├── .idea
├── .name
├── Deep Learning_Nodejs.iml
├── encodings.xml
├── jsLibraryMappings.xml
├── misc.xml
├── modules.xml
├── scopes
│ └── scope_settings.xml
├── vcs.xml
└── workspace.xml
├── README.md
├── examples
├── cdbn.js
├── crbm.js
├── dbn.js
├── logistic_regression.js
├── mlp.js
└── rbm.js
├── lib
├── CDBN.js
├── CRBM.js
├── DBN.js
├── HiddenLayer.js
├── LogisticRegression.js
├── MLP.js
├── RBM.js
├── dnn.js
├── math.js
└── utils.js
└── package.json
/.idea/.name:
--------------------------------------------------------------------------------
1 | Deep Learning_Nodejs
--------------------------------------------------------------------------------
/.idea/Deep Learning_Nodejs.iml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
--------------------------------------------------------------------------------
/.idea/encodings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
--------------------------------------------------------------------------------
/.idea/jsLibraryMappings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/misc.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 | CoffeeScript
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 | false
36 |
37 |
38 |
39 |
40 |
41 |
42 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
--------------------------------------------------------------------------------
/.idea/modules.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
--------------------------------------------------------------------------------
/.idea/scopes/scope_settings.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
--------------------------------------------------------------------------------
/.idea/vcs.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
--------------------------------------------------------------------------------
/.idea/workspace.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
13 |
14 |
15 |
16 |
17 |
18 |
19 |
20 |
21 |
22 |
23 |
24 |
25 |
26 |
27 |
28 |
29 |
30 |
31 |
32 |
33 |
34 |
35 |
36 |
37 |
38 |
39 |
40 |
41 |
42 |
43 |
44 |
45 |
46 |
47 |
48 |
49 |
50 |
51 |
52 |
53 |
54 |
55 |
56 |
57 |
58 |
59 |
60 |
61 |
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 |
73 |
74 |
75 |
76 |
77 |
78 |
79 |
80 |
81 |
82 |
83 |
84 |
85 |
86 |
87 |
88 |
89 |
90 |
91 |
92 |
93 |
94 |
95 |
96 |
97 |
98 |
99 |
100 |
101 |
102 |
103 |
104 |
105 |
106 |
107 |
108 |
109 |
110 |
111 |
112 |
113 |
114 |
115 |
116 |
117 |
118 |
119 |
120 |
121 |
122 |
123 |
124 |
125 |
126 |
127 |
128 |
129 |
130 |
131 |
132 |
133 |
134 |
135 |
136 |
137 |
138 |
139 |
140 |
141 |
142 |
143 |
144 |
145 |
146 |
147 |
148 |
149 |
150 |
151 |
152 |
153 |
154 |
155 |
156 |
157 |
158 |
159 |
160 |
161 |
162 |
163 |
164 |
165 |
166 |
167 |
168 |
169 |
170 |
171 |
172 |
173 |
174 |
175 |
176 |
177 |
178 |
179 |
180 |
181 |
182 |
183 |
184 |
185 |
186 |
187 |
188 |
189 |
190 |
191 |
192 |
193 |
194 |
195 |
196 |
197 |
198 |
199 |
200 |
201 |
202 |
203 |
204 |
205 |
206 |
207 |
208 |
209 |
210 |
211 |
212 |
213 |
214 |
215 |
216 |
217 |
218 |
219 |
220 |
221 |
222 |
223 |
224 |
225 |
226 |
227 |
228 |
229 |
230 |
231 |
232 |
233 |
234 |
235 |
236 |
237 |
238 |
239 |
240 |
241 |
242 |
243 |
244 |
245 |
246 |
247 |
248 |
249 |
250 |
251 |
252 |
253 |
254 |
255 |
256 |
257 |
258 |
259 |
260 |
261 | 1389508868960
262 | 1389508868960
263 |
264 |
