737 -9.4308 739 | 738 -9.4308 740 | 739 -9.4308 741 | 740 -9.4308 742 | 741 -9.4308 743 | 742 -9.4308 744 | 743 -9.4308 745 | 744 -9.4308 746 | 745 -9.4308 747 | 746 -9.4308 748 | 747 -9.4308 749 | 748 -9.4308 750 | 749 -9.4308 751 | 750 -9.4308 752 | 751 -9.4308 753 | 752 -9.4308 754 | 753 -9.4308 755 | 754 -9.4308 756 | 755 -9.4308 757 | 756 -9.4308 758 | 757 -9.4308 759 | 758 -9.4308 760 | 759 -9.4308 761 | 760 -9.4308 762 | 761 -9.4308 763 | 762 -9.4308 764 | 763 -9.4308 765 | 764 -9.4308 766 | 765 -9.4308 767 | 766 -9.4308 768 | 767 -9.4308 769 | 768 -9.4308 770 | 769 -9.4308 771 | 770 -9.4308 772 | 771 -9.4308 773 | 772 -9.4308 774 | 773 -9.4308 775 | 774 -9.4308 776 | 775 -9.4308 777 | 776 -9.4308 778 | 777 -9.4308 779 | 778 -9.4308 780 | 779 -9.4308 781 | 780 -9.4308 782 | 781 -9.4308 783 | 782 -9.4308 784 | 783 -9.4308 785 | 784 -9.4308 786 | 785 -9.4308 787 | 786 -9.4308 788 | 787 -9.4308 789 | 788 -9.4308 790 | 789 -9.4308 791 | 790 -9.4308 792 | 791 -9.4308 793 | 792 -9.4308 794 | 793 -9.4308 795 | 794 -9.4308 796 | 795 -9.4308 797 | 796 -9.4308 798 | 797 -9.4308 799 | 798 -9.4308 800 | 799 -9.4308 801 | 800 -9.4308 802 | 801 -9.4308 803 | 802 -9.4308 804 | 803 -9.4308 805 | 804 -9.4308 806 | 805 -9.4308 807 | 806 -9.4308 808 | 807 -9.4308 809 | 808 -9.4308 810 | 809 -9.4308 811 | 810 -9.4308 812 | 811 -9.4308 813 | 812 -9.4308 814 | 813 -9.4308 815 | 814 -9.4308 816 | 815 -9.43021 817 | 816 -9.43021 818 | 817 -9.43021 819 | 818 -9.43021 820 | 819 -9.43021 821 | 820 -9.43021 822 | 821 -9.43021 823 | 822 -9.43021 824 | 823 -9.43021 825 | 824 -9.43021 826 | 825 -9.43021 827 | 826 -9.43021 828 | 827 -9.43021 829 | 828 -9.43021 830 | 829 -9.43021 831 | 830 -9.43021 832 | 831 -9.43021 833 | 832 -9.43021 834 | 833 -9.43021 835 | 834 -9.43021 836 | 835 -9.43021 837 | 836 -9.43021 838 | 837 -9.43021 839 | 838 -9.43021 840 | 839 -9.42978 841 | 840 -9.42978 842 | 841 -9.42978 843 | 842 -9.42978 844 | 843 -9.42978 845 | 844 -9.42978 846 | 845 -9.42978 847 | 846 -9.42978 848 | 847 -9.42978 849 | 848 -9.42978 850 | 849 -9.42978 851 | 850 -9.42821 852 | 851 -9.42821 853 | 852 -9.42821 854 | 853 -9.42821 855 | 854 -9.42821 856 | 855 -9.42821 857 | 856 -9.42821 858 | 857 -9.42821 859 | 858 -9.42821 860 | 859 -9.42821 861 | 860 -9.42821 862 | 861 -9.42821 863 | 862 -9.42821 864 | 863 -9.42821 865 | 864 -9.42821 866 | 865 -9.42821 867 | 866 -9.42821 868 | 867 -9.42821 869 | 868 -9.42821 870 | 869 -9.42821 871 | 870 -9.42821 872 | 871 -9.42821 873 | 872 -9.42821 874 | 873 -9.42821 875 | 874 -9.42821 876 | 875 -9.42821 877 | 876 -9.42821 878 | 877 -9.42821 879 | 878 -9.42821 880 | 879 -9.42725 881 | 880 -9.42725 882 | 881 -9.42725 883 | 882 -9.42725 884 | 883 -9.42725 885 | 884 -9.42725 886 | 885 -9.42725 887 | 886 -9.42725 888 | 887 -9.42725 889 | 888 -9.42725 890 | 889 -9.42725 891 | 890 -9.42725 892 | 891 -9.42725 893 | 892 -9.42725 894 | 893 -9.42725 895 | 894 -9.42725 896 | 895 -9.42725 897 | 896 -9.42725 898 | 897 -9.42725 899 | 898 -9.42725 900 | 899 -9.42725 901 | 900 -9.42725 902 | 901 -9.42725 903 | 902 -9.42725 904 | 903 -9.42725 905 | 904 -9.42725 906 | 905 -9.42725 907 | 906 -9.41331 908 | 907 -9.41331 909 | 908 -9.41331 910 | 909 -9.41331 911 | 910 -9.41331 912 | 911 -9.41331 913 | 912 -9.41331 914 | 913 -9.41331 915 | 914 -9.41331 916 | 915 -9.41331 917 | 916 -9.41331 918 | 917 -9.41331 919 | 918 -9.41331 920 | 919 -9.41331 921 | 920 -9.41331 922 | 921 -9.41331 923 | 922 -9.41331 924 | 923 -9.41331 925 | 924 -9.41331 926 | 925 -9.41331 927 | 926 -9.41331 928 | 927 -9.41331 929 | 928 -9.41331 930 | 929 -9.41331 931 | 930 -9.41331 932 | 931 -9.41331 933 | 932 -9.41331 934 | 933 -9.41331 935 | 934 -9.41331 936 | 935 -9.41331 937 | 936 -9.41331 938 | 937 -9.41331 939 | 938 -9.41331 940 | 939 -9.41331 941 | 940 -9.41331 942 | 941 -9.41331 943 | 942 -9.41331 944 | 943 -9.41331 945 | 944 -9.41331 946 | 945 -9.41331 947 | 946 -9.41331 948 | 947 -9.41331 949 | 948 -9.41331 950 | 949 -9.41331 951 | 950 -9.41316 952 | 951 -9.41316 953 | 952 -9.41316 954 | 953 -9.41316 955 | 954 -9.41316 956 | 955 -9.41316 957 | 956 -9.41316 958 | 957 -9.41316 959 | 958 -9.41316 960 | 959 -9.41316 961 | 960 -9.41316 962 | 961 -9.41316 963 | 962 -9.41316 964 | 963 -9.41316 965 | 964 -9.41316 966 | 965 -9.41316 967 | 966 -9.41316 968 | 967 -9.41316 969 | 968 -9.41316 970 | 969 -9.41316 971 | 970 -9.41316 972 | 971 -9.41316 973 | 972 -9.41316 974 | 973 -9.41316 975 | 974 -9.41316 976 | 975 -9.41316 977 | 976 -9.41316 978 | 977 -9.41316 979 | 978 -9.41316 980 | 979 -9.41316 981 | 980 -9.41316 982 | 981 -9.41316 983 | 982 -9.41316 984 | 983 -9.41316 985 | 984 -9.41316 986 | 985 -9.41063 987 | 986 -9.41063 988 | 987 -9.41063 989 | 988 -9.41063 990 | 989 -9.41063 991 | 990 -9.41063 992 | 991 -9.41063 993 | 992 -9.41063 994 | 993 -9.41063 995 | 994 -9.41063 996 | 995 -9.41063 997 | 996 -9.41063 998 | 997 -9.41063 999 | 998 -9.41063 1000 | 999 -9.41063 1001 | -------------------------------------------------------------------------------- /src/data/high_mut/exp_4/node02_2014-07-15_16_42_47_19172/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -4626.03 2 | 1 -4626.03 3 | 2 -4626.03 4 | 3 -4626.03 5 | 4 -4626.03 6 | 5 -4626.03 7 | 6 -4626.03 8 | 7 -4626.03 9 | 8 -4626.03 10 | 9 -4626.03 11 | 10 -4626.03 12 | 11 -3026.76 13 | 12 -3026.76 14 | 13 -3026.76 15 | 14 -3026.76 16 | 15 -3026.76 17 | 16 -3026.76 18 | 17 -3026.76 19 | 18 -3026.76 20 | 19 -3026.76 21 | 20 -3026.76 22 | 21 -3026.76 23 | 22 -3026.76 24 | 23 -3026.76 25 | 24 -3026.76 26 | 25 -3026.76 27 | 26 -3026.76 28 | 27 -3026.76 29 | 28 -3026.76 30 | 29 -3026.76 31 | 30 -3026.76 32 | 31 -3026.76 33 | 32 -3026.76 34 | 33 -3026.76 35 | 34 -3026.76 36 | 35 -3026.76 37 | 36 -3026.76 38 | 37 -3026.76 39 | 38 -3026.76 40 | 39 -3026.76 41 | 40 -3026.76 42 | 41 -3026.76 43 | 42 -3026.76 44 | 43 -3026.76 45 | 44 -2060.66 46 | 45 -2060.66 47 | 46 -2060.66 48 | 47 -2060.66 49 | 48 -2060.66 50 | 49 -2060.66 51 | 50 -2060.66 52 | 51 -2060.66 53 | 52 -2060.66 54 | 53 -2060.66 55 | 54 -2060.66 56 | 55 -2060.66 57 | 56 -2060.66 58 | 57 -2060.66 59 | 58 -2060.66 60 | 59 -2060.66 61 | 60 -2060.66 62 | 61 -2060.66 63 | 62 -2060.66 64 | 63 -2060.66 65 | 64 -2060.66 66 | 65 -2060.66 67 | 66 -2060.66 68 | 67 -2060.66 69 | 68 -2060.66 70 | 69 -2060.66 71 | 70 -1882.72 72 | 71 -1833.6 73 | 72 -1833.6 74 | 73 -1833.6 75 | 74 -1833.6 76 | 75 -1833.6 77 | 76 -1833.6 78 | 77 -1833.6 79 | 78 -1816.8 80 | 79 -1816.8 81 | 80 -1733.76 82 | 81 -1122.19 83 | 82 -1122.19 84 | 83 -1122.19 85 | 84 -1122.19 86 | 85 -1122.19 87 | 86 -1122.19 88 | 87 -1122.19 89 | 88 -1122.19 90 | 89 -1122.19 91 | 90 -994.836 92 | 91 -994.836 93 | 92 -994.836 94 | 93 -994.836 95 | 94 -986.501 96 | 95 -986.501 97 | 96 -986.501 98 | 97 -986.501 99 | 98 -986.501 100 | 99 -558.744 101 | 100 -558.744 102 | 101 -558.744 103 | 102 -558.744 104 | 103 -558.744 105 | 104 -558.744 106 | 105 -558.744 107 | 106 -558.744 108 | 107 -558.744 109 | 108 -236.331 110 | 109 -236.331 111 | 110 -236.331 112 | 111 -236.331 113 | 112 -236.331 114 | 113 -236.331 115 | 114 -236.331 116 | 115 -236.331 117 | 116 -236.331 118 | 117 -236.331 119 | 118 -236.331 120 | 119 -236.331 121 | 120 -236.331 122 | 121 -236.331 123 | 122 -236.331 124 | 123 -236.331 125 | 124 -236.331 126 | 125 -236.331 127 | 126 -236.331 128 | 127 -236.331 129 | 128 -236.331 130 | 129 -236.331 131 | 130 -236.331 132 | 131 -236.331 133 | 132 -236.331 134 | 133 -169.403 135 | 134 -169.403 136 | 135 -169.403 137 | 136 -169.403 138 | 137 -169.403 139 | 138 -169.403 140 | 139 -169.403 141 | 140 -169.403 142 | 141 -169.403 143 | 142 -169.403 144 | 143 -169.403 145 | 144 -111.252 146 | 145 -111.252 147 | 146 -111.252 148 | 147 -111.252 149 | 148 -111.252 150 | 149 -111.252 151 | 150 -111.252 152 | 151 -111.252 153 | 152 -27.0194 154 | 153 -27.0194 155 | 154 -27.0194 156 | 155 -27.0194 157 | 156 -27.0194 158 | 157 -27.0194 159 | 158 -27.0194 160 | 159 -21.0079 161 | 160 -21.0079 162 | 161 -21.0079 163 | 162 -21.0079 164 | 163 -21.0079 165 | 164 -21.0079 166 | 165 -21.0079 167 | 166 -21.0079 168 | 167 -21.0079 169 | 168 -21.0079 170 | 169 -21.0079 171 | 170 -21.0079 172 | 171 -21.0079 173 | 172 -21.0079 174 | 173 -21.0079 175 | 174 -21.0079 176 | 175 -21.0079 177 | 176 -21.0079 178 | 177 -21.0079 179 | 178 -21.0079 180 | 179 -21.0079 181 | 180 -21.0079 182 | 181 -21.0079 183 | 182 -21.0079 184 | 183 -21.0079 185 | 184 -21.0079 186 | 185 -21.0079 187 | 186 -21.0079 188 | 187 -21.0079 189 | 188 -21.0079 190 | 189 -21.0079 191 | 190 -21.0079 192 | 191 -21.0079 193 | 192 -21.0079 194 | 193 -21.0079 195 | 194 -21.0079 196 | 195 -21.0079 197 | 196 -21.0079 198 | 197 -21.0079 199 | 198 -21.0079 200 | 199 -18.4123 201 | 200 -18.4123 202 | 201 -18.4123 203 | 202 -14.594 204 | 203 -14.594 205 | 204 -14.594 206 | 205 -14.594 207 | 206 -14.594 208 | 207 -14.594 209 | 208 -14.594 210 | 209 -13.313 211 | 210 -13.313 212 | 211 -13.313 213 | 212 -13.313 214 | 213 -13.313 215 | 214 -13.313 216 | 215 -13.313 217 | 216 -13.313 218 | 217 -13.313 219 | 218 -13.313 220 | 219 -13.313 221 | 220 -13.313 222 | 221 -13.313 223 | 222 -13.313 224 | 223 -13.313 225 | 224 -13.313 226 | 225 -13.313 227 | 226 -13.313 228 | 227 -13.313 229 | 228 -13.313 230 | 229 -13.313 231 | 230 -13.313 232 | 231 -13.313 233 | 232 -13.313 234 | 233 -13.313 235 | 234 -13.313 236 | 235 -13.313 237 | 236 -13.313 238 | 237 -13.313 239 | 238 -13.313 240 | 239 -13.313 241 | 240 -13.313 242 | 241 -13.313 243 | 242 -12.5714 244 | 243 -12.5714 245 | 244 -12.5714 246 | 245 -12.5714 247 | 246 -12.5714 248 | 247 -12.5714 249 | 248 -12.5714 250 | 249 -12.1004 251 | 250 -11.7745 252 | 251 -11.7745 253 | 252 -11.7745 254 | 253 -11.7745 255 | 254 -11.7745 256 | 255 -11.7745 257 | 256 -11.0376 258 | 257 -11.0376 259 | 258 -11.0376 260 | 259 -11.0376 261 | 260 -11.0376 262 | 261 -11.0376 263 | 262 -11.0376 264 | 263 -11.0376 265 | 264 -11.0376 266 | 265 -11.0376 267 | 266 -11.0376 268 | 267 -11.0376 269 | 268 -11.0376 270 | 269 -11.0376 271 | 270 -11.0376 272 | 271 -11.0376 273 | 272 -11.0376 274 | 273 -11.0376 275 | 274 -11.0376 276 | 275 -11.0376 277 | 276 -11.0376 278 | 277 -11.0376 279 | 278 -11.0376 280 | 279 -11.0376 281 | 280 -11.0342 282 | 281 -11.0342 283 | 282 -11.0342 284 | 283 -11.0342 285 | 284 -11.0342 286 | 285 -10.8447 287 | 286 -10.8447 288 | 287 -10.8447 289 | 288 -10.8447 290 | 289 -10.8447 291 | 290 -10.4298 292 | 291 -10.4298 293 | 292 -10.4298 294 | 293 -10.4298 295 | 294 -10.4298 296 | 295 -10.0621 297 | 296 -10.0621 298 | 297 -10.0585 299 | 298 -10.0585 300 | 299 -10.0585 301 | 300 -10.0585 302 | 301 -10.0585 303 | 302 -10.0585 304 | 303 -10.0585 305 | 304 -10.0585 306 | 305 -10.0585 307 | 306 -10.0585 308 | 307 -10.0585 309 | 308 -10.0585 310 | 309 -10.0585 311 | 310 -10.0585 312 | 311 -10.0585 313 | 312 -10.0585 314 | 313 -10.0585 315 | 314 -10.0585 316 | 315 -10.0585 317 | 316 -10.0585 318 | 317 -10.0585 319 | 318 -10.0585 320 | 319 -10.0585 321 | 320 -10.0585 322 | 321 -10.0585 323 | 322 -10.0585 324 | 323 -10.0585 325 | 324 -10.0585 326 | 325 -10.0585 327 | 326 -10.0585 328 | 327 -10.0585 329 | 328 -10.0585 330 | 329 -10.0585 331 | 330 -10.0585 332 | 331 -10.0585 333 | 332 -10.0585 334 | 333 -10.0585 335 | 334 -10.0585 336 | 335 -10.0421 337 | 336 -10.0421 338 | 337 -10.0421 339 | 338 -10.0421 340 | 339 -10.0421 341 | 340 -10.0287 342 | 341 -9.98208 343 | 342 -9.98208 344 | 343 -9.98208 345 | 344 -9.98208 346 | 345 -9.98208 347 | 346 -9.98208 348 | 347 -9.98208 349 | 348 -9.98208 350 | 349 -9.98208 351 | 350 -9.98208 352 | 351 -9.98208 353 | 352 -9.98208 354 | 353 -9.82704 355 | 354 -9.82704 356 | 355 -9.82704 357 | 356 -9.82704 358 | 357 -9.82704 359 | 358 -9.82704 360 | 359 -9.82704 361 | 360 -9.82704 362 | 361 -9.82704 363 | 362 -9.82704 364 | 363 -9.7899 365 | 364 -9.7899 366 | 365 -9.7899 367 | 366 -9.7899 368 | 367 -9.7899 369 | 368 -9.7899 370 | 369 -9.7899 371 | 370 -9.75678 372 | 371 -9.75678 373 | 372 -9.75678 374 | 373 -9.75678 375 | 374 -9.75678 376 | 375 -9.75678 377 | 376 -9.75678 378 | 377 -9.75678 379 | 378 -9.75678 380 | 379 -9.75678 381 | 380 -9.72024 382 | 381 -9.72024 383 | 382 -9.72024 384 | 383 -9.72024 385 | 384 -9.72024 386 | 385 -9.72024 387 | 386 -9.72024 388 | 387 -9.58894 389 | 388 -9.58894 390 | 389 -9.58894 391 | 390 -9.58894 392 | 391 -9.58894 393 | 392 -9.58894 394 | 393 -9.58894 395 | 394 -9.58894 396 | 395 -9.58894 397 | 396 -9.58894 398 | 397 -9.58894 399 | 398 -9.58894 400 | 399 -9.58894 401 | 400 -9.58894 402 | 401 -9.58894 403 | 402 -9.58894 404 | 403 -9.58894 405 | 404 -9.58894 406 | 405 -9.58894 407 | 406 -9.58894 408 | 407 -9.58894 409 | 408 -9.58894 410 | 409 -9.58894 411 | 410 -9.58894 412 | 411 -9.58894 413 | 412 -9.58894 414 | 413 -9.58894 415 | 414 -9.58894 416 | 415 -9.58894 417 | 416 -9.58894 418 | 417 -9.58894 419 | 418 -9.58894 420 | 419 -9.58894 421 | 420 -9.58894 422 | 421 -9.58894 423 | 422 -9.58894 424 | 423 -9.58894 425 | 424 -9.58338 426 | 425 -9.58338 427 | 426 -9.58338 428 | 427 -9.58338 429 | 428 -9.58338 430 | 429 -9.58338 431 | 430 -9.58338 432 | 431 -9.58338 433 | 432 -9.58338 434 | 433 -9.58338 435 | 434 -9.58338 436 | 435 -9.58338 437 | 436 -9.58338 438 | 437 -9.58338 439 | 438 -9.58338 440 | 439 -9.58338 441 | 440 -9.58338 442 | 441 -9.58338 443 | 442 -9.58338 444 | 443 -9.58338 445 | 444 -9.58338 446 | 445 -9.57388 447 | 446 -9.57388 448 | 447 -9.57388 449 | 448 -9.57388 450 | 449 -9.57388 451 | 450 -9.57388 452 | 451 -9.57388 453 | 452 -9.57388 454 | 453 -9.57388 455 | 454 -9.57388 456 | 455 -9.57388 457 | 456 -9.57388 458 | 457 -9.57388 459 | 458 -9.57388 460 | 459 -9.57388 461 | 460 -9.57388 462 | 461 -9.57388 463 | 462 -9.57388 464 | 463 -9.57388 465 | 464 -9.57388 466 | 465 -9.57388 467 | 466 -9.57388 468 | 467 -9.57388 469 | 468 -9.57388 470 | 469 -9.57388 471 | 470 -9.57388 472 | 471 -9.57388 473 | 472 -9.57388 474 | 473 -9.57317 475 | 474 -9.57317 476 | 475 -9.54534 477 | 476 -9.52213 478 | 477 -9.52213 479 | 478 -9.52213 480 | 479 -9.52213 481 | 480 -9.48991 482 | 481 -9.48991 483 | 482 -9.48991 484 | 483 -9.48991 485 | 484 -9.48991 486 | 485 -9.48991 487 | 486 -9.48991 488 | 487 -9.48991 489 | 488 -9.48991 490 | 489 -9.48991 491 | 490 -9.48991 492 | 491 -9.48991 493 | 492 -9.48991 494 | 493 -9.48991 495 | 494 -9.48991 496 | 495 -9.48991 497 | 496 -9.48991 498 | 497 -9.48991 499 | 498 -9.48991 500 | 499 -9.48991 501 | 500 -9.48991 502 | 501 -9.47341 503 | 502 -9.47341 504 | 503 -9.47341 505 | 504 -9.47341 506 | 505 -9.47341 507 | 506 -9.47341 508 | 507 -9.47341 509 | 508 -9.47341 510 | 509 -9.47341 511 | 510 -9.47341 512 | 511 -9.47341 513 | 512 -9.47341 514 | 513 -9.47341 515 | 514 -9.47341 516 | 515 -9.47341 517 | 516 -9.47341 518 | 517 -9.47341 519 | 518 -9.47341 520 | 519 -9.47341 521 | 520 -9.47341 522 | 521 -9.47341 523 | 522 -9.47341 524 | 523 -9.47341 525 | 524 -9.47341 526 | 525 -9.47341 527 | 526 -9.47341 528 | 527 -9.47341 529 | 528 -9.47341 530 | 529 -9.47341 531 | 530 -9.47341 532 | 531 -9.47341 533 | 532 -9.47341 534 | 533 -9.47341 535 | 534 -9.47341 536 | 535 -9.47341 537 | 536 -9.47341 538 | 537 -9.47341 539 | 538 -9.47341 540 | 539 -9.47341 541 | 540 -9.47341 542 | 541 -9.47341 543 | 542 -9.47341 544 | 543 -9.47341 545 | 544 -9.47341 546 | 545 -9.47341 547 | 546 -9.47341 548 | 547 -9.47341 549 | 548 -9.47341 550 | 549 -9.47341 551 | 550 -9.47341 552 | 551 -9.47341 553 | 552 -9.47341 554 | 553 -9.47341 555 | 554 -9.47341 556 | 555 -9.47341 557 | 556 -9.47341 558 | 557 -9.47341 559 | 558 -9.47341 560 | 559 -9.47341 561 | 560 -9.47341 562 | 561 -9.47341 563 | 562 -9.47341 564 | 563 -9.47341 565 | 564 -9.47341 566 | 565 -9.47341 567 | 566 -9.47341 568 | 567 -9.47341 569 | 568 -9.47341 570 | 569 -9.47341 571 | 570 -9.47341 572 | 571 -9.47341 573 | 572 -9.47341 574 | 573 -9.47341 575 | 574 -9.47341 576 | 575 -9.47341 577 | 576 -9.47341 578 | 577 -9.47341 579 | 578 -9.47341 580 | 579 -9.47341 581 | 580 -9.47341 582 | 581 -9.47341 583 | 582 -9.47341 584 | 583 -9.47341 585 | 584 -9.47341 586 | 585 -9.47341 587 | 586 -9.47341 588 | 587 -9.47341 589 | 588 -9.47341 590 | 589 -9.47341 591 | 590 -9.47341 592 | 591 -9.47341 593 | 592 -9.47341 594 | 593 -9.47341 595 | 594 -9.47341 596 | 595 -9.47341 597 | 596 -9.47341 598 | 597 -9.47341 599 | 598 -9.47341 600 | 599 -9.47341 601 | 600 -9.47341 602 | 601 -9.47341 603 | 602 -9.47341 604 | 603 -9.47341 605 | 604 -9.47341 606 | 605 -9.47341 607 | 606 -9.47341 608 | 607 -9.47045 609 | 608 -9.45997 610 | 609 -9.45178 611 | 610 -9.45178 612 | 611 -9.45178 613 | 612 -9.45178 614 | 613 -9.45178 615 | 614 -9.45178 616 | 615 -9.45178 617 | 616 -9.45178 618 | 617 -9.45178 619 | 618 -9.45178 620 | 619 -9.45178 621 | 620 -9.45178 622 | 621 -9.45178 623 | 622 -9.45178 624 | 623 -9.45178 625 | 624 -9.45178 626 | 625 -9.45178 627 | 626 -9.45178 628 | 627 -9.45178 629 | 628 -9.45178 630 | 629 -9.45178 631 | 630 -9.45178 632 | 631 -9.45178 633 | 632 -9.45178 634 | 633 -9.45178 635 | 634 -9.45178 636 | 635 -9.45178 637 | 636 -9.45178 638 | 637 -9.45178 639 | 638 -9.45178 640 | 639 -9.45178 641 | 640 -9.45178 642 | 641 -9.45178 643 | 642 -9.45178 644 | 643 -9.45178 645 | 644 -9.45178 646 | 645 -9.45178 647 | 646 -9.45178 648 | 647 -9.45178 649 | 648 -9.45178 650 | 649 -9.45178 651 | 650 -9.45178 652 | 651 -9.45178 653 | 652 -9.45178 654 | 653 -9.45178 655 | 654 -9.45178 656 | 655 -9.45178 657 | 656 -9.45178 658 | 657 -9.45178 659 | 658 -9.45178 660 | 659 -9.45178 661 | 660 -9.45178 662 | 661 -9.45178 663 | 662 -9.44693 664 | 663 -9.44693 665 | 664 -9.44693 666 | 665 -9.44693 667 | 666 -9.44693 668 | 667 -9.44693 669 | 668 -9.44693 670 | 669 -9.44693 671 | 670 -9.44693 672 | 671 -9.44693 673 | 672 -9.44693 674 | 673 -9.44693 675 | 674 -9.44693 676 | 675 -9.44693 677 | 676 -9.44693 678 | 677 -9.44693 679 | 678 -9.44693 680 | 679 -9.44693 681 | 680 -9.44693 682 | 681 -9.44693 683 | 682 -9.44693 684 | 683 -9.44693 685 | 684 -9.44693 686 | 685 -9.44693 687 | 686 -9.44693 688 | 687 -9.44693 689 | 688 -9.44693 690 | 689 -9.44693 691 | 690 -9.44693 692 | 691 -9.44693 693 | 692 -9.44693 694 | 693 -9.44693 695 | 694 -9.44693 696 | 695 -9.44693 697 | 696 -9.44693 698 | 697 -9.44693 699 | 698 -9.44693 700 | 699 -9.44693 701 | 700 -9.44693 702 | 701 -9.44693 703 | 702 -9.44693 704 | 