├── .idea
├── PCNN-python.iml
├── misc.xml
├── modules.xml
├── vcs.xml
└── workspace.xml
├── README.md
├── lena.jpg
├── main.py
├── noise.py
├── noise.pyc
├── pcnn.py
└── tst.py
/.idea/PCNN-python.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 | true
90 | DEFINITION_ORDER
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 |
262 | project
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 | 1474176334528
403 |
404 |
405 | 1474176334528
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
481 |
482 |
483 |
484 |
485 |
486 |
487 |
488 |
489 |
490 |
491 |
492 |
493 |
494 |
495 |
496 |
497 |
498 |
499 |
500 |
501 |
502 |
503 |
504 |
505 |
506 |
507 |
508 |
509 |
510 |
511 |
512 |
513 |
514 |
515 |
516 |
517 |
518 |
519 |
520 |
521 |
522 |
523 |
524 |
525 |
526 |
527 |
528 |
529 |
530 |
531 |
532 |
533 |
534 |
535 |
536 |
537 |
538 |
539 |
540 |
541 |
542 |
543 |
544 |
545 |
546 |
547 |
548 |
549 |
550 |
551 |
552 |
553 |
554 |
555 |
556 |
557 |
558 |
559 |
560 |
561 |
562 |
563 |
564 |
565 |
566 |
567 |
568 |
569 |
570 |
571 |
572 |
573 |
574 |
575 |
576 |
577 |
578 |
579 |
580 |
581 |
582 |
583 |
584 |
585 |
586 |
587 |
588 |
589 |
590 |
591 |
592 |
593 |
594 |
595 |
596 |
597 |
598 |
599 |
600 |
601 |
602 |
603 |
604 |
605 |
606 |
607 |
608 |
609 |
610 |
611 |
612 |
613 |
614 |
615 |
616 |
617 |
618 |
619 |
620 |
621 |
622 |
623 |
624 |
625 |
626 |
627 |
628 |
629 |
630 |
631 |
632 |
633 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # PCNN-python
2 | 利用python学习PCNN,创建于20160912.
3 |
4 | 完成了对PCNN算法的点火过程,创建于20160930
5 |
6 | 整理代码,创建pcnn.py 20170623
7 |
--------------------------------------------------------------------------------
/lena.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jiayuqiu/PCNN-python/f78fe64e6644cddf45026bdb6510c0d6359b2dec/lena.jpg
--------------------------------------------------------------------------------
/main.py:
--------------------------------------------------------------------------------
1 | # coding:utf-8 #
2 |
3 | from pylab import *
4 | from scipy import signal as sg
5 | from noise import sp_noise
6 |
7 | import csv
8 | import numpy as np
9 | #####################################################################
10 |
11 | class Pcnn_class():
12 |
13 | def PCNN(self, img_arr, iteration_num,
14 | Af = 0.60, Al = 1.0, Atop = 0.80,
15 | Vf = 0.2, Vl = 0.2, Vtop = 2000.0,
16 | Beta = 0.1):
17 | # 获得矩阵的维度
18 |
19 | x_len, y_len = img_arr.shape
20 |
21 | # E = np.eye(x_len, dtype="float64")
22 |
23 | # 定义神经元矩阵,建立n=0时的F、L矩阵(都为0矩阵)
24 |
25 | W = np.array([[0.7070, 1, 0.7070], [1, 0, 1], [0.7070, 1, 0.7070]])
26 | M = np.array([[0.7070, 1, 0.7070], [1, 0, 1], [0.7070, 1, 0.7070]])
27 | Y = np.zeros_like(img_arr, dtype="float64")
28 | F = np.zeros_like(img_arr, dtype="float64")
29 | L = np.zeros_like(img_arr, dtype="float64")
30 | top = np.zeros_like(img_arr, dtype="float64") + 200.0
31 |
32 | # 定义点火过程
33 | temp = img_arr
34 | for i in range(0, iteration_num):
35 |
36 | K = sg.convolve2d(Y, M, mode="same")
37 | # print "第 %s 次迭代,K矩阵:" % i, "\n", K
38 | # raw_input("=================================")
39 | F = exp(-Af) * F + Vf * K
40 | L = exp(-Al) * L + Vl * K
41 | # print "第 %s 次迭代,L矩阵:" % i, "\n", L
42 | # raw_input("=================================")
43 | U = F * (1 + Beta * L)
44 | top = exp(-Atop) * top + Vtop * Y
45 | # print top
46 | # raw_input("top====================================")
47 | for x_axis in range(0, x_len):
48 | for y_axis in range(0, y_len):
49 |
50 | if (U[x_axis, y_axis] > top[x_axis, y_axis]):
51 | Y[x_axis, y_axis] = 1.0
52 |
53 | else:
54 | Y[x_axis, y_axis] = 0.0
55 |
56 | print len(Y[Y==1])
57 | print "第 %s 次迭代完成。\n" % i
58 |
59 | # raw_input("=============================================")
60 | # print U
61 | return U
62 |
63 | #####################################################################
64 |
65 | # 获得图像矩阵
66 |
67 | if __name__ == "__main__":
68 |
69 | # img = imread('/home/qiujiayu/图片/10_lena.jpg')
70 | csvfile = file('/home/qiujiayu/文档/3_lena.csv', 'rb')
71 | img = []
72 | for line in csvfile:
73 | img.append(line.split(','))
74 |
75 | img = [[float(y) for y in x]for x in img]
76 | img = np.array(img)
77 |
78 | noise_img = sp_noise(img, 0.05)
79 | # raw_input("================================")
80 | img_matlab = imread('/home/qiujiayu/图片/untitled.jpg')
81 |
82 | # 将图像矩阵归一化
83 |
84 | # img_normalized = np.array([[[float(rgb/255.0) for rgb in y_axis] for y_axis in x_axis] for x_axis in img])
85 | # img_nor = np.array([[float(axis/255.0) for axis in line]for line in img])
86 |
87 | p=Pcnn_class()
88 | img_out = p.PCNN(img_arr=img, iteration_num=30)
89 | # img_out = img_out * 255.0
90 |
91 | # print img_out
92 | # raw_input("===========================================")
93 | print "done!"
