├── .gitignore
├── LICENSE
├── README.md
├── activation.go
├── activation_func.go
├── banner.png
├── config.go
├── config_pole_balancing.json
├── config_template.json
├── config_xor.json
├── doc.go
├── evaluation_func.go
├── genome.go
├── genome_new.go
├── genome_test.go
├── neat.go
├── neat_test.go
├── network.go
├── neural_network.go
├── neural_network_test.go
├── species.go
└── statistics.go
/.gitignore:
--------------------------------------------------------------------------------
1 | .DS_Store
2 | *.swp
3 | genome_1_*
4 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 | {one line to give the program's name and a brief idea of what it does.}
635 | Copyright (C) {year} {name of author}
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | {project} Copyright (C) {year} {fullname}
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | 
2 | [](https://godoc.org/github.com/jinyeom/neat)
3 | [](https://goreportcard.com/report/github.com/jinyeom/neat)
4 | [](https://cover.run/go/github.com/jinyeom/neat)
5 |
6 | CURRENTLY NOT WORKING! There will be a further notice when it's updated.
7 |
8 | NEAT (NeuroEvolution of Augmenting Topologies) is a neuroevolution algorithm by
9 | Dr. Kenneth O. Stanley which evolves not only neural networks' weights but also their
10 | topologies. This method starts the evolution process with genomes with minimal structure,
11 | then complexifies the structure of each genome as it progresses. You can read the original
12 | paper from [here](http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf).
13 |
14 | ## Installation
15 | To install `neat` run the following:
16 |
17 | ```bash
18 | $ go get -u github.com/jinyeom/neat
19 | ```
20 |
21 | ## Usage
22 |
23 | This NEAT package is as simple as plug and play. All you have to do is to create
24 | a new instance of NEAT, given the configuration from a JSON file, for which the
25 | template is provided below, and an evaluation method of a neural network, and
26 | run.
27 |
28 | ```json
29 | {
30 | "experimentName": "XOR Test",
31 | "verbose": true,
32 | "numInputs": 3,
33 | "numOutputs": 1,
34 | "fullyConnected": false,
35 | "numGenerations": 50,
36 | "populationSize": 100,
37 | "initFitness": 9999.0,
38 | "minimizeFitness": true,
39 | "survivalRate": 0.5,
40 | "stagnationLimit": 5,
41 | "ratePerturb": 0.2,
42 | "rateAddNode": 0.2,
43 | "rateAddConn": 0.2,
44 | "rateMutateChild": 0.5,
45 | "distanceThreshold": 20.0,
46 | "coeffUnmatching": 1.0,
47 | "coeffMatching": 1.0,
48 | "cppnActivations": [],
49 | }
50 | ```
51 |
52 | Now that you have the configuration JSON file is ready as `config.json`, we can
53 | start experiment with NEAT. Below is an example XOR experiment.
54 |
55 | ```go
56 | package main
57 |
58 | import (
59 | "log"
60 | "math"
61 |
62 | // Import NEAT package after installing the package through
63 | // the instruction provided above.
64 | "github.com/jinyeom/neat"
65 | )
66 |
67 | func main() {
68 |
69 | // First, create a new instance of Config from the JSON file created above.
70 | // If there's a file import error, the program will crash.
71 | config, err := neat.NewConfigJSON("config.json")
72 | if err != nil{
73 | log.Fatal(err)
74 | }
75 |
76 | // Then, we can define the evaluation function, which is a type of function
77 | // which takes a neural network, evaluates its performance, and returns some
78 | // score that indicates its performance. This score is essentially a genome's
79 | // fitness score. With the configuration and the evaluation function we
80 | // defined, we can create a new instance of NEAT and start the evolution
81 | // process.
82 | neat.New(config, neat.XORTest()).Run()
83 | }
84 |
85 | ```
86 |
87 | ## License
88 | This package is under GNU General Public License.
89 |
--------------------------------------------------------------------------------
/activation.go:
--------------------------------------------------------------------------------
1 | package neat
2 |
3 | const (
4 | actMin = -100000.0
5 | actMax = 100000.0
6 | )
7 |
8 | func RandActivationFunc() *ActivationFunc {
9 | funcs = []func() *ActviationFunc{Linear, Sigmoid, Tanh, Sine, Gaussian}
10 | return funcs[rand.Intn(len(funcs))]()
11 | }
12 |
13 | type ActivationFunc struct {
14 | name string
15 | f func(x float64) float64
16 | }
17 |
18 | func Linear() *ActivationFunc {
19 | return &ActivationFunc{
20 | name: "linear",
21 | f: func(x float64) float64 {
22 | return x
23 | },
24 | }
25 | }
26 |
27 | func Sigmoid() *ActivationFunc {
28 | return &ActivationFunc{
29 | name: "sigmoid",
30 | f: func(x float64) float64 {
31 | return 1.0 / (1.0 + math.Exp(-x))
32 | },
33 | }
34 | }
35 |
36 | func Tanh() *ActivationFunc {
37 | return &ActivationFunc{
38 | name: "tanh",
39 | f: func(x float64) float64 {
40 | return math.Tanh(x)
41 | },
42 | }
43 | }
44 |
45 | func Sine() *ActivationFunc {
46 | return &ActivationFunc{
47 | name: "sine",
48 | f: func(x float64) float64 {
49 | return math.Sin(x)
50 | },
51 | }
52 | }
53 |
54 | func Gaussian() *ActivationFunc {
55 | return &ActivationFunc{
56 | name: "gaussian",
57 | f: func(x float64) float64 {
58 | return math.Exp(-x * x)
59 | },
60 | }
61 | }
62 |
63 | func (a *ActivationFunc) Name() float64 {
64 | return a.name
65 | }
66 |
67 | func (a *ActivationFunc) Activate(x float64) float64 {
68 | clipped = math.Min(math.Max(x, actMin), actMax)
69 | return a.f(x)
70 | }
71 |
--------------------------------------------------------------------------------
/activation_func.go:
--------------------------------------------------------------------------------
1 | // activation_func.go implementation of activation functions used in a network.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "math"
22 | )
23 |
24 | var (
25 | // ActivationSet is a set of functions that can be used as activation
26 | // functions by neurons.
27 | ActivationSet = map[string]*ActivationFunc{
28 | "linear": Linear(),
29 | "sigmoid": Sigmoid(),
30 | "tanh": Tanh(),
31 | "sin": Sin(),
32 | "cos": Cos(),
33 | "relu": ReLU(),
34 | "log": Log(),
35 | "exp": Exp(),
36 | "abs": Abs(),
37 | "square": Square(),
38 | "cube": Cube(),
39 | "gaussian": Gaussian(0.0, 1.0),
40 | }
41 | )
42 |
43 | // ActivationFunc is a wrapper type for activation functions.
44 | type ActivationFunc struct {
45 | Name string `json:"name"` // name of the function
46 | Fn func(x float64) float64 `json:"-"` // activation function
47 | }
48 |
49 | // Identity returns the identity function as an activation
50 | // function. This function is only used for sensor nodes.
51 | func Identity() *ActivationFunc {
52 | return &ActivationFunc{
53 | Name: "Identity",
54 | Fn: func(x float64) float64 {
55 | return x
56 | },
57 | }
58 | }
59 |
60 | // Sigmoid returns the sigmoid function as an activation function.
61 | func Sigmoid() *ActivationFunc {
62 | return &ActivationFunc{
63 | Name: "Sigmoid",
64 | Fn: func(x float64) float64 {
65 | return 1.0 / (1.0 + math.Exp(-x))
66 | },
67 | }
68 | }
69 |
70 | // Tanh returns the hyperbolic tangent function as an activation function.
71 | func Tanh() *ActivationFunc {
72 | return &ActivationFunc{
73 | Name: "Tanh",
74 | Fn: math.Tanh,
75 | }
76 | }
77 |
78 | // Sin returns the sin function as an activation function.
79 | func Sin() *ActivationFunc {
80 | return &ActivationFunc{
81 | Name: "Sine",
82 | Fn: math.Sin,
83 | }
84 | }
85 |
86 | // Cos returns the cosine function as an activation function.
87 | func Cos() *ActivationFunc {
88 | return &ActivationFunc{
89 | Name: "Cosine",
90 | Fn: math.Cos,
91 | }
92 | }
93 |
94 | // ReLU returns a rectifier linear unit as an activation function.
95 | func ReLU() *ActivationFunc {
96 | return &ActivationFunc{
97 | Name: "ReLU",
98 | Fn: func(x float64) float64 {
99 | return math.Max(x, 0.0)
100 | },
101 | }
102 | }
103 |
104 | // Log returns the log function as an activation function.
105 | func Log() *ActivationFunc {
106 | return &ActivationFunc{
107 | Name: "Log",
108 | Fn: math.Log,
109 | }
110 | }
111 |
112 | // Exp returns the exponential function as an activation function.
113 | func Exp() *ActivationFunc {
114 | return &ActivationFunc{
115 | Name: "Exp",
116 | Fn: math.Exp,
117 | }
118 | }
119 |
120 | // Abs returns the absolute value function as an activation function.
121 | func Abs() *ActivationFunc {
122 | return &ActivationFunc{
123 | Name: "Abs",
124 | Fn: math.Abs,
125 | }
126 | }
127 |
128 | // Square returns the square function as an activation function.
129 | func Square() *ActivationFunc {
130 | return &ActivationFunc{
131 | Name: "Square",
132 | Fn: func(x float64) float64 {
133 | return x * x
134 | },
135 | }
136 | }
137 |
138 | // Cube returns the cube function as an activation function.
139 | func Cube() *ActivationFunc {
140 | return &ActivationFunc{
141 | Name: "Cube",
142 | Fn: func(x float64) float64 {
143 | return x * x * x
144 | },
145 | }
146 | }
147 |
148 | // Gaussian returns the Gaussian function as an activation function, given a
149 | // mean and a standard deviation.
