├── LICENSE
├── README.md
├── data-visualization.ipynb
├── data
└── WUSTL-IIoT
│ └── README.md
├── models
└── WUSTL-IIoT
│ └── README.md
├── output
└── WUSTL-IIoT
│ └── README.md
├── processing.ipynb
├── raw-data
└── README.md
├── test-main.py
├── train-main.py
└── utils
├── __init__.py
├── __pycache__
├── __init__.cpython-310.pyc
├── __init__.cpython-39.pyc
├── attention.cpython-310.pyc
├── attention.cpython-39.pyc
├── layers.cpython-310.pyc
├── layers.cpython-39.pyc
├── loading.cpython-310.pyc
├── loading.cpython-39.pyc
├── saving.cpython-310.pyc
├── saving.cpython-39.pyc
├── training.cpython-310.pyc
├── transformer.cpython-310.pyc
└── transformer.cpython-39.pyc
├── attention.py
├── layers.py
├── loading.py
├── saving.py
└── transformer.py
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU GENERAL PUBLIC LICENSE
2 | Version 3, 29 June 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU General Public License is a free, copyleft license for
11 | software and other kinds of works.
12 |
13 | The licenses for most software and other practical works are designed
14 | to take away your freedom to share and change the works. By contrast,
15 | the GNU General Public License is intended to guarantee your freedom to
16 | share and change all versions of a program--to make sure it remains free
17 | software for all its users. We, the Free Software Foundation, use the
18 | GNU General Public License for most of our software; it applies also to
19 | any other work released this way by its authors. You can apply it to
20 | your programs, too.
21 |
22 | When we speak of free software, we are referring to freedom, not
23 | price. Our General Public Licenses are designed to make sure that you
24 | have the freedom to distribute copies of free software (and charge for
25 | them if you wish), that you receive source code or can get it if you
26 | want it, that you can change the software or use pieces of it in new
27 | free programs, and that you know you can do these things.
28 |
29 | To protect your rights, we need to prevent others from denying you
30 | these rights or asking you to surrender the rights. Therefore, you have
31 | certain responsibilities if you distribute copies of the software, or if
32 | you modify it: responsibilities to respect the freedom of others.
33 |
34 | For example, if you distribute copies of such a program, whether
35 | gratis or for a fee, you must pass on to the recipients the same
36 | freedoms that you received. You must make sure that they, too, receive
37 | or can get the source code. And you must show them these terms so they
38 | know their rights.
39 |
40 | Developers that use the GNU GPL protect your rights with two steps:
41 | (1) assert copyright on the software, and (2) offer you this License
42 | giving you legal permission to copy, distribute and/or modify it.
43 |
44 | For the developers' and authors' protection, the GPL clearly explains
45 | that there is no warranty for this free software. For both users' and
46 | authors' sake, the GPL requires that modified versions be marked as
47 | changed, so that their problems will not be attributed erroneously to
48 | authors of previous versions.
49 |
50 | Some devices are designed to deny users access to install or run
51 | modified versions of the software inside them, although the manufacturer
52 | can do so. This is fundamentally incompatible with the aim of
53 | protecting users' freedom to change the software. The systematic
54 | pattern of such abuse occurs in the area of products for individuals to
55 | use, which is precisely where it is most unacceptable. Therefore, we
56 | have designed this version of the GPL to prohibit the practice for those
57 | products. If such problems arise substantially in other domains, we
58 | stand ready to extend this provision to those domains in future versions
59 | of the GPL, as needed to protect the freedom of users.
60 |
61 | Finally, every program is threatened constantly by software patents.
62 | States should not allow patents to restrict development and use of
63 | software on general-purpose computers, but in those that do, we wish to
64 | avoid the special danger that patents applied to a free program could
65 | make it effectively proprietary. To prevent this, the GPL assures that
66 | patents cannot be used to render the program non-free.
67 |
68 | The precise terms and conditions for copying, distribution and
69 | modification follow.
70 |
71 | TERMS AND CONDITIONS
72 |
73 | 0. Definitions.
74 |
75 | "This License" refers to version 3 of the GNU General Public License.
76 |
77 | "Copyright" also means copyright-like laws that apply to other kinds of
78 | works, such as semiconductor masks.
79 |
80 | "The Program" refers to any copyrightable work licensed under this
81 | License. Each licensee is addressed as "you". "Licensees" and
82 | "recipients" may be individuals or organizations.
83 |
84 | To "modify" a work means to copy from or adapt all or part of the work
85 | in a fashion requiring copyright permission, other than the making of an
86 | exact copy. The resulting work is called a "modified version" of the
87 | earlier work or a work "based on" the earlier work.
88 |
89 | A "covered work" means either the unmodified Program or a work based
90 | on the Program.
91 |
92 | To "propagate" a work means to do anything with it that, without
93 | permission, would make you directly or secondarily liable for
94 | infringement under applicable copyright law, except executing it on a
95 | computer or modifying a private copy. Propagation includes copying,
96 | distribution (with or without modification), making available to the
97 | public, and in some countries other activities as well.
98 |
99 | To "convey" a work means any kind of propagation that enables other
100 | parties to make or receive copies. Mere interaction with a user through
101 | a computer network, with no transfer of a copy, is not conveying.
102 |
103 | An interactive user interface displays "Appropriate Legal Notices"
104 | to the extent that it includes a convenient and prominently visible
105 | feature that (1) displays an appropriate copyright notice, and (2)
106 | tells the user that there is no warranty for the work (except to the
107 | extent that warranties are provided), that licensees may convey the
108 | work under this License, and how to view a copy of this License. If
109 | the interface presents a list of user commands or options, such as a
110 | menu, a prominent item in the list meets this criterion.
111 |
112 | 1. Source Code.
113 |
114 | The "source code" for a work means the preferred form of the work
115 | for making modifications to it. "Object code" means any non-source
116 | form of a work.
117 |
118 | A "Standard Interface" means an interface that either is an official
119 | standard defined by a recognized standards body, or, in the case of
120 | interfaces specified for a particular programming language, one that
121 | is widely used among developers working in that language.
122 |
123 | The "System Libraries" of an executable work include anything, other
124 | than the work as a whole, that (a) is included in the normal form of
125 | packaging a Major Component, but which is not part of that Major
126 | Component, and (b) serves only to enable use of the work with that
127 | Major Component, or to implement a Standard Interface for which an
128 | implementation is available to the public in source code form. A
129 | "Major Component", in this context, means a major essential component
130 | (kernel, window system, and so on) of the specific operating system
131 | (if any) on which the executable work runs, or a compiler used to
132 | produce the work, or an object code interpreter used to run it.
133 |
134 | The "Corresponding Source" for a work in object code form means all
135 | the source code needed to generate, install, and (for an executable
136 | work) run the object code and to modify the work, including scripts to
137 | control those activities. However, it does not include the work's
138 | System Libraries, or general-purpose tools or generally available free
139 | programs which are used unmodified in performing those activities but
140 | which are not part of the work. For example, Corresponding Source
141 | includes interface definition files associated with source files for
142 | the work, and the source code for shared libraries and dynamically
143 | linked subprograms that the work is specifically designed to require,
144 | such as by intimate data communication or control flow between those
145 | subprograms and other parts of the work.
146 |
147 | The Corresponding Source need not include anything that users
148 | can regenerate automatically from other parts of the Corresponding
149 | Source.
150 |
151 | The Corresponding Source for a work in source code form is that
152 | same work.
153 |
154 | 2. Basic Permissions.
155 |
156 | All rights granted under this License are granted for the term of
157 | copyright on the Program, and are irrevocable provided the stated
158 | conditions are met. This License explicitly affirms your unlimited
159 | permission to run the unmodified Program. The output from running a
160 | covered work is covered by this License only if the output, given its
161 | content, constitutes a covered work. This License acknowledges your
162 | rights of fair use or other equivalent, as provided by copyright law.
163 |
164 | You may make, run and propagate covered works that you do not
165 | convey, without conditions so long as your license otherwise remains
166 | in force. You may convey covered works to others for the sole purpose
167 | of having them make modifications exclusively for you, or provide you
168 | with facilities for running those works, provided that you comply with
169 | the terms of this License in conveying all material for which you do
170 | not control copyright. Those thus making or running the covered works
171 | for you must do so exclusively on your behalf, under your direction
172 | and control, on terms that prohibit them from making any copies of
173 | your copyrighted material outside their relationship with you.
174 |
175 | Conveying under any other circumstances is permitted solely under
176 | the conditions stated below. Sublicensing is not allowed; section 10
177 | makes it unnecessary.
