├── LICENSE.md ├── README.md ├── auxiliaryfunctions.py ├── best_classifier.py ├── classifytraj.py ├── datacleaning.py ├── down_left_point.py ├── fast_dtw_neigbors.py ├── grid_points.py ├── lcss_neighbors.py ├── requirements.txt ├── test_set.csv ├── test_set_a1.csv ├── test_set_a2.csv └── train_set.csv.zip /LICENSE.md: -------------------------------------------------------------------------------- 1 | 2 | Apache License 3 | Version 2.0, January 2004 4 | http://www.apache.org/licenses/ 5 | 6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION 7 | 8 | 1. Definitions. 9 | 10 | "License" shall mean the terms and conditions for use, reproduction, 11 | and distribution as defined by Sections 1 through 9 of this document. 12 | 13 | "Licensor" shall mean the copyright owner or entity authorized by 14 | the copyright owner that is granting the License. 15 | 16 | "Legal Entity" shall mean the union of the acting entity and all 17 | other entities that control, are controlled by, or are under common 18 | control with that entity. For the purposes of this definition, 19 | "control" means (i) the power, direct or indirect, to cause the 20 | direction or management of such entity, whether by contract or 21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the 22 | outstanding shares, or (iii) beneficial ownership of such entity. 23 | 24 | "You" (or "Your") shall mean an individual or Legal Entity 25 | exercising permissions granted by this License. 26 | 27 | "Source" form shall mean the preferred form for making modifications, 28 | including but not limited to software source code, documentation 29 | source, and configuration files. 30 | 31 | "Object" form shall mean any form resulting from mechanical 32 | transformation or translation of a Source form, including but 33 | not limited to compiled object code, generated documentation, 34 | and conversions to other media types. 35 | 36 | "Work" shall mean the work of authorship, whether in Source or 37 | Object form, made available under the License, as indicated by a 38 | copyright notice that is included in or attached to the work 39 | (an example is provided in the Appendix below). 40 | 41 | "Derivative Works" shall mean any work, whether in Source or Object 42 | form, that is based on (or derived from) the Work and for which the 43 | editorial revisions, annotations, elaborations, or other modifications 44 | represent, as a whole, an original work of authorship. For the purposes 45 | of this License, Derivative Works shall not include works that remain 46 | separable from, or merely link (or bind by name) to the interfaces of, 47 | the Work and Derivative Works thereof. 48 | 49 | "Contribution" shall mean any work of authorship, including 50 | the original version of the Work and any modifications or additions 51 | to that Work or Derivative Works thereof, that is intentionally 52 | submitted to Licensor for inclusion in the Work by the copyright owner 53 | or by an individual or Legal Entity authorized to submit on behalf of 54 | the copyright owner. For the purposes of this definition, "submitted" 55 | means any form of electronic, verbal, or written communication sent 56 | to the Licensor or its representatives, including but not limited to 57 | communication on electronic mailing lists, source code control systems, 58 | and issue tracking systems that are managed by, or on behalf of, the 59 | Licensor for the purpose of discussing and improving the Work, but 60 | excluding communication that is conspicuously marked or otherwise 61 | designated in writing by the copyright owner as "Not a Contribution." 62 | 63 | "Contributor" shall mean Licensor and any individual or Legal Entity 64 | on behalf of whom a Contribution has been received by Licensor and 65 | subsequently incorporated within the Work. 66 | 67 | 2. Grant of Copyright License. Subject to the terms and conditions of 68 | this License, each Contributor hereby grants to You a perpetual, 69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 70 | copyright license to reproduce, prepare Derivative Works of, 71 | publicly display, publicly perform, sublicense, and distribute the 72 | Work and such Derivative Works in Source or Object form. 73 | 74 | 3. Grant of Patent License. Subject to the terms and conditions of 75 | this License, each Contributor hereby grants to You a perpetual, 76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable 77 | (except as stated in this section) patent license to make, have made, 78 | use, offer to sell, sell, import, and otherwise transfer the Work, 79 | where such license applies only to those patent claims licensable 80 | by such Contributor that are necessarily infringed by their 81 | Contribution(s) alone or by combination of their Contribution(s) 82 | with the Work to which such Contribution(s) was submitted. If You 83 | institute patent litigation against any entity (including a 84 | cross-claim or counterclaim in a lawsuit) alleging that the Work 85 | or a Contribution incorporated within the Work constitutes direct 86 | or contributory patent infringement, then any patent licenses 87 | granted to You under this License for that Work shall terminate 88 | as of the date such litigation is filed. 89 | 90 | 4. Redistribution. You may reproduce and distribute copies of the 91 | Work or Derivative Works thereof in any medium, with or without 92 | modifications, and in Source or Object form, provided that You 93 | meet the following conditions: 94 | 95 | (a) You must give any other recipients of the Work or 96 | Derivative Works a copy of this License; and 97 | 98 | (b) You must cause any modified files to carry prominent notices 99 | stating that You changed the files; and 100 | 101 | (c) You must retain, in the Source form of any Derivative Works 102 | that You distribute, all copyright, patent, trademark, and 103 | attribution notices from the Source form of the Work, 104 | excluding those notices that do not pertain to any part of 105 | the Derivative Works; and 106 | 107 | (d) If the Work includes a "NOTICE" text file as part of its 108 | distribution, then any Derivative Works that You distribute must 109 | include a readable copy of the attribution notices contained 110 | within such NOTICE file, excluding those notices that do not 111 | pertain to any part of the Derivative Works, in at least one 112 | of the following places: within a NOTICE text file distributed 113 | as part of the Derivative Works; within the Source form or 114 | documentation, if provided along with the Derivative Works; or, 115 | within a display generated by the Derivative Works, if and 116 | wherever such third-party notices normally appear. The contents 117 | of the NOTICE file are for informational purposes only and 118 | do not modify the License. You may add Your own attribution 119 | notices within Derivative Works that You distribute, alongside 120 | or as an addendum to the NOTICE text from the Work, provided 121 | that such additional attribution notices cannot be construed 122 | as modifying the License. 123 | 124 | You may add Your own copyright statement to Your modifications and 125 | may provide additional or different license terms and conditions 126 | for use, reproduction, or distribution of Your modifications, or 127 | for any such Derivative Works as a whole, provided Your use, 128 | reproduction, and distribution of the Work otherwise complies with 129 | the conditions stated in this License. 130 | 131 | 5. Submission of Contributions. Unless You explicitly state otherwise, 132 | any Contribution intentionally submitted for inclusion in the Work 133 | by You to the Licensor shall be under the terms and conditions of 134 | this License, without any additional terms or conditions. 135 | Notwithstanding the above, nothing herein shall supersede or modify 136 | the terms of any separate license agreement you may have executed 137 | with Licensor regarding such Contributions. 138 | 139 | 6. Trademarks. This License does not grant permission to use the trade 140 | names, trademarks, service marks, or product names of the Licensor, 141 | except as required for reasonable and customary use in describing the 142 | origin of the Work and reproducing the content of the NOTICE file. 143 | 144 | 7. Disclaimer of Warranty. Unless required by applicable law or 145 | agreed to in writing, Licensor provides the Work (and each 146 | Contributor provides its Contributions) on an "AS IS" BASIS, 147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or 148 | implied, including, without limitation, any warranties or conditions 149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A 150 | PARTICULAR PURPOSE. You are solely responsible for determining the 151 | appropriateness of using or redistributing the Work and assume any 152 | risks associated with Your exercise of permissions under this License. 153 | 154 | 8. Limitation of Liability. In no event and under no legal theory, 155 | whether in tort (including negligence), contract, or otherwise, 156 | unless required by applicable law (such as deliberate and grossly 157 | negligent acts) or agreed to in writing, shall any Contributor be 158 | liable to You for damages, including any direct, indirect, special, 159 | incidental, or consequential damages of any character arising as a 160 | result of this License or out of the use or inability to use the 161 | Work (including but not limited to damages for loss of goodwill, 162 | work stoppage, computer failure or malfunction, or any and all 163 | other commercial damages or losses), even if such Contributor 164 | has been advised of the possibility of such damages. 165 | 166 | 9. Accepting Warranty or Additional Liability. While redistributing 167 | the Work or Derivative Works thereof, You may choose to offer, 168 | and charge a fee for, acceptance of support, warranty, indemnity, 169 | or other liability obligations and/or rights consistent with this 170 | License. However, in accepting such obligations, You may act only 171 | on Your own behalf and on Your sole responsibility, not on behalf 172 | of any other Contributor, and only if You agree to indemnify, 173 | defend, and hold each Contributor harmless for any liability 174 | incurred by, or claims asserted against, such Contributor by reason 175 | of your accepting any such warranty or additional liability. 