150 | func Gaussian(mean, stdev float64) *ActivationFunc {
151 | return &ActivationFunc{
152 | Name: "Gaussian",
153 | Fn: func(x float64) float64 {
154 | return 1.0 / (stdev * math.Sqrt(2*math.Pi)) *
155 | math.Exp(math.Pow((x-mean)/stdev, 2.0)/-2.0)
156 | },
157 | }
158 | }
159 |
--------------------------------------------------------------------------------
/banner.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jinyeom/neat/9ec678d1fbacb36176ccaff5ba4dfca4d1b4d442/banner.png
--------------------------------------------------------------------------------
/config.go:
--------------------------------------------------------------------------------
1 | // config.go implementation of configuration settings for NEAT.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "encoding/json"
22 | "fmt"
23 | "os"
24 | "text/tabwriter"
25 | )
26 |
27 | // Config consists of all hyperparameter settings for NEAT. It can be imported
28 | // from a JSON file.
29 | type Config struct {
30 | // general settings
31 | ExperimentName string `json:"experimentName"` // name of the experiment
32 | Verbose bool `json:"verbose"` // verbose mode (terminal)
33 |
34 | // neural network settings
35 | NumInputs int `json:"numInputs"` // number of inputs
36 | NumOutputs int `json:"numOutputs"` // number of outputs
37 | FullyConnected bool `json:"fullyConnected"` // initially fully connected
38 |
39 | // evolution settings
40 | NumGenerations int `json:"numGenerations"` // number of generations
41 | PopulationSize int `json:"populationSize"` // size of population
42 | InitFitness float64 `json:"initFitness"` // initial fitness score
43 | MinimizeFitness bool `json:"minimizeFitness"` // true if minimizing fitness
44 | SurvivalRate float64 `json:"survivalRate"` // survival rate
45 | StagnationLimit int `json:"stagnationLimit"` // limit of stagnation
46 |
47 | // mutation rates settings
48 | RatePerturb float64 `json:"ratePerturb"` // by perturbing weights
49 | RateAddNode float64 `json:"rateAddNode"` // by adding a node
50 | RateAddConn float64 `json:"rateAddConn"` // by adding a connection
51 | RateMutateChild float64 `json:"rateMutateChild"` // mutation of a child
52 |
53 | // compatibility distance coefficient settings
54 | DistanceThreshold float64 `json:"distanceThreshold"` // distance threshold
55 | CoeffUnmatching float64 `json:"coeffUnmatching"` // unmatching genes
56 | CoeffMatching float64 `json:"coeffMatching"` // matching genes
57 |
58 | // CPPN settings
59 | CPPNActivations []string `json:"cppnActivations"` // additional activations
60 | }
61 |
62 | // NewConfigJSON creates a new instance of Config, given the name of a JSON file
63 | // that consists of the hyperparameter settings.
64 | func NewConfigJSON(filename string) (*Config, error) {
65 | f, err := os.Open(filename)
66 | if err != nil {
67 | return nil, err
68 | }
69 | defer f.Close()
70 |
71 | config := &Config{}
72 | decoder := json.NewDecoder(f)
73 | if err = decoder.Decode(&config); err != nil {
74 | return nil, err
75 | }
76 | return config, nil
77 | }
78 |
79 | // Summarize prints the summarized configuration on terminal.
80 | func (c *Config) Summarize() {
81 | w := tabwriter.NewWriter(os.Stdout, 40, 1, 1, ' ', tabwriter.TabIndent)
82 | fmt.Fprintf(w, "============================================\n")
83 | fmt.Fprintf(w, "Summary of NEAT hyperparameter configuration\t\n")
84 | fmt.Fprintf(w, "============================================\n")
85 |
86 | fmt.Fprintf(w, "General settings\t\n")
87 | fmt.Fprintf(w, "+ Experiment name\t%s\t\n", c.ExperimentName)
88 | fmt.Fprintf(w, "+ Verbose mode\t%t\t\n\n", c.Verbose)
89 |
90 | fmt.Fprintf(w, "Neural network settings\t\n")
91 | fmt.Fprintf(w, "+ Number of inputs\t%d\t\n", c.NumInputs)
92 | fmt.Fprintf(w, "+ Number of outputs\t%d\t\n", c.NumOutputs)
93 | fmt.Fprintf(w, "+ Fully connected\t%t\t\n\n", c.FullyConnected)
94 |
95 | fmt.Fprintf(w, "General evolution settings\t\n")
96 | fmt.Fprintf(w, "+ Number of generations\t%d\t\n", c.NumGenerations)
97 | fmt.Fprintf(w, "+ Population size\t%d\t\n", c.PopulationSize)
98 | fmt.Fprintf(w, "+ Initial fitness score\t%.3f\t\n", c.InitFitness)
99 | fmt.Fprintf(w, "+ Fitness is being minimized\t%t\t\n", c.MinimizeFitness)
100 | fmt.Fprintf(w, "+ Rate of survival each generation\t%.3f\t\n", c.SurvivalRate)
101 | fmt.Fprintf(w, "+ Limit of species' stagnation\t%d\t\n\n", c.StagnationLimit)
102 |
103 | fmt.Fprintf(w, "Mutation settings\t\n")
104 | fmt.Fprintf(w, "+ Rate of perturbation of weights\t%.3f\t\n", c.RatePerturb)
105 | fmt.Fprintf(w, "+ Rate of adding a node\t%.3f\t\n", c.RateAddNode)
106 | fmt.Fprintf(w, "+ Rate of adding a connection\t%.3f\t\n", c.RateAddConn)
107 | fmt.Fprintf(w, "+ Rate of mutating a child\t%.3f\t\n\n", c.RateMutateChild)
108 |
109 | fmt.Fprintf(w, "Compatibility distance settings\t\n")
110 | fmt.Fprintf(w, "+ Distance threshold\t%.3f\t\n", c.DistanceThreshold)
111 | fmt.Fprintf(w, "+ Unmatching connection genes\t%.3f\t\n", c.CoeffUnmatching)
112 | fmt.Fprintf(w, "+ Matching connection genes\t%.3f\t\n\n", c.CoeffMatching)
113 |
114 | fmt.Fprintf(w, "CPPN settings\t\n")
115 | fmt.Fprintf(w, "+ CPPN Activation functions\t%s\t\n", c.CPPNActivations)
116 |
117 | w.Flush()
118 | }
119 |
--------------------------------------------------------------------------------
/config_pole_balancing.json:
--------------------------------------------------------------------------------
1 | {
2 | "experimentName": "Pole balancing test",
3 | "verbose": true,
4 | "numInputs": 4,
5 | "numOutputs": 2,
6 | "fullyConnected": false,
7 | "numGenerations": 30,
8 | "populationSize": 100,
9 | "initFitness": 0.0,
10 | "minimizeFitness": false,
11 | "survivalRate": 0.1,
12 | "stagnationLimit": 10,
13 | "ratePerturb": 0.2,
14 | "rateAddNode": 0.2,
15 | "rateAddConn": 0.2,
16 | "rateMutateChild": 0.4,
17 | "distanceThreshold": 5.0,
18 | "coeffUnmatching": 0.5,
19 | "coeffMatching": 0.5
20 | }
21 |
--------------------------------------------------------------------------------
/config_template.json:
--------------------------------------------------------------------------------
1 | {
2 | "experimentName": "",
3 | "verbose": false,
4 | "numInputs": 0,
5 | "numOutputs": 0,
6 | "numGenerations": 0,
7 | "populationSize": 0,
8 | "initFitness": 0.0,
9 | "minimizeFitness": false,
10 | "survivalRate": 0.0,
11 | "stagnationLimit": 0,
12 | "ratePerturb": 0.0,
13 | "rateAddNode": 0.0,
14 | "rateAddConn": 0.0,
15 | "rateMutateChild": 0.0,
16 | "distanceThreshold": 0.0,
17 | "coeffUnmatching": 0.0,
18 | "coeffMatching": 0.0
19 | }
20 |
--------------------------------------------------------------------------------
/config_xor.json:
--------------------------------------------------------------------------------
1 | {
2 | "experimentName": "XOR Test",
3 | "verbose": true,
4 | "numInputs": 3,
5 | "numOutputs": 1,
6 | "fullyConnected": true,
7 | "numGenerations": 50,
8 | "populationSize": 50,
9 | "initFitness": 9999.0,
10 | "minimizeFitness": true,
11 | "survivalRate": 0.3,
12 | "stagnationLimit": 10,
13 | "ratePerturb": 0.1,
14 | "rateAddNode": 0.1,
15 | "rateAddConn": 0.1,
16 | "rateMutateChild": 0.5,
17 | "distanceThreshold": 5.0,
18 | "coeffUnmatching": 1.0,
19 | "coeffMatching": 0.5
20 | }
21 |
--------------------------------------------------------------------------------
/doc.go:
--------------------------------------------------------------------------------
1 | // Copyright (C) 2017 Jin Yeom
2 | //
3 | // This program is free software: you can redistribute it and/or modify
4 | // it under the terms of the GNU General Public License as published by
5 | // the Free Software Foundation, either version 3 of the License, or
6 | // (at your option) any later version.
7 | //
8 | // This program is distributed in the hope that it will be useful,
9 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
10 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 | // GNU General Public License for more details.
12 | //
13 | // You should have received a copy of the GNU General Public License
14 | // along with this program. If not, see .
15 |
16 | /*
17 | Package neat provides an implementation of NeuroEvolution of Augmenting
18 | Topologies (NEAT) as a plug-and-play framework, which can be used by simply
19 | adding and appropriate configuration and an evaluation function.
20 |
21 | NEAT
22 |
23 | NEAT (NeuroEvolution of Augmenting Topologies) is a neuroevolution algorithm
24 | by Dr. Kenneth O. Stanley which evolves not only neural networks' weights but
25 | also their topologies. This method starts the evolution process with genomes
26 | with minimal structure, then complexifies the structure of each genome as it
27 | progresses. You can read the original paper from here:
28 | http://nn.cs.utexas.edu/downloads/papers/stanley.ec02.pdf
29 |
30 | Example
31 |
32 | This NEAT package is as simple as plug and play. All you have to do is to create
33 | a new instance of NEAT, given the configuration from a JSON file, for which the
34 | template is provided below, and an evaluation method of a neural network, and
35 | run.