178 |
179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180 |
181 | No covered work shall be deemed part of an effective technological
182 | measure under any applicable law fulfilling obligations under article
183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184 | similar laws prohibiting or restricting circumvention of such
185 | measures.
186 |
187 | When you convey a covered work, you waive any legal power to forbid
188 | circumvention of technological measures to the extent such circumvention
189 | is effected by exercising rights under this License with respect to
190 | the covered work, and you disclaim any intention to limit operation or
191 | modification of the work as a means of enforcing, against the work's
192 | users, your or third parties' legal rights to forbid circumvention of
193 | technological measures.
194 |
195 | 4. Conveying Verbatim Copies.
196 |
197 | You may convey verbatim copies of the Program's source code as you
198 | receive it, in any medium, provided that you conspicuously and
199 | appropriately publish on each copy an appropriate copyright notice;
200 | keep intact all notices stating that this License and any
201 | non-permissive terms added in accord with section 7 apply to the code;
202 | keep intact all notices of the absence of any warranty; and give all
203 | recipients a copy of this License along with the Program.
204 |
205 | You may charge any price or no price for each copy that you convey,
206 | and you may offer support or warranty protection for a fee.
207 |
208 | 5. Conveying Modified Source Versions.
209 |
210 | You may convey a work based on the Program, or the modifications to
211 | produce it from the Program, in the form of source code under the
212 | terms of section 4, provided that you also meet all of these conditions:
213 |
214 | a) The work must carry prominent notices stating that you modified
215 | it, and giving a relevant date.
216 |
217 | b) The work must carry prominent notices stating that it is
218 | released under this License and any conditions added under section
219 | 7. This requirement modifies the requirement in section 4 to
220 | "keep intact all notices".
221 |
222 | c) You must license the entire work, as a whole, under this
223 | License to anyone who comes into possession of a copy. This
224 | License will therefore apply, along with any applicable section 7
225 | additional terms, to the whole of the work, and all its parts,
226 | regardless of how they are packaged. This License gives no
227 | permission to license the work in any other way, but it does not
228 | invalidate such permission if you have separately received it.
229 |
230 | d) If the work has interactive user interfaces, each must display
231 | Appropriate Legal Notices; however, if the Program has interactive
232 | interfaces that do not display Appropriate Legal Notices, your
233 | work need not make them do so.
234 |
235 | A compilation of a covered work with other separate and independent
236 | works, which are not by their nature extensions of the covered work,
237 | and which are not combined with it such as to form a larger program,
238 | in or on a volume of a storage or distribution medium, is called an
239 | "aggregate" if the compilation and its resulting copyright are not
240 | used to limit the access or legal rights of the compilation's users
241 | beyond what the individual works permit. Inclusion of a covered work
242 | in an aggregate does not cause this License to apply to the other
243 | parts of the aggregate.
244 |
245 | 6. Conveying Non-Source Forms.
246 |
247 | You may convey a covered work in object code form under the terms
248 | of sections 4 and 5, provided that you also convey the
249 | machine-readable Corresponding Source under the terms of this License,
250 | in one of these ways:
251 |
252 | a) Convey the object code in, or embodied in, a physical product
253 | (including a physical distribution medium), accompanied by the
254 | Corresponding Source fixed on a durable physical medium
255 | customarily used for software interchange.
256 |
257 | b) Convey the object code in, or embodied in, a physical product
258 | (including a physical distribution medium), accompanied by a
259 | written offer, valid for at least three years and valid for as
260 | long as you offer spare parts or customer support for that product
261 | model, to give anyone who possesses the object code either (1) a
262 | copy of the Corresponding Source for all the software in the
263 | product that is covered by this License, on a durable physical
264 | medium customarily used for software interchange, for a price no
265 | more than your reasonable cost of physically performing this
266 | conveying of source, or (2) access to copy the
267 | Corresponding Source from a network server at no charge.
268 |
269 | c) Convey individual copies of the object code with a copy of the
270 | written offer to provide the Corresponding Source. This
271 | alternative is allowed only occasionally and noncommercially, and
272 | only if you received the object code with such an offer, in accord
273 | with subsection 6b.
274 |
275 | d) Convey the object code by offering access from a designated
276 | place (gratis or for a charge), and offer equivalent access to the
277 | Corresponding Source in the same way through the same place at no
278 | further charge. You need not require recipients to copy the
279 | Corresponding Source along with the object code. If the place to
280 | copy the object code is a network server, the Corresponding Source
281 | may be on a different server (operated by you or a third party)
282 | that supports equivalent copying facilities, provided you maintain
283 | clear directions next to the object code saying where to find the
284 | Corresponding Source. Regardless of what server hosts the
285 | Corresponding Source, you remain obligated to ensure that it is
286 | available for as long as needed to satisfy these requirements.
287 |
288 | e) Convey the object code using peer-to-peer transmission, provided
289 | you inform other peers where the object code and Corresponding
290 | Source of the work are being offered to the general public at no
291 | charge under subsection 6d.
292 |
293 | A separable portion of the object code, whose source code is excluded
294 | from the Corresponding Source as a System Library, need not be
295 | included in conveying the object code work.
296 |
297 | A "User Product" is either (1) a "consumer product", which means any
298 | tangible personal property which is normally used for personal, family,
299 | or household purposes, or (2) anything designed or sold for incorporation
300 | into a dwelling. In determining whether a product is a consumer product,
301 | doubtful cases shall be resolved in favor of coverage. For a particular
302 | product received by a particular user, "normally used" refers to a
303 | typical or common use of that class of product, regardless of the status
304 | of the particular user or of the way in which the particular user
305 | actually uses, or expects or is expected to use, the product. A product
306 | is a consumer product regardless of whether the product has substantial
307 | commercial, industrial or non-consumer uses, unless such uses represent
308 | the only significant mode of use of the product.
309 |
310 | "Installation Information" for a User Product means any methods,
311 | procedures, authorization keys, or other information required to install
312 | and execute modified versions of a covered work in that User Product from
313 | a modified version of its Corresponding Source. The information must
314 | suffice to ensure that the continued functioning of the modified object
315 | code is in no case prevented or interfered with solely because
316 | modification has been made.
317 |
318 | If you convey an object code work under this section in, or with, or
319 | specifically for use in, a User Product, and the conveying occurs as
320 | part of a transaction in which the right of possession and use of the
321 | User Product is transferred to the recipient in perpetuity or for a
322 | fixed term (regardless of how the transaction is characterized), the
323 | Corresponding Source conveyed under this section must be accompanied
324 | by the Installation Information. But this requirement does not apply
325 | if neither you nor any third party retains the ability to install
326 | modified object code on the User Product (for example, the work has
327 | been installed in ROM).
328 |
329 | The requirement to provide Installation Information does not include a
330 | requirement to continue to provide support service, warranty, or updates
331 | for a work that has been modified or installed by the recipient, or for
332 | the User Product in which it has been modified or installed. Access to a
333 | network may be denied when the modification itself materially and
334 | adversely affects the operation of the network or violates the rules and
335 | protocols for communication across the network.
336 |
337 | Corresponding Source conveyed, and Installation Information provided,
338 | in accord with this section must be in a format that is publicly
339 | documented (and with an implementation available to the public in
340 | source code form), and must require no special password or key for
341 | unpacking, reading or copying.
342 |
343 | 7. Additional Terms.
344 |
345 | "Additional permissions" are terms that supplement the terms of this
346 | License by making exceptions from one or more of its conditions.
347 | Additional permissions that are applicable to the entire Program shall
348 | be treated as though they were included in this License, to the extent
349 | that they are valid under applicable law. If additional permissions
350 | apply only to part of the Program, that part may be used separately
351 | under those permissions, but the entire Program remains governed by
352 | this License without regard to the additional permissions.
353 |
354 | When you convey a copy of a covered work, you may at your option
355 | remove any additional permissions from that copy, or from any part of
356 | it. (Additional permissions may be written to require their own
357 | removal in certain cases when you modify the work.) You may place
358 | additional permissions on material, added by you to a covered work,
359 | for which you have or can give appropriate copyright permission.