176 | 177 | END OF TERMS AND CONDITIONS 178 | 179 | APPENDIX: How to apply the Apache License to your work. 180 | 181 | To apply the Apache License to your work, attach the following 182 | boilerplate notice, with the fields enclosed by brackets "{}" 183 | replaced with your own identifying information. (Don't include 184 | the brackets!) The text should be enclosed in the appropriate 185 | comment syntax for the file format. We also recommend that a 186 | file or class name and description of purpose be included on the 187 | same "printed page" as the copyright notice for easier 188 | identification within third-party archives. 189 | 190 | Copyright {yyyy} {name of copyright owner} 191 | 192 | Licensed under the Apache License, Version 2.0 (the "License"); 193 | you may not use this file except in compliance with the License. 194 | You may obtain a copy of the License at 195 | 196 | http://www.apache.org/licenses/LICENSE-2.0 197 | 198 | Unless required by applicable law or agreed to in writing, software 199 | distributed under the License is distributed on an "AS IS" BASIS, 200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. 201 | See the License for the specific language governing permissions and 202 | limitations under the License. 203 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | Trajectory Analysis and Classification in Python (Pandas and Scikit Learn) 2 | 3 | A university project for the postgraduate class of Data Mining. 4 | 5 | We were given a train_set with geographical points paired with the time interval. Firstly, we cleaned the dataset and then we formed the trajectories (with the corresponding route id). The last step of this part was to filter out some trajectories based on _their total_distance and max distance (between two of their points). 6 | 7 | The goal of this project was firstly to compute trajectory similarity between trajectories of test_set_a1/a2.csv and the train_set.csv. 8 | 9 | The algorithms used for that were : 10 | 1) Fast Dynamic Time Warping (Fast-DTW), taken from https://github.com/slaypni/fastdtw 11 | 2) Longest Common Subsequence algorithm, which i implemented. 12 | 13 | The distance taken into account each time, was the Havershine distance of the points. Files lcss_neighbors.py and fast_dtw_neighbors.py read the corresponding trajectories from test_set_a1/a2.csv and find the 5 most 'similar' trajectories from the cleaned dataset. Finally, they plot them with some specific metrics of similarity. 14 | 15 | The second part of the project was to train KNN,Random Forest, and Logistic Regression classifiers and predict the routes of trajectories of the test_set.csv . The first step was to assign each trajectory to a string (composed of cell codes) via a grid representation. In the second step, 10-cross-fold-validation was used to train the classifiers with grid strings of the dataset with accuracy metric . I conducted various experiments, by changing each classifier's parameters. 16 | 17 | Lastly,the classifiers with the best accuracy were bunched together in the Voting Classifier. The final classifier was used to find labels for the trajectories of the test_set.csv . 18 | -------------------------------------------------------------------------------- /auxiliaryfunctions.py: -------------------------------------------------------------------------------- 1 | import gmplot 2 | from math import sin, cos, sqrt, atan2, radians 3 | 4 | 5 | def haversine_np(pointa, pointb): 6 | # approximate radius of earth in km 7 | 8 | R = 6373.0 9 | 10 | lat1 = radians(pointa[2]) 11 | lon1 = radians(pointa[1]) 12 | lat2 = radians(pointb[2]) 13 | lon2 = radians(pointb[1]) 14 | 15 | dlon = lon2 - lon1 16 | dlat = lat2 - lat1 17 | 18 | a = sin(dlat / 2) ** 2 + cos(lat1) * cos(lat2) * sin(dlon / 2) ** 2 19 | c = 2 * atan2(sqrt(a), sqrt(1 - a)) 20 | 21 | distance = R * c 22 | 23 | # print("Result:", distance) 24 | return distance 25 | 26 | 27 | def compute_distances(trajectory): 28 | maxel = 0.0 29 | total_dst = 0.0 30 | 31 | for i in range(0, len(trajectory) - 1): 32 | dist = 0.0 33 | dist = haversine_np(trajectory[i], trajectory[i + 1]) 34 | if dist > maxel: 35 | maxel = dist 36 | total_dst += dist 37 | return [total_dst, maxel] 38 | 39 | 40 | def plot_traj(df_traj, plotname): 41 | longtitudes = [] 42 | latitudes = [] 43 | for elem2 in df_traj: 44 | longtitudes.append(elem2[1]) 45 | latitudes.append(elem2[2]) 46 | # now let's plot: 47 | gmap = gmplot.GoogleMapPlotter(latitudes[0], longtitudes[0], len(df_traj)) 48 | gmap.plot(latitudes, longtitudes, 'cornflowerblue', edge_width=10) 49 | gmap.draw(plotname + ".html") 50 | 51 | 52 | def plot_traj_red(com_points, df_traj, plotname): 53 | longtitudes = [] 54 | latitudes = [] 55 | for elem2 in df_traj: 56 | longtitudes.append(elem2[1]) 57 | latitudes.append(elem2[2]) 58 | # now let's plot: 59 | gmap = gmplot.GoogleMapPlotter(latitudes[0], longtitudes[0], 12) 60 | gmap.plot(latitudes, longtitudes, 'cornflowerblue', edge_width=10) 61 | 62 | 63 | longtitudes = [] 64 | latitudes = [] 65 | for elem2 in com_points: 66 | longtitudes.append(elem2[1]) 67 | latitudes.append(elem2[2]) 68 | # now let's plot: 69 | gmap.plot(latitudes, longtitudes, 'red', edge_width=10) 70 | 71 | gmap.draw(plotname + ".html") 72 | 73 | 74 | def print_results(df_traj, distances, index, name): 75 | target_traj_coordinates = df_traj['timestamp_longitude_latitude'].iloc[index] # get target trajectory 76 | target_journeypattid = df_traj['JourneyPatternId'].iloc[index] # get target journey pattern id 77 | 78 | print 79 | "Traj: " + str(target_journeypattid) + "Distance is %.4f km's." % distances[index] 80 | plot_traj(target_traj_coordinates, name) 81 | 82 | 83 | def lcss_trigger(traj, df, trigger, index): 84 | # if trigger==1 then it returns the # of matching points 85 | if (trigger == 1): 86 | matching_points = [] 87 | count = 0; 88 | for elem in df['timestamp_longitude_latitude']: 89 | n0 = len(traj) 90 | n1 = len(elem) 91 | # An (m+1) times (n+1) matrix 92 | C = [[0] * (n1 + 1) for _ in range(n0 + 1)] 93 | for i in range(1, n0 + 1): 94 | for j in range(1, n1 + 1): 95 | if haversine_np(traj[i - 1], elem[j - 1]) <= 0.2: 96 | C[i][j] = C[i - 1][j - 1] + 1 97 | else: 98 | C[i][j] = max(C[i][j - 1], C[i - 1][j]) 99 | matching_points.append(C[n0][n1]) 100 | count = count + 1 101 | elif (trigger == 2): # else it returns the list of common points of traj with df[index] traj 102 | common_points = [] 103 | elem = df['timestamp_longitude_latitude'].iloc[index] 104 | n0 = len(traj) 105 | n1 = len(elem) 106 | # An (m+1) times (n+1) matrix 107 | C = [[0] * (n1 + 1) for _ in range(n0 + 1)] 108 | for i in range(1, n0 + 1): 109 | for j in range(1, n1 + 1): 110 | if haversine_np(traj[i - 1], elem[j - 1]) <= 0.2: 111 | C[i][j] = C[i - 1][j - 1] + 1 112 | if (elem[j - 1] not in common_points): 113 | common_points.append(elem[j - 1]) 114 | else: 115 | C[i][j] = max(C[i][j - 1], C[i - 1][j]) 116 | if (trigger == 1): 117 | return matching_points 118 | else: 119 | return common_points 120 | -------------------------------------------------------------------------------- /best_classifier.py: -------------------------------------------------------------------------------- 1 | from sklearn.linear_model import SGDClassifier 2 | from sklearn.feature_extraction.text import CountVectorizer 3 | from sklearn.feature_extraction.text import TfidfTransformer 4 | import pandas as pd 5 | from sklearn.decomposition import TruncatedSVD 6 | from sklearn import preprocessing 7 | from sklearn.pipeline import Pipeline 8 | from sklearn.grid_search import GridSearchCV 9 | from sklearn import metrics 10 | 11 | import numpy as np 12 | from sklearn.neighbors import KNeighborsClassifier 13 | from sklearn.ensemble import RandomForestClassifier 14 | import csv 15 | #k-fold cross validation 16 | from sklearn.cross_validation import KFold 17 | #accuracy 18 | from sklearn.metrics import accuracy_score 19 | 20 | 21 | # my method 22 | from sklearn.ensemble import VotingClassifier 23 | 24 | 25 | def compute_and_print(): #prints all results 26 | stats = [] 27 | for i, (train_index, test_index) in enumerate(kf): 28 | #10-fold cross validation (9 samples for training, 1 for testing) 29 | X_train1, X_test = X_train[train_index], X_train[test_index] 30 | Y_train1, Y_test = Y_train[train_index], Y_train[test_index] 31 | probas_ = pipeline.fit(X_train1,Y_train1).predict(X_test) 32 | stats.append(accuracy_score(Y_test, probas_)) 33 | return stats 34 | 35 | 36 | ''' preprocessing: 37 | apart from CountVectorizer and TfidfTransformer TruncatedSVD of 300 elements and random state 42''' 38 | 39 | df=pd.read_csv("grids.csv") 40 | #print df 41 | 42 | le = preprocessing.LabelEncoder() 43 | le.fit(df["TripId"]) 44 | Y_train=le.transform(df["TripId"]) 45 | X_train1=df['Grids'] 46 | 47 | 48 | 49 | X_train=np.array(X_train1) 50 | 51 | vectorizer=CountVectorizer() 52 | transformer=TfidfTransformer() 53 | svd=TruncatedSVD(n_components=300, random_state=42) 54 | kf = KFold(len(X_train), n_folds=10) 55 | 56 | #Our best method 57 | # voting classifier of 3 classifiers 58 | '''1 best version of KNN 59 | 2 simple RandomForestClassifier 60 | 3 Best RandomForestClassifier''' 61 | 62 | #My method---Voting Classifier 63 | clf1 = RandomForestClassifier(n_estimators=40,n_jobs=-1) 64 | clf2 = RandomForestClassifier(n_estimators=50,n_jobs=-1) 65 | clf3 = KNeighborsClassifier(n_neighbors=7,n_jobs=-1) 66 | clf = VotingClassifier(estimators=[('rf1',clf1),('rf2',clf2),('knn',clf3)], voting='hard') 67 | pipeline = Pipeline([ 68 | ('vect', vectorizer), 69 | ('tfidf', transformer), 70 | ('svd',svd), 71 | ('clf', clf) 72 | ]) 73 | 74 | print compute_and_print() 75 | -------------------------------------------------------------------------------- /classifytraj.py: -------------------------------------------------------------------------------- 1 | from sklearn.linear_model import SGDClassifier 2 | from sklearn.feature_extraction.text import CountVectorizer 3 | from sklearn.feature_extraction.text import TfidfTransformer 4 | import pandas as pd 5 | from sklearn.decomposition