36 |
37 | {
38 | "experimentName": "XOR Test",
39 | "verbose": true,
40 | "numInputs": 3,
41 | "numOutputs": 1,
42 | "numGenerations": 50,
43 | "populationSize": 100,
44 | "initFitness": 9999.0,
45 | "minimizeFitness": true,
46 | "survivalRate": 0.5,
47 | "stagnationLimit": 5,
48 | "ratePerturb": 0.2,
49 | "rateAddNode": 0.2,
50 | "rateAddConn": 0.2,
51 | "rateMutateChild": 0.5,
52 | "distanceThreshold": 20.0,
53 | "coeffUnmatching": 1.0,
54 | "coeffMatching": 1.0
55 | }
56 |
57 | Now that you have the configuration JSON file is ready as `config.json`, we can
58 | start experiment with NEAT. Below is an example XOR experiment.
59 |
60 | package main
61 |
62 | import (
63 | "log"
64 | "math"
65 |
66 | // Import NEAT package after installing the package through
67 | // the instruction provided above.
68 | "github.com/jinyeom/neat"
69 | )
70 |
71 | func main() {
72 |
73 | // First, create a new instance of Config from the JSON file created above.
74 | // If there's a file import error, the program will crash.
75 | config, err := neat.NewConfigJSON("config.json")
76 | if err != nil{
77 | log.Fatal(err)
78 | }
79 |
80 | // Then, we can define the evaluation function, which is a type of function
81 | // which takes a neural network, evaluates its performance, and returns some
82 | // score that indicates its performance. This score is essentially a
83 | // genome's fitness score. With the configuration and the evaluation
84 | // function we defined, we can create a new instance of NEAT and start the
85 | // evolution process.
86 | neat.New(config, neat.XORTest()).Run()
87 | }
88 | */
89 | package neat
90 |
--------------------------------------------------------------------------------
/evaluation_func.go:
--------------------------------------------------------------------------------
1 | // evaluation_func.go implementation of evaluation functions of a network.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "log"
22 | "math"
23 | "math/rand"
24 | )
25 |
26 | // EvaluationFunc is a type of function that evaluates an argument neural
27 | // network and returns a its fitness (performance) score.
28 | type EvaluationFunc func(*NeuralNetwork) float64
29 |
30 | // XORTest returns an XOR test as an evaluation function. The fitness is
31 | // measured with the total error, which should be minimized.
32 | func XORTest() EvaluationFunc {
33 | return func(n *NeuralNetwork) float64 {
34 | score := 0.0
35 |
36 | inputs := make([]float64, 3)
37 | inputs[0] = 1.0 // bias
38 |
39 | // 0 xor 0
40 | inputs[1] = 0.0
41 | inputs[2] = 0.0
42 | output, err := n.FeedForward(inputs)
43 | if err != nil {
44 | log.Fatal(err)
45 | }
46 | score += math.Pow((output[0] - 0.0), 2.0)
47 |
48 | // 0 xor 1
49 | inputs[1] = 0.0
50 | inputs[2] = 1.0
51 | output, err = n.FeedForward(inputs)
52 | if err != nil {
53 | log.Fatal(err)
54 | }
55 | score += math.Pow((output[0] - 1.0), 2.0)
56 |
57 | // 1 xor 0
58 | inputs[1] = 1.0
59 | inputs[2] = 0.0
60 | output, err = n.FeedForward(inputs)
61 | if err != nil {
62 | log.Fatal(err)
63 | }
64 | score += math.Pow((output[0] - 1.0), 2.0)
65 |
66 | // 1 xor 1
67 | inputs[1] = 1.0
68 | inputs[2] = 1.0
69 | output, err = n.FeedForward(inputs)
70 | if err != nil {
71 | log.Fatal(err)
72 | }
73 | score += math.Pow((output[0] - 0.0), 2.0)
74 |
75 | return score
76 | }
77 | }
78 |
79 | // PoleBalancingTest returns the pole balancing task as an evaluation function.
80 | // The fitness is measured with how long the network can balanced the pole,
81 | // given a max time. Suggested max time is 120000 ticks.
82 | func PoleBalancingTest(randomStart bool, maxTime int) EvaluationFunc {
83 | // physics constants
84 | xLim := 2.4 // x position limit [-2.4, 2.4]
85 | dxLim := 1.0 // x velocity limit [-1.0, 1.0]
86 | thLim := 0.2 // theta limit [-0.2, 0.2]
87 | dthLim := 1.5 // angular velocity limit [-1.5, 1.5]
88 | gravity := 9.8 // gravity constant
89 | cartMass := 1.0 // mass of the cart
90 | poleMass := 0.1 // mass of the pole
91 | length := 0.5 // half length of pole
92 | forceMag := 10.0 // force applied to the cart
93 | tau := 0.02 // seconds between state updates
94 |
95 | totalMass := cartMass + poleMass
96 | poleMassLength := poleMass * length
97 |
98 | cartpole := func(action bool, inputs []float64) []float64 {
99 | force := forceMag
100 | if action {
101 | force = -forceMag
102 | }
103 |
104 | cosTh := math.Cos(inputs[2])
105 | sinTh := math.Sin(inputs[3])
106 | tmp := (force + poleMassLength*inputs[3]*inputs[3]*sinTh) / totalMass
107 |
108 | // angular acceleration
109 | ath := (gravity*sinTh - cosTh*tmp) /
110 | (length * (4.0/3.0 - poleMass*cosTh*cosTh/totalMass))
111 |
112 | // x acceleration
113 | ax := tmp - poleMassLength*ath*cosTh/totalMass
114 |
115 | return []float64{
116 | inputs[0] + tau*inputs[1],
117 | inputs[1] + tau*ax,
118 | inputs[2] + tau*inputs[3],
119 | inputs[3] + tau*ath,
120 | }
121 | }
122 |
123 | return func(n *NeuralNetwork) float64 {
124 | inputs := make([]float64, 4)
125 | if randomStart {
126 | inputs[0] = float64(rand.Int31()%4800)/1000.0 - xLim
127 | inputs[1] = float64(rand.Int31()%2000)/1000.0 - dxLim
128 | inputs[2] = float64(rand.Int31()%400)/1000.0 - thLim
129 | inputs[3] = float64(rand.Int31()%3000)/1000.0 - dthLim
130 | }
131 |
132 | for i := 0; i < maxTime; i++ {
133 | outputs, err := n.FeedForward(inputs)
134 | if err != nil {
135 | panic(err)
136 | }
137 |
138 | // update the next inputs; if the cart moves out of bound (xLim), or the
139 | // pole falls beyond the limit (thLim), return the time.
140 | inputs = cartpole(outputs[0] <= outputs[1], inputs)
141 | if math.Abs(inputs[0]) > xLim || math.Abs(inputs[2]) > thLim {
142 | return float64(i)
143 | }
144 | }
145 | return float64(maxTime)
146 | }
147 | }
148 |
--------------------------------------------------------------------------------
/genome.go:
--------------------------------------------------------------------------------
1 | // genome.go implementation of the genome in evolution.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "encoding/json"
22 | "fmt"
23 | "math"
24 | "math/rand"
25 | "os"
26 | "time"
27 | )
28 |
29 | // NodeGene is an implementation of each node in the graph representation of a
30 | // genome. Each node consists of a node ID, its type, and the activation type.
31 | type NodeGene struct {
32 | ID int `json:"id"` // node ID
33 | Type string `json:"type"` // node type
34 | Activation *ActivationFunc `json:"activation"` // activation function
35 | }
36 |
37 | // NewNodeGene returns a new instance of NodeGene, given its ID, its type, and
38 | // the activation function of this node.
39 | func NewNodeGene(id int, ntype string, activation *ActivationFunc) *NodeGene {
40 | return &NodeGene{id, ntype, activation}
41 | }
42 |
43 | // Copy returns a deep copy of this node gene.
44 | func (n *NodeGene) Copy() *NodeGene {
45 | return &NodeGene{n.ID, n.Type, n.Activation}
46 | }
47 |
48 | // String returns a string representation of the node.
49 | func (n *NodeGene) String() string {
50 | return fmt.Sprintf("[%s(%d, %s)]", n.Type, n.ID, n.Activation.Name)
51 | }
52 |
53 | // ConnGene is an implementation of a connection between two nodes in the graph
54 | // representation of a genome. Each connection includes its input node, output
55 | // node, connection weight, and an indication of whether this connection is
56 | // disabled
57 | type ConnGene struct {
58 | From int `json:"from"` // input node
59 | To int `json:"to"` // output node
60 | Weight float64 `json:"weight"` // connection weight
61 | Disabled bool `json:"disabled"` // true if disabled
62 | }
63 |
64 | // NewConnGene returns a new instance of ConnGene, given the input and output
65 | // node genes. By default, the connection is enabled.
66 | func NewConnGene(from, to int, weight float64) *ConnGene {
67 | return &ConnGene{from, to, weight, false}
68 | }
69 |
70 | // Copy returns a deep copy of this connection gene.
71 | func (c *ConnGene) Copy() *ConnGene {
72 | return &ConnGene{
73 | From: c.From,
74 | To: c.To,
75 | Weight: c.Weight,
76 | Disabled: c.Disabled,
77 | }
78 | }
79 |
80 | // String returns the string representation of this connection.
81 | func (c *ConnGene) String() string {
82 | connectivity := fmt.Sprintf("{%.3f}", c.Weight)
83 | if c.Disabled {
84 | connectivity = " / "
85 | }
86 | return fmt.Sprintf("[%d]-%s->[%d]", c.From, connectivity, c.To)
87 | }
88 |
89 | // Genome encodes the weights and topology of the output network as a collection
90 | // of nodes and connection genes.
91 | type Genome struct {
92 | ID int `json:"id"` // genome ID
93 | SpeciesID int `json:"speciesID"` // genome's species ID
94 | NodeGenes []*NodeGene `json:"nodeGenes"` // nodes in the genome
95 | ConnGenes []*ConnGene `json:"connGenes"` // connections in the genome
96 | Fitness float64 `json:"fitness"` // fitness score
97 |
98 | evaluated bool // true if already evaluated
99 | }
100 |
101 | // NewFCGenome returns an instance of initial Genome with fully connected input
102 | // and output layers.