360 |
361 | Notwithstanding any other provision of this License, for material you
362 | add to a covered work, you may (if authorized by the copyright holders of
363 | that material) supplement the terms of this License with terms:
364 |
365 | a) Disclaiming warranty or limiting liability differently from the
366 | terms of sections 15 and 16 of this License; or
367 |
368 | b) Requiring preservation of specified reasonable legal notices or
369 | author attributions in that material or in the Appropriate Legal
370 | Notices displayed by works containing it; or
371 |
372 | c) Prohibiting misrepresentation of the origin of that material, or
373 | requiring that modified versions of such material be marked in
374 | reasonable ways as different from the original version; or
375 |
376 | d) Limiting the use for publicity purposes of names of licensors or
377 | authors of the material; or
378 |
379 | e) Declining to grant rights under trademark law for use of some
380 | trade names, trademarks, or service marks; or
381 |
382 | f) Requiring indemnification of licensors and authors of that
383 | material by anyone who conveys the material (or modified versions of
384 | it) with contractual assumptions of liability to the recipient, for
385 | any liability that these contractual assumptions directly impose on
386 | those licensors and authors.
387 |
388 | All other non-permissive additional terms are considered "further
389 | restrictions" within the meaning of section 10. If the Program as you
390 | received it, or any part of it, contains a notice stating that it is
391 | governed by this License along with a term that is a further
392 | restriction, you may remove that term. If a license document contains
393 | a further restriction but permits relicensing or conveying under this
394 | License, you may add to a covered work material governed by the terms
395 | of that license document, provided that the further restriction does
396 | not survive such relicensing or conveying.
397 |
398 | If you add terms to a covered work in accord with this section, you
399 | must place, in the relevant source files, a statement of the
400 | additional terms that apply to those files, or a notice indicating
401 | where to find the applicable terms.
402 |
403 | Additional terms, permissive or non-permissive, may be stated in the
404 | form of a separately written license, or stated as exceptions;
405 | the above requirements apply either way.
406 |
407 | 8. Termination.
408 |
409 | You may not propagate or modify a covered work except as expressly
410 | provided under this License. Any attempt otherwise to propagate or
411 | modify it is void, and will automatically terminate your rights under
412 | this License (including any patent licenses granted under the third
413 | paragraph of section 11).
414 |
415 | However, if you cease all violation of this License, then your
416 | license from a particular copyright holder is reinstated (a)
417 | provisionally, unless and until the copyright holder explicitly and
418 | finally terminates your license, and (b) permanently, if the copyright
419 | holder fails to notify you of the violation by some reasonable means
420 | prior to 60 days after the cessation.
421 |
422 | Moreover, your license from a particular copyright holder is
423 | reinstated permanently if the copyright holder notifies you of the
424 | violation by some reasonable means, this is the first time you have
425 | received notice of violation of this License (for any work) from that
426 | copyright holder, and you cure the violation prior to 30 days after
427 | your receipt of the notice.
428 |
429 | Termination of your rights under this section does not terminate the
430 | licenses of parties who have received copies or rights from you under
431 | this License. If your rights have been terminated and not permanently
432 | reinstated, you do not qualify to receive new licenses for the same
433 | material under section 10.
434 |
435 | 9. Acceptance Not Required for Having Copies.
436 |
437 | You are not required to accept this License in order to receive or
438 | run a copy of the Program. Ancillary propagation of a covered work
439 | occurring solely as a consequence of using peer-to-peer transmission
440 | to receive a copy likewise does not require acceptance. However,
441 | nothing other than this License grants you permission to propagate or
442 | modify any covered work. These actions infringe copyright if you do
443 | not accept this License. Therefore, by modifying or propagating a
444 | covered work, you indicate your acceptance of this License to do so.
445 |
446 | 10. Automatic Licensing of Downstream Recipients.
447 |
448 | Each time you convey a covered work, the recipient automatically
449 | receives a license from the original licensors, to run, modify and
450 | propagate that work, subject to this License. You are not responsible
451 | for enforcing compliance by third parties with this License.
452 |
453 | An "entity transaction" is a transaction transferring control of an
454 | organization, or substantially all assets of one, or subdividing an
455 | organization, or merging organizations. If propagation of a covered
456 | work results from an entity transaction, each party to that
457 | transaction who receives a copy of the work also receives whatever
458 | licenses to the work the party's predecessor in interest had or could
459 | give under the previous paragraph, plus a right to possession of the
460 | Corresponding Source of the work from the predecessor in interest, if
461 | the predecessor has it or can get it with reasonable efforts.
462 |
463 | You may not impose any further restrictions on the exercise of the
464 | rights granted or affirmed under this License. For example, you may
465 | not impose a license fee, royalty, or other charge for exercise of
466 | rights granted under this License, and you may not initiate litigation
467 | (including a cross-claim or counterclaim in a lawsuit) alleging that
468 | any patent claim is infringed by making, using, selling, offering for
469 | sale, or importing the Program or any portion of it.
470 |
471 | 11. Patents.
472 |
473 | A "contributor" is a copyright holder who authorizes use under this
474 | License of the Program or a work on which the Program is based. The
475 | work thus licensed is called the contributor's "contributor version".
476 |
477 | A contributor's "essential patent claims" are all patent claims
478 | owned or controlled by the contributor, whether already acquired or
479 | hereafter acquired, that would be infringed by some manner, permitted
480 | by this License, of making, using, or selling its contributor version,
481 | but do not include claims that would be infringed only as a
482 | consequence of further modification of the contributor version. For
483 | purposes of this definition, "control" includes the right to grant
484 | patent sublicenses in a manner consistent with the requirements of
485 | this License.
486 |
487 | Each contributor grants you a non-exclusive, worldwide, royalty-free
488 | patent license under the contributor's essential patent claims, to
489 | make, use, sell, offer for sale, import and otherwise run, modify and
490 | propagate the contents of its contributor version.
491 |
492 | In the following three paragraphs, a "patent license" is any express
493 | agreement or commitment, however denominated, not to enforce a patent
494 | (such as an express permission to practice a patent or covenant not to
495 | sue for patent infringement). To "grant" such a patent license to a
496 | party means to make such an agreement or commitment not to enforce a
497 | patent against the party.
498 |
499 | If you convey a covered work, knowingly relying on a patent license,
500 | and the Corresponding Source of the work is not available for anyone
501 | to copy, free of charge and under the terms of this License, through a
502 | publicly available network server or other readily accessible means,
503 | then you must either (1) cause the Corresponding Source to be so
504 | available, or (2) arrange to deprive yourself of the benefit of the
505 | patent license for this particular work, or (3) arrange, in a manner
506 | consistent with the requirements of this License, to extend the patent
507 | license to downstream recipients. "Knowingly relying" means you have
508 | actual knowledge that, but for the patent license, your conveying the
509 | covered work in a country, or your recipient's use of the covered work
510 | in a country, would infringe one or more identifiable patents in that
511 | country that you have reason to believe are valid.
512 |
513 | If, pursuant to or in connection with a single transaction or
514 | arrangement, you convey, or propagate by procuring conveyance of, a
515 | covered work, and grant a patent license to some of the parties
516 | receiving the covered work authorizing them to use, propagate, modify
517 | or convey a specific copy of the covered work, then the patent license
518 | you grant is automatically extended to all recipients of the covered
519 | work and works based on it.
520 |
521 | A patent license is "discriminatory" if it does not include within
522 | the scope of its coverage, prohibits the exercise of, or is
523 | conditioned on the non-exercise of one or more of the rights that are
524 | specifically granted under this License. You may not convey a covered
525 | work if you are a party to an arrangement with a third party that is
526 | in the business of distributing software, under which you make payment
527 | to the third party based on the extent of your activity of conveying
528 | the work, and under which the third party grants, to any of the
529 | parties who would receive the covered work from you, a discriminatory
530 | patent license (a) in connection with copies of the covered work
531 | conveyed by you (or copies made from those copies), or (b) primarily
532 | for and in connection with specific products or compilations that
533 | contain the covered work, unless you entered into that arrangement,
534 | or that patent license was granted, prior to 28 March 2007.
535 |
536 | Nothing in this License shall be construed as excluding or limiting
537 | any implied license or other defenses to infringement that may
538 | otherwise be available to you under applicable patent law.
539 |
540 | 12. No Surrender of Others' Freedom.
541 |
542 | If conditions are imposed on you (whether by court order, agreement or
543 | otherwise) that contradict the conditions of this License, they do not
544 | excuse you from the conditions of this License. If you cannot convey a
545 | covered work so as to satisfy simultaneously your obligations under this
546 | License and any other pertinent obligations, then as a consequence you may
547 | not convey it at all. For example, if you agree to terms that obligate you
548 | to collect a royalty for further conveying from those to whom you convey
549 | the Program, the only way you could satisfy both those terms and this
550 | License would be to refrain entirely from conveying the Program.
551 |
552 | 13. Use with the GNU Affero General Public License.