import TruncatedSVD 6 | from sklearn import preprocessing 7 | from sklearn.pipeline import Pipeline 8 | 9 | 10 | import numpy as np 11 | from sklearn.neighbors import KNeighborsClassifier 12 | from sklearn.linear_model import LogisticRegression 13 | from sklearn.ensemble import RandomForestClassifier 14 | import csv 15 | #k-fold cross validation 16 | from sklearn.cross_validation import KFold 17 | #accuracy 18 | from sklearn.metrics import accuracy_score 19 | 20 | 21 | # my method 22 | from sklearn.ensemble import VotingClassifier 23 | 24 | 25 | def compute_and_print(): #prints all results 26 | stats = [] 27 | for i, (train_index, test_index) in enumerate(kf): 28 | #10-fold cross validation (9 samples for training, 1 for testing) 29 | X_train1, X_test = X_train[train_index], X_train[test_index] 30 | Y_train1, Y_test = Y_train[train_index], Y_train[test_index] 31 | probas_ = pipeline.fit(X_train1,Y_train1).predict(X_test) 32 | stats.append(accuracy_score(Y_test, probas_)) 33 | return stats 34 | stats = [] 35 | stats1 = [] 36 | stats2 = [] 37 | stats3 = [] 38 | 39 | #Read Data 40 | df=pd.read_csv("grids.csv") 41 | #print df 42 | 43 | le = preprocessing.LabelEncoder() 44 | le.fit(df["TripId"]) 45 | Y_train=le.transform(df["TripId"]) 46 | X_train1=df['Grids'] 47 | 48 | 49 | 50 | X_train=np.array(X_train1) 51 | 52 | vectorizer=CountVectorizer() 53 | transformer=TfidfTransformer() 54 | svd=TruncatedSVD(n_components=300, random_state=42) 55 | kf = KFold(len(X_train), n_folds=10) 56 | 57 | 58 | #knn 59 | clf=KNeighborsClassifier(n_neighbors=7,n_jobs=-1) #best exper for KNN 60 | pipeline = Pipeline([ 61 | ('vect', vectorizer), 62 | ('tfidf', transformer), 63 | ('svd',svd), 64 | ('clf', clf) 65 | ]) 66 | 67 | stats1 = compute_and_print() 68 | 69 | 70 | 71 | #randomforest 72 | clf=RandomForestClassifier(n_estimators=50,n_jobs=-1) 73 | pipeline = Pipeline([ 74 | ('vect', vectorizer), 75 | ('tfidf', transformer), 76 | ('svd',svd), 77 | ('clf', clf) 78 | ]) 79 | 80 | stats2 = compute_and_print() 81 | 82 | 83 | 84 | #logistic regression 85 | clf=LogisticRegression() 86 | pipeline = Pipeline([ 87 | ('vect', vectorizer), 88 | ('tfidf', transformer), 89 | ('svd',svd), 90 | ('clf', clf) 91 | ]) 92 | 93 | 94 | stats3 = compute_and_print() 95 | 96 | csv_out = open('EvaluationsMetricAccuracy', 'wb') 97 | clwriter = csv.writer(csv_out) 98 | 99 | for i in range(1,11): 100 | stats.append('Fold'+str(i) ) 101 | 102 | fieldnames = ['Accuracy','KNN','RandomForests','LogisticRegression'] 103 | rows = zip(stats, stats1, stats2,stats3) 104 | clwriter.writerow(fieldnames) 105 | clwriter.writerows(rows) 106 | csv_out.close() 107 | -------------------------------------------------------------------------------- /datacleaning.py: -------------------------------------------------------------------------------- 1 | import os 2 | import random 3 | 4 | import pandas as pd 5 | 6 | from auxiliaryfunctions import * 7 | 8 | df = pd.read_csv('train_set.csv') 9 | df = df[pd.notnull(df['journeyPatternId'])] # deletes null values from dataset 10 | 11 | pd.set_option('display.max_rows', 1000000000) 12 | 13 | df['route'] = df['vehicleID'].map(str) + df['timestamp'].map(str) 14 | df = df.sort_values(by=['route']) 15 | 16 | df = df.reset_index(drop=True) # re index elements of df 17 | 18 | print("ready for cleaning.(completed sorting and creation of route)") 19 | 20 | df['timestamp_longitude_latitude'] = df[['timestamp', 'longitude', 'latitude']].values.tolist() 21 | 22 | df_2 = pd.DataFrame(columns=['TripId', 'JourneyPatternId', 'timestamp_longitude_latitude']) 23 | 24 | TripId_LOCS = [] 25 | 26 | count = 0 27 | 28 | for index, row in df.iterrows(): 29 | 30 | TripId_LOCS.append(df['timestamp_longitude_latitude'][index]) 31 | 32 | if (index + 1) == df.shape[0]: # 1484821 33 | break 34 | 35 | if df['journeyPatternId'][index] != df['journeyPatternId'][index + 1]: 36 | a = TripId_LOCS 37 | df_2 = df_2.append( 38 | {'TripId': count, 'JourneyPatternId': df['journeyPatternId'][index], 'timestamp_longitude_latitude': a}, 39 | ignore_index=True) 40 | count = count + 1 41 | TripId_LOCS = [] # make the list empty 42 | # print count 43 | 44 | df_2.to_pickle('TripId.df') 45 | 46 | # Data cleaning segment 47 | 48 | 49 | df3 = pd.read_pickle('./TripId.df') 50 | init_counter = len(df3.index) 51 | print('initially we had ' + str(init_counter) + ' trajectories') 52 | df_final = pd.DataFrame( 53 | columns=['TripId', 'JourneyPatternId', 'timestamp_longitude_latitude', 'total_distance', 'max_distance']) 54 | 55 | totaldrop = 0 56 | maxdrop = 0 57 | for index, row in df3.iterrows(): 58 | td = compute_distances(df3['timestamp_longitude_latitude'][index]) # for each traj compute whole havershine in kms. 59 | if (td[0] <= 2): # total distance smaller than 2kms 60 | totaldrop = totaldrop + 1 61 | continue 62 | if (td[1] >= 2): # max distance bigger than 2kms 63 | maxdrop = maxdrop + 1 64 | continue 65 | else: # write info in new_final_cleaned dataframe 66 | df_final = df_final.append({'TripId': df3['TripId'][index], 'JourneyPatternId': df3['JourneyPatternId'][index], 67 | 'timestamp_longitude_latitude': df3['timestamp_longitude_latitude'][index], 68 | 'total_distance': td[0], 'max_distance': td[1]}, ignore_index=True) 69 | 70 | final_counter = len(df_final.index) 71 | print('we dropped ' + str(totaldrop) + ' trajectories from totaldistance.') 72 | print('we dropped ' + str(maxdrop) + ' trajectories from maxdistance.') 73 | print('finally,we have ' + str(final_counter) + ' trajectories') 74 | df_final.to_csv('final_cleaned.csv') 75 | df_final.to_pickle('final_cleaned.df') 76 | 77 | # Random Plotting Segment 78 | 79 | df_gm = pd.read_pickle('./final_cleaned.df') 80 | 81 | first_traj = df_gm['timestamp_longitude_latitude'].iloc[0] 82 | 83 | # randomly choose 5 trajectories 84 | r5 = random.sample(range(0, len(df_gm)), 5) 85 | i = 1 86 | # create output directory 87 | os.mkdir("Random_Images") 88 | for elem in r5: 89 | print 90 | "i chose traj : " + df_gm["JourneyPatternId"].iloc[elem] 91 | traj = df_gm['timestamp_longitude_latitude'].iloc[elem] 92 | plot_traj(traj, "./Random_Images/RandomImage" + str(i)) 93 | i = i + 1 94 | -------------------------------------------------------------------------------- /down_left_point.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | 3 | df = pd.read_pickle('final_cleaned.df') 4 | df_2 = pd.DataFrame(columns=['lon', 'the', 'timestamp_longitude_latitude']) 5 | df_3 = pd.DataFrame(columns=['lat', 'the', 'timestamp_longitude_latitude']) 6 | 7 | 8 | the_lst_lon = [] 9 | the_lst_lat = [] 10 | 11 | for index, row in df.iterrows(): 12 | lst = df['timestamp_longitude_latitude'].iloc[index] 13 | min_lon = lst[0][1] 14 | min_lat = lst[0][2] 15 | the_lon = str(lst[0][1]) + ',' + str(lst[0][2]) 16 | the_lat = str(lst[0][1]) + ',' + str(lst[0][2]) 17 | for i in range(len(lst)): 18 | temp_lon = lst[i][1] 19 | temp_lat = lst[i][2] 20 | if temp_lon < min_lon: 21 | min_lon = temp_lon 22 | the_lon = str(lst[i][1]) + ',' + str(lst[i][2]) # the leftest diadromi point 23 | the_lst_lon = lst 24 | if temp_lat < min_lat: 25 | min_lat = temp_lat 26 | the_lat = str(lst[i][1]) + ',' + str(lst[i][2]) 27 | the_lst_lat = lst 28 | 29 | print("found min lon and lat of traj") 30 | df_2 = df_2.append({'lon': str(min_lon)}, ignore_index=True) 31 | df_3 = df_3.append({'lat': str(min_lat)}, ignore_index=True) 32 | print("ready to sort") 33 | df_2 = df_2.sort_values(by=['lon'], ascending=False) 34 | df_3 = df_3.sort_values(by=['lat']) 35 | 36 | downleft_lon = df_2['lon'].iloc[0] 37 | downleft_lat = df_3['lat'].iloc[0] 38 | 39 | print(downleft_lon) 40 | print(downleft_lat) 41 | -------------------------------------------------------------------------------- /fast_dtw_neigbors.py: -------------------------------------------------------------------------------- 1 | import csv 2 | import os 3 | import re 4 | 5 | import numpy as np 6 | import pandas as pd 7 | from fastdtw import fastdtw 8 | 9 | from auxiliaryfunctions import * 10 | 11 | df = pd.read_pickle('./final_cleaned.df') 12 | # l = df['timestamp_longitude_latitude'].iloc[0] 13 | 14 | with open('./test_set_a1.csv', 'r') as f: 15 | reader = csv.reader(f) 16 | data = (list(rec) for rec in csv.reader(f, delimiter=',')) 17 | i = 0 18 | count = 0 19 | trajectories_read = [] # list with all trajectories read 20 | for row in data: 21 | if (i != 0): 22 | tmp_list = [] # to read triples 23 | trajectory = [] # here will be the final trajectory 24 | j = 0 25 | while (j != len(row)): 26 | tmp_list = [float(re.sub('[[]', '', row[j])), float(row[j + 1]), float(re.sub('[]]', '', row[j + 2]))] 27 | j = j + 3 28 | trajectory.append(tmp_list) 29 | tmp_list = [] 30 | trajectories_read.append(trajectory) 31 | i = i + 1 32 | 33 | print("Dataset read successfully.") 