├── .DS_Store
├── LICENSE
├── README.md
├── dataset
├── BraTSDataSet.py
└── PancreasDataSet.py
├── models
├── ConResNet.py
├── __init__.py
└── conresnet.png
├── run.sh
├── test.py
├── train_conresnet.py
└── utils
├── engine.py
├── logger.py
├── loss.py
└── pyt_utils.py
/.DS_Store:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jianpengz/ConResNet/cf32e955401a70340ed16809966711f1e5accdc8/.DS_Store
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ConResNet
2 |
3 |
4 |
5 |
6 |
7 | This repo holds the pytorch implementation of ConResNet:
8 |
9 | **Paper: Inter-slice Context Residual Learning for 3D Medical Image Segmentation.**
10 | (https://ieeexplore.ieee.org/abstract/document/9245569)
11 | (https://arxiv.org/pdf/2011.14155.pdf)
12 |
13 | ## Requirements
14 | Python 3.6
15 | Torch==1.4.0
16 | Apex==0.1
17 |
18 | ## Usage
19 |
20 | ### 0. Installation
21 | * Clone this repo
22 | ```
23 | git clone https://github.com/jianpengz/ConResNet.git
24 | cd ConResNet
25 | ```
26 | ### 1. Data Preparation
27 | * Put the data and image_id_list in `dataset/`.
28 |
29 | ### 2. Training
30 | * Run `run.sh` to start the training.
31 |
32 | ### 3. Evaluation
33 | * Run `python test.py` to start the evaluation.
34 |
35 | ### 7. Citation
36 | If this code is helpful for your study, please cite:
37 |
38 | ```
39 | @article{zhang2020conresnet,
40 | title={Inter-slice Context Residual Learning for 3D Medical Image Segmentation},
41 | author={Zhang, Jianpeng and Xie, Yutong and Wang, Yan and Xia, Yong},
42 | journal={IEEE Transactions on Medical Imaging},
43 | volume={40},
44 | number={2},
45 | pages={661-672},
46 | year={2021},
47 | publisher={IEEE}
48 | }
49 | ```
50 |
51 | ### Contact
52 | Jianpeng Zhang (james.zhang@mail.nwpu.edu.cn)
53 |
--------------------------------------------------------------------------------
/dataset/BraTSDataSet.py:
--------------------------------------------------------------------------------
1 | import os.path as osp
2 | import numpy as np
3 | import random
4 | from torch.utils import data
5 | import nibabel as nib
6 | from skimage.transform import resize
7 |
8 |
9 | class BraTSDataSet(data.Dataset):
10 | def __init__(self, root, list_path, max_iters=None, crop_size=(128, 160, 200), scale=True, mirror=True, ignore_label=255):
11 | self.root = root
12 | self.list_path = list_path
13 | self.crop_d, self.crop_h, self.crop_w = crop_size
14 | self.scale = scale
15 | self.ignore_label = ignore_label
16 | self.is_mirror = mirror
17 | self.img_ids = [i_id.strip().split() for i_id in open(self.root + self.list_path)]
18 |
19 | if not max_iters==None:
20 | self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids)))
21 | self.files = []
22 | for item in self.img_ids:
23 | filepath = item[0] +'/'+ osp.splitext(osp.basename(item[0]))[0]
24 | flair_path = filepath + '_flair.nii.gz'
25 | t1_path = filepath + '_t1.nii.gz'
26 | t1ce_path = filepath + '_t1ce.nii.gz'
27 | t2_path = filepath + '_t2.nii.gz'
28 | label_path = filepath + '_seg.nii.gz'
29 | name = osp.splitext(osp.basename(filepath))[0]
30 | flair_file = osp.join(self.root, flair_path)
31 | t1_file = osp.join(self.root, t1_path)
32 | t1ce_file = osp.join(self.root, t1ce_path)
33 | t2_file = osp.join(self.root, t2_path)
34 | label_file = osp.join(self.root, label_path)
35 | self.files.append({
36 | "flair": flair_file,
37 | "t1": t1_file,
38 | "t1ce": t1ce_file,
39 | "t2": t2_file,
40 | "label": label_file,
41 | "name": name
42 | })
43 | print('{} images are loaded!'.format(len(self.img_ids)))
44 |
45 | def __len__(self):
46 | return len(self.files)
47 |
48 | def id2trainId(self, label):
49 | shape = label.shape
50 | results_map = np.zeros((3, shape[0], shape[1], shape[2]))
51 |
52 | NCR_NET = (label == 1)
53 | ET = (label == 4)
54 | WT = (label >= 1)
55 | TC = np.logical_or(NCR_NET, ET)
56 |
57 | results_map[0,:,:,:] = np.where(ET, 1, 0)
58 | results_map[1, :, :, :] = np.where(WT, 1, 0)
59 | results_map[2, :, :, :] = np.where(TC, 1, 0)
60 | return results_map
61 |
62 | def truncate(self, MRI):
63 | Hist, _ = np.histogram(MRI, bins=int(MRI.max()))
64 | idexs = np.argwhere(Hist >= 50)
65 | idex_max = np.float32(idexs[-1, 0])
66 | MRI[np.where(MRI >= idex_max)] = idex_max
67 | sig = MRI[0, 0, 0]
68 | MRI = np.where(MRI != sig, MRI - np.mean(MRI[MRI != sig]), 0 * MRI)
69 | MRI = np.where(MRI != sig, MRI / np.std(MRI[MRI != sig] + 1e-7), 0 * MRI)
70 | return MRI
71 |
72 | def __getitem__(self, index):
73 | datafiles = self.files[index]
74 | flairNII = nib.load(datafiles["flair"])
75 | t1NII = nib.load(datafiles["t1"])
76 | t1ceNII = nib.load(datafiles["t1ce"])
77 | t2NII = nib.load(datafiles["t2"])
78 | labelNII = nib.load(datafiles["label"])
79 | flair = self.truncate(flairNII.get_data())
80 | t1 = self.truncate(t1NII.get_data())
81 | t1ce = self.truncate(t1ceNII.get_data())
82 | t2 = self.truncate(t2NII.get_data())
83 | image = np.array([flair, t1, t1ce, t2]) # 4x240x240x150
84 | label = labelNII.get_data()
85 | image = image.astype(np.float32)
86 | label = label.astype(np.float32)
87 |
88 | if self.scale:
89 | scaler = np.random.uniform(0.9, 1.1)
90 | else:
91 | scaler = 1
92 | scale_d = int(self.crop_d * scaler)
93 | scale_h = int(self.crop_h * scaler)
94 | scale_w = int(self.crop_w * scaler)
95 |
96 | img_h, img_w, img_d = label.shape
97 | d_off = random.randint(0, img_d - scale_d)
98 | h_off = random.randint(15, img_h-15 - scale_h)
99 | w_off = random.randint(10, img_w-10 - scale_w)
100 |
101 | image = image[:, h_off: h_off + scale_h, w_off: w_off + scale_w, d_off: d_off + scale_d]
102 | label = label[h_off: h_off + scale_h, w_off: w_off + scale_w, d_off: d_off + scale_d]
103 |
104 | label = self.id2trainId(label)
105 |
106 | image = image.transpose((0, 3, 1, 2)) # Channel x Depth x H x W
107 | label = label.transpose((0, 3, 1, 2)) # Depth x H x W
108 |
109 | if self.is_mirror:
110 | randi = np.random.rand(1)
111 | if randi <= 0.3:
112 | pass
113 | elif randi <= 0.4:
114 | image = image[:, :, :, ::-1]
115 | label = label[:, :, :, ::-1]
116 | elif randi <= 0.5:
117 | image = image[:, :, ::-1, :]
118 | label = label[:, :, ::-1, :]
119 | elif randi <= 0.6:
120 | image = image[:, ::-1, :, :]
121 | label = label[:, ::-1, :, :]
122 | elif randi <= 0.7:
123 | image = image[:, :, ::-1, ::-1]
124 | label = label[:, :, ::-1, ::-1]
125 | elif randi <= 0.8:
126 | image = image[:, ::-1, :, ::-1]
127 | label = label[:, ::-1, :, ::-1]
128 | elif randi <= 0.9:
129 | image = image[:, ::-1, ::-1, :]
130 | label = label[:, ::-1, ::-1, :]
131 | else:
132 | image = image[:, ::-1, ::-1, ::-1]
133 | label = label[:, ::-1, ::-1, ::-1]
134 |
135 | if self.scale:
136 | image = resize(image, (4, self.crop_d, self.crop_h, self.crop_w), order=1, mode='constant', cval=0, clip=True, preserve_range=True)
137 | label = resize(label, (3, self.crop_d, self.crop_h, self.crop_w), order=0, mode='edge', cval=0, clip=True, preserve_range=True)
138 | image = image.astype(np.float32)
139 | label = label.astype(np.float32)
140 |
141 | # image -> res
142 | image_copy = np.zeros((4, self.crop_d, self.crop_h, self.crop_w)).astype(np.float32)
143 | image_copy[:, 1:, :, :] = image[:, 0:self.crop_d - 1, :, :]
144 | image_res = image - image_copy
145 | image_res[:, 0, :, :] = 0
146 | image_res = np.abs(image_res)
147 |
148 | # label -> res
149 | label_copy = np.zeros((3, self.crop_d, self.crop_h, self.crop_w)).astype(np.float32)
150 | label_copy[:, 1:, :, :] = label[:, 0:self.crop_d - 1, :, :]
151 | label_res = label - label_copy
152 | label_res[np.where(label_res == 0)] = 0
153 | label_res[np.where(label_res != 0)] = 1
154 |
155 | return image.copy(), image_res.copy(), label.copy(), label_res.copy()
156 |
157 | class BraTSValDataSet(data.Dataset):
158 | def __init__(self, root, list_path):
159 | self.root = root
160 | self.list_path = list_path
161 | self.img_ids = [i_id.strip().split() for i_id in open(self.root + self.list_path)]
162 | self.files = []
163 | for item in self.img_ids:
164 | filepath = item[0] +'/'+ osp.splitext(osp.basename(item[0]))[0]