553 |
554 | Notwithstanding any other provision of this License, you have
555 | permission to link or combine any covered work with a work licensed
556 | under version 3 of the GNU Affero General Public License into a single
557 | combined work, and to convey the resulting work. The terms of this
558 | License will continue to apply to the part which is the covered work,
559 | but the special requirements of the GNU Affero General Public License,
560 | section 13, concerning interaction through a network will apply to the
561 | combination as such.
562 |
563 | 14. Revised Versions of this License.
564 |
565 | The Free Software Foundation may publish revised and/or new versions of
566 | the GNU General Public License from time to time. Such new versions will
567 | be similar in spirit to the present version, but may differ in detail to
568 | address new problems or concerns.
569 |
570 | Each version is given a distinguishing version number. If the
571 | Program specifies that a certain numbered version of the GNU General
572 | Public License "or any later version" applies to it, you have the
573 | option of following the terms and conditions either of that numbered
574 | version or of any later version published by the Free Software
575 | Foundation. If the Program does not specify a version number of the
576 | GNU General Public License, you may choose any version ever published
577 | by the Free Software Foundation.
578 |
579 | If the Program specifies that a proxy can decide which future
580 | versions of the GNU General Public License can be used, that proxy's
581 | public statement of acceptance of a version permanently authorizes you
582 | to choose that version for the Program.
583 |
584 | Later license versions may give you additional or different
585 | permissions. However, no additional obligations are imposed on any
586 | author or copyright holder as a result of your choosing to follow a
587 | later version.
588 |
589 | 15. Disclaimer of Warranty.
590 |
591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599 |
600 | 16. Limitation of Liability.
601 |
602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610 | SUCH DAMAGES.
611 |
612 | 17. Interpretation of Sections 15 and 16.
613 |
614 | If the disclaimer of warranty and limitation of liability provided
615 | above cannot be given local legal effect according to their terms,
616 | reviewing courts shall apply local law that most closely approximates
617 | an absolute waiver of all civil liability in connection with the
618 | Program, unless a warranty or assumption of liability accompanies a
619 | copy of the Program in return for a fee.
620 |
621 | END OF TERMS AND CONDITIONS
622 |
623 | How to Apply These Terms to Your New Programs
624 |
625 | If you develop a new program, and you want it to be of the greatest
626 | possible use to the public, the best way to achieve this is to make it
627 | free software which everyone can redistribute and change under these terms.
628 |
629 | To do so, attach the following notices to the program. It is safest
630 | to attach them to the start of each source file to most effectively
631 | state the exclusion of warranty; and each file should have at least
632 | the "copyright" line and a pointer to where the full notice is found.
633 |
634 |
635 | Copyright (C)
636 |
637 | This program is free software: you can redistribute it and/or modify
638 | it under the terms of the GNU General Public License as published by
639 | the Free Software Foundation, either version 3 of the License, or
640 | (at your option) any later version.
641 |
642 | This program is distributed in the hope that it will be useful,
643 | but WITHOUT ANY WARRANTY; without even the implied warranty of
644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645 | GNU General Public License for more details.
646 |
647 | You should have received a copy of the GNU General Public License
648 | along with this program. If not, see .
649 |
650 | Also add information on how to contact you by electronic and paper mail.
651 |
652 | If the program does terminal interaction, make it output a short
653 | notice like this when it starts in an interactive mode:
654 |
655 | Copyright (C)
656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657 | This is free software, and you are welcome to redistribute it
658 | under certain conditions; type `show c' for details.
659 |
660 | The hypothetical commands `show w' and `show c' should show the appropriate
661 | parts of the General Public License. Of course, your program's commands
662 | might be different; for a GUI interface, you would use an "about box".
663 |
664 | You should also get your employer (if you work as a programmer) or school,
665 | if any, to sign a "copyright disclaimer" for the program, if necessary.
666 | For more information on this, and how to apply and follow the GNU GPL, see
667 | .
668 |
669 | The GNU General Public License does not permit incorporating your program
670 | into proprietary programs. If your program is a subroutine library, you
671 | may consider it more useful to permit linking proprietary applications with
672 | the library. If this is what you want to do, use the GNU Lesser General
673 | Public License instead of this License. But first, please read
674 | .
675 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # transformerAD
2 | Code for the paper "Anomaly-Based Intrusion Detection in IIoT Networks Using Transformer Models".
3 |
4 | The utils folder contains the implementation for the transformer class and all of its dependencies, along with some extra functions providing data loading and model saving support. The train-main.py and test-main.py files contain examples of model training and saving and AD execution, with saving of the results. The data-visualization.ipynb Jupyter Notebook includes the code for result evaluation and visualization.
5 |
6 | Models will be saved in a /models/ directory, while its outputs will be kept in an /output/ directory. A /data/ directory must contain the processed datasets in its respective subfolders.
7 |
8 | This repository has been tested on the WUSTL-IIoT-2021 datasets. The code for the processing of both datasets in order for them to be in a format compatible with the transformer model can be found in the /dataset-processing directory. In order to reproduce the experiments presented on the paper:
9 |
10 | 1) Follow the instructions in the README file in /raw-data/ to download the WUSTL-IIoT dataset. Extract the CSV file in this same directory and keep the original name.
11 | 2) Execute the processing.ipynb Jupyter Notebook from the root directory. Note: All the cells must be executed.
12 | 3) Run the train-main.py script from the root directory. Hyperparameters can be tweaked.
13 | 4) Run the test-main.py script from the root directory. Testing batch size can be adjusted to memory requirements.
14 | 5) Use the data-visualization.ipynb Jupyter Notebook from the root directory to analyze the produced results.
15 |
16 | Note that the train-main.py script will always generate a new numerated model subfolder. The 'model_name' variable in the test-main.py script must aim to the desired model. Similarly, running test-main.py will generate a new output subfolder relative to the used model. The 'output' variable in the data-visualization.ipynb Notebook must refer to the desired output as well.
17 |
18 | Different datasets can be used with minimal adjustment.
19 |
20 |
--------------------------------------------------------------------------------
/data/WUSTL-IIoT/README.md:
--------------------------------------------------------------------------------
1 | ## Data directory
2 | Must be filled with the output of the processing.ipynb Jupyter Notebook from the root directory.
3 |
--------------------------------------------------------------------------------
/models/WUSTL-IIoT/README.md:
--------------------------------------------------------------------------------
1 | ## Models directory
2 | Saved models from train-main.py execution will be stored in this directory.
3 |
--------------------------------------------------------------------------------
/output/WUSTL-IIoT/README.md:
--------------------------------------------------------------------------------
1 | ## Output directory
2 | Results from executions of test-main.py will be stored in this directory.
3 |
--------------------------------------------------------------------------------
/processing.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "code",
5 | "execution_count": null,
6 | "metadata": {},
7 | "outputs": [],
8 | "source": [
9 | "import pandas as pd\n",
10 | "data_path = 'raw-data/'\n",
11 | "output_path = 'data/WUSTL-IIoT'\n",
12 | "df = pd.read_csv(data_path + 'wustl_iiot_2021.csv', low_memory=False)\n",
13 | "df = df.sort_values(by=['StartTime'])\n",
14 | "mask = list(df['Target'])\n",
15 | "quarter_mask = len(mask)//4"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": null,
21 | "metadata": {},
22 | "outputs": [],
23 | "source": [
24 | "recon_df = df[:quarter_mask+10000]\n",
25 | "recon_df['Traffic'].value_counts()"
26 | ]
27 | },
28 | {
29 | "cell_type": "code",
30 | "execution_count": null,
31 | "metadata": {},
32 | "outputs": [],
33 | "source": [
34 | "dos_df = df[quarter_mask+10000:2*quarter_mask]\n",
35 | "dos_df['Traffic'].value_counts()"
36 | ]
37 | },
38 | {
39 | "cell_type": "code",
40 | "execution_count": null,
41 | "metadata": {},
42 | "outputs": [],
43 | "source": [
44 | "comm_df = df[2*quarter_mask:3*quarter_mask]\n",
45 | "comm_df['Traffic'].value_counts()"
46 | ]
47 | },
48 | {
49 | "cell_type": "code",
50 | "execution_count": null,
51 | "metadata": {},
52 | "outputs": [],
53 | "source": [
54 | "train_df = df[3*quarter_mask:]\n",
55 | "train_df['Traffic'].value_counts()"
56 | ]
57 | },
58 | {
59 | "cell_type": "code",
60 | "execution_count": null,
61 | "metadata": {},
62 | "outputs": [],
63 | "source": [
64 | "train_df.to_pickle(output_path+'train_WUSTL-IIoT.pkl')\n",
65 | "recon_df.to_pickle(output_path+'recon_WUSTL-IIoT.pkl')\n",
66 | "dos_df.to_pickle(output_path+'dos_WUSTL-IIoT.pkl')\n",
67 | "comm_df.to_pickle(output_path+'comm_WUSTL-IIoT.pkl')"
68 | ]
69 | }
70 | ],
71 | "metadata": {
72 | "kernelspec": {
73 | "display_name": "Python 3",
74 | "language": "python",
75 | "name": "python3"
76 | },
77 | "language_info": {
78 | "codemirror_mode": {
79 | "name": "ipython",
80 | "version": 3
81 | },
82 | "file_extension": ".py",
83 | "mimetype": "text/x-python",
84 | "name": "python",
85 | "nbconvert_exporter": "python",
86 | "pygments_lexer": "ipython3",
87 | "version": "3.9.13"
88 | },
89 | "orig_nbformat": 4,
90 | "vscode": {
91 | "interpreter": {
92 | "hash": "11938c6bc6919ae2720b4d5011047913343b08a43b18698fd82dedb0d4417594"
93 | }
94 | }
95 | },
96 | "nbformat": 4,
97 | "nbformat_minor": 2
98 | }
99 |
--------------------------------------------------------------------------------
/raw-data/README.md:
--------------------------------------------------------------------------------
1 | ## Raw data directory
2 | Raw data from the WUSTL-IIoT dataset must be pasted in this directory for the processing.ipynb Jupyter Notebook to process it and store it in the data directory for later usage by the '-main' programs.