34 | 35 | # create a directory for html images 36 | os.mkdir("DTWresults") 37 | j = 0 38 | # for each trajectory of test we want to find 5 NN using DTW + HAVERSHINE 39 | for traj in trajectories_read: 40 | 41 | # computeDTW similarity of given trajectory with all trajectories of the cleaned_dataset 42 | 43 | distances = [] 44 | for elem in df['timestamp_longitude_latitude']: 45 | distance, path = fastdtw(elem, traj, dist=haversine_np) 46 | distances.append(distance) 47 | # find the 5 smaller using np arrays 48 | distancesnp = np.array(distances) 49 | sorted_ind = np.argsort(distancesnp)[:5] 50 | # for each we print the results 51 | k = 0 52 | for elem in sorted_ind: 53 | print_results(df, distancesnp, elem, "./DTWresults/trajectory" + str(j) + "neighbor" + str(k)) 54 | k = k + 1 55 | j = j + 1 56 | -------------------------------------------------------------------------------- /grid_points.py: -------------------------------------------------------------------------------- 1 | import pandas as pd 2 | 3 | from auxiliaryfunctions import * 4 | 5 | df = pd.read_pickle('final_cleaned.df') 6 | df_final = pd.DataFrame(columns=['TripId', 'Grids']) 7 | 8 | cell_size = 0.2 ########################## CELL SIZE ################ 9 | zero_point = [0, -6.61505, 53.07045] ################ zero point 10 | 11 | for index, row in df.iterrows(): 12 | grid = '' 13 | trajectory = df['timestamp_longitude_latitude'][index] 14 | 15 | last = ' ' # value that stores last element on the list 16 | for i in range(0, len(trajectory)): 17 | 18 | on_longitute_axis = [] 19 | on_latitute_axis = [] 20 | 21 | on_longitute_axis.append(zero_point[0]) 22 | on_longitute_axis.append(trajectory[i][1]) 23 | on_longitute_axis.append(zero_point[2]) 24 | dist_of_longitute_axis = haversine_np(on_longitute_axis, zero_point) 25 | 26 | grid_lon = int(dist_of_longitute_axis // cell_size) 27 | 28 | on_latitute_axis.append(zero_point[0]) 29 | on_latitute_axis.append(zero_point[1]) 30 | on_latitute_axis.append(trajectory[i][2]) 31 | dist_of_latitute_axis = haversine_np(on_latitute_axis, zero_point) 32 | 33 | grid_lat = int(dist_of_latitute_axis // cell_size) 34 | 35 | current_cell = str(grid_lat) + ',' + str(grid_lon) 36 | 37 | if current_cell == last: 38 | continue 39 | 40 | grid = grid + 'C' + current_cell + ';' ######################## grid formation. Every time it stores grid value of a point 41 | 42 | last = current_cell 43 | 44 | df_final = df_final.append({'TripId': df['TripId'][index], 'Grids': grid}, ignore_index=True) 45 | 46 | df_final.to_csv('grids.csv') 47 | -------------------------------------------------------------------------------- /lcss_neighbors.py: -------------------------------------------------------------------------------- 1 | import csv 2 | import os 3 | import re 4 | 5 | import numpy as np 6 | import pandas as pd 7 | import time 8 | 9 | from auxiliaryfunctions import * 10 | 11 | df = pd.read_pickle('./final_cleaned.df') 12 | 13 | with open('test_set_a2.csv', 'r') as f: 14 | reader = csv.reader(f) 15 | data = (list(rec) for rec in csv.reader(f, delimiter=',')) 16 | i = 0 17 | count = 0 18 | trajectories_read = [] # list with all trajectories read 19 | for row in data: 20 | if (i != 0): 21 | tmp_list = [] # to read triples 22 | trajectory = [] # here will be the final trajectory 23 | j = 0 24 | while (j != len(row)): 25 | tmp_list = [float(re.sub('[[]', '', row[j])), float(row[j + 1]), float(re.sub('[]]', '', row[j + 2]))] 26 | j = j + 3 27 | trajectory.append(tmp_list) 28 | tmp_list = [] 29 | trajectories_read.append(trajectory) 30 | i = i + 1 31 | 32 | print("Dataset read successfully.") 33 | 34 | os.mkdir("LCSSresults") 35 | k = 0 36 | 37 | for traj in trajectories_read: 38 | start_time = time.time() 39 | k = k + 1 40 | matching_points = lcss_trigger(traj, df, 1, 0) 41 | distancesnp = np.array(matching_points) 42 | sorted_ind = np.argsort(-distancesnp) 43 | m = 1 44 | for elem in sorted_ind[:5]: # for each of the trajectories with the most matching points do 45 | print("Nearest trajectory " + str(df['JourneyPatternId'].iloc[elem]) + " Matching points : %d." % distancesnp[ 46 | elem]) 47 | # we find again which are the common points for the top 5 traj neighbors, in order to be printed red 48 | common_points = lcss_trigger(traj, df, 2, elem) 49 | 50 | plot_traj_red(common_points, df['timestamp_longitude_latitude'].iloc[elem], 51 | "./LCSSresults/trajectory" + str(k) + "matchingpointsneighb: " + str(m)) 52 | m = m + 1 53 | 54 | end_time = time.time() 55 | print("Took %.3f mins for traj %d to finish" % ((float)((end_time - start_time) / 60), k)) 56 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | pandas==1.1.4 2 | numpy==1.19.4 3 | fastdtw==0.3.4 4 | gmplot==1.4.1 5 | scikit-learn==0.23.2 6 | -------------------------------------------------------------------------------- /test_set_a1.csv: -------------------------------------------------------------------------------- 1 | Trajectory 2 | [[1353941705000000, -6.3195670000000002, 53.299281999999998], [1353941724000000, -6.3195670000000002, 53.299281999999998], [1353941744000000, -6.3195670000000002, 53.299281999999998], [1353941763000000, -6.3195670000000002, 53.299281999999998], [1353941783000000, -6.3195670000000002, 53.299281999999998], [1353941804000000, -6.3195670000000002, 53.299281999999998], [1353941822000000, -6.3195670000000002, 53.299281999999998], [1353941843000000, -6.3195670000000002, 53.299281999999998], [1353941865000000, -6.3195670000000002, 53.299281999999998], [1353941882000000, -6.3195670000000002, 53.299281999999998], [1353941904000000, -6.3193380000000001, 53.299149], [1353941923000000, -6.3200440000000002, 53.297637999999999], [1353941943000000, -6.3205089999999995, 53.297192000000003], [1353941964000000, -6.3219410000000007, 53.295684999999999], [1353941982000000, -6.3222899999999997, 53.295295999999993], [1353942004000000, -6.324605, 53.296145999999993], [1353942024000000, -6.3258859999999997, 53.298072999999995], [1353942044000000, -6.3251059999999999, 53.299422999999997], [1353942063000000, -6.3242349999999998, 53.300506999999996], [1353942083000000, -6.3232059999999999, 53.301651], [1353942104000000, -6.3220499999999999, 53.303566000000004], [1353942122000000, -6.3221290000000003, 53.304504000000001], [1353942145000000, -6.3213660000000003, 53.306170999999999], [1353942163000000, -6.3217780000000001, 53.307120999999995], [1353942184000000, -6.3209569999999999, 53.307941000000007], [1353942204000000, -6.3207370000000003, 53.309376], [1353942224000000, -6.320951, 53.309803000000002], [1353942243000000, -6.3213839999999992, 53.311089000000003], [1353942263000000, -6.3210850000000001, 53.312038000000001], [1353942284000000, -6.3202769999999999, 53.313193999999996], [1353942302000000, -6.3198850000000002, 53.313606000000007], [1353942325000000, -6.3197999999999999, 53.313679], [1353942343000000, -6.3178839999999994, 53.315075], [1353942362000000, -6.3172819999999996, 53.315472], [1353942384000000, -6.3172819999999996, 53.315472], [1353942402000000, -6.3172819999999996, 53.315472], [1353942423000000, -6.3170320000000002, 53.316009999999999], [1353942445000000, -6.3170320000000002, 53.316009999999999], [1353942462000000, -6.3170320000000002, 53.316009999999999], [1353942483000000, -6.3170320000000002, 53.316009999999999], [1353942509000000, -6.3170320000000002, 53.316009999999999], [1353942523000000, -6.3170320000000002, 53.316009999999999], [1353942545000000, -6.3170320000000002, 53.316009999999999], [1353942564000000, -6.3167919999999995, 53.316692000000003], [1353942584000000, -6.316573, 53.316956000000005], [1353942603000000, -6.3156499999999998, 53.317512999999998], [1353942623000000, -6.3152309999999998, 53.319293999999992], [1353942644000000, -6.3155410000000005, 53.319694999999996], [1353942662000000, -6.3158589999999997, 53.320087000000001], [1353942684000000, -6.3169839999999997, 53.320960999999997], [1353942702000000, -6.3169839999999997, 53.320960999999997], [1353942723000000, -6.3184129999999996, 53.321663000000001], [1353942745000000, -6.3192320000000004, 53.322178000000001], [1353942762000000, -6.319839, 53.322716], [1353942784000000, -6.3183870000000004, 53.323932999999997], [1353942802000000, -6.317736, 53.324528000000001], [1353942823000000, -6.317736, 53.324528000000001], [1353942843000000, -6.317736, 53.324528000000001], [1353942864000000, -6.317736, 53.324528000000001], [1353942886000000, -6.317736, 53.324528000000001], [1353942903000000, -6.317526, 53.324715000000005], [1353942923000000, -6.317526, 53.324715000000005], [1353942943000000, -6.317526, 53.324715000000005], [1353942962000000, -6.317526, 53.324715000000005], [1353942985000000, -6.317526, 53.324715000000005], [1353943002000000, -6.3162449999999994, 53.324897999999997], [1353943022000000, -6.3138370000000004, 53.325012000000001], [1353943046000000, -6.3131379999999995, 53.325081000000004], [1353943063000000, -6.3104529999999999, 53.325221999999997], [1353943084000000, -6.3090359999999999, 53.325274999999998], [1353943103000000, -6.3062559999999994, 53.325115000000004], [1353943123000000, -6.305415, 53.325062000000003], [1353943142000000, -6.3027190000000006, 53.324885999999999], [1353943162000000, -6.3010449999999993, 53.324879000000003], [1353943184000000, -6.3001300000000002, 53.324996999999996], [1353943203000000, -6.2986300000000002, 53.325340000000004], [1353943222000000, -6.2980660000000004, 53.325466000000006], [1353943244000000, -6.2959589999999999, 53.325905000000006], [1353943263000000, -6.2959589999999999, 53.325905000000006], [1353943283000000, -6.294581, 53.326163999999999], [1353943302000000, -6.2926539999999997, 53.326518999999998], [1353943322000000, -6.2908220000000004, 53.326843000000004], [1353943343000000, -6.2895190000000003, 53.327094999999993], [1353943363000000, -6.2878889999999998, 53.327515000000005], [1353943384000000, -6.2866629999999999, 53.328175000000002], [1353943404000000, -6.2847140000000001, 53.329376000000003], [1353943422000000, -6.28437, 53.329803000000005], [1353943443000000, -6.2842440000000002, 53.330100999999999], [1353943463000000, -6.2840930000000004, 53.330535999999995], [1353943484000000, -6.2840449999999999, 53.330668999999993], [1353943504000000, -6.2834240000000001, 53.331920999999994], [1353943525000000, -6.2824960000000001, 53.332923999999998], [1353943543000000, -6.28301, 53.333801000000001], [1353943582000000, -6.2807769999999996, 53.334437999999999], [1353943605000000, -6.2789989999999998, 53.334662999999999], [1353943623000000, -6.2793380000000001, 53.335979000000002], [1353943644000000, -6.2794759999999998, 53.336742000000001], [1353943664000000, -6.2789800000000007, 53.337283999999997], [1353943683000000, -6.2788900000000005, 53.337852000000005], [1353943703000000, -6.2792849999999998, 53.338413000000003], [1353943724000000, -6.2799110000000002, 53.339241000000001], [1353943742000000, -6.2785739999999999, 53.339820999999993], [1353943762000000, -6.2780260000000006, 53.339828000000004], [1353943783000000, -6.27562, 53.339606999999994], [1353943804000000, -6.2746219999999999, 53.339352000000005], [1353943824000000, -6.2734030000000001, 53.339115], [1353943841000000, -6.2725809999999997, 53.339424000000001], [1353943862000000, -6.2723559999999994, 53.340267000000004], [1353943884000000, -6.2723500000000003, 53.341827000000002], [1353943903000000, -6.2720080000000005, 53.342777000000005], [1353943923000000, -6.2703519999999999, 53.343254000000002], [1353943944000000, -6.2702150000000003, 53.343375999999999], [1353943962000000, -6.2687620000000006, 53.343856999999993], [1353943983000000, -6.2681319999999996, 53.343986999999998], [1353944003000000, -6.2677589999999999, 