165 | flair_path = filepath + '_flair.nii.gz'
166 | t1_path = filepath + '_t1.nii.gz'
167 | t1ce_path = filepath + '_t1ce.nii.gz'
168 | t2_path = filepath + '_t2.nii.gz'
169 | label_path = filepath + '_seg.nii.gz'
170 | name = osp.splitext(osp.basename(filepath))[0]
171 | flair_file = osp.join(self.root, flair_path)
172 | t1_file = osp.join(self.root, t1_path)
173 | t1ce_file = osp.join(self.root, t1ce_path)
174 | t2_file = osp.join(self.root, t2_path)
175 | label_file = osp.join(self.root, label_path)
176 | self.files.append({
177 | "flair": flair_file,
178 | "t1": t1_file,
179 | "t1ce": t1ce_file,
180 | "t2": t2_file,
181 | "label": label_file,
182 | "name": name
183 | })
184 | print('{} images are loaded!'.format(len(self.img_ids)))
185 |
186 | def __len__(self):
187 | return len(self.files)
188 |
189 | def id2trainId(self, label):
190 | shape = label.shape
191 | results_map = np.zeros((3, shape[0], shape[1], shape[2]))
192 |
193 | NCR_NET = (label == 1)
194 | ET = (label == 4)
195 | WT = (label >= 1)
196 | TC = np.logical_or(NCR_NET, ET)
197 |
198 | results_map[0, :, :, :] = np.where(ET, 1, 0)
199 | results_map[1, :, :, :] = np.where(WT, 1, 0)
200 | results_map[2, :, :, :] = np.where(TC, 1, 0)
201 | return results_map
202 |
203 |
204 | def truncate(self, MRI):
205 | Hist, _ = np.histogram(MRI, bins=int(MRI.max()))
206 | idexs = np.argwhere(Hist >= 50)
207 | idex_max = np.float32(idexs[-1, 0])
208 | MRI[np.where(MRI >= idex_max)] = idex_max
209 | sig = MRI[0, 0, 0]
210 | MRI = np.where(MRI != sig, MRI - np.mean(MRI[MRI != sig]), 0 * MRI)
211 | MRI = np.where(MRI != sig, MRI / np.std(MRI[MRI != sig] + 1e-7), 0 * MRI)
212 | return MRI
213 |
214 | def __getitem__(self, index):
215 | datafiles = self.files[index]
216 |
217 | flairNII = nib.load(datafiles["flair"])
218 | t1NII = nib.load(datafiles["t1"])
219 | t1ceNII = nib.load(datafiles["t1ce"])
220 | t2NII = nib.load(datafiles["t2"])
221 | labelNII = nib.load(datafiles["label"])
222 |
223 | flair = self.truncate(flairNII.get_data())
224 | t1 = self.truncate(t1NII.get_data())
225 | t1ce = self.truncate(t1ceNII.get_data())
226 | t2 = self.truncate(t2NII.get_data())
227 | image = np.array([flair, t1, t1ce, t2]) # 4x240x240x150
228 | label = labelNII.get_data()
229 | name = datafiles["name"]
230 |
231 | label = self.id2trainId(label)
232 |
233 | image = image.transpose((0, 3, 1, 2)) # Channel x Depth x H x W
234 | label = label.transpose((0, 3, 1, 2)) # Depth x H x W
235 | image = image.astype(np.float32)
236 | label = label.astype(np.float32)
237 |
238 | size = image.shape[1:]
239 | affine = labelNII.affine
240 |
241 | # image -> res
242 | cha, dep, hei, wei = image.shape
243 | image_copy = np.zeros((cha, dep, hei, wei)).astype(np.float32)
244 | image_copy[:, 1:, :, :] = image[:, 0:dep - 1, :, :]
245 | image_res = image - image_copy
246 | image_res[:, 0, :, :] = 0
247 | image_res = np.abs(image_res)
248 |
249 | return image.copy(), image_res.copy(), label.copy(), np.array(size), name, affine
250 |
--------------------------------------------------------------------------------
/dataset/PancreasDataSet.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | import torch
4 | from torch.utils import data
5 | from skimage.transform import resize
6 |
7 | class PancreasDataSet(data.Dataset):
8 | def __init__(self, list_path, max_iters=None, crop_size=(64, 120, 120), mean=(128, 128, 128), scale=True, mirror=True, ignore_label=255):
9 | self.list_path = list_path
10 | self.crop_d, self.crop_h, self.crop_w = crop_size
11 | self.scale = scale
12 | self.ignore_label = ignore_label
13 | self.mean = mean
14 | self.is_mirror = mirror
15 | self.img_ids = [i_id.strip().split() for i_id in open(list_path)]
16 | if not max_iters==None:
17 | self.img_ids = self.img_ids * int(np.ceil(float(max_iters) / len(self.img_ids)))
18 | self.files = []
19 | for item in self.img_ids:
20 | filepath = item[0][0:-4] + 'images' + '/' + item[0][-4:]
21 | label_path = item[0][0:-4] + 'labels' + '/' + item[0][-4:]
22 | name = item[0][-4:]
23 |
24 | self.files.append({
25 | "img": filepath,
26 | "label": label_path,
27 | "name": name
28 | })
29 | print('{} images are loaded!'.format(len(self.img_ids)))
30 |
31 | def __len__(self):
32 | return len(self.files)
33 |
34 | def id2trainId(self, label):
35 | shape = label.shape
36 | results_map = np.zeros((2, shape[0], shape[1], shape[2]))
37 |
38 | pancreas = (label==1)
39 | background = np.logical_not(pancreas)
40 |
41 | results_map[0,:,:,:] = np.where(background, 1, 0)
42 | results_map[1, :, :, :] = np.where(pancreas, 1, 0)
43 | return results_map
44 |
45 | def pre_precessing(self, image):
46 | image[image <= -100] = -100
47 | image[image >= 240] = 240
48 | image += 100
49 | image = image / 340
50 | return image
51 |
52 | def __getitem__(self, index):
53 | datafiles = self.files[index]
54 | # read nii file
55 | image = np.load(datafiles["img"] + '.npy')
56 | label = np.load(datafiles["label"] + '.npy')
57 | size = image.shape
58 | name = datafiles["name"]
59 |
60 | axes_index = np.argwhere(label == 1)
61 | one, two, three = axes_index[:, 0], axes_index[:, 1], axes_index[:, 2]
62 | min_x = np.min(one)
63 | max_x = np.max(one)
64 | min_x = min_x if min_x < 40 else min_x - 40
65 | max_x = size[0] if max_x >= size[0] - 40 - 1 else max_x + 40 + 1
66 |
67 | min_y = np.min(two)
68 | max_y = np.max(two)
69 | min_y = min_y if min_y < 40 else min_y - 40
70 | max_y = size[1] if max_y >= size[1] - 40 - 1 else max_y + 40 + 1
71 |
72 | min_z = np.min(three)
73 | max_z = np.max(three)
74 | min_z = min_z if min_z < 40 else min_z - 40
75 | max_z = size[2] if max_z >= size[2] - 40 - 1 else max_z + 40 + 1
76 |
77 | image = image[min_x:max_x, min_y:max_y, min_z:max_z]
78 | label = label[min_x:max_x, min_y:max_y, min_z:max_z]
79 | image = self.pre_precessing(image)
80 |
81 | if self.scale:
82 | scaler = np.random.uniform(0.9, 1.1)
83 | else:
84 | scaler = 1
85 |
86 | scale_d = int(self.crop_d * scaler)
87 | scale_h = int(self.crop_h * scaler)
88 | scale_w = int(self.crop_w * scaler)
89 |
90 | img_h, img_w, img_d = label.shape
91 | d_off = random.randint(0, img_d - scale_d)
92 | h_off = random.randint(0, img_h - scale_h)
93 | w_off = random.randint(0, img_w - scale_w)
94 |
95 | image = image[h_off: h_off + scale_h, w_off: w_off + scale_w, d_off: d_off + scale_d]
96 | label = label[h_off: h_off + scale_h, w_off: w_off + scale_w, d_off: d_off + scale_d]
97 |
98 | image = image.transpose((2, 0, 1))
99 | label = label.transpose((2, 0, 1))
100 |
101 |
102 | if self.is_mirror:
103 | randi = np.random.rand(1)
104 | if randi <= 0.3:
105 | pass
106 | elif randi <= 0.4:
107 | image = image[:, :, ::-1]
108 | label = label[:, :, ::-1]
109 | elif randi <= 0.5:
110 | image = image[:, ::-1, :]
111 | label = label[:, ::-1, :]
112 | elif randi <= 0.6:
113 | image = image[::-1, :, :]
114 | label = label[::-1, :, :]
115 | elif randi <= 0.7:
116 | image = image[:, ::-1, ::-1]
117 | label = label[:, ::-1, ::-1]
118 | elif randi <= 0.8:
119 | image = image[::-1, :, ::-1]
120 | label = label[::-1, :, ::-1]
121 | elif randi <= 0.9:
122 | image = image[::-1, ::-1, :]
123 | label = label[::-1, ::-1, :]
124 | else:
125 | image = image[::-1, ::-1, ::-1]
126 | label = label[::-1, ::-1, ::-1]
127 |
128 | if self.scale:
129 | image = resize(image, (self.crop_d, self.crop_h, self.crop_w), order=1, mode='constant', cval=0, clip=True, preserve_range=True)
130 | label = resize(label, (self.crop_d, self.crop_h, self.crop_w), order=0, mode='edge', cval=0, clip=True, preserve_range=True)
131 |
132 | image = np.array([image])
133 | label = np.array([label])
134 |
135 | image = image.astype(np.float32)
136 | label = label.astype(np.float32)
137 |
138 | # image -> res
139 | image_copy = np.zeros((1, self.crop_d, self.crop_h, self.crop_w)).astype(np.float32)
140 | image_copy[:, 1:, :, :] = image[:, 0:self.crop_d - 1, :, :]
141 | image_res = image - image_copy
142 | image_res[:, 0, :, :] = 0
143 | image_res = np.abs(image_res)
144 |
145 | # label -> res