3 | Data can be downloaded from https://www.cse.wustl.edu/~jain/iiot2/index.html, direct download link is https://www.cse.wustl.edu/~jain/iiot2/ftp/wustl_iiot_2021.zip.
4 |
--------------------------------------------------------------------------------
/test-main.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import pandas as pd
3 | import utils
4 | from pickle import dump
5 | import os
6 |
7 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
8 | print(f"Using {device} device")
9 |
10 | test_batch_size = 256
11 |
12 | dataset = 'WUSTL-IIoT'
13 | model_name = 'model_1'
14 | model_path = f'models/{dataset}/{model_name}/'
15 | model, data_info = utils.load_model(model_path, device)
16 | assert(data_info['dataset'] == dataset)
17 |
18 | dos_data = pd.read_pickle(f'data/{dataset}/dos_{dataset}.pkl')
19 | test_dos = utils.prepare_data(dos_data, dataset, model_path)
20 | assert(data_info['data_columns'] == list(test_dos.columns))
21 |
22 | recon_data = pd.read_pickle(f'data/{dataset}/recon_{dataset}.pkl')
23 | test_recon = utils.prepare_data(recon_data, dataset, model_path)
24 | assert(data_info['data_columns'] == list(test_recon.columns))
25 |
26 | comm_data = pd.read_pickle(f'data/{dataset}/comm_{dataset}.pkl')
27 | test_comm = utils.prepare_data(comm_data, dataset, model_path)
28 | assert(data_info['data_columns'] == list(test_comm.columns))
29 |
30 | if __name__ == '__main__':
31 |
32 | dos_loader = utils.get_dataLoader(test_dos, data_info['window_size'], device, batch_size = test_batch_size)
33 | dos_scores = model.detect(dos_loader)
34 | recon_loader = utils.get_dataLoader(test_recon, data_info['window_size'], device, batch_size = test_batch_size)
35 | recon_scores = model.detect(recon_loader)
36 | comm_loader = utils.get_dataLoader(test_comm, data_info['window_size'], device, batch_size = test_batch_size)
37 | comm_scores = model.detect(comm_loader)
38 |
39 | output_dir = f"output/{dataset}/output_{model_name}/"
40 | if not os.path.exists(output_dir):
41 | os.makedirs(output_dir)
42 | dump(dos_scores, open(f'{output_dir}dos_scores.pkl', 'wb'))
43 | dump(recon_scores, open(f'{output_dir}recon_scores.pkl', 'wb'))
44 | dump(comm_scores, open(f'{output_dir}comm_scores.pkl', 'wb'))
45 | dump(data_info, open(f'{output_dir}data_info.pkl', 'wb'))
--------------------------------------------------------------------------------
/train-main.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import pandas as pd
3 | import utils
4 |
5 | device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
6 | print(f"Using {device} device")
7 |
8 | dataset = 'WUSTL-IIoT'
9 | normal_data = pd.read_pickle('data/'+dataset+'/train_'+dataset+'.pkl')
10 | train_data, train_scaler = utils.prepare_data(normal_data, dataset)
11 |
12 | d_model = int(len(train_data.columns))
13 |
14 | attention = 'single'
15 |
16 | N_layers = 6
17 | window_size = 50
18 | batch_size = 1024
19 | epochs = 25
20 | dropout = 0
21 | ff_neurons = 512
22 |
23 | if __name__ == '__main__':
24 |
25 | train_loader = utils.get_dataLoader(train_data, window_size, device, batch_size = batch_size)
26 |
27 | model = utils.Transformer(d_model, N_layers, attention, window_size, device, dropout, ff_neurons)
28 | model.initialize()
29 | model.train_model(train_loader, epochs=epochs, print_every=1)
30 |
31 | if isinstance(attention, int):
32 | attention = f"multi-head {attention}"
33 |
34 | info_dict = {
35 | 'data_columns' : list(train_data.columns),
36 | 'attention' : attention,
37 | 'N_layers' : N_layers,
38 | 'window_size' : window_size,
39 | 'batch_size' : batch_size,
40 | 'model_info' : str(model),
41 | 'epochs' : epochs,
42 | 'dataset' : dataset,
43 | 'dropout' : dropout,
44 | 'ff_neurons' : ff_neurons
45 | }
46 |
47 | utils.save_model(model, info_dict, train_scaler)
--------------------------------------------------------------------------------
/utils/__init__.py:
--------------------------------------------------------------------------------
1 | from .loading import *
2 | from .transformer import *
3 | from .saving import *
--------------------------------------------------------------------------------
/utils/__pycache__/__init__.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/__init__.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/__init__.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/__init__.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/attention.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/attention.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/attention.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/attention.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/layers.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/layers.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/layers.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/layers.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/loading.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/loading.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/loading.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/loading.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/saving.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/saving.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/saving.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/saving.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/training.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/training.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/transformer.cpython-310.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/transformer.cpython-310.pyc
--------------------------------------------------------------------------------
/utils/__pycache__/transformer.cpython-39.pyc:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jogecodes/transformerAD/1fdb0d43feac99f7b9823695ae1b76aeb8457f7b/utils/__pycache__/transformer.cpython-39.pyc
--------------------------------------------------------------------------------
/utils/attention.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import math
3 | from torch import nn
4 |
5 | # Clase para aplicar codificación posicional sobre un dato dado
6 | class PositionalEncoder(nn.Module):
7 | def __init__(self, d_model, window, device, encoding_length = 10000):
8 | super().__init__()
9 | # Dimensión de los datos de entrada, es decir, el número de atributos que lo describen
10 | self.d_model = d_model
11 | # Tamaño de la ventana deslizante bajo la que se definen las secuencias
12 | self.window = window
13 | # Creación de la matriz de codificación posicional, pe, cuyos elementos dependen de la posición y la dimensión
14 | pe = torch.zeros(window, d_model).to(torch.device(device))
15 | for pos in range(window):
16 | # La codificación posicional se aplica a cada dimensión de los datos de entrada
17 | # Se aplica una codificación seno y coseno, con una frecuencia que depende de la dimensión
18 | # El resultado es un vector de dimensión d_model (la misma dimensión que los datos de entrada)
19 | # que es determinista para cada posición de la secuencia
20 | for i in range(0, d_model, 2):
21 | pe[pos, i] = math.sin(pos / (encoding_length ** ((2 * i)/d_model)))
22 | if i + 1 < d_model:
23 | pe[pos, i + 1] = math.cos(pos / (encoding_length ** ((2 * (i + 1))/d_model)))
24 | # Se formatea como tensor para poder sumarse a los datos de entrada
25 | pe = pe.unsqueeze(0)
26 | self.pe = pe
27 |
28 | def forward(self, x):
29 | # Se suma la codificación posicional a los datos de entrada
30 | # Sólo se toman las posiciones existentes en la secuencia de entrada
31 | x = x + self.pe[:, :x.size(1), :]
32 | return x
33 |
34 | def scaled_DPattention(q, k, v, d_attention, mask=None, dropout=None):
35 | # Scaled dot-product attention, definida en "Attention is all you need" (Vaswani et al., 2017)
36 | # Al trasponer k, su producto con q proporciona una matriz cuadrada de orden igual al número de
37 | # elementos de la secuencia para cada input del batch
38 | scores = torch.matmul(q, k.transpose(-2, -1)) / math.sqrt(d_attention)
39 | # Aplica una máscara, si es necesario, haciendo infinitamente baja la atención en los elementos
40 | # que no se deben considerar
41 | if mask is not None:
42 | # En el código original se hacía una operación de unsqueezing, pero la he quitado
43 | # para que me cuadren las dimensiones.
