├── xbert ├── layers │ ├── __init__.py │ ├── bias_add.py │ ├── custom_decorator.py │ ├── embedding_layer.py │ ├── feed_forward.py │ ├── position_embedding.py │ ├── multi_head_attention.py │ └── layer_normalization.py ├── __init__.py ├── utils.py ├── backend.py ├── tokenizer.py └── xbert_model.py ├── testdemo └── xbert_classification.py ├── .idea ├── dictionaries │ └── xuyingjie.xml ├── thriftCompiler.xml ├── fileColors.xml ├── vcs.xml ├── modules.xml ├── misc.xml └── xbert.iml ├── setup.py ├── README.md └── LICENSE /xbert/layers/__init__.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /testdemo/xbert_classification.py: -------------------------------------------------------------------------------- 1 | -------------------------------------------------------------------------------- /xbert/__init__.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | 3 | __version__ = '0.1.0' -------------------------------------------------------------------------------- /.idea/dictionaries/xuyingjie.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | -------------------------------------------------------------------------------- /.idea/thriftCompiler.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | -------------------------------------------------------------------------------- /.idea/fileColors.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | -------------------------------------------------------------------------------- /.idea/vcs.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | -------------------------------------------------------------------------------- /.idea/modules.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | -------------------------------------------------------------------------------- /.idea/misc.xml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 6 | 7 | -------------------------------------------------------------------------------- /.idea/xbert.iml: -------------------------------------------------------------------------------- 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 11 | -------------------------------------------------------------------------------- /setup.py: -------------------------------------------------------------------------------- 1 | # -*- coding: utf-8 -*- 2 | 3 | from setuptools import setup, find_packages 4 | 5 | setup( 6 | name='xbert', 7 | version='0.1.0', 8 | description='universal xbert frame by tf2', 9 | long_description='xbert: https://github.com/xuyingjie521/xbert', 10 | license='GNU General Public License 3.0', 11 | url='https://github.com/xuyingjie521/xbert', 12 | author='yuyangmu', 13 | author_email='1812316597@163.com', 14 | install_requires=['tensorflow>=2.2.0'], 15 | packages=find_packages() 16 | ) 17 | -------------------------------------------------------------------------------- /xbert/layers/bias_add.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/24 8 | 9 | # the function of this file: Provide custom bias layer based on tf2 10 | 11 | from .custom_decorator import Layer, integerize_shape 12 | from xbert.backend import K 13 | 14 | 15 | class BiasAdd(Layer): 16 | """自定义bias层可辅助添加 17 | """ 18 | @integerize_shape 19 | def build(self, input_shape): 20 | super(BiasAdd, self).build(input_shape) 21 | output_dim = input_shape[-1] 22 | self.bias = self.add_weight( 23 | name='bias', 24 | shape=(output_dim,), 25 | initializer='zeros', 26 | trainable=True 27 | ) 28 | 29 | def call(self, inputs): 30 | return K.bias_add(inputs, self.bias) 31 | 32 | 33 | 34 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # xbert 2 | Implementation of pre-training model loading architecture of bert and its variants with tensorflow2 3 | 4 | ## Description 5 | 6 | This is based on the Transformer architecture implemented by tf2.keras, which can quickly load the pre-trained bert model for downstream finetune training. 7 | So welcome to star and I will continue to update in the future. 8 | 9 | ## Install 10 | Temporary support: 11 | 12 | ```bash 13 | pip install git+https://github.com/xuyingjie521/xbert.git 14 | ``` 15 | ## Features 16 | Features that have been implemented so far: 17 | 18 | * Load pre-training weights of bert/roberta for finetune. 19 | * Support tf2.keras. 20 | 21 | ## Pre-trained models be loaded 22 | 23 | * Google original bert: https://github.com/google-research/bert 24 | * Harbin Institute of Technology version roberta: https://github.com/ymcui/Chinese-BERT-wwm 25 | * Brightmart version of roberta: https://github.com/brightmart/roberta_zh 26 | -------------------------------------------------------------------------------- /xbert/utils.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/31 8 | 9 | # the function of this file: implement various auxiliary functions 10 | 11 | 12 | import sys 13 | import six 14 | import numpy as np 15 | 16 | is_py2 = six.PY2 17 | 18 | __all__ = ['is_sting', ] 19 | 20 | 21 | if not is_py2: 22 | basestring = str 23 | 24 | 25 | def is_sting(s): 26 | """ 27 | 字符串判断函数 28 | :param s: 字符串 29 | :return: Boolean 30 | """ 31 | return isinstance(s, basestring) 32 | 33 | 34 | def sequence_padding(inputs, length=None, padding=0): 35 | """Numpy函数,将序列padding到同一长度 36 | """ 37 | if length is None: 38 | length = max([len(x) for x in inputs]) 39 | 40 | pad_width = [(0, 0) for _ in np.shape(inputs[0])] 41 | outputs = [] 42 | for x in inputs: 43 | x = x[:length] 44 | pad_width[0] = (0, length - len(x)) 45 | x = np.pad(x, pad_width, 'constant', constant_values=padding) 46 | outputs.append(x) 47 | 48 | return np.array(outputs) 49 | 50 | -------------------------------------------------------------------------------- /xbert/layers/custom_decorator.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/24 8 | 9 | # the function of this file: Provide custom decorator functions and Layer for tf.keras.layer based on tf2 10 | 11 | 12 | from xbert.backend import keras 13 | 14 | 15 | class Layer(keras.layers.Layer): 16 | """ 17 | The custom layer of my project can be masked 18 | """ 19 | def __init__(self, **kwargs): 20 | super(Layer, self).__init__(**kwargs) 21 | self.supports_masking = True 22 | 23 | 24 | def integerize_shape(func): 25 | """确保input_shape一定是int或None的自定义装饰器 26 | """ 27 | def convert(item): 28 | if hasattr(item, '__iter__'): 29 | return [convert(i) for i in item] 30 | elif hasattr(item, 'value'): 31 | return item.value 32 | else: 33 | return item 34 | 35 | def new_func(self, input_shape): 36 | input_shape = convert(input_shape) 37 | return func(self, input_shape) 38 | 39 | return new_func 40 | 41 | 42 | 43 | -------------------------------------------------------------------------------- /xbert/layers/embedding_layer.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/24 8 | 9 | # the function of this file: Provide custom embedding layer based on tf2 10 | 11 | 12 | from xbert.backend import keras, K 13 | 14 | 15 | class Embedding(keras.layers.Embedding): 16 | """Custom Embedding Layer 17 | """ 18 | def compute_mask(self, inputs, mask=None): 19 | """first token is not masked 20 | """ 21 | if self._current_mode == 'embedding': 22 | mask = super(Embedding, self).compute_mask(inputs, mask) 23 | if mask is not None: 24 | mask1 = K.ones_like(mask[:, :1], dtype='bool') 25 | mask2 = mask[:, 1:] 26 | return K.concatenate([mask1, mask2], 1) 27 | else: 28 | return mask 29 | 30 | def call(self, inputs, mode='embedding'): 31 | """define mode parameter: 32 | if 'embedding': Common Embedding layer 33 | elif 'dense' : Dense layer without bias 34 | """ 35 | self._current_mode = mode 36 | if mode == 'embedding': 37 | return super(Embedding, self).call(inputs) 38 | else: 39 | kernel = K.transpose(self.embeddings) 40 | return K.dot(inputs, kernel) 41 | 42 | def compute_output_shape(self, input_shape): 43 | if self._current_mode == 'embedding': 44 | return super(Embedding, self).compute_output_shape(input_shape) 45 | else: 46 | return input_shape[:2] + (K.int_shape(self.embeddings)[0],) 47 | -------------------------------------------------------------------------------- /xbert/layers/feed_forward.