703 -9.44693 705 | 704 -9.44693 706 | 705 -9.44693 707 | 706 -9.44693 708 | 707 -9.44187 709 | 708 -9.44187 710 | 709 -9.44187 711 | 710 -9.44187 712 | 711 -9.44187 713 | 712 -9.44187 714 | 713 -9.44187 715 | 714 -9.44187 716 | 715 -9.44187 717 | 716 -9.44187 718 | 717 -9.44088 719 | 718 -9.44088 720 | 719 -9.44088 721 | 720 -9.44088 722 | 721 -9.44088 723 | 722 -9.44088 724 | 723 -9.44088 725 | 724 -9.44088 726 | 725 -9.44088 727 | 726 -9.44088 728 | 727 -9.44088 729 | 728 -9.44088 730 | 729 -9.44088 731 | 730 -9.44088 732 | 731 -9.44013 733 | 732 -9.44013 734 | 733 -9.44013 735 | 734 -9.44013 736 | 735 -9.44013 737 | 736 -9.44013 738 | 737 -9.44013 739 | 738 -9.44013 740 | 739 -9.44013 741 | 740 -9.44013 742 | 741 -9.43222 743 | 742 -9.43222 744 | 743 -9.43222 745 | 744 -9.43222 746 | 745 -9.43222 747 | 746 -9.43222 748 | 747 -9.43222 749 | 748 -9.43222 750 | 749 -9.43222 751 | 750 -9.43222 752 | 751 -9.43222 753 | 752 -9.43222 754 | 753 -9.43222 755 | 754 -9.43222 756 | 755 -9.43222 757 | 756 -9.43222 758 | 757 -9.43222 759 | 758 -9.43222 760 | 759 -9.43222 761 | 760 -9.43222 762 | 761 -9.43222 763 | 762 -9.43222 764 | 763 -9.43222 765 | 764 -9.42916 766 | 765 -9.42916 767 | 766 -9.42916 768 | 767 -9.42916 769 | 768 -9.42916 770 | 769 -9.42916 771 | 770 -9.4273 772 | 771 -9.4273 773 | 772 -9.4273 774 | 773 -9.4273 775 | 774 -9.4273 776 | 775 -9.4273 777 | 776 -9.4273 778 | 777 -9.4273 779 | 778 -9.4273 780 | 779 -9.4273 781 | 780 -9.4273 782 | 781 -9.4273 783 | 782 -9.4273 784 | 783 -9.4273 785 | 784 -9.4273 786 | 785 -9.4273 787 | 786 -9.4273 788 | 787 -9.4273 789 | 788 -9.4273 790 | 789 -9.4273 791 | 790 -9.4273 792 | 791 -9.4273 793 | 792 -9.4273 794 | 793 -9.4273 795 | 794 -9.4273 796 | 795 -9.4273 797 | 796 -9.4273 798 | 797 -9.4273 799 | 798 -9.4273 800 | 799 -9.4273 801 | 800 -9.4273 802 | 801 -9.4273 803 | 802 -9.4273 804 | 803 -9.4273 805 | 804 -9.4273 806 | 805 -9.4273 807 | 806 -9.4273 808 | 807 -9.4273 809 | 808 -9.4273 810 | 809 -9.4273 811 | 810 -9.4273 812 | 811 -9.4273 813 | 812 -9.4273 814 | 813 -9.4273 815 | 814 -9.4273 816 | 815 -9.4273 817 | 816 -9.4273 818 | 817 -9.4273 819 | 818 -9.4273 820 | 819 -9.4273 821 | 820 -9.4273 822 | 821 -9.4273 823 | 822 -9.4273 824 | 823 -9.4273 825 | 824 -9.4273 826 | 825 -9.4273 827 | 826 -9.4273 828 | 827 -9.4273 829 | 828 -9.4273 830 | 829 -9.4273 831 | 830 -9.4273 832 | 831 -9.4273 833 | 832 -9.4273 834 | 833 -9.4273 835 | 834 -9.4273 836 | 835 -9.4273 837 | 836 -9.4273 838 | 837 -9.4273 839 | 838 -9.4273 840 | 839 -9.4273 841 | 840 -9.4273 842 | 841 -9.4273 843 | 842 -9.4273 844 | 843 -9.4273 845 | 844 -9.4273 846 | 845 -9.4273 847 | 846 -9.4273 848 | 847 -9.4273 849 | 848 -9.4273 850 | 849 -9.4273 851 | 850 -9.4273 852 | 851 -9.4273 853 | 852 -9.4273 854 | 853 -9.4273 855 | 854 -9.4273 856 | 855 -9.4273 857 | 856 -9.4273 858 | 857 -9.4273 859 | 858 -9.4273 860 | 859 -9.4273 861 | 860 -9.4273 862 | 861 -9.4273 863 | 862 -9.4273 864 | 863 -9.4273 865 | 864 -9.4273 866 | 865 -9.4273 867 | 866 -9.4273 868 | 867 -9.4273 869 | 868 -9.4273 870 | 869 -9.4273 871 | 870 -9.4273 872 | 871 -9.4273 873 | 872 -9.4273 874 | 873 -9.4273 875 | 874 -9.4273 876 | 875 -9.4273 877 | 876 -9.4273 878 | 877 -9.4273 879 | 878 -9.4273 880 | 879 -9.4273 881 | 880 -9.4273 882 | 881 -9.4273 883 | 882 -9.4273 884 | 883 -9.4273 885 | 884 -9.4273 886 | 885 -9.4273 887 | 886 -9.4273 888 | 887 -9.4273 889 | 888 -9.4273 890 | 889 -9.4273 891 | 890 -9.4273 892 | 891 -9.4273 893 | 892 -9.4273 894 | 893 -9.4273 895 | 894 -9.4273 896 | 895 -9.4273 897 | 896 -9.4273 898 | 897 -9.4273 899 | 898 -9.4273 900 | 899 -9.4273 901 | 900 -9.4273 902 | 901 -9.4273 903 | 902 -9.4273 904 | 903 -9.4273 905 | 904 -9.4273 906 | 905 -9.4273 907 | 906 -9.4273 908 | 907 -9.4273 909 | 908 -9.4273 910 | 909 -9.4273 911 | 910 -9.4273 912 | 911 -9.4273 913 | 912 -9.4273 914 | 913 -9.4273 915 | 914 -9.4273 916 | 915 -9.4273 917 | 916 -9.4273 918 | 917 -9.4273 919 | 918 -9.4273 920 | 919 -9.4273 921 | 920 -9.4273 922 | 921 -9.4273 923 | 922 -9.4273 924 | 923 -9.4273 925 | 924 -9.4273 926 | 925 -9.4273 927 | 926 -9.4273 928 | 927 -9.42485 929 | 928 -9.42485 930 | 929 -9.42485 931 | 930 -9.42485 932 | 931 -9.42485 933 | 932 -9.42485 934 | 933 -9.42485 935 | 934 -9.42485 936 | 935 -9.42485 937 | 936 -9.42485 938 | 937 -9.42485 939 | 938 -9.42485 940 | 939 -9.42485 941 | 940 -9.42485 942 | 941 -9.42485 943 | 942 -9.42485 944 | 943 -9.42485 945 | 944 -9.42485 946 | 945 -9.42485 947 | 946 -9.42485 948 | 947 -9.42485 949 | 948 -9.42485 950 | 949 -9.42485 951 | 950 -9.42485 952 | 951 -9.42485 953 | 952 -9.42485 954 | 953 -9.42485 955 | 954 -9.42485 956 | 955 -9.42485 957 | 956 -9.42485 958 | 957 -9.42485 959 | 958 -9.42485 960 | 959 -9.42485 961 | 960 -9.42485 962 | 961 -9.42485 963 | 962 -9.42485 964 | 963 -9.42485 965 | 964 -9.42485 966 | 965 -9.42046 967 | 966 -9.42046 968 | 967 -9.42046 969 | 968 -9.42046 970 | 969 -9.42046 971 | 970 -9.42046 972 | 971 -9.42046 973 | 972 -9.42046 974 | 973 -9.42046 975 | 974 -9.42046 976 | 975 -9.42046 977 | 976 -9.42046 978 | 977 -9.42046 979 | 978 -9.42046 980 | 979 -9.42046 981 | 980 -9.42046 982 | 981 -9.42046 983 | 982 -9.42046 984 | 983 -9.42046 985 | 984 -9.42046 986 | 985 -9.42046 987 | 986 -9.42046 988 | 987 -9.42046 989 | 988 -9.42046 990 | 989 -9.42046 991 | 990 -9.42046 992 | 991 -9.42046 993 | 992 -9.42046 994 | 993 -9.42046 995 | 994 -9.42046 996 | 995 -9.42046 997 | 996 -9.42046 998 | 997 -9.42046 999 | 998 -9.42046 1000 | 999 -9.42046 1001 | -------------------------------------------------------------------------------- /src/data/high_mut/exp_6/node09_2014-07-15_16_42_47_7752/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -5180.62 2 | 1 -5180.62 3 | 2 -5180.62 4 | 3 -5180.62 5 | 4 -5180.62 6 | 5 -5180.62 7 | 6 -5180.62 8 | 7 -5180.62 9 | 8 -5180.62 10 | 9 -5180.62 11 | 10 -5180.62 12 | 11 -5180.62 13 | 12 -5180.62 14 | 13 -5180.62 15 | 14 -5180.62 16 | 15 -5180.62 17 | 16 -5180.62 18 | 17 -4215.13 19 | 18 -4215.13 20 | 19 -4215.13 21 | 20 -4215.13 22 | 21 -4215.13 23 | 22 -4215.13 24 | 23 -4011.54 25 | 24 -4011.54 26 | 25 -4011.54 27 | 26 -4011.54 28 | 27 -4011.54 29 | 28 -4011.54 30 | 29 -4011.54 31 | 30 -3816.04 32 | 31 -3816.04 33 | 32 -3509.43 34 | 33 -3509.43 35 | 34 -3509.43 36 | 35 -3509.43 37 | 36 -3509.43 38 | 37 -3509.43 39 | 38 -3509.43 40 | 39 -3509.43 41 | 40 -2130.77 42 | 41 -2130.77 43 | 42 -2130.77 44 | 43 -2130.77 45 | 44 -2130.77 46 | 45 -2130.77 47 | 46 -2130.77 48 | 47 -2105.74 49 | 48 -2105.74 50 | 49 -2105.74 51 | 50 -2105.74 52 | 51 -2105.74 53 | 52 -2105.74 54 | 53 -2105.74 55 | 54 -2105.74 56 | 55 -2105.74 57 | 56 -1816.23 58 | 57 -1816.23 59 | 58 -1816.23 60 | 59 -1364.61 61 | 60 -1364.61 62 | 61 -1184.37 63 | 62 -1184.37 64 | 63 -1184.37 65 | 64 -1184.37 66 | 65 -1184.37 67 | 66 -1184.37 68 | 67 -1184.37 69 | 68 -1145.78 70 | 69 -1145.78 71 | 70 -1145.78 72 | 71 -1145.78 73 | 72 -1145.78 74 | 73 -1145.78 75 | 74 -1145.78 76 | 75 -1145.78 77 | 76 -1144.76 78 | 77 -1144.76 79 | 78 -1144.76 80 | 79 -982.966 81 | 80 -982.966 82 | 81 -982.966 83 | 82 -982.966 84 | 83 -982.966 85 | 84 -982.966 86 | 85 -269.801 87 | 86 -269.801 88 | 87 -269.801 89 | 88 -269.801 90 | 89 -269.801 91 | 90 -269.801 92 | 91 -269.801 93 | 92 -269.801 94 | 93 -269.801 95 | 94 -269.801 96 | 95 -269.801 97 | 96 -269.801 98 | 97 -269.801 99 | 98 -269.801 100 | 99 -269.801 101 | 100 -269.801 102 | 101 -269.801 103 | 102 -269.801 104 | 103 -269.801 105 | 104 -269.801 106 | 105 -269.801 107 | 106 -269.801 108 | 107 -269.801 109 | 108 -269.801 110 | 109 -269.801 111 | 110 -269.801 112 | 111 -269.801 113 | 112 -269.801 114 | 113 -269.801 115 | 114 -213.647 116 | 115 -213.647 117 | 116 -213.647 118 | 117 -213.647 119 | 118 -213.647 120 | 119 -44.1271 121 | 120 -44.1271 122 | 121 -44.1271 123 | 122 -44.1271 124 | 123 -44.1271 125 | 124 -44.1271 126 | 125 -44.1271 127 | 126 -44.1271 128 | 127 -44.1271 129 | 128 -44.1271 130 | 129 -44.1271 131 | 130 -44.1271 132 | 131 -44.1271 133 | 132 -44.1271 134 | 133 -44.1271 135 | 134 -44.1271 136 | 135 -44.1271 137 | 136 -44.1271 138 | 137 -44.1271 139 | 138 -44.1271 140 | 139 -44.1271 141 | 140 -44.1271 142 | 141 -44.1271 143 | 142 -44.1271 144 | 143 -44.1271 145 | 144 -44.1271 146 | 145 -44.1271 147 | 146 -44.1271 148 | 147 -44.1271 149 | 148 -44.1271 150 | 149 -44.1271 151 | 150 -44.1271 152 | 151 -44.1271 153 | 152 -44.1271 154 | 153 -44.1271 155 | 154 -44.1271 156 | 155 -44.1271 157 | 156 -44.1271 158 | 157 -44.1271 159 | 158 -44.1271 160 | 159 -44.1271 161 | 160 -44.1271 162 | 161 -44.1271 163 | 162 -44.1271 164 | 163 -44.1271 165 | 164 -44.1271 166 | 165 -44.1271 167 | 166 -44.1271 168 | 167 -44.1271 169 | 168 -44.1271 170 | 169 -44.1271 171 | 170 -44.1271 172 | 171 -44.1271 173 | 172 -44.1271 174 | 173 -44.1271 175 | 174 -44.1271 176 | 175 -44.1271 177 | 176 -44.1271 178 | 177 -44.1271 179 | 178 -44.1271 180 | 179 -44.1271 181 | 180 -44.1271 182 | 181 -20.5203 183 | 182 -20.5203 184 | 183 -20.5203 185 | 184 -20.5203 186 | 185 -20.5203 187 | 186 -20.5203 188 | 187 -20.5203 189 | 188 -20.5203 190 | 189 -20.5203 191 | 190 -20.5203 192 | 191 -20.5203 193 | 192 -20.5203 194 | 193 -20.5203 195 | 194 -20.5203 196 | 195 -20.5203 197 | 196 -20.5203 198 | 197 -20.5203 199 | 198 -20.5203 200 | 199 -20.5203 201 | 200 -20.5203 202 | 201 -20.5203 203 | 202 -20.5203 204 | 203 -20.5203 205 | 204 -20.5203 206 | 205 -20.5203 207 | 206 -20.5203 208 | 207 -20.5203 209 | 208 -20.5203 210 | 209 -20.5203 211 | 210 -20.5203 212 | 211 -20.5203 213 | 212 -20.5203 214 | 213 -20.5203 215 | 214 -20.5203 216 | 215 -20.5203 217 | 216 -20.5203 218 | 217 -19.2107 219 | 218 -19.2107 220 | 219 -19.2107 221 | 220 -19.2107 222 | 221 -19.2107 223 | 222 -15.4174 224 | 223 -15.4174 225 | 224 -15.4174 226 | 225 -10.2771 227 | 226 -10.2771 228 | 227 -10.2771 229 | 228 -10.2771 230 | 229 -10.2771 231 | 230 -10.2771 232 | 231 -10.2771 233 | 232 -10.2771 234 | 233 -10.2771 235 | 234 -10.2771 236 | 235 -10.2771 237 | 236 -10.2771 238 | 237 -10.2771 239 | 238 -10.2771 240 | 239 -10.2771 241 | 240 -10.2771 242 | 241 -10.2771 243 | 242 -10.2771 244 | 243 -10.2771 245 | 244 -10.2771 246 | 245 -10.2771 247 | 246 -10.2771 248 | 247 -10.2771 249 | 248 -10.2771 250 | 249 -10.2771 251 | 250 -10.2771 252 | 251 -10.2771 253 | 252 -10.2771 254 | 253 -10.2771 255 | 254 -10.2771 256 | 255 -10.2771 257 | 256 -10.2771 258 | 257 -10.2771 259 | 258 -10.2771 260 | 259 -10.2771 261 | 260 -10.2771 262 | 261 -10.2771 263 | 262 -10.2771 264 | 263 -10.2771 265 | 264 -10.2771 266 | 265 -10.2295 267 | 266 -10.2295 268 | 267 -10.0559 269 | 268 -10.0559 270 | 269 -10.0559 271 | 270 -10.0559 272 | 271 -10.0559 273 | 272 -10.0559 274 | 273 -10.0559 275 | 274 -10.0559 276 | 275 -10.0559 277 | 276 -10.0559 278 | 277 -10.0559 279 | 278 -10.0559 280 | 279 -10.0559 281 | 280 -10.0559 282 | 281 -9.98427 283 | 282 -9.98427 284 | 283 -9.98427 285 | 284 -9.98427 286 | 285 -9.98427 287 | 286 -9.98427 288 | 287 -9.98427 289 | 288 -9.98427 290 | 289 -9.98427 291 | 290 -9.98427 292 | 291 -9.98427 293 | 292 -9.98427 294 | 293 -9.98427 295 | 294 -9.98427 296 | 295 -9.98427 297 | 296 -9.98427 298 | 297 -9.98427 299 | 298 -9.98427 300 | 299 -9.98427 301 | 300 -9.98427 302 | 301 -9.98427 303 | 302 -9.98427 304 | 303 -9.98427 305 | 304 -9.98427 306 | 305 -9.98427 307 | 306 -9.98427 308 | 307 -9.98427 309 | 308 -9.98427 310 | 309 -9.98427 311 | 310 -9.98427 312 | 311 -9.98427 313 | 312 -9.77419 314 | 313 -9.77419 315 | 314 -9.77419 316 | 315 -9.77419 317 | 316 -9.77173 318 | 317 -9.74565 319 | 318 -9.74565 320 | 319 -9.74565 321 | 320 -9.74565 322 | 321 -9.74565 323 | 322 -9.71826 324 | 323 -9.71826 325 | 324 -9.71826 326 | 325 -9.71826 327 | 326 -9.71826 328 | 327 -9.71826 329 | 328 -9.71826 330 | 329 -9.71826 331 | 330 -9.71826 332 | 331 -9.71826 333 | 332 -9.71826 334 | 333 -9.71826 335 | 334 -9.71826 336 | 335 -9.71826 337 | 336 -9.71826 338 | 337 -9.71826 339 | 338 -9.71826 340 | 339 -9.71826 341 | 340 -9.71826 342 | 341 -9.71826 343 | 342 -9.63259 344 | 343 -9.63259 345 | 344 -9.63259 346 | 345 -9.6142 347 | 346 -9.6142 348 | 347 -9.6142 349 | 348 -9.6142 350 | 349 -9.6142 351 | 350 -9.6142 352 | 351 -9.6142 353 | 352 -9.6142 354 | 353 -9.6142 355 | 354 -9.6142 356 | 355 -9.6142 357 | 356 -9.6142 358 | 357 -9.6142 359 | 358 -9.56559 360 | 359 -9.56559 361 | 360 -9.56559 362 | 361 -9.56559 363 | 362 -9.56559 364 | 363 -9.56559 365 | 364 -9.56559 366 | 365 -9.56559 367 | 366 -9.56559 368 | 367 -9.56559 369 | 368 -9.56559 370 | 369 -9.56559 371 | 370 -9.56559 372 | 371 -9.56559 373 | 372 -9.56559 374 | 373 -9.49182 375 | 374 -9.49182 376 | 375 -9.49182 377 | 376 -9.47924 378 | 377 -9.47924 379 | 378 -9.47924 380 | 379 -9.47924 381 | 380 -9.47924 382 | 381 -9.47924 383 | 382 -9.47924 384 | 383 -9.47924 385 | 384 -9.47924 386 | 385 -9.47924 387 | 386 -9.47924 388 | 387 -9.47924 389 | 388 -9.47924 390 | 389 -9.47924 391 | 390 -9.47924 392 | 391 -9.47924 393 | 392 -9.47924 394 | 393 -9.47924 395 | 394 -9.47924 396 | 395 -9.47924 397 | 396 -9.47924 398 | 397 -9.47924 399 | 398 -9.47924 400 | 399 -9.47924 401 | 400 -9.47924 402 | 401 -9.47924 403 | 402 -9.47924 404 | 403 -9.47924 405 | 404 -9.47924 406 | 405 -9.47924 407 | 406 -9.47924 408 | 407 -9.47924 409 | 408 -9.47924 410 | 409 -9.47924 411 | 410 -9.47924 412 | 411 -9.47924 413 | 412 -9.47924 414 | 413 -9.47924 415 | 414 -9.47924 416 | 415 -9.47924 417 | 416 -9.47924 418 | 417 -9.47924 419 | 418 -9.47924 420 | 419 -9.47924 421 | 420 -9.47924 422 | 421 -9.47924 423 | 422 -9.47924 424 | 423 -9.47924 425 | 424 -9.47924 426 | 425 -9.47924 427 | 426 -9.47924 428 | 427 -9.47924 429 | 428 -9.47924 430 | 429 -9.47924 431 | 430 -9.47924 432 | 431 -9.47924 433 | 432 -9.47924 434 | 433 -9.47924 435 | 434 -9.47924 436 | 435 -9.47924 437 | 436 -9.47924 438 | 437 -9.47924 439 | 438 -9.47924 440 | 439 -9.47924 441 | 440 -9.47924 442 | 441 -9.47924 443 | 442 -9.47924 444 | 443 -9.47924 445 | 444 -9.47924 446 | 445 -9.47924 447 | 446 -9.47924 448 | 447 -9.47924 449 | 448 -9.47924 450 | 449 -9.47924 451 | 450 -9.47924 452 | 451 -9.47924 453 | 452 -9.47924 454 | 453 -9.47924 455 | 454 -9.47924 456 | 455 -9.47924 457 | 456 -9.47924 458 | 457 -9.47924 459 | 458 -9.47924 460 | 459 -9.47924 461 | 460 -9.47924 462 | 461 -9.47924 463 | 462 -9.47924 464 | 463 -9.47924 465 | 464 -9.47924 466 | 465 -9.47924 467 | 466 -9.47924 468 | 467 -9.47924 469 | 468 -9.47924 470 | 469 -9.47924 471 | 470 -9.47924 472 | 471 -9.47924 473 | 472 -9.47924 474 | 473 -9.47924 475 | 474 -9.47924 476 | 475 -9.47924 477 | 476 -9.47924 478 | 477 -9.47924 479 | 478 -9.47924 480 | 479 -9.47924 481 | 480 -9.47924 482 | 481 -9.47924 483 | 482 -9.47924 484 | 483 -9.47924 485 | 484 -9.47924 486 | 485 -9.47924 487 | 486 -9.47924 488 | 487 -9.47924 489 | 488 -9.47924 490 | 489 -9.47924 491 | 490 -9.47924 492 | 491 -9.47924 493 | 492 -9.47924 494 | 493 -9.47924 495 | 494 -9.47532 496 | 495 -9.47532 497 | 496 -9.47532 498 | 497 -9.47532 499 | 498 -9.47532 500 | 499 -9.47532 501 | 500 -9.47532 502 | 501 -9.47532 503 | 502 -9.47532 504 | 503 -9.47532 505 | 504 -9.47532 506 | 505 -9.47532 507 | 506 -9.47532 508 | 507 -9.47532 509 | 508 -9.47532 510 | 509 -9.47532 511 | 510 -9.47532 512 | 511 -9.47532 513 | 512 -9.47532 514 | 513 -9.47532 515 | 514 -9.47532 516 | 515 -9.47532 517 | 516 -9.47532 518 | 517 -9.47532 519 | 518 -9.47532 520 | 519 -9.47532 521 | 520 -9.47532 522 | 521 -9.47532 523 | 522 -9.47532 524 | 523 -9.47532 525 | 524 -9.47532 526 | 525 -9.47532 527 | 526 -9.47532 528 | 527 -9.47532 529 | 528 -9.47532 530 | 529 -9.47532 531 | 530 -9.47532 532 | 531 -9.47532 533 | 532 -9.47532 534 | 533 -9.47532 535 | 534 -9.47532 536 | 535 -9.47532 537 | 536 -9.47532 538 | 537 -9.47532 539 | 538 -9.47532 540 | 539 -9.47532 541 | 540 -9.47532 542 | 541 -9.46384 543 | 542 -9.46384 544 | 543 -9.46384 545 | 544 -9.46384 546 | 545 -9.46384 547 | 546 -9.46384 548 | 547 -9.46384 549 | 548 -9.46384 550 | 549 -9.46384 551 | 550 -9.46384 552 | 551 -9.46384 553 | 552 -9.46384 554 | 553 -9.46384 555 | 554 -9.46384 556 | 555 -9.46384 557 | 556 -9.46384 558 | 557 -9.46384 559 | 558 -9.46384 560 | 559 -9.46384 561 | 560 -9.46384 562 | 561 -9.46384 563 | 562 -9.46384 564 | 563 -9.46384 565 | 564 -9.46384 566 | 565 -9.46384 567 | 566 -9.46384 568 | 567 -9.46384 569 | 568 -9.46384 570 | 569 -9.46384 571 | 570 -9.46384 572 | 571 -9.46384 573 | 572 -9.46384 574 | 573 -9.46384 575 | 574 -9.46384 576 | 575 -9.46384 577 | 576 -9.46384 578 | 577 -9.46384 579 | 578 -9.46384 580 | 579 -9.46384 581 | 580 -9.46384 582 | 581 -9.46384 583 | 582 -9.46384 584 | 583 -9.46384 585 | 584 -9.46384 586 | 585 -9.46384 587 | 586 -9.46384 588 | 587 -9.46384 589 | 588 -9.46384 590 | 589 -9.46384 591 | 590 -9.46384 592 | 591 -9.46384 593 | 592 -9.46384 594 | 593 -9.46384 595 | 594 -9.46384 596 | 595 -9.46384 597 | 596 -9.46384 598 | 597 -9.46384 599 | 598 -9.46384 600 | 599 -9.45426 601 | 600 -9.43998 602 | 601 -9.4303 603 | 602 -9.4303 604 | 603 -9.4303 605 | 604 -9.4303 606 | 605 -9.4303 607 | 606 -9.4303 608 | 607 -9.4303 609 | 608 -9.4303 610 | 609 -9.4303 611 | 610 -9.4303 612 | 611 -9.4303 613 | 612 -9.4303 614 | 613 -9.4303 615 | 614 -9.4303 616 | 615 -9.4303 617 | 616 -9.4303 618 | 617 -9.4303 619 | 618 -9.4303 620 | 619 -9.4303 621 | 620 -9.4303 622 | 621 -9.4303 623 | 622 -9.4303 624 | 623 -9.4303 625 | 624 -9.4303 626 | 625 -9.4303 627 | 626 -9.4303 628 | 627 -9.4303 629 | 628 -9.4303 630 | 629 -9.4303 631 | 630 -9.4303 632 | 631 -9.4303 633 | 632 -9.4303 634 | 633 -9.4303 635 | 634 -9.4303 636 | 635 -9.4303 637 | 636 -9.4303 638 | 637 -9.4303 639 | 638 -9.4303 640 | 639 -9.4303 641 | 640 -9.4303 642 | 641 -9.4303 643 | 642 -9.4303 644 | 643 -9.4303 645 | 644 -9.4303 646 | 645 -9.4303 647 | 646 -9.4303 648 | 647 -9.4303 649 | 648 -9.4303 650 | 649 -9.4303 651 | 650 -9.4303 652 | 651 -9.4303 653 | 652 -9.4303 654 | 653 -9.4303 655 | 654 -9.4303 656 | 655 -9.4303 657 | 656 -9.4303 658 | 657 -9.4303 659 | 658 -9.4303 660 | 659 -9.4303 661 | 660 -9.4303 662 | 661 -9.4303 663 | 662 -9.4303 664 | 663 -9.4303 665 | 664 -9.4303 666 | 665 -9.4303 667 | 666 -9.4303 668 | 667 -9.4303 669 | 668 -9.4303 670 | 669 -9.4303 671 | 670 -9.4303 672 | 671 -9.4303 673 | 672 -9.4303 674 | 673 -9.4303 675 | 674 -9.4303 676 | 675 -9.4303 677 | 676 -9.4303 678 | 677 -9.4303 679 | 678 -9.4303 680 | 679 -9.4303 681 | 680 -9.4303 682 | 681 -9.4303 683 | 682 -9.4303 684 | 683 -9.4303 685 | 684 -9.4303 686 | 685 -9.4303 687 | 686 -9.4303 688 | 687 -9.4303 689 | 688 -9.4303 690 | 689 -9.4303 691 | 690 -9.4303 692 | 691 -9.4303 693 | 692 -9.4303 694 | 693 -9.4303 695 | 694 -9.4303 696 | 695 -9.4303 697 | 696 -9.4303 698 | 697 -9.4303 699 | 698 -9.4303 700 | 699 -9.4303 701 | 700 -9.4303 702 | 701 -9.4303 703 | 702 -9.4303 704 | 703 -9.4303 705 | 704 -9.4303 706 | 705 -9.4303 707 | 706 -9.4303 708 | 707 -9.4303 709 | 708 -9.4303 710 | 709 -9.4303 711 | 710 -9.4303 712 | 711 -9.4303 713 | 712 -9.4303 714 | 713 -9.4303 715 | 714 -9.4303 716 | 715 -9.4303 717 | 716 -9.4303 718 | 717 -9.4303 719 | 718 -9.4303 720 | 719 -9.4303 721 | 720 -9.4303 722 | 721 -9.4303 723 | 722 -9.4303 724 | 723 -9.4303 725 | 724 -9.4303 726 | 725 -9.4303 727 | 726 -9.4303 728 | 727 -9.4303 729 | 728 -9.4303 730 | 729 -9.4303 731 | 730 -9.4303 732 | 731 -9.4303 733 | 732 -9.4303 734 | 733 -9.4303 735 | 734 -9.4303 736 | 735 -9.4303 737 | 736 -9.4303 738 | 737 -9.4303 739 | 738 -9.4303 740 | 739 -9.4303 741 | 740 -9.4303 742 | 741 -9.4303 743 | 742 -9.4303 744 | 743 -9.4303 745 | 744 -9.4303 746 | 745 -9.4303 747 | 746 -9.4303 748 | 747 -9.4303 749 | 748 -9.4303 750 | 749 -9.4303 751 | 750 -9.4303 752 | 751 -9.4303 753 | 752 -9.4303 754 | 753 -9.4303 755 | 754 -9.4303 756 | 755 -9.4303 757 | 756 -9.4303 758 | 757 -9.4303 759 | 758 -9.4303 760 | 759 -9.4303 761 | 760 -9.4303 762 | 761 -9.4303 763 | 762 -9.4303 764 | 763 -9.4303 765 | 764 -9.4303 766 | 765 -9.4303 767 | 766 -9.4303 768 | 767 -9.4303 769 | 768 -9.4303 770 | 769 -9.4303 771 | 770 -9.4303 772 | 771 -9.4303 773 | 772 -9.4303 774 | 773 -9.4303 775 | 774 -9.4303 776 | 775 -9.4303 777 | 776 -9.4303 778 | 777 -9.4303 779 | 778 -9.4303 780 | 779 -9.4303 781 | 780 -9.4303 782 | 781 -9.4303 783 | 782 -9.4303 784 | 783 -9.4303 785 | 784 -9.4303 786 | 785 -9.4303 787 | 786 -9.4303 788 | 787 -9.4303 789 | 788 -9.4303 790 | 789 -9.4303 791 | 790 -9.4303 792 | 791 -9.4303 793 | 792 -9.4303 794 | 793 -9.4303 795 | 794 -9.4303 796 | 795 -9.4303 797 | 796 -9.4303 798 | 797 -9.4303 799 | 798 -9.4303 800 | 799 -9.4303 801 | 800 -9.4303 802 | 801 -9.4303 803 | 802 -9.4303 804 | 803 -9.4303 805 | 804 -9.4303 806 | 805 -9.4303 807 | 806 -9.4303 808 | 807 -9.4303 809 | 808 -9.4303 810 | 809 -9.4303 811 | 810 -9.4303 812 | 811 -9.4303 813 | 812 -9.4303 814 | 813 -9.4303 815 | 814 -9.4303 816 | 815 -9.4303 817 | 816 -9.4303 818 | 817 -9.4303 819 | 818 -9.4303 820 | 819 -9.4303 821 | 820 -9.4303 822 | 821 -9.4303 823 | 822 -9.4303 824 | 823 -9.4303 825 | 824 -9.4303 826 | 825 -9.4303 827 | 826 -9.4303 828 | 827 -9.4303 829 | 828 -9.4303 830 | 829 -9.4303 831 | 830 -9.4303 832 | 831 -9.42618 833 | 832 -9.42618 834 | 833 -9.42618 835 | 834 -9.42618 836 | 835 -9.42618 837 | 836 -9.42618 838 | 837 -9.42618 839 | 838 -9.42618 840 | 839 -9.42618 841 | 840 -9.42618 842 | 841 -9.42618 843 | 842 -9.42618 844 | 843 -9.42618 845 | 844 -9.42618 846 | 845 -9.42618 847 | 846 -9.42618 848 | 847 -9.42618 849 | 848 -9.42618 850 | 849 -9.42618 851 | 850 -9.42618 852 | 851 -9.42618 853 | 852 -9.42618 854 | 853 -9.42618 855 | 854 -9.42618 856 | 855 -9.42618 857 | 856 -9.42618 858 | 857 -9.42618 859 | 858 -9.42618 860 | 859 -9.42618 861 | 860 -9.42618 862 | 861 -9.42618 863 | 862 -9.42618 864 | 863 -9.42618 865 | 864 -9.42618 866 | 865 -9.42618 867 | 866 -9.42618 868 | 867 -9.42618 869 | 868 -9.42618 870 | 869 -9.42618 871 | 870 -9.42618 872 | 871 -9.42618 873 | 872 -9.42618 874 | 873 -9.42618 875 | 874 -9.42618 876 | 875 -9.42618 877 | 876 -9.42618 878 | 877 -9.42618 879 | 878 -9.42618 880 | 879 -9.42618 881 | 880 -9.42618 882 | 881 -9.42618 883 | 882 -9.42618 884 | 883 -9.42618 885 | 884 -9.42618 886 | 885 -9.42618 887 | 886 -9.42618 888 | 887 -9.42618 889 | 888 -9.42618 890 | 889 -9.42618 891 | 890 -9.42618 892 | 891 -9.42618 893 | 892 -9.42618 894 | 893 -9.42618 895 | 894 -9.42618 896 | 895 -9.42618 897 | 896 -9.42618 898 | 897 -9.42618 899 | 898 -9.42618 900 | 899 -9.42618 901 | 900 -9.42618 902 | 901 -9.42618 903 | 902 -9.42618 904 | 903 -9.42618 905 | 904 -9.42618 906 | 905 -9.42618 907 | 906 -9.42618 908 | 907 -9.42618 909 | 908 -9.42618 910 | 909 -9.42618 911 | 910 -9.42618 912 | 911 -9.42618 913 | 912 -9.42618 914 | 913 -9.42618 915 | 914 -9.42618 916 | 915 -9.42618 917 | 916 -9.42618 918 | 917 -9.42618 919 | 918 -9.42618 920 | 919 -9.42618 921 | 920 -9.42618 922 | 921 -9.42618 923 | 922 -9.42618 924 | 923 -9.42618 925 | 924 -9.42618 926 | 925 -9.42618 927 | 926 -9.42618 928 | 927 -9.42618 929 | 928 -9.42618 930 | 929 -9.42618 931 | 930 -9.42618 932 | 931 -9.42618 933 | 932 -9.42618 934 | 933 -9.42618 935 | 934 -9.42618 936 | 935 -9.42618 937 | 936 -9.42618 938 | 937 -9.42618 939 | 938 -9.42618 940 | 939 -9.42618 941 | 940 -9.42618 942 | 941 -9.42618 943 | 942 -9.42618 944 | 943 -9.42618 945 | 944 -9.42618 946 | 945 -9.42618 947 | 946 -9.42618 948 | 947 -9.42618 949 | 948 -9.42618 950 | 949 -9.42618 951 | 950 -9.42618 952 | 951 -9.42618 953 | 952 -9.42618 954 | 953 -9.42618 955 | 954 -9.42618 956 | 955 -9.42618 957 | 956 -9.42618 958 | 957 -9.42618 959 | 958 -9.42618 960 | 959 -9.42568 961 | 960 -9.42568 962 | 961 -9.42568 963 | 962 -9.42568 964 | 963 -9.42568 965 | 964 -9.42568 966 | 965 -9.42568 967 | 966 -9.42568 968 | 967 -9.42568 969 | 968 -9.42568 970 | 969 -9.42568 971 | 970 -9.42568 972 | 971 -9.42568 973 | 972 -9.42568 974 | 973 -9.42568 975 | 974 -9.42568 976 | 975 -9.42568 977 | 976 -9.42568 978 | 977 -9.42568 979 | 978 -9.42568 980 | 979 -9.42568 981 | 980 -9.42568 982 | 981 -9.42568 983 | 982 -9.42568 984 | 983 -9.42568 985 | 984 -9.42568 986 | 985 -9.42568 987 | 986 -9.40978 988 | 987 -9.40978 989 | 988 -9.40978 990 | 989 -9.40978 991 | 990 -9.40978 992 | 991 -9.40978 993 | 992 -9.40978 994 | 993 -9.40978 995 | 994 -9.40978 996 | 995 -9.40978 997 | 996 -9.40978 998 | 997 -9.40978 999 | 998 -9.40978 1000 | 999 -9.40978 1001 | -------------------------------------------------------------------------------- /src/data/low_mut/exp_21/node09_2014-07-15_16_42_51_7796/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -2193.36 2 | 1 -2193.36 3 | 2 -2193.36 4 | 3 -2193.36 5 | 4 -2193.36 6 | 5 -2193.36 7 | 6 -2193.36 8 | 7 -2193.36 9 | 8 -2193.36 10 | 9 -2193.36 11 | 10 -2193.36 12 | 11 -2193.36 13 | 12 -2193.36 14 | 13 -2193.36 15 | 14 -2193.36 16 | 15 -2193.36 17 | 16 -2193.36 18 | 17 -2193.36 19 | 18 -2193.36 20 | 19 -2193.36 21 | 20 -2193.36 22 | 21 -2193.36 23 | 22 -2193.36 24 | 23 -2193.36 25 | 24 -2193.36 26 | 25 -2193.36 27 | 26 -2193.36 28 | 27 -2193.36 29 | 28 -2193.36 30 | 29 -2193.36 31 | 30 -2193.36 32 | 31 -2193.36 33 | 32 -2193.36 34 | 33 -2193.36 35 | 34 -2193.36 36 | 35 -2193.36 37 | 36 -2193.36 38 | 37 -2193.36 39 | 38 -2193.36 40 | 39 -2193.36 41 | 40 -2193.36 42 | 41 -2193.36 43 | 42 -2193.36 44 | 43 -2193.36 45 | 44 -2193.36 46 | 45 -2193.36 47 | 46 -2193.36 48 | 47 -2193.36 49 | 48 -2193.36 50 | 49 -2193.36 51 | 50 -2193.36 52 | 51 -2193.36 53 | 52 -2193.36 54 | 53 -2193.36 55 | 54 -2193.36 56 | 55 -2193.36 57 | 56 -2193.36 58 | 57 -2193.36 59 | 58 -2193.36 60 | 59 -2193.36 61 | 60 -2193.36 62 | 61 -2193.36 63 | 62 -2193.36 64 | 63 -2193.36 65 | 64 -2193.36 66 | 65 -2193.36 67 | 66 -2193.36 68 | 67 -2193.36 69 | 68 -2193.36 70 | 69 -2193.36 71 | 70 -2193.36 72 | 71 -2193.36 73 | 72 -2193.36 74 | 73 -2193.36 75 | 74 -2193.36 76 | 75 -2193.36 77 | 76 -2193.36 78 | 77 -2193.36 79 | 78 -2193.36 80 | 79 -2193.36 81 | 80 -2193.36 82 | 81 -2193.36 83 | 82 -2193.36 84 | 83 -2193.36 85 | 84 -2193.36 86 | 85 -2193.36 87 | 86 -2193.36 88 | 87 -2137.76 89 | 88 -2137.76 90 | 89 -2137.76 91 | 90 -2137.76 92 | 91 -2137.76 93 | 92 -2137.76 94 | 93 -2137.76 95 | 94 -2137.76 96 | 95 -2137.76 97 | 96 -2137.76 98 | 97 -2137.76 99 | 98 -2137.76 100 | 99 -2137.76 101 | 100 -2137.76 102 | 101 -2137.76 103 | 102 -2137.76 104 | 103 -2137.76 105 | 104 -2137.76 106 | 105 -2137.76 107 | 106 -2065.06 108 | 107 -2065.06 109 | 108 -2065.06 110 | 109 -2065.06 111 | 110 -1461.89 112 | 111 -1461.89 113 | 112 -1461.89 114 | 113 -1461.89 115 | 114 -1461.89 116 | 115 -1461.89 117 | 116 -1267.53 118 | 117 -1267.53 119 | 118 -1267.53 120 | 119 -1267.53 121 | 120 -1267.53 122 | 121 -1267.53 123 | 122 -1267.53 124 | 123 -1267.53 125 | 124 -1039.3 126 | 125 -1039.3 127 | 126 -1039.3 128 | 127 -1039.3 129 | 128 -1039.3 130 | 129 -1039.3 131 | 130 -1039.3 132 | 131 -1039.3 133 | 132 -1039.3 134 | 133 -1039.3 135 | 134 -1039.3 136 | 135 -1039.3 137 | 136 -1039.3 138 | 137 -1039.3 139 | 138 -779.468 140 | 139 -779.468 141 | 140 -779.468 142 | 141 -779.468 143 | 142 -779.468 144 | 143 -779.468 145 | 144 -779.468 146 | 145 -779.468 147 | 146 -779.468 148 | 147 -779.468 149 | 148 -779.468 150 | 149 -779.468 151 | 150 -779.468 152 | 151 -779.468 153 | 152 -779.468 154 | 153 -779.468 155 | 154 -779.468 156 | 155 -779.468 157 | 156 -779.468 158 | 157 -779.468 159 | 158 -779.468 160 | 159 -779.468 161 | 160 -779.468 162 | 161 -779.468 163 | 162 -779.468 164 | 163 -779.468 165 | 164 -779.468 166 | 165 -779.468 167 | 166 -779.468 168 | 167 -779.468 169 | 168 -779.468 170 | 169 -779.468 171 | 170 -779.468 172 | 171 -779.468 173 | 172 -779.468 174 | 173 -779.468 175 | 174 -779.468 176 | 175 -779.468 177 | 176 -779.468 178 | 177 -779.468 179 | 178 -553.661 180 | 179 -553.661 181 | 180 -553.661 182 | 181 -553.661 183 | 182 -553.661 184 | 183 -553.661 185 | 184 -553.661 186 | 185 -553.661 187 | 186 -553.661 188 | 187 -553.661 189 | 188 -553.661 190 | 189 -553.661 191 | 190 -553.661 192 | 191 -553.661 193 | 192 -553.661 194 | 193 -553.661 195 | 194 -553.661 196 | 195 -553.661 197 | 196 -553.661 198 | 197 -553.661 199 | 198 -553.661 200 | 199 -553.661 201 | 200 -243.489 202 | 201 -243.489 203 | 202 -243.489 204 | 203 -243.489 205 | 204 -243.489 206 | 205 -243.489 207 | 206 -243.489 208 | 207 -243.489 209 | 208 -243.489 210 | 209 -243.489 211 | 210 -243.489 212 | 211 -243.489 213 | 212 -243.489 214 | 213 -243.489 215 | 214 -243.489 216 | 215 -243.489 217 | 216 -243.489 218 | 217 -243.489 219 | 218 -222.183 220 | 219 -222.183 221 | 220 -222.183 222 | 221 -222.183 223 | 222 -222.183 224 | 223 -222.183 225 | 224 -222.183 226 | 225 -222.183 227 | 226 -222.183 228 | 227 -222.183 229 | 228 -222.183 230 | 229 -222.183 231 | 230 -222.183 232 | 231 -222.183 233 | 232 -222.183 234 | 233 -222.183 235 | 234 -222.183 236 | 235 -222.183 237 | 236 -222.183 238 | 237 -222.183 239 | 238 -222.183 240 | 239 -222.183 241 | 240 -222.183 242 | 241 -222.183 243 | 242 -222.183 244 | 243 -222.183 245 | 244 -222.183 246 | 245 -222.183 247 | 246 -222.183 248 | 247 -130.946 249 | 248 -42.036 250 | 249 -42.036 251 | 250 -42.036 252 | 251 -42.036 253 | 252 -42.036 254 | 253 -42.036 255 | 254 -42.036 256 | 255 -42.036 257 | 256 -42.036 258 | 257 -42.036 259 | 258 -42.036 260 | 259 -42.036 261 | 260 -42.036 262 | 261 -42.036 263 | 262 -42.036 264 | 263 -42.036 265 | 264 -42.036 266 | 265 -42.036 267 | 266 -42.036 268 | 267 -42.036 269 | 268 -42.036 270 | 269 -42.036 271 | 270 -42.036 272 | 271 -42.036 273 | 272 -42.036 274 | 273 -42.036 275 | 274 -42.036 276 | 275 -42.036 277 | 276 -42.036 278 | 277 -42.036 279 | 278 -42.036 280 | 279 -42.036 281 | 280 -42.036 282 | 281 -42.036 283 | 282 -42.036 284 | 283 -42.036 285 | 284 -42.036 286 | 285 -42.036 287 | 286 -42.036 288 | 287 -40.5325 289 | 288 -40.5325 290 | 289 -40.5325 291 | 290 -40.5325 292 | 291 -40.5325 293 | 292 -40.5325 294 | 293 -40.5325 295 | 294 -40.5325 296 | 295 -40.5325 297 | 296 -40.5325 298 | 297 -40.5325 299 | 298 -40.5325 300 | 299 -40.5325 301 | 300 -40.5325 302 | 301 -40.5325 303 | 302 -40.5325 304 | 303 -40.5325 305 | 304 -40.5325 306 | 305 -40.5325 307 | 306 -40.5325 308 | 307 -40.5325 309 | 308 -40.5325 310 | 309 -40.5325 311 | 310 -40.5325 312 | 311 -40.5325 313 | 312 -40.5325 314 | 313 -40.5325 315 | 314 -40.5325 316 | 315 -40.5325 317 | 316 -40.5325 318 | 317 -40.5325 319 | 318 -40.5325 320 | 319 -40.5325 321 | 320 -40.5325 322 | 321 -40.5325 323 | 322 -40.5325 324 | 323 -40.5325 325 | 324 -40.5325 326 | 325 -40.5325 327 | 326 -33.7969 328 | 327 -33.7969 329 | 328 -33.7969 330 | 329 -33.7969 331 | 330 -33.7969 332 | 331 -33.7969 333 | 332 -33.7969 334 | 333 -30.2267 335 | 334 -30.2267 336 | 335 -30.2267 337 | 336 -30.2267 338 | 337 -30.2267 339 | 338 -30.2267 340 | 339 -30.2267 341 | 340 -30.2267 342 | 341 -30.2267 343 | 342 -30.2267 344 | 343 -30.2267 345 | 344 -19.8998 346 | 345 -19.8998 347 | 346 -19.8998 348 | 347 -19.8998 349 | 348 -19.8998 350 | 349 -19.8998 351 | 350 -19.8998 352 | 351 -19.8998 353 | 352 -19.8998 354 | 353 -19.8998 355 | 354 -19.8998 356 | 355 -19.8998 357 | 356 -19.8998 358 | 357 -17.6567 359 | 358 -17.6567 360 | 359 -17.6567 361 | 360 -17.6567 362 | 361 -17.6567 363 | 362 -17.6567 364 | 363 -17.6567 365 | 364 -17.6567 366 | 365 -17.6567 367 | 366 -17.6567 368 | 367 -17.6567 369 | 368 -17.6567 370 | 369 -17.6567 371 | 370 -17.6567 372 | 371 -17.6567 373 | 372 -17.6567 374 | 373 -17.6567 375 | 374 -17.6567 376 | 375 -17.6567 377 | 376 -17.6567 378 | 377 -17.6567 379 | 378 -17.6567 380 | 379 -17.6567 381 | 380 -17.6567 382 | 381 -17.6567 383 | 382 -17.6567 384 | 383 -17.6567 385 | 384 -17.6567 386 | 385 -17.6567 387 | 386 -17.6567 388 | 387 -17.6567 389 | 388 -17.6567 390 | 389 -17.6567 391 | 390 -17.6567 392 | 391 -17.6567 393 | 392 -17.6567 394 | 393 -17.6567 395 | 394 -17.6567 396 | 395 -17.6567 397 | 396 -17.6567 398 | 397 -17.6567 399 | 398 -17.6567 400 | 399 -17.6567 401 | 400 -17.6567 402 | 401 -17.6567 403 | 402 -17.6567 404 | 403 -17.6567 405 | 404 -17.6567 406 | 405 -17.6567 407 | 406 -17.6567 408 | 407 -17.6567 409 | 408 -17.6567 410 | 409 -17.6567 411 | 410 -14.4473 412 | 411 -14.4473 413 | 412 -14.4473 414 | 413 -14.4473 415 | 414 -14.4473 416 | 415 -12.9617 417 | 416 -12.9617 418 | 417 -12.9617 419 | 418 -12.9617 420 | 419 -12.9617 421 | 420 -12.9617 422 | 421 -12.9617 423 | 422 -12.9617 424 | 423 -12.9617 425 | 424 -12.9617 426 | 425 -12.9617 427 | 426 -12.9617 428 | 427 -12.9617 429 | 428 -12.9617 430 | 429 -12.9617 431 | 430 -12.9617 432 | 431 -12.9617 433 | 432 -12.9617 434 | 433 -12.9617 435 | 434 -12.9617 436 | 435 -12.9617 437 | 436 -12.9617 438 | 437 -12.9617 439 | 438 -12.9617 440 | 439 -12.9617 441 | 440 -12.9617 442 | 441 -12.9617 443 | 442 -12.9617 444 | 443 -12.9617 445 | 444 -12.9617 446 | 445 -12.9617 447 | 446 -12.9617 448 | 447 -12.9617 449 | 448 -12.9617 450 | 449 -12.9617 451 | 450 -12.9617 452 | 451 -12.9617 453 | 452 -12.9617 454 | 453 -12.9617 455 | 454 -12.9617 456 | 455 -12.9617 457 | 456 -12.9617 458 | 457 -12.1782 459 | 458 -12.1782 460 | 459 -12.1782 461 | 460 -12.1782 462 | 461 -12.1782 463 | 462 -12.1782 464 | 463 -12.1782 465 | 464 -12.1782 466 | 465 -12.1782 467 | 466 -12.1782 468 | 467 -12.1782 469 | 468 -12.1782 470 | 469 -12.1782 471 | 470 -12.1782 472 | 471 -12.1782 473 | 472 -12.1782 474 | 473 -12.1782 475 | 474 -12.1782 476 | 475 -12.1782 477 | 476 -12.1782 478 | 477 -12.1782 479 | 478 -12.1782 480 | 479 -12.1782 481 | 480 -12.1782 482 | 481 -12.1782 483 | 482 -12.1782 484 | 483 -12.1782 485 | 484 -12.1782 486 | 485 -12.1782 487 | 486 -12.1782 488 | 487 -11.8181 489 | 488 -11.8181 490 | 489 -11.8181 491 | 490 -11.8181 492 | 491 -11.8181 493 | 492 -11.8181 494 | 493 -11.8181 495 | 494 -11.8181 496 | 495 -11.0714 497 | 496 -11.0714 498 | 497 -11.0714 499 | 498 -11.0714 500 | 499 -11.0714 501 | 500 -11.0714 502 | 501 -11.0714 503 | 502 -11.0714 504 | 503 -11.0714 505 | 504 -11.0714 506 | 505 -11.0714 507 | 506 -11.0714 508 | 507 -11.0714 509 | 508 -10.5741 510 | 509 -10.5741 511 | 510 -10.5741 512 | 511 -10.5741 513 | 512 -10.001 514 | 513 -10.001 515 | 514 -10.001 516 | 515 -10.001 517 | 516 -10.001 518 | 517 -10.001 519 | 518 -10.001 520 | 519 -10.001 521 | 520 -10.001 522 | 521 -10.001 523 | 522 -10.001 524 | 523 -10.001 525 | 524 -10.001 526 | 525 -10.001 527 | 526 -10.001 528 | 527 -10.001 529 | 528 -10.001 530 | 529 -10.001 531 | 530 -10.001 532 | 531 -10.001 533 | 532 -10.001 534 | 533 -10.001 535 | 534 -10.001 536 | 535 -9.77152 537 | 536 -9.77152 538 | 537 -9.77152 539 | 538 -9.77152 540 | 539 -9.77152 541 | 540 -9.77152 542 | 541 -9.77152 543 | 542 -9.77152 544 | 543 -9.77152 545 | 544 -9.77152 546 | 545 -9.77152 547 | 546 -9.77152 548 | 547 -9.77152 549 | 548 -9.77152 550 | 549 -9.77152 551 | 550 -9.77152 552 | 551 -9.77152 553 | 552 -9.77152 554 | 553 -9.77152 555 | 554 -9.77152 556 | 555 -9.77152 557 | 556 -9.77152 558 | 557 -9.77152 559 | 558 -9.77152 560 | 559 -9.77152 561 | 560 -9.77152 562 | 561 -9.77152 563 | 562 -9.77152 564 | 563 -9.77152 565 | 564 -9.77152 566 | 565 -9.77152 567 | 566 -9.77152 568 | 567 -9.77152 569 | 568 -9.77152 570 | 569 -9.77152 571 | 570 -9.77152 572 | 571 -9.77152 573 | 572 -9.77152 574 | 573 -9.77152 575 | 574 -9.77152 576 | 575 -9.77152 577 | 576 -9.77152 578 | 577 -9.77152 579 | 578 -9.77152 580 | 579 -9.77152 581 | 580 -9.77152 582 | 581 -9.77152 583 | 582 -9.77152 584 | 583 -9.77152 585 | 584 -9.77152 586 | 585 -9.77152 587 | 586 -9.77152 588 | 587 -9.76258 589 | 588 -9.76258 590 | 589 -9.76258 591 | 590 -9.76258 592 | 591 -9.76258 593 | 592 -9.76258 594 | 593 -9.76258 595 | 594 -9.76258 596 | 595 -9.76258 597 | 596 -9.76258 598 | 597 -9.76258 599 | 598 -9.76258 600 | 599 -9.76258 601 | 600 -9.76258 602 | 601 -9.76258 603 | 602 -9.76258 604 | 603 -9.76258 605 | 604 -9.76258 606 | 605 -9.76258 607 | 606 -9.76258 608 | 607 -9.76258 609 | 608 -9.76258 610 | 609 -9.76258 611 | 610 -9.76258 612 | 611 -9.76258 613 | 612 -9.76258 614 | 613 -9.76258 615 | 614 -9.76258 616 | 615 -9.76258 617 | 616 -9.76258 618 | 617 -9.76258 619 | 618 -9.76258 620 | 619 -9.76258 621 | 620 -9.76258 622 | 621 -9.76258 623 | 622 -9.76258 624 | 623 -9.76258 625 | 624 -9.76258 626 | 625 -9.76258 627 | 626 -9.76258 628 | 627 -9.76258 629 | 628 -9.76258 630 | 629 -9.76258 631 | 630 -9.76258 632 | 631 -9.76258 633 | 632 -9.76258 634 | 633 -9.76258 635 | 634 -9.76258 636 | 635 -9.76258 637 | 636 -9.76258 638 | 637 -9.76258 639 | 638 -9.76258 640 | 639 -9.76258 641 | 640 -9.76258 642 | 641 -9.76258 643 | 642 -9.76258 644 | 643 -9.76258 645 | 644 -9.75481 646 | 645 -9.75481 647 | 646 -9.75481 648 | 647 -9.75481 649 | 648 -9.59697 650 | 649 -9.59697 651 | 650 -9.59697 652 | 651 -9.59697 653 | 652 -9.59697 654 | 653 -9.59697 655 | 654 -9.59697 656 | 655 -9.59697 657 | 656 -9.59697 658 | 657 -9.59697 659 | 658 -9.59697 660 | 659 -9.59697 661 | 660 -9.59697 662 | 661 -9.59697 663 | 662 -9.59697 664 | 663 -9.59697 665 | 664 -9.59697 666 | 665 -9.58416 667 | 666 -9.58416 668 | 667 -9.58416 669 | 668 -9.58416 670 | 669 -9.58416 671 | 670 -9.58416 672 | 671 -9.58416 673 | 672 -9.58416 674 | 673 -9.58416 675 | 674 -9.58416 676 | 675 -9.58416 677 | 676 -9.58416 678 | 677 -9.58416 679 | 678 -9.58416 680 | 679 -9.58416 681 | 680 -9.58416 682 | 681 -9.58416 683 | 682 -9.58416 684 | 683 -9.58416 685 | 684 -9.58416 686 | 685 -9.58416 687 | 686 -9.58416 688 | 687 -9.58416 689 | 688 -9.58416 690 | 689 -9.58416 691 | 690 -9.58416 692 | 691 -9.58416 693 | 692 -9.58416 694 | 693 -9.58416 695 | 694 -9.58416 696 | 695 -9.58416 697 | 696 -9.58416 698 | 697 -9.58416 699 | 698 -9.58416 700 | 699 -9.58416 701 | 700 -9.58416 702 | 701 -9.58416 703 | 702 -9.58416 704 | 703 -9.58416 705 | 704 -9.58416 706 | 705 -9.58416 707 | 706 -9.58416 708 | 707 -9.58416 709 | 708 -9.58416 710 | 709 -9.58416 711 | 710 -9.58416 712 | 711 -9.58416 713 | 712 -9.58416 714 | 713 -9.58416 715 | 714 -9.58416 716 | 715 -9.58416 717 | 716 -9.58416 718 | 717 -9.58416 719 | 718 -9.58416 720 | 719 -9.58416 721 | 720 -9.58416 722 | 721 -9.58416 723 | 722 -9.58416 724 | 723 -9.58416 725 | 724 -9.58416 726 | 725 -9.58416 727 | 726 -9.5814 728 | 727 -9.5814 729 | 728 -9.5814 730 | 729 -9.5814 731 | 730 -9.5814 732 | 731 -9.5814 733 | 732 -9.5814 734 | 733 -9.5814 735 | 734 -9.5814 736 | 735 -9.5814 737 | 736 -9.5814 738 | 737 -9.5814 739 | 738 -9.5814 740 | 739 -9.5814 741 | 740 -9.5814 742 | 741 -9.5814 743 | 742 -9.5814 744 | 743 -9.5814 745 | 744 -9.5814 746 | 745 -9.5814 747 | 746 -9.5814 748 | 747 -9.5814 749 | 748 -9.5814 750 | 749 -9.5814 751 | 750 -9.58116 752 | 751 -9.58116 753 | 752 -9.58116 754 | 753 -9.58116 755 | 754 -9.58116 756 | 755 -9.58116 757 | 756 -9.5554 758 | 757 -9.5554 759 | 758 -9.5554 760 | 759 -9.5554 761 | 760 -9.5554 762 | 761 -9.5554 763 | 762 -9.5554 764 | 763 -9.5554 765 | 764 -9.55481 766 | 765 -9.55444 767 | 766 -9.55444 768 | 767 -9.55444 769 | 768 -9.55444 770 | 769 -9.55444 771 | 770 -9.55444 772 | 771 -9.55444 773 | 772 -9.55444 774 | 773 -9.55444 775 | 774 -9.54569 776 | 775 -9.54569 777 | 776 -9.54569 778 | 777 -9.54569 779 | 778 -9.53139 780 | 779 -9.53139 781 | 780 -9.53139 782 | 781 -9.53139 783 | 782 -9.53139 784 | 783 -9.53139 785 | 784 -9.53139 786 | 785 -9.53139 787 | 786 -9.53139 788 | 787 -9.53139 789 | 788 -9.53139 790 | 789 -9.53139 791 | 790 -9.53139 792 | 791 -9.53139 793 | 792 -9.53139 794 | 793 -9.53139 795 | 794 -9.53139 796 | 795 -9.53139 797 | 796 -9.53139 798 | 797 -9.53139 799 | 798 -9.53139 800 | 799 -9.53139 801 | 800 -9.53139 802 | 801 -9.53139 803 | 802 -9.53139 804 | 803 -9.53139 805 | 804 -9.53139 806 | 805 -9.52644 807 | 806 -9.51 808 | 807 -9.51 809 | 808 -9.51 810 | 809 -9.51 811 | 810 -9.51 812 | 811 -9.51 813 | 812 -9.51 814 | 813 -9.50672 815 | 814 -9.50672 816 | 815 -9.50672 817 | 816 -9.50672 818 | 817 -9.50672 819 | 818 -9.50672 820 | 819 -9.50672 821 | 820 -9.50672 822 | 821 -9.50672 823 | 822 -9.50672 824 | 823 -9.50672 825 | 824 -9.50672 826 | 825 -9.50672 827 | 826 -9.50672 828 | 827 -9.50672 829 | 828 -9.50672 830 | 829 -9.50672 831 | 830 -9.50672 832 | 831 -9.50672 833 | 832 -9.50672 834 | 833 -9.50672 835 | 834 -9.50672 836 | 835 -9.50672 837 | 836 -9.50672 838 | 837 -9.50672 839 | 838 -9.5016 840 | 839 -9.5016 841 | 840 -9.50014 842 | 841 -9.50014 843 | 842 -9.45225 844 | 843 -9.45225 845 | 844 -9.45225 846 | 845 -9.45225 847 | 846 -9.45225 848 | 847 -9.45225 849 | 848 -9.45225 850 | 849 -9.45225 851 | 850 -9.45225 852 | 851 -9.45225 853 | 852 -9.45225 854 | 853 -9.45225 855 | 854 -9.45225 856 | 855 -9.45225 857 | 856 -9.45225 858 | 857 -9.45225 859 | 858 -9.45225 860 | 859 -9.45225 861 | 860 -9.45225 862 | 861 -9.45225 863 | 862 -9.45225 864 | 863 -9.45225 865 | 864 -9.45225 866 | 865 -9.45225 867 | 866 -9.45225 868 | 867 -9.45225 869 | 868 -9.45225 870 | 869 -9.45225 871 | 870 -9.45225 872 | 871 -9.45225 873 | 872 -9.45225 874 | 873 -9.45225 875 | 874 -9.45225 876 | 875 -9.45225 877 | 876 -9.45225 878 | 877 -9.45225 879 | 878 -9.45225 880 | 879 -9.45225 881 | 880 -9.45225 882 | 881 -9.45225 883 | 882 -9.45225 884 | 883 -9.45225 885 | 884 -9.45225 886 | 885 -9.45225 887 | 886 -9.45225 888 | 887 -9.45225 889 | 888 -9.45225 890 | 889 -9.45225 891 | 890 -9.45225 892 | 891 -9.45225 893 | 892 -9.45225 894 | 893 -9.45225 895 | 894 -9.45225 896 | 895 -9.45225 897 | 896 -9.45225 898 | 897 -9.45225 899 | 898 -9.45225 900 | 899 -9.45225 901 | 900 -9.45225 902 | 901 -9.45225 903 | 902 -9.45225 904 | 903 -9.45225 905 | 904 -9.45225 906 | 905 -9.45225 907 | 906 -9.45225 908 | 907 -9.45225 909 | 908 -9.45225 910 | 909 -9.45225 911 | 910 -9.45225 912 | 911 -9.45225 913 | 912 -9.45225 914 | 913 -9.45225 915 | 914 -9.45225 916 | 915 -9.45225 917 | 916 -9.45225 918 | 917 -9.45225 919 | 918 -9.45225 920 | 919 -9.45225 921 | 920 -9.45225 922 | 921 -9.45225 923 | 922 -9.45225 924 | 923 -9.45225 925 | 924 -9.45225 926 | 925 -9.45225 927 | 926 -9.45225 928 | 927 -9.45225 929 | 928 -9.45225 930 | 929 -9.4416 931 | 930 -9.4416 932 | 931 -9.4416 933 | 932 -9.4416 934 | 933 -9.4416 935 | 934 -9.4416 936 | 935 -9.4416 937 | 936 -9.4416 938 | 937 -9.4416 939 | 938 -9.4416 940 | 939 -9.4416 941 | 940 -9.4416 942 | 941 -9.4416 943 | 942 -9.4416 944 | 943 -9.4416 945 | 944 -9.4416 946 | 945 -9.4416 947 | 946 -9.4416 948 | 947 -9.4416 949 | 948 -9.4416 950 | 949 -9.4416 951 | 950 -9.4416 952 | 951 -9.4416 953 | 952 -9.4416 954 | 953 -9.4416 955 | 954 -9.4416 956 | 955 -9.4416 957 | 956 -9.4416 958 | 957 -9.4416 959 | 958 -9.4416 960 | 959 -9.4416 961 | 960 -9.4416 962 | 961 -9.4416 963 | 962 -9.4416 964 | 963 -9.4416 965 | 964 -9.4416 966 | 965 -9.4416 967 | 966 -9.4416 968 | 967 -9.4416 969 | 968 -9.4416 970 | 969 -9.4416 971 | 970 -9.4416 972 | 971 -9.4416 973 | 972 -9.4416 974 | 973 -9.4416 975 | 974 -9.4416 976 | 975 -9.4416 977 | 976 -9.4416 978 | 977 -9.4416 979 | 978 -9.4416 980 | 979 -9.4416 981 | 980 -9.4416 982 | 981 -9.4416 983 | 982 -9.4416 984 | 983 -9.4416 985 | 984 -9.4416 986 | 985 -9.4416 987 | 986 -9.4416 988 | 987 -9.4416 989 | 988 -9.4416 990 | 989 -9.4416 991 | 990 -9.4416 992 | 991 -9.4416 993 | 992 -9.4416 994 | 993 -9.4416 995 | 994 -9.4416 996 | 995 -9.4416 997 | 996 -9.4416 998 | 997 -9.4416 999 | 998 -9.4416 1000 | 999 -9.4416 1001 | -------------------------------------------------------------------------------- /src/data/low_mut/exp_24/node05_2014-07-15_16_42_51_5216/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -5321.53 2 | 1 -5321.53 3 | 2 -5321.53 4 | 3 -5321.53 5 | 4 -5321.53 6 | 5 -5321.53 7 | 6 -5321.53 8 | 7 -5321.53 9 | 8 -5321.53 10 | 9 -5321.53 11 | 10 -5321.53 12 | 11 -5321.53 13 | 12 -5321.53 14 | 13 -5321.53 15 | 14 -5321.53 16 | 15 -5321.53 17 | 16 -5321.53 18 | 17 -5321.53 19 | 18 -5321.53 20 | 19 -5321.53 21 | 20 -5321.53 22 | 21 -5321.53 23 | 22 -5321.53 24 | 23 -5321.53 25 | 24 -5321.53 26 | 25 -5321.53 27 | 26 -5321.53 28 | 27 -5321.53 29 | 28 -5321.53 30 | 29 -5321.53 31 | 30 -5321.53 32 | 31 -5321.53 33 | 32 -5321.53 34 | 33 -5321.53 35 | 34 -5321.53 36 | 35 -5321.53 37 | 36 -4774.81 38 | 37 -4774.81 39 | 38 -4774.81 40 | 39 -4774.81 41 | 40 -4774.81 42 | 41 -4774.81 43 | 42 -4774.81 44 | 43 -4774.81 45 | 44 -4774.81 46 | 45 -4774.81 47 | 46 -4774.81 48 | 47 -4774.81 49 | 48 -4774.81 50 | 49 -4774.81 51 | 50 -4774.81 52 | 51 -4774.81 53 | 52 -4774.81 54 | 53 -4774.81 55 | 54 -4774.81 56 | 55 -4774.81 57 | 56 -3780.48 58 | 57 -3780.48 59 | 58 -3780.48 60 | 59 -3780.48 61 | 60 -3780.48 62 | 61 -3780.48 63 | 62 -3780.48 64 | 63 -3780.48 65 | 64 -3780.48 66 | 65 -3780.48 67 | 66 -3780.48 68 | 67 -3780.48 69 | 68 -3780.48 70 | 69 -3780.48 71 | 70 -3780.48 72 | 71 -3780.48 73 | 72 -3780.48 74 | 73 -3780.48 75 | 74 -2361.88 76 | 75 -2361.88 77 | 76 -2361.88 78 | 77 -2361.88 79 | 78 -2361.88 80 | 79 -2361.88 81 | 80 -2361.88 82 | 81 -2361.88 83 | 82 -2361.88 84 | 83 -2361.88 85 | 84 -2361.88 86 | 85 -2361.88 87 | 86 -2361.88 88 | 87 -2361.88 89 | 88 -2361.88 90 | 89 -2361.88 91 | 90 -2361.88 92 | 91 -2361.88 93 | 92 -2361.88 94 | 93 -2361.88 95 | 94 -2361.88 96 | 95 -2361.88 97 | 96 -2361.88 98 | 97 -1598.31 99 | 98 -1598.31 100 | 99 -1598.31 101 | 100 -1598.31 102 | 101 -1598.31 103 | 102 -1598.31 104 | 103 -1598.31 105 | 104 -1598.31 106 | 105 -1598.31 107 | 106 -1598.31 108 | 107 -1598.31 109 | 108 -1598.31 110 | 109 -1598.31 111 | 110 -1598.31 112 | 111 -1598.31 113 | 112 -1598.31 114 | 113 -1598.31 115 | 114 -1598.31 116 | 115 -1598.31 117 | 116 -1598.31 118 | 117 -1394.9 119 | 118 -1394.9 120 | 119 -1394.9 121 | 120 -1394.9 122 | 121 -1394.9 123 | 122 -1394.9 124 | 123 -1394.9 125 | 124 -1394.9 126 | 125 -1394.9 127 | 126 -1394.9 128 | 127 -1394.9 129 | 128 -1394.9 130 | 129 -1394.9 131 | 130 -1394.9 132 | 131 -1394.9 133 | 132 -1394.9 134 | 133 -1394.9 135 | 134 -1394.9 136 | 135 -1394.9 137 | 136 -1394.9 138 | 137 -1394.9 139 | 138 -1394.9 140 | 139 -1394.9 141 | 140 -1394.9 142 | 141 -1394.9 143 | 142 -1394.9 144 | 143 -1229.65 145 | 144 -1229.65 146 | 145 -1229.65 147 | 146 -1229.65 148 | 147 -1229.65 149 | 148 -1229.65 150 | 149 -1229.65 151 | 150 -1229.65 152 | 151 -1229.65 153 | 152 -1229.65 154 | 153 -1229.65 155 | 154 -1229.65 156 | 155 -1229.65 157 | 156 -1229.65 158 | 157 -1229.65 159 | 158 -1229.65 160 | 159 -1229.65 161 | 160 -1229.65 162 | 161 -1229.65 163 | 162 -1229.65 164 | 163 -1229.65 165 | 164 -1229.65 166 | 165 -1229.65 167 | 166 -1229.65 168 | 167 -1229.65 169 | 168 -1224 170 | 169 -1224 171 | 170 -1224 172 | 171 -1224 173 | 172 -1224 174 | 173 -1224 175 | 174 -1224 176 | 175 -1216.49 177 | 176 -1216.49 178 | 177 -1215.01 179 | 178 -1127.85 180 | 179 -1127.85 181 | 180 -1127.85 182 | 181 -1127.85 183 | 182 -1068.26 184 | 183 -1068.26 185 | 184 -1068.26 186 | 185 -1068.26 187 | 186 -1068.26 188 | 187 -1068.26 189 | 188 -1068.26 190 | 189 -1068.26 191 | 190 -936.996 192 | 191 -732.415 193 | 192 -732.415 194 | 193 -732.415 195 | 194 -732.415 196 | 195 -732.415 197 | 196 -732.415 198 | 197 -732.415 199 | 198 -732.415 200 | 199 -732.415 201 | 200 -732.415 202 | 201 -732.415 203 | 202 -732.415 204 | 203 -732.415 205 | 204 -732.415 206 | 205 -732.415 207 | 206 -732.415 208 | 207 -654.085 209 | 208 -654.085 210 | 209 -654.085 211 | 210 -654.085 212 | 211 -654.085 213 | 212 -654.085 214 | 213 -654.085 215 | 214 -654.085 216 | 215 -654.085 217 | 216 -654.085 218 | 217 -479.907 219 | 218 -479.907 220 | 219 -479.907 221 | 220 -479.907 222 | 221 -412.793 223 | 222 -412.793 224 | 223 -412.793 225 | 224 -412.793 226 | 225 -412.793 227 | 226 -412.793 228 | 227 -412.793 229 | 228 -412.793 230 | 229 -412.793 231 | 230 -412.793 232 | 231 -412.793 233 | 232 -412.793 234 | 233 -412.793 235 | 234 -412.793 236 | 235 -135.001 237 | 236 -135.001 238 | 237 -135.001 239 | 238 -135.001 240 | 239 -135.001 241 | 240 -135.001 242 | 241 -135.001 243 | 242 -135.001 244 | 243 -89.0427 245 | 244 -89.0427 246 | 245 -89.0427 247 | 246 -89.0427 248 | 247 -89.0427 249 | 248 -89.0427 250 | 249 -89.0427 251 | 250 -89.0427 252 | 251 -89.0427 253 | 252 -89.0427 254 | 253 -89.0427 255 | 254 -89.0427 256 | 255 -89.0427 257 | 256 -89.0427 258 | 257 -89.0427 259 | 258 -89.0427 260 | 259 -89.0427 261 | 260 -89.0427 262 | 261 -89.0427 263 | 262 -89.0427 264 | 263 -89.0427 265 | 264 -89.0427 266 | 265 -89.0427 267 | 266 -89.0427 268 | 267 -66.3712 269 | 268 -66.3712 270 | 269 -66.3712 271 | 270 -66.3712 272 | 271 -66.3712 273 | 272 -66.3712 274 | 273 -66.3712 275 | 274 -66.3712 276 | 275 -66.3712 277 | 276 -66.3712 278 | 277 -66.3712 279 | 278 -66.3712 280 | 279 -66.3712 281 | 280 -66.3712 282 | 281 -66.3712 283 | 282 -66.3712 284 | 283 -66.3712 285 | 284 -66.3712 286 | 285 -66.3712 287 | 286 -66.3712 288 | 287 -66.3712 289 | 288 -66.3712 290 | 289 -66.3712 291 | 290 -66.3712 292 | 291 -66.3712 293 | 292 -66.3712 294 | 293 -66.3712 295 | 294 -66.3712 296 | 295 -66.3712 297 | 296 -66.3712 298 | 297 -40.06 299 | 298 -40.06 300 | 299 -40.06 301 | 300 -40.06 302 | 301 -40.06 303 | 302 -40.06 304 | 303 -40.06 305 | 304 -40.06 306 | 305 -40.06 307 | 306 -40.06 308 | 307 -40.06 309 | 308 -40.06 310 | 309 -40.06 311 | 310 -40.06 312 | 311 -40.06 313 | 312 -40.06 314 | 313 -40.06 315 | 314 -40.06 316 | 315 -40.06 317 | 316 -40.06 318 | 317 -40.06 319 | 318 -40.06 320 | 319 -40.06 321 | 320 -40.06 322 | 321 -40.06 323 | 322 -40.06 324 | 323 -40.06 325 | 324 -40.06 326 | 325 -40.06 327 | 326 -40.06 328 | 327 -40.06 329 | 328 -40.06 330 | 329 -40.06 331 | 330 -40.06 332 | 331 -40.06 333 | 332 -40.06 334 | 333 -40.06 335 | 334 -40.06 336 | 335 -40.06 337 | 336 -40.06 338 | 337 -40.06 339 | 338 -40.06 340 | 339 -40.06 341 | 340 -40.06 342 | 341 -40.06 343 | 342 -40.06 344 | 343 -40.06 345 | 344 -40.06 346 | 345 -40.06 347 | 346 -40.06 348 | 347 -40.06 349 | 348 -40.06 350 | 349 -40.06 351 | 350 -40.06 352 | 351 -40.06 353 | 352 -40.06 354 | 353 -40.06 355 | 354 -40.06 356 | 355 -40.06 357 | 356 -40.06 358 | 357 -40.06 359 | 358 -40.06 360 | 359 -40.06 361 | 360 -40.06 362 | 361 -40.06 363 | 362 -31.1544 364 | 363 -31.1544 365 | 364 -31.1544 366 | 365 -31.1544 367 | 366 -31.1544 368 | 367 -31.1544 369 | 368 -31.1544 370 | 369 -31.1544 371 | 370 -31.1544 372 | 371 -31.1544 373 | 372 -31.1544 374 | 373 -31.1544 375 | 374 -31.1544 376 | 375 -31.1544 377 | 376 -31.1544 378 | 377 -31.1544 379 | 378 -31.1544 380 | 379 -31.1544 381 | 380 -31.1544 382 | 381 -31.1544 383 | 382 -31.1544 384 | 383 -31.1544 385 | 384 -31.1544 386 | 385 -31.1544 387 | 386 -31.1544 388 | 387 -31.1544 389 | 388 -31.1544 390 | 389 -31.1544 391 | 390 -31.1544 392 | 391 -31.1544 393 | 392 -31.1544 394 | 393 -31.1544 395 | 394 -31.1544 396 | 395 -31.1544 397 | 396 -31.1544 398 | 397 -31.1544 399 | 398 -31.1544 400 | 399 -31.1544 401 | 400 -31.1544 402 | 401 -31.1544 403 | 402 -31.1544 404 | 403 -31.1544 405 | 404 -31.1544 406 | 405 -31.1544 407 | 406 -25.5318 408 | 407 -25.5318 409 | 408 -25.5318 410 | 409 -25.5318 411 | 410 -25.5318 412 | 411 -25.5318 413 | 412 -25.5318 414 | 413 -21.4479 415 | 414 -21.4479 416 | 415 -21.4479 417 | 416 -21.4479 418 | 417 -21.4479 419 | 418 -18.992 420 | 419 -18.992 421 | 420 -18.6786 422 | 421 -18.6786 423 | 422 -18.6786 424 | 423 -18.6786 425 | 424 -18.6786 426 | 425 -18.6786 427 | 426 -18.6786 428 | 427 -18.6786 429 | 428 -18.6786 430 | 429 -18.6786 431 | 430 -18.6786 432 | 431 -18.6786 433 | 432 -18.6786 434 | 433 -18.6786 435 | 434 -18.6786 436 | 435 -18.6786 437 | 436 -18.6786 438 | 437 -18.6786 439 | 438 -18.6786 440 | 439 -18.6786 441 | 440 -18.6233 442 | 441 -18.6233 443 | 442 -17.5774 444 | 443 -13.6501 445 | 444 -13.6501 446 | 445 -13.6501 447 | 446 -13.6501 448 | 447 -13.6501 449 | 448 -13.6501 450 | 449 -13.6501 451 | 450 -13.6501 452 | 451 -13.6501 453 | 452 -13.6501 454 | 453 -13.6501 455 | 454 -13.6501 456 | 455 -13.6501 457 | 456 -13.6501 458 | 457 -13.6501 459 | 458 -13.6501 460 | 459 -13.6501 461 | 460 -13.6501 462 | 461 -13.6501 463 | 462 -13.6501 464 | 463 -13.6501 465 | 464 -13.6501 466 | 465 -13.6501 467 | 466 -13.6501 468 | 467 -13.6501 469 | 468 -13.6501 470 | 469 -13.6501 471 | 470 -13.6501 472 | 471 -13.6501 473 | 472 -13.6501 474 | 473 -13.6501 475 | 474 -13.6501 476 | 475 -13.154 477 | 476 -13.154 478 | 477 -13.154 479 | 478 -13.154 480 | 479 -13.154 481 | 480 -13.154 482 | 481 -13.154 483 | 482 -13.154 484 | 483 -13.154 485 | 484 -13.154 486 | 485 -13.154 487 | 486 -10.4446 488 | 487 -10.4446 489 | 488 -10.4446 490 | 489 -10.4446 491 | 490 -10.4446 492 | 491 -10.4446 493 | 492 -10.4446 494 | 493 -10.4446 495 | 494 -10.4446 496 | 495 -10.4446 497 | 496 -10.4446 498 | 497 -10.4446 499 | 498 -10.4446 500 | 499 -10.4446 501 | 500 -10.4446 502 | 501 -10.4446 503 | 502 -10.4446 504 | 503 -10.4446 505 | 504 -10.4446 506 | 505 -10.4446 507 | 506 -10.4446 508 | 507 -10.4446 509 | 508 -10.4446 510 | 509 -10.4446 511 | 510 -10.4446 512 | 511 -10.4446 513 | 512 -10.4446 514 | 513 -10.4446 515 | 514 -10.4446 516 | 515 -10.4446 517 | 516 -10.4446 518 | 517 -10.4446 519 | 518 -10.4446 520 | 519 -10.4446 521 | 520 -10.4446 522 | 521 -10.4446 523 | 522 -10.4446 524 | 523 -10.4446 525 | 524 -10.4446 526 | 525 -10.4446 527 | 526 -10.4446 528 | 527 -10.4446 529 | 528 -10.4446 530 | 529 -10.4446 531 | 530 -10.4446 532 | 531 -10.4446 533 | 532 -10.4446 534 | 533 -10.4446 535 | 534 -10.4446 536 | 535 -10.4446 537 | 536 -10.4446 538 | 537 -10.4446 539 | 538 -10.4446 540 | 539 -10.4077 541 | 540 -10.4077 542 | 541 -10.4077 543 | 542 -10.4077 544 | 543 -10.4077 545 | 544 -10.4077 546 | 545 -10.4077 547 | 546 -10.4077 548 | 547 -10.4077 549 | 548 -10.4077 550 | 549 -9.81073 551 | 550 -9.81073 552 | 551 -9.81073 553 | 552 -9.81073 554 | 553 -9.81073 555 | 554 -9.81073 556 | 555 -9.81073 557 | 556 -9.81073 558 | 557 -9.81073 559 | 558 -9.81073 560 | 559 -9.81073 561 | 560 -9.81073 562 | 561 -9.81073 563 | 562 -9.81073 564 | 563 -9.81073 565 | 564 -9.81073 566 | 565 -9.81073 567 | 566 -9.81073 568 | 567 -9.77343 569 | 568 -9.77343 570 | 569 -9.77343 571 | 570 -9.77343 572 | 571 -9.77343 573 | 572 -9.77343 574 | 573 -9.77343 575 | 574 -9.77343 576 | 575 -9.77343 577 | 576 -9.77343 578 | 577 -9.60178 579 | 578 -9.60178 580 | 579 -9.60178 581 | 580 -9.60178 582 | 581 -9.60178 583 | 582 -9.60178 584 | 583 -9.60178 585 | 584 -9.60178 586 | 585 -9.60178 587 | 586 -9.60178 588 | 587 -9.60178 589 | 588 -9.60178 590 | 589 -9.60178 591 | 590 -9.60178 592 | 591 -9.60178 593 | 592 -9.60178 594 | 593 -9.60178 595 | 594 -9.60178 596 | 595 -9.60178 597 | 596 -9.60178 598 | 597 -9.60178 599 | 598 -9.60178 600 | 599 -9.60178 601 | 600 -9.60178 602 | 601 -9.60178 603 | 602 -9.60178 604 | 603 -9.60178 605 | 604 -9.60178 606 | 605 -9.60178 607 | 606 -9.60178 608 | 607 -9.60178 609 | 608 -9.60178 610 | 609 -9.60178 611 | 610 -9.60178 612 | 611 -9.60178 613 | 612 -9.60178 614 | 613 -9.60178 615 | 614 -9.60178 616 | 615 -9.60178 617 | 616 -9.60178 618 | 617 -9.60178 619 | 618 -9.60178 620 | 619 -9.60178 621 | 620 -9.5588 622 | 621 -9.5588 623 | 622 -9.5588 624 | 623 -9.5588 625 | 624 -9.5588 626 | 625 -9.5588 627 | 626 -9.5588 628 | 627 -9.5588 629 | 628 -9.5588 630 | 629 -9.5588 631 | 630 -9.5588 632 | 631 -9.5588 633 | 632 -9.5588 634 | 633 -9.5588 635 | 634 -9.5588 636 | 635 -9.5588 637 | 636 -9.5588 638 | 637 -9.5588 639 | 638 -9.5588 640 | 639 -9.5588 641 | 640 -9.5588 642 | 641 -9.5588 643 | 642 -9.5588 644 | 643 -9.5588 645 | 644 -9.5588 646 | 645 -9.5588 647 | 646 -9.5588 648 | 647 -9.5588 649 | 648 -9.5588 650 | 649 -9.5588 651 | 650 -9.5588 652 | 651 -9.5588 653 | 652 -9.5588 654 | 653 -9.5588 655 | 654 -9.5588 656 | 655 -9.5588 657 | 656 -9.5588 658 | 657 -9.5588 659 | 658 -9.5588 660 | 659 -9.5588 661 | 660 -9.5588 662 | 661 -9.5588 663 | 662 -9.5588 664 | 663 -9.5588 665 | 664 -9.5588 666 | 665 -9.5588 667 | 666 -9.5588 668 | 667 -9.5588 669 | 668 -9.5588 670 | 669 -9.47149 671 | 670 -9.47149 672 | 671 -9.47149 673 | 672 -9.47149 674 | 673 -9.47149 675 | 674 -9.47149 676 | 675 -9.47149 677 | 676 -9.47149 678 | 677 -9.47149 679 | 678 -9.47149 680 | 679 -9.47149 681 | 680 -9.47149 682 | 681 -9.47149 683 | 682 -9.47149 684 | 683 -9.47149 685 | 684 -9.47149 686 | 685 -9.47149 687 | 686 -9.47149 688 | 687 -9.47149 689 | 688 -9.47149 690 | 689 -9.47149 691 | 690 -9.47149 692 | 691 -9.47149 693 | 692 -9.47149 694 | 693 -9.47149 695 | 694 -9.47149 696 | 695 -9.47149 697 | 696 -9.47149 698 | 697 -9.47149 699 | 698 -9.47149 700 | 699 -9.47149 701 | 700 -9.47149 702 | 701 -9.47149 703 | 702 -9.47149 704 | 703 -9.47149 705 | 704 -9.47149 706 | 705 -9.47149 707 | 706 -9.47149 708 | 707 -9.47149 709 | 708 -9.47149 710 | 709 -9.47149 711 | 710 -9.47149 712 | 711 -9.47149 713 | 712 -9.47149 714 | 713 -9.47149 715 | 714 -9.47149 716 | 715 -9.47149 717 | 716 -9.47149 718 | 717 -9.47149 719 | 718 -9.47149 720 | 719 -9.47149 721 | 720 -9.47149 722 | 721 -9.47149 723 | 722 -9.47149 724 | 723 -9.47149 725 | 724 -9.47149 726 | 725 -9.47149 727 | 726 -9.47149 728 | 727 -9.47149 729 | 728 -9.47149 730 | 729 -9.47149 731 | 730 -9.47149 732 | 731 -9.47149 733 | 732 -9.47149 734 | 733 -9.47149 735 | 734 -9.47149 736 | 735 -9.47149 737 | 736 -9.47149 738 | 737 -9.47149 739 | 738 -9.47149 740 | 739 -9.47149 741 | 740 -9.47149 742 | 741 -9.47149 743 | 742 -9.47149 744 | 743 -9.47149 745 | 744 -9.47149 746 | 745 -9.47149 747 | 746 -9.47149 748 | 747 -9.47149 749 | 748 -9.47149 750 | 749 -9.47149 751 | 750 -9.47149 752 | 751 -9.47149 753 | 752 -9.47149 754 | 753 -9.47149 755 | 754 -9.47149 756 | 755 -9.47149 757 | 756 -9.47149 758 | 757 -9.47149 759 | 758 -9.47149 760 | 759 -9.47149 761 | 760 -9.47149 762 | 761 -9.47149 763 | 762 -9.47149 764 | 763 -9.47149 765 | 764 -9.47149 766 | 765 -9.47149 767 | 766 -9.47149 768 | 767 -9.47149 769 | 768 -9.47149 770 | 769 -9.47149 771 | 770 -9.47149 772 | 771 -9.47149 773 | 772 -9.47149 774 | 773 -9.47149 775 | 774 -9.47149 776 | 775 -9.47149 777 | 776 -9.47149 778 | 777 -9.47149 779 | 778 -9.47149 780 | 779 -9.47149 781 | 780 -9.47149 782 | 781 -9.47149 783 | 782 -9.47149 784 | 783 -9.47149 785 | 784 -9.47149 786 | 785 -9.47149 787 | 786 -9.47149 788 | 787 -9.47149 789 | 788 -9.47149 790 | 789 -9.47149 791 | 790 -9.47149 792 | 791 -9.44483 793 | 792 -9.44483 794 | 793 -9.44483 795 | 794 -9.44483 796 | 795 -9.44483 797 | 796 -9.44483 798 | 797 -9.44483 799 | 798 -9.44483 800 | 799 -9.44483 801 | 800 -9.44483 802 | 801 -9.44483 803 | 802 -9.44483 804 | 803 -9.44483 805 | 804 -9.44483 806 | 805 -9.44483 807 | 806 -9.44483 808 | 807 -9.44483 809 | 808 -9.44483 810 | 809 -9.44483 811 | 810 -9.44483 812 | 811 -9.44483 813 | 812 -9.44483 814 | 813 -9.44483 815 | 814 -9.44483 816 | 815 -9.44483 817 | 816 -9.44483 818 | 817 -9.44483 819 | 818 -9.44483 820 | 819 -9.42512 821 | 820 -9.42512 822 | 821 -9.42512 823 | 822 -9.42512 824 | 823 -9.42512 825 | 824 -9.42512 826 | 825 -9.42512 827 | 826 -9.42512 828 | 827 -9.42512 829 | 828 -9.42512 830 | 829 -9.42512 831 | 830 -9.42512 832 | 831 -9.42512 833 | 832 -9.42512 834 | 833 -9.42512 835 | 834 -9.42512 836 | 835 -9.42512 837 | 836 -9.42512 838 | 837 -9.42512 839 | 838 -9.42512 840 | 839 -9.42512 841 | 840 -9.42512 842 | 841 -9.42512 843 | 842 -9.42512 844 | 843 -9.42512 845 | 844 -9.42512 846 | 845 -9.42512 847 | 846 -9.42512 848 | 847 -9.42512 849 | 848 -9.42512 850 | 849 -9.42512 851 | 850 -9.42512 852 | 851 -9.42512 853 | 852 -9.42512 854 | 853 -9.42512 855 | 854 -9.42512 856 | 855 -9.42512 857 | 856 -9.42512 858 | 857 -9.42512 859 | 858 -9.42512 860 | 859 -9.42512 861 | 860 -9.42512 862 | 861 -9.42512 863 | 862 -9.42512 864 | 863 -9.42512 865 | 864 -9.42512 866 | 865 -9.42512 867 | 866 -9.42512 868 | 867 -9.42512 869 | 868 -9.42512 870 | 869 -9.42512 871 | 870 -9.42512 872 | 871 -9.42512 873 | 872 -9.42512 874 | 873 -9.42512 875 | 874 -9.42512 876 | 875 -9.42512 877 | 876 -9.42512 878 | 877 -9.42512 879 | 878 -9.42512 880 | 879 -9.42434 881 | 880 -9.42434 882 | 881 -9.42434 883 | 882 -9.42434 884 | 883 -9.42434 885 | 884 -9.42434 886 | 885 -9.42434 887 | 886 -9.42434 888 | 887 -9.42434 889 | 888 -9.42434 890 | 889 -9.42434 891 | 890 -9.42434 892 | 891 -9.42434 893 | 892 -9.42434 894 | 893 -9.42434 895 | 894 -9.42434 896 | 895 -9.42434 897 | 896 -9.42434 898 | 897 -9.42434 899 | 898 -9.42434 900 | 899 -9.42434 901 | 900 -9.42434 902 | 901 -9.42434 903 | 902 -9.42434 904 | 903 -9.42434 905 | 904 -9.42434 906 | 905 -9.42434 907 | 906 -9.42434 908 | 907 -9.42434 909 | 908 -9.42434 910 | 909 -9.42434 911 | 910 -9.42434 912 | 911 -9.42434 913 | 912 -9.42434 914 | 913 -9.42434 915 | 914 -9.42434 916 | 915 -9.42434 917 | 916 -9.42434 918 | 917 -9.42434 919 | 918 -9.42434 920 | 919 -9.42434 921 | 920 -9.42434 922 | 921 -9.42434 923 | 922 -9.42434 924 | 923 -9.42249 925 | 924 -9.42249 926 | 925 -9.42249 927 | 926 -9.42249 928 | 927 -9.42249 929 | 928 -9.42249 930 | 929 -9.42249 931 | 930 -9.42249 932 | 931 -9.41231 933 | 932 -9.41231 934 | 933 -9.41231 935 | 934 -9.41231 936 | 935 -9.41231 937 | 936 -9.41231 938 | 937 -9.41231 939 | 938 -9.41231 940 | 939 -9.41231 941 | 940 -9.41231 942 | 941 -9.41231 943 | 942 -9.41231 944 | 943 -9.41231 945 | 944 -9.41231 946 | 945 -9.41231 947 | 946 -9.41231 948 | 947 -9.41231 949 | 948 -9.41231 950 | 949 -9.41231 951 | 950 -9.41231 952 | 951 -9.41231 953 | 952 -9.41231 954 | 953 -9.41231 955 | 954 -9.41231 956 | 955 -9.41231 957 | 956 -9.41231 958 | 957 -9.41231 959 | 958 -9.41231 960 | 959 -9.41231 961 | 960 -9.41231 962 | 961 -9.41231 963 | 962 -9.41231 964 | 963 -9.41231 965 | 964 -9.41231 966 | 965 -9.41231 967 | 966 -9.41231 968 | 967 -9.41231 969 | 968 -9.41231 970 | 969 -9.41231 971 | 970 -9.41231 972 | 971 -9.41231 973 | 972 -9.41231 974 | 973 -9.41231 975 | 974 -9.41231 976 | 975 -9.41231 977 | 976 -9.41231 978 | 977 -9.41231 979 | 978 -9.41231 980 | 979 -9.41231 981 | 980 -9.41231 982 | 981 -9.41231 983 | 982 -9.41231 984 | 983 -9.41231 985 | 984 -9.41231 986 | 985 -9.41231 987 | 986 -9.41231 988 | 987 -9.41231 989 | 988 -9.41231 990 | 989 -9.41231 991 | 990 -9.41231 992 | 991 -9.41231 993 | 992 -9.41231 994 | 993 -9.41231 995 | 994 -9.41231 996 | 995 -9.41231 997 | 996 -9.41231 998 | 997 -9.41231 999 | 998 -9.41231 1000 | 999 -9.41231 1001 | -------------------------------------------------------------------------------- /src/data/low_mut/exp_26/node09_2014-07-15_16_42_52_7809/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -3408.7 2 | 1 -3408.7 3 | 2 -3408.7 4 | 3 -3408.7 5 | 4 -3408.7 6 | 5 -3408.7 7 | 6 -3408.7 8 | 7 -3408.7 9 | 8 -3408.7 10 | 9 -3408.7 11 | 10 -3408.7 12 | 11 -3408.7 13 | 12 -3408.7 14 | 13 -3408.7 15 | 14 -3408.7 16 | 15 -3408.7 17 | 16 -3408.7 18 | 17 -3408.7 19 | 18 -3408.7 20 | 19 -3408.7 21 | 20 -3408.7 22 | 21 -3408.7 23 | 22 -3408.7 24 | 23 -3408.7 25 | 24 -3408.7 26 | 25 -3408.7 27 | 26 -3408.7 28 | 27 -3408.7 29 | 28 -3408.7 30 | 29 -3408.7 31 | 30 -3408.7 32 | 31 -3408.7 33 | 32 -3408.7 34 | 33 -3408.7 35 | 34 -3408.7 36 | 35 -3408.7 37 | 36 -3408.7 38 | 37 -3408.7 39 | 38 -3408.7 40 | 39 -3408.7 41 | 40 -3408.7 42 | 41 -3408.7 43 | 42 -3408.7 44 | 43 -3408.7 45 | 44 -3408.7 46 | 45 -3408.7 47 | 46 -3408.7 48 | 47 -3408.7 49 | 48 -3408.7 50 | 49 -3408.7 51 | 50 -3408.7 52 | 51 -3408.7 53 | 52 -3408.7 54 | 53 -3408.7 55 | 54 -3408.7 56 | 55 -3408.7 57 | 56 -3408.7 58 | 57 -3408.7 59 | 58 -3408.7 60 | 59 -3408.7 61 | 60 -3408.7 62 | 61 -3408.7 63 | 62 -1919.56 64 | 63 -1919.56 65 | 64 -1919.56 66 | 65 -1919.56 67 | 66 -1919.56 68 | 67 -1919.56 69 | 68 -1919.56 70 | 69 -1919.56 71 | 70 -1919.56 72 | 71 -1919.56 73 | 72 -1919.56 74 | 73 -1919.56 75 | 74 -1919.56 76 | 75 -1919.56 77 | 76 -1919.56 78 | 77 -1919.56 79 | 78 -1919.56 80 | 79 -1919.56 81 | 80 -1919.56 82 | 81 -1919.56 83 | 82 -1919.56 84 | 83 -1919.56 85 | 84 -1919.56 86 | 85 -1919.56 87 | 86 -1919.56 88 | 87 -1919.56 89 | 88 -1919.56 90 | 89 -1919.56 91 | 90 -1919.56 92 | 91 -1919.56 93 | 92 -1919.56 94 | 93 -1919.56 95 | 94 -1919.56 96 | 95 -1919.56 97 | 96 -1919.56 98 | 97 -1919.56 99 | 98 -1919.56 100 | 99 -1919.56 101 | 100 -1919.56 102 | 101 -1533.7 103 | 102 -1533.7 104 | 103 -1533.7 105 | 104 -1533.7 106 | 105 -1533.7 107 | 106 -1533.7 108 | 107 -1533.7 109 | 108 -1533.7 110 | 109 -1533.7 111 | 110 -1533.7 112 | 111 -1533.7 113 | 112 -1533.7 114 | 113 -1533.7 115 | 114 -1533.7 116 | 115 -1533.7 117 | 116 -1533.7 118 | 117 -1533.7 119 | 118 -1533.7 120 | 119 -1533.7 121 | 120 -1533.7 122 | 121 -1533.7 123 | 122 -1533.7 124 | 123 -1533.7 125 | 124 -1533.7 126 | 125 -1533.7 127 | 126 -1533.7 128 | 127 -1533.7 129 | 128 -1533.7 130 | 129 -1533.7 131 | 130 -1533.7 132 | 131 -1533.7 133 | 132 -1533.7 134 | 133 -1533.7 135 | 134 -1492.2 136 | 135 -1492.2 137 | 136 -1492.2 138 | 137 -1492.2 139 | 138 -1492.2 140 | 139 -1492.2 141 | 140 -1492.2 142 | 141 -830.97 143 | 142 -830.97 144 | 143 -830.97 145 | 144 -830.97 146 | 145 -830.97 147 | 146 -506.244 148 | 147 -506.244 149 | 148 -506.244 150 | 149 -506.244 151 | 150 -506.244 152 | 151 -506.244 153 | 152 -506.244 154 | 153 -506.244 155 | 154 -506.244 156 | 155 -506.244 157 | 156 -506.244 158 | 157 -506.244 159 | 158 -506.244 160 | 159 -506.244 161 | 160 -506.244 162 | 161 -506.244 163 | 162 -506.244 164 | 163 -506.244 165 | 164 -506.244 166 | 165 -506.244 167 | 166 -506.244 168 | 167 -506.244 169 | 168 -506.244 170 | 169 -506.244 171 | 170 -506.244 172 | 171 -469.231 173 | 172 -469.231 174 | 173 -469.231 175 | 174 -469.231 176 | 175 -469.231 177 | 176 -469.231 178 | 177 -469.231 179 | 178 -469.231 180 | 179 -469.231 181 | 180 -469.231 182 | 181 -469.231 183 | 182 -469.231 184 | 183 -469.231 185 | 184 -469.231 186 | 185 -469.231 187 | 186 -469.231 188 | 187 -469.231 189 | 188 -469.231 190 | 189 -469.231 191 | 190 -469.231 192 | 191 -469.231 193 | 192 -469.231 194 | 193 -469.231 195 | 194 -469.231 196 | 195 -469.231 197 | 196 -469.231 198 | 197 -469.231 199 | 198 -469.231 200 | 199 -469.231 201 | 200 -469.231 202 | 201 -469.231 203 | 202 -469.231 204 | 203 -469.231 205 | 204 -469.231 206 | 205 -469.231 207 | 206 -469.231 208 | 207 -469.231 209 | 208 -469.231 210 | 209 -469.231 211 | 210 -469.231 212 | 211 -469.231 213 | 212 -469.231 214 | 213 -469.231 215 | 214 -469.231 216 | 215 -469.231 217 | 216 -469.231 218 | 217 -469.231 219 | 218 -469.231 220 | 219 -469.231 221 | 220 -469.231 222 | 221 -469.231 223 | 222 -469.231 224 | 223 -469.231 225 | 224 -469.231 226 | 225 -469.231 227 | 226 -469.231 228 | 227 -469.231 229 | 228 -469.231 230 | 229 -469.231 231 | 230 -469.231 232 | 231 -469.231 233 | 232 -469.231 234 | 233 -469.231 235 | 234 -469.231 236 | 235 -469.231 237 | 236 -469.231 238 | 237 -469.231 239 | 238 -469.231 240 | 239 -469.231 241 | 240 -375.231 242 | 241 -375.231 243 | 242 -375.231 244 | 243 -375.231 245 | 244 -375.231 246 | 245 -375.231 247 | 246 -375.231 248 | 247 -375.231 249 | 248 -375.231 250 | 249 -375.231 251 | 250 -375.231 252 | 251 -375.231 253 | 252 -375.231 254 | 253 -375.231 255 | 254 -375.231 256 | 255 -375.231 257 | 256 -375.231 258 | 257 -375.231 259 | 258 -375.231 260 | 259 -299.557 261 | 260 -299.557 262 | 261 -299.557 263 | 262 -299.557 264 | 263 -299.557 265 | 264 -299.557 266 | 265 -299.557 267 | 266 -299.557 268 | 267 -299.557 269 | 268 -299.557 270 | 269 -299.557 271 | 270 -299.557 272 | 271 -299.557 273 | 272 -164.803 274 | 273 -164.803 275 | 274 -164.803 276 | 275 -164.803 277 | 276 -164.803 278 | 277 -164.803 279 | 278 -164.803 280 | 279 -164.803 281 | 280 -164.803 282 | 281 -164.803 283 | 282 -164.803 284 | 283 -164.803 285 | 284 -164.803 286 | 285 -112.255 287 | 286 -112.255 288 | 287 -112.255 289 | 288 -112.255 290 | 289 -104.489 291 | 290 -104.489 292 | 291 -104.489 293 | 292 -104.489 294 | 293 -104.489 295 | 294 -104.489 296 | 295 -104.489 297 | 296 -104.489 298 | 297 -104.489 299 | 298 -104.489 300 | 299 -104.489 301 | 300 -104.489 302 | 301 -104.489 303 | 302 -104.489 304 | 303 -104.489 305 | 304 -104.489 306 | 305 -104.489 307 | 306 -104.489 308 | 307 -104.489 309 | 308 -104.489 310 | 309 -104.489 311 | 310 -104.489 312 | 311 -104.489 313 | 312 -104.489 314 | 313 -104.489 315 | 314 -104.489 316 | 315 -104.489 317 | 316 -104.489 318 | 317 -104.489 319 | 318 -104.489 320 | 319 -91.7006 321 | 320 -91.7006 322 | 321 -91.7006 323 | 322 -61.9484 324 | 323 -61.9484 325 | 324 -61.9484 326 | 325 -61.9484 327 | 326 -61.9484 328 | 327 -61.9484 329 | 328 -61.9484 330 | 329 -61.9484 331 | 330 -61.9484 332 | 331 -61.9484 333 | 332 -61.9484 334 | 333 -61.9484 335 | 334 -61.9484 336 | 335 -61.9484 337 | 336 -43.8658 338 | 337 -43.8658 339 | 338 -43.8658 340 | 339 -43.8658 341 | 340 -43.8658 342 | 341 -43.8658 343 | 342 -43.8658 344 | 343 -43.8658 345 | 344 -43.8658 346 | 345 -43.8658 347 | 346 -43.8658 348 | 347 -43.8658 349 | 348 -43.8658 350 | 349 -43.8658 351 | 350 -43.8658 352 | 351 -43.8658 353 | 352 -43.8658 354 | 353 -43.8658 355 | 354 -43.8658 356 | 355 -43.8658 357 | 356 -43.8658 358 | 357 -43.8658 359 | 358 -43.8658 360 | 359 -33.4453 361 | 360 -33.4453 362 | 361 -33.4453 363 | 362 -33.4453 364 | 363 -33.4453 365 | 364 -33.4453 366 | 365 -33.4453 367 | 366 -33.4453 368 | 367 -33.4453 369 | 368 -33.4453 370 | 369 -33.4453 371 | 370 -33.4453 372 | 371 -33.4453 373 | 372 -33.4453 374 | 373 -33.4453 375 | 374 -33.4453 376 | 375 -33.4453 377 | 376 -33.4453 378 | 377 -33.4453 379 | 378 -33.4453 380 | 379 -33.4453 381 | 380 -33.4453 382 | 381 -33.4453 383 | 382 -33.4453 384 | 383 -14.256 385 | 384 -14.256 386 | 385 -14.256 387 | 386 -14.256 388 | 387 -14.256 389 | 388 -14.256 390 | 389 -14.256 391 | 390 -14.256 392 | 391 -14.256 393 | 392 -14.256 394 | 393 -14.256 395 | 394 -14.256 396 | 395 -14.256 397 | 396 -14.256 398 | 397 -14.256 399 | 398 -14.256 400 | 399 -14.256 401 | 400 -14.256 402 | 401 -14.256 403 | 402 -14.256 404 | 403 -14.256 405 | 404 -14.256 406 | 405 -14.256 407 | 406 -14.256 408 | 407 -14.256 409 | 408 -14.256 410 | 409 -14.256 411 | 410 -14.256 412 | 411 -14.256 413 | 412 -14.256 414 | 413 -14.256 415 | 414 -14.256 416 | 415 -14.256 417 | 416 -14.256 418 | 417 -14.256 419 | 418 -14.256 420 | 419 -14.256 421 | 420 -14.256 422 | 421 -14.256 423 | 422 -14.256 424 | 423 -14.256 425 | 424 -14.256 426 | 425 -14.256 427 | 426 -14.256 428 | 427 -14.256 429 | 428 -14.256 430 | 429 -14.256 431 | 430 -14.256 432 | 431 -14.256 433 | 432 -14.256 434 | 433 -14.256 435 | 434 -10.1376 436 | 435 -10.1376 437 | 436 -10.1376 438 | 437 -10.1376 439 | 438 -10.1376 440 | 439 -10.1376 441 | 440 -10.1376 442 | 441 -10.1376 443 | 442 -10.1376 444 | 443 -10.1376 445 | 444 -10.1376 446 | 445 -10.1376 447 | 446 -10.1376 448 | 447 -10.1376 449 | 448 -10.1376 450 | 449 -10.1376 451 | 450 -10.1376 452 | 451 -10.1376 453 | 452 -10.1376 454 | 453 -10.1376 455 | 454 -10.1376 456 | 455 -10.1376 457 | 456 -10.1376 458 | 457 -10.1376 459 | 458 -10.1376 460 | 459 -10.1376 461 | 460 -10.1376 462 | 461 -10.1376 463 | 462 -10.1376 464 | 463 -10.1376 465 | 464 -10.1376 466 | 465 -10.1376 467 | 466 -10.1376 468 | 467 -10.1376 469 | 468 -10.1376 470 | 469 -10.1376 471 | 470 -10.1376 472 | 471 -10.1376 473 | 472 -10.1376 474 | 473 -10.1376 475 | 474 -10.1376 476 | 475 -10.1376 477 | 476 -10.1376 478 | 477 -10.1376 479 | 478 -10.1376 480 | 479 -10.1376 481 | 480 -10.1376 482 | 481 -10.1376 483 | 482 -10.1376 484 | 483 -10.1376 485 | 484 -10.1376 486 | 485 -10.1376 487 | 486 -10.1376 488 | 487 -10.1376 489 | 488 -10.1376 490 | 489 -9.99956 491 | 490 -9.99956 492 | 491 -9.99956 493 | 492 -9.99956 494 | 493 -9.99956 495 | 494 -9.99956 496 | 495 -9.99956 497 | 496 -9.99956 498 | 497 -9.99956 499 | 498 -9.99956 500 | 499 -9.99956 501 | 500 -9.99956 502 | 501 -9.99956 503 | 502 -9.99956 504 | 503 -9.99956 505 | 504 -9.99956 506 | 505 -9.99956 507 | 506 -9.99956 508 | 507 -9.99956 509 | 508 -9.99956 510 | 509 -9.99956 511 | 510 -9.99956 512 | 511 -9.99956 513 | 512 -9.99956 514 | 513 -9.99956 515 | 514 -9.94451 516 | 515 -9.94451 517 | 516 -9.94451 518 | 517 -9.94451 519 | 518 -9.51366 520 | 519 -9.51366 521 | 520 -9.51366 522 | 521 -9.51366 523 | 522 -9.51366 524 | 523 -9.51366 525 | 524 -9.51366 526 | 525 -9.51366 527 | 526 -9.51366 528 | 527 -9.51366 529 | 528 -9.51366 530 | 529 -9.51366 531 | 530 -9.51366 532 | 531 -9.51366 533 | 532 -9.51366 534 | 533 -9.51366 535 | 534 -9.51366 536 | 535 -9.51366 537 | 536 -9.51366 538 | 537 -9.51366 539 | 538 -9.51366 540 | 539 -9.51366 541 | 540 -9.51366 542 | 541 -9.51366 543 | 542 -9.51366 544 | 543 -9.51366 545 | 544 -9.51366 546 | 545 -9.51366 547 | 546 -9.51366 548 | 547 -9.51366 549 | 548 -9.51366 550 | 549 -9.51366 551 | 550 -9.51366 552 | 551 -9.51366 553 | 552 -9.51366 554 | 553 -9.51366 555 | 554 -9.51366 556 | 555 -9.51366 557 | 556 -9.51366 558 | 557 -9.51366 559 | 558 -9.51366 560 | 559 -9.51366 561 | 560 -9.51366 562 | 561 -9.51366 563 | 562 -9.51366 564 | 563 -9.51366 565 | 564 -9.51366 566 | 565 -9.51366 567 | 566 -9.51366 568 | 567 -9.51366 569 | 568 -9.51366 570 | 569 -9.51366 571 | 570 -9.51366 572 | 571 -9.51366 573 | 572 -9.51366 574 | 573 -9.51366 575 | 574 -9.51366 576 | 575 -9.51366 577 | 576 -9.51366 578 | 577 -9.51366 579 | 578 -9.51366 580 | 579 -9.51366 581 | 580 -9.51366 582 | 581 -9.51366 583 | 582 -9.51366 584 | 583 -9.51366 585 | 584 -9.51366 586 | 585 -9.51366 587 | 586 -9.51366 588 | 587 -9.51366 589 | 588 -9.51366 590 | 589 -9.51366 591 | 590 -9.51366 592 | 591 -9.51366 