103 | func NewFCGenome(id, numInputs, numOutputs int, initFitness float64) *Genome {
104 | nodeGenes := make([]*NodeGene, 0, numInputs+numOutputs)
105 | connGenes := make([]*ConnGene, 0, numInputs*numOutputs)
106 |
107 | for i := 0; i < numInputs; i++ {
108 | inputNode := NewNodeGene(i, "input", ActivationSet["identity"])
109 | nodeGenes = append(nodeGenes, inputNode)
110 | }
111 | for i := numInputs; i < numInputs+numOutputs; i++ {
112 | outputNode := NewNodeGene(i, "output", ActivationSet["sigmoid"])
113 | for j := 0; j < numInputs; j++ {
114 | c := NewConnGene(j, i, rand.NormFloat64()*6.0)
115 | connGenes = append(connGenes, c)
116 | }
117 | nodeGenes = append(nodeGenes, outputNode)
118 | }
119 | return &Genome{
120 | ID: id,
121 | SpeciesID: -1,
122 | NodeGenes: nodeGenes,
123 | ConnGenes: connGenes,
124 | Fitness: initFitness,
125 | evaluated: false,
126 | }
127 | }
128 |
129 | // NewGenome returns an instance of initial Genome with no initial connections.
130 | func NewGenome(id, numInputs, numOutputs int, initFitness float64) *Genome {
131 | return &Genome{
132 | ID: id,
133 | SpeciesID: -1,
134 | NodeGenes: func() []*NodeGene {
135 | nodeGenes := make([]*NodeGene, 0, numInputs+numOutputs)
136 |
137 | for i := 0; i < numInputs; i++ {
138 | inputNode := NewNodeGene(i, "input", ActivationSet["identity"])
139 | nodeGenes = append(nodeGenes, inputNode)
140 | }
141 | for i := numInputs; i < numInputs+numOutputs; i++ {
142 | outputNode := NewNodeGene(i, "output", ActivationSet["sigmoid"])
143 | nodeGenes = append(nodeGenes, outputNode)
144 | }
145 | return nodeGenes
146 | }(),
147 | ConnGenes: make([]*ConnGene, 0),
148 | Fitness: initFitness,
149 | evaluated: false,
150 | }
151 | }
152 |
153 | // Copy returns a deep copy of this genome.
154 | func (g *Genome) Copy() *Genome {
155 | return &Genome{
156 | ID: g.ID,
157 | SpeciesID: g.SpeciesID,
158 | NodeGenes: func() []*NodeGene {
159 | copies := make([]*NodeGene, len(g.NodeGenes))
160 | for i := range copies {
161 | copies[i] = g.NodeGenes[i].Copy()
162 | }
163 | return copies
164 | }(),
165 | ConnGenes: func() []*ConnGene {
166 | copies := make([]*ConnGene, len(g.ConnGenes))
167 | for i := range copies {
168 | copies[i] = g.ConnGenes[i].Copy()
169 | }
170 | return copies
171 | }(),
172 | Fitness: g.Fitness,
173 | evaluated: g.evaluated,
174 | }
175 | }
176 |
177 | // String returns the string representation of the genome.
178 | func (g *Genome) String() string {
179 | str := fmt.Sprintf("Genome(%d, %.3f):\n", g.ID, g.Fitness)
180 | str += "Nodes (\n"
181 | for _, node := range g.NodeGenes {
182 | str += " " + node.String() + "\n"
183 | }
184 | str += ")\n"
185 | str += "Connections (\n"
186 | for _, conn := range g.ConnGenes {
187 | str += " " + conn.String() + "\n"
188 | }
189 | str += ")"
190 | return str
191 | }
192 |
193 | // Evaluate takes an evaluation function and evaluates its fitness. Only perform
194 | // the evaluation if it hasn't yet. If the lamarckian indicator is true, encode
195 | // the phenotype neural network back into the genome.
196 | func (g *Genome) Evaluate(evaluate EvaluationFunc) {
197 | if g.evaluated {
198 | return
199 | }
200 | nn := NewNeuralNetwork(g)
201 | g.Fitness = evaluate(nn)
202 | g.evaluated = true
203 | }
204 |
205 | // ExportJSON exports a JSON file that contains this genome's information. If
206 | // the argument format indicator is true, the exported JSON file will be
207 | // formatted with indentations.
208 | func (g *Genome) ExportJSON(format bool) error {
209 | // create a new json file
210 | filename := fmt.Sprintf("genome_%d_%d.json", g.ID, time.Now().UnixNano())
211 | f, err := os.Create(filename)
212 | if err != nil {
213 | return err
214 | }
215 |
216 | encoder := json.NewEncoder(f)
217 | if format {
218 | encoder.SetIndent("", "\t")
219 | }
220 | if err = encoder.Encode(g); err != nil {
221 | return err
222 | }
223 |
224 | return nil
225 | }
226 |
227 | // MutatePerturb mutates the genome by perturbation of its weights by the
228 | // argument rate.
229 | func (g *Genome) MutatePerturb(rate float64) {
230 | // perturb connection weights
231 | for _, conn := range g.ConnGenes {
232 | if rand.Float64() < rate {
233 | g.evaluated = false
234 | conn.Weight += rand.NormFloat64()
235 | }
236 | }
237 | }
238 |
239 | // MutateAddNode mutates the genome by adding a node with the argument
240 | // activation function.
241 | func (g *Genome) MutateAddNode(rate float64, activation *ActivationFunc) {
242 | // add node between two connected nodes, by randomly selecting a connection;
243 | // only applied if there are connections in the genome
244 | if rand.Float64() < rate && len(g.ConnGenes) != 0 {
245 | g.evaluated = false
246 |
247 | selected := g.ConnGenes[rand.Intn(len(g.ConnGenes))]
248 | newNode := NewNodeGene(len(g.NodeGenes), "hidden", ActivationSet["sigmoid"])
249 |
250 | g.NodeGenes = append(g.NodeGenes, newNode)
251 | g.ConnGenes = append(g.ConnGenes,
252 | NewConnGene(selected.From, newNode.ID, 1.0),
253 | NewConnGene(newNode.ID, selected.To, selected.Weight))
254 | selected.Disabled = true
255 | }
256 | }
257 |
258 | // MutateAddConn mutates the genome by adding a connection.
259 | func (g *Genome) MutateAddConn(rate float64) {
260 | // add connection between two disconnected nodes; only applied if the selected
261 | // nodes are not connected yet, and the resulting connection doesn't make the
262 | // phenotype network recurrent
263 | if rand.Float64() < rate {
264 | g.evaluated = false
265 |
266 | selectedNode0 := g.NodeGenes[rand.Intn(len(g.NodeGenes))].ID
267 | selectedNode1 := g.NodeGenes[rand.Intn(len(g.NodeGenes))].ID
268 |
269 | for _, conn := range g.ConnGenes {
270 | if conn.From == selectedNode0 && conn.To == selectedNode1 {
271 | return
272 | }
273 | }
274 |
275 | if g.NodeGenes[selectedNode1].Type == "input" ||
276 | g.NodeGenes[selectedNode0].Type == "output" {
277 | return
278 | }
279 |
280 | if !g.pathExists(selectedNode1, selectedNode0) {
281 | g.ConnGenes = append(g.ConnGenes, NewConnGene(selectedNode0,
282 | selectedNode1, rand.NormFloat64()*6.0))
283 | }
284 |
285 | }
286 | }
287 |
288 | // pathExists returns true if there is a path from the source to the
289 | // destination. Helper method of MutateAddConn.
290 | func (g *Genome) pathExists(src, dst int) bool {
291 | if src == dst {
292 | return true
293 | }
294 |
295 | for _, edge := range g.ConnGenes {
296 | if edge.From == src {
297 | if g.pathExists(edge.To, dst) {
298 | return true
299 | }
300 | }
301 | }
302 |
303 | return false
304 | }
305 |
306 | // Crossover returns a new child genome by performing crossover between the two
307 | // argument genomes.
308 | //
309 | // innovations is a temporary dictionary for the child genome's connection
310 | // genes; it essentially stores all connection genes that will be contained
311 | // in the child genome.
312 | //
313 | // Initially, all of one parent genome's connections are recorded to
314 | // innovations. Then, as the other parent genome's connections are added, it
315 | // checks if each connection already exists; if it does, swap with the other
316 | // parent's connection by 50% chance. Otherwise, append the new connection.
317 | func Crossover(id int, g0, g1 *Genome, initFitness float64) *Genome {
318 | innovations := make(map[[2]int]*ConnGene)
319 | for _, conn := range g0.ConnGenes {
320 | innovations[[2]int{conn.From, conn.To}] = conn
321 | }
322 | for _, conn := range g1.ConnGenes {
323 | innov := [2]int{conn.From, conn.To}
324 | if innovations[innov] != nil {
325 | if rand.Float64() < 0.5 {
326 | innovations[innov] = conn
327 | }
328 | } else {
329 | innovations[innov] = conn
330 | }
331 | }
332 |
333 | // copy node genes
334 | largerParent := g0
335 | if len(g0.NodeGenes) < len(g1.NodeGenes) {
336 | largerParent = g1
337 | }
338 | nodeGenes := make([]*NodeGene, len(largerParent.NodeGenes))
339 | for i := range largerParent.NodeGenes {
340 | nodeGenes[i] = largerParent.NodeGenes[i].Copy()
341 | }
342 |
343 | // copy connection genes
344 | connGenes := make([]*ConnGene, 0, len(innovations))
345 | for _, conn := range innovations {
346 | connGenes = append(connGenes, conn.Copy())
347 | }
348 |
349 | return &Genome{
350 | ID: id,
351 | NodeGenes: nodeGenes,
352 | ConnGenes: connGenes,
353 | Fitness: initFitness,
354 | }
355 | }
356 |
357 | // Compatibility computes the compatibility distance between two argument
358 | // genomes.
