├── .github
└── workflows
│ ├── nightly-check.yml
│ └── pull-request-check.yml
├── .gitignore
├── LICENSE
├── README.md
├── examples
├── ex1-factory-safety-report.py
├── ex2-fridge-recipe-generation.py
├── ex3-movie-tweets-analysis.py
└── images
│ ├── factory-1.png
│ ├── factory-2.png
│ ├── factory-3.png
│ ├── factory-4.png
│ └── fridge-1.png
├── jinaai
├── __init__.py
├── clients
│ ├── BestBannerClient.py
│ ├── HTTPClient.py
│ ├── JinaChatClient.py
│ ├── PromptPerfectClient.py
│ ├── RationaleClient.py
│ ├── SceneXClient.py
│ └── __init__.py
└── utils.py
├── scripts
└── publish.sh
├── setup.py
└── tests
├── mock
├── HTTPClientMock.py
└── responses
│ ├── Auth.KO.response.json
│ ├── BestBannerResponse.py
│ ├── JinaChatResponse.py
│ ├── NotImplemented.response.json
│ ├── PromptPerfectResponse.py
│ ├── RationaleResponse.py
│ └── SceneXResponse.py
├── real-cases
├── test_ex1-factory.py
├── test_ex2-fridge.py
├── test_ex3-tweet.py
├── test_ex4-email.py
├── test_ex5-story.py
├── test_ex6-video.py
└── text_ex7-json.py
├── test_authentication.py
├── test_baseurls.py
├── test_bestbanner.py
├── test_chatcat.py
├── test_promptperfect.py
├── test_rationale.py
├── test_scenex.py
└── test_utility.py
/.github/workflows/nightly-check.yml:
--------------------------------------------------------------------------------
1 | name: Nightly Check
2 |
3 | on:
4 | schedule:
5 | - cron: '30 20 * * *'
6 | workflow_dispatch:
7 |
8 | jobs:
9 | build:
10 |
11 | runs-on: ubuntu-latest
12 |
13 | strategy:
14 | matrix:
15 | python-version: [3.9]
16 |
17 | steps:
18 | - uses: actions/checkout@v3
19 | - name: Set up Python ${{ matrix.python-version }}
20 | uses: actions/setup-python@v2
21 | with:
22 | python-version: ${{ matrix.python-version }}
23 | - run: pip install . && pip install pytest
24 | - run: cd tests && python -m pytest --ignore=real-cases
25 | - run: cd tests/real-cases && BESTBANNER_SECRET=$BB PROMPTPERFECT_SECRET=$PP SCENEX_SECRET=$SX RATIONALE_SECRET=$RA JINACHAT_SECRET=$CC pytest
26 | shell: bash
27 | env:
28 | PP: ${{ secrets.PROMPTPERFECT_SECRET }}
29 | SX: ${{ secrets.SCENEX_SECRET }}
30 | RA: ${{ secrets.RATIONALE_SECRET }}
31 | CC: ${{ secrets.JINACHAT_SECRET }}
32 | BB: ${{ secrets.BESTBANNER_SECRET }}
33 |
--------------------------------------------------------------------------------
/.github/workflows/pull-request-check.yml:
--------------------------------------------------------------------------------
1 | name: PR Check
2 |
3 | on:
4 | pull_request:
5 |
6 |
7 | jobs:
8 | build:
9 |
10 | runs-on: ubuntu-latest
11 |
12 | strategy:
13 | matrix:
14 | python-version: [3.8, 3.9]
15 |
16 | steps:
17 | - uses: actions/checkout@v3
18 | - name: Set up Python ${{ matrix.python-version }}
19 | uses: actions/setup-python@v2
20 | with:
21 | python-version: ${{ matrix.python-version }}
22 | - run: pip install . && pip install pytest
23 | - run: cd tests && python -m pytest --ignore=real-cases
24 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # compiled output
2 | /node_modules
3 | /build
4 | /dist
5 | /**.egg-info
6 |
7 | # Logs
8 | logs
9 | *.log
10 | npm-debug.log*
11 | yarn-debug.log*
12 | yarn-error.log*
13 | lerna-debug.log*
14 |
15 | # OS
16 | .DS_Store
17 | __pycache__
18 |
19 | # Tests
20 | /coverage
21 | /.nyc_output
22 |
23 | # IDEs and editors
24 | /.idea
25 | .project
26 | .classpath
27 | .c9/
28 | *.launch
29 | .settings/
30 | *.sublime-workspace
31 |
32 | # IDE - VSCode
33 | .vscode/*
34 | !.vscode/settings.json
35 | !.vscode/tasks.json
36 | !.vscode/launch.json
37 | !.vscode/extensions.json
38 |
39 | .pytest_cache
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 |
2 | Apache License
3 | Version 2.0, January 2004
4 | http://www.apache.org/licenses/
5 |
6 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
7 |
8 | 1. Definitions.
9 |
10 | "License" shall mean the terms and conditions for use, reproduction,
11 | and distribution as defined by Sections 1 through 9 of this document.
12 |
13 | "Licensor" shall mean the copyright owner or entity authorized by
14 | the copyright owner that is granting the License.
15 |
16 | "Legal Entity" shall mean the union of the acting entity and all
17 | other entities that control, are controlled by, or are under common
18 | control with that entity. For the purposes of this definition,
19 | "control" means (i) the power, direct or indirect, to cause the
20 | direction or management of such entity, whether by contract or
21 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
22 | outstanding shares, or (iii) beneficial ownership of such entity.
23 |
24 | "You" (or "Your") shall mean an individual or Legal Entity
25 | exercising permissions granted by this License.
26 |
27 | "Source" form shall mean the preferred form for making modifications,
28 | including but not limited to software source code, documentation
29 | source, and configuration files.
30 |
31 | "Object" form shall mean any form resulting from mechanical
32 | transformation or translation of a Source form, including but
33 | not limited to compiled object code, generated documentation,
34 | and conversions to other media types.
35 |
36 | "Work" shall mean the work of authorship, whether in Source or
37 | Object form, made available under the License, as indicated by a
38 | copyright notice that is included in or attached to the work
39 | (an example is provided in the Appendix below).
40 |
41 | "Derivative Works" shall mean any work, whether in Source or Object
42 | form, that is based on (or derived from) the Work and for which the
43 | editorial revisions, annotations, elaborations, or other modifications
44 | represent, as a whole, an original work of authorship. For the purposes
45 | of this License, Derivative Works shall not include works that remain
46 | separable from, or merely link (or bind by name) to the interfaces of,
47 | the Work and Derivative Works thereof.
48 |
49 | "Contribution" shall mean any work of authorship, including
50 | the original version of the Work and any modifications or additions
51 | to that Work or Derivative Works thereof, that is intentionally
52 | submitted to Licensor for inclusion in the Work by the copyright owner
53 | or by an individual or Legal Entity authorized to submit on behalf of
54 | the copyright owner. For the purposes of this definition, "submitted"
55 | means any form of electronic, verbal, or written communication sent
56 | to the Licensor or its representatives, including but not limited to
57 | communication on electronic mailing lists, source code control systems,
58 | and issue tracking systems that are managed by, or on behalf of, the
59 | Licensor for the purpose of discussing and improving the Work, but
60 | excluding communication that is conspicuously marked or otherwise
61 | designated in writing by the copyright owner as "Not a Contribution."
62 |
63 | "Contributor" shall mean Licensor and any individual or Legal Entity
64 | on behalf of whom a Contribution has been received by Licensor and
65 | subsequently incorporated within the Work.
66 |
67 | 2. Grant of Copyright License. Subject to the terms and conditions of
68 | this License, each Contributor hereby grants to You a perpetual,
69 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
70 | copyright license to reproduce, prepare Derivative Works of,
71 | publicly display, publicly perform, sublicense, and distribute the
72 | Work and such Derivative Works in Source or Object form.
73 |
74 | 3. Grant of Patent License. Subject to the terms and conditions of
75 | this License, each Contributor hereby grants to You a perpetual,
76 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
77 | (except as stated in this section) patent license to make, have made,
78 | use, offer to sell, sell, import, and otherwise transfer the Work,
79 | where such license applies only to those patent claims licensable
80 | by such Contributor that are necessarily infringed by their
81 | Contribution(s) alone or by combination of their Contribution(s)
82 | with the Work to which such Contribution(s) was submitted. If You
83 | institute patent litigation against any entity (including a
84 | cross-claim or counterclaim in a lawsuit) alleging that the Work
85 | or a Contribution incorporated within the Work constitutes direct
86 | or contributory patent infringement, then any patent licenses
87 | granted to You under this License for that Work shall terminate
88 | as of the date such litigation is filed.
89 |
90 | 4. Redistribution. You may reproduce and distribute copies of the
91 | Work or Derivative Works thereof in any medium, with or without
92 | modifications, and in Source or Object form, provided that You
93 | meet the following conditions:
94 |
95 | (a) You must give any other recipients of the Work or
96 | Derivative Works a copy of this License; and
97 |
98 | (b) You must cause any modified files to carry prominent notices
99 | stating that You changed the files; and
100 |
101 | (c) You must retain, in the Source form of any Derivative Works
102 | that You distribute, all copyright, patent, trademark, and
103 | attribution notices from the Source form of the Work,
104 | excluding those notices that do not pertain to any part of
105 | the Derivative Works; and
106 |
107 | (d) If the Work includes a "NOTICE" text file as part of its
108 | distribution, then any Derivative Works that You distribute must
109 | include a readable copy of the attribution notices contained
110 | within such NOTICE file, excluding those notices that do not
111 | pertain to any part of the Derivative Works, in at least one
112 | of the following places: within a NOTICE text file distributed
113 | as part of the Derivative Works; within the Source form or
114 | documentation, if provided along with the Derivative Works; or,
115 | within a display generated by the Derivative Works, if and
116 | wherever such third-party notices normally appear. The contents
117 | of the NOTICE file are for informational purposes only and
118 | do not modify the License. You may add Your own attribution
119 | notices within Derivative Works that You distribute, alongside
120 | or as an addendum to the NOTICE text from the Work, provided
121 | that such additional attribution notices cannot be construed
122 | as modifying the License.
123 |
124 | You may add Your own copyright statement to Your modifications and
125 | may provide additional or different license terms and conditions
126 | for use, reproduction, or distribution of Your modifications, or
127 | for any such Derivative Works as a whole, provided Your use,
128 | reproduction, and distribution of the Work otherwise complies with
129 | the conditions stated in this License.
130 |
131 | 5. Submission of Contributions. Unless You explicitly state otherwise,
132 | any Contribution intentionally submitted for inclusion in the Work
133 | by You to the Licensor shall be under the terms and conditions of
134 | this License, without any additional terms or conditions.
135 | Notwithstanding the above, nothing herein shall supersede or modify
136 | the terms of any separate license agreement you may have executed
137 | with Licensor regarding such Contributions.
138 |
139 | 6. Trademarks. This License does not grant permission to use the trade
140 | names, trademarks, service marks, or product names of the Licensor,
141 | except as required for reasonable and customary use in describing the
142 | origin of the Work and reproducing the content of the NOTICE file.
143 |
144 | 7. Disclaimer of Warranty. Unless required by applicable law or
145 | agreed to in writing, Licensor provides the Work (and each
146 | Contributor provides its Contributions) on an "AS IS" BASIS,
147 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
148 | implied, including, without limitation, any warranties or conditions
149 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
150 | PARTICULAR PURPOSE. You are solely responsible for determining the
151 | appropriateness of using or redistributing the Work and assume any
152 | risks associated with Your exercise of permissions under this License.
153 |
154 | 8. Limitation of Liability. In no event and under no legal theory,
155 | whether in tort (including negligence), contract, or otherwise,
156 | unless required by applicable law (such as deliberate and grossly
157 | negligent acts) or agreed to in writing, shall any Contributor be
158 | liable to You for damages, including any direct, indirect, special,
159 | incidental, or consequential damages of any character arising as a
160 | result of this License or out of the use or inability to use the
161 | Work (including but not limited to damages for loss of goodwill,
162 | work stoppage, computer failure or malfunction, or any and all
163 | other commercial damages or losses), even if such Contributor
164 | has been advised of the possibility of such damages.
165 |
166 | 9. Accepting Warranty or Additional Liability. While redistributing
167 | the Work or Derivative Works thereof, You may choose to offer,
168 | and charge a fee for, acceptance of support, warranty, indemnity,
169 | or other liability obligations and/or rights consistent with this
170 | License. However, in accepting such obligations, You may act only
171 | on Your own behalf and on Your sole responsibility, not on behalf
172 | of any other Contributor, and only if You agree to indemnify,
173 | defend, and hold each Contributor harmless for any liability
174 | incurred by, or claims asserted against, such Contributor by reason
175 | of your accepting any such warranty or additional liability.
176 |
177 | END OF TERMS AND CONDITIONS
178 |
179 | APPENDIX: How to apply the Apache License to your work.
180 |
181 | To apply the Apache License to your work, attach the following
182 | boilerplate notice, with the fields enclosed by brackets "[]"
183 | replaced with your own identifying information. (Don't include
184 | the brackets!) The text should be enclosed in the appropriate
185 | comment syntax for the file format. We also recommend that a
186 | file or class name and description of purpose be included on the
187 | same "printed page" as the copyright notice for easier
188 | identification within third-party archives.
189 |
190 | Copyright [yyyy] [name of copyright owner]
191 |
192 | Licensed under the Apache License, Version 2.0 (the "License");
193 | you may not use this file except in compliance with the License.
194 | You may obtain a copy of the License at
195 |
196 | http://www.apache.org/licenses/LICENSE-2.0
197 |
198 | Unless required by applicable law or agreed to in writing, software
199 | distributed under the License is distributed on an "AS IS" BASIS,
200 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
201 | See the License for the specific language governing permissions and
202 | limitations under the License.
203 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # JinaAI Python SDK
2 |
3 | The JinaAI Python SDK is an efficient instrument that smoothly brings the power of JinaAI's products — [SceneXplain](https://scenex.jina.ai), [PromptPerfect](https://promptperfect.jina.ai/), [Rationale](https://rationale.jina.ai/), [BestBanner](https://bestbanner.jina.ai/), and [JinaChat](https://chat.jina.ai/) — into Python applications. Acting as a sturdy interface for JinaAI's APIs, this SDK lets you effortlessly formulate and fine-tune prompts, thus streamlining application development.