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/31 8 | 9 | # the function of this file: Provide custom feed forward layer based on tf2 10 | 11 | 12 | from tensorflow.keras import initializers, activations 13 | from .custom_decorator import Layer, integerize_shape 14 | from tensorflow.keras.layers import Dense 15 | 16 | 17 | class FeedForward(Layer): 18 | """ 19 | 用两个dense层实现feed forward层 20 | """ 21 | def __init__( 22 | self, 23 | units, 24 | activation='relu', 25 | use_bias=True, 26 | kernel_initializer='glorot_uniform', 27 | **kwargs 28 | ): 29 | super(FeedForward, self).__init__(**kwargs) 30 | self.units = units 31 | self.activation = activations.get(activation) 32 | self.use_bias = use_bias 33 | self.kernel_initializer = initializers.get(kernel_initializer) 34 | 35 | @integerize_shape 36 | def build(self, input_shape): 37 | super(FeedForward, self).build(input_shape) 38 | output_dim = input_shape[-1] 39 | 40 | self.dense_1 = Dense(units=self.units, 41 | activation=self.activation, 42 | use_bias=self.use_bias, 43 | kernel_initializer=self.kernel_initializer) 44 | self.dense_2 = Dense(units=output_dim, 45 | use_bias=self.use_bias, 46 | kernel_initializer=self.kernel_initializer) 47 | 48 | def call(self, inputs): 49 | x = inputs 50 | x = self.dense_1(x) 51 | x = self.dense_2(x) 52 | return x 53 | 54 | def get_config(self): 55 | config = { 56 | 'units': self.units, 57 | 'activation': activations.serialize(self.activation), 58 | 'use_bias': self.use_bias, 59 | 'kernel_initializer': 60 | initializers.serialize(self.kernel_initializer), 61 | } 62 | base_config = super(FeedForward, self).get_config() 63 | return dict(list(base_config.items()) + list(config.items())) -------------------------------------------------------------------------------- /xbert/layers/position_embedding.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/31 8 | 9 | # the function of this file: Provide custom position embedding layer based on tf2 10 | 11 | 12 | from tensorflow.keras import initializers, activations 13 | from xbert.backend import K 14 | from .custom_decorator import Layer 15 | import tensorflow as tf 16 | 17 | 18 | class PositionEmbedding(Layer): 19 | """实现 Position Embedding,且Embedding可训练。 20 | """ 21 | def __init__( 22 | self, 23 | input_dim, 24 | output_dim, 25 | merge_mode='add', 26 | embeddings_initializer='zeros', 27 | custom_position_ids=False, 28 | **kwargs 29 | ): 30 | super(PositionEmbedding, self).__init__(**kwargs) 31 | self.input_dim = input_dim 32 | self.output_dim = output_dim 33 | self.merge_mode = merge_mode 34 | self.embeddings_initializer = initializers.get(embeddings_initializer) 35 | self.custom_position_ids = custom_position_ids 36 | 37 | def build(self, input_shape): 38 | super(PositionEmbedding, self).build(input_shape) 39 | self.embeddings = self.add_weight(name='embeddings', 40 | shape=(self.input_dim, self.output_dim), 41 | initializer=self.embeddings_initializer 42 | ) 43 | 44 | def call(self, inputs): 45 | """如果custom_position_ids,那么第二个输入为自定义的位置id 46 | """ 47 | if self.custom_position_ids: 48 | inputs, position_ids = inputs 49 | if K.dtype(position_ids) != 'int32': 50 | position_ids = K.cast(position_ids, 'int32') 51 | pos_embeddings = K.gather(self.embeddings, position_ids) 52 | else: 53 | input_shape = K.shape(inputs) 54 | batch_size, seq_len = input_shape[0], input_shape[1] 55 | pos_embeddings = self.embeddings[:seq_len] 56 | pos_embeddings = K.expand_dims(pos_embeddings, 0) 57 | if self.merge_mode != 'add': 58 | pos_embeddings = K.tile(pos_embeddings, [batch_size, 1, 1]) 59 | 60 | if self.merge_mode == 'add': 61 | return inputs + pos_embeddings 62 | else: 63 | return K.concatenate([inputs, pos_embeddings]) 64 | 65 | def compute_output_shape(self, input_shape): 66 | if self.custom_position_ids: 67 | input_shape = input_shape[0] 68 | 69 | if self.merge_mode == 'add': 70 | return input_shape 71 | else: 72 | return input_shape[:2] + (input_shape[2] + self.output_dim,) 73 | 74 | def get_config(self): 75 | config = { 76 | 'input_dim': self.input_dim, 77 | 'output_dim': self.output_dim, 78 | 'merge_mode': self.merge_mode, 79 | 'embeddings_initializer': 80 | initializers.serialize(self.embeddings_initializer), 81 | 'custom_position_ids': self.custom_position_ids, 82 | } 83 | base_config = super(PositionEmbedding, self).get_config() 84 | return dict(list(base_config.items()) + list(config.items())) 85 | 86 | 87 | class SinCosPositionEmbedding(Layer): 88 | """ 89 | 实现 Google 论文中的 Sin-Cos 形式的位置 Embedding 层 90 | """ 91 | def __init__(self, v_dim, merge_mode="add", **kwargs): 92 | """ 93 | Args: 94 | v_dim: embedding 的维度 95 | merge_mode: 与位置 embedding 的合并模式, "add" 表示相加,"concate" 表示拼接 96 | **kwargs: 97 | """ 98 | super(SinCosPositionEmbedding, self).__init__(**kwargs) 99 | self.v_dim = v_dim 100 | self.merge_mode = merge_mode 101 | 102 | def call(self, inputs): 103 | pid = tf.range(K.shape(inputs)[1]) 104 | pid = K.expand_dims(pid, 0) 105 | pid = K.tile(pid, [K.shape(inputs)[0], 1]) 106 | pv = self.idx2pos(pid) 107 | if self.merge_mode == "add": 108 | return pv + inputs 109 | else: 110 | return K.concatenate([inputs, pv]) 111 | 112 | def idx2pos(self, pid): 113 | pid = K.cast(pid, "float32") 114 | pid = K.expand_dims(pid, 2) 115 | pj = 1. / K.pow(10000., 2. / self.v_dim * K.arange(self.v_dim // 2, 116 | dtype="float32")) 117 | pj = K.expand_dims(pj, 0) 118 | pv = K.dot(pid, pj) 119 | pv1, pv2 = K.sin(pv), K.cos(pv) 120 | pv1, pv2 = K.expand_dims(pv1, 3), K.expand_dims(pv2, 3) 121 | pv = K.concatenate([pv1, pv2], 3) 122 | return K.reshape(pv, (K.shape(pv)[0], K.shape(pv)[1], self.v_dim)) 123 | 124 | def compute_output_shape(self, input_shape): 125 | if self.merge_mode == "add": 126 | return input_shape 127 | else: 128 | return input_shape[:-1] + (input_shape[-1] + self.vdim) 129 | 130 | def get_config(self): 131 | config = {"v_dim": self.v_dim, "merge_mode": self.merge_mode} 132 | base_config = super(SinCosPositionEmbedding, self).get_config() 133 | return dict(list(base_config.items()) + list(config.items())) 134 | -------------------------------------------------------------------------------- /xbert/layers/multi_head_attention.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/24 8 | 9 | # the function of this file: Provide custom Multiple Head Attention layer based on tf2 10 | 11 | import tensorflow as tf 12 | from tensorflow.keras import initializers, activations 13 | from tensorflow.keras.layers import * 14 | from xbert.backend import K, sequence_masking 15 | from .custom_decorator import Layer 16 | 17 | 18 | class MultiHeadAttention(Layer): 19 | """实现多头注意力层 20 | """ 21 | def __init__( 22 | self, 23 | num_heads, 24 | head_size, 25 | key_size=None, 26 | use_bias=True, 27 | attention_scale=True, 28 | kernel_initializer='glorot_uniform', 29 | **kwargs 30 | ): 31 | """ 32 | Args: 33 | num_heads: 多头 attention 的数量 34 | head_size: 每个 attention head 的维度 35 | key_size: 输出的 Embedding 维度 36 | **kwargs: 37 | """ 38 | super(MultiHeadAttention, self).