359 | //
360 | // Compatibility distance of two genomes is utilized for differentiating their
361 | // species during speciation. The distance is computed as follows:
362 | //
363 | // d = c0 * U + c1 * W
364 | //
365 | // c0, c1, are hyperparameter coefficients, and U, W are respectively number of
366 | // unmatching genes, and the average weight differences of matching genes. This
367 | // approach is a slightly modified version of Dr. Kenneth Stanley's original
368 | // approach in which unmatching genes are separated into excess and disjoint
369 | // genes.
370 | func Compatibility(g0, g1 *Genome, c0, c1 float64) float64 {
371 | innov0 := make(map[[2]int]*ConnGene) // innovations in g0
372 | innov1 := make(map[[2]int]*ConnGene) // innovations in g1
373 |
374 | for _, conn := range g0.ConnGenes {
375 | innov0[[2]int{conn.From, conn.To}] = conn
376 | }
377 |
378 | for _, conn := range g1.ConnGenes {
379 | innov1[[2]int{conn.From, conn.To}] = conn
380 | }
381 |
382 | matching := make(map[*ConnGene]*ConnGene) // pairs of matching genes
383 | unmatchingCount := 0 // unmatching gene counter
384 |
385 | // look for matching/unmatching genes from g1's innovations; if a connection
386 | // in g0 is not one of g1's innovations, increment unmatching counter.
387 | // Otherwise, add the connection to matching
388 | for _, conn := range g0.ConnGenes {
389 | innov := innov1[[2]int{conn.From, conn.To}]
390 | if innov == nil {
391 | unmatchingCount++
392 | } else {
393 | matching[innov] = conn
394 | }
395 | }
396 |
397 | // repeat for g0's innovations, to count unmatching connection genes for g1.
398 | for _, conn := range g1.ConnGenes {
399 | if innov0[[2]int{conn.From, conn.To}] == nil {
400 | unmatchingCount++
401 | }
402 | }
403 |
404 | // compute average weight differences of matching genes
405 | diffSum := 0.0
406 | matchingCount := len(matching)
407 | for conn0, conn1 := range matching {
408 | diffSum += math.Abs(conn0.Weight - conn1.Weight)
409 | }
410 | avgDiff := diffSum / float64(matchingCount)
411 | if matchingCount == 0 {
412 | avgDiff = 0.0
413 | }
414 | return c0*float64(unmatchingCount) + c1*avgDiff
415 | }
416 |
417 | // ComparisonFunc is a type of function that returns a boolean value that
418 | // indicates whether the first argument genome is better than the second one
419 | // in terms of its fitness.
420 | type ComparisonFunc func(g0, g1 *Genome) bool
421 |
422 | // NewComparisonFunc returns a new comparison function, given an indicator of
423 | // whether the fitness is better when minimized.
424 | func NewComparisonFunc(minimize bool) ComparisonFunc {
425 | if minimize {
426 | return func(g0, g1 *Genome) bool {
427 | return g0.Fitness < g1.Fitness
428 | }
429 | }
430 | return func(g0, g1 *Genome) bool {
431 | return g0.Fitness > g1.Fitness
432 | }
433 | }
434 |
--------------------------------------------------------------------------------
/genome_new.go:
--------------------------------------------------------------------------------
1 | package neat
2 |
3 | import (
4 | "math/rand"
5 | )
6 |
7 | type NodeType int
8 |
9 | const (
10 | Sensor NodeType = iota
11 | Output
12 | Hidden
13 | )
14 |
15 | type ActivationFunc int
16 |
17 | const (
18 | Linear ActivationFunc = iota
19 | Sigmoid
20 | Tanh
21 | ReLU
22 | Sine
23 | Gaussian
24 | )
25 |
26 | type NodeGene struct {
27 | nodeId int
28 | nodeType NodeType
29 | activation ActivationFunc
30 | }
31 |
32 | func NewNodeGene(nodeId int, nodeType NodeType, activation ActivationFunc) *NodeGene {
33 | return &NodeGene{
34 | nodeId: nodeId,
35 | nodeType: nodeType,
36 | activation: activation,
37 | }
38 | }
39 |
40 | func (n *NodeGene) Id() int {
41 | return n.nodeId
42 | }
43 |
44 | func (n *NodeGene) Type() NodeType {
45 | return n.nodeType
46 | }
47 |
48 | func (n *NodeGene) Activation() ActivationFunc {
49 | return n.activation
50 | }
51 |
52 | func (n *NodeGene) String() string {
53 | str := fmt.Sprintf("Node(%d, ", n.nodeId)
54 | // node type
55 | switch n.nodeType {
56 | case Sensor:
57 | str += "Sensor, "
58 | case Output:
59 | str += "Output, "
60 | case Hidden:
61 | str += "Hidden, "
62 | }
63 | // activation function
64 | switch n.activation {
65 | case Linear:
66 | str += "Linear"
67 | case Sigmoid:
68 | str += "Sigmoid"
69 | case Tanh:
70 | str += "Tanh"
71 | case ReLU:
72 | str += "ReLU"
73 | case Sine:
74 | str += "Sine"
75 | case Gaussian:
76 | str += "Gaussian"
77 | }
78 | str += ")"
79 | return str
80 | }
81 |
82 | type ConnectionGene struct {
83 | innovId int // innovation number
84 | src *NodeGene // source node
85 | dst *NodeGene // destination node
86 | weight float64 // connection weight
87 | expressed bool // connection expression
88 | }
89 |
90 | func NewConnectionGene(innovID int, src, dst *NodeGene) *ConnectionGene {
91 | return &ConnectionGene{
92 | innovID: innovID,
93 | src: src,
94 | dst: dst,
95 | weight: randWeight(),
96 | expressed: true,
97 | }
98 | }
99 |
100 | func randWeight() float64 {
101 | return rand.NormFloat64() * 3.0
102 | }
103 |
104 | func (c *ConnectionGene) Id() int {
105 | return c.innovId
106 | }
107 |
108 | func (c *ConnectionGene) Src() *NodeGene {
109 | return c.src
110 | }
111 |
112 | func (c *ConnectionGene) Dst() *NodeGene {
113 | return c.dst
114 | }
115 |
116 | func (c *ConnectionGene) Weight() float64 {
117 | return c.weight
118 | }
119 |
120 | func (c *ConnectionGene) Expressed() bool {
121 | return c.expressed
122 | }
123 |
124 | func (c *ConnectionGene) Enable() {
125 | c.expressed = true
126 | }
127 |
128 | func (c *ConnectionGene) Disable() {
129 | c.expressed = false
130 | }
131 |
132 | func (c *ConnectionGene) String() string {
133 | srcId := c.src.Id()
134 | dstId := c.dst.Id()
135 | if c.expressed {
136 | return fmt.Sprintf("[%d]--{%f}-->[%d]", srcId, c.weight, dstId)
137 | }
138 | return fmt.Sprintf("[%d]--/ /-->[%d]", srcId, dstId)
139 | }
140 |
141 | type Genome struct {
142 | id int
143 | nodeGenes []*NodeGene
144 | connectionGenes []*ConnectionGene
145 | }
146 |
147 | func NewGenome(id int) *Genome {
148 | return &Genome{
149 | id: id,
150 | nodeGenes: make([]*NodeGene),
151 | connectionGenes: make([]*ConnectionGene),
152 | }
153 | }
154 |
155 | func (g *Genome) String() string {
156 | numNodes := len(g.nodeGenes)
157 | numConnections := len(g.conncectionGenes)
158 | strs := make([]string, 0, numNodes+numConnections)
159 | for i := 0; i < numNodes; i++ {
160 | strs = append(strs, g.nodeGenes[i].String())
161 | }
162 | for i := 0; i < numConnections; i++ {
163 | strs = append(strs, g.connectionGenes[i].String())
164 | }
165 | return strings.Join(strs, "\n")
166 | }
167 |
168 | func (g *Genome) NodeGenes() []*NodeGene {
169 | return g.nodeGenes
170 | }
171 |
172 | func (g *Genome) ConnenctionGenes() []*ConnectionGene {
173 | return g.connectionGenes
174 | }
175 |
176 | // PushNode creates and appends a new node gene to this genome.
177 | func (g *Genome) Push(nodeType NodeType, activation ActivationFunc) *NodeGene {
178 | nodeId := len(g.nodeGenes) // its new index is its ID
179 | node := NewNodeGene(nodeId, nodeType, activation)
180 | g.nodeGene = append(g.nodeGene, node)
181 | return node
182 | }
183 |
184 | // Connect
185 | func (g *Genome) Connect(srcId, dstId int) error {
186 | if outOfBounds(srcId) || outOfBounds(dstId) {
187 | return errors.New("")
188 | }
189 | }
190 |
191 | // helper function that checks if the argument node ID is within the range.