4 |
5 | ## Installing
6 |
7 | ### Package manager
8 |
9 | Using pip:
10 | ```bash
11 | $ pip install jinaai
12 | ```
13 |
14 | ## API secrets
15 |
16 | To generate an API secret, you need to authenticate on each respective platform's API tab:
17 |
18 | - [SceneXplain API](https://scenex.jina.ai/api)
19 | - [PromptPerfect API](https://promptperfect.jina.ai/api)
20 | - [Rationale API](https://rationale.jina.ai/api)
21 | - [JinaChat API](https://chat.jina.ai/api)
22 | - [BestBanner API](https://bestbanner.jina.ai/api)
23 |
24 | > **Note:** Each secret is product-specific and cannot be interchanged. If you're planning to use multiple products, you'll need to generate a separate secret for each.
25 |
26 | ## Example usage
27 |
28 |
29 | Import the SDK and instantiate a new client with your authentication secrets:
30 |
31 | ```python
32 | from jinaai import JinaAI
33 |
34 | jinaai = JinaAI(
35 | secrets = {
36 | 'promptperfect-secret': 'XXXXXX',
37 | 'scenex-secret': 'XXXXXX',
38 | 'rationale-secret': 'XXXXXX',
39 | 'jinachat-secret': 'XXXXXX',
40 | 'bestbanner-secret': 'XXXXXX',
41 | }
42 | )
43 | ```
44 |
45 | Describe images:
46 |
47 | ```python
48 | descriptions = jinaai.describe(
49 | 'https://picsum.photos/200'
50 | )
51 | ```
52 |
53 | Evaluate situations:
54 |
55 | ```python
56 | decisions = jinaai.decide(
57 | 'Going to Paris this summer',
58 | { 'analysis': 'proscons' }
59 | )
60 | ```
61 |
62 | Optimize prompts:
63 |
64 | ```python
65 | prompts = jinaai.optimize(
66 | 'Write an Hello World function in Python'
67 | )
68 | ```
69 |
70 | Generate complex answers:
71 |
72 | ```python
73 | output = jinaai.generate(
74 | 'Give me a recipe for a pizza with pineapple'
75 | )
76 | ```
77 |
78 | Create images from text:
79 |
80 | ```python
81 | output = jinaai.imagine(
82 | 'A controversial fusion of sweet pineapple and savory pizza.'
83 | )
84 | ```
85 |
86 | Use APIs together:
87 |
88 | ```python
89 | situations = [toBase64(img) for img in [
90 | 'factory-1.png',
91 | 'factory-2.png',
92 | 'factory-3.png',
93 | 'factory-4.png',
94 | ]]
95 |
96 | descriptions = jinaai.describe(situations)
97 |
98 | prompt1 = [
99 | 'Do any of those situations present a danger?',
100 | 'Reply with [YES] or [NO] and explain why',
101 | *['SITUATION:\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
102 | ]
103 |
104 | analysis = jinaai.generate('\n'.join(prompt1))
105 |
106 | prompt2 = [
107 | 'What should be done first to make those situations safer?',
108 | 'I only want the most urgent situation',
109 | *['SITUATION:\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
110 | ]
111 |
112 | recommendation = jinaai.generate('\n'.join(propmt2))
113 |
114 | swot = jinaai.decide(
115 | recommendation['output'],
116 | { 'analysis': 'swot' }
117 | )
118 |
119 | banners = jinaai.imagine(
120 | *[desc['output'] for i, desc in enumerate(descriptions['results'])]
121 | )
122 | ```
123 |
124 | ## Raw Output
125 |
126 | You can retrieve the raw output of each APIs by passing `raw: True` in the options:
127 |
128 | ```python
129 | descriptions = jinaai.describe(
130 | 'https://picsum.photos/200',
131 | { 'raw': True }
132 | )
133 |
134 | print(descriptions['raw'])
135 | ```
136 |
137 | ## Custom Base Urls
138 |
139 | Custom base Urls can be passed directly in the client's constructor:
140 |
141 | ```python
142 | jinaai = JinaAI(
143 | baseUrls={
144 | 'promptperfect': 'https://promptperfect-customurl.jina.ai',
145 | 'scenex': 'https://scenex-customurl.jina.ai',
146 | 'rationale': 'https://rationale-customurl.jina.ai',
147 | 'jinachat': 'https://jinachat-customurl.jina.ai',
148 | 'bestbanner': 'https://bestbanner-customurl.jina.ai',
149 | }
150 | )
151 | ```
152 |
153 | ## API Documentation
154 |
155 | ### JinaAi.describe
156 |
157 | ```python
158 | output = JinaAI.describe(input, options)
159 | ```
160 |
161 | - Input
162 |
163 | >| VARIABLE | TYPE | VALUE
164 | >|---------------------------------------|-------------------|----------
165 | >| input | str / str array | Image URL or Base64
166 |
167 | - Options
168 |
169 | >| VARIABLE | TYPE | VALUE
170 | >|----------------------------------------|-------------------|----------
171 | >| options | dict |
172 | >| options['algorithm'] | None / str | Aqua / Bolt / Comet / Dune / Ember / Flash / Glide / Hearth / Inception / Jelly
173 | >| options['features'] | None / str array | high_quality, question_answer, tts, opt-out, json
174 | >| options['languages'] | None / str array | en, cn, de, fr, it...
175 | >| options['question'] | None / str | Question related to the picture(s)
176 | >| options['style'] | None / str | default / concise / prompt
177 | >| options['output_length'] | None / number |
178 | >| options['json_schema'] | None / dict |
179 | >| options['callback_url'] | None / string |
180 |
181 | - Output
182 |
183 | >| VARIABLE | TYPE | VALUE
184 | >|----------------------------------------|-------------------|----------
185 | >| output | dict |
186 | >| output['results'] | dict array |
187 | >| results[0]['output'] | str | The picture description
188 | >| results[0]['i18n'] | dict | Contains one key for each item in languages
189 | >| ...i18n['cn'] | str | The translated picture description
190 | >| ...i18n['cn'] | dict array | Only for Hearth algorithm
191 | >| ...i18n['cn'][0] | dict |
192 | >| ...i18n['cn'][0]['message'] | str |
193 | >| ...i18n['cn'][0]['isNarrator'] | boolean |
194 | >| ...i18n['cn'][0]['name'] | str |
195 | >| ...i18n['cn'] | dict array | Only for Inception algorithm
196 | >| ...i18n['cn'][0] | dict |
197 | >| ...i18n['cn'][0]['summary'] | str |
198 | >| ...i18n['cn'][0]['events'] | dict array |
199 | >| ...['events']['description'] | str |
200 | >| ...['events']['timestamp'] | str |
201 | >| results[0]['tts'] | dict | Only for Hearth algorithm
202 | >| ...tts['cn'] | str | Contains the url to the tts file
203 | >| results[0]['ssml'] | dict | Only for Hearth algorithm
204 | >| ...ssml['cn'] | str | Contains the url to the ssml file
205 |
206 |
207 |
208 | ### JinaAi.optimize
209 |
210 | ```python
211 | output = JinaAI.optimize(input, options)
212 | ```
213 |
214 | - Input
215 |
216 | >| VARIABLE | TYPE | VALUE
217 | >|----------------------------------------|-------------------|----------
218 | >| input | str / str array | Image URL or Base64 / prompt to optimize
219 |
220 | - Options
221 |
222 | >| VARIABLE | TYPE | VALUE
223 | >|----------------------------------------|-------------------|----------
224 | >| options | dict |
225 | >| options['targetModel'] | None / str | chatgpt / gpt-4 / stablelm-tuned-alpha-7b / claude / cogenerate / text-davinci-003 / dalle / sd / midjourney / kandinsky / lexica
226 | >| options['features'] | None / str array | preview, no_spam, shorten, bypass_ethics, same_language, always_en, high_quality, redo_original_image, variable_subs, template_run
227 | >| options['iterations'] | None / number | Default: 1
228 | >| options['previewSettings'] | None / dict | Contains the settings for the preview
229 | >| ...previewSettings['temperature'] | number | Example: 0.9
230 | >| ...previewSettings['topP'] | number | Example: 0.9
231 | >| ...previewSettings['topK'] | number | Example: 0
232 | >| ...previewSettings['frequencyPenalty'] | number | Example: 0
233 | >| ...previewSettings['presencePenalty'] | number | Example: 0
234 | >| options['previewVariables'] | None / dict | Contains one key for each variables in the prompt
235 | >| ...previewVariables['var1'] | str | The value of the variable
236 | >| options['timeout'] | Number | Default: 20000
237 | >| options['target_language'] | None / str | en / cn / de / fr / it...
238 |
239 | - Output
240 |
241 | >| VARIABLE | TYPE | VALUE
242 | >|----------------------------------------|-------------------|----------
243 | >| output | dict |
244 | >| output['results'] | dict array |
245 | >| results[0]['output'] | str | The optimized prompt
246 |
247 |
248 |
249 | ### JinaAi.decide
250 |
251 | ```python
252 | output = JinaAI.decide(input, options)
253 | ```
254 |
255 | - Input
256 |
257 | >| VARIABLE | TYPE | VALUE
258 | >|----------------------------------------|-------------------|----------
259 | >| input | str / str array | Decision to evaluate
260 |
261 | - Options
262 |
263 | >| VARIABLE | TYPE | VALUE
264 | >|----------------------------------------|-------------------|----------
265 | >| options | dict |
266 | >| options['analysis'] | None / str | proscons / swot / multichoice / outcomes
267 | >| options['style'] | None / str | concise / professional / humor / sarcastic / childish / genZ
268 | >| options['profileId'] | None / str | The id of the Personas you want to use
269 |
270 | - Output
271 |
272 | >| VARIABLE | TYPE | VALUE
273 | >|----------------------------------------|-------------------|----------
274 | >| output | dict |
275 | >| output['results'] | dict array |
276 | >| results[0]['proscons'] | None / dict |
277 | >| ...proscons['pros'] | dict | Contains one key for each pros
278 | >| ...proscons['pros']['pros1'] | str | The explanation of the pros
279 | >| ...proscons['cons'] | dict | Contains one key for each cons
280 | >| ...proscons['cons']['cons1'] | str | The explanation of the cons
281 | >| ...proscons['bestChoice'] | str |
282 | >| ...proscons['conclusion'] | str |
283 | >| ...proscons['confidenceScore'] | number |
284 | >| results[0]['swot'] | None / dict |
285 | >| ...swot['strengths'] | dict | Contains one key for each strength
286 | >| ...swot['strengths']['str1'] | str | The explanation of the strength
287 | >| ...swot['weaknesses'] | dict | Contains one key for each weakness
288 | >| ...swot['weaknesses']['weak1'] | str | The explanation of the weakness
289 | >| ...swot['opportunities'] | dict | Contains one key for each opportunity
290 | >| ...swot['opportunities']['opp1'] | str | The explanation of the opportunity
291 | >| ...swot['threats'] | dict | Contains one key for each threat
292 | >| ...swot['threats']['thre1'] | str | The explanation of the threat
293 | >| ...swot['bestChoice'] | str |
294 | >| ...swot['conclusion'] | str |
295 | >| ...swot['confidenceScore'] | number |
296 | >| results[0]['multichoice'] | None / dict | Contains one key for each choice
297 | >| ...multichoice['choice1'] | str | The value of the choice
298 | >| results[0]['outcomes'] | None / dict array |
299 | >| ...outcomes[0]['children'] | None / dict array | a recursive array of results['outcomes']
300 | >| ...outcomes[0]['label'] | str |
301 | >| ...outcomes[0]['sentiment'] | str |
302 |
303 |
304 |
305 | ### JinaAi.generate
306 |
307 | ```python
308 | output = JinaAI.generate(input, options)
309 | ```
310 |
311 | - Input
312 |
313 | >| VARIABLE | TYPE | VALUE
314 | >|----------------------------------------|------------------------|----------
315 | >| input | str / str array | Image URL or Base64 / prompt
316 |
317 | - Options
318 |
319 | >| VARIABLE | TYPE | VALUE
320 | >|----------------------------------------|------------------------|----------
321 | >| options | dict |
322 | >| options['role'] | None / str | user / assistant
323 | >| options['name'] | None / str | The name of the author of this message
324 | >| options['chatId'] | None / str | The id of the conversation to continue
325 | >| options['stream'] | None / boolean | Whether to stream back partial progress, Default: false
326 | >| options['temperature'] | None / number | Default: 1
327 | >| options['top_p'] | None / str | Default: 1
328 | >| options['stop'] | None / str / str array | Up to 4 sequences where the API will stop generating further tokens
329 | >| options['max_tokens'] | None / number | Default: infinite
330 | >| options['presence_penalty'] | None / number | Number between -2.0 and 2.0, Default: 0
331 | >| options['frequency_penalty'] | None / number | Number between -2.0 and 2.0, Default: 0
332 | >| options['logit_bias'] | None / dict | The likelihood for a token to appear in the completion
333 | >| ...logit_bias['tokenId'] | number | Bias value from -100 to 100
334 | >| options['image'] | str | The attached image of the message. The image can be either a URL or a base64-encoded string
335 |
336 | - Output
337 |
338 | >| VARIABLE | TYPE | VALUE
339 | >|----------------------------------------|-------------------|----------
340 | >| output | dict |
341 | >| output['output'] | str | The generated answer
342 | >| output['chatId'] | str | The chatId to continue the conversation
343 |
344 |
345 |
346 | ### JinaAi.imagine
347 |
348 | ```python
349 | output = JinaAI.imagine(input, options)
350 | ```
351 |
352 | - Input
353 |
354 | >| VARIABLE | TYPE | VALUE
355 | >|----------------------------------------|------------------------|----------
356 | >| input | str / str array | Prompt
357 |
358 | - Options
359 |
360 | >| VARIABLE | TYPE | VALUE
361 | >|----------------------------------------|------------------------|----------
362 | >| options | dict |
363 | >| options['style'] | None / str | default / photographic / minimalist / flat
364 |
365 | - Output
366 |
367 | >| VARIABLE | TYPE | VALUE
368 | >|----------------------------------------|-------------------|----------
369 | >| output | dict |
370 | >| output['results'] | dict array |
371 | >| results[0]['output'] | array | array of 4 image urls
372 |
373 |
374 |
375 | ### JinaAi.utils
376 |
377 | ```python
378 | outout = JinaAI.utils.image_to_base64(input)
379 | ```
380 |
381 | >| VARIABLE | TYPE | VALUE
382 | >|---------------------------------------|-------------------|----------
383 | >| input | str | Image path on disk
384 | >| output | str | Base64 image
385 |
386 | ```python
387 | outout = JinaAI.utils.is_url(input)
388 | ```
389 |
390 | >| VARIABLE | TYPE | VALUE
391 | >|---------------------------------------|-------------------|----------
392 | >| input | str |
393 | >| output | boolean |
394 |
395 | ```python
396 | outout = JinaAI.utils.is_base64(input)
397 | ```
398 |
399 | >| VARIABLE | TYPE | VALUE
400 | >|---------------------------------------|-------------------|----------
401 | >| input | str |
402 | >| output | boolean |
403 |
--------------------------------------------------------------------------------
/examples/ex1-factory-safety-report.py:
--------------------------------------------------------------------------------
1 | from jinaai import JinaAI
2 | import os
3 |