53.344058999999994], [1353944024000000, -6.2666300000000001, 53.344181000000006], [1353944044000000, -6.2660730000000004, 53.344200000000001], [1353944063000000, -6.2639889999999996, 53.344215000000005], [1353944083000000, -6.2628589999999997, 53.344260999999996], [1353944102000000, -6.2624379999999995, 53.344276000000001], [1353944122000000, -6.262378, 53.344280000000005], [1353944145000000, -6.261158, 53.344382999999993], [1353944163000000, -6.2590980000000007, 53.345069999999993], [1353944182000000, -6.2589579999999998, 53.345859999999995], [1353944204000000, -6.2589579999999998, 53.345859999999995]] 3 | [[1353924161000000, -6.2608670000000002, 53.352814000000002], [1353924184000000, -6.2608670000000002, 53.352814000000002], [1353924202000000, -6.2608670000000002, 53.352814000000002], [1353924242000000, -6.2608670000000002, 53.352814000000002], [1353924283000000, -6.2679849999999995, 53.354796999999998], [1353924304000000, -6.2684389999999999, 53.355258999999997], [1353924324000000, -6.2682609999999999, 53.357245999999996], [1353924343000000, -6.2697859999999999, 53.359093000000009], [1353924363000000, -6.2696990000000001, 53.359966], [1353924383000000, -6.2696709999999998, 53.360165000000002], [1353924402000000, -6.2696709999999998, 53.360165000000002], [1353924423000000, -6.270251, 53.360633999999997], [1353924443000000, -6.2714800000000004, 53.360718000000006], [1353924462000000, -6.2730559999999995, 53.360793999999991], [1353924482000000, -6.275544, 53.360806000000004], [1353924504000000, -6.2756350000000003, 53.360806000000004], [1353924522000000, -6.2764489999999995, 53.360813], [1353924543000000, -6.2784339999999998, 53.360881999999997], [1353924563000000, -6.2811839999999997, 53.360984999999999], [1353924582000000, -6.2823410000000006, 53.361027], [1353924602000000, -6.2829480000000002, 53.361053000000005], [1353924623000000, -6.2832980000000003, 53.361068999999993], [1353924643000000, -6.2831929999999998, 53.361561000000002], [1353924664000000, -6.283029, 53.362170999999996], [1353924682000000, -6.2826500000000003, 53.363506000000008], [1353924703000000, -6.2835489999999998, 53.363991000000006], [1353924721000000, -6.2874349999999994, 53.364716000000001], [1353924744000000, -6.2892239999999999, 53.365402000000003], [1353924762000000, -6.2912160000000004, 53.366463000000003], [1353924781000000, -6.2914810000000001, 53.366523999999998], [1353924804000000, -6.2914810000000001, 53.366523999999998], [1353924823000000, -6.2918880000000001, 53.366919999999993], [1353924844000000, -6.2916840000000001, 53.367249000000001], [1353924864000000, -6.2910349999999999, 53.368419999999993], [1353924903000000, -6.2957089999999996, 53.370231999999994], [1353924924000000, -6.299461, 53.370959999999997], [1353924942000000, -6.3011460000000001, 53.371265000000001], [1353924961000000, -6.3015040000000004, 53.371272999999995], [1353924984000000, -6.3044070000000003, 53.371268999999991], [1353925002000000, -6.3045359999999997, 53.370377000000005], [1353925025000000, -6.304443, 53.369926], [1353925043000000, -6.3041870000000007, 53.369082999999996], [1353925061000000, -6.3045260000000001, 53.368786], [1353925082000000, -6.3045260000000001, 53.368786], [1353925104000000, -6.3045339999999994, 53.368778000000006], [1353925123000000, -6.3058139999999998, 53.369328000000003], [1353925144000000, -6.3061020000000001, 53.370964000000001], [1353925164000000, -6.3061339999999992, 53.372486000000002], [1353925182000000, -6.307258, 53.373927999999999], [1353925203000000, -6.3086070000000003, 53.374831999999998], [1353925223000000, -6.3105019999999996, 53.376373000000001], [1353925242000000, -6.3127000000000004, 53.37574], [1353925262000000, -6.315607, 53.375720999999999], [1353925283000000, -6.3188139999999997, 53.375751000000001], [1353925301000000, -6.321561, 53.376018999999992], [1353925366000000, -6.321561, 53.376018999999992], [1353925383000000, -6.3277960000000002, 53.377231999999992], [1353925387000000, -6.3280669999999999, 53.377231999999992], [1353925405000000, -6.3308089999999995, 53.377219999999994], [1353925426000000, -6.3314879999999993, 53.377532999999993], [1353925465000000, -6.3314879999999993, 53.377532999999993], [1353925485000000, -6.3314879999999993, 53.377532999999993], [1353925504000000, -6.3317500000000004, 53.377418999999996]] 4 | [[1353939307000000, -6.3667169999999995, 53.340182999999996], [1353939329000000, -6.3667169999999995, 53.340182999999996], [1353939368000000, -6.3667169999999995, 53.340182999999996], [1353939388000000, -6.3667169999999995, 53.340182999999996], [1353939407000000, -6.3667169999999995, 53.340182999999996], [1353939428000000, -6.3667169999999995, 53.340182999999996], [1353939448000000, -6.3667169999999995, 53.340182999999996], [1353939467000000, -6.3667169999999995, 53.340182999999996], [1353939487000000, -6.3667169999999995, 53.340182999999996], [1353939506000000, -6.3667169999999995, 53.340182999999996], [1353939526000000, -6.3667169999999995, 53.340182999999996], [1353939546000000, -6.3667169999999995, 53.340182999999996], [1353939567000000, -6.3667169999999995, 53.340182999999996], [1353939587000000, -6.3667169999999995, 53.340182999999996], [1353939608000000, -6.3687649999999998, 53.340598999999997], [1353939626000000, -6.3676870000000001, 53.340401], [1353939649000000, -6.372134, 53.340297999999997], [1353939667000000, -6.3733370000000003, 53.338885999999995], [1353939687000000, -6.3744319999999997, 53.337718999999993], [1353939706000000, -6.3723470000000004, 53.337128], [1353939726000000, -6.3703609999999999, 53.336853000000005], [1353939747000000, -6.3686099999999994, 53.336525000000002], [1353939769000000, -6.365964, 53.335818999999994], [1353939786000000, -6.3630209999999998, 53.335567000000005], [1353939806000000, -6.3605700000000001, 53.335831000000006], [1353939827000000, -6.3605489999999998, 53.337058999999996], [1353939847000000, -6.361224, 53.338881999999998], [1353939868000000, -6.3617059999999999, 53.340434999999999], [1353939886000000, -6.3618300000000003, 53.342178000000004], [1353939907000000, -6.3615519999999997, 53.342865000000003], [1353939929000000, -6.361415, 53.342854000000003], [1353939946000000, -6.3598520000000001, 53.342716000000003], [1353939968000000, -6.3587879999999997, 53.342686], [1353939987000000, -6.3560379999999999, 53.342406999999994], [1353940007000000, -6.3532820000000001, 53.342193999999992], [1353940026000000, -6.3531930000000001, 53.342357999999997], [1353940046000000, -6.3531930000000001, 53.342357999999997], [1353940067000000, -6.3545780000000001, 53.342461], [1353940087000000, -6.3536019999999995, 53.342216000000001], [1353940108000000, -6.3518379999999999, 53.342143999999998], [1353940128000000, -6.3506879999999999, 53.342185999999998], [1353940146000000, -6.3487519999999993, 53.342006999999995], [1353940167000000, -6.3484860000000003, 53.341258999999994], [1353940187000000, -6.3481489999999994, 53.339332999999996], [1353940208000000, -6.3476460000000001, 53.338093000000008], [1353940226000000, -6.3465790000000002, 53.337794999999993], [1353940249000000, -6.3465020000000001, 53.338341], [1353940267000000, -6.3463190000000003, 53.339024000000002], [1353940286000000, -6.3453339999999994, 53.339213999999998], [1353940327000000, -6.3414230000000007, 53.339995999999999], [1353940347000000, -6.3380999999999998, 53.340664000000004], [1353940367000000, -6.3370169999999995, 53.340831999999992], [1353940388000000, -6.3357869999999998, 53.341064000000003], [1353940406000000, -6.3332639999999998, 53.341586999999997], [1353940429000000, -6.3328089999999992, 53.341805000000008], [1353940447000000, -6.3313069999999998, 53.341843000000004], [1353940467000000, -6.3298199999999998, 53.341594999999998], [1353940486000000, -6.3291529999999998, 53.341763], [1353940507000000, -6.3291529999999998, 53.341763], [1353940527000000, -6.3290850000000001, 53.341923000000001], [1353940548000000, -6.3276570000000003, 53.342174999999997], [1353940566000000, -6.3260199999999998, 53.342120999999999], [1353940589000000, -6.3233090000000001, 53.341460999999995], [1353940608000000, -6.3210110000000004, 53.341537000000002], [1353940628000000, -6.3200959999999995, 53.341582999999993], [1353940647000000, -6.319585, 53.341606000000006], [1353940667000000, -6.3170910000000005, 53.341805000000008], [1353940687000000, -6.3167410000000004, 53.342068000000005], [1353940708000000, -6.3168239999999996, 53.342686], [1353940727000000, -6.3140019999999994, 53.343196999999996], [1353940749000000, -6.3092040000000003, 53.343581999999998], [1353940765000000, -6.3058420000000002, 53.343997999999999], [1353940787000000, -6.3016480000000001, 53.345183999999996], [1353940807000000, -6.2978059999999996, 53.345721999999995], [1353940826000000, -6.294327, 53.346012000000002], [1353940848000000, -6.2926970000000004, 53.346142000000007], [1353940867000000, -6.2926380000000002, 53.346145999999997], [1353940887000000, -6.2914050000000001, 53.346545999999996], [1353940908000000, -6.2913519999999998, 53.346626000000001], [1353940926000000, -6.2913519999999998, 53.346626000000001], [1353940947000000, -6.2913519999999998, 53.346626000000001], [1353940968000000, -6.2913519999999998, 53.346626000000001], [1353940988000000, -6.2908850000000003, 53.347262999999998], [1353941007000000, -6.2885330000000002, 53.347168000000003], [1353941027000000, -6.2850809999999999, 53.347023], [1353941048000000, -6.2819099999999999, 53.346808999999993], [1353941066000000, -6.2787959999999998, 53.346325], [1353941087000000, -6.276262, 53.345879000000004], [1353941109000000, -6.276262, 53.345879000000004], [1353941125000000, -6.276262, 53.345879000000004], [1353941148000000, -6.2760239999999996, 53.345843999999992], [1353941166000000, -6.272424, 53.345539000000002], [1353941187000000, -6.2706179999999998, 53.345706999999997], [1353941207000000, -6.2698859999999996, 53.345797999999995], [1353941226000000, -6.2693289999999999, 53.345874999999999], [1353941246000000, -6.2688600000000001, 53.345936000000002], [1353941269000000, -6.2677830000000005, 53.345764000000003], [1353941287000000, -6.2677800000000001, 53.345756999999992], [1353941308000000, -6.2675769999999993, 53.345149999999997], [1353941326000000, -6.2674010000000004, 53.344668999999996], [1353941347000000, -6.2673809999999994, 