└── README.md /README.md: -------------------------------------------------------------------------------- 1 | # Books for learning R 2 | A collection of links to online books to learn R. Generally the ones that are written with the `bookdown` package. 3 | 4 | **[Big Book of R](https://www.bigbookofr.com/)** 5 | 6 | **Newbies start here** 7 | * [R Programming for Data Science](https://bookdown.org/rdpeng/rprogdatascience/) 8 | * [R for Data Science](http://r4ds.had.co.nz/) 9 | * [Practical R for Mass Communication and Journalism](http://www.machlis.com/R4Journalists/) 10 | * [Data Science with R: A Resource Compendium](https://bookdown.org/martin_monkman/DataScienceResources_book/) 11 | * [Introduction to Data Science: Data Analysis and Prediction Algorithms with R](https://rafalab.github.io/dsbook/) 12 | * [Statistical Inference via Data Science - A ModernDive into R and the tidyverse](https://moderndive.com/index.html) 13 | * [Hands-On Programming with R](https://rstudio-education.github.io/hopr/) 14 | 15 | **Good practice / Reproducibility** 16 | * [The Turing Way: a how to guide for reproducible data science](https://the-turing-way.netlify.com/) 17 | * [What They Forgot to Teach You About R](https://whattheyforgot.org/) 18 | * [Reproducible Analytical Pipelines Companion](https://ukgovdatascience.github.io/rap_companion/) 19 | * [R Markdown: The Definitive Guide](https://bookdown.org/yihui/rmarkdown/) 20 | * [R Markdown Cookbook](https://bookdown.org/yihui/rmarkdown-cookbook/) 21 | * [Happy Git and GitHub for the useR](http://happygitwithr.com/) 22 | * [Efficient R Programming](https://bookdown.org/csgillespie/efficientR/) 23 | * [The tidyverse style guide](http://style.tidyverse.org/) 24 | * [R Packages](https://r-pkgs.org/) 25 | * [The drake R Package User Manual](https://ropenscilabs.github.io/drake-manual/) 26 | * [The targets R Package User Manual](https://wlandau.github.io/targets-manual/) 27 | * [Licensing R](https://thinkr-open.github.io/licensing-r/) 28 | * [bookdown: Authoring Books and Technical Documents with R Markdown](https://bookdown.org/yihui/bookdown/) 29 | * [GitHub Actions with R](https://ropenscilabs.github.io/actions_sandbox/) 30 | 31 | **Visualisation** 32 | * [Fundamentals of Data Visualization](https://serialmentor.com/dataviz/) 33 | * [ggplot2: Elegant Graphics for Data Analysis](https://ggplot2-book.org/) 34 | * [R Graphics Cookbook](https://r-graphics.org/) 35 | * [Interactive web-based data visualization with R, plotly, and shiny](https://plotly-r.com/) 36 | * [Mastering Shiny](https://mastering-shiny.org/) 37 | * [Engineering Production-Grade Shiny Apps](https://engineering-shiny.org/) 38 | 39 | **Geospatial** 40 | * [Geocomputation with R](https://geocompr.robinlovelace.net/) 41 | * [Spatial Data Science](https://keen-swartz-3146c4.netlify.com/) 42 | 43 | **Statistics / Machine Learning** 44 | * [An Introduction to Statistical and Data Sciences via R](https://moderndive.com/) 45 | * [Learning Statistics with R](https://learningstatisticswithr.com/book/) 46 | * [Feature Engineering and Selection: A Practical Approach for Predictive Models](http://www.feat.engineering/) 47 | * [Hands-on Machine Learning with R](https://bradleyboehmke.github.io/HOML/) 48 | * [Interpretable Machine Learning - A Guide for Making Black Box Models Explainable](https://christophm.github.io/interpretable-ml-book/) 49 | * [The caret Package](http://topepo.github.io/caret/) 50 | * [Tidy Modeling with R](https://www.tmwr.org/) 51 | 52 | **Other skills** 53 | * [Spreadsheet Munging Strategies](https://nacnudus.github.io/spreadsheet-munging-strategies/) 54 | * [Handling Strings with R](https://www.gastonsanchez.com/r4strings/) 55 | * [Exploratory Data Analysis with R](https://bookdown.org/rdpeng/exdata/) 56 | * [Mastering Spark with R](https://therinspark.com/index.html) 57 | * [21 Recipes for Mining Twitter Data with rtweet](https://rud.is/books/21-recipes/) 58 | * [Twitter for R Programmers](https://www.t4rstats.com/) 59 | * [Forecasting: Principles and Practice](https://otexts.com/fpp2/) 60 | * [Text Mining with R: A Tidy Approach](https://www.tidytextmining.com/) 61 | * [Supervised Machine Learning for Text Analysis in R](https://smltar.com/) 62 | * [JavaScript for R](https://book.javascript-for-r.com/) 63 | * [blogdown: Creating Websites with R Markdown](https://bookdown.org/yihui/blogdown/) 64 | * [Mastering Software Development in R](https://bookdown.org/rdpeng/RProgDA/) 65 | * [Advanced R](https://adv-r.hadley.nz/) 66 | --------------------------------------------------------------------------------