146 | label_copy = np.zeros((1, self.crop_d, self.crop_h, self.crop_w)).astype(np.float32)
147 | label_copy[:, 1:, :, :] = label[:, 0:self.crop_d - 1, :, :]
148 | label_res = label - label_copy
149 | label_res[np.where(label_res == 0)] = 0
150 | label_res[np.where(label_res != 0)] = 1
151 |
152 | return image.copy(), image_res.copy(), label.copy(), label_res.copy(), np.array(size), name
153 |
154 | class PancreasValDataSet(data.Dataset):
155 | def __init__(self, list_path):
156 | self.list_path = list_path
157 | self.img_ids = [i_id.strip().split() for i_id in open(list_path)]
158 | self.files = []
159 | for item in self.img_ids:
160 | filepath = item[0][0:-4] +'images' + '/' + item[0][-4:]
161 | label_path = item[0][0:-4] +'labels' + '/' + item[0][-4:]
162 | name = item[0][-4:]
163 |
164 | self.files.append({
165 | "img": filepath,
166 | "label": label_path,
167 | "name": name
168 | })
169 | print('{} images are loaded!'.format(len(self.img_ids)))
170 |
171 | def __len__(self):
172 | return len(self.files)
173 |
174 | def id2trainId(self, label):
175 | shape = label.shape
176 | results_map = np.zeros((2, shape[0], shape[1], shape[2]))
177 |
178 | pancreas = (label == 1)
179 | background = np.logical_not(pancreas)
180 |
181 | results_map[0, :, :, :] = np.where(background, 1, 0)
182 | results_map[1, :, :, :] = np.where(pancreas, 1, 0)
183 | return results_map
184 |
185 | def pre_precessing(self, image):
186 | image[image <= -100] = -100
187 | image[image >= 240] = 240
188 | image += 100
189 | image = image / 340
190 | return image
191 |
192 | def __getitem__(self, index):
193 | datafiles = self.files[index]
194 | img = np.load(datafiles["img"] + '.npy')
195 | label = np.load(datafiles["label"] + '.npy')
196 | image = np.array([img])
197 | size = image.shape
198 | name = datafiles["name"]
199 |
200 | image = image.astype(np.float32)
201 | label = label.astype(np.float32)
202 | image[0, :, :, :] = self.pre_precessing(image[0, :, :, :])
203 |
204 | label = np.array([label])
205 |
206 | image = image.transpose((0, 3, 1, 2))
207 | label = label.transpose((0, 3, 1, 2))
208 | image = image.astype(np.float32)
209 | label = label.astype(np.float32)
210 |
211 | size = image.shape[1:]
212 |
213 | # image -> res
214 | cha, dep, hei, wei = image.shape
215 | image_copy = np.zeros((cha, dep, hei, wei)).astype(np.float32)
216 | image_copy[:, 1:, :, :] = image[:, 0:dep - 1, :, :]
217 | image_res = image - image_copy
218 | image_res[:, 0, :, :] = 0
219 | image_res = np.abs(image_res)
220 |
221 | return image.copy(), image_res.copy(), label.copy(), np.array(size), name
222 |
223 |
--------------------------------------------------------------------------------
/models/ConResNet.py:
--------------------------------------------------------------------------------
1 | import torch.nn as nn
2 | from torch.nn import functional as F
3 | import torch
4 | import numpy as np
5 |
6 |
7 | class Conv3d(nn.Conv3d):
8 |
9 | def __init__(self, in_channels, out_channels, kernel_size, stride=(1,1,1), padding=(0,0,0), dilation=(1,1,1), groups=1, bias=False):
10 | super(Conv3d, self).__init__(in_channels, out_channels, kernel_size, stride, padding, dilation, groups, bias)
11 |
12 | def forward(self, x):
13 | weight = self.weight
14 | weight_mean = weight.mean(dim=1, keepdim=True).mean(dim=2, keepdim=True).mean(dim=3, keepdim=True).mean(dim=4, keepdim=True)
15 | weight = weight - weight_mean
16 | std = torch.sqrt(torch.var(weight.view(weight.size(0), -1), dim=1) + 1e-12).view(-1, 1, 1, 1, 1)
17 | weight = weight / std.expand_as(weight)
18 | return F.conv3d(x, weight, self.bias, self.stride, self.padding, self.dilation, self.groups)
19 |
20 | def conv3x3x3(in_planes, out_planes, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1,1,1), dilation=(1,1,1), bias=False,
21 | weight_std=False):
22 | "3x3x3 convolution with padding"
23 | if weight_std:
24 | return Conv3d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation,
25 | bias=bias)
26 | else:
27 | return nn.Conv3d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding,
28 | dilation=dilation, bias=bias)
29 |
30 |
31 | class ConResAtt(nn.Module):
32 | def __init__(self, in_planes, out_planes, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1),
33 | dilation=(1, 1, 1), bias=False, weight_std=False, first_layer=False):
34 | super(ConResAtt, self).__init__()
35 | self.weight_std = weight_std
36 | self.stride = stride
37 | self.in_planes = in_planes
38 | self.out_planes = out_planes
39 | self.first_layer = first_layer
40 |
41 | self.relu = nn.ReLU(inplace=True)
42 |
43 | self.gn_seg = nn.GroupNorm(8, in_planes)
44 | self.conv_seg = conv3x3x3(in_planes, out_planes, kernel_size=(kernel_size[0], kernel_size[1], kernel_size[2]),
45 | stride=(stride[0], stride[1], stride[2]), padding=(padding[0], padding[1], padding[2]),
46 | dilation=(dilation[0], dilation[1], dilation[2]), bias=bias, weight_std=self.weight_std)
47 |
48 | self.gn_res = nn.GroupNorm(8, out_planes)
49 | self.conv_res = conv3x3x3(out_planes, out_planes, kernel_size=(1,1,1),
50 | stride=(1, 1, 1), padding=(0,0,0),
51 | dilation=(dilation[0], dilation[1], dilation[2]), bias=bias, weight_std=self.weight_std)
52 |
53 | self.gn_res1 = nn.GroupNorm(8, out_planes)
54 | self.conv_res1 = conv3x3x3(out_planes, out_planes, kernel_size=(kernel_size[0], kernel_size[1], kernel_size[2]),
55 | stride=(1, 1, 1), padding=(padding[0], padding[1], padding[2]),
56 | dilation=(dilation[0], dilation[1], dilation[2]), bias=bias, weight_std=self.weight_std)
57 | self.gn_res2 = nn.GroupNorm(8, out_planes)
58 | self.conv_res2 = conv3x3x3(out_planes, out_planes, kernel_size=(kernel_size[0], kernel_size[1], kernel_size[2]),
59 | stride=(1, 1, 1), padding=(padding[0], padding[1], padding[2]),
60 | dilation=(dilation[0], dilation[1], dilation[2]), bias=bias, weight_std=self.weight_std)
61 |
62 | self.gn_mp = nn.GroupNorm(8, in_planes)
63 | self.conv_mp_first = conv3x3x3(4, out_planes, kernel_size=(kernel_size[0], kernel_size[1], kernel_size[2]),
64 | stride=(stride[0], stride[1], stride[2]), padding=(padding[0], padding[1], padding[2]),
65 | dilation=(dilation[0], dilation[1], dilation[2]), bias=bias, weight_std=self.weight_std)
66 | self.conv_mp = conv3x3x3(in_planes, out_planes, kernel_size=(kernel_size[0], kernel_size[1], kernel_size[2]),
67 | stride=(stride[0], stride[1], stride[2]), padding=(padding[0], padding[1], padding[2]),
68 | dilation=(dilation[0], dilation[1], dilation[2]), bias=bias, weight_std=self.weight_std)
69 |
70 | def _res(self, x): # bs, channel, D, W, H
71 |
72 | bs, channel, depth, heigt, width = x.shape
73 | x_copy = torch.zeros_like(x).cuda()
74 | x_copy[:, :, 1:, :, :] = x[:, :, 0: depth - 1, :, :]
75 | res = x - x_copy
76 | res[:, :, 0, :, :] = 0
77 | res = torch.abs(res)
78 | return res
79 |
80 | def forward(self, input):
81 | x1, x2 = input
82 | if self.first_layer:
83 | x1 = self.gn_seg(x1)
84 | x1 = self.relu(x1)
85 | x1 = self.conv_seg(x1)
86 |
87 | res = torch.sigmoid(x1)
88 | res = self._res(res)
89 | res = self.conv_res(res)
90 |
91 | x2 = self.conv_mp_first(x2)
92 | x2 = x2 + res
93 |
94 | else:
95 | x1 = self.gn_seg(x1)
96 | x1 = self.relu(x1)
97 | x1 = self.conv_seg(x1)
98 |
99 | res = torch.sigmoid(x1)
100 | res = self._res(res)
101 | res = self.conv_res(res)
102 |
103 |
104 | if self.in_planes != self.out_planes:
105 | x2 = self.gn_mp(x2)
106 | x2 = self.relu(x2)
107 | x2 = self.conv_mp(x2)
108 |
109 | x2 = x2 + res
110 |
111 | x2 = self.gn_res1(x2)
112 | x2 = self.relu(x2)
113 | x2 = self.conv_res1(x2)
114 |
115 | x1 = x1*(1 + torch.sigmoid(x2))
116 |
117 | return [x1, x2]
118 |
119 |
120 | class NoBottleneck(nn.Module):
121 | def __init__(self, inplanes, planes, stride=(1, 1, 1), dilation=(1, 1, 1), downsample=None, fist_dilation=1,
122 | multi_grid=1, weight_std=False):
123 | super(NoBottleneck, self).__init__()
124 | self.weight_std = weight_std
125 | self.relu = nn.ReLU(inplace=True)
126 |
127 | self.gn1 = nn.GroupNorm(8, inplanes)