__init__(**kwargs) 39 | self.heads = num_heads 40 | self.head_size = head_size 41 | self.out_dim = num_heads * head_size 42 | self.key_size = key_size or head_size 43 | self.use_bias = use_bias 44 | self.attention_scale = attention_scale 45 | self.kernel_initializer = initializers.get(kernel_initializer) 46 | 47 | def build(self, input_shape): 48 | super(MultiHeadAttention, self).build(input_shape) 49 | self.q_dense = Dense( 50 | units=self.key_size * self.heads, 51 | use_bias=self.use_bias, 52 | kernel_initializer=self.kernel_initializer 53 | ) 54 | self.k_dense = Dense( 55 | units=self.key_size * self.heads, 56 | use_bias=self.use_bias, 57 | kernel_initializer=self.kernel_initializer 58 | ) 59 | self.v_dense = Dense( 60 | units=self.out_dim, 61 | use_bias=self.use_bias, 62 | kernel_initializer=self.kernel_initializer 63 | ) 64 | self.o_dense = Dense( 65 | units=self.out_dim, 66 | use_bias=self.use_bias, 67 | kernel_initializer=self.kernel_initializer 68 | ) 69 | 70 | def call(self, inputs, mask=None, a_mask=None, p_bias=None): 71 | """ 72 | 实现多头注意力机制 73 | Args: 74 | inputs: 输入是一个 list,[q, k, v, mask, a_mask, p_bias],mask 可少,q,k,v 不可少。 75 | q_mask: 对输入的query序列的mask,主要是将输出结果的padding部分置0。 76 | v_mask: 对输入的value序列的mask,主要是防止attention读取到padding信息。 77 | a_mask: 对attention矩阵的mask,不同的attention mask对应不同的应用。 78 | p_bias: 在attention里的位置偏置。一般用来指定相对位置编码的种类。 79 | **kwargs: 80 | Returns:返回经过注意力机制的结果 81 | """ 82 | q, k, v = inputs[:3] 83 | q_mask, v_mask, n = None, None, 3 84 | if mask is not None: 85 | if mask[0] is not None: 86 | q_mask = K.cast(mask[0], K.floatx()) 87 | if mask[2] is not None: 88 | v_mask = K.cast(mask[2], K.floatx()) 89 | if a_mask: 90 | a_mask = inputs[n] 91 | n += 1 92 | # 线性变换 93 | qw = self.q_dense(q) # [batch_size, seq_len, num_heads * key_size] 94 | kw = self.k_dense(k) # [batch_size, seq_len, num_heads * key_size] 95 | vw = self.v_dense(v) # [batch_size, seq_len, num_heads * head_size] 96 | 97 | # 形状变换 98 | # [batch_size, seq_len, num_heads, key_size] 99 | qw = K.reshape(qw, (-1, K.shape(q)[1], self.heads, self.key_size)) 100 | # [batch_size, seq_len, num_heads, key_size] 101 | kw = K.reshape(kw, (-1, K.shape(k)[1], self.heads, self.key_size)) 102 | # [batch_size, seq_len, num_heads, head_size] 103 | vw = K.reshape(vw, (-1, K.shape(v)[1], self.heads, self.head_size)) 104 | 105 | # Attention 106 | a = tf.einsum('bjhd,bkhd->bhjk', qw, kw) 107 | # 处理位置编码 108 | if p_bias == 'typical_relative': 109 | pos_embeddings = inputs[n] 110 | a = a + tf.einsum('bjhd,jkd->bhjk', qw, pos_embeddings) 111 | # Attention(续) 112 | if self.attention_scale: 113 | a = a / self.key_size**0.5 114 | a = sequence_masking(a, v_mask, 1, -1) 115 | if a_mask is not None: 116 | a = a - (1 - a_mask) * 1e12 117 | a = K.softmax(a) 118 | 119 | # 完成输出 120 | o = tf.einsum('bhjk,bkhd->bjhd', a, vw) 121 | if p_bias == 'typical_relative': 122 | o = o + tf.einsum('bhjk,jkd->bjhd', a, pos_embeddings) 123 | o = K.reshape(o, (-1, K.shape(o)[1], self.out_dim)) 124 | o = self.o_dense(o) 125 | # 返回结果 126 | o = sequence_masking(o, q_mask, 0) 127 | return o 128 | 129 | def compute_output_shape(self, input_shape): 130 | return (input_shape[0][0], input_shape[0][1], self.out_dim) 131 | 132 | def compute_mask(self, inputs, mask=None): 133 | if mask is not None: 134 | return mask[0] 135 | 136 | def get_config(self): 137 | config = { 138 | 'heads': self.heads, 139 | 'head_size': self.head_size, 140 | 'key_size': self.key_size, 141 | 'use_bias': self.use_bias, 142 | 'attention_scale': self.attention_scale, 143 | 'kernel_initializer': 144 | initializers.serialize(self.kernel_initializer), 145 | } 146 | base_config = super(MultiHeadAttention, self).get_config() 147 | return dict(list(base_config.items()) + list(config.items())) 148 | -------------------------------------------------------------------------------- /xbert/backend.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/22 8 | 9 | # the function of this file: Provide custom backend functions based on tf2 10 | 11 | 12 | import sys 13 | import numpy as np 14 | import tensorflow as tf 15 | 16 | from tensorflow.python.ops.custom_gradient import _graph_mode_decorator 17 | import tensorflow.keras as keras 18 | import tensorflow.keras.backend as K 19 | # 默认都是直接基于tf2 20 | sys.modules['keras'] = keras 21 | sys.modules['K'] = K 22 | 23 | 24 | def gelu_erf(x): 25 | """基于Erf的直接计算 26 | """ 27 | return 0.5 * x * (1.0 + tf.math.erf(x / np.sqrt(2.0))) 28 | 29 | 30 | def gelu_tanh(x): 31 | """基于Tanh近似的计算 32 | """ 33 | cdf = 0.5 * ( 34 | 1.0 + K.tanh((np.sqrt(2 / np.pi) * (x + 0.044715 * K.pow(x, 3)))) 35 | ) 36 | return x * cdf 37 | 38 | 39 | def set_gelu(version): 40 | """设置gelu版本 41 | """ 42 | version = version.lower() 43 | assert version in ['erf', 'tanh'], 'gelu version must be erf or tanh' 44 | if version == 'erf': 45 | keras.utils.get_custom_objects()['gelu'] = gelu_erf 46 | else: 47 | keras.utils.get_custom_objects()['gelu'] = gelu_tanh 48 | 49 | 50 | def piecewise_linear(t, schedule): 51 | """分段线性函数 52 | 其中schedule是形如{1000: 1, 2000: 0.1}的字典, 53 | 表示 t ∈ [0, 1000]时,输出从0均匀增加至1,而 54 | t ∈ [1000, 2000]时,输出从1均匀降低到0.1,最后 55 | t > 2000时,保持0.1不变。 56 | """ 57 | schedule = sorted(schedule.items()) 58 | if schedule[0][0] != 0: 59 | schedule = [(0, 0.0)] + schedule 60 | 61 | x = K.constant(schedule[0][1], dtype=K.floatx()) 62 | t = K.cast(t, K.floatx()) 63 | for i in range(len(schedule)): 64 | t_begin = schedule[i][0] 65 | x_begin = x 66 | if i != len(schedule) - 1: 67 | dx = schedule[i + 1][1] - schedule[i][1] 68 | dt = schedule[i + 1][0] - schedule[i][0] 69 | slope = 1.0 * dx / dt 70 | x = schedule[i][1] + slope * (t - t_begin) 71 | else: 72 | x = K.constant(schedule[i][1], dtype=K.floatx()) 73 | x = K.switch(t >= t_begin, x, x_begin) 74 | 75 | return x 76 | 77 | 78 | def search_layer(inputs, name, exclude_from=None): 79 | """根据inputs和name来搜索层 80 | 说明:inputs为某个层或某个层的输出;name为目标层的名字。 81 | 实现:根据inputs一直往上递归搜索,直到发现名字为name的层为止; 82 | 如果找不到,那就返回None。 83 | """ 84 | if exclude_from is None: 85 | exclude_from = set() 86 | 87 | if isinstance(inputs, keras.layers.Layer): 88 | layer = inputs 89 | else: 90 | layer = inputs._keras_history[0] 91 | 92 | if layer.name == name: 93 | return layer 94 | elif layer in exclude_from: 95 | return None 96 | else: 97 | exclude_from.add(layer) 98 | if isinstance(layer, keras.models.Model): 99 | model = layer 100 | for layer in model.layers: 101 | if layer.name == name: 102 | return layer 103 | inbound_layers = layer._inbound_nodes[0].inbound_layers 104 | if not isinstance(inbound_layers, list): 105 | inbound_layers = [inbound_layers] 106 | if len(inbound_layers) > 0: 107 | for layer in inbound_layers: 108 | layer = search_layer(layer, name, exclude_from) 109 | if layer is not None: 110 | return layer 111 | 112 | 113 | def sequence_masking(x, mask, mode=0, axis=None): 114 | """为序列条件mask的函数 115 | mask: 形如(batch_size, seq_len)的0-1矩阵; 116 | mode: 如果是0,则直接乘以mask; 117 | 如果是1,则在padding部分减去一个大正数。 