44 | # mask = mask.unsqueeze(1)
45 | scores = scores.masked_fill(mask == 0, -1e9)
46 | # Normalización de los scores de acuerdo a una capa softmax
47 | scores = nn.functional.softmax(scores, dim=-1)
48 | # Aplica una capa de dropout, si es necesario
49 | if dropout is not None:
50 | scores = dropout(scores)
51 | # Multiplica los scores por los valores para tasarlos por la atención
52 | output = torch.matmul(scores, v)
53 | return output
54 |
55 | class GeneralAttention(nn.Module):
56 | def __init__(self, d_model, device, dropout = 0.1):
57 | # La atención se inicializa como un modelo de NN
58 | super().__init__()
59 | # Dimensión de los datos de entrada
60 | self.d_model = d_model
61 | # Definición de la capa de dropout
62 | self.dropout = nn.Dropout(dropout).to(torch.device(device))
63 |
64 | def forward(self, q, k, v, mask=None):
65 | # Se calcula la atención usando la función de atención producto interno reescalada
66 | scores = scaled_DPattention(q, k, v, self.d_model, mask, self.dropout)
67 | # Se aplica la capa lineal de salida y se devuelve la atención calculada
68 | output = scores
69 | return output
70 |
71 | class SingleHeadAttention(nn.Module):
72 | def __init__(self, d_model, device, dropout = 0.1):
73 | # La atención se inicializa como un modelo de NN
74 | super().__init__()
75 | # Dimensión de los datos de entrada
76 | self.d_model = d_model
77 | # Definición de las capas lineales para la atención, que aplican a
78 | # los datos de entrada una transformación lineal del tipo y = Ax + b
79 | self.q_linear = nn.Linear(d_model, d_model)
80 | self.v_linear = nn.Linear(d_model, d_model)
81 | self.k_linear = nn.Linear(d_model, d_model)
82 | # Definición de la capa de dropout
83 | self.dropout = nn.Dropout(dropout).to(torch.device(device))
84 | # Definición de la capa lineal de salida
85 | self.out = nn.Linear(d_model, d_model).to(torch.device(device))
86 |
87 | def forward(self, q, k, v, mask=None):
88 | # Se calcula la atención usando la función de atención producto interno reescalada
89 | q_linear = self.q_linear(q)
90 | k_linear = self.k_linear(k)
91 | v_linear = self.v_linear(v)
92 | scores = scaled_DPattention(q_linear, k_linear, v_linear, self.d_model, mask, self.dropout)
93 | # Se aplica la capa lineal de salida y se devuelve la atención calculada
94 | output = self.out(scores)
95 | return output
96 |
97 | # TODO: temrinar de programar, que por ahora no funciona
98 | class MultiHeadAttention(nn.Module):
99 | def __init__(self, heads, d_model, device, dropout = 0.1):
100 | # La atención multicabeza se inicializa como un modelo de NN
101 | super().__init__()
102 | # Dimensión de los datos de entrada
103 | self.d_model = d_model
104 | # Número de cabezas paralelas para la atención
105 | self.N_heads = heads
106 | # Dimensión de la vista por cada cabeza, calculada como la mínima necesaria
107 | # para reconstruir sin pérdida la dimensionalidad de los datos de entrada
108 | self.d_head = (d_model // heads)+1
109 | # Definición de las capas lineales para la atención, que aplican a
110 | # los datos de entrada una transformación lineal del tipo y = Ax + b
111 | # Pasan de la dimensión original de los datos de entrada a la dimensión
112 | # total de las vistas para cada cabeza
113 | self.q_linear = nn.Linear(d_model, self.N_heads * self.d_head)
114 | self.v_linear = nn.Linear(d_model, self.N_heads * self.d_head)
115 | self.k_linear = nn.Linear(d_model, self.N_heads * self.d_head)
116 | # Definición de la capa de dropout
117 | self.dropout = nn.Dropout(dropout).to(torch.device(device))
118 | # Definición de la capa lineal de salida
119 | self.out = nn.Linear(self.N_heads * self.d_head, d_model).to(torch.device(device))
120 |
121 | def forward(self, q, k, v, mask=None):
122 | # Tamaño del batch utilizado
123 | batch_size = q.size(0)
124 | q_len = q.size(1)
125 | k_len = k.size(1)
126 | v_len = v.size(1)
127 |
128 | # Se transforman los datos y se les aplica una vista, que reduce
129 | # la dimensionalidad para evaluarlos en cada cabeza
130 | # Llegados a este punto ya no tienen que ser la misma cosa porque
131 | # cada uno ha pasado por un transformador lineal distinto
132 | q_lin = self.q_linear(q)
133 | k_lin = self.k_linear(k)
134 | v_lin = self.v_linear(v)
135 |
136 | q_view = q_lin.view(batch_size, q_len, self.N_heads, self.d_head)
137 | k_view = k_lin.view(batch_size, k_len, self.N_heads, self.d_head)
138 | v_view = v_lin.view(batch_size, v_len, self.N_heads, self.d_head)
139 |
140 | # Se transponen q, k y v para que tengan dimensión
141 | # batch_size * N_heads * seq_len * d_head
142 | q_heads = q_view.transpose(1,2)
143 | k_heads = k_view.transpose(1,2)
144 | v_heads = v_view.transpose(1,2)
145 |
146 | # calculate attention using attention function
147 | scores = scaled_DPattention(q_heads, k_heads, v_heads, self.d_head, mask, self.dropout)
148 |
149 | # concatenate heads and put through final linear layer
150 | concat = scores.transpose(1,2).contiguous().view(batch_size, -1, self.N_heads * self.d_head)
151 |
152 | output = self.out(concat)
153 |
154 | return output
--------------------------------------------------------------------------------
/utils/layers.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import copy
3 | from torch.autograd import Variable
4 | from torch import nn
5 | from .attention import SingleHeadAttention, MultiHeadAttention, GeneralAttention
6 |
7 | # Esta es el último módulo por el que pasan los datos en el decoder y encoder
8 | # Cnstituye una red profunda normal, con un mogollón de arcos de conexión
9 | class FeedForward(nn.Module):
10 | # La dimensión de las capas lineales del módulo ff (d_ff) es un hiperparámetro
11 | # que se puede ajustar, si bien se ha fijado a 512 neuronas por defecto
12 | def __init__(self, d_model, device, dropout, d_ff):
13 | super().__init__()
14 | # Se definen las capas lineales y de dropout
15 | self.linear_1 = nn.Linear(d_model, d_ff).to(torch.device(device))
16 | self.dropout = nn.Dropout(dropout).to(torch.device(device))
17 | self.linear_2 = nn.Linear(d_ff, d_model).to(torch.device(device))
18 | self.device = device
19 | def forward(self, x):
20 | # Las capas se conectan mediante una función de activación ReLU
21 | x = self.dropout(nn.functional.relu(self.linear_1(x)))
22 | x = self.linear_2(x)
23 | return x
24 |
25 | # Capa de normalización de batch
26 | class Norm(nn.Module):
27 | def __init__(self, d_model, device, eps = 1e-6):
28 | super().__init__()
29 | self.size = d_model
30 | # Se definen los parámetros de normalización, alpha y bias, como variables de aprendizaje
31 | self.alpha = nn.Parameter(torch.ones(self.size).to(torch.device(device)))
32 | self.bias = nn.Parameter(torch.zeros(self.size).to(torch.device(device)))
33 | self.eps = eps
34 | def forward(self, x):
35 | # El input x se normaliza con respecto a las dimensiones 0 y 1, que corresponden al batch y a la secuencia,
36 | # de forma que para cada atributo quede calculada su media en la muestra dada por la secuencia
37 | x_mean = x.mean(dim=(0,1), keepdim=True)
38 | x_std = x.std(dim=(0,1), keepdim=True)
39 | norm = self.alpha * (x - x_mean) / (x_std + self.eps) + self.bias
40 | return norm
41 |
42 | # Construcción de un módulo (capa) encoder, que consta de una subcapa de atención y
43 | # una subcapa de feed-forward, también aplica normalización por batch entre cada subcapa
44 | class EncoderLayer(nn.Module):