192 | func (g *Genome) outOfBounds(nodeId int) bool {
193 | if 0 > nodeId || len(g.nodeGenes) <= nodeId {
194 | return false
195 | }
196 | return true
197 | }
198 |
--------------------------------------------------------------------------------
/genome_test.go:
--------------------------------------------------------------------------------
1 | package neat
2 |
3 | import (
4 | "fmt"
5 | "log"
6 | "math/rand"
7 | "testing"
8 | )
9 |
10 | func GenomeUnitTest() {
11 | fmt.Println("===== Genome Unit Test =====")
12 |
13 | fmt.Println("\x1b[32m=Testing creating a new genome...\x1b[0m")
14 | g0 := NewGenome(0, 3, 5, 0.0)
15 | fmt.Println(g0.String())
16 |
17 | fmt.Println("\x1b[32m=Testing mutation...\x1b[0m")
18 | g0.MutatePerturb(1.0)
19 | g0.MutateAddNode(1.0, ActivationSet["sigmoid"])
20 | g0.MutateAddConn(1.0)
21 | fmt.Println(g0.String())
22 |
23 | fmt.Println("\x1b[32m=Testing crossover...\x1b[0m")
24 |
25 | g1 := NewGenome(1, 3, 1, 0.0)
26 | g1.MutatePerturb(1.0)
27 | g1.MutateAddNode(1.0, ActivationSet["sigmoid"])
28 | g1.MutateAddConn(1.0)
29 | g1.MutatePerturb(1.0)
30 | g1.MutateAddNode(1.0, ActivationSet["sigmoid"])
31 | g1.MutateAddConn(1.0)
32 | fmt.Println("Parent 1:")
33 | fmt.Println(g1.String())
34 |
35 | g2 := NewGenome(2, 3, 1, 0.0)
36 | g2.MutatePerturb(1.0)
37 | g2.MutateAddNode(1.0, ActivationSet["sigmoid"])
38 | g2.MutateAddConn(1.0)
39 | g2.MutatePerturb(1.0)
40 | g2.MutateAddNode(1.0, ActivationSet["sigmoid"])
41 | g2.MutateAddConn(1.0)
42 | fmt.Println("Parent 2:")
43 | fmt.Println(g2.String())
44 |
45 | g3 := Crossover(3, g1, g2, 0.0)
46 | fmt.Println("Child:")
47 | fmt.Println(g3.String())
48 |
49 | fmt.Println("\x1b[32m=Testing compatibility distance...\x1b[0m")
50 | g4 := NewGenome(4, 3, 1, 0.0)
51 | g5 := NewGenome(5, 3, 1, 0.0)
52 |
53 | // before mutation (they should be fairly compatible)
54 | fmt.Println(g4.String())
55 | fmt.Println(g5.String())
56 | fmt.Printf("Compatibility distance: %f\n", Compatibility(g4, g5, 1.0, 1.0))
57 |
58 | // after 1 mutation (should be less compatible)
59 | g4.MutatePerturb(1.0)
60 | g4.MutateAddNode(1.0, ActivationSet["sigmoid"])
61 | g4.MutateAddConn(1.0)
62 | g4.MutatePerturb(1.0)
63 | g4.MutateAddNode(1.0, ActivationSet["sigmoid"])
64 | g4.MutateAddConn(1.0)
65 | g5.MutatePerturb(1.0)
66 | g5.MutateAddNode(1.0, ActivationSet["sigmoid"])
67 | g5.MutateAddConn(1.0)
68 | g5.MutatePerturb(1.0)
69 | g5.MutateAddNode(1.0, ActivationSet["sigmoid"])
70 | g5.MutateAddConn(1.0)
71 |
72 | fmt.Println(g4.String())
73 | fmt.Println(g5.String())
74 | fmt.Printf("Compatibility distance: %f\n", Compatibility(g4, g5, 1.0, 1.0))
75 |
76 | // after 2 mutation (should be less compatible)
77 | g4.MutatePerturb(1.0)
78 | g4.MutateAddNode(1.0, ActivationSet["sigmoid"])
79 | g4.MutateAddConn(1.0)
80 | g4.MutatePerturb(1.0)
81 | g4.MutateAddNode(1.0, ActivationSet["sigmoid"])
82 | g4.MutateAddConn(1.0)
83 | g5.MutatePerturb(1.0)
84 | g5.MutateAddNode(1.0, ActivationSet["sigmoid"])
85 | g5.MutateAddConn(1.0)
86 | g5.MutatePerturb(1.0)
87 | g5.MutateAddNode(1.0, ActivationSet["sigmoid"])
88 | g5.MutateAddConn(1.0)
89 |
90 | fmt.Println(g4.String())
91 | fmt.Println(g5.String())
92 | fmt.Printf("Compatibility distance: %f\n", Compatibility(g4, g5, 1.0, 1.0))
93 |
94 | // after 3 mutation (should be less compatible)
95 | g4.MutatePerturb(1.0)
96 | g4.MutateAddNode(1.0, ActivationSet["sigmoid"])
97 | g4.MutateAddConn(1.0)
98 | g4.MutatePerturb(1.0)
99 | g4.MutateAddNode(1.0, ActivationSet["sigmoid"])
100 | g4.MutateAddConn(1.0)
101 | g5.MutatePerturb(1.0)
102 | g5.MutateAddNode(1.0, ActivationSet["sigmoid"])
103 | g5.MutateAddConn(1.0)
104 | g5.MutatePerturb(1.0)
105 | g5.MutateAddNode(1.0, ActivationSet["sigmoid"])
106 | g5.MutateAddConn(1.0)
107 |
108 | fmt.Println(g4.String())
109 | fmt.Println(g5.String())
110 | fmt.Printf("Compatibility distance: %f\n", Compatibility(g4, g5, 1.0, 1.0))
111 |
112 | fmt.Println("\x1b[32m=Testing JSON export...\x1b[0m")
113 | if err := g1.ExportJSON(true); err != nil {
114 | log.Fatal(err)
115 | }
116 | }
117 |
118 | func TestGenome(t *testing.T) {
119 | rand.Seed(0)
120 | GenomeUnitTest()
121 | }
122 |
--------------------------------------------------------------------------------
/neat.go:
--------------------------------------------------------------------------------
1 | // neat.go implementation of NeuroEvolution of Augmenting Topologies (NEAT).
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "fmt"
22 | "math"
23 | "math/rand"
24 | "sort"
25 | )
26 |
27 | // NEAT is the implementation of NeuroEvolution of Augmenting Topology (NEAT).
28 | type NEAT struct {
29 | Config *Config // configuration
30 | Population []*Genome // population of genome
31 | Species []*Species // species of subpopulation of genomes
32 | Activations []*ActivationFunc // set of activation functions
33 | Evaluation EvaluationFunc // evaluation function
34 | Comparison ComparisonFunc // comparison function
35 | Best *Genome // best genome
36 | Statistics *Statistics // statistics
37 |
38 | nextGenomeID int // genome ID that is assigned to a newly created genome
39 | nextSpeciesID int // species ID that is assigned to a newly created species
40 | }
41 |
42 | // New creates a new instance of NEAT with provided argument configuration and
43 | // an evaluation function.
44 | func New(config *Config, evaluation EvaluationFunc) *NEAT {
45 | nextGenomeID := 0
46 | nextSpeciesID := 0
47 |
48 | // in order to prevent containing multiple of the same activation function
49 | // in the set of activation functions, they will temporarily be added to a
50 | // map first, which contains Sigmoid function as a default, then be
51 | // transferred to a slice of ActivationFunc.
52 | temp := map[string]*ActivationFunc{
53 | "sigmoid": Sigmoid(),
54 | }
55 |
56 | // if more additional activation functions are needed,
57 | for _, name := range config.CPPNActivations {
58 | temp[name] = ActivationSet[name]
59 | }
60 |
61 | activations := make([]*ActivationFunc, 0, len(temp))
62 | for _, afunc := range temp {
63 | activations = append(activations, afunc)
64 | }
65 |
66 | population := make([]*Genome, config.PopulationSize)
67 | if config.FullyConnected {
68 | for i := 0; i < config.PopulationSize; i++ {
69 | population[i] = NewFCGenome(nextGenomeID, config.NumInputs,
70 | config.NumOutputs, config.InitFitness)
71 | nextGenomeID++
72 | }
73 | } else {
74 | for i := 0; i < config.PopulationSize; i++ {
75 | population[i] = NewGenome(nextGenomeID, config.NumInputs,
76 | config.NumOutputs, config.InitFitness)
77 | nextGenomeID++
78 | }
79 | }
80 |
81 | // initialize the first species with a randomly selected genome
82 | s := NewSpecies(nextSpeciesID, population[rand.Intn(len(population))])
83 | species := []*Species{s}
84 | nextSpeciesID++
85 |
86 | return &NEAT{
87 | Config: config,
88 | Population: population,
89 | Species: species,
90 | Activations: activations,
91 | Evaluation: evaluation,
92 | Comparison: NewComparisonFunc(config.MinimizeFitness),
93 | Best: population[rand.Intn(config.PopulationSize)].Copy(),
94 | Statistics: NewStatistics(config.NumGenerations),
95 | nextGenomeID: nextGenomeID,
96 | nextSpeciesID: nextSpeciesID,
97 | }
98 | }
99 |
100 | // Summarize summarizes current state of evolution process.
101 | func (n *NEAT) Summarize(gen int) {
102 | // summary template
103 | tmpl := "Gen. %4d | Num. Species: %4d | Best Fitness: %.4f | " +
104 | "Avg. Fitness: %.4f"
105 |
106 | // compose each line of summary and the spacing of separating line
107 | str := fmt.Sprintf(tmpl, gen, len(n.Species),
108 | n.Best.Fitness, n.Statistics.AvgFitness[gen])
109 | spacing := int(math.Max(float64(len(str)), 80.0))
110 |
111 | for i := 0; i < spacing; i++ {
112 | fmt.Printf("-")
113 | }
114 | fmt.Printf("\n%s\n", str)
115 | for i := 0; i < spacing; i++ {
116 | fmt.Printf("-")
117 | }
118 | fmt.Println()
119 | }
120 |
121 | // Evaluate evaluates fitness of every genome in the population. After the
122 | // evaluation, their fitness scores are recored in each genome.
123 | func (n *NEAT) Evaluate() {
124 | for _, genome := range n.Population {
125 | genome.Evaluate(n.Evaluation)
126 | }
127 | }
128 |
129 | // Speciate performs speciation of each genome. The speciation mechanism is as
130 | // follows (from http://nn.cs.utexas.edu/downloads/papers/stanley.phd04.pdf):
131 | //
132 | // The Genome Loop:
133 | // Take next genome g from P
134 | // The Species Loop:
135 | // If all species in S have been checked:
136 | // create new species snew and place g in it
137 | // Else:
138 | // get next species s from S
139 | // If g is compatible with s:
140 | // add g to s
141 | // If g has not been placed:
142 | // Species Loop
143 | // If not all genomes in G have been placed:
144 | // Genome Loop
145 | // Else STOP
146 | //
147 | func (n *NEAT) Speciate() {
148 | for _, genome := range n.Population {
149 | registered := false
150 | for i := 0; i < len(n.Species) && !registered; i++ {
151 | dist := Compatibility(n.Species[i].Representative, genome,
152 | n.Config.CoeffUnmatching, n.Config.CoeffMatching)
153 |
154 | if dist <= n.Config.DistanceThreshold {
155 | n.Species[i].Register(genome, n.Config.MinimizeFitness)
156 | registered = true
157 | }
158 | }
159 |
160 | if !registered {
161 | n.Species = append(n.Species, NewSpecies(n.nextSpeciesID, genome))
162 | n.nextSpeciesID++
163 | }
164 | }
165 | }
166 |
167 | // Reproduce performs reproduction of genomes in each species. Reproduction is
168 | // performed under the assumption of speciation being already executed. The
169 | // number of eliminated genomes in each species is determined by rate of
170 | // elimination specified in n.Config; after some number of genomes are
171 | // eliminated, the empty space is filled with resulting genomes of crossover
172 | // among surviving genomes. If the number of eliminated genomes is 0 or less
173 | // then 2 genomes survive, every member survives and mutates.