118 | axis: 序列所在轴,默认为1; 119 | """ 120 | if mask is None or mode not in [0, 1]: 121 | return x 122 | else: 123 | if axis is None: 124 | axis = 1 125 | if axis == -1: 126 | axis = K.ndim(x) - 1 127 | assert axis > 0, 'axis muse be greater than 0' 128 | for _ in range(axis - 1): 129 | mask = K.expand_dims(mask, 1) 130 | for _ in range(K.ndim(x) - K.ndim(mask) - axis + 1): 131 | mask = K.expand_dims(mask, K.ndim(mask)) 132 | if mode == 0: 133 | return x * mask 134 | else: 135 | return x - (1 - mask) * 1e12 136 | 137 | 138 | def batch_gather(params, indices): 139 | """同tf旧版本的batch_gather 140 | """ 141 | try: 142 | return tf.gather(params, indices, batch_dims=-1) 143 | except Exception as e1: 144 | try: 145 | return tf.batch_gather(params, indices) 146 | except Exception as e2: 147 | raise ValueError('%s\n%s\n' % (e1.message, e2.message)) 148 | 149 | 150 | def divisible_temporal_padding(x, n): 151 | """将一维向量序列右padding到长度能被n整除 152 | """ 153 | r_len = K.shape(x)[1] % n 154 | p_len = K.switch(r_len > 0, n - r_len, 0) 155 | return K.temporal_padding(x, (0, p_len)) 156 | 157 | 158 | def swish(x): 159 | """swish函数(这样封装过后才有 __name__ 属性) 160 | """ 161 | return tf.nn.swish(x) 162 | 163 | 164 | def leaky_relu(x, alpha=0.2): 165 | """leaky relu函数(这样封装过后才有 __name__ 属性) 166 | """ 167 | return tf.nn.leaky_relu(x, alpha=alpha) 168 | 169 | 170 | def graph_mode_decorator(f, *args, **kwargs): 171 | """tf2.1与之前版本的传参方式不一样,这里做个同步 172 | """ 173 | if tf.__version__ < '2.1': 174 | return _graph_mode_decorator(f, *args, **kwargs) 175 | else: 176 | return _graph_mode_decorator(f, args, kwargs) 177 | 178 | 179 | custom_objects = { 180 | 'gelu_erf': gelu_erf, 181 | 'gelu_tanh': gelu_tanh, 182 | 'gelu': gelu_erf, 183 | 'swish': swish, 184 | 'leaky_relu': leaky_relu, 185 | } 186 | 187 | keras.utils.get_custom_objects().update(custom_objects) 188 | 189 | -------------------------------------------------------------------------------- /xbert/layers/layer_normalization.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/31 8 | 9 | # the function of this file: Provide custom normalization layer based on tf2 10 | 11 | 12 | from tensorflow.keras import initializers, activations 13 | from tensorflow.keras.layers import Dense 14 | from xbert.backend import K 15 | from .custom_decorator import Layer 16 | 17 | 18 | class BasicLayerNormalization(Layer): 19 | """ 20 | 实现Basic Layer Normalization 层 21 | """ 22 | def __init__(self, **kwargs): 23 | super(BasicLayerNormalization, self).__init__(**kwargs) 24 | self.epsilon = K.epsilon() * K.epsilon() # 初始化一个很小的数 1e-14 25 | 26 | def build(self, input_shape): 27 | super(BasicLayerNormalization, self).build(input_shape) 28 | shape = (input_shape[-1],) 29 | self.gamma = self.add_weight(shape=shape, 30 | initializer="ones", 31 | name="gamma") 32 | self.beta = self.add_weight(shape=shape, 33 | initializer="zeros", 34 | name="beta") 35 | 36 | def call(self, inputs): 37 | mean = K.mean(inputs, axis=-1, keepdims=True) 38 | variance = K.mean(K.square(inputs - mean), axis=-1, keepdims=True) 39 | std = K.sqrt(variance + self.epsilon) # 增加一个很小的数避免开根号求导梯度出现问题 40 | outputs = (inputs - mean) / std 41 | outputs *= self.gamma 42 | outputs += self.beta 43 | return outputs 44 | 45 | def get_config(self): # 增加 get_config 方法使得 tf.keras 模型能够保存为 h5 46 | config = {"epsilon": self.epsilon} 47 | base_config = super(BasicLayerNormalization, self).get_config() 48 | return dict(list(base_config.items()) + list(config.items())) 49 | 50 | 51 | class ConditionalLayerNormalization(Layer): 52 | """ 53 | 实现Conditional Layer Normalization 层 54 | 当参数hidden_*仅为有输入条件时使用,即conditional=True 55 | """ 56 | def __init__( 57 | self, 58 | center=True, 59 | scale=True, 60 | epsilon=None, 61 | conditional=False, 62 | hidden_units=None, 63 | hidden_activation='linear', 64 | hidden_initializer='glorot_uniform', 65 | **kwargs 66 | ): 67 | super(ConditionalLayerNormalization, self).__init__(**kwargs) 68 | self.center = center 69 | self.scale = scale 70 | self.conditional = conditional 71 | self.hidden_units = hidden_units 72 | self.hidden_activation = activations.get(hidden_activation) 73 | self.hidden_initializer = initializers.get(hidden_initializer) 74 | self.epsilon = epsilon or 1e-12 75 | 76 | def compute_mask(self, inputs, mask=None): 77 | if self.conditional: 78 | masks = [K.expand_dims(m, 0) for m in mask if m is not None] 79 | if len(masks) == 0: 80 | return None 81 | else: 82 | return K.all(K.concatenate(masks, axis=0), axis=0) 83 | else: 84 | return mask 85 | 86 | def build(self, input_shape): 87 | super(ConditionalLayerNormalization, self).build(input_shape) 88 | 89 | if self.conditional: 90 | shape = (input_shape[0][-1],) 91 | else: 92 | shape = (input_shape[-1],) 93 | 94 | if self.center: 95 | self.beta = self.add_weight(shape=shape, 96 | initializer='zeros', 97 | name='beta') 98 | if self.scale: 99 | self.gamma = self.add_weight(shape=shape, 100 | initializer='ones', 101 | name='gamma') 102 | 103 | if self.conditional: 104 | 105 | if self.hidden_units is not None: 106 | self.hidden_dense = Dense( 107 | units=self.hidden_units, 108 | activation=self.hidden_activation, 109 | use_bias=False, 110 | kernel_initializer=self.hidden_initializer) 111 | 112 | if self.center: 113 | self.beta_dense = Dense(units=shape[0], 114 | use_bias=False, 115 | kernel_initializer='zeros') 116 | if self.scale: 117 | self.gamma_dense = Dense(units=shape[0], 118 | use_bias=False, 119 | kernel_initializer='zeros') 120 | 121 | def call(self, inputs): 122 | """ 123 | 如果是条件Layer Norm,则默认以list为输入,第二个是condition 124 | """ 125 | if self.conditional: 126 | inputs, cond = inputs 127 | if self.hidden_units is not None: 128 | cond = self.hidden_dense(cond) 129 | for _ in range(K.ndim(inputs) - K.ndim(cond)): 130 | cond = K.expand_dims(cond, 1) 131 | if self.center: 132 | beta = self.beta_dense(cond) + self.beta 133 | if self.scale: 134 | gamma = self.gamma_dense(cond) + self.gamma 135 | else: 136 | if self.center: 137 | beta = self.beta 138 | if self.scale: 139 | gamma = self.gamma 140 | 141 | outputs = inputs 142 | if self.center: 143 | mean = K.mean(outputs, axis=-1, keepdims=True) 144 | outputs = outputs - mean 145 | if self.scale: 146 | variance = K.mean(K.square(outputs), axis=-1, keepdims=True) 147 | std = K.sqrt(variance + self.epsilon) 148 | outputs = outputs / std 149 | outputs = outputs * gamma 150 | if self.center: 151 | outputs = outputs + beta 152 | 153 | return outputs 154 | 155 | def compute_output_shape(self, input_shape): 156 | if self.conditional: 157 | return input_shape[0] 158 | else: 159 | return input_shape 160 | 161 | def get_config(self): 162 | config = { 163 | 'center': self.center, 164 | 'scale': self.scale, 165 | 'epsilon': self.epsilon, 166 | 'conditional': self.conditional, 167 | 'hidden_units': self.hidden_units, 168 | 'hidden_activation': activations.serialize(self.hidden_activation), 169 | 'hidden_initializer': 170 | initializers.serialize(self.hidden_initializer), 171 | } 172 | base_config = super(ConditionalLayerNormalization, self).get_config() 173 | return dict(list(base_config.items()) + list(config.items())) 174 | 175 | -------------------------------------------------------------------------------- /xbert/tokenizer.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: CyberZHG 7 | # @date: 2019/09/01 8 | 9 | # the function of this file: implement Tokenizer 10 | 11 | 12 | import unicodedata 13 | 14 | 15 | TOKEN_PAD = '' # Token for padding 16 | TOKEN_UNK = '[UNK]' # Token for unknown words 17 | TOKEN_CLS = '[CLS]' # Token for classification 18 | TOKEN_SEP = '[SEP]' # Token for separation 19 | TOKEN_MASK = '[MASK]' # Token for masking 20 | 21 | 22 | class Tokenizer(object): 23 | 24 | def __init__(self, 25 | token_dict, 26 | token_cls=TOKEN_CLS, 27 | token_sep=TOKEN_SEP, 28 | token_unk=TOKEN_UNK, 29 | pad_index=0, 30 | cased=False): 31 | """Initialize tokenizer. 32 | :param token_dict: A dict maps tokens to indices. 