4 | jinaai = JinaAI(
5 | secrets = {
6 | 'promptperfect-secret': os.environ.get('PROMPTPERFECT_SECRET', ''),
7 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
8 | 'rationale-secret': os.environ.get('RATIONALE_SECRET', ''),
9 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', ''),
10 | 'bestbanner-secret': os.environ.get('BESTBANNER_SECRET', '')
11 | }
12 | )
13 |
14 | def toBase64(img: str) -> str:
15 | return jinaai.utils.image_to_base64(f"images/{img}")
16 |
17 | situations = [toBase64(img) for img in [
18 | 'factory-2.png',
19 | 'factory-3.png',
20 | 'factory-4.png',
21 | ]]
22 |
23 | def evaluate():
24 | try:
25 | # 1. get a description of each situations
26 | descriptions = jinaai.describe(situations)
27 | for i, desc in enumerate(descriptions['results']):
28 | print(f"DESCRIPTION {i + 1}:\n{desc['output']}\n")
29 | # 2. get an analysis based on those descriptions
30 | analysis = jinaai.generate('\n'.join([
31 | 'Does any of those situations present a danger?',
32 | 'Reply with [SITUATION_NUMBER] [YES] or [NO] and explain why',
33 | *['SITUATION ' + str(i + 1) + ':\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
34 | ]))
35 | print('ANALYSIS:\n', analysis['output'])
36 | # 3. get a recommendation on the most urgent action to take
37 | recommendation = jinaai.generate('\n'.join([
38 | 'According to those situations, what should be done first to make everything safer?',
39 | 'I only want the most urgent situation',
40 | *['SITUATION ' + str(i + 1) + ':\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
41 | ]))
42 | print('RECOMMENDATION:\n', recommendation['output'])
43 | # 4. get a swot analysis of the recommendation
44 | swot = jinaai.decide(
45 | recommendation['output'],
46 | { 'analysis': 'swot' }
47 | )
48 | print('SWOT:\n', swot['results'][0]['swot'])
49 | # 5. get a banner for the report
50 | banners = jinaai.imagine(descriptions['results'][0]['output'])
51 | print('BANNERS:\n', banners['results'])
52 | except Exception as e:
53 | print("Error:", str(e))
54 |
55 | evaluate()
56 |
--------------------------------------------------------------------------------
/examples/ex2-fridge-recipe-generation.py:
--------------------------------------------------------------------------------
1 | from jinaai import JinaAI
2 | import os
3 |
4 | jinaai = JinaAI(
5 | secrets = {
6 | 'promptperfect-secret': os.environ.get('PROMPTPERFECT_SECRET', ''),
7 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
8 | 'rationale-secret': os.environ.get('RATIONALE_SECRET', ''),
9 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', ''),
10 | 'bestbanner-secret': os.environ.get('BESTBANNER_SECRET', '')
11 | }
12 | )
13 |
14 | def toBase64(img: str) -> str:
15 | return jinaai.utils.image_to_base64(f"images/{img}")
16 |
17 | fridge = toBase64('fridge-1.png')
18 |
19 | def generate():
20 | try:
21 | # 1. get a description of the fridge content
22 | descriptions = jinaai.describe(
23 | fridge,
24 | { 'question': 'What ingredients are in the fridge?', 'languages': ['en'] }
25 | )
26 | print('DESCRIPTION:\n', descriptions['results'][0]['output'])
27 | # 2. get an optmised prompt
28 | prompt = jinaai.optimize('\n'.join([
29 | 'Give me one recipe based on this list for ingredients',
30 | *['INGREDIENTS:\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
31 | ]))
32 | print('PROMPT:\n', prompt['results'][0]['output'])
33 | # 3. get a recipe based on the descriptions
34 | recipe = jinaai.generate(prompt['results'][0]['output'])
35 | print('RECIPE:\n', recipe['output'])
36 | # 4. get a swot analysis of the recommendation
37 | swot = jinaai.decide(
38 | recipe['output'],
39 | { 'analysis': 'swot' }
40 | )
41 | print('SWOT:\n', swot['results'][0]['swot'])
42 | # 5. get a banner for the recipe
43 | banners = jinaai.imagine(recipe['output'])
44 | print('BANNERS:\n', banners['results'])
45 | except Exception as e:
46 | print("Error:", str(e))
47 |
48 | generate()
49 |
--------------------------------------------------------------------------------
/examples/ex3-movie-tweets-analysis.py:
--------------------------------------------------------------------------------
1 | from jinaai import JinaAI
2 | import os
3 |
4 | jinaai = JinaAI(
5 | secrets = {
6 | 'promptperfect-secret': os.environ.get('PROMPTPERFECT_SECRET', ''),
7 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
8 | 'rationale-secret': os.environ.get('RATIONALE_SECRET', ''),
9 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', '')
10 | }
11 | )
12 |
13 | positiveMovieTweets = [
14 | 'Just watched the new movie! The plot was incredible, and the visual effects were mind-blowing. Definitely a must-see! #movie #amazing',
15 | "I can't stop thinking about the movie. The acting was superb, and the twist at the end caught me off guard. Highly recommended! #movie #thriller",
16 | 'The cinematography in the movie was stunning. Every scene was like a work of art. #movie #cinema',
17 | 'The new movie is a rollercoaster of emotions. I laughed, I cried, and I was on the edge of my seat throughout the entire film. #movie #emotional',
18 | "Just came back from watching the movie, and I'm still speechless. It's a masterpiece! #movie #masterpiece",
19 | "If you're looking for a good movie to watch, I highly recommend this one. It has a compelling story and brilliant performances. #movie #recommendation",
20 | 'The movie exceeded my expectations. The pacing was perfect, and the characters were so well-developed. #movie #surprise',
21 | "I'm still trying to process what I just witnessed in the movie. It's unlike anything I've ever seen before. #movie #unique",
22 | "Can't get enough of the movie's soundtrack. It perfectly complements the visuals and adds so much depth to the film. #movie #soundtrack",
23 | "Just watched the movie with my friends, and we had a blast. It's entertaining from start to finish. #movie #fun"
24 | ]
25 |
26 | negativeMovieTweets = [
27 | 'I just watched the new movie, and it was a complete disappointment. The plot was confusing, and the acting was terrible. #movie #disappointed',
28 | 'Save your money and skip this movie. It was boring and predictable. #movie #boring',
29 | "I don't understand the hype around this movie. It was overrated and not worth the ticket price. #movie #overrated",
30 | 'I had high expectations for this movie, but it fell flat. The storyline was weak, and the characters were poorly developed. #movie #letdown',
31 | 'I regret watching this movie. It was a waste of time. #movie #wasteoftime',
32 | "I can't believe I paid to see this movie. It was absolutely awful. #movie #awful",
33 | 'The movie was a disaster. The dialogue was cringe-worthy, and the special effects were laughable. #movie #disaster',
34 | 'I was bored throughout the entire movie. It lacked any excitement or originality. #movie #uninteresting',
35 | 'I was really looking forward to this movie, but it was a major letdown. The pacing was off, and the ending was unsatisfying. #movie #majorletdown',
36 | "I don't recommend this movie at all. It was a total mess and didn't make any sense. #movie #notrecommended"
37 | ]
38 |
39 | def evaluate(tweets):
40 | try:
41 | # 1. get the general feeling according to the tweets
42 | prompt = '\n'.join([
43 | 'According to those tweets, is the general feeling positive or negative?',
44 | 'Reply by [POSITIVE] or [NEGATIVE]',
45 | *['TWEET:\n' + t for i, t in enumerate(tweets)]
46 | ])
47 | feeling = jinaai.generate(prompt)
48 | print('GENERAL FEELING:', feeling['output'])
49 | except Exception as e:
50 | print("Error:", str(e))
51 |
52 | evaluate(positiveMovieTweets)
53 | evaluate(negativeMovieTweets)
54 |
--------------------------------------------------------------------------------
/examples/images/factory-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jina-ai/jinaai-py/a3e0138db76f3b3f0cbf8cd8d60e297224e37fb5/examples/images/factory-1.png
--------------------------------------------------------------------------------
/examples/images/factory-2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jina-ai/jinaai-py/a3e0138db76f3b3f0cbf8cd8d60e297224e37fb5/examples/images/factory-2.png
--------------------------------------------------------------------------------
/examples/images/factory-3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jina-ai/jinaai-py/a3e0138db76f3b3f0cbf8cd8d60e297224e37fb5/examples/images/factory-3.png
--------------------------------------------------------------------------------
/examples/images/factory-4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jina-ai/jinaai-py/a3e0138db76f3b3f0cbf8cd8d60e297224e37fb5/examples/images/factory-4.png
--------------------------------------------------------------------------------
/examples/images/fridge-1.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jina-ai/jinaai-py/a3e0138db76f3b3f0cbf8cd8d60e297224e37fb5/examples/images/fridge-1.png
--------------------------------------------------------------------------------
/jinaai/__init__.py:
--------------------------------------------------------------------------------
1 | from .clients.SceneXClient import SceneXClient
2 | from .clients.PromptPerfectClient import PromptPerfectClient
3 | from .clients.RationaleClient import RationaleClient
4 | from .clients.JinaChatClient import JinaChatClient
5 | from .clients.BestBannerClient import BestBannerClient
6 | from .utils import is_url, is_base64, image_to_base64, filter_args
7 |
8 | class JinaAI:
9 | def __init__(self, secrets={}, baseUrls={}):
10 | PPSecret = f"token {secrets['promptperfect-secret']}" if secrets and 'promptperfect-secret' in secrets else ''
11 | SXSecret = f"token {secrets['scenex-secret']}" if secrets and 'scenex-secret' in secrets else ''
12 | RASecret = f"token {secrets['rationale-secret']}" if secrets and 'rationale-secret' in secrets else ''
13 | CCSecret = f"Bearer {secrets['jinachat-secret']}" if secrets and 'jinachat-secret' in secrets else ''
14 | BBSecret = f"token {secrets['bestbanner-secret']}" if secrets and 'bestbanner-secret' in secrets else ''
15 | ppCustomUrl = baseUrls['promptperfect'] if baseUrls and 'promptperfect' in baseUrls else None
16 | sxCustomUrl = baseUrls['scenex'] if baseUrls and 'scenex' in baseUrls else None
17 | raCustomUrl = baseUrls['rationale'] if baseUrls and 'rationale' in baseUrls else None
18 | ccCustomUrl = baseUrls['jinachat'] if baseUrls and 'jinachat' in baseUrls else None
19 | bbCustomUrl = baseUrls['bestbanner'] if baseUrls and 'bestbanner' in baseUrls else None
20 | self.PPClient = PromptPerfectClient(**filter_args(headers = { "x-api-key": PPSecret }, baseUrl=ppCustomUrl))
21 | self.SXClient = SceneXClient(**filter_args(headers = { "x-api-key": SXSecret }, baseUrl=sxCustomUrl))
22 | self.RAClient = RationaleClient(**filter_args(headers = { "x-api-key": RASecret }, baseUrl=raCustomUrl))
23 | self.CCClient = JinaChatClient(**filter_args(headers = { "authorization": CCSecret }, baseUrl=ccCustomUrl))
24 | self.BBClient = BestBannerClient(**filter_args(headers = { "x-api-key": BBSecret }, baseUrl=bbCustomUrl))
25 |
26 | def decide(self, input, options=None):
27 | if isinstance(input, list):
28 | data = self.RAClient.from_array(input, options)
29 | elif isinstance(input, str):
30 | data = self.RAClient.from_string(input, options)
31 | else:
32 | data = input
33 | return self.RAClient.decide(data, options)
34 |
35 | def optimize(self, input, options=None):
36 | if isinstance(input, list):
37 | data = self.PPClient.from_array(input, options)
38 | elif isinstance(input, str):
39 | data = self.PPClient.from_string(input, options)
40 | else:
41 | data = input
42 | return self.PPClient.optimize(data, options)
43 |
44 | def describe(self, input, options=None):
45 | if isinstance(input, list):
46 | data = self.SXClient.from_array(input, options)
47 | elif isinstance(input, str):
48 | data = self.SXClient.from_string(input, options)
49 | else:
50 | data = input
51 | return self.SXClient.describe(data, options)
52 |
53 | def generate(self, input, options=None):
54 | if isinstance(input, list):
55 | data = self.CCClient.from_array(input, options)
56 | elif isinstance(input, str):
57 | data = self.CCClient.from_string(input, options)
58 | else:
59 | data = input
60 | if options is not None and options.get('stream', False):
61 | return self.CCClient.stream(data, options)
62 | else:
63 | return self.CCClient.generate(data, options)
64 |
65 | def imagine(self, input, options=None):
66 | if isinstance(input, list):
67 | data = self.BBClient.from_array(input, options)
68 | elif isinstance(input, str):
69 | data = self.BBClient.from_string(input, options)
70 | else:
71 | data = input
72 | return self.BBClient.imagine(data, options)
73 |
74 | class utils:
75 | @staticmethod
76 | def is_url(string):
77 | return is_url(string)
78 | @staticmethod
79 | def is_base64(string):
80 | return is_base64(string)
81 | @staticmethod
82 | def image_to_base64(file_path):
83 | return image_to_base64(file_path)
--------------------------------------------------------------------------------
/jinaai/clients/BestBannerClient.py:
--------------------------------------------------------------------------------
1 | from .HTTPClient import HTTPClient
2 |
3 | class BestBannerClient(HTTPClient):
4 | def __init__(self, headers=None, options=None, baseUrl='https://api.bestbanner.jina.ai/v1'):
5 | defaultHeaders = {
6 | 'Content-Type': 'application/json',
7 | }
8 | mergedHeaders = defaultHeaders.update(headers)
9 | super().__init__(baseUrl=baseUrl, headers=defaultHeaders, options=options)
10 |
11 | def from_array(self, input, options=None):
12 | return {
13 | 'data': [
14 | {
15 | 'text': i,
16 | **(options or {})
17 | }
18 | for i in input
19 | ]
20 | }
21 |
22 | def from_string(self, input, options=None):
23 | return {
24 | 'data': [
25 | {
26 | 'text': input,
27 | **(options or {})
28 | }
29 | ]
30 | }
31 |
32 | def to_simplified_output(self, output):
33 | if not output.get('result') or any(x.get('banners') and len(x['banners']) != 0 for x in output['result']) is False:
34 | raise Exception('Remote API Error, bad output: {}'.format(json.dumps(output)))
35 | return {
36 | 'results': [
37 | {
38 | 'output': [
39 | b['url'] for b in r['banners']
40 | ]
41 | }
42 | for r in output['result']
43 | ]
44 | }
45 |
46 | def imagine(self, data, options = None):