265 |
266 |
267 |
268 |
269 |
270 |
271 |
272 |
273 |
274 |
275 |
276 |
277 |
278 |
279 |
280 |
281 |
282 |
283 |
284 |
285 |
286 |
287 |
288 |
289 |
290 |
291 |
292 |
293 |
294 |
295 |
296 |
297 |
298 |
299 |
300 |
301 |
302 |
303 |
304 |
305 |
306 |
307 |
308 |
309 |
310 |
311 |
312 |
313 |
314 |
315 |
316 |
317 |
318 |
319 |
320 |
321 |
322 |
323 |
324 |
325 |
326 |
327 |
328 |
329 |
330 |
331 |
332 |
333 |
334 |
335 |
336 |
337 |
338 |
339 |
340 |
341 |
342 |
343 |
344 |
345 |
346 |
347 |
348 |
349 |
350 |
351 |
352 |
353 |
354 |
355 |
356 |
357 |
358 |
359 |
360 |
361 |
362 |
363 |
364 |
365 |
366 |
367 |
368 |
369 |
370 |
371 |
372 |
373 |
374 |
375 |
376 |
377 |
378 |
379 |
380 |
381 |
382 |
383 |
384 |
385 |
386 |
387 |
388 |
389 |
390 |
391 |
392 |
393 |
394 |
395 |
396 |
397 |
398 |
399 |
400 |
401 |
402 |
403 |
404 |
405 |
406 |
407 |
408 |
409 |
410 |
411 |
412 |
413 |
414 |
415 |
416 |
417 |
418 |
419 |
420 |
421 |
422 |
423 |
424 |
425 |
426 |
427 |
428 |
429 |
430 |
431 |
432 |
433 |
434 |
435 |
436 |
437 |
438 |
439 |
440 |
441 |
442 |
443 |
444 |
445 |
446 |
447 |
448 |
449 |
450 |
451 |
452 |
453 |
454 |
455 |
456 |
457 |
458 |
459 |
460 |
461 |
462 |
463 |
464 |
465 |
466 |
467 |
468 |
469 |
470 |
471 |
472 |
473 |
474 |
475 |
476 |
477 |
478 |
479 |
480 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # dnn
2 |
3 | Simple deep learning library for node.js.
4 |
5 | Includes Logistic-Regression, MLP, RBM, DBN, CRBM, CDBN. (Deep Neural Network)
6 |
7 | RBM is using contrastive-divergence for its training algorithm.
8 |
9 | ## Installation
10 | ```
11 | $ npm install dnn
12 | ```
13 |
14 | ## Features
15 |
16 | * Logistic Regression
17 | * MLP (Multi-Layer Perceptron)
18 | * RBM (Restricted Boltzmann Machine)
19 | * DBN (Deep Belief Network)
20 | * CRBM (Restricted Boltzmann Machine with continuous-valued inputs)
21 | * CDBN (Deep Belief Network with continuous-valued inputs)
22 |
23 | ## Logistic Regression
24 | ```javascript
25 | var dnn = require('dnn');
26 | var x = [[1,1,1,0,0,0],
27 | [1,0,1,0,0,0],
28 | [1,1,1,0,0,0],
29 | [0,0,1,1,1,0],
30 | [0,0,1,1,0,0],
31 | [0,0,1,1,1,0]];
32 | var y = [[1, 0],
33 | [1, 0],
34 | [1, 0],
35 | [0, 1],
36 | [0, 1],
37 | [0, 1]];
38 |
39 | var lrClassifier = new dnn.LogisticRegression({
40 | 'input' : x,
41 | 'label' : y,
42 | 'n_in' : 6,
43 | 'n_out' : 2
44 | });
45 |
46 | lrClassifier.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.
47 |
48 | var training_epochs = 800, lr = 0.01;
49 |
50 | lrClassifier.train({
51 | 'lr' : lr,
52 | 'epochs' : training_epochs
53 | });
54 |
55 | x = [[1, 1, 0, 0, 0, 0],
56 | [0, 0, 0, 1, 1, 0],
57 | [1, 1, 1, 1, 1, 0]];
58 |
59 | console.log("Result : ",lrClassifier.predict(x));
60 | ```
61 |
62 | ## MLP (Multi-Layer Perceptron)
63 | ```javascript
64 | var dnn = require('dnn');
65 | var x = [[0.4, 0.5, 0.5, 0., 0., 0.],
66 | [0.5, 0.3, 0.5, 0., 0., 0.],
67 | [0.4, 0.5, 0.5, 0., 0., 0.],
68 | [0., 0., 0.5, 0.3, 0.5, 0.],
69 | [0., 0., 0.5, 0.4, 0.5, 0.],
70 | [0., 0., 0.5, 0.5, 0.5, 0.]];
71 | var y = [[1, 0],
72 | [1, 0],
73 | [1, 0],
74 | [0, 1],
75 | [0, 1],
76 | [0, 1]];
77 |
78 | var mlp = new dnn.MLP({
79 | 'input' : x,
80 | 'label' : y,
81 | 'n_ins' : 6,
82 | 'n_outs' : 2,
83 | 'hidden_layer_sizes' : [4,4,5]
84 | });
85 |
86 | mlp.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.