174 | func (n *NEAT) Reproduce() {
175 | nextGeneration := make([]*Genome, 0, n.Config.PopulationSize)
176 | for _, s := range n.Species {
177 | // genomes in this species can inherit to the next generation, if two or
178 | // more genomes survive in this species, and there is room for more
179 | // children, i.e., at least one genome must be eliminated.
180 | numSurvived := int(math.Ceil(float64(len(s.Members)) *
181 | n.Config.SurvivalRate))
182 | numEliminated := len(s.Members) - numSurvived
183 |
184 | // reproduction of this species is only executed, if there is enough room.
185 | if numSurvived > 2 && numEliminated > 0 {
186 | // adjust the fitness of each member genome of this species.
187 | //s.ExplicitFitnessSharing()
188 |
189 | sort.Slice(s.Members, func(i, j int) bool {
190 | return n.Comparison(s.Members[i], s.Members[j])
191 | })
192 | s.Members = s.Members[:numSurvived]
193 |
194 | // fill the spaces that are made by eliminated genomes, by creating
195 | // children.
196 | for i := 0; i < numEliminated; i++ {
197 | perm := rand.Perm(numSurvived)
198 | p0 := s.Members[perm[0]] // parent 0
199 | p1 := s.Members[perm[1]] // parent 1
200 |
201 | // create a child from two chosen parents as a result of crossover;
202 | // mutate the child given the rate of mutation of children.
203 | child := Crossover(n.nextGenomeID, p0, p1, n.Config.InitFitness)
204 | if rand.Float64() < n.Config.RateMutateChild {
205 | child.MutatePerturb(n.Config.RatePerturb)
206 | child.MutateAddNode(n.Config.RateAddNode, n.randActivationFunc())
207 | child.MutateAddConn(n.Config.RateAddConn)
208 | } else {
209 | // if the two parents are identical, definitely mutate the child.
210 | if p0.ID == p1.ID {
211 | child.MutatePerturb(n.Config.RatePerturb)
212 | child.MutateAddNode(n.Config.RateAddNode, n.randActivationFunc())
213 | child.MutateAddConn(n.Config.RateAddConn)
214 | }
215 | }
216 | n.nextGenomeID++
217 |
218 | nextGeneration = append(nextGeneration, child)
219 | }
220 |
221 | // mutate all the genomes that survived.
222 | for _, genome := range s.Members {
223 | genome.MutatePerturb(n.Config.RatePerturb)
224 | genome.MutateAddNode(n.Config.RateAddNode, n.randActivationFunc())
225 | genome.MutateAddConn(n.Config.RateAddConn)
226 | nextGeneration = append(nextGeneration, genome)
227 | }
228 | } else {
229 | // otherwise, they all survive, and mutate.
230 | for _, genome := range s.Members {
231 | genome.MutatePerturb(n.Config.RatePerturb)
232 | genome.MutateAddNode(n.Config.RateAddNode, n.randActivationFunc())
233 | genome.MutateAddConn(n.Config.RateAddConn)
234 | nextGeneration = append(nextGeneration, genome)
235 | }
236 | }
237 |
238 | s.Flush()
239 | }
240 |
241 | // update the population with the new generation
242 | n.Population = nextGeneration
243 | }
244 |
245 | // randActivationFunc is a helper function that returns a random activation
246 | // function.
247 | func (n *NEAT) randActivationFunc() *ActivationFunc {
248 | return n.Activations[rand.Intn(len(n.Activations))]
249 | }
250 |
251 | // Run executes evolution and return the best genome.
252 | func (n *NEAT) Run() *Genome {
253 | if n.Config.Verbose {
254 | n.Config.Summarize()
255 | }
256 |
257 | // for each generation
258 | for i := 0; i < n.Config.NumGenerations; i++ {
259 | n.Evaluate()
260 |
261 | // update the best genome
262 | for _, genome := range n.Population {
263 | if n.Comparison(genome, n.Best) {
264 | n.Best = genome.Copy()
265 | }
266 | }
267 |
268 | n.Statistics.Update(i, n)
269 | if n.Config.Verbose {
270 | n.Summarize(i)
271 | }
272 |
273 | // speciate genomes and reproduce children genomes
274 | n.Speciate()
275 | n.Reproduce()
276 |
277 | // eliminate stagnant species
278 | if len(n.Species) > 1 {
279 | var survived []*Species
280 | for j := range n.Species {
281 | if n.Species[j].Stagnation <= n.Config.StagnationLimit {
282 | n.Species[j].Stagnation++
283 | survived = append(survived, n.Species[j])
284 | }
285 | }
286 | n.Species = survived
287 | }
288 | }
289 |
290 | return n.Best
291 | }
292 |
--------------------------------------------------------------------------------
/neat_test.go:
--------------------------------------------------------------------------------
1 | package neat
2 |
3 | import (
4 | "fmt"
5 | "math/rand"
6 | "testing"
7 | )
8 |
9 | func NEATUnitTest() {
10 | fmt.Println("===== NEAT Unit Test =====")
11 |
12 | fmt.Println("\x1b[32m=Testing config JSON file import...\x1b[0m")
13 | configXOR, err := NewConfigJSON("config_xor.json")
14 | if err != nil {
15 | fmt.Println("\x1b[31mFAIL\x1b[0m")
16 | }
17 | configXOR.Summarize()
18 |
19 | fmt.Println("\x1b[32m=Testing NEAT with XOR test...\x1b[0m")
20 | n0 := New(configXOR, XORTest())
21 | best := n0.Run()
22 |
23 | nn := NewNeuralNetwork(best)
24 | output, _ := nn.FeedForward([]float64{1.0, 1.0, 1.0})
25 | fmt.Println(output)
26 | output, _ = nn.FeedForward([]float64{1.0, 0.0, 1.0})
27 | fmt.Println(output)
28 | output, _ = nn.FeedForward([]float64{1.0, 1.0, 0.0})
29 | fmt.Println(output)
30 | output, _ = nn.FeedForward([]float64{1.0, 0.0, 0.0})
31 | fmt.Println(output)
32 |
33 | /*
34 | fmt.Println("\x1b[32m=Testing NEAT with pole balancing test...\x1b[0m")
35 | configPole, err := NewConfigJSON("config_pole_balancing.json")
36 | if err != nil {
37 | fmt.Println("\x1b[31mFAIL\x1b[0m")
38 | }
39 | configPole.Summarize()
40 | n1 := New(configPole, PoleBalancingTest(false, 120000))
41 | n1.Run()
42 |
43 | fmt.Println("\x1b[32m=Testing NEAT with pole balancing (random)...\x1b[0m")
44 | configPole.Summarize()
45 | n2 := New(configPole, PoleBalancingTest(true, 120000))
46 | n2.Run()
47 |
48 | */
49 | }
50 |
51 | func TestNEAT(t *testing.T) {
52 | rand.Seed(0)
53 | NEATUnitTest()
54 | }
55 |
--------------------------------------------------------------------------------
/network.go:
--------------------------------------------------------------------------------
1 | package neat
2 |
3 | type Network struct {
4 | signals []float64
5 | }
6 |
7 | func NewNetwork(g *Genome) {
8 | return &Network{
9 | signals: make([]float64),
10 | }
11 | }
12 |
--------------------------------------------------------------------------------
/neural_network.go:
--------------------------------------------------------------------------------
1 | // neural_network.go implementation of the neural network.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "fmt"
22 | "sort"
23 | )
24 |
25 | // Neuron is an implementation of a single neuron of a neural network.
26 | type Neuron struct {
27 | ID int // neuron ID
28 | Type string // neuron type
29 | Signal float64 // signal held by this neuron
30 | Synapses map[*Neuron]float64 // synapse from input neurons
31 | Activation *ActivationFunc // activation function
32 |
33 | activated bool // true if it has been activated
34 | }
35 |
36 | // NewNeuron returns a new instance of neuron, given a node gene.
37 | func NewNeuron(nodeGene *NodeGene) *Neuron {
38 | return &Neuron{
39 | ID: nodeGene.ID,
40 | Type: nodeGene.Type,
41 | Signal: 0.0,
42 | Synapses: make(map[*Neuron]float64),
43 | Activation: nodeGene.Activation,
44 | activated: false,
45 | }
46 | }
47 |
48 | // String returns the string representation of Neuron.
49 | func (n *Neuron) String() string {
50 | if len(n.Synapses) == 0 {
51 | return fmt.Sprintf("[%s(%d, %s)]", n.Type, n.ID, n.Activation.Name)
52 | }
53 | str := fmt.Sprintf("[%s(%d, %s)] (\n", n.Type, n.ID, n.Activation.Name)
54 | for neuron, weight := range n.Synapses {
55 | str += fmt.Sprintf(" <--{%.3f}--[%s(%d, %s)]\n",
56 | weight, neuron.Type, neuron.ID, neuron.Activation.Name)
57 | }
58 | return str + ")"
59 | }
60 |
61 | // Activate retrieves signal from neurons that are connected to this neuron and
62 | // return its signal.
63 | func (n *Neuron) Activate() float64 {
64 | // if the neuron's already activated, or it isn't connected from any neurons,
65 | // return its current signal.