33 | :param token_cls: The token represents classification. 34 | :param token_sep: The token represents separator. 35 | :param token_unk: The token represents unknown token. 36 | :param pad_index: The index to pad. 37 | :param cased: Whether to keep the case. 38 | """ 39 | self._token_dict = token_dict 40 | self._token_dict_inv = {v: k for k, v in token_dict.items()} 41 | self._token_cls = token_cls 42 | self._token_sep = token_sep 43 | self._token_unk = token_unk 44 | self._pad_index = pad_index 45 | self._cased = cased 46 | 47 | @staticmethod 48 | def _truncate(first_tokens, second_tokens=None, max_len=None): 49 | if max_len is None: 50 | return 51 | 52 | if second_tokens is not None: 53 | while True: 54 | total_len = len(first_tokens) + len(second_tokens) 55 | if total_len <= max_len - 3: # 3 for [CLS] .. tokens_a .. [SEP] .. tokens_b [SEP] 56 | break 57 | if len(first_tokens) > len(second_tokens): 58 | first_tokens.pop() 59 | else: 60 | second_tokens.pop() 61 | else: 62 | del first_tokens[max_len - 2:] # 2 for [CLS] .. tokens .. [SEP] 63 | 64 | def _pack(self, first_tokens, second_tokens=None): 65 | first_packed_tokens = [self._token_cls] + first_tokens + [self._token_sep] 66 | if second_tokens is not None: 67 | second_packed_tokens = second_tokens + [self._token_sep] 68 | return first_packed_tokens + second_packed_tokens, len(first_packed_tokens), len(second_packed_tokens) 69 | else: 70 | return first_packed_tokens, len(first_packed_tokens), 0 71 | 72 | def _convert_tokens_to_ids(self, tokens): 73 | unk_id = self._token_dict.get(self._token_unk) 74 | return [self._token_dict.get(token, unk_id) for token in tokens] 75 | 76 | def tokenize(self, first, second=None): 77 | """Split text to tokens. 78 | :param first: First text. 79 | :param second: Second text. 80 | :return: A list of strings. 81 | """ 82 | first_tokens = self._tokenize(first) 83 | second_tokens = self._tokenize(second) if second is not None else None 84 | tokens, _, _ = self._pack(first_tokens, second_tokens) 85 | return tokens 86 | 87 | def encode(self, first, second=None, max_len=None): 88 | first_tokens = self._tokenize(first) 89 | second_tokens = self._tokenize(second) if second is not None else None 90 | self._truncate(first_tokens, second_tokens, max_len) 91 | tokens, first_len, second_len = self._pack(first_tokens, second_tokens) 92 | 93 | token_ids = self._convert_tokens_to_ids(tokens) 94 | segment_ids = [0] * first_len + [1] * second_len 95 | 96 | if max_len is not None: 97 | pad_len = max_len - first_len - second_len 98 | token_ids += [self._pad_index] * pad_len 99 | segment_ids += [0] * pad_len 100 | 101 | return token_ids, segment_ids 102 | 103 | def decode(self, ids): 104 | sep = ids.index(self._token_dict[self._token_sep]) 105 | try: 106 | stop = ids.index(self._pad_index) 107 | except ValueError as e: 108 | stop = len(ids) 109 | tokens = [self._token_dict_inv[i] for i in ids] 110 | first = tokens[1:sep] 111 | if sep < stop - 1: 112 | second = tokens[sep + 1:stop - 1] 113 | return first, second 114 | return first 115 | 116 | def _tokenize(self, text): 117 | if not self._cased: 118 | text = unicodedata.normalize('NFD', text) 119 | text = ''.join([ch for ch in text if unicodedata.category(ch) != 'Mn']) 120 | text = text.lower() 121 | spaced = '' 122 | for ch in text: 123 | if self._is_punctuation(ch) or self._is_cjk_character(ch): 124 | spaced += ' ' + ch + ' ' 125 | elif self._is_space(ch): 126 | spaced += ' ' 127 | elif ord(ch) == 0 or ord(ch) == 0xfffd or self._is_control(ch): 128 | continue 129 | else: 130 | spaced += ch 131 | tokens = [] 132 | for word in spaced.strip().split(): 133 | tokens += self._word_piece_tokenize(word) 134 | return tokens 135 | 136 | def _word_piece_tokenize(self, word): 137 | if word in self._token_dict: 138 | return [word] 139 | tokens = [] 140 | start, stop = 0, 0 141 | while start < len(word): 142 | stop = len(word) 143 | while stop > start: 144 | sub = word[start:stop] 145 | if start > 0: 146 | sub = '##' + sub 147 | if sub in self._token_dict: 148 | break 149 | stop -= 1 150 | if start == stop: 151 | stop += 1 152 | tokens.append(sub) 153 | start = stop 154 | return tokens 155 | 156 | @staticmethod 157 | def _is_punctuation(ch): 158 | code = ord(ch) 159 | return 33 <= code <= 47 or \ 160 | 58 <= code <= 64 or \ 161 | 91 <= code <= 96 or \ 162 | 123 <= code <= 126 or \ 163 | unicodedata.category(ch).startswith('P') 164 | 165 | @staticmethod 166 | def _is_cjk_character(ch): 167 | code = ord(ch) 168 | return 0x4E00 <= code <= 0x9FFF or \ 169 | 0x3400 <= code <= 0x4DBF or \ 170 | 0x20000 <= code <= 0x2A6DF or \ 171 | 0x2A700 <= code <= 0x2B73F or \ 172 | 0x2B740 <= code <= 0x2B81F or \ 173 | 0x2B820 <= code <= 0x2CEAF or \ 174 | 0xF900 <= code <= 0xFAFF or \ 175 | 0x2F800 <= code <= 0x2FA1F 176 | 177 | @staticmethod 178 | def _is_space(ch): 179 | return ch == ' ' or ch == '\n' or ch == '\r' or ch == '\t' or \ 180 | unicodedata.category(ch) == 'Zs' 181 | 182 | @staticmethod 183 | def _is_control(ch): 184 | return unicodedata.category(ch) in ('Cc', 'Cf') 185 | 186 | @staticmethod 187 | def rematch(text, tokens, cased=False, unknown_token=TOKEN_UNK): 188 | """Try to find the indices of tokens in the original text. 189 | >>> Tokenizer.rematch("All rights reserved.", ["all", "rights", "re", "##ser", "##ved", "."]) 190 | [(0, 3), (4, 10), (11, 13), (13, 16), (16, 19), (19, 20)] 191 | >>> Tokenizer.rematch("All rights reserved.", ["all", "rights", "re", "##ser", "[UNK]", "."]) 192 | [(0, 3), (4, 10), (11, 13), (13, 16), (16, 19), (19, 20)] 193 | >>> Tokenizer.rematch("All rights reserved.", ["[UNK]", "rights", "[UNK]", "##ser", "[UNK]", "[UNK]"]) 194 | [(0, 3), (4, 10), (11, 13), (13, 16), (16, 19), (19, 20)] 195 | >>> Tokenizer.rematch("All rights reserved.", ["[UNK]", "righs", "[UNK]", "ser", "[UNK]", "[UNK]"]) 196 | [(0, 3), (4, 10), (11, 13), (13, 16), (16, 19), (19, 20)] 197 | >>> Tokenizer.rematch("All rights reserved.", 198 | ... ["[UNK]", "rights", "[UNK]", "[UNK]", "[UNK]", "[UNK]"]) # doctest:+ELLIPSIS 199 | [(0, 3), (4, 10), (11, ... 19), (19, 20)] 200 | >>> Tokenizer.rematch("All rights reserved.", ["all rights", "reserved", "."]) 201 | [(0, 10), (11, 19), (19, 20)] 202 | >>> Tokenizer.rematch("All rights reserved.", ["all rights", "reserved", "."], cased=True) 203 | [(0, 10), (11, 19), (19, 20)] 204 | >>> Tokenizer.rematch("#hash tag ##", ["#", "hash", "tag", "##"]) 205 | [(0, 1), (1, 5), (6, 9), (10, 12)] 206 | >>> Tokenizer.rematch("嘛呢,吃了吗?", ["[UNK]", "呢", ",", "[UNK]", "了", "吗", "?"]) 207 | [(0, 1), (1, 2), (2, 3), (3, 4), (4, 5), (5, 6), (6, 7)] 208 | >>> Tokenizer.rematch(" 吃了吗? ", ["吃", "了", "吗", "?"]) 209 | [(2, 3), (3, 4), (4, 5), (5, 6)] 210 | :param text: Original text. 211 | :param tokens: Decoded list of tokens. 212 | :param cased: Whether it is cased. 213 | :param unknown_token: The representation of unknown token. 