87 |
88 | mlp.train({
89 | 'lr' : 0.6,
90 | 'epochs' : 20000
91 | });
92 |
93 | a = [[0.5, 0.5, 0., 0., 0., 0.],
94 | [0., 0., 0., 0.5, 0.5, 0.],
95 | [0.5, 0.5, 0.5, 0.5, 0.5, 0.]];
96 |
97 | console.log(mlp.predict(a));
98 | ```
99 |
100 | ## RBM (Restricted Boltzmann Machine)
101 | ```javascript
102 | var dnn = require('dnn');
103 | var data = [[1,1,1,0,0,0],
104 | [1,0,1,0,0,0],
105 | [1,1,1,0,0,0],
106 | [0,0,1,1,1,0],
107 | [0,0,1,1,0,0],
108 | [0,0,1,1,1,0]];
109 |
110 | var rbm = new dnn.RBM({
111 | input : data,
112 | n_visible : 6,
113 | n_hidden : 2
114 | });
115 |
116 | rbm.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.
117 |
118 | var trainingEpochs = 500;
119 |
120 | rbm.train({
121 | lr : 0.6,
122 | k : 1, // CD-k.
123 | epochs : trainingEpochs
124 | });
125 |
126 | var v = [[1, 1, 0, 0, 0, 0],
127 | [0, 0, 0, 1, 1, 0]];
128 |
129 | console.log(rbm.reconstruct(v));
130 | console.log(rbm.sampleHgivenV(v)[0]); // get hidden layer probabilities from visible unit.
131 | ```
132 |
133 | ## DBN (Deep Belief Network)
134 | ```javascript
135 | var dnn = require('dnn');
136 | var x = [[1,1,1,0,0,0],
137 | [1,0,1,0,0,0],
138 | [1,1,1,0,0,0],
139 | [0,0,1,1,1,0],
140 | [0,0,1,1,0,0],
141 | [0,0,1,1,1,0]];
142 | var y = [[1, 0],
143 | [1, 0],
144 | [1, 0],
145 | [0, 1],
146 | [0, 1],
147 | [0, 1]];
148 |
149 | var pretrain_lr = 0.6, pretrain_epochs = 900, k = 1, finetune_lr = 0.6, finetune_epochs = 500;
150 |
151 | var dbn = new dnn.DBN({
152 | 'input' : x,
153 | 'label' : y,
154 | 'n_ins' : 6,
155 | 'n_outs' : 2,
156 | 'hidden_layer_sizes' : [10,12,11,8,6,4]
157 | });
158 |
159 | dbn.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.
160 |
161 | // Pre-Training using using RBM
162 | dbn.pretrain({
163 | 'lr' : pretrain_lr,
164 | 'k' : k, // RBM CD-k.
165 | 'epochs' : pretrain_epochs
166 | });
167 |
168 | // Fine-Tuning dbn using mlp backpropagation.
169 | dbn.finetune({
170 | 'lr' : finetune_lr,
171 | 'epochs' : finetune_epochs
172 | });
173 |
174 | /*
175 | for(var i =0;i<6;i++) {
176 | console.log(i+1,"th layer W : ",dbn.sigmoidLayers[i].W);
177 | }
178 | */
179 |
180 | x = [[1, 1, 0, 0, 0, 0],
181 | [0, 0, 0, 1, 1, 0],
182 | [1, 1, 1, 1, 1, 0]];
183 |
184 | console.log(dbn.predict(x));
185 | ```
186 |
187 | ## CRBM (Restricted Boltzmann Machine with continuous-valued inputs)
188 | ```javascript
189 | var dnn = require('dnn');
190 | var data = [[0.4, 0.5, 0.5, 0., 0., 0.7],
191 | [0.5, 0.3, 0.5, 0., 1, 0.6],
192 | [0.4, 0.5, 0.5, 0., 1, 0.9],
193 | [0., 0., 0., 0.3, 0.5, 0.],
194 | [0., 0., 0., 0.4, 0.5, 0.],
195 | [0., 0., 0., 0.5, 0.5, 0.]];
196 |
197 | var crbm = new dnn.CRBM({
198 | input : data,
199 | n_visible : 6,
200 | n_hidden : 5
201 | });
202 |
203 | crbm.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.
204 |
205 | crbm.train({
206 | lr : 0.6,
207 | k : 1, // CD-k.