45 | def __init__(self, d_model, attention, device, dropout, d_ff):
46 | super().__init__()
47 | self.norm_1 = Norm(d_model, device).to(torch.device(device))
48 | self.norm_2 = Norm(d_model, device).to(torch.device(device))
49 |
50 | if attention == 'general':
51 | self.attn = GeneralAttention(d_model, device).to(torch.device(device))
52 | elif attention == 'single':
53 | self.attn = SingleHeadAttention(d_model, device).to(torch.device(device))
54 | elif isinstance(attention, int):
55 | heads = attention
56 | self.attn = MultiHeadAttention(heads, d_model, device).to(torch.device(device))
57 | else:
58 | raise ValueError('Attention type not recognized')
59 |
60 | self.ff = FeedForward(d_model, device, dropout, d_ff).to(torch.device(device))
61 | self.dropout_1 = nn.Dropout(dropout).to(torch.device(device))
62 | self.dropout_2 = nn.Dropout(dropout).to(torch.device(device))
63 |
64 | def forward(self, x):
65 | # Se normalizan los inputs
66 | x_norm_1 = self.norm_1(x)
67 | # Se calcula la atención sobre la entrada normalizada (que es q, k y v) y se aplica dropout
68 | # Nótese que la entrada x se suma a la salida de la capa de atención, formando una conexión residual
69 | x_dropout_1 = x + self.dropout_1(self.attn(x_norm_1, x_norm_1, x_norm_1))
70 | # Se renormalizan los inputs
71 | x_norm_2 = self.norm_2(x_dropout_1)
72 | # Se propaga sobre la entrada renormalizada y se aplica dropout
73 | # De nuevo, la entrada x se suma a la salida de la capa de atención
74 | x_dropout_2 = x_dropout_1 + self.dropout_2(self.ff(x_norm_2))
75 | return x_dropout_2
76 |
77 | # Construcción de un módulo (capa) encoder, que consta de dos subcapas de atención y
78 | # una subcapa de feed-forward, también aplica normalización por batch entre cada subcapa
79 | class DecoderLayer(nn.Module):
80 | def __init__(self, d_model, attention, device, dropout, d_ff):
81 | super().__init__()
82 | self.norm_1 = Norm(d_model, device).to(torch.device(device))
83 | self.norm_2 = Norm(d_model, device).to(torch.device(device))
84 | self.norm_3 = Norm(d_model, device).to(torch.device(device))
85 |
86 | self.dropout_1 = nn.Dropout(dropout).to(torch.device(device))
87 | self.dropout_2 = nn.Dropout(dropout).to(torch.device(device))
88 | self.dropout_3 = nn.Dropout(dropout).to(torch.device(device))
89 |
90 | if attention == 'general':
91 | self.attn_1 = GeneralAttention(d_model, device).to(torch.device(device))
92 | self.attn_2 = GeneralAttention(d_model, device).to(torch.device(device))
93 | elif attention == 'single':
94 | self.attn_1 = SingleHeadAttention(d_model, device).to(torch.device(device))
95 | self.attn_2 = SingleHeadAttention(d_model, device).to(torch.device(device))
96 | elif isinstance(attention, int):
97 | heads = attention
98 | self.attn_1 = MultiHeadAttention(heads, d_model, device).to(torch.device(device))
99 | self.attn_2 = MultiHeadAttention(heads, d_model, device).to(torch.device(device))
100 | else:
101 | raise ValueError('Attention type not recognized')
102 |
103 | self.ff = FeedForward(d_model, device, dropout, d_ff).to(torch.device(device))
104 |
105 | def forward(self, x, e_outputs, trg_mask):
106 | x2 = self.norm_1(x)
107 | # TODO: probar sin máscara
108 | # x = x + self.dropout_1(self.attn_1(x2, x2, x2, trg_mask))
109 | x = x + self.dropout_1(self.attn_1(x2, x2, x2))
110 | x2 = self.norm_2(x)
111 | # De acuerdo con "Attention is all you need", el input del decoder entra a esta atención
112 | # como q, y la salida del encoder como los valores v y las claves k.
113 | x = x + self.dropout_2(self.attn_2(x2, e_outputs, e_outputs))
114 | x2 = self.norm_3(x)
115 | x = x + self.dropout_3(self.ff(x2))
116 | return x
117 |
118 | # Función que genera múltiples copias del módulo que se indique
119 | def get_clones(module, N_layers):
120 | return nn.ModuleList([copy.deepcopy(module) for i in range(N_layers)])
--------------------------------------------------------------------------------
/utils/loading.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import numpy as np
3 | import pandas as pd
4 | import os
5 | import pickle
6 | from sklearn.preprocessing import StandardScaler
7 | from .transformer import Transformer
8 |
9 | # Estructura de datos de pyTorch, es necesario para poder iterar sobre los datos
10 | class seq_Loader(torch.utils.data.Dataset):
11 | # Define la inicialización a partir de la del padre
12 | def __init__(self, init_data, window, device):
13 | super(seq_Loader, self).__init__()
14 | # Inicializa la clase padre
15 | self.dataset = init_data
16 | # Tamaño de la ventana deslizante bajo la que se definen las secuencias
17 | self.window = window
18 | # Dispositivo en el que se guarda el tensor
19 | self.device = device
20 |
21 | def __len__(self):
22 | # Número de secuencias que se pueden generar, teniendo en cuenta el tamaño de la ventana
23 | return (len(self.dataset)-(self.window-1))
24 |
25 | def __getitem__(self, idx):
26 | # Obtiene una secuencia de datos desde idx y con tamaño window
27 | row = self.dataset.iloc[idx:idx+self.window]
28 | # Convierte los datos a un tensor de pyTorch
29 | data = torch.from_numpy(np.array(row)).float().to(torch.device(self.device))
30 | return data
31 |
32 | def get_dataLoader(data, window_size, device, batch_size = 1):
33 | train_set = seq_Loader(data, window_size, device)
34 | train_loader = torch.utils.data.DataLoader(
35 | train_set,
36 | batch_size=batch_size,
37 | shuffle=False,
38 | # num_workers=os.cpu_count(), # Uses all the CPU cores, but doesn't work on Jupyter running on Windows
39 | num_workers=0,
40 | drop_last=False # Ignores the last batch when it is not complete
41 | )
42 | return train_loader
43 |
44 | def prepare_data(data, dataset, scaling = 'gaussian', columns = 'normal'):
45 | if dataset == 'UNSW-NB15':
46 | pred_columns = ['dur', 'sbytes',
47 | 'dbytes', 'sttl', 'dttl', 'sloss', 'dloss', 'sload', 'dload',
48 | 'spkts', 'dpkts', 'swin', 'dwin', 'stcpb', 'dtcpb', 'smeansz',
49 | 'dmeansz', 'sjit', 'djit', 'stime',
50 | 'ltime', 'sintpkt', 'dintpkt', 'tcprtt', 'synack', 'ackdat']
51 | extra_columns = ['is_sm_ips_ports', 'ct_state_ttl', 'ct_flw_http_mthd', 'is_ftp_login',
52 | 'ct_ftp_cmd', 'ct_srv_src', 'ct_srv_dst', 'ct_dst_ltm', 'ct_src_ ltm',
53 | 'ct_src_dport_ltm', 'ct_dst_sport_ltm', 'ct_dst_src_ltm', 'trans_depth', 'res_bdy_len']
54 | min_columns = ['dur', 'sbytes', 'dbytes', 'sload', 'dload']
55 | if columns == 'normal':
56 | columned_data = data[pred_columns]
57 | elif columns == 'minimal':
58 | columned_data = data[min_columns]
59 | elif columns == 'extended':
60 | columned_data = data[pred_columns+extra_columns]
61 | else:
62 | columned_data = data
63 | elif dataset == 'WUSTL-IIoT':
64 | pred_columns = ['Mean', 'Sport', 'Dport',
65 | 'SrcPkts', 'DstPkts', 'TotPkts', 'DstBytes', 'SrcBytes', 'TotBytes',
66 | 'SrcLoad', 'DstLoad', 'Load', 'SrcRate', 'DstRate', 'Rate', 'SrcLoss',
67 | 'DstLoss', 'Loss', 'pLoss', 'SrcJitter', 'DstJitter', 'SIntPkt',
68 | 'DIntPkt', 'Proto', 'Dur', 'TcpRtt', 'IdleTime', 'Sum', 'Min', 'Max',
69 | 'sDSb', 'sTtl', 'dTtl', 'sIpId', 'dIpId', 'SAppBytes', 'DAppBytes',
70 | 'TotAppByte', 'SynAck', 'RunTime', 'sTos', 'SrcJitAct', 'DstJitAct']
71 | columned_data = data[pred_columns]
72 | else:
73 | raise ValueError('Dataset not implemented')
74 | if scaling == 'gaussian':
75 | scaler = StandardScaler()
76 | scaled_data = pd.DataFrame(scaler.fit_transform(columned_data.values), columns=columned_data.columns, index=columned_data.index)