214 | :return: A list of tuples represents the start and stop locations in the original text. 215 | """ 216 | decoded, token_offsets = '', [] 217 | for token in tokens: 218 | token_offsets.append([len(decoded), 0]) 219 | if token == unknown_token: 220 | token = '#' 221 | if not cased: 222 | token = token.lower() 223 | if len(token) > 2 and token.startswith('##'): 224 | token = token[2:] 225 | elif len(decoded) > 0: 226 | token = ' ' + token 227 | token_offsets[-1][0] += 1 228 | decoded += token 229 | token_offsets[-1][1] = len(decoded) 230 | 231 | heading = 0 232 | text = text.rstrip() 233 | for i in range(len(text)): 234 | if not Tokenizer._is_space(text[i]): 235 | break 236 | heading += 1 237 | text = text[heading:] 238 | len_text, len_decode = len(text), len(decoded) 239 | costs = [[0] * (len_decode + 1) for _ in range(2)] 240 | paths = [[(-1, -1)] * (len_decode + 1) for _ in range(len_text + 1)] 241 | curr, prev = 0, 1 242 | 243 | for j in range(len_decode + 1): 244 | costs[curr][j] = j 245 | for i in range(1, len_text + 1): 246 | curr, prev = prev, curr 247 | costs[curr][0] = i 248 | ch = text[i - 1] 249 | if not cased: 250 | ch = ch.lower() 251 | for j in range(1, len_decode + 1): 252 | costs[curr][j] = costs[prev][j - 1] 253 | paths[i][j] = (i - 1, j - 1) 254 | if ch != decoded[j - 1]: 255 | costs[curr][j] = costs[prev][j - 1] 256 | paths[i][j] = (i - 1, j - 1) 257 | if costs[prev][j] < costs[curr][j]: 258 | costs[curr][j] = costs[prev][j] 259 | paths[i][j] = (i - 1, j) 260 | if costs[curr][j - 1] < costs[curr][j]: 261 | costs[curr][j] = costs[curr][j - 1] 262 | paths[i][j] = (i, j - 1) 263 | costs[curr][j] += 1 264 | 265 | matches = [0] * (len_decode + 1) 266 | position = (len_text, len_decode) 267 | while position != (-1, -1): 268 | i, j = position 269 | matches[j] = i 270 | position = paths[i][j] 271 | 272 | intervals = [[matches[offset[0]], matches[offset[1]]] for offset in token_offsets] 273 | for i, interval in enumerate(intervals): 274 | token_a, token_b = text[interval[0]:interval[1]], tokens[i] 275 | if len(token_b) > 2 and token_b.startswith('##'): 276 | token_b = token_b[2:] 277 | if not cased: 278 | token_a, token_b = token_a.lower(), token_b.lower() 279 | if token_a == token_b: 280 | continue 281 | if i == 0: 282 | border = 0 283 | else: 284 | border = intervals[i - 1][1] 285 | for j in range(interval[0] - 1, border - 1, -1): 286 | if Tokenizer._is_space(text[j]): 287 | break 288 | interval[0] -= 1 289 | if i + 1 == len(intervals): 290 | border = len_text 291 | else: 292 | border = intervals[i + 1][0] 293 | for j in range(interval[1], border): 294 | if Tokenizer._is_space(text[j]): 295 | break 296 | interval[1] += 1 297 | intervals = [(interval[0] + heading, interval[1] + heading) for interval in intervals] 298 | return intervals 299 | 300 | -------------------------------------------------------------------------------- /xbert/xbert_model.py: -------------------------------------------------------------------------------- 1 | # !/usr/bin/python 2 | # -*- coding: utf-8 -*- 3 | # 4 | # Copyright @group xuyongfu. All Rights Reserved. 5 | # 6 | # @author: yuyangmu 7 | # @date: 2020/05/24 8 | 9 | # the function of this file: implement the main structure of transformer and bert based on tf2 10 | 11 | 12 | from .backend import keras, K 13 | 14 | from .layers.embedding_layer import Embedding 15 | from .layers.bias_add import BiasAdd 16 | from .layers.position_embedding import PositionEmbedding 17 | from .layers.multi_head_attention import MultiHeadAttention 18 | from .layers.layer_normalization import BasicLayerNormalization, ConditionalLayerNormalization 19 | from .layers.feed_forward import FeedForward 20 | from tensorflow.keras.layers import * 21 | from tensorflow.keras.models import Model 22 | import numpy as np 23 | import tensorflow as tf 24 | import json 25 | from .utils import is_sting 26 | 27 | 28 | __all__ = [ 29 | 'get_custom_objects', 'set_custom_objects', 'build_xbert_model', 30 | ] 31 | 32 | 33 | def get_custom_objects() -> dict: 34 | return { 35 | 'Embedding': Embedding, 36 | 'BiasAdd': BiasAdd, 37 | 'MultiHeadAttention': MultiHeadAttention, 38 | 'BasicLayerNormalization': BasicLayerNormalization, 39 | 'ConditionalLayerNormalization': ConditionalLayerNormalization, 40 | 'PositionEmbedding': PositionEmbedding, 41 | 'FeedForward': FeedForward, 42 | } 43 | 44 | 45 | def set_custom_objects() -> None: 46 | for key, val in get_custom_objects().items(): 47 | keras.utils.get_custom_objects()[key] = val 48 | 49 | 50 | class TransformerBlock(object): 51 | """定义xbert模型基类TransformerBlock 52 | """ 53 | def __init__( 54 | self, 55 | vocab_size, # 词表大小 56 | hidden_size, # 编码维度 57 | num_hidden_layers, # Transformer总层数 58 | num_attention_heads, # Attention的头数 59 | intermediate_size, # FeedForward的隐层维度 60 | hidden_act, # FeedForward隐层的激活函数 61 | dropout_rate=None, # Dropout比例 62 | embedding_size=None, # 是否指定embedding_size 63 | attention_key_size=None, # Attention中Q,K的head_size 64 | sequence_length=None, # 是否固定序列长度 65 | keep_tokens=None, # 要保留的词ID列表 66 | layers=None, # 外部传入的Keras层 67 | name=None, # 模型名称 68 | **kwargs 69 | ): 70 | if keep_tokens is None: 71 | self.vocab_size = vocab_size 72 | else: 73 | self.vocab_size = len(keep_tokens) 74 | self.hidden_size = hidden_size 75 | self.num_hidden_layers = num_hidden_layers 76 | self.num_attention_heads = num_attention_heads 77 | self.attention_head_size = hidden_size // num_attention_heads 78 | self.attention_key_size = attention_key_size or self.attention_head_size 79 | self.intermediate_size = intermediate_size 80 | self.dropout_rate = dropout_rate or 0 81 | self.hidden_act = hidden_act 82 | self.embedding_size = embedding_size or hidden_size 83 | self.sequence_length = sequence_length 84 | self.keep_tokens = keep_tokens 85 | self.attention_mask = None 86 | self.position_bias = None 87 | self.layers = {} if layers is None else layers 88 | self.name = name 89 | self.built = False 90 | 91 | def build( 92 | self, 93 | layer_norm_cond=None, 94 | layer_norm_cond_hidden_size=None, 95 | layer_norm_cond_hidden_act=None, 96 | additional_input_layers=None, 97 | **kwargs 98 | ): 99 | """用于完整构建Transformer模型 100 | layer_norm_*系列参数为实现Conditional Layer Normalization时使用, 101 | 用来实现以“固定长度向量”为条件的条件Bert。 102 | """ 103 | if self.built: 104 | return None 105 | # Input 106 | inputs = self.get_inputs() 107 | self.set_inputs(inputs, additional_input_layers) 108 | # Other 109 | self.layer_norm_conds = [ 110 | layer_norm_cond, 111 | layer_norm_cond_hidden_size, 112 | layer_norm_cond_hidden_act or 'linear', 113 | ] 114 | # Call 115 | outputs = self.call(inputs) 116 | self.set_outputs(outputs) 117 | # Model 118 | self.model = Model(self.inputs, self.outputs, name=self.name) 119 | self.built = True 120 | 121 | def call(self, inputs): 122 | """模型的主要执行流程 123 | """ 124 | # Embedding 125 | outputs = self.apply_embeddings(inputs) 126 | # Main 127 | for i in range(self.num_hidden_layers): 128 | outputs = self.apply_main_layers(outputs, i) 129 | # Final 130 | outputs = self.apply_final_layers(outputs) 131 | return outputs 132 | 133 | def apply(self, inputs, layer=None, arguments=None, **kwargs): 134 | """ 135 | 通过apply调用层会自动重用同名层 136 | :param inputs: 上一层的输出; 137 | :param layer: 要调用的层类名; 138 | :param arguments: 传递给layer.call的参数; 139 | :param kwargs: 传递给层初始化的参数。 