128 | self.conv1 = conv3x3x3(inplanes, planes, kernel_size=(3, 3, 3), stride=stride, padding=dilation * multi_grid,
129 | dilation=dilation * multi_grid, bias=False, weight_std=self.weight_std)
130 |
131 | self.gn2 = nn.GroupNorm(8, planes)
132 | self.conv2 = conv3x3x3(planes, planes, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=dilation * multi_grid,
133 | dilation=dilation * multi_grid, bias=False, weight_std=self.weight_std)
134 |
135 | self.downsample = downsample
136 | self.dilation = dilation
137 | self.stride = stride
138 |
139 | def forward(self, x):
140 | skip = x
141 |
142 | seg = self.gn1(x)
143 | seg = self.relu(seg)
144 | seg = self.conv1(seg)
145 |
146 | seg = self.gn2(seg)
147 | seg = self.relu(seg)
148 | seg = self.conv2(seg)
149 |
150 | if self.downsample is not None:
151 | skip = self.downsample(x)
152 |
153 | seg = seg + skip
154 | return seg
155 |
156 |
157 | class conresnet(nn.Module):
158 | def __init__(self, shape, block, layers, num_classes=3, weight_std=False):
159 | self.shape = shape
160 | self.weight_std = weight_std
161 | super(conresnet, self).__init__()
162 |
163 | self.conv_4_32 = nn.Sequential(
164 | conv3x3x3(4, 32, kernel_size=(3, 3, 3), stride=(1, 1, 1), weight_std=self.weight_std))
165 |
166 | self.conv_32_64 = nn.Sequential(
167 | nn.GroupNorm(8, 32),
168 | nn.ReLU(inplace=True),
169 | conv3x3x3(32, 64, kernel_size=(3, 3, 3), stride=(2, 2, 2), weight_std=self.weight_std))
170 |
171 | self.conv_64_128 = nn.Sequential(
172 | nn.GroupNorm(8, 64),
173 | nn.ReLU(inplace=True),
174 | conv3x3x3(64, 128, kernel_size=(3, 3, 3), stride=(2, 2, 2), weight_std=self.weight_std))
175 |
176 | self.conv_128_256 = nn.Sequential(
177 | nn.GroupNorm(8, 128),
178 | nn.ReLU(inplace=True),
179 | conv3x3x3(128, 256, kernel_size=(3, 3, 3), stride=(2, 2, 2), weight_std=self.weight_std))
180 |
181 | self.layer0 = self._make_layer(block, 32, 32, layers[0], stride=(1, 1, 1))
182 | self.layer1 = self._make_layer(block, 64, 64, layers[1], stride=(1, 1, 1))
183 | self.layer2 = self._make_layer(block, 128, 128, layers[2], stride=(1, 1, 1))
184 | self.layer3 = self._make_layer(block, 256, 256, layers[3], stride=(1, 1, 1))
185 | self.layer4 = self._make_layer(block, 256, 256, layers[4], stride=(1, 1, 1), dilation=(2,2,2))
186 |
187 | self.fusionConv = nn.Sequential(
188 | nn.GroupNorm(8, 256),
189 | nn.ReLU(inplace=True),
190 | nn.Dropout3d(0.1),
191 | conv3x3x3(256, 128, kernel_size=(3, 3, 3), stride=(1, 1, 1), padding=(1, 1, 1), dilation=(1, 1, 1), weight_std=self.weight_std)
192 | )
193 |
194 | self.seg_x4 = nn.Sequential(
195 | ConResAtt(128, 64, kernel_size=(3, 3, 3), padding=(1, 1, 1), weight_std=self.weight_std, first_layer=True))
196 | self.seg_x2 = nn.Sequential(
197 | ConResAtt(64, 32, kernel_size=(3, 3, 3), padding=(1, 1, 1), weight_std=self.weight_std))
198 | self.seg_x1 = nn.Sequential(
199 | ConResAtt(32, 32, kernel_size=(3, 3, 3), padding=(1, 1, 1), weight_std=self.weight_std))
200 |
201 | self.seg_cls = nn.Sequential(
202 | nn.Conv3d(32, num_classes, kernel_size=1)
203 | )
204 | self.res_cls = nn.Sequential(
205 | nn.Conv3d(32, num_classes, kernel_size=1)
206 | )
207 | self.resx2_cls = nn.Sequential(
208 | nn.Conv3d(32, num_classes, kernel_size=1)
209 | )
210 | self.resx4_cls = nn.Sequential(
211 | nn.Conv3d(64, num_classes, kernel_size=1)
212 | )
213 |
214 | def _make_layer(self, block, inplanes, outplanes, blocks, stride=(1, 1, 1), dilation=(1, 1, 1), multi_grid=1):
215 | downsample = None
216 | if stride[0] != 1 or stride[1] != 1 or stride[2] != 1 or inplanes != outplanes:
217 | downsample = nn.Sequential(
218 | nn.GroupNorm(8, inplanes),
219 | nn.ReLU(inplace=True),
220 | conv3x3x3(inplanes, outplanes, kernel_size=(1, 1, 1), stride=stride, padding=(0, 0, 0),
221 | weight_std=self.weight_std)
222 | )
223 |
224 | layers = []
225 | generate_multi_grid = lambda index, grids: grids[index % len(grids)] if isinstance(grids, tuple) else 1
226 | layers.append(block(inplanes, outplanes, stride, dilation=dilation, downsample=downsample,
227 | multi_grid=generate_multi_grid(0, multi_grid), weight_std=self.weight_std))
228 | for i in range(1, blocks):
229 | layers.append(
230 | block(inplanes, outplanes, dilation=dilation, multi_grid=generate_multi_grid(i, multi_grid),
231 | weight_std=self.weight_std))
232 | return nn.Sequential(*layers)
233 |
234 |
235 | def forward(self, x_list):
236 | x, x_res = x_list
237 |
238 | ## encoder
239 | x = self.conv_4_32(x)
240 | x = self.layer0(x)
241 | skip1 = x
242 |
243 | x = self.conv_32_64(x)
244 | x = self.layer1(x)
245 | skip2 = x
246 |
247 | x = self.conv_64_128(x)
248 | x = self.layer2(x)
249 | skip3 = x
250 |
251 | x = self.conv_128_256(x)
252 | x = self.layer3(x)
253 |
254 | x = self.layer4(x)
255 |
256 | x = self.fusionConv(x)
257 |
258 | ## decoder
259 | res_x4 = F.interpolate(x_res, size=(int(self.shape[0] / 4), int(self.shape[1] / 4), int(self.shape[2] / 4)), mode='trilinear', align_corners=True)
260 | seg_x4 = F.interpolate(x, size=(int(self.shape[0] / 4), int(self.shape[1] / 4), int(self.shape[2] / 4)), mode='trilinear', align_corners=True)
261 | seg_x4 = seg_x4 + skip3
262 | seg_x4, res_x4 = self.seg_x4([seg_x4, res_x4])
263 |
264 | res_x2 = F.interpolate(res_x4, size=(int(self.shape[0] / 2), int(self.shape[1] / 2), int(self.shape[2] / 2)), mode='trilinear', align_corners=True)
265 | seg_x2 = F.interpolate(seg_x4, size=(int(self.shape[0] / 2), int(self.shape[1] / 2), int(self.shape[2] / 2)), mode='trilinear', align_corners=True)
266 | seg_x2 = seg_x2 + skip2
267 | seg_x2, res_x2 = self.seg_x2([seg_x2, res_x2])
268 |
269 | res_x1 = F.interpolate(res_x2, size=(int(self.shape[0] / 1), int(self.shape[1] / 1), int(self.shape[2] / 1)), mode='trilinear', align_corners=True)
270 | seg_x1 = F.interpolate(seg_x2, size=(int(self.shape[0] / 1), int(self.shape[1] / 1), int(self.shape[2] / 1)), mode='trilinear', align_corners=True)
271 | seg_x1 = seg_x1 + skip1
272 | seg_x1, res_x1 = self.seg_x1([seg_x1, res_x1])
273 |
274 | seg = self.seg_cls(seg_x1)
275 | res = self.res_cls(res_x1)
276 | resx2 = self.resx2_cls(res_x2)
277 | resx4 = self.resx4_cls(res_x4)
278 |
279 | resx2 = F.interpolate(resx2, size=(int(self.shape[0] / 1), int(self.shape[1] / 1), int(self.shape[2] / 1)),
280 | mode='trilinear', align_corners=True)
281 | resx4 = F.interpolate(resx4, size=(int(self.shape[0] / 1), int(self.shape[1] / 1), int(self.shape[2] / 1)),
282 | mode='trilinear', align_corners=True)
283 |
284 | return [seg, res, resx2, resx4]
285 |
286 |
287 | def ConResNet(shape, num_classes=3, weight_std=True):
288 |
289 | model = conresnet(shape, NoBottleneck, [1, 2, 2, 2, 2], num_classes, weight_std)
290 |
291 | return model
--------------------------------------------------------------------------------
/models/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jianpengz/ConResNet/cf32e955401a70340ed16809966711f1e5accdc8/models/__init__.py
--------------------------------------------------------------------------------
/models/conresnet.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jianpengz/ConResNet/cf32e955401a70340ed16809966711f1e5accdc8/models/conresnet.png
--------------------------------------------------------------------------------
/run.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | CUDA_VISIBLE_DEVICES=2,3 nohup python -m torch.distributed.launch --nproc_per_node=2 --master_port=$RANDOM train_conresnet.py \
4 | --data_dir='path-to-your-dataset/' \
5 | --train_list='list/train_list.txt' \
6 | --val_list='list/val_list.txt' \
7 | --snapshot_dir='path-to-save-checkpoint/' \
8 | --input_size='80,160,160' \
9 | --batch_size=2 \
10 | --num_gpus=2 \
11 | --num_steps=40000 \
12 | --val_pred_every=2000 \
13 | --learning_rate=1e-4 \
14 | --num_classes=3 \
15 | --num_workers=4 \
16 | --random_mirror=True \
17 | --random_scale=True \
18 | > path-to-save-log-file/log.file 2>&1 &
19 |
--------------------------------------------------------------------------------
/test.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import sys
3 | sys.path.append("..")