593 | 592 -9.51366 594 | 593 -9.51366 595 | 594 -9.51366 596 | 595 -9.51366 597 | 596 -9.51366 598 | 597 -9.51366 599 | 598 -9.51366 600 | 599 -9.51366 601 | 600 -9.51366 602 | 601 -9.51366 603 | 602 -9.51366 604 | 603 -9.51366 605 | 604 -9.51366 606 | 605 -9.51366 607 | 606 -9.51366 608 | 607 -9.51366 609 | 608 -9.51366 610 | 609 -9.51366 611 | 610 -9.51366 612 | 611 -9.51366 613 | 612 -9.51366 614 | 613 -9.51366 615 | 614 -9.51366 616 | 615 -9.51366 617 | 616 -9.51366 618 | 617 -9.51366 619 | 618 -9.51366 620 | 619 -9.51366 621 | 620 -9.51366 622 | 621 -9.51366 623 | 622 -9.51366 624 | 623 -9.51366 625 | 624 -9.48071 626 | 625 -9.48071 627 | 626 -9.48071 628 | 627 -9.48071 629 | 628 -9.4712 630 | 629 -9.4712 631 | 630 -9.4712 632 | 631 -9.4712 633 | 632 -9.4712 634 | 633 -9.4712 635 | 634 -9.4712 636 | 635 -9.4712 637 | 636 -9.4712 638 | 637 -9.4712 639 | 638 -9.4712 640 | 639 -9.4712 641 | 640 -9.4712 642 | 641 -9.4712 643 | 642 -9.4712 644 | 643 -9.4712 645 | 644 -9.4712 646 | 645 -9.4712 647 | 646 -9.4712 648 | 647 -9.4712 649 | 648 -9.4712 650 | 649 -9.4712 651 | 650 -9.4712 652 | 651 -9.4712 653 | 652 -9.4712 654 | 653 -9.4712 655 | 654 -9.4712 656 | 655 -9.4712 657 | 656 -9.4712 658 | 657 -9.4712 659 | 658 -9.4712 660 | 659 -9.4712 661 | 660 -9.4712 662 | 661 -9.4712 663 | 662 -9.4712 664 | 663 -9.4712 665 | 664 -9.4712 666 | 665 -9.4712 667 | 666 -9.4712 668 | 667 -9.4712 669 | 668 -9.4712 670 | 669 -9.4712 671 | 670 -9.4712 672 | 671 -9.4712 673 | 672 -9.4712 674 | 673 -9.4712 675 | 674 -9.4712 676 | 675 -9.4712 677 | 676 -9.4712 678 | 677 -9.4712 679 | 678 -9.4712 680 | 679 -9.4712 681 | 680 -9.4712 682 | 681 -9.4712 683 | 682 -9.4712 684 | 683 -9.4712 685 | 684 -9.4712 686 | 685 -9.4712 687 | 686 -9.4712 688 | 687 -9.4712 689 | 688 -9.4712 690 | 689 -9.4712 691 | 690 -9.4712 692 | 691 -9.4712 693 | 692 -9.4712 694 | 693 -9.4712 695 | 694 -9.4712 696 | 695 -9.4712 697 | 696 -9.4712 698 | 697 -9.4712 699 | 698 -9.4712 700 | 699 -9.4712 701 | 700 -9.4712 702 | 701 -9.4712 703 | 702 -9.4712 704 | 703 -9.4712 705 | 704 -9.4712 706 | 705 -9.4712 707 | 706 -9.4712 708 | 707 -9.4712 709 | 708 -9.4712 710 | 709 -9.4712 711 | 710 -9.4712 712 | 711 -9.4712 713 | 712 -9.4712 714 | 713 -9.4712 715 | 714 -9.4712 716 | 715 -9.4712 717 | 716 -9.4712 718 | 717 -9.4712 719 | 718 -9.4712 720 | 719 -9.4712 721 | 720 -9.4712 722 | 721 -9.4712 723 | 722 -9.4712 724 | 723 -9.4712 725 | 724 -9.4712 726 | 725 -9.4712 727 | 726 -9.4712 728 | 727 -9.4712 729 | 728 -9.4712 730 | 729 -9.4712 731 | 730 -9.4712 732 | 731 -9.4712 733 | 732 -9.4712 734 | 733 -9.4712 735 | 734 -9.4712 736 | 735 -9.4712 737 | 736 -9.4712 738 | 737 -9.4712 739 | 738 -9.4712 740 | 739 -9.4712 741 | 740 -9.4712 742 | 741 -9.4712 743 | 742 -9.4712 744 | 743 -9.4712 745 | 744 -9.4712 746 | 745 -9.4712 747 | 746 -9.4712 748 | 747 -9.4712 749 | 748 -9.4712 750 | 749 -9.4712 751 | 750 -9.4712 752 | 751 -9.4712 753 | 752 -9.4712 754 | 753 -9.46852 755 | 754 -9.46852 756 | 755 -9.46394 757 | 756 -9.46394 758 | 757 -9.46394 759 | 758 -9.46394 760 | 759 -9.46394 761 | 760 -9.46394 762 | 761 -9.46394 763 | 762 -9.46394 764 | 763 -9.46394 765 | 764 -9.46394 766 | 765 -9.46394 767 | 766 -9.46394 768 | 767 -9.4621 769 | 768 -9.46186 770 | 769 -9.46186 771 | 770 -9.46186 772 | 771 -9.46186 773 | 772 -9.45 774 | 773 -9.45 775 | 774 -9.45 776 | 775 -9.45 777 | 776 -9.45 778 | 777 -9.45 779 | 778 -9.45 780 | 779 -9.45 781 | 780 -9.44882 782 | 781 -9.44882 783 | 782 -9.44882 784 | 783 -9.44882 785 | 784 -9.44882 786 | 785 -9.44882 787 | 786 -9.44882 788 | 787 -9.44882 789 | 788 -9.44882 790 | 789 -9.44882 791 | 790 -9.44882 792 | 791 -9.44882 793 | 792 -9.44882 794 | 793 -9.44882 795 | 794 -9.44882 796 | 795 -9.44882 797 | 796 -9.44882 798 | 797 -9.44882 799 | 798 -9.44882 800 | 799 -9.44882 801 | 800 -9.4382 802 | 801 -9.4382 803 | 802 -9.4382 804 | 803 -9.4382 805 | 804 -9.4382 806 | 805 -9.4382 807 | 806 -9.4382 808 | 807 -9.4382 809 | 808 -9.4382 810 | 809 -9.4382 811 | 810 -9.4382 812 | 811 -9.4382 813 | 812 -9.4382 814 | 813 -9.4382 815 | 814 -9.4382 816 | 815 -9.4382 817 | 816 -9.4382 818 | 817 -9.4382 819 | 818 -9.4382 820 | 819 -9.4382 821 | 820 -9.4382 822 | 821 -9.4382 823 | 822 -9.4382 824 | 823 -9.4382 825 | 824 -9.4382 826 | 825 -9.4382 827 | 826 -9.4382 828 | 827 -9.4382 829 | 828 -9.4382 830 | 829 -9.4382 831 | 830 -9.4382 832 | 831 -9.4382 833 | 832 -9.4382 834 | 833 -9.4382 835 | 834 -9.4382 836 | 835 -9.4382 837 | 836 -9.4382 838 | 837 -9.4382 839 | 838 -9.4382 840 | 839 -9.4382 841 | 840 -9.4382 842 | 841 -9.4382 843 | 842 -9.4382 844 | 843 -9.4382 845 | 844 -9.4382 846 | 845 -9.4382 847 | 846 -9.4382 848 | 847 -9.4382 849 | 848 -9.4382 850 | 849 -9.4382 851 | 850 -9.4382 852 | 851 -9.4382 853 | 852 -9.4382 854 | 853 -9.4382 855 | 854 -9.4382 856 | 855 -9.4382 857 | 856 -9.4382 858 | 857 -9.4382 859 | 858 -9.4382 860 | 859 -9.4382 861 | 860 -9.4382 862 | 861 -9.4382 863 | 862 -9.4382 864 | 863 -9.4382 865 | 864 -9.4382 866 | 865 -9.4382 867 | 866 -9.4382 868 | 867 -9.4382 869 | 868 -9.4382 870 | 869 -9.4382 871 | 870 -9.4382 872 | 871 -9.4382 873 | 872 -9.43668 874 | 873 -9.43668 875 | 874 -9.43668 876 | 875 -9.43668 877 | 876 -9.43668 878 | 877 -9.43668 879 | 878 -9.43668 880 | 879 -9.43668 881 | 880 -9.43668 882 | 881 -9.43668 883 | 882 -9.43668 884 | 883 -9.43299 885 | 884 -9.43299 886 | 885 -9.43299 887 | 886 -9.43299 888 | 887 -9.43299 889 | 888 -9.43299 890 | 889 -9.43299 891 | 890 -9.43299 892 | 891 -9.43299 893 | 892 -9.43299 894 | 893 -9.43299 895 | 894 -9.43299 896 | 895 -9.43299 897 | 896 -9.43037 898 | 897 -9.43037 899 | 898 -9.43037 900 | 899 -9.43037 901 | 900 -9.43037 902 | 901 -9.43037 903 | 902 -9.43037 904 | 903 -9.43037 905 | 904 -9.43037 906 | 905 -9.43037 907 | 906 -9.43037 908 | 907 -9.43037 909 | 908 -9.43037 910 | 909 -9.43037 911 | 910 -9.43037 912 | 911 -9.43037 913 | 912 -9.43037 914 | 913 -9.43037 915 | 914 -9.43037 916 | 915 -9.43037 917 | 916 -9.43037 918 | 917 -9.43037 919 | 918 -9.43037 920 | 919 -9.43037 921 | 920 -9.43037 922 | 921 -9.43037 923 | 922 -9.43037 924 | 923 -9.43037 925 | 924 -9.43037 926 | 925 -9.43037 927 | 926 -9.43037 928 | 927 -9.43037 929 | 928 -9.43037 930 | 929 -9.43037 931 | 930 -9.43037 932 | 931 -9.43037 933 | 932 -9.43037 934 | 933 -9.43037 935 | 934 -9.43037 936 | 935 -9.43037 937 | 936 -9.43037 938 | 937 -9.43037 939 | 938 -9.43037 940 | 939 -9.43037 941 | 940 -9.43037 942 | 941 -9.43037 943 | 942 -9.43037 944 | 943 -9.43037 945 | 944 -9.43037 946 | 945 -9.43037 947 | 946 -9.43037 948 | 947 -9.43037 949 | 948 -9.43037 950 | 949 -9.43037 951 | 950 -9.43037 952 | 951 -9.43037 953 | 952 -9.43037 954 | 953 -9.43037 955 | 954 -9.42752 956 | 955 -9.42752 957 | 956 -9.42752 958 | 957 -9.42752 959 | 958 -9.42752 960 | 959 -9.42752 961 | 960 -9.42752 962 | 961 -9.42752 963 | 962 -9.42752 964 | 963 -9.42752 965 | 964 -9.42752 966 | 965 -9.42752 967 | 966 -9.42752 968 | 967 -9.42724 969 | 968 -9.42724 970 | 969 -9.42724 971 | 970 -9.42724 972 | 971 -9.42724 973 | 972 -9.42724 974 | 973 -9.42724 975 | 974 -9.42724 976 | 975 -9.42724 977 | 976 -9.42724 978 | 977 -9.42724 979 | 978 -9.42724 980 | 979 -9.42724 981 | 980 -9.42724 982 | 981 -9.42724 983 | 982 -9.42724 984 | 983 -9.42724 985 | 984 -9.42724 986 | 985 -9.42724 987 | 986 -9.42724 988 | 987 -9.42724 989 | 988 -9.42724 990 | 989 -9.42724 991 | 990 -9.42724 992 | 991 -9.42724 993 | 992 -9.42724 994 | 993 -9.42724 995 | 994 -9.42724 996 | 995 -9.42724 997 | 996 -9.42724 998 | 997 -9.42724 999 | 998 -9.42724 1000 | 999 -9.42724 1001 | -------------------------------------------------------------------------------- /src/data/low_mut/exp_27/node07_2014-07-15_16_42_52_31432/bestfit.dat: -------------------------------------------------------------------------------- 1 | 0 -3577 2 | 1 -3577 3 | 2 -3577 4 | 3 -3577 5 | 4 -3577 6 | 5 -3577 7 | 6 -3577 8 | 7 -3577 9 | 8 -3577 10 | 9 -3577 11 | 10 -3577 12 | 11 -3577 13 | 12 -3577 14 | 13 -3577 15 | 14 -3577 16 | 15 -3577 17 | 16 -3577 18 | 17 -3577 19 | 18 -3577 20 | 19 -3577 21 | 20 -3577 22 | 21 -3577 23 | 22 -3577 24 | 23 -3577 25 | 24 -3577 26 | 25 -3577 27 | 26 -3577 28 | 27 -3577 29 | 28 -3577 30 | 29 -3577 31 | 30 -3577 32 | 31 -3577 33 | 32 -3577 34 | 33 -3577 35 | 34 -3577 36 | 35 -3577 37 | 36 -3577 38 | 37 -3577 39 | 38 -3577 40 | 39 -3577 41 | 40 -3577 42 | 41 -3577 43 | 42 -3577 44 | 43 -3577 45 | 44 -3577 46 | 45 -3577 47 | 46 -3577 48 | 47 -3577 49 | 48 -3577 50 | 49 -3577 51 | 50 -3577 52 | 51 -3577 53 | 52 -3577 54 | 53 -3577 55 | 54 -3577 56 | 55 -3577 57 | 56 -3577 58 | 57 -3577 59 | 58 -3577 60 | 59 -3577 61 | 60 -3577 62 | 61 -3577 63 | 62 -3577 64 | 63 -3577 65 | 64 -3577 66 | 65 -3577 67 | 66 -3577 68 | 67 -3577 69 | 68 -3577 70 | 69 -3577 71 | 70 -3577 72 | 71 -3577 73 | 72 -3577 74 | 73 -3577 75 | 74 -3577 76 | 75 -3577 77 | 76 -3577 78 | 77 -3577 79 | 78 -3577 80 | 79 -3577 81 | 80 -3577 82 | 81 -3338.41 83 | 82 -3338.41 84 | 83 -3338.41 85 | 84 -3338.41 86 | 85 -3338.41 87 | 86 -3338.41 88 | 87 -3338.41 89 | 88 -3338.41 90 | 89 -3338.41 91 | 90 -3338.41 92 | 91 -3338.41 93 | 92 -3338.41 94 | 93 -3338.41 95 | 94 -3338.41 96 | 95 -3338.41 97 | 96 -2722.94 98 | 97 -2722.94 99 | 98 -2722.94 100 | 99 -2722.94 101 | 100 -2722.94 102 | 101 -2722.94 103 | 102 -2722.94 104 | 103 -2722.94 105 | 104 -2722.94 106 | 105 -2722.94 107 | 106 -2722.94 108 | 107 -2722.94 109 | 108 -2722.94 110 | 109 -2722.94 111 | 110 -2440.54 112 | 111 -2440.54 113 | 112 -2440.54 114 | 113 -2440.54 115 | 114 -2440.54 116 | 115 -2440.54 117 | 116 -2440.54 118 | 117 -2440.54 119 | 118 -2440.54 120 | 119 -2440.54 121 | 120 -2440.54 122 | 121 -2440.54 123 | 122 -2440.54 124 | 123 -2440.54 125 | 124 -2440.54 126 | 125 -2440.54 127 | 126 -2440.54 128 | 127 -2440.54 129 | 128 -2440.54 130 | 129 -2440.54 131 | 130 -2440.54 132 | 131 -2440.54 133 | 132 -2187.71 134 | 133 -2187.71 135 | 134 -2187.71 136 | 135 -1992.54 137 | 136 -1992.54 138 | 137 -1992.54 139 | 138 -1693.83 140 | 139 -1693.83 141 | 140 -1693.83 142 | 141 -1693.83 143 | 142 -1693.83 144 | 143 -1693.83 145 | 144 -1693.83 146 | 145 -1693.83 147 | 146 -1693.83 148 | 147 -1693.83 149 | 148 -1693.83 150 | 149 -1693.83 151 | 150 -1693.83 152 | 151 -1693.83 153 | 152 -1693.83 154 | 153 -1693.83 155 | 154 -1693.83 156 | 155 -1693.83 157 | 156 -1693.83 158 | 157 -1693.83 159 | 158 -1693.83 160 | 159 -1693.83 161 | 160 -1693.83 162 | 161 -1693.83 163 | 162 -1693.83 164 | 163 -1693.83 165 | 164 -1640.68 166 | 165 -1640.68 167 | 166 -1640.68 168 | 167 -1606.27 169 | 168 -1428.39 170 | 169 -1428.39 171 | 170 -1428.39 172 | 171 -1428.39 173 | 172 -1397.89 174 | 173 -1397.89 175 | 174 -1397.89 176 | 175 -1397.89 177 | 176 -875.711 178 | 177 -875.711 179 | 178 -875.711 180 | 179 -875.711 181 | 180 -875.711 182 | 181 -875.711 183 | 182 -875.711 184 | 183 -875.711 185 | 184 -875.711 186 | 185 -875.711 187 | 186 -875.711 188 | 187 -875.711 189 | 188 -875.711 190 | 189 -875.711 191 | 190 -875.711 192 | 191 -875.711 193 | 192 -875.711 194 | 193 -875.711 195 | 194 -875.711 196 | 195 -875.711 197 | 196 -674.964 198 | 197 -674.964 199 | 198 -674.964 200 | 199 -640.559 201 | 200 -640.559 202 | 201 -640.559 203 | 202 -640.559 204 | 203 -640.559 205 | 204 -640.559 206 | 205 -640.559 207 | 206 -640.559 208 | 207 -640.559 209 | 208 -640.559 210 | 209 -640.559 211 | 210 -640.559 212 | 211 -640.559 213 | 212 -640.559 214 | 213 -640.559 215 | 214 -640.559 216 | 215 -640.559 217 | 216 -640.559 218 | 217 -640.559 219 | 218 -403.499 220 | 219 -403.499 221 | 220 -403.499 222 | 221 -403.499 223 | 222 -403.499 224 | 223 -403.499 225 | 224 -403.499 226 | 225 -403.499 227 | 226 -403.499 228 | 227 -403.499 229 | 228 -403.499 230 | 229 -403.499 231 | 230 -403.499 232 | 231 -403.499 233 | 232 -403.499 234 | 233 -403.499 235 | 234 -403.499 236 | 235 -403.499 237 | 236 -403.499 238 | 237 -403.499 239 | 238 -403.499 240 | 239 -403.499 241 | 240 -403.499 242 | 241 -403.499 243 | 242 -403.499 244 | 243 -403.499 245 | 244 -403.499 246 | 245 -403.499 247 | 246 -403.499 248 | 247 -403.499 249 | 248 -403.499 250 | 249 -403.499 251 | 250 -403.499 252 | 251 -403.499 253 | 252 -403.499 254 | 253 -403.499 255 | 254 -403.499 256 | 255 -403.499 257 | 256 -403.499 258 | 257 -403.499 259 | 258 -356.193 260 | 259 -356.193 261 | 260 -356.193 262 | 261 -347.211 263 | 262 -347.211 264 | 263 -347.211 265 | 264 -347.211 266 | 265 -347.211 267 | 266 -347.211 268 | 267 -347.211 269 | 268 -347.211 270 | 269 -347.211 271 | 270 -347.211 272 | 271 -215.672 273 | 272 -215.672 274 | 273 -215.672 275 | 274 -215.672 276 | 275 -215.672 277 | 276 -215.672 278 | 277 -215.672 279 | 278 -215.672 280 | 279 -215.672 281 | 280 -215.672 282 | 281 -215.672 283 | 282 -215.672 284 | 283 -215.672 285 | 284 -215.672 286 | 285 -215.672 287 | 286 -215.672 288 | 287 -215.672 289 | 288 -215.672 290 | 289 -215.672 291 | 290 -215.672 292 | 291 -134.888 293 | 292 -134.888 294 | 293 -134.888 295 | 294 -134.888 296 | 295 -134.888 297 | 296 -134.888 298 | 297 -134.888 299 | 298 -134.888 300 | 299 -134.888 301 | 300 -134.888 302 | 301 -134.888 303 | 302 -134.888 304 | 303 -134.888 305 | 304 -134.888 306 | 305 -134.888 307 | 306 -134.888 308 | 307 -134.888 309 | 308 -134.888 310 | 309 -134.888 311 | 310 -134.888 312 | 311 -134.888 313 | 312 -134.888 314 | 313 -134.888 315 | 314 -134.888 316 | 315 -134.888 317 | 316 -134.888 318 | 317 -134.888 319 | 318 -134.888 320 | 319 -134.888 321 | 320 -134.888 322 | 321 -134.888 323 | 322 -134.888 324 | 323 -134.888 325 | 324 -134.888 326 | 325 -134.888 327 | 326 -134.888 328 | 327 -134.888 329 | 328 -134.888 330 | 329 -134.888 331 | 330 -134.888 332 | 331 -134.888 333 | 332 -134.888 334 | 333 -134.888 335 | 334 -134.888 336 | 335 -134.888 337 | 336 -128.48 338 | 337 -128.48 339 | 338 -128.48 340 | 339 -128.48 341 | 340 -128.48 342 | 341 -128.48 343 | 342 -127.26 344 | 343 -105.912 345 | 344 -105.912 346 | 345 -105.912 347 | 346 -105.912 348 | 347 -105.912 349 | 348 -105.912 350 | 349 -102.214 351 | 350 -102.214 352 | 351 -102.214 353 | 352 -92.0825 354 | 353 -92.0825 355 | 354 -92.0825 356 | 355 -92.0825 357 | 356 -92.0825 358 | 357 -92.0825 359 | 358 -92.0825 360 | 359 -85.8158 361 | 360 -85.8158 362 | 361 -85.8158 363 | 362 -85.8158 364 | 363 -85.8158 365 | 364 -73.4192 366 | 365 -73.4192 367 | 366 -73.4192 368 | 367 -73.4192 369 | 368 -73.4192 370 | 369 -73.4192 371 | 370 -73.4192 372 | 371 -73.4192 373 | 372 -73.4192 374 | 373 -73.4192 375 | 374 -73.4192 376 | 375 -68.5905 377 | 376 -68.5905 378 | 377 -68.5905 379 | 378 -68.5905 380 | 379 -52.1389 381 | 380 -52.1389 382 | 381 -52.1389 383 | 382 -52.1389 384 | 383 -52.1389 385 | 384 -52.1389 386 | 385 -52.1389 387 | 386 -52.1389 388 | 387 -52.1389 389 | 388 -52.1389 390 | 389 -52.1389 391 | 390 -36.5719 392 | 391 -36.5719 393 | 392 -33.6967 394 | 393 -33.6967 395 | 394 -33.6967 396 | 395 -33.6967 397 | 396 -33.6967 398 | 397 -33.6967 399 | 398 -33.6967 400 | 399 -33.6967 401 | 400 -33.6967 402 | 401 -33.6967 403 | 402 -29.0595 404 | 403 -29.0595 405 | 404 -29.0595 406 | 405 -29.0595 407 | 406 -29.0595 408 | 407 -29.0595 409 | 408 -29.0595 410 | 409 -29.0595 411 | 410 -29.0595 412 | 411 -29.0595 413 | 412 -29.0595 414 | 413 -29.0595 415 | 414 -29.0595 416 | 415 -29.0595 417 | 416 -29.0595 418 | 417 -29.0595 419 | 418 -29.0595 420 | 419 -29.0595 421 | 420 -29.0595 422 | 421 -29.0595 423 | 422 -29.0595 424 | 423 -29.0595 425 | 424 -29.0595 426 | 425 -28.6594 427 | 426 -28.6594 428 | 427 -28.6594 429 | 428 -28.6594 430 | 429 -28.6594 431 | 430 -28.2192 432 | 431 -28.2192 433 | 432 -28.2192 434 | 433 -18.2326 435 | 434 -18.2326 436 | 435 -18.2326 437 | 436 -18.2326 438 | 437 -18.2326 439 | 438 -18.2326 440 | 439 -18.2326 441 | 440 -18.2326 442 | 441 -18.2326 443 | 442 -18.2326 444 | 443 -18.2326 445 | 444 -18.2326 446 | 445 -18.2326 447 | 446 -18.2326 448 | 447 -18.2326 449 | 448 -18.2326 450 | 449 -18.2326 451 | 450 -18.2326 452 | 451 -18.2326 453 | 452 -18.2326 454 | 453 -18.2326 455 | 454 -18.2326 456 | 455 -18.2326 457 | 456 -18.2326 458 | 457 -17.797 459 | 458 -17.797 460 | 459 -14.8011 461 | 460 -14.8011 462 | 461 -14.8011 463 | 462 -14.8011 464 | 463 -14.8011 465 | 464 -14.8011 466 | 465 -14.8011 467 | 466 -14.8011 468 | 467 -14.8011 469 | 468 -14.8011 470 | 469 -14.8011 471 | 470 -14.8011 472 | 471 -14.8011 473 | 472 -14.8011 474 | 473 -14.8011 475 | 474 -14.8011 476 | 475 -14.8011 477 | 476 -14.8011 478 | 477 -14.8011 479 | 478 -14.8011 480 | 479 -14.8011 481 | 480 -14.8011 482 | 481 -12.4875 483 | 482 -12.4875 484 | 483 -12.4875 485 | 484 -12.4875 486 | 485 -12.4875 487 | 486 -12.4875 488 | 487 -12.4875 489 | 488 -12.4875 490 | 489 -12.4875 491 | 490 -12.4875 492 | 491 -12.4875 493 | 492 -12.4875 494 | 493 -12.4875 495 | 494 -12.4875 496 | 495 -12.4875 497 | 496 -12.4875 498 | 497 -12.4875 499 | 498 -12.4875 500 | 499 -12.4875 501 | 500 -12.4875 502 | 501 -12.4875 503 | 502 -12.4875 504 | 503 -12.4875 505 | 504 -12.4875 506 | 505 -12.4875 507 | 506 -12.4875 508 | 507 -12.4875 509 | 508 -12.4875 510 | 509 -12.4875 511 | 510 -12.4875 512 | 511 -12.4875 513 | 512 -12.4875 514 | 513 -12.4875 515 | 514 -12.4875 516 | 515 -12.4875 517 | 516 -12.4875 518 | 517 -12.4875 519 | 518 -12.4875 520 | 519 -12.4875 521 | 520 -12.4875 522 | 521 -12.4875 523 | 522 -12.4875 524 | 523 -12.4875 525 | 524 -12.4875 526 | 525 -12.4875 527 | 526 -12.4875 528 | 527 -12.4875 529 | 528 -12.4875 530 | 529 -12.4875 531 | 530 -12.4875 532 | 531 -12.4875 533 | 532 -12.4875 534 | 533 -12.4875 535 | 534 -12.4875 536 | 535 -12.4875 537 | 536 -12.4875 538 | 537 -12.4875 539 | 538 -12.4875 540 | 539 -12.4875 541 | 540 -12.4875 542 | 541 -12.4875 543 | 542 -12.4875 544 | 543 -12.4875 545 | 544 -12.4875 546 | 545 -12.4875 547 | 546 -12.4875 548 | 547 -12.4875 549 | 548 -12.4875 550 | 549 -12.4875 551 | 550 -12.4875 552 | 551 -12.4875 553 | 552 -12.4875 554 | 553 -12.4875 555 | 554 -12.4875 556 | 555 -12.4875 557 | 556 -12.4875 558 | 557 -12.4875 559 | 558 -12.4875 560 | 559 -12.4875 561 | 560 -12.4875 562 | 561 -12.4875 563 | 562 -11.7886 564 | 563 -11.7886 565 | 564 -11.7886 566 | 565 -11.7886 567 | 566 -11.7886 568 | 567 -11.7886 569 | 568 -11.7886 570 | 569 -11.7886 571 | 570 -11.7886 572 | 571 -11.7886 573 | 572 -11.7886 574 | 573 -11.7886 575 | 574 -11.7886 576 | 575 -11.7886 577 | 576 -11.7886 578 | 577 -11.7886 579 | 578 -11.7886 580 | 579 -11.7886 581 | 580 -11.7886 582 | 581 -11.7886 583 | 582 -11.7886 584 | 583 -11.7886 585 | 584 -11.7886 586 | 585 -11.7886 587 | 586 -11.7886 588 | 587 -11.7886 589 | 588 -11.7886 590 | 589 -11.7886 591 | 590 -11.7886 592 | 591 -11.7886 593 | 592 -11.7886 594 | 593 -11.7886 595 | 594 -11.7886 596 | 595 -11.7886 597 | 596 -11.7886 598 | 597 -11.7886 599 | 598 -11.7886 600 | 599 -11.7886 601 | 600 -11.7886 602 | 601 -11.7886 603 | 602 -11.7886 604 | 603 -11.7886 605 | 604 -11.6757 606 | 605 -11.1048 607 | 606 -11.1048 608 | 607 -11.1048 609 | 608 -11.0997 610 | 609 -11.0997 611 | 610 -11.0997 612 | 611 -11.0997 613 | 612 -11.0997 614 | 613 -11.0997 615 | 614 -11.0997 616 | 615 -11.0997 617 | 616 -10.675 618 | 617 -10.675 619 | 618 -10.675 620 | 619 -10.675 621 | 620 -10.675 622 | 621 -10.675 623 | 622 -10.675 624 | 623 -10.675 625 | 624 -10.675 626 | 625 -10.675 627 | 626 -10.675 628 | 627 -10.267 629 | 628 -10.267 630 | 629 -10.267 631 | 630 -10.267 632 | 631 -10.267 633 | 632 -10.267 634 | 633 -10.267 635 | 634 -10.267 636 | 635 -10.267 637 | 636 -10.267 638 | 637 -10.267 639 | 638 -10.267 640 | 639 -10.267 641 | 640 -9.688 642 | 641 -9.688 643 | 642 -9.688 644 | 643 -9.688 645 | 644 -9.688 646 | 645 -9.688 647 | 646 -9.688 648 | 647 -9.688 649 | 648 -9.688 650 | 649 -9.688 651 | 650 -9.688 652 | 651 -9.688 653 | 652 -9.688 654 | 653 -9.688 655 | 654 -9.688 656 | 655 -9.688 657 | 656 -9.688 658 | 657 -9.688 659 | 658 -9.688 660 | 659 -9.688 661 | 660 -9.688 662 | 661 -9.688 663 | 662 -9.688 664 | 663 -9.688 665 | 664 -9.688 666 | 665 -9.688 667 | 666 -9.688 668 | 667 -9.688 669 | 668 -9.688 670 | 669 -9.688 671 | 670 -9.688 672 | 671 -9.688 673 | 672 -9.688 674 | 673 -9.688 675 | 674 -9.688 676 | 675 -9.688 677 | 676 -9.688 678 | 677 -9.688 679 | 678 -9.688 680 | 679 -9.688 681 | 680 -9.688 682 | 681 -9.688 683 | 682 -9.688 684 | 683 -9.688 685 | 684 -9.688 686 | 685 -9.688 687 | 686 -9.688 688 | 687 -9.688 689 | 688 -9.688 690 | 689 -9.688 691 | 690 -9.688 692 | 691 -9.688 693 | 692 -9.688 694 | 693 -9.688 695 | 694 -9.688 696 | 695 -9.688 697 | 696 -9.688 698 | 697 -9.688 699 | 698 -9.688 700 | 699 -9.688 701 | 700 -9.688 702 | 701 -9.688 703 | 702 -9.688 704 | 703 -9.688 705 | 704 -9.688 706 | 705 -9.688 707 | 706 -9.688 708 | 707 -9.688 709 | 708 -9.688 710 | 709 -9.688 711 | 710 -9.688 712 | 711 -9.688 713 | 712 -9.688 714 | 713 -9.688 715 | 714 -9.688 716 | 715 -9.688 717 | 716 -9.688 718 | 717 -9.688 719 | 718 -9.688 720 | 719 -9.688 721 | 720 -9.688 722 | 721 -9.688 723 | 722 -9.688 724 | 723 -9.688 725 | 724 -9.688 726 | 725 -9.688 727 | 726 -9.688 728 | 727 -9.688 729 | 728 -9.688 730 | 729 -9.688 731 | 730 -9.688 732 | 731 -9.688 733 | 732 -9.688 734 | 733 -9.688 735 | 734 -9.688 736 | 735 -9.688 737 | 736 -9.688 738 | 737 -9.688 739 | 738 -9.688 740 | 739 -9.688 741 | 740 -9.688 742 | 741 -9.57035 743 | 742 -9.57035 744 | 743 -9.57035 745 | 744 -9.57035 746 | 745 -9.57035 747 | 746 -9.57035 748 | 747 -9.57035 749 | 748 -9.57035 750 | 749 -9.57035 751 | 750 -9.57035 752 | 751 -9.57035 753 | 752 -9.57035 754 | 753 -9.57035 755 | 754 -9.57035 756 | 755 -9.57035 757 | 756 -9.57035 758 | 757 -9.57035 759 | 758 -9.57035 760 | 759 -9.57035 761 | 760 -9.57035 762 | 761 -9.57035 763 | 762 -9.57035 764 | 763 -9.57035 765 | 764 -9.57035 766 | 765 -9.57035 767 | 766 -9.57035 768 | 767 -9.57035 769 | 768 -9.57035 770 | 769 -9.57035 771 | 770 -9.57035 772 | 771 -9.57035 773 | 772 -9.57035 774 | 773 -9.57035 775 | 774 -9.57035 776 | 775 -9.57035 777 | 776 -9.57035 778 | 777 -9.57035 779 | 778 -9.57035 780 | 779 -9.57035 781 | 780 -9.57035 782 | 781 -9.57035 783 | 782 -9.57035 784 | 783 -9.57035 785 | 784 -9.57035 786 | 785 -9.57035 787 | 786 -9.57035 788 | 787 -9.57035 789 | 788 -9.57035 790 | 789 -9.57035 791 | 790 -9.57035 792 | 791 -9.57035 793 | 792 -9.57035 794 | 793 -9.57035 795 | 794 -9.57035 796 | 795 -9.57035 797 | 796 -9.57035 798 | 797 -9.57035 799 | 798 -9.57035 800 | 799 -9.57035 801 | 800 -9.57035 802 | 801 -9.57035 803 | 802 -9.57035 804 | 803 -9.57035 805 | 804 -9.57035 806 | 805 -9.57035 807 | 806 -9.57035 808 | 807 -9.57035 809 | 808 -9.57035 810 | 809 -9.57035 811 | 810 -9.57035 812 | 811 -9.57035 813 | 812 -9.57035 814 | 813 -9.57035 815 | 814 -9.57035 816 | 815 -9.57035 817 | 816 -9.57035 818 | 817 -9.57035 819 | 818 -9.57035 820 | 819 -9.57035 821 | 820 -9.57035 822 | 821 -9.57035 823 | 822 -9.57035 824 | 823 -9.57035 825 | 824 -9.57035 826 | 825 -9.57035 827 | 826 -9.57035 828 | 827 -9.57035 829 | 828 -9.56803 830 | 829 -9.56803 831 | 830 -9.56803 832 | 831 -9.56803 833 | 832 -9.56803 834 | 833 -9.56803 835 | 834 -9.56803 836 | 835 -9.56325 837 | 836 -9.56325 838 | 837 -9.56325 839 | 838 -9.56325 840 | 839 -9.56325 841 | 840 -9.56325 842 | 841 -9.52907 843 | 842 -9.52907 844 | 843 -9.52907 845 | 844 -9.52907 846 | 845 -9.52907 847 | 846 -9.52907 848 | 847 -9.52907 849 | 848 -9.52907 850 | 849 -9.52907 851 | 850 -9.52907 852 | 851 -9.52907 853 | 852 -9.52907 854 | 853 -9.52907 855 | 854 -9.52907 856 | 855 -9.52907 857 | 856 -9.52907 858 | 857 -9.50641 859 | 858 -9.50641 860 | 859 -9.50641 861 | 860 -9.50641 862 | 861 -9.50641 863 | 862 -9.50641 864 | 863 -9.50641 865 | 864 -9.50641 866 | 865 -9.50641 867 | 866 -9.50641 868 | 867 -9.50641 869 | 868 -9.50641 870 | 869 -9.50641 871 | 870 -9.50641 872 | 871 -9.50641 873 | 872 -9.50641 874 | 873 -9.50641 875 | 874 -9.50641 876 | 875 -9.50641 877 | 876 -9.50641 878 | 877 -9.50641 879 | 878 -9.50641 880 | 879 -9.50641 881 | 880 -9.50641 882 | 881 -9.50641 883 | 882 -9.50641 884 | 883 -9.50641 885 | 884 -9.50641 886 | 885 -9.50641 887 | 886 -9.50641 888 | 887 -9.50641 889 | 888 -9.50641 890 | 889 -9.50641 891 | 890 -9.45495 892 | 891 -9.45495 893 | 892 -9.45495 894 | 893 -9.45495 895 | 894 -9.45495 896 | 895 -9.45495 897 | 896 -9.45495 898 | 897 -9.45495 899 | 898 -9.45495 900 | 899 -9.45495 901 | 900 -9.45495 902 | 901 -9.45495 903 | 902 -9.45495 904 | 903 -9.45495 905 | 904 -9.45495 906 | 905 -9.45495 907 | 906 -9.45495 908 | 907 -9.45495 909 | 908 -9.45495 910 | 909 -9.45495 911 | 910 -9.45495 912 | 911 -9.45495 913 | 912 -9.45495 914 | 913 -9.45495 915 | 914 -9.45495 916 | 915 -9.45495 917 | 916 -9.45495 918 | 917 -9.45495 919 | 918 -9.45495 920 | 919 -9.45495 921 | 920 -9.45495 922 | 921 -9.45495 923 | 922 -9.45495 924 | 923 -9.45495 925 | 924 -9.45495 926 | 925 -9.45495 927 | 926 -9.45495 928 | 927 -9.45495 929 | 928 -9.45495 930 | 929 -9.45495 931 | 930 -9.45495 932 | 931 -9.45495 933 | 932 -9.45495 934 | 933 -9.45495 935 | 934 -9.45495 936 | 935 -9.45495 937 | 936 -9.45495 938 | 937 -9.45495 939 | 938 -9.45495 940 | 939 -9.45495 941 | 940 -9.45495 942 | 941 -9.45495 943 | 942 -9.45495 944 | 943 -9.45495 945 | 944 -9.45495 946 | 945 -9.45495 947 | 946 -9.45495 948 | 947 -9.45495 949 | 948 -9.45495 950 | 949 -9.45495 951 | 950 -9.45495 952 | 951 -9.45495 953 | 952 -9.45495 954 | 953 -9.45495 955 | 954 -9.45275 956 | 955 -9.45275 957 | 956 -9.45275 958 | 957 -9.45275 959 | 958 -9.45275 960 | 959 -9.45275 961 | 960 -9.45275 962 | 961 -9.45275 963 | 962 -9.45275 964 | 963 -9.45275 965 | 964 -9.45275 966 | 965 -9.45275 967 | 966 -9.45275 968 | 967 -9.45275 969 | 968 -9.45275 970 | 969 -9.45275 971 | 970 -9.45275 972 | 971 -9.45275 973 | 972 -9.45275 974 | 973 -9.45275 975 | 974 -9.45275 976 | 975 -9.45275 977 | 976 -9.45275 978 | 977 -9.45275 979 | 978 -9.45275 980 | 979 -9.45275 981 | 980 -9.45275 982 | 981 -9.45275 983 | 982 -9.45275 984 | 983 -9.45275 985 | 984 -9.45275 986 | 985 -9.44635 987 | 986 -9.44635 988 | 987 -9.44635 989 | 988 -9.44635 990 | 989 -9.44635 991 | 990 -9.44635 992 | 991 -9.44635 993 | 992 -9.44635 994 | 993 -9.44635 995 | 994 -9.44635 996 | 995 -9.44635 997 | 996 -9.44635 998 | 997 -9.44635 999 | 998 -9.44635 1000 | 999 -9.44635 1001 | -------------------------------------------------------------------------------- /src/example1.py: -------------------------------------------------------------------------------- 1 | # Pylab includes numpy as 'np' 2 | from pylab import * 3 | 4 | # create an array of 256 points (x), from -pi to +pi 5 | x = np.linspace(-np.pi, np.pi, 256) 6 | 7 | # compute cos(x) [thanks to numpy, cos(x) returns an array] 8 | y = np.cos(x) 9 | 10 | # compute the plot 11 | plot(x, y) 12 | 13 | # Show it in a new window 14 | show() 15 | -------------------------------------------------------------------------------- /src/example1_bis.py: -------------------------------------------------------------------------------- 1 | # Pylab includes numpy as 'np' 2 | from pylab import * 3 | 4 | # create an array of 256 points (x), from -pi to +pi 5 | x = np.linspace(-np.pi, np.pi, 256) 6 | 7 | # compute cos(x) [thanks to numpy, cos(x) returns an array] 8 | y = np.cos(x) 9 | 10 | # compute the plot 11 | plot(x, y) 12 | 13 | # save in test.png (use test.pdf for a pdf file) 14 | savefig("test.png") 15 | -------------------------------------------------------------------------------- /src/example1_color.py: -------------------------------------------------------------------------------- 1 | from pylab import * 2 | 3 | x = np.linspace(-np.pi, np.pi, 256) 4 | y = [] 5 | for i in range(0, 7): 6 | y += [np.cos(x + i)] 7 | 8 | plot(x, y[0], color='red', linewidth=2.5, linestyle='-', label='linestyle="_"') 9 | plot(x, y[1], color='blue', linewidth=5, alpha=0.5, linestyle='-', label='linestyle="-"') 10 | plot(x, y[2], color='#aa0000', linewidth=1, linestyle='--', label='linestyle="--"') 11 | plot(x, y[3], color='black', linestyle=':', label='linestyle=":"') 12 | plot(x, y[4], color='black', linewidth=2, linestyle='-.', label='linestyle="-."') 13 | 14 | legend() 15 | savefig('example1_color.png') 16 | -------------------------------------------------------------------------------- /src/example2.py: -------------------------------------------------------------------------------- 1 | # this will load numpy for us 2 | from pylab import * 3 | 4 | # load the file and store the result in data 5 | data = np.loadtxt('file.dat') 6 | 7 | # generate a x array of the size of the file 8 | x = np.arange(0, len(data)) 9 | 10 | # plot 11 | plot(x, data) 12 | show() 13 | -------------------------------------------------------------------------------- /src/example2_bis.py: -------------------------------------------------------------------------------- 1 | # this will load numpy for us 2 | from pylab import * 3 | 4 | # load the file and store the result in data 5 | data = np.loadtxt('file.dat') 6 | data2 = np.loadtxt('file2.dat') 7 | 8 | # generate a x array of the size of the file 9 | x = np.arange(0, len(data)) 10 | 11 | # plot 12 | plot(x, data, label='data1') 13 | plot(x, data2, label='data2') 14 | legend() 15 | savefig('example2_bis.png') 16 | -------------------------------------------------------------------------------- /src/example2_colors.py: -------------------------------------------------------------------------------- 1 | # this will load numpy for us 2 | from pylab import * 3 | 4 | # load the file and store the result in data 5 | data = np.loadtxt('file.dat') 6 | data2 = np.loadtxt('file2.dat') 7 | 8 | # generate a x array of the size of the file 9 | x = np.arange(0, len(data)) 10 | 11 | # plot 12 | plot(x, data) 13 | plot(x, data2) 14 | savefig('example2_bis.png') 15 | -------------------------------------------------------------------------------- /src/example2_lims.py: -------------------------------------------------------------------------------- 1 | # this will load numpy for us 2 | from pylab import * 3 | data = np.loadtxt('file.dat') 4 | x = np.arange(0, len(data)) 5 | 6 | # change the limits 7 | xlim(1.5, 3.4) 8 | ylim(-2, 4) 9 | 10 | # ticks 11 | xticks([0, 1, 2, 3], ['T0', 'T1', 'T2', 'T3']) 12 | # use np.arange to generate the array of ticks 13 | yticks(np.arange(-2, 4, 0.5)) 14 | 15 | plot(x, data) 16 | savefig('example2_lims.png') 17 | -------------------------------------------------------------------------------- /src/file.dat: -------------------------------------------------------------------------------- 1 | 2.3 2 | 1.5 3 | 1.2 4 | 4 5 | 5 6 | 9 7 | -------------------------------------------------------------------------------- /src/file2.dat: -------------------------------------------------------------------------------- 1 | 0.3 2 | 0.5 3 | 0.2 4 | 2.1 5 | 8 6 | 2.3 7 | -------------------------------------------------------------------------------- /src/load_data.py: -------------------------------------------------------------------------------- 1 | # glob allows us to list the files that match a pattern 2 | import glob 3 | 4 | # pylab will be useful later 5 | from pylab import * 6 | 7 | # a simple function to load our files 8 | 9 | 10 | def load(dir): 11 | # example : exp_9/node05_2014-07-15_16_42_48_5178/bestfit.dat 12 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 13 | d = [] 14 | for f in f_list: 15 | d += [np.loadtxt(f)] 16 | return d 17 | 18 | 19 | # load our data 20 | data_low_mut = load('data/low_mut') 21 | data_high_mut = load('data/high_mut') 22 | 23 | print(data_low_mut) 24 | print(data_high_mut) 25 | -------------------------------------------------------------------------------- /src/load_data2.py: -------------------------------------------------------------------------------- 1 | # glob allows us to list the files that match a pattern 2 | import glob 3 | 4 | # pylab will be useful later 5 | from pylab import * 6 | 7 | 8 | def load(dir): 9 | # a simple function to load our files 10 | # we assume that each file has the same number of rows (generations) 11 | # example : exp_9/node05_2014-07-15_16_42_48_5178/bestfit.dat 12 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 13 | 14 | # get the number of lines of the first file, to know the size of the matrix 15 | num_lines = sum(1 for line in open(f_list[0])) 16 | 17 | # be careful that np.zeros takes a tuple as argument (size1, size) 18 | # therefore we need two parentheses 19 | i = 0 20 | data = np.zeros((len(f_list), num_lines)) 21 | 22 | for f in f_list: 23 | # we ignore the first column of the file 24 | data[i, :] = np.loadtxt(f)[:, 1] 25 | i += 1 26 | return data 27 | 28 | 29 | # load our data 30 | data_low_mut = load('data/low_mut') 31 | data_high_mut = load('data/high_mut') 32 | print(data_low_mut) 33 | -------------------------------------------------------------------------------- /src/plot_medians.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | 5 | def load(dir): 6 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 7 | num_lines = sum(1 for line in open(f_list[0])) 8 | i = 0 9 | data = np.zeros((len(f_list), num_lines)) 10 | for f in f_list: 11 | data[i, :] = np.loadtxt(f)[:, 1] 12 | i += 1 13 | return data 14 | 15 | 16 | def med(data): 17 | # compute the median of each column 18 | median = np.zeros(data.shape[1]) 19 | for i in range(0, len(median)): 20 | median[i] = np.median(data[:, i]) 21 | return median 22 | 23 | 24 | data_low_mut = load('data/low_mut') 25 | data_high_mut = load('data/high_mut') 26 | 27 | # generate the x 28 | n_generations = data_low_mut.shape[1] 29 | x = np.arange(0, n_generations) 30 | 31 | # compute the medians 32 | med_low_mut = med(data_low_mut) 33 | med_high_mut = med(data_high_mut) 34 | 35 | plot(x, med_low_mut) 36 | plot(x, med_high_mut) 37 | 38 | savefig('medians1.png') 39 | -------------------------------------------------------------------------------- /src/plot_medians2.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | 5 | def load(dir): 6 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 7 | num_lines = sum(1 for line in open(f_list[0])) 8 | i = 0 9 | data = np.zeros((len(f_list), num_lines)) 10 | for f in f_list: 11 | data[i, :] = np.loadtxt(f)[:, 1] 12 | i += 1 13 | return data 14 | 15 | 16 | def med(data): 17 | # compute the median of each column 18 | median = np.zeros(data.shape[1]) 19 | for i in range(0, len(median)): 20 | median[i] = np.median(data[:, i]) 21 | return median 22 | 23 | 24 | data_low_mut = load('data/low_mut') 25 | data_high_mut = load('data/high_mut') 26 | 27 | # generate the x 28 | n_generations = data_low_mut.shape[1] 29 | x = np.arange(0, n_generations) 30 | 31 | # compute the medians 32 | med_low_mut = med(data_low_mut) 33 | med_high_mut = med(data_high_mut) 34 | 35 | plot(x, med_low_mut) 36 | plot(x, med_high_mut) 37 | 38 | xlim(-5, 400) 39 | ylim(-5000, 100) 40 | 41 | savefig('medians2.png') 42 | -------------------------------------------------------------------------------- /src/plot_medians3.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | 5 | params = { 6 | 'axes.labelsize': 8, 7 | 'font.size': 8, 8 | 'legend.fontsize': 10, 9 | 'xtick.labelsize': 10, 10 | 'ytick.labelsize': 10, 11 | 'text.usetex': False, 12 | 'figure.figsize': [4.5, 4.5] 13 | } 14 | rcParams.update(params) 15 | 16 | 17 | def load(dir): 18 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 19 | num_lines = sum(1 for line in open(f_list[0])) 20 | i = 0 21 | data = np.zeros((len(f_list), num_lines)) 22 | for f in f_list: 23 | data[i, :] = np.loadtxt(f)[:, 1] 24 | i += 1 25 | return data 26 | 27 | 28 | def med(data): 29 | # compute the median of each column 30 | median = np.zeros(data.shape[1]) 31 | for i in range(0, len(median)): 32 | median[i] = np.median(data[:, i]) 33 | return median 34 | 35 | 36 | data_low_mut = load('data/low_mut') 37 | data_high_mut = load('data/high_mut') 38 | 39 | # generate the x 40 | n_generations = data_low_mut.shape[1] 41 | x = np.arange(0, n_generations) 42 | 43 | # compute the medians 44 | med_low_mut = med(data_low_mut) 45 | med_high_mut = med(data_high_mut) 46 | 47 | axes(frameon=0) 48 | grid() 49 | 50 | plot(x, med_low_mut, linewidth=2, color='#B22400') 51 | plot(x, med_high_mut, linewidth=2, linestyle='--', color='#006BB2') 52 | 53 | xlim(-5, 400) 54 | ylim(-5000, 300) 55 | 56 | xticks(np.arange(0, 500, 100)) 57 | 58 | legend = legend(["Low mutation rate", "High Mutation rate"], loc=4) 59 | frame = legend.get_frame() 60 | frame.set_facecolor('0.9') 61 | frame.set_edgecolor('0.9') 62 | 63 | savefig('medians3.png') 64 | -------------------------------------------------------------------------------- /src/plot_variance.