94 |
95 | gray()
96 | imshow(noise_img)
97 | show()
98 |
99 |
--------------------------------------------------------------------------------
/noise.py:
--------------------------------------------------------------------------------
1 | import numpy as np
2 | import random
3 | # import cv2
4 |
5 | def sp_noise(image,prob):
6 |
7 | output = np.zeros(image.shape,np.uint8)
8 | thres = 1 - prob
9 | for i in range(image.shape[0]):
10 | for j in range(image.shape[1]):
11 | rdn = random.random()
12 | if rdn < prob:
13 | output[i][j] = 0
14 | elif rdn > thres:
15 | output[i][j] = 255
16 | else:
17 | output[i][j] = image[i][j]
18 | return output
19 |
20 | # image = cv2.imread('image.jpg',0) # Only for grayscale image
21 | # noise_img = sp_noise(image,0.05)
22 | # cv2.imwrite('sp_noise.jpg', noise_img)
--------------------------------------------------------------------------------
/noise.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jiayuqiu/PCNN-python/f78fe64e6644cddf45026bdb6510c0d6359b2dec/noise.pyc
--------------------------------------------------------------------------------
/pcnn.py:
--------------------------------------------------------------------------------
1 | # coding:utf-8
2 |
3 | from pylab import *
4 | from scipy import signal as sg
5 | from noise import sp_noise
6 |
7 | ############################################################################################
8 | class pcnn(object):
9 | """pcnn类"""
10 |
11 | #--------------------------------------------------------------------------------------
12 | def __init__(self, iterationNum = 10):
13 | """初始化pcnn参数"""
14 | # 迭代次数
15 | self.iterationNum = iterationNum
16 |
17 | # 馈送输入的时间衰减常数
18 | self.Af = 0.60
19 |
20 | # 链接输入的时间衰减常数
21 | self.Al = 1.00
22 |
23 | # 动态门限的时间衰减常数
24 | self.Atop = 0.80
25 |
26 | # 馈送输入的放大系数
27 | self.Vf = 0.20
28 |
29 | # 链接输入的放大系数
30 | self.Vl = 0.20
31 |
32 | # 动态门限的放大系数
33 | self.Vtop = 2000.
34 |
35 | # 内部链接因子
36 | self.beta = 0.1
37 |
38 | # 动态门限初始值
39 | self.topInitValue = 200.
40 |
41 | # 神经元联系矩阵
42 | self.M = np.array([[0.7070, 1, 0.7070], [1, 0, 1], [0.7070, 1, 0.7070]])
43 |
44 | #---------------------------------------------------------------------------------------
45 | def initArr(self, imgArr):
46 | """初始化神经元矩阵"""
47 | # 脉冲矩阵
48 | Y = np.zeros_like(imgArr, dtype="float64")
49 |
50 | # 反馈输入矩阵
51 | F = np.zeros_like(imgArr, dtype="float64")
52 |
53 | # 耦合链接
54 | L = np.zeros_like(imgArr, dtype="float64")
55 |
56 | # 动态门限
57 | top = np.zeros_like(imgArr, dtype="float64") + self.topInitValue
58 |
59 | return [Y, F, L, top]
60 |
61 | #---------------------------------------------------------------------------------------
62 | def fire(self, pmtArr):
63 | """pcnn点火过程"""
64 |
65 | x_len, y_len = pmtArr[0].shape
66 | for i in range(0, self.iterationNum):
67 | K = sg.convolve2d(pmtArr[0], self.M, mode="same")
68 | F = exp(-self.Af) * pmtArr[1] + self.Vf * K
69 | L = exp(-self.Al) * pmtArr[2] + self.Vl * K
70 | U = F * (1 + self.beta * L)
71 | top = exp(-self.Atop) * pmtArr[3] + self.Vtop * pmtArr[3]
72 | for x_axis in range(0, x_len):
73 | for y_axis in range(0, y_len):
74 |
75 | if (U[x_axis, y_axis] > top[x_axis, y_axis]):
76 | pmtArr[0][x_axis, y_axis] = 1.0
77 |
78 | else:
79 | pmtArr[0][x_axis, y_axis] = 0.0
80 |
81 | print "第 %s 次迭代完成。\n" % i
82 | return U
83 |
84 | #---------------------------------------------------------------------------------------
85 | def pcnnMain(self, imgArr):
86 | """pcnn主函数
87 |
88 | 输入:imgArr - 图像矩阵
89 | iterationNum - 迭代次数,默认10次
90 | """
91 | # 初始化神经元矩阵,并建立n=0时,F,L矩阵
92 | pass
93 |
94 | if __name__ == "__main__":
95 | print("hello world!")
96 |
--------------------------------------------------------------------------------
/tst.py:
--------------------------------------------------------------------------------
1 |
2 |
3 | class cls(object):
4 |
5 |
--------------------------------------------------------------------------------