53.344616000000002], [1353941367000000, -6.2663500000000001, 53.344195999999997], [1353941388000000, -6.2647919999999999, 53.344200000000001], [1353941406000000, -6.2628589999999997, 53.344260999999996], [1353941429000000, -6.262562, 53.344273000000001], [1353941447000000, -6.2618199999999993, 53.344868000000005], [1353941468000000, -6.2618070000000001, 53.345943000000005], [1353941486000000, -6.261196, 53.346127000000003], [1353941527000000, -6.261196, 53.346127000000003], [1353941550000000, -6.261196, 53.346127000000003], [1353941568000000, -6.261196, 53.346127000000003], [1353941601000000, -6.2601500000000003, 53.346648999999999], [1353941607000000, -6.2601830000000005, 53.346699000000001], [1353941630000000, -6.2601830000000005, 53.346699000000001], [1353941646000000, -6.2601830000000005, 53.346699000000001], [1353941662000000, -6.2601830000000005, 53.346699000000001], [1353941667000000, -6.260167, 53.346699000000001], [1353941687000000, -6.260167, 53.346699000000001], [1353941707000000, -6.2601830000000005, 53.346699000000001], [1353941722000000, -6.2601830000000005, 53.346699000000001], [1353941730000000, -6.2601830000000005, 53.346683999999996], [1353941746000000, -6.2601830000000005, 53.346683999999996], [1353941767000000, -6.2601830000000005, 53.346699000000001]] 5 | [[1353916488000000, -6.2620120000000004, 53.353268000000007], [1353916527000000, -6.2620120000000004, 53.353268000000007], [1353916556000000, -6.2606720000000005, 53.351185000000001], [1353916587000000, -6.2605649999999997, 53.350937000000002], [1353916608000000, -6.2620120000000004, 53.353268000000007], [1353916629000000, -6.2599879999999999, 53.349651000000001], [1353916647000000, -6.259576, 53.348713000000004], [1353916668000000, -6.259525, 53.348591000000006], [1353916688000000, -6.2591339999999995, 53.347614], [1353916709000000, -6.2579609999999999, 53.346313000000002], [1353916727000000, -6.2571620000000001, 53.345917000000007], [1353916748000000, -6.2571620000000001, 53.345917000000007], [1353916768000000, -6.2562169999999995, 53.345905000000002], [1353916787000000, -6.2561400000000003, 53.345969999999994], [1353916807000000, -6.2561400000000003, 53.345969999999994], [1353916827000000, -6.2556000000000003, 53.345943000000005], [1353916850000000, -6.2556000000000003, 53.345943000000005], [1353916866000000, -6.2556000000000003, 53.345943000000005], [1353916887000000, -6.253952, 53.345859999999995], [1353916928000000, -6.2508189999999999, 53.345698999999996], [1353916946000000, -6.2499199999999995, 53.345654000000003], [1353916967000000, -6.247611, 53.345104000000006], [1353916990000000, -6.246486, 53.343699999999998], [1353917008000000, -6.2453269999999996, 53.343327000000002], [1353917026000000, -6.2450269999999994, 53.343266], [1353917047000000, -6.2450269999999994, 53.343266], [1353917068000000, -6.2447559999999998, 53.343207999999997], [1353917088000000, -6.2424370000000007, 53.342895999999996], [1353917107000000, -6.2421410000000002, 53.342860999999999], [1353917129000000, -6.2421410000000002, 53.342860999999999], [1353917146000000, -6.2405689999999998, 53.342669999999998], [1353917166000000, -6.2396229999999999, 53.342544999999994], [1353917187000000, -6.2396229999999999, 53.342544999999994], [1353917210000000, -6.2396080000000005, 53.342544999999994], [1353917228000000, -6.2393710000000002, 53.342514000000001], [1353917246000000, -6.2393710000000002, 53.342514000000001], [1353917267000000, -6.2393559999999999, 53.342509999999997], [1353917290000000, -6.2383160000000002, 53.342383999999996], [1353917308000000, -6.2367040000000005, 53.342216000000001], [1353917329000000, -6.2363960000000001, 53.342167000000003], [1353917349000000, -6.2363960000000001, 53.342167000000003], [1353917368000000, -6.2363960000000001, 53.342167000000003], [1353917386000000, -6.2333600000000002, 53.341758999999996], [1353917407000000, -6.2333600000000002, 53.341758999999996], [1353917428000000, -6.2293000000000003, 53.341636999999999], [1353917446000000, -6.2271289999999997, 53.341831000000006], [1353917467000000, -6.2267220000000005, 53.341904000000007], [1353917487000000, -6.2242360000000003, 53.340302000000001], [1353917510000000, -6.2232769999999995, 53.339348000000001], [1353917528000000, -6.2230699999999999, 53.339077000000003], [1353917547000000, -6.2227480000000002, 53.338271999999996], [1353917568000000, -6.2224760000000003, 53.337692000000004], [1353917590000000, -6.2223800000000002, 53.337315000000004], [1353917607000000, -6.2219709999999999, 53.336043999999994], [1353917627000000, -6.2201979999999999, 53.335655000000003], [1353917648000000, -6.2197190000000004, 53.335415000000005], [1353917670000000, -6.2187000000000001, 53.334717000000005], [1353917687000000, -6.2175820000000002, 53.333942000000008], [1353917708000000, -6.2170230000000002, 53.333556999999992], [1353917727000000, -6.2166030000000001, 53.333256000000006], [1353917747000000, -6.2164160000000006, 53.333110999999995], [1353917789000000, -6.2154120000000006, 53.332484999999998], [1353917827000000, -6.2142860000000004, 53.333518999999995], [1353917846000000, -6.2142400000000002, 53.333401000000002], [1353917869000000, -6.2142370000000007, 53.333393000000008], [1353917890000000, -6.2136059999999995, 53.333477000000002], [1353917906000000, -6.21143, 53.333286000000001], [1353917927000000, -6.2106330000000005, 53.332413000000003], [1353917947000000, -6.2102360000000001, 53.331802000000003], [1353917966000000, -6.2089879999999997, 53.329932999999997], [1353917986000000, -6.2087260000000004, 53.327998999999998], [1353918007000000, -6.2082430000000004, 53.326939000000003], [1353918027000000, -6.2073460000000003, 53.325611000000002], [1353918046000000, -6.207198, 53.325340000000004], [1353918066000000, -6.2072209999999997, 53.325127000000002], [1353918087000000, -6.2072209999999997, 53.325127000000002], [1353918108000000, -6.2079110000000002, 53.324978000000002], [1353918147000000, -6.2079110000000002, 53.324978000000002], [1353918176000000, -6.2106330000000005, 53.324467000000006]] 6 | [[1353923529000000, -6.2571330000000005, 53.348948999999998], [1353923549000000, -6.2572720000000004, 53.348789000000004], [1353923568000000, -6.256589, 53.348445999999996], [1353923588000000, -6.2561279999999995, 53.348514999999999], [1353923611000000, -6.2546850000000003, 53.348938000000004], [1353923629000000, -6.2521660000000008, 53.349383999999993], [1353923650000000, -6.2520910000000001, 53.349383999999993], [1353923670000000, -6.2507510000000002, 53.350276999999998], [1353923689000000, -6.2506129999999995, 53.350493999999998], [1353923709000000, -6.2503769999999994, 53.350868000000006], [1353923731000000, -6.2503769999999994, 53.350868000000006], [1353923749000000, -6.2503769999999994, 53.350868000000006], [1353923770000000, -6.2499060000000002, 53.351612000000003], [1353923788000000, -6.2489429999999997, 53.352649999999997], [1353923811000000, -6.248075, 53.353423999999997], [1353923827000000, -6.247725, 53.353747999999996], [1353923848000000, -6.2469869999999998, 53.354434999999995], [1353923871000000, -6.2460050000000003, 53.355286], [1353923889000000, -6.2456620000000003, 53.355679000000002], [1353923908000000, -6.2442010000000003, 53.356582999999993], [1353923931000000, -6.242362, 53.357776999999999], [1353923950000000, -6.2402959999999998, 53.359406000000007], [1353923968000000, -6.2394530000000001, 53.360194999999997], [1353923988000000, -6.239058, 53.360580000000006], [1353924011000000, -6.237241, 53.362082999999998], [1353924029000000, -6.2368829999999997, 53.362395999999997], [1353924048000000, -6.236332, 53.362854000000006], [1353924069000000, -6.2346810000000001, 53.363365000000002], [1353924089000000, -6.2317929999999997, 53.364113000000003], [1353924110000000, -6.231338, 53.364212000000002], [1353924130000000, -6.2285980000000007, 53.364216000000006], [1353924149000000, -6.2268439999999998, 53.364024999999998], [1353924169000000, -6.2247240000000001, 53.363712], [1353924190000000, -6.2211679999999996, 53.363093999999997], [1353924209000000, -6.2176800000000005, 53.362411000000002], [1353924227000000, -6.2165230000000005, 53.362006999999998], [1353924250000000, -6.214798, 53.361317000000007], [1353924269000000, -6.2116660000000001, 53.360469999999992], [1353924289000000, -6.2102820000000003, 53.360370999999994], [1353924310000000, -6.2102820000000003, 53.360370999999994], [1353924328000000, -6.2087769999999995, 53.360275000000001], [1353924349000000, -6.2070099999999995, 53.360232999999994], [1353924369000000, -6.2029800000000002, 53.360236999999998], [1353924390000000, -6.1989410000000005, 53.359611999999998], [1353924408000000, -6.1968319999999997, 53.359226], [1353924429000000, -6.1963239999999997, 53.359055000000005], [1353924449000000, -6.19421, 53.358276000000004], [1353924468000000, -6.1934529999999999, 53.358204000000001], [1353924491000000, -6.1928160000000005, 53.358173000000001], [1353924510000000, -6.1928160000000005, 53.358173000000001], [1353924529000000, -6.186267, 53.359665], [1353924549000000, -6.186267, 53.359665], [1353924570000000, -6.1821800000000007, 53.360911999999999], [1353924588000000, -6.1812069999999997, 53.361305000000002], [1353924608000000, -6.1790599999999998, 53.362423], [1353924631000000, -6.1789239999999994, 53.362518000000009], [1353924649000000, -6.1764720000000004, 53.364281000000005], [1353924687000000, -6.1764720000000004, 53.364281000000005], [1353924707000000, -6.1728649999999998, 53.367160999999996], [1353924728000000, -6.1753749999999998, 53.368118000000003], [1353924746000000, -6.1791330000000002, 53.369236000000001], [1353924804000000, -6.1830790000000002, 53.366572999999995], [1353924823000000, -6.1852220000000004, 53.366107999999997], [1353924844000000, -6.1877519999999997, 53.366374999999998], [1353924864000000, -6.1879439999999999, 53.364993999999996], [1353924882000000, -6.1881050000000002, 53.363838000000001], [1353924903000000, -6.1897669999999998, 53.363608999999997], [1353924924000000, -6.1921410000000003, 53.363838000000001], [1353924946000000, -6.1938149999999998, 53.363964000000003], [1353924963000000, -6.1948230000000004, 53.364014000000005], [1353924984000000, -6.1952829999999999, 53.364745999999997], [1353925002000000, -6.1955599999999995, 