4 | import numpy as np
5 |
6 | import torch
7 | import torch.nn as nn
8 | import torch.nn.functional as F
9 | from torch.utils import data
10 | from models.ConResNet import ConResNet
11 | from dataset.BraTSDataSet import BraTSValDataSet
12 | import os
13 | from math import ceil
14 | import nibabel as nib
15 |
16 | def get_arguments():
17 | parser = argparse.ArgumentParser(description="ConResNet for 3D medical image segmentation.")
18 | parser.add_argument("--data-dir", type=str, default='path-to-your-dataset/',
19 | help="Path to the directory containing your dataset.")
20 | parser.add_argument("--data-list", type=str, default='list/val.txt',
21 | help="Path to the file listing the images in the dataset.")
22 | parser.add_argument("--input-size", type=str, default='80,160,160',
23 | help="Comma-separated string with depth, height and width of sub-volumnes.")
24 | parser.add_argument("--num-classes", type=int, default=3,
25 | help="Number of classes to predict (ET, WT, TC).")
26 | parser.add_argument("--restore-from", type=str, default='snapshots/conresnet/your_checkpoint_model.pth',
27 | help="Where restore model parameters from.")
28 | parser.add_argument("--gpu", type=str, default='0',
29 | help="choose gpu device.")
30 | parser.add_argument("--weight-std", type=bool, default=True,
31 | help="whether to use weight standarization in CONV layers.")
32 | return parser.parse_args()
33 |
34 |
35 | def pad_image(img, target_size):
36 | """Pad an image up to the target size."""
37 | deps_missing = target_size[0] - img.shape[2]
38 | rows_missing = target_size[1] - img.shape[3]
39 | cols_missing = target_size[2] - img.shape[4]
40 | padded_img = np.pad(img, ((0, 0), (0, 0),(0, deps_missing), (0, rows_missing), (0, cols_missing)), 'constant')
41 | return padded_img
42 |
43 | def predict_sliding(net, img_list, tile_size, classes):
44 | image, image_res = img_list
45 | interp = nn.Upsample(size=tile_size, mode='trilinear', align_corners=True)
46 | image_size = image.shape
47 | overlap = 1/3
48 |
49 | strideHW = ceil(tile_size[1] * (1 - overlap))
50 | strideD = ceil(tile_size[0] * (1 - overlap))
51 | tile_deps = int(ceil((image_size[2] - tile_size[0]) / strideD) + 1)
52 | tile_rows = int(ceil((image_size[3] - tile_size[1]) / strideHW) + 1) # strided convolution formula
53 | tile_cols = int(ceil((image_size[4] - tile_size[2]) / strideHW) + 1)
54 | full_probs = torch.zeros((classes, image_size[2], image_size[3], image_size[4]))
55 | count_predictions = torch.zeros((classes, image_size[2], image_size[3], image_size[4]))
56 |
57 | for dep in range(tile_deps):
58 | for row in range(tile_rows):
59 | for col in range(tile_cols):
60 | d1 = int(dep * strideD)
61 | y1 = int(row * strideHW)
62 | x1 = int(col * strideHW)
63 | d2 = min(d1 + tile_size[0], image_size[2])
64 | y2 = min(y1 + tile_size[1], image_size[3])
65 | x2 = min(x1 + tile_size[2], image_size[4])
66 | d1 = max(int(d2 - tile_size[0]), 0)
67 | y1 = max(int(y2 - tile_size[1]), 0)
68 | x1 = max(int(x2 - tile_size[2]), 0)
69 |
70 | img = image[:, :, d1:d2, y1:y2, x1:x2]
71 | img_res = image_res[:, :, d1:d2, y1:y2, x1:x2]
72 | padded_img = pad_image(img, tile_size)
73 | padded_img_res = pad_image(img_res, tile_size)
74 | padded_prediction = net([torch.from_numpy(padded_img).cuda(), torch.from_numpy(padded_img_res).cuda()])
75 | padded_prediction = F.sigmoid(padded_prediction[0])
76 |
77 | padded_prediction = interp(padded_prediction).cpu().data[0]
78 | prediction = padded_prediction[0:img.shape[2],0:img.shape[3], 0:img.shape[4], :]
79 | count_predictions[:, d1:d2, y1:y2, x1:x2] += 1
80 | full_probs[:, d1:d2, y1:y2, x1:x2] += prediction
81 |
82 | full_probs /= count_predictions
83 | full_probs = full_probs.numpy().transpose(1,2,3,0)
84 | return full_probs
85 |
86 | def dice_score(preds, labels):
87 | assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match"
88 | predict = preds.view().reshape(preds.shape[0], -1)
89 | target = labels.view().reshape(labels.shape[0], -1)
90 |
91 | num = np.sum(np.multiply(predict, target), axis=1)
92 | den = np.sum(predict, axis=1) + np.sum(target, axis=1) +1
93 |
94 | dice = 2*num / den
95 |
96 | return dice.mean()
97 |
98 |
99 |
100 | def main():
101 |
102 | args = get_arguments()
103 |
104 | os.environ["CUDA_VISIBLE_DEVICES"]=args.gpu
105 | d, h, w = map(int, args.input_size.split(','))
106 |
107 | input_size = (d, h, w)
108 |
109 | model = ConResNet(input_size, num_classes=args.num_classes, weight_std=args.weight_std)
110 | model = nn.DataParallel(model)
111 |
112 | print('loading from checkpoint: {}'.format(args.restore_from))
113 | if os.path.exists(args.restore_from):
114 | model.load_state_dict(torch.load(args.restore_from, map_location=torch.device('cpu')))
115 | else:
116 | print('File not exists in the reload path: {}'.format(args.restore_from))
117 |
118 | model.eval()
119 | model.cuda()
120 |
121 | testloader = data.DataLoader(
122 | BraTSValDataSet(args.data_dir, args.data_list),
123 | batch_size=1, shuffle=False, pin_memory=True)
124 |
125 | if not os.path.exists('outputs'):
126 | os.makedirs('outputs')
127 |
128 | dice_ET = 0
129 | dice_WT = 0
130 | dice_TC = 0
131 |
132 | for index, batch in enumerate(testloader):
133 | image, image_res, label, size, name, affine = batch
134 | size = size[0].numpy()
135 | affine = affine[0].numpy()
136 | name[0]=name[0].replace("Brats17", "Brats18")
137 | with torch.no_grad():
138 | output = predict_sliding(model, [image.numpy(),image_res.numpy()], input_size, args.num_classes)
139 |
140 | seg_pred_3class = np.asarray(np.around(output), dtype=np.uint8)
141 |
142 | seg_pred_ET = seg_pred_3class[:, :, :, 0]
143 | seg_pred_WT = seg_pred_3class[:, :, :, 1]
144 | seg_pred_TC = seg_pred_3class[:, :, :, 2]
145 | seg_pred = np.zeros_like(seg_pred_ET)
146 | seg_pred = np.where(seg_pred_WT == 1, 2, seg_pred)
147 | seg_pred = np.where(seg_pred_TC == 1, 1, seg_pred)
148 | seg_pred = np.where(seg_pred_ET == 1, 4, seg_pred)
149 |
150 | seg_gt = np.asarray(label[0].numpy()[:size[0], :size[1], :size[2]], dtype=np.int)
151 | seg_gt_ET = seg_gt[0, :, :, :]
152 | seg_gt_WT = seg_gt[1, :, :, :]
153 | seg_gt_TC = seg_gt[2, :, :, :]
154 |
155 | dice_ET_i = dice_score(seg_pred_ET[None, :, :, :], seg_gt_ET[None, :, :, :])
156 | dice_WT_i = dice_score(seg_pred_WT[None, :, :, :], seg_gt_WT[None, :, :, :])
157 | dice_TC_i = dice_score(seg_pred_TC[None, :, :, :], seg_gt_TC[None, :, :, :])
158 |
159 | print('Processing {}: Dice_ET = {:.4}, Dice_WT = {:.4}, Dice_TC = {:.4}'.format(name, dice_ET_i, dice_WT_i, dice_TC_i))
160 |
161 | dice_ET += dice_ET_i
162 | dice_WT += dice_WT_i
163 | dice_TC += dice_TC_i
164 |
165 | seg_pred = seg_pred.transpose((1,2,0))
166 |
167 | seg_pred = seg_pred.astype(np.int16)
168 |
169 | seg_pred = nib.Nifti1Image(seg_pred, affine=affine)
170 | seg_save_p = os.path.join('outputs/%s.nii.gz' % (name[0]))
171 | nib.save(seg_pred, seg_save_p)
172 |
173 | dice_ET_avg = dice_ET / (index + 1)
174 | dice_WT_avg = dice_WT / (index + 1)
175 | dice_TC_avg = dice_TC / (index + 1)
176 |
177 | print('Average score: Dice_ET = {:.4}, Dice_WT = {:.4}, Dice_TC = {:.4}'.format(dice_ET_avg, dice_WT_avg, dice_TC_avg))
178 |
179 |
180 | if __name__ == '__main__':
181 | main()
182 |
--------------------------------------------------------------------------------
/train_conresnet.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import sys
3 | sys.path.append("..")