208 | epochs : 1500
209 | });
210 |
211 | var v = [[0.5, 0.5, 0., 0., 0., 0.],
212 | [0., 0., 0., 0.5, 0.5, 0.]];
213 |
214 | console.log(crbm.reconstruct(v));
215 | console.log(crbm.sampleHgivenV(v)[0]); // get hidden layer probabilities from visible unit.
216 | ```
217 |
218 | ## CDBN (Deep Belief Network with continuous-valued inputs)
219 | ```javascript
220 | var dnn = require('dnn')
221 |
222 | var x = [[0.4, 0.5, 0.5, 0., 0., 0.],
223 | [0.5, 0.3, 0.5, 0., 0., 0.],
224 | [0.4, 0.5, 0.5, 0., 0., 0.],
225 | [0., 0., 0.5, 0.3, 0.5, 0.],
226 | [0., 0., 0.5, 0.4, 0.5, 0.],
227 | [0., 0., 0.5, 0.5, 0.5, 0.]];
228 |
229 | var y = [[1, 0],
230 | [1, 0],
231 | [1, 0],
232 | [0, 1],
233 | [0, 1],
234 | [0, 1]];
235 |
236 | var cdbn = new dnn.CDBN({
237 | 'input' : x,
238 | 'label' : y,
239 | 'n_ins' : 6,
240 | 'n_outs' : 2,
241 | 'hidden_layer_sizes' : [10,12,11,8,6,4]
242 | });
243 |
244 | cdbn.set('log level',1); // 0 : nothing, 1 : info, 2 : warning.
245 |
246 | var pretrain_lr = 0.8, pretrain_epochs = 1600, k= 1, finetune_lr = 0.84, finetune_epochs = 10000;
247 |
248 | // Pre-Training using using RBM, CRBM.
249 | cdbn.pretrain({
250 | 'lr' : pretrain_lr,
251 | 'k' : k, // RBM CD-k.
252 | 'epochs' : pretrain_epochs
253 | });
254 |
255 | // Fine-Tuning dbn using mlp backpropagation.
256 | cdbn.finetune({
257 | 'lr' : finetune_lr,
258 | 'epochs' : finetune_epochs
259 | });
260 |
261 | /*
262 | for(var i =0;i<6;i++) {
263 | console.log(i+1,"th layer W : ",cdbn.sigmoidLayers[i].W);
264 | }
265 | */
266 |
267 | a = [[0.5, 0.5, 0., 0., 0., 0.],
268 | [0., 0., 0., 0.5, 0.5, 0.],
269 | [0.1,0.2,0.4,0.4,0.3,0.6]];
270 |
271 | console.log(cdbn.predict(a));
272 | ```
273 |
274 | ##License
275 |
276 | (The MIT License)
277 |
278 | Copyright (c) 2014 Joon-Ku Kang <junku901@gmail.com>
279 |
280 | Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the 'Software'), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions:
281 |
282 | The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software.
283 |
284 | THE SOFTWARE IS PROVIDED 'AS IS', WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
285 |
--------------------------------------------------------------------------------
/examples/cdbn.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 15..
3 | */
4 | var dnn = require('../lib/dnn')
5 |
6 | var x = [[0.4, 0.5, 0.5, 0., 0., 0.],
7 | [0.5, 0.3, 0.5, 0., 0., 0.],
8 | [0.4, 0.5, 0.5, 0., 0., 0.],
9 | [0., 0., 0.5, 0.3, 0.5, 0.],
10 | [0., 0., 0.5, 0.4, 0.5, 0.],
11 | [0., 0., 0.5, 0.5, 0.5, 0.]];
12 |
13 | var y = [[1, 0],
14 | [1, 0],
15 | [1, 0],
16 | [0, 1],
17 | [0, 1],
18 | [0, 1]];
19 |
20 | var cdbn = new dnn.CDBN({
21 | 'input' : x,
22 | 'label' : y,
23 | 'n_ins' : 6,
24 | 'n_outs' : 2,
25 | 'hidden_layer_sizes' : [10,12,11,8,6,4]
26 | });
27 |
28 | for(var i =0;i<6;i++) {
29 | console.log("ith layer W : ",cdbn.sigmoidLayers[i].W);
30 | }
31 |
32 | cdbn.set('log level',1);
33 | var pretrain_lr = 0.8, pretrain_epochs = 2000, k= 1, finetune_lr = 0.84, finetune_epochs = 10000;
34 |
35 | // Pre-Training using using RBM, CRBM.