53.365929000000001], [1353925025000000, -6.1991559999999994, 53.366261000000002], [1353925043000000, -6.2023489999999999, 53.366595999999994], [1353925082000000, -6.2051179999999997, 53.364722999999998], [1353925123000000, -6.2051179999999997, 53.364722999999998], [1353925144000000, -6.2054169999999997, 53.363300000000002]] 7 | -------------------------------------------------------------------------------- /test_set_a2.csv: -------------------------------------------------------------------------------- 1 | Trajectory 2 | [[1353940335000000, -6.379759, 53.418506999999998], [1353940339000000, -6.3784589999999994, 53.419052000000001], [1353940378000000, -6.3839639999999997, 53.419311999999998], [1353940394000000, -6.3847319999999996, 53.420020999999998], [1353940414000000, -6.3847399999999999, 53.420254000000007], [1353940437000000, -6.3850050000000005, 53.420749999999998], [1353940476000000, -6.3881649999999999, 53.421374999999998], [1353940494000000, -6.3882070000000004, 53.421275999999999], [1353940515000000, -6.3889959999999997, 53.421730000000004], [1353940535000000, -6.3909640000000003, 53.421996999999998], [1353940556000000, -6.3913349999999998, 53.421753000000002], [1353940574000000, -6.3927629999999995, 53.421013000000002], [1353940597000000, -6.3928900000000004, 53.419830000000005], [1353940614000000, -6.3917859999999997, 53.419761999999999], [1353940634000000, -6.3901180000000002, 53.419772999999999], [1353940655000000, -6.3888230000000004, 53.419024999999998], [1353940675000000, -6.3867019999999997, 53.418030000000002], [1353940696000000, -6.3862760000000005, 53.417743999999992], [1353940714000000, -6.3856960000000003, 53.416633999999995], [1353940735000000, -6.3842290000000004, 53.416229000000001], [1353940757000000, -6.3849559999999999, 53.415348000000002], [1353940776000000, -6.3864999999999998, 53.414168999999994], [1353940795000000, -6.3857099999999996, 53.413181000000009], [1353940817000000, -6.3818900000000003, 53.412430000000008], [1353940836000000, -6.3771399999999998, 53.411217000000008], [1353940857000000, -6.3734199999999994, 53.410099000000002], [1353940875000000, -6.3709410000000002, 53.409293999999996], [1353940895000000, -6.3703080000000005, 53.409031000000006], [1353940914000000, -6.3689239999999998, 53.408847999999999], [1353940935000000, -6.3686449999999999, 53.410022999999995], [1353940955000000, -6.3682109999999996, 53.410796999999995], [1353940976000000, -6.3682109999999996, 53.410796999999995], [1353940996000000, -6.3679589999999999, 53.411041000000004], [1353941015000000, -6.3671809999999995, 53.411597999999998], [1353941035000000, -6.3658239999999999, 53.412601000000002], [1353941056000000, -6.364274, 53.413997999999999], [1353941074000000, -6.3634309999999994, 53.414237999999997], [1353941095000000, -6.3620049999999999, 53.413447999999995], [1353941117000000, -6.3608919999999998, 53.412727000000004], [1353941136000000, -6.3596349999999999, 53.411307999999998], [1353941156000000, -6.3586580000000001, 53.409603000000004], [1353941177000000, -6.3578749999999999, 53.408237], [1353941195000000, -6.3578749999999999, 53.408237], [1353941215000000, -6.3578749999999999, 53.408237], [1353941238000000, -6.3578749999999999, 53.408237], [1353941254000000, -6.3579829999999999, 53.407890000000002], [1353941277000000, -6.3557249999999996, 53.406704000000005], [1353941295000000, -6.3562129999999994, 53.406143000000007], [1353941314000000, -6.3574109999999999, 53.404423000000001], [1353941334000000, -6.3567140000000002, 53.403553000000002], [1353941355000000, -6.3552569999999999, 53.401908999999996], [1353941376000000, -6.3530800000000003, 53.399967000000004], [1353941396000000, -6.350422, 53.398536999999997], [1353941415000000, -6.3462819999999995, 53.397769999999994], [1353941437000000, -6.3420779999999999, 53.397453000000006], [1353941455000000, -6.3392349999999995, 53.397483999999999], [1353941474000000, -6.3392349999999995, 53.397483999999999], [1353941494000000, -6.3329050000000002, 53.398239000000004], [1353941515000000, -6.331461, 53.397193999999992], [1353941535000000, -6.3291649999999997, 53.395724999999999], [1353941558000000, -6.3259780000000001, 53.394753000000001], [1353941576000000, -6.3233489999999994, 53.393447999999999], [1353941595000000, -6.3210430000000004, 53.392277], [1353941615000000, -6.3210430000000004, 53.392277], [1353941636000000, -6.3198429999999997, 53.391815000000001], [1353941654000000, -6.319509, 53.390785000000001], [1353941675000000, -6.3173650000000006, 53.390273999999998], [1353941695000000, -6.315105, 53.389907999999998], [1353941716000000, -6.3143640000000003, 53.389659999999999], [1353941736000000, -6.3129870000000006, 53.389336], [1353941755000000, -6.3129870000000006, 53.389336], [1353941775000000, -6.3124480000000007, 53.389293999999992], [1353941798000000, -6.3118860000000003, 53.390056999999992], [1353941814000000, -6.3109459999999995, 53.390030000000003], [1353941835000000, -6.3100680000000002, 53.389949999999999], [1353941857000000, -6.308141, 53.389854000000007], [1353941874000000, -6.3067359999999999, 53.389854000000007], [1353941896000000, -6.3045419999999996, 53.389846999999996], [1353941915000000, -6.3015870000000005, 53.389927], [1353941935000000, -6.3002949999999993, 53.390053000000002]] 3 | [[1353942004000000, -6.2982100000000001, 53.388390000000001], [1353942024000000, -6.2982100000000001, 53.388390000000001], [1353942044000000, -6.2977509999999999, 53.387706999999992], [1353942065000000, -6.297193, 53.387135000000001], [1353942083000000, -6.2972080000000004, 53.387118999999991], [1353942104000000, -6.2972080000000004, 53.387118999999991], [1353942126000000, -6.2972080000000004, 53.387118999999991], [1353942145000000, -6.2975309999999993, 53.386906000000003], [1353942163000000, -6.295585, 53.385399], [1353942206000000, -6.2934060000000001, 53.383667000000003], [1353942224000000, -6.2900679999999998, 53.381370999999994], [1353942245000000, -6.2880370000000001, 53.379573999999998], [1353942265000000, -6.2875300000000003, 53.37809], [1353942286000000, -6.287528, 53.378036000000002], [1353942304000000, -6.2874999999999996, 53.377685999999997], [1353942325000000, -6.2863600000000002, 53.375851000000004], [1353942347000000, -6.2850609999999998, 53.373824999999997], [1353942364000000, -6.2827989999999998, 53.372406000000005], [1353942384000000, -6.2820609999999997, 53.372107999999997], [1353942406000000, -6.2795639999999997, 53.370482999999993], [1353942425000000, -6.2765139999999997, 53.369246999999994], [1353942445000000, -6.2737300000000005, 53.368133999999998], [1353942464000000, -6.2732539999999997, 53.367919999999998], [1353942485000000, -6.2727430000000002, 53.367595999999999], [1353942507000000, -6.2709679999999999, 53.367134], [1353942525000000, -6.2713019999999995, 53.366195999999995], [1353942545000000, -6.2716709999999996, 53.365364], [1353942564000000, -6.271706, 53.365147], [1353942584000000, -6.271738, 53.364947999999998], [1353942607000000, -6.271738, 53.364947999999998], [1353942625000000, -6.2717400000000003, 53.364929000000004], [1353942644000000, -6.2709070000000002, 53.364432999999998], [1353942666000000, -6.26776, 53.363686000000001], [1353942686000000, -6.2654079999999999, 53.363147999999995], [1353942704000000, -6.2640769999999995, 53.362843000000005], [1353942725000000, -6.2613719999999997, 53.362197999999999], [1353942745000000, -6.2600709999999999, 53.361881000000004], [1353942764000000, -6.2599489999999998, 53.361851000000001], [1353942784000000, -6.2599489999999998, 53.361851000000001], [1353942807000000, -6.2599489999999998, 53.361851000000001], [1353942825000000, -6.2596050000000005, 53.361556999999998], [1353942845000000, -6.2601420000000001, 53.360928000000001], [1353942866000000, -6.2601420000000001, 53.360928000000001], [1353942884000000, -6.2606099999999998, 53.360450999999998], [1353942905000000, -6.26098, 53.360065000000006], [1353942925000000, -6.2617099999999999, 53.359287000000002], [1353942948000000, -6.261787, 53.359206999999998], [1353942964000000, -6.261787, 53.359206999999998], [1353942985000000, -6.2622749999999998, 53.358733999999998], [1353943008000000, -6.2625779999999995, 53.358481999999995], [1353943024000000, -6.2632959999999995, 53.357925000000002], [1353943046000000, -6.2637279999999995, 53.357574], [1353943065000000, -6.2646050000000004, 53.356716000000006], [1353943084000000, -6.2651199999999996, 53.356186000000001], [1353943107000000, -6.2657999999999996, 53.355400000000003], [1353943125000000, -6.2673249999999996, 53.353831999999997], [1353943144000000, -6.266483, 53.352249], [1353943168000000, -6.2648010000000003, 53.353034999999998], [1353943184000000, -6.2627090000000001, 53.353790000000004], [1353943205000000, -6.2610730000000006, 53.352111999999998], [1353943226000000, -6.2610730000000006, 53.352111999999998], [1353943244000000, -6.2610749999999999, 53.352116000000002], [1353943267000000, -6.2610749999999999, 53.352116000000002], [1353943287000000, -6.2610749999999999, 53.352116000000002], [1353943306000000, -6.2611749999999997, 53.352347999999999], [1353943324000000, -6.2611220000000003, 53.352692000000005], [1353943365000000, -6.2605680000000001, 53.352961999999998], [1353943386000000, -6.2602330000000004, 53.353130000000007], [1353943406000000, -6.2601459999999998, 53.353172000000001], [1353943427000000, -6.2601459999999998, 53.353172000000001], [1353943445000000, -6.2601459999999998, 53.353172000000001], [1353943466000000, -6.2601459999999998, 53.353172000000001], [1353943484000000, -6.2601459999999998, 53.353172000000001], [1353943504000000, -6.2601459999999998, 53.353172000000001], [1353943527000000, -6.2601459999999998, 53.353172000000001], [1353943545000000, -6.2601459999999998, 53.353172000000001], [1353943566000000, -6.2601459999999998, 53.353172000000001], [1353943586000000, -6.2601459999999998, 53.353172000000001], [1353943605000000, -6.2601459999999998, 53.353172000000001], [1353943627000000, -6.2601459999999998, 53.353172000000001], [1353943644000000, -6.2606839999999995, 53.353168000000004], [1353943646000000, -6.2606999999999999, 53.353149000000002]] 4 | [[1353948946000000, -6.2604169999999995, 53.346615], [1353948967000000, -6.2604169999999995, 53.346615], [1353948985000000, -6.2604169999999995, 