4 |
5 | import torch
6 | import numpy as np
7 | import torch.optim as optim
8 | import torch.backends.cudnn as cudnn
9 | import torch.nn.functional as F
10 |
11 | import os
12 | import os.path as osp
13 | from models.ConResNet import ConResNet
14 | from dataset.BraTSDataSet import BraTSDataSet, BraTSValDataSet
15 | import timeit
16 | from tensorboardX import SummaryWriter
17 | from utils import loss
18 | from utils.engine import Engine
19 | from math import ceil
20 |
21 | start = timeit.default_timer()
22 |
23 | def str2bool(v):
24 | if v.lower() in ('yes', 'true', 't', 'y', '1'):
25 | return True
26 | elif v.lower() in ('no', 'false', 'f', 'n', '0'):
27 | return False
28 | else:
29 | raise argparse.ArgumentTypeError('Boolean value expected.')
30 |
31 |
32 | def get_arguments():
33 | """
34 | A list of parsed arguments.
35 | """
36 | parser = argparse.ArgumentParser(description="ConResNet for 3D Medical Image Segmentation.")
37 |
38 | parser.add_argument("--data_dir", type=str, default='/media/userdisk0/myproject-Seg/BraTS-pro/dataset/')
39 | parser.add_argument("--train_list", type=str, default='list/BraTS2018_old/train.txt')
40 | parser.add_argument("--val_list", type=str, default='list/BraTS2018_old/val.txt')
41 | parser.add_argument("--snapshot_dir", type=str, default='snapshots/conresnet/')
42 | parser.add_argument("--reload_path", type=str, default='snapshots/conresnet/ConResNet_40000.pth')
43 | parser.add_argument("--reload_from_checkpoint", type=str2bool, default=False)
44 | parser.add_argument("--input_size", type=str, default='80,160,160')
45 | parser.add_argument("--batch_size", type=int, default=1)
46 | parser.add_argument("--num_gpus", type=int, default=1)
47 | parser.add_argument('--local_rank', type=int, default=0)
48 | parser.add_argument("--num_steps", type=int, default=40000)
49 | parser.add_argument("--start_iters", type=int, default=0)
50 | parser.add_argument("--val_pred_every", type=int, default=100)
51 | parser.add_argument("--learning_rate", type=float, default=1e-4)
52 | parser.add_argument("--num_classes", type=int, default=3)
53 | parser.add_argument("--num_workers", type=int, default=1)
54 | parser.add_argument("--weight_std", type=str2bool, default=True)
55 | parser.add_argument("--momentum", type=float, default=0.9)
56 | parser.add_argument("--power", type=float, default=0.9)
57 | parser.add_argument("--weight_decay", type=float, default=0.0005)
58 | parser.add_argument("--ignore_label", type=int, default=255)
59 | parser.add_argument("--is_training", action="store_true")
60 | parser.add_argument("--random_mirror", type=str2bool, default=False)
61 | parser.add_argument("--random_scale", type=str2bool, default=False)
62 | parser.add_argument("--random_seed", type=int, default=1234)
63 |
64 | return parser
65 |
66 |
67 | def lr_poly(base_lr, iter, max_iter, power):
68 | return base_lr * ((1 - float(iter) / max_iter) ** (power))
69 |
70 | def adjust_learning_rate(optimizer, i_iter, lr, num_steps, power):
71 | lr = lr_poly(lr, i_iter, num_steps, power)
72 | optimizer.param_groups[0]['lr'] = lr
73 | return lr
74 |
75 |
76 | def dice_score(preds, labels):
77 | assert preds.shape[0] == labels.shape[0], "predict & target batch size don't match"
78 | predict = preds.contiguous().view(preds.shape[0], -1)
79 | target = labels.contiguous().view(labels.shape[0], -1)
80 |
81 | num = torch.sum(torch.mul(predict, target), dim=1)
82 | den = torch.sum(predict, dim=1) + torch.sum(target, dim=1) + 1
83 |
84 | dice = 2*num / den
85 |
86 | return dice.mean()
87 |
88 |
89 | def compute_dice_score(preds, labels):
90 |
91 | preds = F.sigmoid(preds)
92 |
93 | pred_ET = preds[:, 0, :, :, :]
94 | pred_WT = preds[:, 1, :, :, :]
95 | pred_TC = preds[:, 2, :, :, :]
96 | label_ET = labels[:, 0, :, :, :]
97 | label_WT = labels[:, 1, :, :, :]
98 | label_TC = labels[:, 2, :, :, :]
99 | dice_ET = dice_score(pred_ET, label_ET).cpu().data.numpy()
100 | dice_WT = dice_score(pred_WT, label_WT).cpu().data.numpy()
101 | dice_TC = dice_score(pred_TC, label_TC).cpu().data.numpy()
102 | return dice_ET, dice_WT, dice_TC
103 |
104 |
105 | def predict_sliding(net, imagelist, tile_size, classes):
106 | image, image_res = imagelist
107 | image_size = image.shape
108 | overlap = 1 / 3
109 |
110 | strideHW = ceil(tile_size[1] * (1 - overlap))
111 | strideD = ceil(tile_size[0] * (1 - overlap))
112 | tile_deps = int(ceil((image_size[2] - tile_size[0]) / strideD) + 1)
113 | tile_rows = int(ceil((image_size[3] - tile_size[1]) / strideHW) + 1)
114 | tile_cols = int(ceil((image_size[4] - tile_size[2]) / strideHW) + 1)
115 | full_probs = np.zeros((image_size[0], classes, image_size[2], image_size[3], image_size[4])).astype(np.float32)
116 | count_predictions = np.zeros((image_size[0], classes, image_size[2], image_size[3], image_size[4])).astype(np.float32)
117 | full_probs = torch.from_numpy(full_probs).cuda()
118 | count_predictions = torch.from_numpy(count_predictions).cuda()
119 |
120 | for dep in range(tile_deps):
121 | for row in range(tile_rows):
122 | for col in range(tile_cols):
123 | d1 = int(dep * strideD)
124 | x1 = int(col * strideHW)
125 | y1 = int(row * strideHW)
126 | d2 = min(d1 + tile_size[0], image_size[2])
127 | x2 = min(x1 + tile_size[2], image_size[4])
128 | y2 = min(y1 + tile_size[1], image_size[3])
129 | d1 = max(int(d2 - tile_size[0]), 0)
130 | x1 = max(int(x2 - tile_size[2]), 0)
131 | y1 = max(int(y2 - tile_size[1]), 0)
132 |
133 | img = image[:, :, d1:d2, y1:y2, x1:x2]
134 | img_res = image_res[:, :, d1:d2, y1:y2, x1:x2]
135 |
136 | prediction = net([img, img_res])
137 | prediction = prediction[0]
138 |
139 | count_predictions[:, :, d1:d2, y1:y2, x1:x2] += 1
140 | full_probs[:, :, d1:d2, y1:y2, x1:x2] += prediction
141 |
142 | full_probs /= count_predictions
143 | return full_probs
144 |
145 |
146 | def validate(input_size, model, ValLoader, num_classes):
147 | # start to validate
148 | val_ET = 0.0
149 | val_WT = 0.0
150 | val_TC = 0.0
151 |
152 | for index, batch in enumerate(ValLoader):
153 | print('%d processd'%(index))
154 | image, image_res, label, size, name, affine = batch
155 | image = image.cuda()
156 | image_res = image_res.cuda()
157 | label = label.cuda()
158 | with torch.no_grad():
159 | pred = predict_sliding(model, [image, image_res], input_size, num_classes)
160 | dice_ET, dice_WT, dice_TC = compute_dice_score(pred, label)
161 | val_ET += dice_ET
162 | val_WT += dice_WT
163 | val_TC += dice_TC
164 |
165 | return val_ET/(index+1), val_WT/(index+1), val_TC/(index+1)
166 |
167 | def main():
168 | """Create the ConResNet model and then start the training."""
169 | parser = get_arguments()
170 | print(parser)
171 | # os.environ["CUDA_VISIBLE_DEVICES"] = '0'
172 |
173 | with Engine(custom_parser=parser) as engine:
174 | args = parser.parse_args()
175 | if args.num_gpus > 1:
176 | torch.cuda.set_device(args.local_rank)
177 |
178 | writer = SummaryWriter(args.snapshot_dir)
179 |
180 | d, h, w = map(int, args.input_size.split(','))
181 | input_size = (d, h, w)
182 |
183 | cudnn.benchmark = True
184 | seed = args.random_seed
185 | if engine.distributed:
186 | seed = args.local_rank
187 | torch.manual_seed(seed)
188 | if torch.cuda.is_available():
189 | torch.cuda.manual_seed(seed)
190 |
191 | model = ConResNet(input_size, num_classes=args.num_classes, weight_std=True)
192 | model.train()
193 | device = torch.device('cuda:{}'.format(args.local_rank))
194 | model.to(device)
195 |
196 | optimizer = optim.Adam(
197 | [{'params': filter(lambda p: p.requires_grad, model.parameters()), 'lr': args.learning_rate}],
198 | lr=args.learning_rate, weight_decay=args.weight_decay)
199 |
200 | if args.num_gpus > 1:
201 | model = engine.data_parallel(model)
202 |
203 | # load checkpoint...