47 | raw_output = self.post('/generate', data)
48 | simplified_output = self.to_simplified_output(raw_output)
49 | if options and 'raw' in options:
50 | simplified_output['raw'] = raw_output
51 | return simplified_output
52 |
53 |
--------------------------------------------------------------------------------
/jinaai/clients/HTTPClient.py:
--------------------------------------------------------------------------------
1 | import requests
2 |
3 | class HTTPClient:
4 | def __init__(self, baseUrl, headers=None, options=None):
5 | self.baseUrl = baseUrl
6 | self.headers = headers if headers else {}
7 | self.options = options if options else {}
8 |
9 | def setHeaders(self, headers):
10 | self.headers = headers
11 |
12 | def addHeader(self, header):
13 | self.headers.update(header)
14 |
15 | def get(self, url):
16 | response = requests.get(self.baseUrl + url, headers=self.headers)
17 | responseData = response.json()
18 | return responseData
19 |
20 | def post(self, url, data, toJson=True):
21 | response = requests.post(self.baseUrl + url, json=data, headers=self.headers, **self.options)
22 | if toJson == False:
23 | return response
24 | else:
25 | responseData = response.json()
26 | if "error" in responseData:
27 | raise Exception(responseData["error"])
28 | return responseData
29 |
30 | def put(self, url, data):
31 | response = requests.put(self.baseUrl + url, headers=self.headers)
32 | responseData = response.json()
33 | return responseData
34 |
35 | def delete(self, url):
36 | response = requests.delete(self.baseUrl + url, headers=self.headers)
37 | responseData = response.json()
38 | return responseData
39 |
--------------------------------------------------------------------------------
/jinaai/clients/JinaChatClient.py:
--------------------------------------------------------------------------------
1 | from .HTTPClient import HTTPClient
2 | from ..utils import is_base64, is_url, omit
3 |
4 |
5 | class JinaChatClient(HTTPClient):
6 | def __init__(self, headers=None, options=None, baseUrl='https://api.chat.jina.ai/v1/chat'):
7 | defaultHeaders = {
8 | 'Content-Type': 'application/json',
9 | }
10 | mergedHeaders = defaultHeaders.update(headers)
11 | super().__init__(baseUrl=baseUrl, headers=defaultHeaders, options=options)
12 |
13 | def from_array(self, input, options=None):
14 | return {
15 | 'messages': [
16 | {
17 | 'content': i,
18 | **((options and options.get("image") and (is_url(options['image']) or is_base64(options['image'])) and { 'image': options['image'] }) or {}),
19 | 'role': 'user',
20 | **(omit(options, 'image'))
21 | }
22 | for i in input
23 | ],
24 | **(omit(options, 'image'))
25 | }
26 |
27 | def from_string(self, input, options=None):
28 | return {
29 | 'messages': [
30 | {
31 | 'content': input,
32 | **((options and options.get("image") and (is_url(options['image']) or is_base64(options['image'])) and { 'image': options['image'] }) or {}),
33 | 'role': 'user',
34 | **(omit(options, 'image'))
35 | }
36 | ],
37 | **(omit(options, 'image'))
38 | }
39 |
40 | def to_simplified_output(self, output):
41 | if 'choices' not in output or len(output['choices']) < 1 or output['choices'][0]['message']['content'] == '':
42 | raise Exception('Remote API Error, bad output: ' + str(output))
43 | return {
44 | 'output': output['choices'][0]['message']['content'],
45 | 'chatId': output['chatId']
46 | }
47 |
48 | def generate(self, data, options = None):
49 | raw_output = self.post('/completions', data)
50 | simplified_output = self.to_simplified_output(raw_output)
51 | if options and 'raw' in options:
52 | simplified_output['raw'] = raw_output
53 | return simplified_output
54 |
55 | def stream(self, data, options = None):
56 | return self.post('/completions', data, False)
57 |
--------------------------------------------------------------------------------
/jinaai/clients/PromptPerfectClient.py:
--------------------------------------------------------------------------------
1 | from .HTTPClient import HTTPClient
2 | from ..utils import is_base64, is_url
3 |
4 | class PromptPerfectClient(HTTPClient):
5 | def __init__(self, headers=None, options=None, baseUrl='https://api.promptperfect.jina.ai'):
6 | defaultHeaders = {
7 | 'Content-Type': 'application/json',
8 | }
9 | mergedHeaders = defaultHeaders.update(headers)
10 | super().__init__(baseUrl=baseUrl, headers=defaultHeaders, options=options)
11 |
12 | def from_array(self, input, options=None):
13 | return {
14 | 'data': [
15 | {
16 | **(((not is_url(i) and not is_base64(i)) and { 'prompt': i }) or {}),
17 | **(((is_url(i) or is_base64(i)) and { 'imagePrompt': i }) or {}),
18 | 'targetModel': 'chatgpt',
19 | 'features': [],
20 | **(options or {})
21 | }
22 | for i in input
23 | ]
24 | }
25 |
26 | def from_string(self, input, options=None):
27 | return {
28 | 'data': [
29 | {
30 | **(((not is_url(input) and not is_base64(input)) and { 'prompt': input }) or {}),
31 | **(((is_url(input) or is_base64(input)) and { 'imagePrompt': input }) or {}),
32 | 'targetModel': 'chatgpt',
33 | 'features': [],
34 | **(options or {})
35 | }
36 | ]
37 | }
38 |
39 | def to_simplified_output(self, output):
40 | if not output.get('result') or any(x.get('promptOptimized') != '' for x in output['result']) is False:
41 | raise Exception('Remote API Error, bad output: {}'.format(json.dumps(output)))
42 | return {
43 | 'results': [
44 | {
45 | 'output': r.get('promptOptimized'),
46 | }
47 | for r in output['result']
48 | ]
49 | }
50 |
51 | def optimize(self, data, options = None):
52 | raw_output = self.post('/optimizeBatch', data)
53 | simplified_output = self.to_simplified_output(raw_output)
54 | if options and 'raw' in options:
55 | simplified_output['raw'] = raw_output
56 | return simplified_output
57 |
58 |
--------------------------------------------------------------------------------
/jinaai/clients/RationaleClient.py:
--------------------------------------------------------------------------------
1 | from .HTTPClient import HTTPClient
2 | from ..utils import is_base64, is_url
3 |
4 | MAXLEN = 300
5 |
6 | class RationaleClient(HTTPClient):
7 | def __init__(self, headers=None, options=None, baseUrl='https://us-central1-rationale-ai.cloudfunctions.net'):
8 | defaultHeaders = {
9 | 'Content-Type': 'application/json',
10 | }
11 | mergedHeaders = defaultHeaders.update(headers)
12 | super().__init__(baseUrl=baseUrl, headers=defaultHeaders, options=options)
13 |
14 | def from_array(self, input, options=None):
15 | return {
16 | 'data': [
17 | {
18 | 'decision': i[:MAXLEN],
19 | **(options or {})
20 | }
21 | for i in input
22 | ]
23 | }
24 |
25 | def from_string(self, input, options=None):
26 | return {
27 | 'data': [
28 | {
29 | 'decision': input[:MAXLEN],
30 | **(options or {})
31 | }
32 | ]
33 | }
34 |
35 | def to_simplified_output(self, output):
36 | if 'result' not in output or 'result' not in output['result']:
37 | raise Exception('Remote API Error, bad output: ' + json.dumps(output))
38 | return {
39 | 'results': [
40 | {
41 | 'proscons': r['keyResults'] if r['analysis'] == 'proscons' else None,
42 | 'swot': r['keyResults'] if r['analysis'] == 'swot' else None,
43 | 'multichoice': r['keyResults'] if r['analysis'] == 'multichoice' else None,
44 | 'outcomes': r['keyResults'] if r['analysis'] == 'outcomes' else None,
45 | }
46 | for r in output['result']['result']
47 | ]
48 | }
49 |
50 | def decide(self, data, options = None):
51 | raw_output = self.post('/analysisApi', data)
52 | simplified_output = self.to_simplified_output(raw_output)
53 | if options and 'raw' in options:
54 | simplified_output['raw'] = raw_output
55 | return simplified_output
56 |
57 |
--------------------------------------------------------------------------------
/jinaai/clients/SceneXClient.py:
--------------------------------------------------------------------------------
1 | from .HTTPClient import HTTPClient
2 | import time
3 |
4 | def autoFillFeatures(options=None):
5 | features = options.get('features', []) if options else []
6 | if options and 'question' in options and 'question_answer' not in features:
7 | features.append('question_answer')
8 | if options and 'json_schema' in options and 'json' not in features:
9 | features.append('json')
10 | return features
11 |
12 | class SceneXClient(HTTPClient):
13 | def __init__(self, headers=None, options=None, baseUrl='https://api.scenex.jina.ai/v1'):
14 | defaultHeaders = {
15 | 'Content-Type': 'application/json',
16 | }
17 | mergedHeaders = defaultHeaders.update(headers)
18 | super().__init__(baseUrl=baseUrl, headers=defaultHeaders, options=options)
19 |
20 | def from_array(self, input, options=None):
21 | return {
22 | 'data': [
23 | {
24 | 'image': i,
25 | **({"video": i} if options and options.get("algorithm") == "Inception" else {}),
26 | 'features': autoFillFeatures(options),
27 | **(options or {})
28 | }
29 | for i in input
30 | ]
31 | }
32 |
33 | def from_string(self, input, options=None):
34 | return {
35 | 'data': [
36 | {
37 | 'image': input,
38 | **({"video": input} if options and options.get("algorithm") == "Inception" else {}),
39 | 'features': autoFillFeatures(options),
40 | **(options or {})
41 | }
42 | ]
43 | }
44 |
45 | def to_simplified_output(self, output):
46 | if not output.get('result'):
47 | raise Exception('Remote API Error, bad output: {}'.format(json.dumps(output)))
48 | return {
49 | 'results': [
50 | {
51 | 'output': r['answer'] if 'answer' in r and r['answer'] is not None else (r['text'] if 'text' in r else 'Processing...'),
52 | 'i18n': r['i18n'] if "i18n" in r else None,
53 | "tts": r["tts"] if "tts" in r else None,
54 | "ssml": r["dialog"]["ssml"] if r.get("dialog") and "ssml" in r["dialog"] else None
55 |
56 | }
57 | for r in output['result']
58 | ]
59 | }
60 |
61 | def describe_video(self, output, options = None):
62 | for i, scene in enumerate(output["result"]):
63 | raw_output = None
64 | is_done = False
65 | while is_done is False:
66 | raw_output = self.get(f"/scene/{scene['id']}")
67 | if raw_output["result"]["data"]["status"] != "pending":
68 | is_done = True
69 | time.sleep(10)
70 | if raw_output:
71 | output["result"][i] = raw_output["result"]["data"]
72 | return output
73 |
74 | def describe(self, data, options = None):
75 | raw_output = self.post('/describe', data)
76 | if options and 'algorithm' in options and options['algorithm'] == 'Inception':
77 | raw_output = self.describe_video(raw_output, options)
78 | simplified_output = self.to_simplified_output(raw_output)
79 | if options and 'raw' in options:
80 | simplified_output['raw'] = raw_output
81 | return simplified_output
82 |
83 |
--------------------------------------------------------------------------------
/jinaai/clients/__init__.py:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jina-ai/jinaai-py/a3e0138db76f3b3f0cbf8cd8d60e297224e37fb5/jinaai/clients/__init__.py
--------------------------------------------------------------------------------
/jinaai/utils.py:
--------------------------------------------------------------------------------
1 | import base64
2 | import mimetypes
3 | import os
4 | import re
5 | from typing import List, Dict, Optional
6 |
7 | def is_url(string):
8 | url_pattern = r'^(?:\w+:)?\/\/([^\s.]+\.\S{2}|localhost[:?\d]*)\S*$'
9 | return bool(re.match(url_pattern, string))
10 |
11 | def is_base64(string):
12 | base64_pattern = r'^data:[A-Za-z0-9+/]+;base64,'
13 | return bool(re.match(base64_pattern, string))
14 |
15 | def image_to_base64(file_path):
16 | try:
17 | with open(file_path, 'rb') as file:
18 | file_data = file.read()
19 | base64_data = base64.b64encode(file_data).decode('utf-8')
20 | mime_type = get_mime_type(file_path)
21 | base64_string = f"data:{mime_type};base64,{base64_data}"
22 | return base64_string
23 | except Exception as error:
24 | raise Exception(f"Image to base64 error: {str(error)}")
25 |
26 | def get_mime_type(file_path):
27 | mime_type, _ = mimetypes.guess_type(file_path)
28 | return mime_type or 'application/octet-stream'
29 |
30 | def omit(d: Dict, key: str) -> Dict:
31 | if d is None:
32 | return {}
33 | return {k: v for k, v in d.items() if k != key}
34 |
35 | def filter_args(**kwargs):
36 | return {k: v for k, v in kwargs.items() if v is not None}
37 |
38 |
--------------------------------------------------------------------------------
/scripts/publish.sh:
--------------------------------------------------------------------------------
1 | rm -rf dist
2 | python3 setup.py sdist bdist_wheel
3 | twine upload dist/*
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup, find_packages
2 | import pathlib
3 |
4 | HERE = pathlib.Path(__file__).parent
5 | README = (HERE / "README.md").read_text()
6 |
7 | setup(
8 | name='jinaai',
9 | version='0.2.10',
10 | author='Jina AI',
11 | author_email='guillaume.roncari@jina.ai',
12 | description='Jina AI Python SDK',
13 | url='https://github.com/jina-ai/jinaai-py.git',
14 | packages=find_packages(),
15 | install_requires=[
16 | 'requests',
17 | ],
18 | long_description=README,
19 | long_description_content_type='text/markdown',
20 | )
21 |
--------------------------------------------------------------------------------
/tests/mock/HTTPClientMock.py:
--------------------------------------------------------------------------------
1 | from unittest.mock import patch
2 | import json
3 | import time
4 | from .responses.SceneXResponse import SceneXResponse
5 | from .responses.PromptPerfectResponse import PromptPerfectResponse
6 | from .responses.RationaleResponse import RationaleResponse
7 | from .responses.JinaChatResponse import JinaChatResponse
8 | from .responses.BestBannerResponse import BestBannerResponse
9 |
10 | def loadJsonResponse(filename):
11 | with open("mock/responses/" + filename, "r") as file:
12 | return json.load(file)
13 |
14 | AuthKOResponse = loadJsonResponse("Auth.KO.response.json")
15 | NotImplementedResponse = loadJsonResponse("NotImplemented.response.json")
16 |
17 | def hasAuthHeader (headers):
18 | if "x-api-key" in headers and headers["x-api-key"] != "":
19 | return True
20 | if "authorization" in headers and headers["authorization"] != "":
21 | return True
22 | return False
23 |
24 | def post(self, url, data):
25 | if hasAuthHeader(self.headers) == False:
26 | responseData = AuthKOResponse
27 | else:
28 | if url == "/describe":
29 | responseData = SceneXResponse(data)