36 | cdbn.pretrain({
37 | 'lr' : pretrain_lr,
38 | 'k' : k,
39 | 'epochs' : pretrain_epochs
40 | });
41 |
42 | // Fine-Tuning dbn using mlp backpropagation.
43 | cdbn.finetune({
44 | 'lr' : finetune_lr,
45 | 'epochs' : finetune_epochs
46 | });
47 |
48 | a = [[0.5, 0.5, 0., 0., 0., 0.],
49 | [0., 0., 0., 0.5, 0.5, 0.],
50 | [0.1,0.2,0.4,0.4,0.3,0.6]];
51 |
52 | console.log(cdbn.predict(a))
--------------------------------------------------------------------------------
/examples/crbm.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 15..
3 | */
4 | var dnn = require('../lib/dnn');
5 | var data = [[0.4, 0.5, 0.5, 0., 0., 0.7],
6 | [0.5, 0.3, 0.5, 0., 1, 0.6],
7 | [0.4, 0.5, 0.5, 0., 1, 0.9],
8 | [0., 0., 0., 0.3, 0.5, 0.],
9 | [0., 0., 0., 0.4, 0.5, 0.],
10 | [0., 0., 0., 0.5, 0.5, 0.]];
11 |
12 | var crbm = new dnn.CRBM({
13 | input : data,
14 | n_visible : 6,
15 | n_hidden : 5
16 | });
17 |
18 | crbm.set('log level',1);
19 |
20 | crbm.train({
21 | lr : 0.6,
22 | k : 1,
23 | epochs : 1500
24 | });
25 |
26 |
27 |
28 | var v = [[0.5, 0.5, 0., 0., 0., 0.],
29 | [0., 0., 0., 0.5, 0.5, 0.]];
30 |
31 | console.log(crbm.reconstruct(v));
32 | console.log(crbm.sampleHgivenV(v)[0]);
33 |
--------------------------------------------------------------------------------
/examples/dbn.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 15..
3 | */
4 | var dnn = require('../lib/dnn');
5 | var x = [[1,1,1,0,0,0],
6 | [1,0,1,0,0,0],
7 | [1,1,1,0,0,0],
8 | [0,0,1,1,1,0],
9 | [0,0,1,1,0,0],
10 | [0,0,1,1,1,0]];
11 | var y = [[1, 0],
12 | [1, 0],
13 | [1, 0],
14 | [0, 1],
15 | [0, 1],
16 | [0, 1]];
17 |
18 | var pretrain_lr = 0.6, pretrain_epochs = 900, k = 1, finetune_lr = 0.6, finetune_epochs = 500;
19 |
20 | var dbn = new dnn.DBN({
21 | 'input' : x,
22 | 'label' : y,
23 | 'n_ins' : 6,
24 | 'n_outs' : 2,
25 | 'hidden_layer_sizes' : [10,12,11,8,6,4]
26 | });
27 |
28 | dbn.set('log level',1);
29 |
30 | // Pre-Training using using RBM
31 | dbn.pretrain({
32 | 'lr' : pretrain_lr,
33 | 'k' : k,
34 | 'epochs' : pretrain_epochs
35 | });
36 |
37 | // Fine-Tuning dbn using mlp backpropagation.
38 | dbn.finetune({
39 | 'lr' : finetune_lr,
40 | 'epochs' : finetune_epochs
41 | });
42 |
43 | x = [[1, 1, 0, 0, 0, 0],
44 | [0, 0, 0, 1, 1, 0],
45 | [1, 1, 1, 1, 1, 0]];
46 |
47 | console.log(dbn.predict(x));
--------------------------------------------------------------------------------
/examples/logistic_regression.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 15..
3 | */
4 | var dnn = require('../lib/dnn');
5 | var x = [[1,1,1,0,0,0],
6 | [1,0,1,0,0,0],
7 | [1,1,1,0,0,0],
8 | [0,0,1,1,1,0],
9 | [0,0,1,1,0,0],
10 | [0,0,1,1,1,0]];
11 | var y = [[1, 0],
12 | [1, 0],
13 | [1, 0],
14 | [0, 1],
15 | [0, 1],
16 | [0, 1]];
17 |
18 | var classifier = new dnn.LogisticRegression({
19 | 'input' : x,
20 | 'label' : y,
21 | 'n_in' : 6,
22 | 'n_out' : 2
23 | });
24 |
25 | classifier.set('log level',1);
26 |
27 | var training_epochs = 800, lr = 0.01;
28 |
29 | classifier.train({
30 | 'lr' : lr,
31 | 'epochs' : training_epochs
32 | });
33 |
34 | x = [[1, 1, 0, 0, 0, 0],
35 | [0, 0, 0, 1, 1, 0],
36 | [1, 1, 1, 1, 1, 0]];
37 |
38 | console.log("Result : ",classifier.predict(x));
--------------------------------------------------------------------------------
/examples/mlp.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 15..