204 | if args.reload_from_checkpoint:
205 | print('loading from checkpoint: {}'.format(args.reload_path))
206 | if os.path.exists(args.reload_path):
207 | model.load_state_dict(torch.load(args.reload_path, map_location=torch.device('cpu')))
208 | else:
209 | print('File not exists in the reload path: {}'.format(args.reload_path))
210 |
211 | loss_D = loss.DiceLoss4BraTS().to(device)
212 | loss_BCE = loss.BCELoss4BraTS().to(device)
213 |
214 | loss_B = loss.BCELossBoud().to(device)
215 |
216 | if not os.path.exists(args.snapshot_dir):
217 | os.makedirs(args.snapshot_dir)
218 |
219 | trainloader, train_sampler = engine.get_train_loader(BraTSDataSet(args.data_dir, args.train_list, max_iters=args.num_steps * args.batch_size, crop_size=input_size,
220 | scale=args.random_scale, mirror=args.random_mirror))
221 | valloader, val_sampler = engine.get_test_loader(BraTSValDataSet(args.data_dir, args.val_list))
222 |
223 | for i_iter, batch in enumerate(trainloader):
224 | i_iter += args.start_iters
225 | images, images_res, labels, labels_res = batch
226 | images = images.cuda()
227 | images_res = images_res.cuda()
228 | labels = labels.cuda()
229 | labels_res = labels_res.cuda()
230 |
231 | optimizer.zero_grad()
232 | lr = adjust_learning_rate(optimizer, i_iter, args.learning_rate, args.num_steps, args.power)
233 |
234 | preds= model([images, images_res])
235 | preds_seg = preds[0]
236 | preds_res = preds[1]
237 | preds_resx2 = preds[2]
238 | preds_resx4 = preds[3]
239 |
240 | term_seg_Dice = loss_D.forward(preds_seg, labels)
241 | term_seg_BCE = loss_BCE.forward(preds_seg, labels)
242 |
243 | term_res_BCE = loss_B.forward(preds_res, labels_res)
244 | term_resx2_BCE = loss_B.forward(preds_resx2, labels_res)
245 | term_resx4_BCE = loss_B.forward(preds_resx4, labels_res)
246 |
247 | term_all = term_seg_Dice + term_seg_BCE + term_res_BCE + 0.5 * (term_resx2_BCE +term_resx4_BCE)
248 | term_all.backward()
249 |
250 | optimizer.step()
251 |
252 | if i_iter % 100 == 0 and (args.local_rank == 0):
253 | writer.add_scalar('learning_rate', lr, i_iter)
254 | writer.add_scalar('loss', term_all.cpu().data.numpy(), i_iter)
255 |
256 | print('iter = {} of {} completed, lr = {:.4}, seg_loss = {:.4}, res_loss = {:.4}'.format(
257 | i_iter, args.num_steps, lr, (term_seg_Dice+term_seg_BCE).cpu().data.numpy(), (term_res_BCE+term_resx2_BCE+term_resx4_BCE).cpu().data.numpy()))
258 |
259 |
260 | if i_iter >= args.num_steps - 1 and (args.local_rank == 0):
261 | print('save last model ...')
262 | torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'ConResNet_' + str(args.num_steps) + '.pth'))
263 | break
264 |
265 | if i_iter % args.val_pred_every == 0 and i_iter!=0 and (args.local_rank == 0):
266 | print('save model ...')
267 | torch.save(model.state_dict(), osp.join(args.snapshot_dir, 'ConResNet_' + str(i_iter) + '.pth'))
268 |
269 | # val
270 | if i_iter % args.val_pred_every == 0:
271 | print('validate ...')
272 | val_ET, val_WT, val_TC = validate(input_size, model, valloader, args.num_classes)
273 | if (args.local_rank == 0):
274 | writer.add_scalar('Val_ET_Dice', val_ET, i_iter)
275 | writer.add_scalar('Val_WT_Dice', val_WT, i_iter)
276 | writer.add_scalar('Val_TC_Dice', val_TC, i_iter)
277 | print('Validate iter = {}, ET = {:.2}, WT = {:.2}, TC = {:.2}'.format(i_iter, val_ET, val_WT, val_TC))
278 |
279 | end = timeit.default_timer()
280 | print(end - start, 'seconds')
281 |
282 |
283 | if __name__ == '__main__':
284 | main()
285 |
286 |
287 |
288 |
--------------------------------------------------------------------------------
/utils/engine.py:
--------------------------------------------------------------------------------
1 | import os
2 | import os.path as osp
3 | import time
4 | import argparse
5 |
6 | import torch
7 | import torch.distributed as dist
8 |
9 | from utils.logger import get_logger
10 | from utils.pyt_utils import all_reduce_tensor, extant_file
11 |
12 | try:
13 | from apex.parallel import DistributedDataParallel, SyncBatchNorm
14 | except ImportError:
15 | raise ImportError(
16 | "Please install apex from https://www.github.com/nvidia/apex .")
17 |
18 |
19 | logger = get_logger()
20 |
21 |
22 | class Engine(object):
23 | def __init__(self, custom_parser=None):
24 | logger.info(
25 | "PyTorch Version {}".format(torch.__version__))
26 | self.devices = None
27 | self.distributed = False
28 |
29 | if custom_parser is None:
30 | self.parser = argparse.ArgumentParser()
31 | else:
32 | assert isinstance(custom_parser, argparse.ArgumentParser)
33 | self.parser = custom_parser
34 |
35 | self.inject_default_parser()
36 | self.args = self.parser.parse_args()
37 |
38 | self.continue_state_object = self.args.continue_fpath
39 |
40 | if 'WORLD_SIZE' in os.environ:
41 | self.distributed = int(os.environ['WORLD_SIZE']) > 1
42 | print("WORLD_SIZE is %d" % (int(os.environ['WORLD_SIZE'])))
43 | if self.distributed:
44 | self.local_rank = self.args.local_rank
45 | self.world_size = int(os.environ['WORLD_SIZE'])
46 | torch.cuda.set_device(self.local_rank)
47 | dist.init_process_group(backend="nccl", init_method='env://')
48 | self.devices = [i for i in range(self.world_size)]
49 | else:
50 | gpus = os.environ["CUDA_VISIBLE_DEVICES"]
51 | self.devices = [i for i in range(len(gpus.split(',')))]
52 |
53 | def inject_default_parser(self):
54 | p = self.parser
55 | p.add_argument('-d', '--devices', default='',
56 | help='set data parallel training')
57 | p.add_argument('-c', '--continue', type=extant_file,
58 | metavar="FILE",
59 | dest="continue_fpath",
60 | help='continue from one certain checkpoint')
61 |
62 | def data_parallel(self, model):
63 | if self.distributed:
64 | model = DistributedDataParallel(model)
65 | else:
66 | model = torch.nn.DataParallel(model)
67 | return model
68 |
69 | def get_train_loader(self, train_dataset):
70 | train_sampler = None
71 | is_shuffle = True
72 | batch_size = self.args.batch_size
73 |
74 | if self.distributed:
75 | train_sampler = torch.utils.data.distributed.DistributedSampler(train_dataset)
76 | batch_size = self.args.batch_size // self.world_size
77 | is_shuffle = False
78 |
79 | train_loader = torch.utils.data.DataLoader(train_dataset,
80 | batch_size=batch_size,
81 | num_workers=self.args.num_workers,
82 | drop_last=False,
83 | shuffle=is_shuffle,
84 | pin_memory=True,
85 | sampler=train_sampler)
86 |
87 | return train_loader, train_sampler
88 |
89 | def get_test_loader(self, test_dataset):
90 | test_sampler = None
91 | is_shuffle = False
92 | batch_size = self.args.batch_size
93 |
94 | if self.distributed:
95 | test_sampler = torch.utils.data.distributed.DistributedSampler(
96 | test_dataset)
97 | batch_size = self.args.batch_size // self.world_size
98 |
99 | test_loader = torch.utils.data.DataLoader(test_dataset,
100 | batch_size=1,
101 | num_workers=self.args.num_workers,
102 | drop_last=False,
103 | shuffle=is_shuffle,
104 | pin_memory=True,
105 | sampler=test_sampler)
106 |
107 | return test_loader, test_sampler
108 |
109 |
110 | def all_reduce_tensor(self, tensor, norm=True):
111 | if self.distributed:
112 | return all_reduce_tensor(tensor, world_size=self.world_size, norm=norm)
113 | else:
114 | return torch.mean(tensor)
115 |
116 |
117 | def __enter__(self):
118 | return self
119 |
120 | def __exit__(self, type, value, tb):
121 | torch.cuda.empty_cache()
122 | if type is not None:
123 | logger.warning(
124 | "A exception occurred during Engine initialization, "
125 | "give up running process")
126 | return False
127 |
--------------------------------------------------------------------------------
/utils/logger.py:
--------------------------------------------------------------------------------
1 | import os
2 | import sys
3 | import logging
4 |
5 | _default_level_name = os.getenv('ENGINE_LOGGING_LEVEL', 'INFO')
6 | _default_level = logging.getLevelName(_default_level_name.upper())
7 |
8 | class LogFormatter(logging.Formatter):
9 | log_fout = None
10 | date_full = '[%(asctime)s %(lineno)d@%(filename)s:%(name)s] '