30 | elif url == "/analysisApi":
31 | responseData = RationaleResponse(data)
32 | elif url == "/optimizeBatch":
33 | responseData = PromptPerfectResponse(data)
34 | elif url == "/completions":
35 | responseData = JinaChatResponse(data)
36 | elif url == "/generate":
37 | responseData = BestBannerResponse(data)
38 | else:
39 | responseData = NotImplementedResponse
40 | if "error" in responseData:
41 | raise Exception(responseData["error"])
42 | return responseData
43 |
44 | def mock_post_method(xClient):
45 | return patch.object(xClient.__class__, "post", post)
--------------------------------------------------------------------------------
/tests/mock/responses/Auth.KO.response.json:
--------------------------------------------------------------------------------
1 | {
2 | "error": {
3 | "message": "No token provided",
4 | "status": "UNAUTHENTICATED"
5 | }
6 | }
--------------------------------------------------------------------------------
/tests/mock/responses/BestBannerResponse.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | def BestBannerResponse(input):
4 | return {
5 | 'result': [
6 | {
7 | 'id': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa' + str(i),
8 | 'userId': 'zoyqq4zkwdZLiBgH0eyhx4fcN9b2',
9 | 'text': e['text'],
10 | 'plainText': None,
11 | 'title': 'Skyrocket Your Productivity: Unlock Success in Fast-Paced Times\n',
12 | 'style': None,
13 | 'description': "Master the art of time management to thrive in today's rapid world.",
14 | 'resolution': {
15 | 'width': 1024,
16 | 'height': 1024
17 | },
18 | 'banners': [{
19 | 'id': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa' + str(i),
20 | 'url': 'https://picsum.photos/1024'
21 | } for _ in range(4)],
22 | 'createdAt': {
23 | 'nanoseconds': 821654000,
24 | 'seconds': 1688627912
25 | },
26 | 'status': 'SUCCESS',
27 | 'metaData': {}
28 | }
29 | for i, e in enumerate(input["data"])
30 | ]
31 | }
--------------------------------------------------------------------------------
/tests/mock/responses/JinaChatResponse.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | def JinaChatResponse(input):
4 | return {
5 | 'chatId': input.get('chatId', 'aaaaaaaaaaaaaaaaaaaaaaaaaaa'),
6 | 'inputMessageId': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa',
7 | 'responseMessageId': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa',
8 | 'choices': [{
9 | 'index': 0,
10 | 'message': {
11 | 'role': 'assistant',
12 | 'content': '-'.join([message['content'] for message in input['messages']])
13 | },
14 | 'finish_reason': 'stop'
15 | }],
16 | 'usage': {
17 | 'prompt_tokens': 7,
18 | 'completion_tokens': 18,
19 | 'total_tokens': 25
20 | }
21 | }
22 |
--------------------------------------------------------------------------------
/tests/mock/responses/NotImplemented.response.json:
--------------------------------------------------------------------------------
1 | {
2 | "error": {
3 | "message": "Not implemented"
4 | }
5 | }
--------------------------------------------------------------------------------
/tests/mock/responses/PromptPerfectResponse.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | def PromptPerfectResponse(input):
4 | return {
5 | 'result': [
6 | {
7 | 'prompt': e.get('prompt') or e.get('imagePrompt') or '',
8 | 'imagePrompt': e.get('imagePrompt') or None,
9 | 'targetModel': e['targetModel'],
10 | 'features': e['features'],
11 | 'iterations': e.get('iterations', 1),
12 | 'previewSettings': e.get('previewSettings', {}),
13 | 'previewVariables': e.get('previewVariables', {}),
14 | 'timeout': e.get('timeout', 20000),
15 | 'targetLanguage': e.get('target_language'),
16 | 'promptOptimized': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
17 | 'credits': 1,
18 | 'language': e.get('target_language', 'en'),
19 | 'intermediateResults': [{
20 | 'promptOptimized': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
21 | 'explain': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
22 | }],
23 | 'explain': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
24 | 'createdAt': int(time.time() * 1000),
25 | 'userId': 'zoyqq4zkwdZLiBgH0eyhx4fcN9b2',
26 | 'id': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa' + str(i)
27 | }
28 | for i, e in enumerate(input["data"])
29 | ]
30 | }
--------------------------------------------------------------------------------
/tests/mock/responses/RationaleResponse.py:
--------------------------------------------------------------------------------
1 | import time
2 |
3 | ProsConsOutput = {
4 | 'pros': {
5 | 'Lorem': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
6 | },
7 | 'cons': {
8 | 'Ipsum': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
9 | },
10 | 'bestChoice': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
11 | 'conclusion': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
12 | 'confidenceScore': 1
13 | }
14 |
15 | SWOTOutput = {
16 | 'strengths': {
17 | 'Lorem': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
18 | },
19 | 'weaknesses': {
20 | 'Ipsum': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
21 | },
22 | 'opportunities': {
23 | 'Dolor': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
24 | },
25 | 'threats': {
26 | 'Sit': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
27 | },
28 | 'bestChoice': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
29 | 'conclusion': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
30 | 'confidenceScore': 1
31 | }
32 |
33 | MultichoiceOutput = {
34 | 'Lorem': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
35 | 'Ipsum': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
36 | 'Dolor': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
37 | }
38 |
39 | OutcomesOutput = [
40 | {
41 | 'children': [],
42 | 'labal': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
43 | 'sentiment': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
44 | }
45 | ]
46 |
47 | def RationaleResponse(input):
48 | return {
49 | 'result': {
50 | 'result': [
51 | {
52 | 'decision': e['decision'],
53 | 'decisionUserQuery': e['decision'],
54 | 'writingStyle': e.get('style', 'concise'),
55 | 'hasUserProfile': False,
56 | 'analysis': e.get('analysis', 'proscons'),
57 | 'sourceLang': 'en',
58 | 'keyResults': SWOTOutput if e.get('analysis') == 'swot' else MultichoiceOutput if e.get('analysis') == 'multichoice' else OutcomesOutput if e.get('analysis') == 'outcomes' else ProsConsOutput,
59 | 'keyResultsConclusion': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
60 | 'keyResultsBestChoice': 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.',
61 | 'confidence': 1,
62 | 'createdAt': int(time.time() * 1000),
63 | 'profileId': None,
64 | 'isQuality': False,
65 | 'nonGibberish': False,
66 | 'id': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa' + str(i)
67 | }
68 | for i, e in enumerate(input['data'])
69 | ]
70 | }
71 | }
72 |
73 |
--------------------------------------------------------------------------------
/tests/mock/responses/SceneXResponse.py:
--------------------------------------------------------------------------------
1 | import time
2 | import json
3 |
4 | DESC = 'Lorem ipsum dolor sit amet, consectetur adipiscing elit. Donec convallis ipsum est, et iaculis lacus tincidunt eget. Sed dictum diam ex, eget aliquam urna porta a.'
5 |
6 | def getDesc(e):
7 | if e.get('output_length'):
8 | return DESC[:e['output_length']]
9 | if e.get('json_schema'):
10 | return json.dumps(e['json_schema'])
11 | return DESC
12 |
13 |
14 | def SceneXResponse(input):
15 | return {
16 | 'result': [
17 | {
18 | 'id': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa' + str(i),
19 | 'image': e['image'],
20 | 'features': e['features'],
21 | 'uid': 'aaaaaaaaaaaaaaaaaaaaaaaaaaa' + str(i),
22 | 'algorithm': e.get('algorithm', 'Aqua'),
23 | 'text': DESC,
24 | 'userId': 'zoyqq4zkwdZLiBgH0eyhx4fcN9b2',
25 | 'createdAt': int(time.time() * 1000),
26 | 'optOut': True if 'opt-out' in e['features'] else False,
27 | 'i18n': {
28 | l: getDesc(e) for l in e.get('languages', ['en'])
29 | } if e.get('algorithm', 'Aqua') != 'Hearth' else {
30 | l: [{
31 | 'isNarrator': True,
32 | 'message': getDesc(e),
33 | 'name': 'Narrator'
34 | },
35 | {
36 | 'isNarrator': False,
37 | 'message': getDesc(e),
38 | 'name': 'BobbyBoy'
39 | }] for l in e.get('languages', ['en'])
40 | },
41 | 'answer': DESC if 'question_answer' in e['features'] else None,
42 | 'tts': {
43 | l: f"https://someurl/to/the/{l}/tts/file" for l in e.get('languages', ['en'])
44 | } if e.get('algorithm', 'Aqua') == 'Hearth' else None,
45 | 'dialog': {
46 | 'names': ['Narrator', 'BobbyBoy'],
47 | 'ssml': {
48 | l: f"https://someurl/to/the/{l}/ssml/file" for l in e.get('languages', ['en'])
49 | }
50 | } if e.get('algorithm', 'Aqua') == 'Hearth' else None,
51 | }
52 | for i, e in enumerate(input["data"])
53 | ]
54 | }
--------------------------------------------------------------------------------
/tests/real-cases/test_ex1-factory.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | # THIS TEST USES REAL CREDITS
9 |
10 | jinaai = JinaAI(
11 | secrets = {
12 | 'promptperfect-secret': os.environ.get('PROMPTPERFECT_SECRET', ''),
13 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
14 | 'rationale-secret': os.environ.get('RATIONALE_SECRET', ''),
15 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', ''),
16 | 'bestbanner-secret': os.environ.get('BESTBANNER_SECRET', '')
17 | }
18 | )
19 |
20 | situations = [jinaai.utils.image_to_base64(f"../../examples/images/{img}") for img in [
21 | 'factory-2.png',
22 | 'factory-3.png',
23 | 'factory-4.png',
24 | ]]
25 |
26 | descriptions = None
27 | analysis = None
28 | recommendation = None
29 | swot = None
30 | banners = None
31 |
32 | def test_scenex_get_descriptions():
33 | global descriptions
34 | descriptions = jinaai.describe(situations)
35 | results = descriptions['results']
36 | assert results
37 | assert len(results) == 3
38 | for i, desc in enumerate(descriptions['results']):
39 | assert len(results[i]['output']) > 0
40 | print(f"DESCRIPTION {i + 1}:\n{desc['output']}\n")
41 |
42 | def test_jinachat_get_analysis():
43 | global analysis
44 | assert descriptions
45 | analysis = jinaai.generate('\n'.join([
46 | 'Does any of those situations present a danger?',
47 | 'Reply with [SITUATION_NUMBER] [YES] or [NO] and explain why',
48 | *['SITUATION ' + str(i + 1) + ':\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
49 | ]))
50 | print('ANALYSIS:\n', analysis['output'])
51 | assert analysis['output']
52 | assert len(analysis['output']) > 0
53 | assert analysis['chatId']
54 |
55 | def test_jinachat_get_recommendation():
56 | global recommendation
57 | assert descriptions
58 | recommendation = jinaai.generate('\n'.join([
59 | 'According to those situations, what should be done first to make everything safer?',
60 | 'I only want the most urgent situation',
61 | *['SITUATION ' + str(i + 1) + ':\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
62 | ]))
63 | print('RECOMMENDATION:\n', recommendation['output'])
64 | assert recommendation['output']
65 | assert len(recommendation['output']) > 0
66 | assert recommendation['chatId']
67 |
68 |
69 | def test_rationale_get_swot():
70 | global swot
71 | assert recommendation
72 | swot = jinaai.decide(
73 | recommendation['output'],
74 | { 'analysis': 'swot' }
75 | )
76 | print('SWOT:\n', swot['results'][0]['swot'])
77 | results = swot['results']
78 | assert results
79 | assert len(results) == 1
80 | assert results[0]['swot']
81 |
82 | def test_bestbanner_get_banners():
83 | global banners
84 | assert descriptions
85 | banners = jinaai.imagine(descriptions['results'][0]['output'])
86 | print('BANNERS:\n', banners['results'])
87 | assert banners['results']
88 | assert len(banners['results']) == 1
89 | assert len(banners['results'][0]['output']) == 4
90 |
--------------------------------------------------------------------------------
/tests/real-cases/test_ex2-fridge.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | # THIS TEST USES REAL CREDITS
9 |
10 | jinaai = JinaAI(
11 | secrets = {
12 | 'promptperfect-secret': os.environ.get('PROMPTPERFECT_SECRET', ''),
13 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
14 | 'rationale-secret': os.environ.get('RATIONALE_SECRET', ''),
15 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', ''),
16 | 'bestbanner-secret': os.environ.get('BESTBANNER_SECRET', '')
17 | }
18 | )
19 |
20 | fridge = [jinaai.utils.image_to_base64(f"../../examples/images/{img}") for img in [
21 | 'fridge-1.png',
22 | ]]
23 |
24 | descriptions = None
25 | prompt = None
26 | recipe = None
27 | swot = None
28 | banners = None
29 |
30 | def test_scenex_get_descriptions():
31 | global descriptions
32 | descriptions = jinaai.describe(
33 | fridge,
34 | { 'question': 'What ingredients are in the fridge?', 'languages': ['en'] }
35 | )
36 | print('DESCRIPTION:\n', descriptions['results'][0]['output'])
37 | assert descriptions['results']
38 | assert len(descriptions['results']) == 1
39 | assert len(descriptions['results'][0]['output']) > 0
40 |
41 | def test_promptperfect_get_optiprompt():
42 | global prompt
43 | assert descriptions
44 | prompt = jinaai.optimize('\n'.join([
45 | 'Give me one recipe based on this list for ingredients',
46 | *['INGREDIENTS:\n' + desc['output'] for i, desc in enumerate(descriptions['results'])]
47 | ]))
48 | print('PROMPT:\n', prompt['results'][0]['output'])
49 | results = prompt['results']
50 | assert results
51 | assert len(results) == 1
52 | assert len(results[0]['output']) > 0
53 |
54 | def test_jinachat_get_recipe():
55 | global recipe
56 | assert prompt
57 | recipe = jinaai.generate(prompt['results'][0]['output'])
58 | print('RECIPE:\n', recipe['output'])
59 | assert recipe['output']
60 | assert len(recipe['output']) > 0
61 | assert recipe['chatId']
62 |
63 | def test_rationale_get_swot():
64 | global swot
65 | assert recipe
66 | swot = jinaai.decide(
67 | recipe['output'],
68 | { 'analysis': 'swot' }
69 | )
70 | print('SWOT:\n', swot['results'][0]['swot'])
71 | results = swot['results']
72 | assert results
73 | assert len(results) == 1
74 | assert results[0]['swot']
75 |
76 | def test_bestbanner_get_banners():
77 | global banners
78 | assert recipe
79 | banners = jinaai.imagine(recipe['output'])
80 | print('BANNERS:\n', banners['results'])
81 | assert banners['results']