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | 5 | params = { 6 | 'axes.labelsize': 8, 7 | 'font.size': 8, 8 | 'legend.fontsize': 10, 9 | 'xtick.labelsize': 10, 10 | 'ytick.labelsize': 10, 11 | 'text.usetex': False, 12 | 'figure.figsize': [4.5, 4.5] 13 | } 14 | rcParams.update(params) 15 | 16 | 17 | def load(dir): 18 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 19 | num_lines = sum(1 for line in open(f_list[0])) 20 | i = 0 21 | data = np.zeros((len(f_list), num_lines)) 22 | for f in f_list: 23 | data[i, :] = np.loadtxt(f)[:, 1] 24 | i += 1 25 | return data 26 | 27 | 28 | def perc(data): 29 | median = np.zeros(data.shape[1]) 30 | perc_25 = np.zeros(data.shape[1]) 31 | perc_75 = np.zeros(data.shape[1]) 32 | for i in range(0, len(median)): 33 | median[i] = np.median(data[:, i]) 34 | perc_25[i] = np.percentile(data[:, i], 25) 35 | perc_75[i] = np.percentile(data[:, i], 75) 36 | return median, perc_25, perc_75 37 | 38 | 39 | data_low_mut = load('data/low_mut') 40 | data_high_mut = load('data/high_mut') 41 | 42 | # generate the x 43 | n_generations = data_low_mut.shape[1] 44 | x = np.arange(0, n_generations) 45 | 46 | # compute the medians and 25/75 percentiles 47 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 48 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 49 | 50 | axes(frameon=0) 51 | grid() 52 | 53 | fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color='#B22400') 54 | fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color='#006BB2') 55 | 56 | 57 | plot(x, med_low_mut, linewidth=2, color='#B22400') 58 | plot(x, med_high_mut, linewidth=2, linestyle='--', color='#006BB2') 59 | 60 | xlim(-5, 400) 61 | ylim(-5000, 300) 62 | 63 | xticks(np.arange(0, 500, 100)) 64 | 65 | legend = legend(["Low mutation rate", "High Mutation rate"], loc=4) 66 | frame = legend.get_frame() 67 | frame.set_facecolor('0.9') 68 | frame.set_edgecolor('0.9') 69 | 70 | savefig('variance.png') 71 | -------------------------------------------------------------------------------- /src/plot_variance_matplotlib.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [4.5, 4.5] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | def perc(data): 32 | median = np.zeros(data.shape[1]) 33 | perc_25 = np.zeros(data.shape[1]) 34 | perc_75 = np.zeros(data.shape[1]) 35 | for i in range(0, len(median)): 36 | median[i] = np.median(data[:, i]) 37 | perc_25[i] = np.percentile(data[:, i], 25) 38 | perc_75[i] = np.percentile(data[:, i], 75) 39 | return median, perc_25, perc_75 40 | 41 | 42 | data_low_mut = load('data/low_mut') 43 | data_high_mut = load('data/high_mut') 44 | 45 | n_generations = data_low_mut.shape[1] 46 | x = np.arange(0, n_generations) 47 | 48 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 49 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 50 | 51 | fig = figure() # no frame 52 | ax = fig.add_subplot(111) 53 | 54 | # now all plot function should be applied to ax 55 | ax.fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color=colors[0]) 56 | ax.fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color=colors[1]) 57 | ax.plot(x, med_low_mut, linewidth=2, color=colors[0]) 58 | ax.plot(x, med_high_mut, linewidth=2, linestyle='--', color=colors[1]) 59 | 60 | # change xlim to set_xlim 61 | ax.set_xlim(-5, 400) 62 | ax.set_ylim(-5000, 300) 63 | 64 | # change xticks to set_xticks 65 | ax.set_xticks(np.arange(0, 500, 100)) 66 | 67 | legend = ax.legend(["Low mutation rate", "High Mutation rate"], loc=4) 68 | frame = legend.get_frame() 69 | frame.set_facecolor('1.0') 70 | frame.set_edgecolor('1.0') 71 | 72 | fig.savefig('variance_matplotlib.png') 73 | -------------------------------------------------------------------------------- /src/plot_variance_matplotlib_white.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [4.5, 4.5] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | def perc(data): 32 | median = np.zeros(data.shape[1]) 33 | perc_25 = np.zeros(data.shape[1]) 34 | perc_75 = np.zeros(data.shape[1]) 35 | for i in range(0, len(median)): 36 | median[i] = np.median(data[:, i]) 37 | perc_25[i] = np.percentile(data[:, i], 25) 38 | perc_75[i] = np.percentile(data[:, i], 75) 39 | return median, perc_25, perc_75 40 | 41 | 42 | data_low_mut = load('data/low_mut') 43 | data_high_mut = load('data/high_mut') 44 | 45 | n_generations = data_low_mut.shape[1] 46 | x = np.arange(0, n_generations) 47 | 48 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 49 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 50 | 51 | fig = figure() # no frame 52 | ax = fig.add_subplot(111) 53 | 54 | # now all plot function should be applied to ax 55 | ax.spines['top'].set_visible(False) 56 | ax.spines['right'].set_visible(False) 57 | ax.spines['left'].set_visible(False) 58 | ax.get_xaxis().tick_bottom() 59 | ax.get_yaxis().tick_left() 60 | ax.tick_params(axis='x', direction='out') 61 | ax.tick_params(axis='y', length=0) 62 | 63 | # offset the spines 64 | for spine in ax.spines.values(): 65 | spine.set_position(('outward', 5)) 66 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 67 | # put the grid behind 68 | ax.set_axisbelow(True) 69 | 70 | ax.fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color=colors[0]) 71 | ax.fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color=colors[1]) 72 | 73 | 74 | ax.plot(x, med_low_mut, linewidth=2, color=colors[0]) 75 | ax.plot(x, med_high_mut, linewidth=2, linestyle='--', color=colors[1]) 76 | 77 | # change xlim to set_xlim 78 | ax.set_xlim(-5, 400) 79 | ax.set_ylim(-5000, 300) 80 | 81 | # change xticks to set_xticks 82 | ax.set_xticks(np.arange(0, 500, 100)) 83 | 84 | legend = ax.legend(["Low mutation rate", "High Mutation rate"], loc=4) 85 | frame = legend.get_frame() 86 | frame.set_facecolor('1.0') 87 | frame.set_edgecolor('1.0') 88 | 89 | fig.savefig('variance_matplotlib.png') 90 | -------------------------------------------------------------------------------- /src/plot_variance_mpl.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [4.5, 4.5] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | def perc(data): 32 | median = np.zeros(data.shape[1]) 33 | perc_25 = np.zeros(data.shape[1]) 34 | perc_75 = np.zeros(data.shape[1]) 35 | for i in range(0, len(median)): 36 | median[i] = np.median(data[:, i]) 37 | perc_25[i] = np.percentile(data[:, i], 25) 38 | perc_75[i] = np.percentile(data[:, i], 75) 39 | return median, perc_25, perc_75 40 | 41 | 42 | data_low_mut = load('data/low_mut') 43 | data_high_mut = load('data/high_mut') 44 | 45 | n_generations = data_low_mut.shape[1] 46 | x = np.arange(0, n_generations) 47 | 48 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 49 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 50 | 51 | axes(frameon=0) 52 | grid(axis='y', color="0.9", linestyle='-', linewidth=1) 53 | 54 | 55 | fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color=colors[0]) 56 | fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color=colors[1]) 57 | 58 | 59 | plot(x, med_low_mut, linewidth=2, color=colors[0]) 60 | plot(x, med_high_mut, linewidth=2, linestyle='--', color=colors[1]) 61 | 62 | xlim(-5, 400) 63 | ylim(-5000, 300) 64 | 65 | xticks(np.arange(0, 500, 100)) 66 | 67 | legend = legend(["Low mutation rate", "High Mutation rate"], loc=4) 68 | frame = legend.get_frame() 69 | frame.set_facecolor('1.0') 70 | frame.set_edgecolor('1.0') 71 | 72 | savefig('variance_colors.png') 73 | -------------------------------------------------------------------------------- /src/plot_variance_subplots.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [4.5, 4.5] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | def perc(data): 32 | median = np.zeros(data.shape[1]) 33 | perc_25 = np.zeros(data.shape[1]) 34 | perc_75 = np.zeros(data.shape[1]) 35 | for i in range(0, len(median)): 36 | median[i] = np.median(data[:, i]) 37 | perc_25[i] = np.percentile(data[:, i], 25) 38 | perc_75[i] = np.percentile(data[:, i], 75) 39 | return median, perc_25, perc_75 40 | 41 | 42 | def plot_data(ax, min_gen, max_gen): 43 | # now all plot function should be applied to ax 44 | ax.spines['top'].set_visible(False) 45 | ax.spines['right'].set_visible(False) 46 | ax.spines['left'].set_visible(False) 47 | ax.get_xaxis().tick_bottom() 48 | ax.get_yaxis().tick_left() 49 | ax.tick_params(axis='x', direction='out') 50 | ax.tick_params(axis='y', length=0) 51 | # offset the spines 52 | for spine in ax.spines.values(): 53 | spine.set_position(('outward', 5)) 54 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 55 | # put the grid behind 56 | ax.set_axisbelow(True) 57 | 58 | ax.fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color=colors[0]) 59 | ax.fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color=colors[1]) 60 | 61 | ax.plot(x, med_low_mut, linewidth=2, color=colors[0]) 62 | ax.plot(x, med_high_mut, linewidth=2, linestyle='--', color=colors[1]) 63 | 64 | # change xlim to set_xlim 65 | ax.set_xlim(min_gen, max_gen) 66 | ax.set_ylim(-5000, 300) 67 | 68 | # change xticks to set_xticks 69 | ax.set_xticks(np.arange(min_gen, max_gen, 100)) 70 | 71 | legend = ax.legend(["Low mutation rate", "High Mutation rate"], loc=4) 72 | frame = legend.get_frame() 73 | frame.set_facecolor('1.0') 74 | frame.set_edgecolor('1.0') 75 | 76 | 77 | data_low_mut = load('data/low_mut') 78 | data_high_mut = load('data/high_mut') 79 | 80 | n_generations = data_low_mut.shape[1] 81 | x = np.arange(0, n_generations) 82 | 83 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 84 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 85 | 86 | fig = figure() 87 | ax1 = fig.add_subplot(121) 88 | ax2 = fig.add_subplot(122) 89 | plot_data(ax1, 0, 500) 90 | plot_data(ax2, 0, 110) 91 | 92 | fig.savefig('variance_subplot_bis.png') 93 | -------------------------------------------------------------------------------- /src/plot_variance_subplots_bis.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [7, 4] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | def perc(data): 32 | median = np.zeros(data.shape[1]) 33 | perc_25 = np.zeros(data.shape[1]) 34 | perc_75 = np.zeros(data.shape[1]) 35 | for i in range(0, len(median)): 36 | median[i] = np.median(data[:, i]) 37 | perc_25[i] = np.percentile(data[:, i], 25) 38 | perc_75[i] = np.percentile(data[:, i], 75) 39 | return median, perc_25, perc_75 40 | 41 | 42 | def plot_data(ax, min_gen, max_gen, use_y_labels, use_legend): 43 | # now all plot function should be applied to ax 44 | ax.spines['top'].set_visible(False) 45 | ax.spines['right'].set_visible(False) 46 | ax.spines['left'].set_visible(False) 47 | ax.get_xaxis().tick_bottom() 48 | ax.get_yaxis().tick_left() 49 | ax.tick_params(axis='x', direction='out') 50 | ax.tick_params(axis='y', length=0) 51 | 52 | # offset the spines 53 | for spine in ax.spines.values(): 54 | spine.set_position(('outward', 5)) 55 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 56 | # put the grid behind 57 | ax.set_axisbelow(True) 58 | 59 | ax.fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color=colors[0]) 60 | ax.fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color=colors[1]) 61 | 62 | ax.plot(x, med_low_mut, linewidth=2, color=colors[0]) 63 | ax.plot(x, med_high_mut, linewidth=2, linestyle='--', color=colors[1]) 64 | 65 | # change xlim to set_xlim 66 | ax.set_xlim(min_gen, max_gen) 67 | ax.set_ylim(-5000, 300) 68 | 69 | # change xticks to set_xticks 70 | ax.set_xticks(np.arange(min_gen, max_gen, 100)) 71 | 72 | if not use_y_labels: 73 | ax.set_yticklabels([]) 74 | 75 | if use_legend: 76 | legend = ax.legend(["Low mutation rate", "High Mutation rate"], loc=4) 77 | frame = legend.get_frame() 78 | frame.set_facecolor('1.0') 79 | frame.set_edgecolor('1.0') 80 | 81 | 82 | data_low_mut = load('data/low_mut') 83 | data_high_mut = load('data/high_mut') 84 | 85 | n_generations = data_low_mut.shape[1] 86 | x = np.arange(0, n_generations) 87 | 88 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 89 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 90 | 91 | fig = figure() 92 | ax1 = fig.add_subplot(121) 93 | ax2 = fig.add_subplot(122) 94 | plot_data(ax1, 0, 500, True, True) 95 | plot_data(ax2, 0, 110, False, False) 96 | fig.savefig('variance_subplot_bis.png') 97 | -------------------------------------------------------------------------------- /src/plot_variance_subplots_ter.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | # import colors 5 | from palettable.colorbrewer.qualitative import Set2_7 6 | colors = Set2_7.mpl_colors 7 | 8 | params = { 9 | 'axes.labelsize': 8, 10 | 'font.size': 8, 11 | 'legend.fontsize': 10, 12 | 'xtick.labelsize': 10, 13 | 'ytick.labelsize': 10, 14 | 'text.usetex': False, 15 | 'figure.figsize': [7, 4] 16 | } 17 | rcParams.update(params) 18 | 19 | 20 | def load(dir): 21 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 22 | num_lines = sum(1 for line in open(f_list[0])) 23 | i = 0 24 | data = np.zeros((len(f_list), num_lines)) 25 | for f in f_list: 26 | data[i, :] = np.loadtxt(f)[:, 1] 27 | i += 1 28 | return data 29 | 30 | 31 | def perc(data): 32 | median = np.zeros(data.shape[1]) 33 | perc_25 = np.zeros(data.shape[1]) 34 | perc_75 = np.zeros(data.shape[1]) 35 | for i in range(0, len(median)): 36 | median[i] = np.median(data[:, i]) 37 | perc_25[i] = np.percentile(data[:, i], 25) 38 | perc_75[i] = np.percentile(data[:, i], 75) 39 | return median, perc_25, perc_75 40 | 41 | 42 | def plot_data(ax, min_gen, max_gen, use_y_labels, use_legend): 43 | # now all plot function should be applied to ax 44 | ax.spines['top'].set_visible(False) 45 | ax.spines['right'].set_visible(False) 46 | ax.spines['left'].set_visible(False) 47 | ax.get_xaxis().tick_bottom() 48 | ax.get_yaxis().tick_left() 49 | ax.tick_params(axis='x', direction='out') 50 | ax.tick_params(axis='y', length=0) 51 | 52 | # offset the spines 53 | for spine in ax.spines.values(): 54 | spine.set_position(('outward', 5)) 55 | ax.grid(axis='y', color="0.9", linestyle='-', linewidth=1) 56 | # put the grid behind 57 | ax.set_axisbelow(True) 58 | 59 | ax.fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color=colors[0]) 60 | ax.fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color=colors[1]) 61 | 62 | ax.plot(x, med_low_mut, linewidth=2, color=colors[0]) 63 | ax.plot(x, med_high_mut, linewidth=2, linestyle='--', color=colors[1]) 64 | 65 | # change xlim to set_xlim 66 | ax.set_xlim(min_gen, max_gen) 67 | ax.set_ylim(-5000, 300) 68 | 69 | # change xticks to set_xticks 70 | ax.set_xticks(np.arange(min_gen, max_gen, 100)) 71 | 72 | if not use_y_labels: 73 | ax.set_yticklabels([]) 74 | 75 | if use_legend: 76 | legend = ax.legend(["Low mutation rate", "High Mutation rate"], loc=4) 77 | frame = legend.get_frame() 78 | frame.set_facecolor('1.0') 79 | frame.set_edgecolor('1.0') 80 | 81 | 82 | data_low_mut = load('data/low_mut') 83 | data_high_mut = load('data/high_mut') 84 | 85 | n_generations = data_low_mut.shape[1] 86 | x = np.arange(0, n_generations) 87 | 88 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 89 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 90 | 91 | fig = figure() 92 | fig.subplots_adjust(left=0.09, right=0.99, top=0.99, wspace=0.1) 93 | ax1 = fig.add_subplot(121) 94 | ax2 = fig.add_subplot(122) 95 | plot_data(ax1, 0, 500, True, True) 96 | plot_data(ax2, 0, 110, False, False) 97 | 98 | # labeling 99 | fig.text(0.01, 0.98, "A", weight="bold", horizontalalignment='left', verticalalignment='center') 100 | fig.text(0.54, 0.98, "B", weight="bold", horizontalalignment='left', verticalalignment='center') 101 | 102 | 103 | fig.savefig('variance_subplot_ter.png') 104 | -------------------------------------------------------------------------------- /src/plot_variance_white.py: -------------------------------------------------------------------------------- 1 | import glob 2 | from pylab import * 3 | 4 | 5 | params = { 6 | 'axes.labelsize': 8, 7 | 'font.size': 8, 8 | 'legend.fontsize': 10, 9 | 'xtick.labelsize': 10, 10 | 'ytick.labelsize': 10, 11 | 'text.usetex': False, 12 | 'figure.figsize': [4.5, 4.5] 13 | } 14 | rcParams.update(params) 15 | 16 | 17 | def load(dir): 18 | f_list = glob.glob(dir + '/*/*/bestfit.dat') 19 | num_lines = sum(1 for line in open(f_list[0])) 20 | i = 0 21 | data = np.zeros((len(f_list), num_lines)) 22 | for f in f_list: 23 | data[i, :] = np.loadtxt(f)[:, 1] 24 | i += 1 25 | return data 26 | 27 | 28 | def perc(data): 29 | median = np.zeros(data.shape[1]) 30 | perc_25 = np.zeros(data.shape[1]) 31 | perc_75 = np.zeros(data.shape[1]) 32 | for i in range(0, len(median)): 33 | median[i] = np.median(data[:, i]) 34 | perc_25[i] = np.percentile(data[:, i], 25) 35 | perc_75[i] = np.percentile(data[:, i], 75) 36 | return median, perc_25, perc_75 37 | 38 | 39 | data_low_mut = load('data/low_mut') 40 | data_high_mut = load('data/high_mut') 41 | 42 | # generate the x 43 | n_generations = data_low_mut.shape[1] 44 | x = np.arange(0, n_generations) 45 | 46 | # compute the medians and 25/75 percentiles 47 | med_low_mut, perc_25_low_mut, perc_75_low_mut = perc(data_low_mut) 48 | med_high_mut, perc_25_high_mut, perc_75_high_mut = perc(data_high_mut) 49 | 50 | axes(frameon=0, axisbelow=True) 51 | tick_params(axis='x', top='off') 52 | tick_params(axis='y', right='off') 53 | tick_params(axis='y', left='off') 54 | 55 | 56 | grid(axis='y', color="0.9", linestyle='-', linewidth=1) 57 | # grid(axis='y') 58 | 59 | fill_between(x, perc_25_low_mut, perc_75_low_mut, alpha=0.25, linewidth=0, color='#B22400') 60 | fill_between(x, perc_25_high_mut, perc_75_high_mut, alpha=0.25, linewidth=0, color='#006BB2') 61 | 62 | 63 | plot(x, med_low_mut, linewidth=2, color='#B22400') 64 | plot(x, med_high_mut, linewidth=2, linestyle='--', color='#006BB2') 65 | 66 | xlim(-5, 400) 67 | ylim(-5000, 300) 68 | 69 | xticks(np.arange(0, 500, 100)) 70 | 71 | 72 | legend = legend(["Low mutation rate", "High Mutation rate"], loc=4) 73 | frame = legend.get_frame() 74 | # frame.set_facecolor('0.9') 75 | # frame.set_edgecolor('0.9') 76 | frame.set_facecolor('1.0') 77 | frame.set_edgecolor('1.0') 78 | 79 | savefig('variance_white.png') 80 | --------------------------------------------------------------------------------