11 | date = '%(asctime)s '
12 | msg = '%(message)s'
13 |
14 | def format(self, record):
15 | if record.levelno == logging.DEBUG:
16 | mcl, mtxt = self._color_dbg, 'DBG'
17 | elif record.levelno == logging.WARNING:
18 | mcl, mtxt = self._color_warn, 'WRN'
19 | elif record.levelno == logging.ERROR:
20 | mcl, mtxt = self._color_err, 'ERR'
21 | else:
22 | mcl, mtxt = self._color_normal, ''
23 |
24 | if mtxt:
25 | mtxt += ' '
26 |
27 | if self.log_fout:
28 | self.__set_fmt(self.date_full + mtxt + self.msg)
29 | formatted = super(LogFormatter, self).format(record)
30 | # self.log_fout.write(formatted)
31 | # self.log_fout.write('\n')
32 | # self.log_fout.flush()
33 | return formatted
34 |
35 | self.__set_fmt(self._color_date(self.date) + mcl(mtxt + self.msg))
36 | formatted = super(LogFormatter, self).format(record)
37 |
38 | return formatted
39 |
40 | if sys.version_info.major < 3:
41 | def __set_fmt(self, fmt):
42 | self._fmt = fmt
43 | else:
44 | def __set_fmt(self, fmt):
45 | self._style._fmt = fmt
46 |
47 | @staticmethod
48 | def _color_dbg(msg):
49 | return '\x1b[36m{}\x1b[0m'.format(msg)
50 |
51 | @staticmethod
52 | def _color_warn(msg):
53 | return '\x1b[1;31m{}\x1b[0m'.format(msg)
54 |
55 | @staticmethod
56 | def _color_err(msg):
57 | return '\x1b[1;4;31m{}\x1b[0m'.format(msg)
58 |
59 | @staticmethod
60 | def _color_omitted(msg):
61 | return '\x1b[35m{}\x1b[0m'.format(msg)
62 |
63 | @staticmethod
64 | def _color_normal(msg):
65 | return msg
66 |
67 | @staticmethod
68 | def _color_date(msg):
69 | return '\x1b[32m{}\x1b[0m'.format(msg)
70 |
71 |
72 | def get_logger(log_dir=None, log_file=None, formatter=LogFormatter):
73 | logger = logging.getLogger()
74 | logger.setLevel(_default_level)
75 | del logger.handlers[:]
76 |
77 | if log_dir and log_file:
78 | if not os.path.isdir(log_dir):
79 | os.makedirs(log_dir)
80 | LogFormatter.log_fout = True
81 | file_handler = logging.FileHandler(log_file, mode='a')
82 | file_handler.setLevel(logging.INFO)
83 | file_handler.setFormatter(formatter)
84 | logger.addHandler(file_handler)
85 |
86 | stream_handler = logging.StreamHandler()
87 | stream_handler.setFormatter(formatter(datefmt='%d %H:%M:%S'))
88 | stream_handler.setLevel(0)
89 | logger.addHandler(stream_handler)
90 | return logger
91 |
--------------------------------------------------------------------------------
/utils/loss.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import torch.nn.functional as F
3 | import torch.nn as nn
4 | import numpy as np
5 |
6 | class BinaryDiceLoss(nn.Module):
7 | def __init__(self, smooth=1, p=2, reduction='mean'):
8 | super(BinaryDiceLoss, self).__init__()
9 | self.smooth = smooth
10 | self.p = p
11 | self.reduction = reduction
12 |
13 | def forward(self, predict, target):
14 | assert predict.shape[0] == target.shape[0], "predict & target batch size don't match"
15 | predict = predict.contiguous().view(predict.shape[0], -1)
16 | target = target.contiguous().view(target.shape[0], -1)
17 |
18 | num = torch.sum(torch.mul(predict, target), dim=1)
19 | den = torch.sum(predict, dim=1) + torch.sum(target, dim=1) + self.smooth
20 |
21 | dice_score = 2*num / den
22 | loss_avg = 1 - dice_score.mean()
23 |
24 | return loss_avg
25 |
26 | class DiceLoss4BraTS(nn.Module):
27 | def __init__(self, weight=None, ignore_index=None, **kwargs):
28 | super(DiceLoss4BraTS, self).__init__()
29 | self.kwargs = kwargs
30 | self.weight = weight
31 | self.ignore_index = ignore_index
32 |
33 | def forward(self, predict, target):
34 | assert predict.shape == target.shape, 'predict %s & target %s shape do not match' % (predict.shape, target.shape)
35 | dice = BinaryDiceLoss(**self.kwargs)
36 | total_loss = 0
37 | predict = F.sigmoid(predict)
38 |
39 | for i in range(target.shape[1]):
40 | if i != self.ignore_index:
41 | dice_loss = dice(predict[:, i], target[:, i])
42 | if self.weight is not None:
43 | assert self.weight.shape[0] == target.shape[1], \
44 | 'Expect weight shape [{}], get[{}]'.format(target.shape[1], self.weight.shape[0])
45 | dice_loss *= self.weights[i]
46 | total_loss += dice_loss
47 |
48 | return total_loss/(target.shape[1]-1 if self.ignore_index!=None else target.shape[1])
49 |
50 |
51 | class BCELoss4BraTS(nn.Module):
52 | def __init__(self, ignore_index=None, **kwargs):
53 | super(BCELoss4BraTS, self).__init__()
54 | self.kwargs = kwargs
55 | self.ignore_index = ignore_index
56 | self.criterion = nn.BCEWithLogitsLoss()
57 |
58 | def weighted_BCE_cross_entropy(self, output, target, weights = None):
59 | if weights is not None:
60 | assert len(weights) == 2
61 | output = torch.clamp(output, min=1e-7, max=1-1e-7)
62 | bce = weights[1] * (target * torch.log(output)) + \
63 | weights[0] * ((1-target) * torch.log((1-output)))
64 | else:
65 | output = torch.clamp(output, min=1e-3, max=1 - 1e-3)
66 | bce = target * torch.log(output) + (1-target) * torch.log((1-output))
67 | return torch.neg(torch.mean(bce))
68 |
69 | def forward(self, predict, target):
70 | assert predict.shape == target.shape, 'predict & target shape do not match'
71 | total_loss = 0
72 | for i in range(target.shape[1]):
73 | if i != self.ignore_index:
74 | bce_loss = self.criterion(predict[:, i], target[:, i])
75 | total_loss += bce_loss
76 |
77 | return total_loss.mean()
78 |
79 |
80 | class BCELossBoud(nn.Module):
81 | def __init__(self, weight=None, ignore_index=None, **kwargs):
82 | super(BCELossBoud, self).__init__()
83 | self.kwargs = kwargs
84 | self.weight = weight
85 | self.ignore_index = ignore_index
86 | self.criterion = nn.BCEWithLogitsLoss()
87 |
88 | def weighted_BCE_cross_entropy(self, output, target, weights = None):
89 | if weights is not None:
90 | assert len(weights) == 2
91 | output = torch.clamp(output, min=1e-3, max=1-1e-3)
92 | bce = weights[1] * (target * torch.log(output)) + \
93 | weights[0] * ((1-target) * torch.log((1-output)))
94 | else:
95 | output = torch.clamp(output, min=1e-3, max=1 - 1e-3)
96 | bce = target * torch.log(output) + (1-target) * torch.log((1-output))
97 | return torch.neg(torch.mean(bce))
98 |
99 | def forward(self, predict, target):
100 |
101 | bs, category, depth, width, heigt = target.shape
102 | bce_loss = []
103 | for i in range(predict.shape[1]):
104 | pred_i = predict[:,i]
105 | targ_i = target[:,i]
106 | tt = np.log(depth * width * heigt / (target[:, i].cpu().data.numpy().sum()+1))
107 | bce_i = self.weighted_BCE_cross_entropy(pred_i, targ_i, weights=[1, tt])
108 | bce_loss.append(bce_i)
109 |
110 | bce_loss = torch.stack(bce_loss)
111 | total_loss = bce_loss.mean()
112 | return total_loss
--------------------------------------------------------------------------------
/utils/pyt_utils.py:
--------------------------------------------------------------------------------
1 | # encoding: utf-8
2 | import os
3 | import sys
4 | import time
5 | import argparse
6 | from collections import OrderedDict, defaultdict
7 |
8 | import torch
9 | import torch.utils.model_zoo as model_zoo
10 | import torch.distributed as dist
11 |
12 | from .logger import get_logger
13 |
14 | logger = get_logger()
15 |
16 |
17 | def reduce_tensor(tensor, dst=0, op=dist.ReduceOp.SUM, world_size=1):
18 | tensor = tensor.clone()
19 | dist.reduce(tensor, dst, op)
20 | if dist.get_rank() == dst:
21 | tensor.div_(world_size)
22 |
23 | return tensor
24 |
25 |
26 | def all_reduce_tensor(tensor, op=dist.ReduceOp.SUM, world_size=1, norm=True):
27 | tensor = tensor.clone()
28 | dist.all_reduce(tensor, op)
29 | if norm:
30 | tensor.div_(world_size)
31 |
32 | return tensor
33 |
34 |
35 | def extant_file(x):
36 | """
37 | 'Type' for argparse - checks that file exists but does not open.
38 | """
39 | if not os.path.exists(x):
40 | # Argparse uses the ArgumentTypeError to give a rejection message like:
41 | # error: argument input: x does not exist
42 | raise argparse.ArgumentTypeError("{0} does not exist".format(x))
43 | return x
44 |
45 |
46 |
47 |
--------------------------------------------------------------------------------