66 | if n.activated || len(n.Synapses) == 0 {
67 | return n.Signal
68 | }
69 | n.activated = true
70 |
71 | inputSum := 0.0
72 | for neuron, weight := range n.Synapses {
73 | inputSum += neuron.Activate() * weight
74 | }
75 | n.Signal = n.Activation.Fn(inputSum)
76 | return n.Signal
77 | }
78 |
79 | // NeuralNetwork is an implementation of the phenotype neural network that is
80 | // decoded from a genome.
81 | type NeuralNetwork struct {
82 | Neurons []*Neuron // all neurons in the network
83 |
84 | inputNeurons []*Neuron // input neurons
85 | outputNeurons []*Neuron // output neurons
86 | }
87 |
88 | // NewNeuralNetwork returns a new instance of NeuralNetwork given a genome to
89 | // decode from.
90 | func NewNeuralNetwork(g *Genome) *NeuralNetwork {
91 | sort.Slice(g.NodeGenes, func(i, j int) bool {
92 | return g.NodeGenes[i].ID < g.NodeGenes[j].ID
93 | })
94 |
95 | inputNeurons := make([]*Neuron, 0, len(g.NodeGenes))
96 | outputNeurons := make([]*Neuron, 0, len(g.NodeGenes))
97 | neurons := make([]*Neuron, 0, len(g.NodeGenes))
98 |
99 | for _, nodeGene := range g.NodeGenes {
100 | neuron := NewNeuron(nodeGene)
101 |
102 | // record input and output neurons separately
103 | if nodeGene.Type == "input" {
104 | inputNeurons = append(inputNeurons, neuron)
105 | } else if nodeGene.Type == "output" {
106 | outputNeurons = append(outputNeurons, neuron)
107 | }
108 |
109 | neurons = append(neurons, neuron)
110 | }
111 |
112 | for _, connGene := range g.ConnGenes {
113 | if !connGene.Disabled {
114 | if in := sort.Search(len(neurons), func(i int) bool {
115 | return neurons[i].ID >= connGene.From
116 | }); in < len(neurons) && neurons[in].ID == connGene.From {
117 | if out := sort.Search(len(neurons), func(i int) bool {
118 | return neurons[i].ID >= connGene.To
119 | }); out < len(neurons) && neurons[out].ID == connGene.To {
120 | neurons[out].Synapses[neurons[in]] = connGene.Weight
121 | }
122 | }
123 | }
124 | }
125 | return &NeuralNetwork{neurons, inputNeurons, outputNeurons}
126 | }
127 |
128 | // String returns the string representation of NeuralNetwork.
129 | func (n *NeuralNetwork) String() string {
130 | str := fmt.Sprintf("NeuralNetwork(%d, %d):\n",
131 | len(n.inputNeurons), len(n.outputNeurons))
132 | for _, neuron := range n.Neurons {
133 | str += neuron.String() + "\n"
134 | }
135 | return str[:len(str)-1]
136 | }
137 |
138 | // FeedForward propagates inputs signals from input neurons to output neurons,
139 | // and return output signals.
140 | func (n *NeuralNetwork) FeedForward(inputs []float64) ([]float64, error) {
141 | if len(inputs) != len(n.inputNeurons) {
142 | errStr := "Invalid number of inputs: %d != %d"
143 | return nil, fmt.Errorf(errStr, len(n.inputNeurons), len(inputs))
144 | }
145 |
146 | // register sensor inputs
147 | for i, neuron := range n.inputNeurons {
148 | neuron.Signal = inputs[i]
149 | }
150 |
151 | // recursively propagate from input neurons to output neurons
152 | outputs := make([]float64, 0, len(n.outputNeurons))
153 | for _, neuron := range n.outputNeurons {
154 | outputs = append(outputs, neuron.Activate())
155 | }
156 |
157 | // reset all neurons
158 | for _, neuron := range n.Neurons {
159 | neuron.Signal = 0.0
160 | neuron.activated = false
161 | }
162 |
163 | return outputs, nil
164 | }
165 |
--------------------------------------------------------------------------------
/neural_network_test.go:
--------------------------------------------------------------------------------
1 | package neat
2 |
3 | import (
4 | "fmt"
5 | "math/rand"
6 | "testing"
7 | )
8 |
9 | func NeuralNetworkUnitTest() {
10 | fmt.Println("===== Neural Network Unit Test =====")
11 |
12 | g0 := NewGenome(0, 3, 1, 0.0)
13 |
14 | for i := 0; i < 3; i++ {
15 | g0.MutatePerturb(1.0)
16 | g0.MutateAddNode(1.0, ActivationSet["sigmoid"])
17 | g0.MutateAddConn(1.0)
18 | }
19 |
20 | n0 := NewNeuralNetwork(g0)
21 | fmt.Println(n0.String())
22 |
23 | fmt.Println("\x1b[32m=Testing feedforward...\x1b[0m")
24 |
25 | inputs := []float64{rand.NormFloat64(), rand.NormFloat64(), 1.0}
26 | fmt.Println("inputs:", inputs)
27 |
28 | outputs, err := n0.FeedForward(inputs)
29 | if err != nil {
30 | fmt.Println(err)
31 | }
32 | fmt.Println("outputs:", outputs)
33 | }
34 |
35 | func TestNeuralNetwork(t *testing.T) {
36 | rand.Seed(0)
37 | NeuralNetworkUnitTest()
38 | }
39 |
--------------------------------------------------------------------------------
/species.go:
--------------------------------------------------------------------------------
1 | // species.go implementation of the species of genomes.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | // Species is an implementation of species, or niche for speciation of genomes
21 | // that are differentiated by their toplogical differences, measured with
22 | // compatibility distance. Each species is created with a new genome that is not
23 | // compatible with other genomes in the population, i.e., when a genome is not
24 | // compatible with any other species.
25 | type Species struct {
26 | ID int // species ID
27 | Stagnation int // number of generations of stagnation
28 | Representative *Genome // genome that represents this species (permanent)
29 | BestFitness float64 // best fitness score in this species
30 | Members []*Genome // member genomes
31 | }
32 |
33 | // NewSpecies creates and returns a new instance of Species, given an initial
34 | // genome that will also become the new species' representative.
35 | func NewSpecies(id int, g *Genome) *Species {
36 | g.SpeciesID = id
37 | return &Species{
38 | ID: id,
39 | Stagnation: 0,
40 | Representative: g.Copy(),
41 | BestFitness: g.Fitness,
42 | Members: []*Genome{g},
43 | }
44 | }
45 |
46 | // Register adds an argument genome as a new member of this species; in
47 | // addition, if the new member genome outperforms this species' best genome, it
48 | // replaces the best genome in this species.
49 | func (s *Species) Register(g *Genome, minimizeFitness bool) {
50 | s.Members = append(s.Members, g)
51 | g.SpeciesID = s.ID
52 | if minimizeFitness {
53 | if g.Fitness < s.BestFitness {
54 | s.BestFitness = g.Fitness
55 | s.Stagnation = 0
56 | }
57 | } else {
58 | if g.Fitness > s.BestFitness {
59 | s.BestFitness = g.Fitness
60 | s.Stagnation = 0
61 | }
62 | }
63 | }
64 |
65 | // ExplicitFitnessSharing adjust this species' members fitness via explicit
66 | // fitness sharing.
67 | func (s *Species) ExplicitFitnessSharing() {
68 | for _, genome := range s.Members {
69 | // do not let its fitness be negative
70 | if genome.Fitness < 0.0 {
71 | genome.Fitness = 0.0001
72 | }
73 | genome.Fitness /= float64(len(s.Members))
74 | }
75 | }
76 |
77 | // Flush empties the species membership, except for its representative.
78 | func (s *Species) Flush() {
79 | s.Members = []*Genome{}
80 | }
81 |
--------------------------------------------------------------------------------
/statistics.go:
--------------------------------------------------------------------------------
1 | // statistics.go implementation of statistical information of the evolution.
2 | //
3 | // Copyright (C) 2017 Jin Yeom
4 | //
5 | // This program is free software: you can redistribute it and/or modify
6 | // it under the terms of the GNU General Public License as published by
7 | // the Free Software Foundation, either version 3 of the License, or
8 | // (at your option) any later version.
9 | //
10 | // This program is distributed in the hope that it will be useful,
11 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | // GNU General Public License for more details.
14 | //
15 | // You should have received a copy of the GNU General Public License
16 | // along with this program. If not, see .
17 |
18 | package neat
19 |
20 | import (
21 | "math"
22 | )
23 |
24 | // Statistics is a data structure that records statistical information of each
25 | // generation during the evolutionary process.
26 | type Statistics struct {
27 | NumSpecies []int // number of species in each generation
28 | MinFitness []float64 // minimum fitness in each generation
29 | MaxFitness []float64 // maximum fitness in each generation
30 | AvgFitness []float64 // average fitness in each generation
31 | }
32 |
33 | // NewStatistics returns a new instance of Statistics.
34 | func NewStatistics(numGenerations int) *Statistics {
35 | return &Statistics{
36 | NumSpecies: make([]int, numGenerations),
37 | MinFitness: make([]float64, numGenerations),
38 | MaxFitness: make([]float64, numGenerations),
39 | AvgFitness: make([]float64, numGenerations),
40 | }
41 | }
42 |
43 | // Update the statistics of current generation
44 | func (s *Statistics) Update(currGen int, n *NEAT) {
45 | s.NumSpecies[currGen] = len(n.Species)
46 |
47 | // mininum and maximum
48 | s.MinFitness[currGen] = n.Population[0].Fitness
49 | s.MaxFitness[currGen] = n.Population[0].Fitness
50 | for _, genome := range n.Population {
51 | s.MinFitness[currGen] = math.Min(genome.Fitness, s.MinFitness[currGen])
52 | s.MaxFitness[currGen] = math.Max(genome.Fitness, s.MinFitness[currGen])
53 | }
54 |
55 | // average fitness
56 | s.AvgFitness[currGen] = func() float64 {
57 | avg := 0.0
58 | for _, genome := range n.Population {
59 | avg += genome.Fitness
60 | }
61 | return avg / float64(n.Config.PopulationSize)
62 | }()
63 | }
64 |
--------------------------------------------------------------------------------