77 | return scaled_data, scaler
78 | elif os.path.isfile(scaling+'scaler.pkl'):
79 | scaler = pickle.load(open(scaling+'scaler.pkl', 'rb'))
80 | scaled_data = pd.DataFrame(scaler.transform(columned_data.values), columns=columned_data.columns, index=columned_data.index)
81 | return scaled_data
82 | else:
83 | raise ValueError('Scaling method not implemented')
84 |
85 | def load_model(model_path, device, return_info = True):
86 | model_info = pickle.load(open(model_path+'model_info.pkl', 'rb'))
87 | data_columns = model_info['data_columns']
88 | d_model = len(data_columns)
89 | attention = model_info['attention']
90 | if attention[:10] == 'multi-head':
91 | attention = int(attention.split(' ')[1])
92 | model = Transformer(d_model, model_info['N_layers'], attention, model_info['window_size'], device, model_info['dropout'], model_info['ff_neurons'])
93 | model.load_state_dict(torch.load(model_path+'model_state.pt', map_location=torch.device(device)))
94 | model_info = {
95 | 'data_columns': data_columns,
96 | 'window_size': model_info['window_size'],
97 | 'batch_size': model_info['batch_size'],
98 | 'dataset': model_info['dataset'],
99 | 'dropout' : model_info['dropout'],
100 | 'ff_neurons' : model_info['ff_neurons']
101 | }
102 | if return_info:
103 | return model, model_info
104 | else:
105 | return model
--------------------------------------------------------------------------------
/utils/saving.py:
--------------------------------------------------------------------------------
1 | import torch
2 | import os
3 | import json
4 | from pickle import dump
5 |
6 | def save_model(model, info_dict, scaler, path = 'models/', loss = None):
7 |
8 | models_path = path
9 | dataset = info_dict['dataset']
10 | models_path = f'{models_path}{dataset}/'
11 | if not os.path.exists(models_path):
12 | os.makedirs(models_path)
13 |
14 | arr = os.listdir(models_path)
15 | if len(arr) != 0:
16 | folder_nums = []
17 | for folder_name in arr:
18 | if folder_name.split("_")[0] == "model":
19 | folder_nums.append(int(folder_name.split("_")[1]))
20 | if len(folder_nums) == 0:
21 | new_folder_num = 1
22 | else:
23 | try:
24 | new_folder_num = max(folder_nums) + 1
25 | except:
26 | new_folder_num = 666
27 | else:
28 | new_folder_num = 1
29 | model_dir = f"{models_path}/model_{new_folder_num}"
30 | os.makedirs(model_dir)
31 | torch.save(model.state_dict(), model_dir+'/model_state.pt')
32 |
33 | dump(info_dict, open(f'{model_dir}/model_info.pkl', 'wb'))
34 | dump(scaler, open(f'{model_dir}/scaler.pkl', 'wb'))
35 | if loss is not None:
36 | dump(loss, open(f'{model_dir}/loss.pkl', 'wb'))
37 |
38 | return True
--------------------------------------------------------------------------------
/utils/transformer.py:
--------------------------------------------------------------------------------
1 | import torch
2 | from torch import nn
3 | from torch.autograd import Variable
4 | import numpy as np
5 | from .layers import Norm, EncoderLayer, DecoderLayer, get_clones
6 | from .attention import PositionalEncoder
7 | from tqdm import tqdm
8 |
9 | class Encoder(nn.Module):
10 | def __init__(self, d_model, N_layers, attention, window, device, dropout, d_ff):
11 | super().__init__()
12 | self.N_layers = N_layers
13 | self.pe = PositionalEncoder(d_model, window, device)
14 | self.layers = get_clones(EncoderLayer(d_model, attention, device, dropout, d_ff), N_layers)
15 | self.norm = Norm(d_model, device)
16 | def forward(self, src):
17 | # En la variable x se almacena src, el batch de datos de entrada en cada iteración,
18 | # pero con el positional encoding aplicado mediante una suma
19 | x = self.pe(src)
20 | # Seguidamente se pasa x por las N capas del encoder (que son todas idénticas)
21 | for i in range(self.N_layers):
22 | x = self.layers[i](x)
23 | return self.norm(x)
24 |
25 | class Decoder(nn.Module):
26 | def __init__(self, d_model, N_layers, attention, window, device, dropout, d_ff):
27 | super().__init__()
28 | self.N_layers = N_layers
29 | self.pe = PositionalEncoder(d_model, window, device)
30 | self.layers = get_clones(DecoderLayer(d_model, attention, device, dropout, d_ff), N_layers)
31 | self.norm = Norm(d_model, device)
32 | def forward(self, trg, e_outputs, mask):
33 | # x = self.embed(trg)
34 | x = self.pe(trg)
35 | for i in range(self.N_layers):
36 | x = self.layers[i](x, e_outputs, mask)
37 | return self.norm(x)
38 |
39 | class Transformer(nn.Module):
40 | def __init__(self, d_model, N_layers, attention, window, device, dropout=0.1, d_ff = 512):
41 | super().__init__()
42 | self.encoder = Encoder(d_model, N_layers, attention, window, device, dropout, d_ff)
43 | self.decoder = Decoder(d_model, N_layers, attention, window, device, dropout, d_ff)
44 | self.out = nn.Linear(d_model*(window-1), d_model).to(torch.device(device))
45 | self.window = window
46 | self.device = device
47 | def nopeak_mask(self, size):
48 | np_mask = np.triu(np.ones((1, size, size)), k=1).astype('uint8')
49 | np_mask = Variable(torch.from_numpy(np_mask) == 0).to(torch.device(self.device))
50 | return np_mask
51 | def initialize(self):
52 | for p in self.parameters():
53 | if p.dim() > 1:
54 | nn.init.xavier_uniform_(p)
55 | # this code is very important! It initialises the parameters with a
56 | # range of values that stops the signal fading or getting too big.
57 | # See https://andyljones.tumblr.com/post/110998971763/an-explanation-of-xavier-initialization
58 | # for a mathematical explanation.
59 | def forward(self, src, trg):
60 | e_outputs = self.encoder(src)
61 | d_output = self.decoder(trg, e_outputs, self.nopeak_mask(trg.size(1)))
62 | output = self.out(d_output.view(d_output.size(0), -1))
63 | # No se hace softmax a la salida porque no se buscan probabilidades, sino los valores predichos
64 | return output
65 |
66 | def train_model(self, data_loader, epochs=10, print_every=1, return_evo=False):
67 | optim = torch.optim.Adam(self.parameters(), lr=0.0001, betas=(0.9, 0.98), eps=1e-9)
68 | self.train()
69 | total_loss = 0
70 | loss_evo = []
71 | for epoch in range(epochs):
72 | print(f'\nEpoch: {epoch+1} of {epochs}')
73 | with tqdm(total = data_loader.__len__()) as pbar:
74 | for i, batch in enumerate(data_loader):
75 | pbar.update(1)
76 | # Al decoder se le pasa como entrada el batch de datos de entrada menos el último dato,
77 | # que es el que se quiere predecir
78 | d_input = batch[:, :-1]
79 | trg_output = batch[:, -1]
80 | preds = self.forward(batch, d_input)
81 | optim.zero_grad()
82 | criterion = nn.MSELoss()
83 | loss = criterion(preds, trg_output)
84 | loss.backward()
85 | optim.step()
86 |
87 | total_loss += loss.item()
88 | loss_evo.append(loss.item())
89 |
90 | if (i + 1) % print_every == 0:
91 | loss_avg = total_loss / print_every
92 | pbar.set_postfix({'Last mean loss': loss_avg})
93 | total_loss = 0
94 | if return_evo:
95 | return loss_evo
96 |
97 | def detect(self, data_loader):
98 | self.eval()
99 | ano_scores = []
100 | criterion = nn.MSELoss(reduction = 'none')
101 | with tqdm(total = data_loader.__len__()) as pbar:
102 | for batch in data_loader:
103 | pbar.update(1)
104 | d_input = batch[:, :-1]
105 | trg_output = batch[:, -1]
106 | preds = self.forward(batch, d_input)
107 | loss = criterion(preds, trg_output)
108 | ano_scores = ano_scores + loss.mean(dim=-1).tolist()
109 | return ano_scores
--------------------------------------------------------------------------------