53.346615], [1353949005000000, -6.2604169999999995, 53.346615], [1353949026000000, -6.2604169999999995, 53.346615], [1353949044000000, -6.2604169999999995, 53.346615], [1353949065000000, -6.2604169999999995, 53.346615], [1353949088000000, -6.2604169999999995, 53.346615], [1353949107000000, -6.2604169999999995, 53.346615], [1353949126000000, -6.2604169999999995, 53.346615], [1353949145000000, -6.2604169999999995, 53.346615], [1353949165000000, -6.2604169999999995, 53.346615], [1353949186000000, -6.2604169999999995, 53.346615], [1353949205000000, -6.2604169999999995, 53.346615], [1353949226000000, -6.2604169999999995, 53.346615], [1353949247000000, -6.2606160000000006, 53.346592000000001], [1353949265000000, -6.261622, 53.346359], [1353949286000000, -6.2616930000000002, 53.346340000000005], [1353949305000000, -6.2626119999999998, 53.346127000000003], [1353949325000000, -6.2637470000000004, 53.345923999999997], [1353949346000000, -6.2640120000000001, 53.345886], [1353949366000000, -6.2654839999999998, 53.345661], [1353949385000000, -6.2654839999999998, 53.345661], [1353949408000000, -6.2661760000000006, 53.345554000000007], [1353949424000000, -6.2677300000000002, 53.345344999999995], [1353949446000000, -6.2694599999999996, 53.345199999999998], [1353949465000000, -6.2695349999999994, 53.345192000000004], [1353949485000000, -6.2713559999999999, 53.345036], [1353949506000000, -6.2716880000000002, 53.345008999999997], [1353949525000000, -6.2716880000000002, 53.345008999999997], [1353949547000000, -6.2727919999999999, 53.345016000000001], [1353949566000000, -6.2737410000000002, 53.345096999999996], [1353949586000000, -6.2756040000000004, 53.345249000000003], [1353949605000000, -6.277304, 53.345546999999996], [1353949626000000, -6.2782730000000004, 53.345734], [1353949646000000, -6.279674, 53.345996999999997], [1353949665000000, -6.2805839999999993, 53.346164999999999], [1353949686000000, -6.2833139999999998, 53.346451000000002], [1353949706000000, -6.2861970000000005, 53.346587999999997], [1353949725000000, -6.289879, 53.346756000000006]] 5 | [[1353949766000000, -6.2935870000000005, 53.345939999999999], [1353949785000000, -6.2938419999999997, 53.345950999999999], [1353949808000000, -6.2944199999999997, 53.345908999999999], [1353949825000000, -6.2951489999999994, 53.345859999999995], [1353949846000000, -6.2980859999999996, 53.345595999999993], [1353949866000000, -6.3021630000000002, 53.345001000000003], [1353949884000000, -6.305758, 53.343924999999999], [1353949906000000, -6.3079499999999999, 53.343020999999993], [1353949926000000, -6.3079070000000002, 53.342143999999998], [1353949945000000, -6.3099930000000004, 53.342140000000001], [1353949968000000, -6.3111350000000002, 53.342228000000006], [1353949985000000, -6.3143820000000002, 53.342213000000001], [1353950007000000, -6.3153930000000003, 53.341994999999997], [1353950026000000, -6.3178679999999998, 53.341712999999999], [1353950047000000, -6.3188269999999997, 53.341614], [1353950067000000, -6.320354, 53.341560000000001], [1353950086000000, -6.3210000000000006, 53.341526000000002], [1353950104000000, -6.3236460000000001, 53.341510999999997], [1353950127000000, -6.3243679999999998, 53.341693999999997], [1353950146000000, -6.3269219999999997, 53.342059999999996], [1353950166000000, -6.3273589999999995, 53.342071999999995], [1353950189000000, -6.3289800000000005, 53.342178000000004], [1353950205000000, -6.3293280000000003, 53.341629000000005], [1353950227000000, -6.3319960000000002, 53.341956999999994], [1353950246000000, -6.3336220000000001, 53.341498999999999], [1353950267000000, -6.334009, 53.341418999999995], [1353950285000000, -6.3365980000000004, 53.340907999999999], [1353950306000000, -6.3380039999999997, 53.340679000000002], [1353950324000000, -6.3392999999999997, 53.340472999999996], [1353950348000000, -6.3418289999999997, 53.339908999999999], [1353950365000000, -6.342651, 53.339737], [1353950386000000, -6.3445849999999995, 53.339362999999999], [1353950405000000, -6.3457889999999999, 53.339127000000005], [1353950426000000, -6.3463769999999995, 53.339011999999997], [1353950447000000, -6.3464710000000002, 53.338242000000001], [1353950465000000, -6.3463799999999999, 53.337940000000003], [1353950486000000, -6.3466760000000004, 53.337775999999998], [1353950506000000, -6.346984, 53.337715000000003], [1353950525000000, -6.3473800000000002, 53.337639000000003], [1353950548000000, -6.3479849999999995, 53.338633999999999], [1353950565000000, -6.3481180000000004, 53.338867000000008], [1353950585000000, -6.3484370000000006, 53.340237000000002], [1353950606000000, -6.3485360000000002, 53.340972999999998], [1353950625000000, -6.3488660000000001, 53.341285999999997], [1353950645000000, -6.348687, 53.341681999999992], [1353950668000000, -6.3499550000000005, 53.342236], [1353950685000000, -6.3520139999999996, 53.342140000000001], [1353950707000000, -6.3528349999999998, 53.342162999999999], [1353950725000000, -6.3535839999999997, 53.342216000000001], [1353950748000000, -6.356471, 53.342442000000005], [1353950766000000, -6.3583699999999999, 53.342593999999991], [1353950786000000, -6.3586989999999997, 53.342620999999994], [1353950806000000, -6.3595829999999998, 53.342693000000004], [1353950825000000, -6.3597960000000002, 53.342711999999999], [1353950846000000, -6.3615760000000003, 53.342868999999993], [1353950865000000, -6.3618290000000002, 53.341609999999996], [1353950885000000, -6.3617800000000004, 53.340954000000004], [1353950908000000, -6.3614420000000003, 53.339401000000002], [1353950925000000, -6.3612279999999997, 53.338893999999996]] 6 | [[1353931284000000, -6.2608670000000002, 53.352814000000002], [1353931325000000, -6.2608670000000002, 53.352814000000002], [1353931333000000, -6.2645960000000001, 53.352901000000003], [1353931343000000, -6.2668370000000007, 53.354191], [1353931364000000, -6.268008, 53.354808999999996], [1353931382000000, -6.2682010000000004, 53.355708999999997], [1353931403000000, -6.2680579999999999, 53.356480000000005], [1353931426000000, -6.2687999999999997, 53.357830000000007], [1353931444000000, -6.2696459999999998, 53.358798999999998], [1353931462000000, -6.2697500000000002, 53.359607999999994], [1353931485000000, -6.2696990000000001, 53.359966], [1353931503000000, -6.2696819999999995, 53.360081000000008], [1353931524000000, -6.2696819999999995, 53.360081000000008], [1353931542000000, -6.2696819999999995, 53.360081000000008], [1353931563000000, -6.2696709999999998, 53.360165000000002], [1353931583000000, -6.2701310000000001, 53.360626000000003], [1353931602000000, -6.2703259999999998, 53.360638000000002], [1353931623000000, -6.2703259999999998, 53.360638000000002], [1353931643000000, -6.2705510000000002, 53.360649000000002], [1353931668000000, -6.2717800000000006, 53.360737], [1353931695000000, -6.271884, 53.360743999999997], [1353931704000000, -6.271884, 53.360743999999997], [1353931724000000, -6.271884, 53.360743999999997], [1353931745000000, -6.2721689999999999, 53.360764000000003], [1353931763000000, -6.2751220000000005, 53.360802], [1353931806000000, -6.277247, 53.360828000000005], [1353931825000000, -6.2791399999999999, 53.360911999999999], [1353931843000000, -6.2816410000000005, 53.361000000000004], [1353931866000000, -6.283207, 53.361065000000004], [1353931884000000, -6.2831929999999998, 53.361561000000002], [1353931902000000, -6.2831429999999999, 53.361752000000003], [1353931925000000, -6.2827349999999997, 53.363205000000008], [1353931944000000, -6.2827230000000007, 53.363822999999996], [1353931964000000, -6.2857389999999995, 53.364437000000002], [1353931987000000, -6.2881710000000002, 53.364688999999998], [1353932003000000, -6.2894639999999997, 53.365581999999996], [1353932023000000, -6.2913969999999999, 53.366505000000004], [1353932044000000, -6.2915359999999998, 53.366539000000003], [1353932064000000, -6.291779, 53.367095999999997], [1353932085000000, -6.2915070000000002, 53.367538000000003], [1353932105000000, -6.2911320000000002, 53.368209999999998], [1353932124000000, -6.2913949999999996, 53.369094999999994], [1353932144000000, -6.2937730000000007, 53.369865000000004], [1353932165000000, -6.2965179999999998, 53.370387999999998], [1353932185000000, -6.2995919999999996, 53.370982999999995], [1353932203000000, -6.3011460000000001, 53.371265000000001], [1353932224000000, -6.3035709999999998, 53.371295999999994], [1353932242000000, -6.30389, 53.371288], [1353932263000000, -6.3046220000000002, 53.370837999999999], [1353932283000000, -6.3044989999999999, 53.370181999999993], [1353932304000000, -6.3039699999999996, 53.369273999999997], [1353932324000000, -6.304278, 53.369002999999999], [1353932345000000, -6.3048800000000007, 53.368648999999998], [1353932363000000, -6.3061389999999999, 53.370036999999996], [1353932384000000, -6.3059370000000001, 53.371552000000001], [1353932404000000, -6.3063000000000002, 53.373093000000004], [1353932423000000, -6.3078029999999998, 53.374268000000008], [1353932444000000, -6.3089490000000001, 53.375011000000001], [1353932464000000, -6.3099509999999999, 53.375900000000001], [1353932485000000, -6.3102099999999997, 53.376231999999995], [1353932503000000, -6.311852, 53.375838999999999], [1353932526000000, -6.3142879999999995, 53.375709999999998], [1353932543000000, -6.3167169999999997, 53.375725000000003], [1353932563000000, -6.3168819999999997, 53.375729000000007], [1353932584000000, -6.3190540000000004, 53.375751000000001], [1353932604000000, -6.321472, 53.375956999999993], [1353932625000000, -6.3236489999999996, 53.376980000000003], [1353932643000000, -6.3249870000000001, 53.37735], [1353932666000000, -6.3267259999999998, 53.377231999999992], [1353932684000000, -6.3302069999999997, 53.377239000000003], [1353932704000000, -6.3309670000000002, 53.377582999999994], [1353932723000000, -6.3309670000000002, 53.377582999999994], [1353932766000000, -6.3309670000000002, 53.377582999999994]] 7 | -------------------------------------------------------------------------------- /train_set.csv.zip: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/jim-spyropoulos/Trajectory-Analysis-and-Classification-in-Python-Pandas-and-Scikit-Learn/5078fd47122e6a0a93c08e068d62281aedf91baf/train_set.csv.zip --------------------------------------------------------------------------------