3 | */
4 | var dnn = require('../lib/dnn');
5 | var x = [[0.4, 0.5, 0.5, 0., 0., 0.],
6 | [0.5, 0.3, 0.5, 0., 0., 0.],
7 | [0.4, 0.5, 0.5, 0., 0., 0.],
8 | [0., 0., 0.5, 0.3, 0.5, 0.],
9 | [0., 0., 0.5, 0.4, 0.5, 0.],
10 | [0., 0., 0.5, 0.5, 0.5, 0.]];
11 | var y = [[1, 0],
12 | [1, 0],
13 | [1, 0],
14 | [0, 1],
15 | [0, 1],
16 | [0, 1]];
17 |
18 | var mlp = new dnn.MLP({
19 | 'input' : x,
20 | 'label' : y,
21 | 'n_ins' : 6,
22 | 'n_outs' : 2,
23 | 'hidden_layer_sizes' : [4,4,5]
24 | });
25 |
26 | mlp.set('log level',1);
27 |
28 | mlp.train({
29 | 'lr' : 0.6,
30 | 'epochs' : 20000
31 | });
32 |
33 | a = [[0.5, 0.5, 0., 0., 0., 0.],
34 | [0., 0., 0., 0.5, 0.5, 0.],
35 | [0.5, 0.5, 0.5, 0.5, 0.5, 0.]];
36 |
37 | console.log(mlp.predict(a));
--------------------------------------------------------------------------------
/examples/rbm.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 15..
3 | */
4 | var dnn = require('../lib/dnn');
5 | var data = [[1,1,1,0,0,0],
6 | [1,0,1,0,0,0],
7 | [1,1,1,0,0,0],
8 | [0,0,1,1,1,0],
9 | [0,0,1,1,0,0],
10 | [0,0,1,1,1,0]];
11 |
12 | var rbm = new dnn.RBM({
13 | input : data,
14 | n_visible : 6,
15 | n_hidden : 2
16 | });
17 |
18 | rbm.set('log level',1);
19 | var trainingEpochs = 500;
20 |
21 | rbm.train({
22 | lr : 0.6,
23 | k : 1,
24 | epochs : trainingEpochs
25 | });
26 |
27 |
28 |
29 | var v = [[1, 1, 0, 0, 0, 0],
30 | [0, 0, 0, 1, 1, 0]];
31 |
32 | console.log(rbm.reconstruct(v));
33 | console.log(rbm.sampleHgivenV(v)[0]);
--------------------------------------------------------------------------------
/lib/CDBN.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 13..
3 | */
4 | var math = require('./utils').math;
5 | LogisticRegression = require('./LogisticRegression');
6 | HiddenLayer = require('./HiddenLayer');
7 | RBM = require('./RBM');
8 | CRBM = require('./CRBM');
9 | DBN = require('./DBN');
10 |
11 |
12 | CDBN = module.exports = function (settings) {
13 | var self = this;
14 | self.x = settings['input'];
15 | self.y = settings['label'];
16 | self.sigmoidLayers = [];
17 | self.rbmLayers = [];
18 | self.nLayers = settings['hidden_layer_sizes'].length;
19 | self.hiddenLayerSizes = settings['hidden_layer_sizes'];
20 | self.nIns = settings['n_ins'];
21 | self.nOuts = settings['n_outs'];
22 |
23 | self.settings = {
24 | 'log level' : 1 // 0 : nothing, 1 : info, 2: warn
25 | };
26 | // Constructing Deep Neural Network
27 | var i;
28 | for(i=0 ; i 0) {
87 | console.log("DBN RBM",i,"th Layer Final Cross Entropy: ",rbm.getReconstructionCrossEntropy());
88 | console.log("DBN RBM",i,"th Layer Pre-Training Completed.");
89 | }
90 |
91 | // Synchronization between RBM and sigmoid Layer
92 | self.sigmoidLayers[i].W = rbm.W;
93 | self.sigmoidLayers[i].b = rbm.hbias;
94 | }
95 | if(self.settings['log level'] > 0)
96 | console.log("DBN Pre-Training Completed.")