82 | assert len(banners['results']) == 1
83 | assert len(banners['results'][0]['output']) == 4
84 |
--------------------------------------------------------------------------------
/tests/real-cases/test_ex3-tweet.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | # THIS TEST USES REAL CREDITS
9 |
10 | jinaai = JinaAI(
11 | secrets = {
12 | 'promptperfect-secret': os.environ.get('PROMPTPERFECT_SECRET', ''),
13 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
14 | 'rationale-secret': os.environ.get('RATIONALE_SECRET', ''),
15 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', '')
16 | }
17 | )
18 |
19 | positiveMovieTweets = [
20 | 'Just watched the new movie! The plot was incredible, and the visual effects were mind-blowing. Definitely a must-see! #movie #amazing',
21 | "I can't stop thinking about the movie. The acting was superb, and the twist at the end caught me off guard. Highly recommended! #movie #thriller",
22 | 'The cinematography in the movie was stunning. Every scene was like a work of art. #movie #cinema',
23 | 'The new movie is a rollercoaster of emotions. I laughed, I cried, and I was on the edge of my seat throughout the entire film. #movie #emotional',
24 | "Just came back from watching the movie, and I'm still speechless. It's a masterpiece! #movie #masterpiece",
25 | "If you're looking for a good movie to watch, I highly recommend this one. It has a compelling story and brilliant performances. #movie #recommendation",
26 | 'The movie exceeded my expectations. The pacing was perfect, and the characters were so well-developed. #movie #surprise',
27 | "I'm still trying to process what I just witnessed in the movie. It's unlike anything I've ever seen before. #movie #unique",
28 | "Can't get enough of the movie's soundtrack. It perfectly complements the visuals and adds so much depth to the film. #movie #soundtrack",
29 | "Just watched the movie with my friends, and we had a blast. It's entertaining from start to finish. #movie #fun"
30 | ]
31 |
32 | negativeMovieTweets = [
33 | 'I just watched the new movie, and it was a complete disappointment. The plot was confusing, and the acting was terrible. #movie #disappointed',
34 | 'Save your money and skip this movie. It was boring and predictable. #movie #boring',
35 | "I don't understand the hype around this movie. It was overrated and not worth the ticket price. #movie #overrated",
36 | 'I had high expectations for this movie, but it fell flat. The storyline was weak, and the characters were poorly developed. #movie #letdown',
37 | 'I regret watching this movie. It was a waste of time. #movie #wasteoftime',
38 | "I can't believe I paid to see this movie. It was absolutely awful. #movie #awful",
39 | 'The movie was a disaster. The dialogue was cringe-worthy, and the special effects were laughable. #movie #disaster',
40 | 'I was bored throughout the entire movie. It lacked any excitement or originality. #movie #uninteresting',
41 | 'I was really looking forward to this movie, but it was a major letdown. The pacing was off, and the ending was unsatisfying. #movie #majorletdown',
42 | "I don't recommend this movie at all. It was a total mess and didn't make any sense. #movie #notrecommended"
43 | ]
44 |
45 | feeling = None
46 |
47 | def test_jinachat_get_feeling():
48 | global feeling
49 | prompt = '\n'.join([
50 | 'According to those tweets, is the general feeling positive or negative?',
51 | 'Reply by [POSITIVE] or [NEGATIVE]',
52 | *['TWEET:\n' + t for i, t in enumerate(positiveMovieTweets)]
53 | ])
54 | feeling = jinaai.generate(prompt)
55 | print('GENERAL FEELING:', feeling['output'])
56 | assert feeling['output']
57 | assert len(feeling['output']) > 0
58 | assert feeling['chatId']
59 | assert 'POSITIVE' in feeling['output']
60 |
61 | def test_jinachat_get_feeling():
62 | global feeling
63 | prompt = '\n'.join([
64 | 'According to those tweets, is the general feeling positive or negative?',
65 | 'Reply by [POSITIVE] or [NEGATIVE]',
66 | *['TWEET:\n' + t for i, t in enumerate(negativeMovieTweets)]
67 | ])
68 | feeling = jinaai.generate(prompt)
69 | print('GENERAL FEELING:', feeling['output'])
70 | assert feeling['output']
71 | assert len(feeling['output']) > 0
72 | assert feeling['chatId']
73 | assert 'NEGATIVE' in feeling['output']
74 |
--------------------------------------------------------------------------------
/tests/real-cases/test_ex4-email.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | # THIS TEST USES REAL CREDITS
9 |
10 | jinaai = JinaAI(
11 | secrets = {
12 | 'jinachat-secret': os.environ.get('JINACHAT_SECRET', '')
13 | }
14 | )
15 |
16 | def test_jinachat_email_direct_response():
17 | prompt = 'Compose a professional and courteous email to our valued customer, expressing sincere gratitude for their use of our products. Your email should convey appreciation and highlight specific reasons why their choice to utilize our products is valued and important. Please provide a warm and personalized message that makes the customer feel valued and appreciated. Additionally, be sure to include any relevant details or information about upcoming promotions, new products, or customer loyalty programs that may be of interest to the customer. Your email should be well-written, concise, and focused, while still conveying genuine gratitude and fostering a positive relationship with the customer.'
18 | email = jinaai.generate(prompt)
19 | print('EMAIL: ', email['output'])
20 | assert email['output']
21 | assert len(email['output']) > 0
22 | assert email['chatId']
23 |
24 | def test_jinachat_email_stream_response():
25 | prompt = 'Compose a professional and courteous email to our valued customer, expressing sincere gratitude for their use of our products. Your email should convey appreciation and highlight specific reasons why their choice to utilize our products is valued and important. Please provide a warm and personalized message that makes the customer feel valued and appreciated. Additionally, be sure to include any relevant details or information about upcoming promotions, new products, or customer loyalty programs that may be of interest to the customer. Your email should be well-written, concise, and focused, while still conveying genuine gratitude and fostering a positive relationship with the customer.'
26 | stream = jinaai.generate(prompt, { 'stream': True })
27 | print('STREAM: ', stream)
28 | loopCounter = 0
29 | for line in stream.iter_lines():
30 | if line:
31 | print('CHUNK: ', line.decode('utf-8'))
32 | loopCounter = loopCounter + 1
33 | assert loopCounter > 1
34 |
--------------------------------------------------------------------------------
/tests/real-cases/test_ex5-story.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | # THIS TEST USES REAL CREDITS
9 |
10 | jinaai = JinaAI(
11 | secrets = {
12 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
13 | }
14 | )
15 |
16 | fridge = [jinaai.utils.image_to_base64(f"../../examples/images/{img}") for img in [
17 | 'fridge-1.png',
18 | ]]
19 |
20 | def test_scenex_get_descriptions():
21 | descriptions = jinaai.describe(
22 | fridge,
23 | { 'question': 'What ingredients are in the fridge?', 'algorithm': 'Hearth','languages': ['en'] }
24 | )
25 | print('DESCRIPTION:\n', descriptions['results'][0]['output'])
26 | assert descriptions['results']
27 | assert len(descriptions['results']) == 1
28 | assert len(descriptions['results'][0]['output']) > 0
29 | assert descriptions["results"][0]["tts"].get("en")
30 | assert descriptions["results"][0]["ssml"].get("en")
31 | print("TTS: ", descriptions["results"][0]["tts"]["en"])
32 | print("SSML: ", descriptions["results"][0]["ssml"]["en"])
33 | assert descriptions["results"][0]["i18n"]["en"]
34 | assert len(descriptions["results"][0]["i18n"]["en"]) > 0
35 | assert descriptions["results"][0]["i18n"]["en"][0]['message']
36 | for line in descriptions["results"][0]["i18n"]["en"]:
37 | print(line["name"], ": ", line["message"])
38 |
--------------------------------------------------------------------------------
/tests/real-cases/test_ex6-video.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | # THIS TEST USES REAL CREDITS
9 |
10 | jinaai = JinaAI(
11 | secrets = {
12 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
13 | }
14 | )
15 |
16 | def test_scenex_analyse_video():
17 | descriptions = jinaai.describe(
18 | 'https://guillaume-public.s3.us-east-2.amazonaws.com/videos/superman.mp4',
19 | {
20 | 'algorithm': 'Inception',
21 | 'languages': ['en'],
22 | }
23 | )
24 | assert len(descriptions['results'][0]['output']) > 0
25 | assert descriptions['results'][0]["i18n"]["en"]
26 | assert descriptions['results'][0]["i18n"]["en"]['summary']
27 | assert len(descriptions['results'][0]["i18n"]["en"]['events']) > 0
28 | print('SUMMARY: ', descriptions['results'][0]["i18n"]["en"]['summary'])
29 | print('EVENTS: ', descriptions['results'][0]["i18n"]["en"]['events'])
30 |
--------------------------------------------------------------------------------
/tests/real-cases/text_ex7-json.py:
--------------------------------------------------------------------------------
1 | import json
2 | import sys
3 | import os
4 | current_dir = os.path.dirname(os.path.abspath(__file__))
5 | root_dir = os.path.abspath(os.path.join(current_dir, '../..'))
6 | sys.path.append(root_dir)
7 | from jinaai import JinaAI
8 |
9 | # THIS TEST USES REAL CREDITS
10 |
11 | jinaai = JinaAI(
12 | secrets = {
13 | 'scenex-secret': os.environ.get('SCENEX_SECRET', ''),
14 | }
15 | )
16 |
17 | def test_scenex_json_output():
18 | descriptions = jinaai.describe(
19 | 'https://picsum.photos/200',
20 | {
21 | 'algorithm': 'Jelly',
22 | 'languages': ['en'],
23 | 'json_schema': {
24 | 'type': 'object',
25 | 'properties': {
26 | 'headcount':{
27 | 'type': 'number',
28 | 'description': 'How many people in this image'
29 | },
30 | 'location':{
31 | 'type': 'string',
32 | 'description': 'Short description of the location'
33 | }
34 | }
35 | }
36 | }
37 | )
38 | assert len(descriptions['results'][0]['output']) > 0
39 | assert descriptions['results'][0]["i18n"]["en"]
40 | assert json.loads(descriptions['results'][0]["i18n"]["en"])
41 | print('JSON: ', json.loads(descriptions['results'][0]["i18n"]["en"]))
42 |
--------------------------------------------------------------------------------
/tests/test_authentication.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | mock_dir = os.path.abspath(os.path.join(current_dir, './mock'))
6 | sys.path.append(root_dir)
7 | sys.path.append(mock_dir)
8 | from jinaai import JinaAI
9 | from mock.HTTPClientMock import mock_post_method
10 |
11 | def test_auth_ko_no_secret():
12 | jinaai = JinaAI()
13 | with mock_post_method(jinaai.SXClient):
14 | try:
15 | jinaai.describe('https://picsum.photos/200')
16 | assert True == False
17 | except Exception as e:
18 | assert e.args[0]['message'] == 'No token provided'
19 | assert e.args[0]['status'] == 'UNAUTHENTICATED'
20 |
21 | def test_auth_ko_no_partial_secret():
22 | jinaai = JinaAI(
23 | secrets={
24 | 'promptperfect-secret': 'some-fake-secret',
25 | }
26 | )
27 | with mock_post_method(jinaai.SXClient):
28 | try:
29 | jinaai.describe('https://picsum.photos/200')
30 | assert True == False
31 | except Exception as e:
32 | assert e.args[0]['message'] == 'No token provided'
33 | assert e.args[0]['status'] == 'UNAUTHENTICATED'
34 |
35 | def test_auth_ok():
36 | jinaai = JinaAI(
37 | secrets={
38 | 'promptperfect-secret': 'some-fake-secret',
39 | 'scenex-secret': 'some-fake-secret',
40 | 'rationale-secret': 'some-fake-secret',
41 | 'jinachat-secret': 'some-fake-secret',
42 | }
43 | )
44 | with mock_post_method(jinaai.SXClient):
45 | r = jinaai.describe('https://picsum.photos/200')
46 | assert r["results"][0]["output"] and len(r["results"][0]["output"]) > 0
47 |
48 | def test_auth_ok_with_partial():
49 | jinaai = JinaAI(
50 | secrets={
51 | 'scenex-secret': 'some-fake-secret',
52 | }
53 | )
54 | with mock_post_method(jinaai.SXClient):
55 | r = jinaai.describe('https://picsum.photos/200')
56 | assert r["results"][0]["output"] and len(r["results"][0]["output"]) > 0
57 |
--------------------------------------------------------------------------------
/tests/test_baseurls.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | def test_default_urls():
9 | jinaai = JinaAI()
10 | assert jinaai.PPClient.baseUrl == 'https://api.promptperfect.jina.ai'
11 | assert jinaai.SXClient.baseUrl == 'https://api.scenex.jina.ai/v1'
12 | assert jinaai.RAClient.baseUrl == 'https://us-central1-rationale-ai.cloudfunctions.net'
13 | assert jinaai.CCClient.baseUrl == 'https://api.chat.jina.ai/v1/chat'
14 | assert jinaai.BBClient.baseUrl == 'https://api.bestbanner.jina.ai/v1'
15 |
16 | def test_customs_urls():
17 | jinaai = JinaAI(
18 | baseUrls={
19 | 'promptperfect': 'https://promptperfect-customurl.jina.ai',
20 | 'scenex': 'https://scenex-customurl.jina.ai',
21 | 'rationale': 'https://rationale-customurl.jina.ai',
22 | 'jinachat': 'https://jinachat-customurl.jina.ai',
23 | 'bestbanner': 'https://bestbanner-customurl.jina.ai',
24 | }
25 | )
26 | assert jinaai.PPClient.baseUrl == 'https://promptperfect-customurl.jina.ai'
27 | assert jinaai.SXClient.baseUrl == 'https://scenex-customurl.jina.ai'
28 | assert jinaai.RAClient.baseUrl == 'https://rationale-customurl.jina.ai'
29 | assert jinaai.CCClient.baseUrl == 'https://jinachat-customurl.jina.ai'
30 | assert jinaai.BBClient.baseUrl == 'https://bestbanner-customurl.jina.ai'
31 |
32 |
--------------------------------------------------------------------------------
/tests/test_bestbanner.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | mock_dir = os.path.abspath(os.path.join(current_dir, './mock'))
6 | sys.path.append(root_dir)
7 | sys.path.append(mock_dir)
8 | from jinaai import JinaAI
9 | from mock.HTTPClientMock import mock_post_method
10 |
11 | jinaai = JinaAI(
12 | secrets={
13 | 'promptperfect-secret': 'some-fake-secret',
14 | 'scenex-secret': 'some-fake-secret',
15 | 'rationale-secret': 'some-fake-secret',
16 | 'jinachat-secret': 'some-fake-secret',
17 | 'bestbanner-secret': 'some-fake-secret',
18 | }
19 | )
20 |
21 | def test_default_input():
22 | with mock_post_method(jinaai.BBClient):
23 | input = [
24 | 'In today\'s fast-paced environment, increasing productivity ...',
25 | 'When you have two days to finish a task ...'