140 | """ 141 | if layer is Dropout and self.dropout_rate == 0: 142 | return inputs 143 | 144 | arguments = arguments or {} 145 | name = kwargs.get('name') 146 | if name not in self.layers: 147 | layer = layer(**kwargs) 148 | name = layer.name 149 | self.layers[name] = layer 150 | 151 | return self.layers[name](inputs, **arguments) 152 | 153 | def get_inputs(self): 154 | raise NotImplementedError 155 | 156 | def apply_embeddings(self, inputs): 157 | raise NotImplementedError 158 | 159 | def apply_main_layers(self, inputs, index): 160 | raise NotImplementedError 161 | 162 | def apply_final_layers(self, inputs): 163 | raise NotImplementedError 164 | 165 | def compute_attention_mask(self, inputs=None): 166 | """定义每一层的Attention Mask 167 | """ 168 | return self.attention_mask 169 | 170 | def compute_position_bias(self, inputs=None): 171 | """定义每一层的Position Bias(一般用在定义相对位置编码层) 172 | """ 173 | return self.position_bias 174 | 175 | def set_inputs(self, inputs, additional_input_layers=None): 176 | """input和inputs属性设置 177 | """ 178 | if inputs is None: 179 | inputs = [] 180 | elif not isinstance(inputs, list): 181 | inputs = [inputs] 182 | 183 | inputs = inputs[:] 184 | if additional_input_layers is not None: 185 | if not isinstance(additional_input_layers, list): 186 | additional_input_layers = [additional_input_layers] 187 | inputs.extend(additional_input_layers) 188 | 189 | self.inputs = inputs 190 | if len(inputs) > 1: 191 | self.input = inputs 192 | else: 193 | self.input = inputs[0] 194 | 195 | def set_outputs(self, outputs): 196 | """output和oututs属性设置 197 | """ 198 | if not isinstance(outputs, list): 199 | outputs = [outputs] 200 | 201 | outputs = outputs[:] 202 | self.outputs = outputs 203 | if len(outputs) > 1: 204 | self.output = outputs 205 | else: 206 | self.output = outputs[0] 207 | 208 | @property 209 | def initializer(self): 210 | """默认使用截断正态分布初始化 211 | """ 212 | return keras.initializers.TruncatedNormal(stddev=0.02) 213 | 214 | def simplify(self, inputs): 215 | """将list中的None过滤掉 216 | """ 217 | inputs = [i for i in inputs if i is not None] 218 | if len(inputs) == 1: 219 | inputs = inputs[0] 220 | 221 | return inputs 222 | 223 | def load_variable(self, checkpoint, name): 224 | """加载pre_model的checkpoint中单个变量 225 | """ 226 | return tf.train.load_variable(checkpoint, name) 227 | 228 | def create_variable(self, name, value): 229 | """用tensorflow中创建可用变量 230 | """ 231 | return tf.Variable(value, name=name) 232 | 233 | def variable_mapping(self): 234 | """构建tf.keras层与checkpoint的变量名之间的映射表 235 | """ 236 | return {} 237 | 238 | def load_weights_from_checkpoint(self, checkpoint, mapping=None): 239 | """根据mapping从checkpoint加载权重 240 | """ 241 | mapping = mapping or self.variable_mapping() 242 | mapping = {k: v for k, v in mapping.items() if k in self.layers} 243 | 244 | weight_value_pairs = [] 245 | for layer, variables in mapping.items(): 246 | layer = self.layers[layer] 247 | weights = layer.trainable_weights 248 | values = [self.load_variable(checkpoint, v) for v in variables] 249 | 250 | if isinstance(layer, MultiHeadAttention): 251 | """ 252 | 如果key_size不等于head_size,则可以通过 253 | 正交矩阵将相应的权重投影到合适的shape。 254 | """ 255 | count = 2 256 | if layer.use_bias: 257 | count += 2 258 | heads = self.num_attention_heads 259 | head_size = self.attention_head_size 260 | key_size = self.attention_key_size 261 | W = np.linalg.qr(np.random.randn(key_size, head_size))[0].T 262 | if layer.attention_scale: 263 | W = W * key_size**0.25 / head_size**0.25 264 | for i in range(count): 265 | w, v = weights[i], values[i] 266 | w_shape, v_shape = K.int_shape(w), v.shape 267 | if w_shape[-1] != v_shape[-1]: 268 | pre_shape = w_shape[:-1] 269 | v = v.reshape(pre_shape + (heads, head_size)) 270 | v = np.dot(v, W) 271 | v = v.reshape(pre_shape + (heads * key_size,)) 272 | values[i] = v 273 | 274 | weight_value_pairs.extend(zip(weights, values)) 275 | 276 | K.batch_set_value(weight_value_pairs) 277 | 278 | 279 | class BERT(TransformerBlock): 280 | """通过transformer block构建BERT模型 281 | """ 282 | def __init__( 283 | self, 284 | max_position, # 序列最大长度 285 | with_pool=False, # 是否包含Pool部分 286 | with_nsp=False, # 是否包含NSP部分 287 | with_mlm=False, # 是否包含MLM部分 288 | custom_position_ids=False, # 是否自行传入位置id 289 | **kwargs # 其余参数 290 | ): 291 | super(BERT, self).__init__(**kwargs) 292 | self.max_position = max_position 293 | self.with_pool = with_pool 294 | self.with_nsp = with_nsp 295 | self.with_mlm = with_mlm 296 | self.custom_position_ids = custom_position_ids 297 | 298 | def get_inputs(self): 299 | """ 300 | token_ids和segment_ids为主要输入, 301 | (也允许自行传入位置id,以实现一些特殊需求) 302 | """ 303 | x_in = Input(shape=(self.sequence_length,), name='Input_Token') 304 | s_in = Input(shape=(self.sequence_length,), name='Input_Segment') 305 | 306 | if self.custom_position_ids: 307 | p_in = Input(shape=(self.sequence_length,), name='Input_Position') 308 | return [x_in, s_in, p_in] 309 | else: 310 | return [x_in, s_in] 311 | 312 | def apply_embeddings(self, inputs): 313 | """BERT的embedding是token、position、segment三者embedding之和 314 | """ 315 | x, s = inputs[:2] 316 | z = self.layer_norm_conds[0] 317 | if self.custom_position_ids: 318 | p = inputs[2] 319 | else: 320 | p = None 321 | 322 | x = self.apply( 323 | inputs=x, 324 | layer=Embedding, 325 | input_dim=self.vocab_size, 326 | output_dim=self.embedding_size, 327 | embeddings_initializer=self.initializer, 328 | mask_zero=True, 329 | name='Embedding-Token' 330 | ) 331 | s = self.apply( 332 | inputs=s, 333 | layer=Embedding, 334 | input_dim=2, 335 | output_dim=self.embedding_size, 336 | embeddings_initializer=self.initializer, 337 | name='Embedding-Segment' 338 | ) 339 | x = self.apply(inputs=[x, s], layer=Add, name='Embedding-Token-Segment') 340 | x = self.apply( 341 | inputs=self.simplify([x, p]), 342 | layer=PositionEmbedding, 343 | input_dim=self.max_position, 344 | output_dim=self.embedding_size, 345 | merge_mode='add', 346 | embeddings_initializer=self.initializer, 347 | custom_position_ids=self.custom_position_ids, 348 | name='Embedding-Position' 349 | ) 350 | x = self.apply( 351 | inputs=self.simplify([x, z]), 352 | layer=ConditionalLayerNormalization, 353 | conditional=(z is not None), 354 | hidden_units=self.layer_norm_conds[1], 355 | hidden_activation=self.layer_norm_conds[2], 356 | hidden_initializer=self.initializer, 357 | name='Embedding-Norm' 358 | ) 359 | x = self.apply( 360 | inputs=x, 361 | layer=Dropout, 362 | rate=self.dropout_rate, 363 | name='Embedding-Dropout' 364 | ) 365 | if self.embedding_size != self.hidden_size: 366 | x = self.apply( 367 | inputs=x, 368 | layer=Dense, 369 | units=self.hidden_size, 370 | kernel_initializer=self.initializer, 371 | name='Embedding-Mapping' 372 | ) 373 | 374 | return x 375 | 376 | def apply_main_layers(self, inputs, index): 377 | """ 378 | BERT的主体是基于Self-Attention的模块 379 | 顺序:Att --> Add --> LN --> FFN --> Add --> LN 380 | """ 381 | x = inputs 382 | z = self.layer_norm_conds[0] 383 | 384 | attention_name = 'Transformer-%d-MultiHeadSelfAttention' % index 385 | feed_forward_name = 'Transformer-%d-FeedForward' % index 386 | attention_mask = self.compute_attention_mask(index) 387 | 388 | # Self Attention 389 | xi, x, arguments = x, [x, x, x], {'a_mask': None} 390 | if attention_mask is not None: 391 | arguments['a_mask'] = True 392 | x.append(attention_mask) 393 | 394 | x = self.apply( 395 | inputs=x, 396 | layer=MultiHeadAttention, 397 | arguments=arguments, 398 | num_heads=self.num_attention_heads, 399 | head_size=self.attention_head_size, 400 | key_size=self.attention_key_size, 401 | kernel_initializer=self.initializer, 402 | name=attention_name 403 | ) 404 | x = self.apply( 405 | inputs=x, 406 | layer=Dropout, 407 | rate=self.dropout_rate, 408 | name='%s-Dropout' % attention_name 409 | ) 410 | x = self.apply( 411 | inputs=[xi, x], layer=Add, name='%s-Add' % attention_name 412 | ) 413 | x = self.apply( 414 | inputs=self.simplify([x, z]), 415 | layer=ConditionalLayerNormalization, 416 | conditional=(z is not None), 417 | hidden_units=self.layer_norm_conds[1], 418 | hidden_activation=self.layer_norm_conds[2], 419 | hidden_initializer=self.initializer, 420 | name='%s-Norm' % attention_name 421 | ) 422 | 423 | # Feed Forward 424 | xi = x 425 | x = self.apply( 426 | inputs=x, 427 | layer=FeedForward, 428 | units=self.intermediate_size, 429 | activation=self.hidden_act, 430 | kernel_initializer=self.initializer, 431 | name=feed_forward_name 432 | ) 433 | x = self.apply( 434 | inputs=x, 435 | layer=Dropout, 436 | rate=self.dropout_rate, 437 | name='%s-Dropout' % feed_forward_name 438 | ) 439 | x = self.apply( 440 | inputs=[xi, x], layer=Add, name='%s-Add' % feed_forward_name 441 | ) 442 | x = self.apply( 443 | inputs=self.simplify([x, z]), 444 | layer=ConditionalLayerNormalization, 445 | conditional=(z is not None), 446 | hidden_units=self.layer_norm_conds[1], 447 | hidden_activation=self.layer_norm_conds[2], 448 | hidden_initializer=self.initializer, 449 | name='%s-Norm' % feed_forward_name 450 | ) 451 | 452 | return x 453 | 454 | def apply_final_layers(self, inputs): 455 | """由剩余参数决定输出的形式 456 | """ 457 | x = inputs 458 | z = self.layer_norm_conds[0] 459 | outputs = [x] 460 | 461 | if self.with_pool or self.with_nsp: 462 | # Pooler部分——提取CLS向量 463 | x = outputs[0] 464 | x = self.apply( 465 | inputs=x, 466 | layer=Lambda, 467 | function=lambda x: x[:, 0], 468 | name='Pooler' 469 | ) 470 | pool_activation = 'tanh' if self.with_pool is True else self.with_pool 471 | x = self.apply( 472 | inputs=x, 473 | layer=Dense, 474 | units=self.hidden_size, 475 | activation=pool_activation, 476 | kernel_initializer=self.initializer, 477 | name='Pooler-Dense' 478 | ) 479 | if self.with_nsp: 480 | # Next Sentence Prediction部分 481 | x = self.apply( 482 | inputs=x, 483 | layer=Dense, 484 | units=2, 485 | activation='softmax', 486 | kernel_initializer=self.initializer, 487 | name='NSP-Proba' 488 | ) 489 | outputs.append(x) 490 | 491 | if self.with_mlm: 492 | # Masked Language Model部分 493 | x = outputs[0] 494 | x = self.apply( 495 | inputs=x, 496 | layer=Dense, 497 | units=self.embedding_size, 498 | activation=self.hidden_act, 499 | kernel_initializer=self.initializer, 500 | name='MLM-Dense' 501 | ) 502 | x = self.apply( 503 | inputs=self.simplify([x, z]), 504 | layer=ConditionalLayerNormalization, 505 | conditional=(z is not None), 506 | hidden_units=self.layer_norm_conds[1], 507 | hidden_activation=self.layer_norm_conds[2], 508 | hidden_initializer=self.initializer, 509 | name='MLM-Norm' 510 | ) 511 | x = self.apply( 512 | inputs=x, 513 | layer=Embedding, 514 | arguments={'mode': 'dense'}, 515 | name='Embedding-Token' 516 | ) 517 | x = self.apply(inputs=x, layer=BiasAdd, name='MLM-Bias') 518 | mlm_activation = 'softmax' if self.with_mlm is True else self.with_mlm 519 | x = self.apply( 520 | inputs=x, 521 | layer=Activation, 522 | activation=mlm_activation, 523 | name='MLM-Activation' 524 | ) 525 | outputs.append(x) 526 | 527 | if len(outputs) == 1: 528 | outputs = outputs[0] 529 | elif len(outputs) == 2: 530 | outputs = outputs[1] 531 | else: 532 | outputs = outputs[1:] 533 | 534 | return outputs 535 | 536 | def load_variable(self, checkpoint, name): 537 | """加载pre_model的checkpoint中单个变量 538 | """ 539 | variable = super(BERT, self).load_variable(checkpoint, name) 540 | if name in [ 541 | 'bert/embeddings/word_embeddings', 542 | 'cls/predictions/output_bias', 543 | ]: 544 | if self.keep_tokens is None: 545 | return variable 546 | else: 547 | return variable[self.keep_tokens] 548 | elif name == 'cls/seq_relationship/output_weights': 549 | return variable.T 550 | else: 551 | return variable 552 | 553 | def create_variable(self, name, value): 554 | """用tensorflow中创建可用变量——根据输出格式定义 555 | """ 556 | if name == 'cls/seq_relationship/output_weights': 557 | value = value.T 558 | return super(BERT, self).create_variable(name, value) 559 | 560 | def variable_mapping(self): 561 | """对官方bert的checkpoint中权重按格式进行映射 562 | """ 563 | mapping = { 564 | 'Embedding-Token': ['bert/embeddings/word_embeddings'], 565 | 'Embedding-Segment': ['bert/embeddings/token_type_embeddings'], 566 | 'Embedding-Position': ['bert/embeddings/position_embeddings'], 567 | 'Embedding-Norm': [ 568 | 'bert/embeddings/LayerNorm/beta', 569 | 'bert/embeddings/LayerNorm/gamma', 570 | ], 571 | 'Embedding-Mapping': [ 572 | 'bert/encoder/embedding_hidden_mapping_in/kernel', 573 | 'bert/encoder/embedding_hidden_mapping_in/bias', 574 | ], 575 | 'Pooler-Dense': [ 576 | 'bert/pooler/dense/kernel', 577 | 'bert/pooler/dense/bias', 578 | ], 579 | 'NSP-Proba': [ 580 | 'cls/seq_relationship/output_weights', 581 | 'cls/seq_relationship/output_bias', 582 | ], 583 | 'MLM-Dense': [ 584 | 'cls/predictions/transform/dense/kernel', 585 | 'cls/predictions/transform/dense/bias', 586 | ], 587 | 'MLM-Norm': [ 588 | 'cls/predictions/transform/LayerNorm/beta', 589 | 'cls/predictions/transform/LayerNorm/gamma', 590 | ], 591 | 'MLM-Bias': ['cls/predictions/output_bias'], 592 | } 593 | 594 | for i in range(self.num_hidden_layers): 595 | prefix = 'bert/encoder/layer_%d/' % i 596 | mapping.update({ 597 | 'Transformer-%d-MultiHeadSelfAttention' % i: [ 598 | prefix + 'attention/self/query/kernel', 599 | prefix + 'attention/self/query/bias', 600 | prefix + 'attention/self/key/kernel', 601 | prefix + 'attention/self/key/bias', 602 | prefix + 'attention/self/value/kernel', 603 | prefix + 'attention/self/value/bias', 604 | prefix + 'attention/output/dense/kernel', 605 | prefix + 'attention/output/dense/bias', 606 | ], 607 | 'Transformer-%d-MultiHeadSelfAttention-Norm' % i: [ 608 | prefix + 'attention/output/LayerNorm/beta', 609 | prefix + 'attention/output/LayerNorm/gamma', 610 | ], 611 | 'Transformer-%d-FeedForward' % i: [ 612 | prefix + 'intermediate/dense/kernel', 613 | prefix + 'intermediate/dense/bias', 614 | prefix + 'output/dense/kernel', 615 | prefix + 'output/dense/bias', 616 | ], 617 | 'Transformer-%d-FeedForward-Norm' % i: [ 618 | prefix + 'output/LayerNorm/beta', 619 | prefix + 'output/LayerNorm/gamma', 620 | ], 621 | }) 622 | 623 | return mapping 624 | 625 | 626 | # 调用此函数直接构造xbert模型 627 | def build_xbert_model( 628 | config_path=None, 629 | checkpoint_path=None, 630 | model='bert', 631 | application='encoder', 632 | return_keras_model=True, 633 | **kwargs 634 | ): 635 | """通过load bert's pre_trained checkpoint weights 和配置文件来直接构造bert模型 636 | :param config_path: # bert参数文件路径 637 | :param checkpoint_path: # bert预训练模型路径 638 | :param model: # 构建模型的类型名字,默认加载google官方bert 639 | :param application: # 默认使用encoder功能 640 | :param return_keras_model: # 默认返回tf.keras模型 641 | :param kwargs: 642 | """ 643 | configs = {} 644 | if config_path is not None: 645 | configs.update(json.load(open(config_path))) 646 | configs.update(kwargs) 647 | if 'max_position' not in configs: 648 | configs['max_position'] = configs.get('max_position_embeddings') 649 | if 'dropout_rate' not in configs: 650 | configs['dropout_rate'] = configs.get('hidden_dropout_prob') 651 | 652 | application = application.lower() 653 | 654 | models = { 655 | 'bert': BERT, 656 | } 657 | 658 | if is_sting(model): 659 | model = model.lower() 660 | MODEL = models[model] 661 | else: 662 | MODEL = model 663 | 664 | transformer_block = MODEL(**configs) 665 | transformer_block.build(**configs) 666 | 667 | if checkpoint_path is not None: 668 | transformer_block.load_weights_from_checkpoint(checkpoint_path) 669 | 670 | if return_keras_model: 671 | return transformer_block.model 672 | else: 673 | return transformer_block 674 | 675 | 676 | 677 | 678 | 679 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | --------------------------------------------------------------------------------