97 | };
98 |
99 | DBN.prototype.finetune = function (settings) {
100 | var self = this;
101 | var lr = 0.2, epochs = 1000;
102 | if(typeof settings['lr'] !== 'undefined')
103 | lr = settings['lr'];
104 | if(typeof settings['epochs'] !== 'undefined')
105 | epochs = settings['epochs'];
106 |
107 | //Fine-Tuning Using MLP (Back Propagation)
108 | var i;
109 | var pretrainedWArray = [], pretrainedBArray = []; // HiddenLayer W,b values already pretrained by RBM.
110 | for(i=0; i 0) {
37 | var progress = (1.*i/epochs)*100;
38 | if(progress > currentProgress) {
39 | console.log("LogisticRegression",progress.toFixed(0),"% Completed.");
40 | currentProgress++;
41 | }
42 | }
43 | }
44 | if(self.settings['log level'] > 0)
45 | console.log("LogisticRegression Final Cross Entropy : ",self.getReconstructionCrossEntropy());
46 | };
47 |
48 | LogisticRegression.prototype.getReconstructionCrossEntropy = function () {
49 | var self = this;
50 | var probYgivenX = math.softmaxMat(math.addMatVec(math.mulMat(self.x,self.W),self.b));
51 | var a = math.mulMatElementWise(self.y, math.activateMat(probYgivenX,Math.log));
52 | var b = math.mulMatElementWise(math.mulMatScalar(math.addMatScalar(self.y,-1),-1),
53 | math.activateMat(math.mulMatScalar(math.addMatScalar(probYgivenX,-1),-1),Math.log));
54 | var crossEntropy = -math.meanVec(math.sumMatAxis(math.addMat(a,b),1));
55 | return crossEntropy;
56 | };
57 |
58 | LogisticRegression.prototype.predict = function (x) {
59 | var self = this;
60 | return math.softmaxMat(math.addMatVec(math.mulMat(x,self.W),self.b));
61 | };
62 |
63 | LogisticRegression.prototype.set = function(property,value) {
64 | var self = this;
65 | self.settings[property] = value;
66 | }
--------------------------------------------------------------------------------
/lib/MLP.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 14..
3 | */
4 | var math = require('./utils').math;
5 |
6 | MLP = module.exports = function (settings) {
7 | var self = this;
8 | self.x = settings['input'];
9 | self.y = settings['label'];
10 | self.sigmoidLayers = [];
11 | self.nLayers = settings['hidden_layer_sizes'].length;
12 | self.settings = {
13 | 'log level' : 1 // 0 : nothing, 1 : info, 2: warn
14 | };
15 | var i;
16 | for(i=0 ; i=0 ; i--) {
84 | delta[i] = m.mulMatElementWise(self.sigmoidLayers[i+1].backPropagate(delta[i+1]),
85 | m.activateMat(self.sigmoidLayers[i].linearOutput(layerInput[i]), m.dSigmoid));
86 | }
87 | // Update Weight, Bias
88 | for(var i=0; i 0) {
96 | var progress = (1.*epoch/epochs)*100;
97 | if(progress > currentProgress) {
98 | console.log("MLP",progress.toFixed(0),"% Completed.");
99 | currentProgress+=8;
100 | }
101 | }
102 | }
103 | if(self.settings['log level'] > 0)
104 | console.log("MLP Final Cross Entropy : ",self.getReconstructionCrossEntropy());
105 | };
106 |
107 | MLP.prototype.getReconstructionCrossEntropy = function() {
108 | var self = this;
109 | var reconstructedOutput = self.predict(self.x);
110 | var a = math.activateTwoMat(self.y,reconstructedOutput,function(x,y){
111 | return x*Math.log(y);
112 | });
113 |
114 | var b = math.activateTwoMat(self.y,reconstructedOutput,function(x,y){
115 | return (1-x)*Math.log(1-y);
116 | });
117 |
118 | var crossEntropy = -math.meanVec(math.sumMatAxis(math.addMat(a,b),1));
119 | return crossEntropy
120 | }
121 |
122 | MLP.prototype.predict = function(x) {
123 | var self = this;
124 | var output = x;
125 | for(i=0; i 0) {
67 | var progress = (1.*i/epochs)*100;
68 | if(progress > currentProgress) {
69 | console.log("RBM",progress.toFixed(0),"% Completed.");
70 | currentProgress+=8;
71 | }
72 | }
73 | }
74 | if(self.settings['log level'] > 0)