26 | ]
27 | r1 = jinaai.imagine({ "data": [
28 | {
29 | 'text': i,
30 | }
31 | for i in input
32 | ]})
33 | results = r1['results']
34 | assert results
35 | assert len(results) == 2
36 | assert len(results[0]['output']) == 4
37 | assert len(results[1]['output']) == 4
38 |
39 | def test_text_input():
40 | with mock_post_method(jinaai.BBClient):
41 | input = 'In todays fast-paced environment, increasing productivity ...'
42 | r1 = jinaai.imagine(input)
43 | results = r1['results']
44 | assert results
45 | assert len(results) == 1
46 | assert len(results[0]['output']) == 4
47 | r2 = jinaai.imagine(input, {
48 | 'style': 'flat',
49 | })
50 | results = r2['results']
51 | assert results
52 | assert len(results) == 1
53 | assert len(results[0]['output']) == 4
54 |
55 | def test_text_arr_input():
56 | with mock_post_method(jinaai.BBClient):
57 | input = [
58 | 'In today\'s fast-paced environment, increasing productivity ...',
59 | 'When you have two days to finish a task ...'
60 | ]
61 | r1 = jinaai.imagine(input)
62 | results = r1['results']
63 | assert results
64 | assert len(results) == 2
65 | assert len(results[0]['output']) == 4
66 | assert len(results[1]['output']) == 4
67 | r2 = jinaai.imagine(input, {
68 | 'style': 'minimalist',
69 | })
70 | results = r2['results']
71 | assert results
72 | assert len(results) == 2
73 | assert len(results[0]['output']) == 4
74 | assert len(results[1]['output']) == 4
75 |
76 | def test_raw_output():
77 | with mock_post_method(jinaai.BBClient):
78 | input = [
79 | 'In today\'s fast-paced environment, increasing productivity ...',
80 | 'When you have two days to finish a task ...'
81 | ]
82 | r1 = jinaai.imagine(input, { 'raw': True })
83 | r1_raw_result = r1['raw']['result']
84 | assert r1_raw_result
85 | assert len(r1_raw_result) == 2
86 | assert r1_raw_result[0]['text'] == input[0]
87 | assert r1_raw_result[1]['text'] == input[1]
88 | assert len(r1_raw_result[0]['banners']) == 4
89 | assert len(r1_raw_result[1]['banners']) == 4
90 | r2 = jinaai.imagine(input, {
91 | 'style': 'photographic',
92 | 'raw': True
93 | })
94 | r2_raw_result = r2['raw']['result']
95 | assert r2_raw_result
96 | assert len(r2_raw_result) == 2
97 | assert r2_raw_result[0]['text'] == input[0]
98 | assert r2_raw_result[1]['text'] == input[1]
99 | assert len(r2_raw_result[0]['banners']) == 4
100 | assert len(r2_raw_result[1]['banners']) == 4
101 |
--------------------------------------------------------------------------------
/tests/test_chatcat.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | mock_dir = os.path.abspath(os.path.join(current_dir, './mock'))
6 | sys.path.append(root_dir)
7 | sys.path.append(mock_dir)
8 | from jinaai import JinaAI
9 | from mock.HTTPClientMock import mock_post_method
10 |
11 | jinaai = JinaAI(
12 | secrets={
13 | 'promptperfect-secret': 'some-fake-secret',
14 | 'scenex-secret': 'some-fake-secret',
15 | 'rationale-secret': 'some-fake-secret',
16 | 'jinachat-secret': 'some-fake-secret',
17 | }
18 | )
19 |
20 | def test_default_input():
21 | with mock_post_method(jinaai.CCClient):
22 | input_data = ['Give me an Hello World function in Typescript']
23 | r1_input_messages = [{'role': 'user', 'content': i} for i in input_data]
24 | r1 = jinaai.generate({'messages': r1_input_messages})
25 | assert r1['output']
26 | assert len(r1['output']) > 0
27 | assert r1['chatId'] == 'aaaaaaaaaaaaaaaaaaaaaaaaaaa'
28 | r2_input_messages = [{'role': 'user', 'content': i} for i in input_data]
29 | r2 = jinaai.generate({'messages': r2_input_messages, 'chatId': '1234567890'})
30 | assert r2['output']
31 | assert len(r2['output']) > 0
32 | assert r2['chatId'] == '1234567890'
33 |
34 | def test_text_input():
35 | with mock_post_method(jinaai.CCClient):
36 | input_data = 'Give me an Hello World function in Typescript'
37 | r1 = jinaai.generate(input_data)
38 | assert r1['output']
39 | assert len(r1['output']) > 0
40 | assert r1['chatId'] == 'aaaaaaaaaaaaaaaaaaaaaaaaaaa'
41 | r2 = jinaai.generate(input_data, {'chatId': '1234567890'})
42 | assert r2['output']
43 | assert len(r2['output']) > 0
44 | assert r2['chatId'] == '1234567890'
45 |
46 | def test_text_with_img_input():
47 | with mock_post_method(jinaai.CCClient):
48 | input_data = 'What could I do with this?'
49 | url = 'https://picsum.photos/200'
50 | r1 = jinaai.generate(input_data, { 'image': url })
51 | assert r1['output']
52 | assert len(r1['output']) > 0
53 | assert r1['chatId'] == 'aaaaaaaaaaaaaaaaaaaaaaaaaaa'
54 |
55 | def test_text_arr_input():
56 | with mock_post_method(jinaai.CCClient):
57 | input_data = [
58 | 'Give me an Hello World function in Typescript',
59 | 'Make it take an optional param NAME and replace world by NAME if set'
60 | ]
61 | r1 = jinaai.generate(input_data)
62 | assert r1['output']
63 | assert len(r1['output']) > 0
64 | assert r1['chatId'] == 'aaaaaaaaaaaaaaaaaaaaaaaaaaa'
65 | r2 = jinaai.generate(input_data, {'chatId': '1234567890'})
66 | assert r2['output']
67 | assert len(r2['output']) > 0
68 | assert r2['chatId'] == '1234567890'
69 |
70 | def test_raw_output():
71 | with mock_post_method(jinaai.CCClient):
72 | input_data = 'Give me an Hello World function in Typescript'
73 | r1 = jinaai.generate(input_data, {'raw': True})
74 | raw_response = r1['raw']
75 | assert raw_response['choices']
76 | assert len(raw_response['choices']) > 0
77 | assert len(raw_response['choices'][0]['message']['content']) > 0
78 | assert len(raw_response['choices'][0]['finish_reason']) > 0
79 | assert raw_response['usage']
80 | assert raw_response['usage']['prompt_tokens']
81 | assert raw_response['usage']['completion_tokens']
82 | assert raw_response['usage']['total_tokens']
83 | assert raw_response['chatId'] == 'aaaaaaaaaaaaaaaaaaaaaaaaaaa'
84 |
--------------------------------------------------------------------------------
/tests/test_promptperfect.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | mock_dir = os.path.abspath(os.path.join(current_dir, './mock'))
6 | sys.path.append(root_dir)
7 | sys.path.append(mock_dir)
8 | from jinaai import JinaAI
9 | from mock.HTTPClientMock import mock_post_method
10 |
11 | jinaai = JinaAI(
12 | secrets={
13 | 'promptperfect-secret': 'some-fake-secret',
14 | 'scenex-secret': 'some-fake-secret',
15 | 'rationale-secret': 'some-fake-secret',
16 | 'jinachat-secret': 'some-fake-secret',
17 | }
18 | )
19 |
20 | def test_default_input():
21 | with mock_post_method(jinaai.PPClient):
22 | input = ['Give me an Hello World function in Typescript']
23 | r1 = jinaai.optimize({ "data": [
24 | {
25 | 'prompt': i,
26 | 'targetModel': 'chatgpt',
27 | 'features': [],
28 | 'target_language': 'it'
29 | } for i in input
30 | ]})
31 | results = r1['results']
32 | assert results
33 | assert len(results) == 1
34 | assert len(results[0]['output']) > 0
35 |
36 | def test_string_input():
37 | with mock_post_method(jinaai.PPClient):
38 | input1 = 'Give me an Hello World function in Typescript'
39 | input2 = 'https://picsum.photos/200'
40 | r1 = jinaai.optimize(input1)
41 | results = r1['results']
42 | assert results
43 | assert len(results) == 1
44 | assert len(results[0]['output']) > 0
45 | r2 = jinaai.optimize(input2, {
46 | 'targetModel': 'dalle',
47 | 'features': ['shorten'],
48 | 'target_language': 'fr'
49 | })
50 | results = r2['results']
51 | assert results
52 | assert len(results) == 1
53 | assert len(results[0]['output']) > 0
54 |
55 | def test_arr_input():
56 | with mock_post_method(jinaai.PPClient):
57 | input = ['Give me an Hello World function in Typescript', 'https://picsum.photos/300']
58 | r1 = jinaai.optimize(input)
59 | results = r1['results']
60 | assert results
61 | assert len(results) == 2
62 | assert len(results[0]['output']) > 0
63 | assert len(results[1]['output']) > 0
64 | r2 = jinaai.optimize(input, {
65 | 'targetModel': 'dalle',
66 | 'features': ['shorten'],
67 | 'target_language': 'fr'
68 | })
69 | results = r2['results']
70 | assert results
71 | assert len(results) == 2
72 | assert len(results[0]['output']) > 0
73 | assert len(results[1]['output']) > 0
74 |
75 | def test_raw_output():
76 | with mock_post_method(jinaai.PPClient):
77 | input1 = 'Give me an Hello World function in Typescript'
78 | input2 = 'https://picsum.photos/200'
79 | r1 = jinaai.optimize(input1, { 'raw': True })
80 | assert r1['raw']['result']
81 | assert len(r1['raw']['result']) == 1
82 | assert r1['raw']['result'][0]['prompt'] == input1
83 | assert not r1['raw']['result'][0]['imagePrompt']
84 | assert len(r1['raw']['result'][0]['features']) == 0
85 | assert r1['raw']['result'][0]['targetModel'] == 'chatgpt'
86 | assert r1['raw']['result'][0]['promptOptimized']
87 | assert r1['raw']['result'][0]['language'] == 'en'
88 | assert not r1['raw']['result'][0]['targetLanguage']
89 | r2 = jinaai.optimize(input2, {
90 | 'raw': True,
91 | 'target_language': 'it',
92 | 'targetModel': 'claude',
93 | 'features': ['shorten', 'high_quality']
94 | })
95 | assert r2['raw']['result']
96 | assert len(r2['raw']['result']) == 1
97 | assert len(r2['raw']['result'][0]['prompt']) > 0
98 | assert r2['raw']['result'][0]['imagePrompt'] == input2
99 | assert len(r2['raw']['result'][0]['features']) == 2
100 | assert r2['raw']['result'][0]['targetModel'] == 'claude'
101 | assert r2['raw']['result'][0]['promptOptimized']
102 | assert r2['raw']['result'][0]['language'] == 'it'
103 | assert r2['raw']['result'][0]['targetLanguage'] == 'it'
104 |
--------------------------------------------------------------------------------
/tests/test_rationale.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | mock_dir = os.path.abspath(os.path.join(current_dir, './mock'))
6 | sys.path.append(root_dir)
7 | sys.path.append(mock_dir)
8 | from jinaai import JinaAI
9 | from mock.HTTPClientMock import mock_post_method
10 |
11 | jinaai = JinaAI(
12 | secrets={
13 | 'promptperfect-secret': 'some-fake-secret',
14 | 'scenex-secret': 'some-fake-secret',
15 | 'rationale-secret': 'some-fake-secret',
16 | 'jinachat-secret': 'some-fake-secret',
17 | }
18 | )
19 |
20 | def test_default_input():
21 | with mock_post_method(jinaai.RAClient):
22 | input = ['Going to Paris this summer']
23 | r1 = jinaai.decide({ "data": [
24 | {
25 | 'decision': i,
26 | 'analysis': 'swot',
27 | 'style': 'concise'
28 | } for i in input
29 | ]})
30 | results = r1['results']
31 | assert results
32 | assert len(results) == 1
33 | assert not r1['results'][0]['proscons']
34 | assert r1['results'][0]['swot']
35 | assert not r1['results'][0]['multichoice']
36 | assert not r1['results'][0]['outcomes']
37 | r1KeyResults = r1['results'][0]['swot']
38 | assert r1KeyResults['strengths']
39 | assert r1KeyResults['weaknesses']
40 | assert r1KeyResults['opportunities']
41 | assert r1KeyResults['threats']
42 |
43 | def test_text_input():
44 | with mock_post_method(jinaai.RAClient):
45 | input = 'Going to Paris this summer'
46 | r1 = jinaai.decide(input)
47 | assert r1['results']
48 | assert len(r1['results']) == 1
49 | assert r1['results'][0]['proscons']
50 | assert not r1['results'][0]['swot']
51 | assert not r1['results'][0]['multichoice']
52 | assert not r1['results'][0]['outcomes']
53 | r1KeyResults = r1['results'][0]['proscons']
54 | assert r1KeyResults['pros']
55 | assert r1KeyResults['cons']
56 | r2 = jinaai.decide(input, {
57 | 'analysis': 'multichoice',
58 | 'style': 'genZ'
59 | })
60 | assert r2['results']
61 | assert len(r2['results']) == 1
62 | assert not r2['results'][0]['proscons']
63 | assert not r2['results'][0]['swot']
64 | assert r2['results'][0]['multichoice']
65 | assert not r2['results'][0]['outcomes']
66 | r2KeyResults = r2['results'][0]['multichoice']
67 | assert len(r2KeyResults) == 3
68 |
69 |
70 | def test_arr_input():
71 | with mock_post_method(jinaai.RAClient):
72 | input = ['Going to Paris this summer', 'Going to Beijing this winter']
73 | r1 = jinaai.decide(input)
74 | assert r1['results']
75 | assert len(r1['results']) == 2
76 | assert r1['results'][0]['proscons']