75 | console.log("RBM Final Cross Entropy : ",self.getReconstructionCrossEntropy())
76 | };
77 |
78 | RBM.prototype.propup = function(v) {
79 | var self = this;
80 | var preSigmoidActivation = math.addMatVec(math.mulMat(v,self.W),self.hbias);
81 | return math.activateMat(preSigmoidActivation, m.sigmoid);
82 | };
83 |
84 | RBM.prototype.propdown = function(h) {
85 | var self = this;
86 | var preSigmoidActivation = math.addMatVec(math.mulMat(h,math.transpose(self.W)),self.vbias);
87 | return math.activateMat(preSigmoidActivation, m.sigmoid);
88 | };
89 |
90 | RBM.prototype.sampleHgivenV = function(v0_sample) {
91 | var self = this;
92 | var h1_mean = self.propup(v0_sample);
93 | var h1_sample = math.probToBinaryMat(h1_mean);
94 | return [h1_mean,h1_sample];
95 | };
96 |
97 | RBM.prototype.sampleVgivenH = function(h0_sample) {
98 | var self = this;
99 | var v1_mean = self.propdown(h0_sample);
100 | var v1_sample = math.probToBinaryMat(v1_mean);
101 | return [v1_mean,v1_sample];
102 | };
103 |
104 | RBM.prototype.gibbsHVH = function(h0_sample) {
105 | var self = this;
106 | var v1 = self.sampleVgivenH(h0_sample);
107 | var h1 = self.sampleHgivenV(v1[1]);
108 | return [v1[0],v1[1],h1[0],h1[1]];
109 | };
110 |
111 | RBM.prototype.reconstruct = function(v) {
112 | var self = this;
113 | var h = math.activateMat(math.addMatVec(math.mulMat(v,self.W),self.hbias), math.sigmoid);
114 | var reconstructedV = math.activateMat(math.addMatVec(math.mulMat(h,math.transpose(self.W)),self.vbias), math.sigmoid);
115 | return reconstructedV;
116 | };
117 |
118 | RBM.prototype.getReconstructionCrossEntropy = function() {
119 | var self = this;
120 | var reconstructedV = self.reconstruct(self.input);
121 | var a = math.activateTwoMat(self.input,reconstructedV,function(x,y){
122 | return x*Math.log(y);
123 | });
124 |
125 | var b = math.activateTwoMat(self.input,reconstructedV,function(x,y){
126 | return (1-x)*Math.log(1-y);
127 | });
128 |
129 | var crossEntropy = -math.meanVec(math.sumMatAxis(math.addMat(a,b),1));
130 | return crossEntropy
131 |
132 | };
133 | RBM.prototype.set = function(property,value) {
134 | var self = this;
135 | self.settings[property] = value;
136 | }
--------------------------------------------------------------------------------
/lib/dnn.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 12..
3 | */
4 | dnn = module.exports;
5 |
6 | dnn.RBM = require('./RBM');
7 |
8 | dnn.LogisticRegression = require('./LogisticRegression');
9 |
10 | dnn.DBN = require('./DBN');
11 |
12 | dnn.CRBM = require('./CRBM');
13 |
14 | dnn.CDBN = require('./CDBN');
15 |
16 | dnn.MLP = require('./MLP');
--------------------------------------------------------------------------------
/lib/math.js:
--------------------------------------------------------------------------------
1 | /**
2 | * Created by joonkukang on 2014. 1. 12..
3 | */
4 | m = module.exports;
5 |
6 | m.randn = function() {
7 | // generate random guassian distribution number. (mean : 0, standard deviation : 1)
8 | var v1, v2, s;
9 |
10 | do {
11 | v1 = 2 * Math.random() - 1; // -1.0 ~ 1.0 까지의 값
12 | v2 = 2 * Math.random() - 1; // -1.0 ~ 1.0 까지의 값
13 | s = v1 * v1 + v2 * v2;
14 | } while (s >= 1 || s == 0);
15 |
16 | s = Math.sqrt( (-2 * Math.log(s)) / s );
17 | return v1 * s;
18 | }
19 |
20 | m.shape = function(mat) {
21 | var row = mat.length;
22 | var col = mat[0].length;
23 | return [row,col];
24 | };
25 |
26 | m.addVec = function(vec1, vec2) {
27 | if(vec1.length === vec2.length) {
28 | var result = [];
29 | var i;
30 | for(i=0;i max)
302 | max = vec[i];
303 | }
304 | return max;
305 | }
306 |
307 | m.minMat = function(mat) {
308 | var min = mat[0][0];
309 | var i = mat.length;
310 | while (i--) {
311 | for(var j=0;j