77 | assert not r1['results'][0]['swot']
78 | assert not r1['results'][0]['multichoice']
79 | assert not r1['results'][0]['outcomes']
80 | assert r1['results'][1]['proscons']
81 | assert not r1['results'][1]['swot']
82 | assert not r1['results'][1]['multichoice']
83 | assert not r1['results'][1]['outcomes']
84 | r1KeyResults1 = r1['results'][0]['proscons']
85 | assert r1KeyResults1['pros']
86 | assert r1KeyResults1['cons']
87 | r1KeyResults2 = r1['results'][1]['proscons']
88 | assert r1KeyResults2['pros']
89 | assert r1KeyResults2['cons']
90 | r2 = jinaai.decide(input, {
91 | 'analysis': 'multichoice',
92 | 'style': 'genZ'
93 | })
94 | assert r2['results']
95 | assert len(r2['results']) == 2
96 | assert not r2['results'][0]['proscons']
97 | assert not r2['results'][0]['swot']
98 | assert r2['results'][0]['multichoice']
99 | assert not r2['results'][0]['outcomes']
100 | assert not r2['results'][1]['proscons']
101 | assert not r2['results'][1]['swot']
102 | assert r2['results'][1]['multichoice']
103 | assert not r2['results'][1]['outcomes']
104 | r2KeyResults1 = r2['results'][0]['multichoice']
105 | assert len(r2KeyResults1) == 3
106 | r2KeyResults2 = r2['results'][1]['multichoice']
107 | assert len(r2KeyResults2) == 3
108 |
109 |
110 | def test_raw_output():
111 | with mock_post_method(jinaai.RAClient):
112 | input = ['Going to Paris this summer', 'Going to Beijing this winter']
113 | r1 = jinaai.decide(input, { 'raw': True })
114 | assert r1['raw']['result']
115 | assert r1['raw']['result']['result']
116 | assert len(r1['raw']['result']['result']) == 2
117 | assert r1['raw']['result']['result'][0]['decision'] == input[0]
118 | assert r1['raw']['result']['result'][1]['decision'] == input[1]
119 | assert r1['raw']['result']['result'][0]['writingStyle'] == 'concise'
120 | assert r1['raw']['result']['result'][1]['writingStyle'] == 'concise'
121 | assert r1['raw']['result']['result'][0]['analysis'] == 'proscons'
122 | assert r1['raw']['result']['result'][1]['analysis'] == 'proscons'
123 | r1KeyResults1 = r1['raw']['result']['result'][0]['keyResults']
124 | assert r1KeyResults1['pros']
125 | assert r1KeyResults1['cons']
126 | r1KeyResults2 = r1['raw']['result']['result'][1]['keyResults']
127 | assert r1KeyResults2['pros']
128 | assert r1KeyResults2['cons']
129 | r2 = jinaai.decide(input, {
130 | 'analysis': 'multichoice',
131 | 'style': 'genZ',
132 | 'raw': True
133 | })
134 | assert r2['raw']['result']
135 | assert r2['raw']['result']['result']
136 | assert len(r2['raw']['result']['result']) == 2
137 | assert r2['raw']['result']['result'][0]['decision'] == input[0]
138 | assert r2['raw']['result']['result'][1]['decision'] == input[1]
139 | assert r2['raw']['result']['result'][0]['writingStyle'] == 'genZ'
140 | assert r2['raw']['result']['result'][1]['writingStyle'] == 'genZ'
141 | assert r2['raw']['result']['result'][0]['analysis'] == 'multichoice'
142 | assert r2['raw']['result']['result'][1]['analysis'] == 'multichoice'
143 | r2KeyResults1 = r2['raw']['result']['result'][0]['keyResults']
144 | assert len(r2KeyResults1) == 3
145 | r2KeyResults2 = r2['raw']['result']['result'][1]['keyResults']
146 | assert len(r2KeyResults2) == 3
147 |
--------------------------------------------------------------------------------
/tests/test_scenex.py:
--------------------------------------------------------------------------------
1 | import json
2 | import sys
3 | import os
4 | current_dir = os.path.dirname(os.path.abspath(__file__))
5 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
6 | mock_dir = os.path.abspath(os.path.join(current_dir, './mock'))
7 | sys.path.append(root_dir)
8 | sys.path.append(mock_dir)
9 | from jinaai import JinaAI
10 | from mock.HTTPClientMock import mock_post_method
11 |
12 | jinaai = JinaAI(
13 | secrets={
14 | 'promptperfect-secret': 'some-fake-secret',
15 | 'scenex-secret': 'some-fake-secret',
16 | 'rationale-secret': 'some-fake-secret',
17 | 'jinachat-secret': 'some-fake-secret',
18 | }
19 | )
20 |
21 | def test_default_input():
22 | with mock_post_method(jinaai.SXClient):
23 | input = ['https://picsum.photos/200']
24 | r1 = jinaai.describe({ "data": [
25 | {
26 | 'image': i,
27 | 'features': [],
28 | 'algorithm': 'Ember',
29 | 'languages': ['it'],
30 | 'style': 'concise'
31 | } for i in input
32 | ]})
33 | results = r1['results']
34 | assert results
35 | assert len(results) == 1
36 | assert len(results[0]['output']) > 0
37 | assert results[0]['i18n'].get('it')
38 |
39 | def test_image_url_input():
40 | with mock_post_method(jinaai.SXClient):
41 | input = 'https://picsum.photos/200'
42 | r1 = jinaai.describe(input)
43 | results = r1['results']
44 | assert results
45 | assert len(results) == 1
46 | assert len(results[0]['output']) > 0
47 | r2 = jinaai.describe(input, {
48 | 'features': ['high_quality'],
49 | 'algorithm': 'Comet',
50 | 'languages': ['fr', 'de']
51 | })
52 | results = r2['results']
53 | assert results
54 | assert len(results) == 1
55 | assert len(results[0]['output']) > 0
56 | assert results[0]['i18n'].get('fr')
57 | assert results[0]['i18n'].get('de')
58 |
59 | def test_image_url_input_shortened_answer():
60 | with mock_post_method(jinaai.SXClient):
61 | input = 'https://picsum.photos/200'
62 | r1 = jinaai.describe(input, { 'output_length': 50 })
63 | results = r1['results']
64 | assert results
65 | assert len(results) == 1
66 | assert len(results[0]['output']) > 0
67 | assert len(results[0]['output']) > 50
68 | assert results[0]['i18n'].get('en')
69 | assert len(results[0]['i18n']['en']) == 50
70 | r2 = jinaai.describe(input, {
71 | 'output_length': 50,
72 | 'languages': ['fr', 'de']
73 | })
74 | results = r2['results']
75 | assert results
76 | assert len(results) == 1
77 | assert len(results[0]['output']) > 0
78 | assert len(results[0]['output']) > 50
79 | assert results[0]['i18n'].get('fr')
80 | assert len(results[0]['i18n']['fr']) == 50
81 | assert results[0]['i18n'].get('de')
82 | assert len(results[0]['i18n']['de']) == 50
83 |
84 |
85 | def test_image_url_input_json_answer():
86 | with mock_post_method(jinaai.SXClient):
87 | input = 'https://picsum.photos/200'
88 | r1 = jinaai.describe(input, { 'json_schema': {
89 | 'type': 'object',
90 | 'properties': {
91 | 'headcount': {
92 | 'type': 'number',
93 | 'description': 'How many people in this image'
94 | }
95 | }
96 | }
97 | })
98 | results = r1['results']
99 | assert results
100 | assert len(results) == 1
101 | assert len(results[0]['output']) > 0
102 | assert len(results[0]['output']) > 50
103 | assert results[0]['i18n'].get('en')
104 | assert json.loads(results[0]['i18n']['en'])
105 |
106 |
107 | def test_image_url_input_heart_algo():
108 | with mock_post_method(jinaai.SXClient):
109 | input = 'https://picsum.photos/200'
110 | r1 = jinaai.describe(input, { 'algorithm': 'Hearth' })
111 | results = r1['results']
112 | assert results
113 | assert len(results) == 1
114 | assert len(results[0]['output']) > 0
115 | assert results[0]['i18n'].get('en')
116 | assert len(results[0]['i18n']['en']) == 2
117 | assert len(results[0]['i18n']['en'][0]['message']) > 50
118 | assert results[0]['tts'].get('en')
119 | assert results[0]['ssml'].get('en')
120 | r2 = jinaai.describe(input, {
121 | 'algorithm': 'Hearth',
122 | 'output_length': 50,
123 | 'languages': ['fr', 'de']
124 | })
125 | results = r2['results']
126 | assert results
127 | assert len(results) == 1
128 | assert len(results[0]['output']) > 0
129 | assert len(results[0]['output']) > 50
130 | assert results[0]['i18n'].get('fr')
131 | assert len(results[0]['i18n']['fr']) == 2
132 | assert len(results[0]['i18n']['fr'][0]['message']) == 50
133 | assert results[0]['i18n'].get('de')
134 | assert len(results[0]['i18n']['de']) == 2
135 | assert len(results[0]['i18n']['de'][0]['message']) == 50
136 | assert results[0]['tts'].get('fr')
137 | assert results[0]['ssml'].get('fr')
138 | assert results[0]['tts'].get('de')
139 | assert results[0]['ssml'].get('de')
140 |
141 | def test_image_url_arr_input():
142 | with mock_post_method(jinaai.SXClient):
143 | input = ['https://picsum.photos/200', 'https://picsum.photos/300']
144 | r1 = jinaai.describe(input)
145 | results = r1['results']
146 | assert results
147 | assert len(results) == 2
148 | assert len(results[0]['output']) > 0
149 | assert len(results[1]['output']) > 0
150 | r2 = jinaai.describe(input, {
151 | 'features': ['high_quality'],
152 | 'algorithm': 'Dune',
153 | 'languages': ['fr']
154 | })
155 | results = r2['results']
156 | assert results
157 | assert len(results) == 2
158 | assert len(results[0]['output']) > 0
159 | assert len(results[1]['output']) > 0
160 | assert results[0]['i18n'].get('fr')
161 | assert results[1]['i18n'].get('fr')
162 |
163 | def test_raw_output():
164 | with mock_post_method(jinaai.SXClient):
165 | input = ['https://picsum.photos/200', 'https://picsum.photos/300']
166 | r1 = jinaai.describe(input, { 'raw': True })
167 | r1_raw_result = r1['raw']['result']
168 | assert r1_raw_result
169 | assert len(r1_raw_result) == 2
170 | assert r1_raw_result[0]['image'] == input[0]
171 | assert r1_raw_result[1]['image'] == input[1]
172 | assert len(r1_raw_result[0]['features']) == 0
173 | assert r1_raw_result[0]['algorithm'] == 'Aqua'
174 | assert r1_raw_result[1]['algorithm'] == 'Aqua'
175 | assert r1_raw_result[0]['text']
176 | assert r1_raw_result[1]['text']
177 | assert not r1_raw_result[0]['answer']
178 | assert not r1_raw_result[1]['answer']
179 | assert r1_raw_result[0]['i18n'].get('en')
180 | assert r1_raw_result[1]['i18n'].get('en')
181 | r2 = jinaai.describe(input, {
182 | 'question': 'How many people are on this photo?',
183 | 'features': ['high_quality'],
184 | 'algorithm': 'Dune',
185 | 'languages': ['fr'],
186 | 'raw': True
187 | })
188 | r2_raw_result = r2['raw']['result']
189 | assert r2_raw_result
190 | assert len(r2_raw_result) == 2
191 | assert r2_raw_result[0]['image'] == input[0]
192 | assert r2_raw_result[1]['image'] == input[1]
193 | assert len(r2_raw_result[0]['features']) == 2
194 | assert len(r2_raw_result[1]['features']) == 2
195 | assert r2_raw_result[0]['features'][0] == 'high_quality'
196 | assert r2_raw_result[0]['features'][1] == 'question_answer'
197 | assert r2_raw_result[1]['features'][0] == 'high_quality'
198 | assert r2_raw_result[1]['features'][1] == 'question_answer'
199 | assert r2_raw_result[0]['algorithm'] == 'Dune'
200 | assert r2_raw_result[1]['algorithm'] == 'Dune'
201 | assert r2_raw_result[0]['text']
202 | assert r2_raw_result[1]['text']
203 | assert r2_raw_result[0]['answer']
204 | assert r2_raw_result[1]['answer']
205 | assert not r2_raw_result[0]['i18n'].get('en')
206 | assert not r2_raw_result[1]['i18n'].get('en')
207 | assert r2_raw_result[0]['i18n'].get('fr')
208 | assert r2_raw_result[1]['i18n'].get('fr')
209 |
--------------------------------------------------------------------------------
/tests/test_utility.py:
--------------------------------------------------------------------------------
1 | import sys
2 | import os
3 | current_dir = os.path.dirname(os.path.abspath(__file__))
4 | root_dir = os.path.abspath(os.path.join(current_dir, '..'))
5 | sys.path.append(root_dir)
6 | from jinaai import JinaAI
7 |
8 | jinaai = JinaAI()
9 |
10 | imageFile = '../examples/images/factory-1.png'
11 | imageUrl = 'https://picsum.photos/200'
12 | imageB64 = jinaai.utils.image_to_base64(imageFile)
13 |
14 | def test_is_url():
15 | assert jinaai.utils.is_url(imageFile) == False
16 | assert jinaai.utils.is_url(imageUrl) == True
17 | assert jinaai.utils.is_url(imageB64) == False
18 |
19 | def test_is_base64():
20 | assert jinaai.utils.is_base64(imageFile) == False
21 | assert jinaai.utils.is_base64(imageUrl) == False
22 | assert jinaai.utils.is_base64(imageB64) == True
23 |
24 | def test_image_to_base64():
25 | assert jinaai.utils.is_base64(imageB64) == True
26 |
--------------------------------------------------------------------------------