├── .gitignore ├── .replit ├── CycleGAN.ipynb ├── LICENSE ├── README.md ├── data ├── __init__.py ├── aligned_dataset.py ├── base_dataset.py ├── colorization_dataset.py ├── image_folder.py ├── single_dataset.py ├── template_dataset.py └── unaligned_dataset.py ├── datasets ├── bibtex │ ├── cityscapes.tex │ ├── facades.tex │ ├── handbags.tex │ ├── shoes.tex │ └── transattr.tex ├── combine_A_and_B.py ├── download_cyclegan_dataset.sh ├── download_pix2pix_dataset.sh ├── make_dataset_aligned.py └── prepare_cityscapes_dataset.py ├── docs ├── Dockerfile ├── README_es.md ├── datasets.md ├── docker.md ├── overview.md ├── qa.md └── tips.md ├── environment.yml ├── imgs ├── edges2cats.jpg └── horse2zebra.gif ├── models ├── __init__.py ├── base_model.py ├── colorization_model.py ├── cycle_gan_model.py ├── networks.py ├── pix2pix_model.py ├── template_model.py └── test_model.py ├── options ├── __init__.py ├── base_options.py ├── test_options.py └── train_options.py ├── pix2pix.ipynb ├── requirements.txt ├── scripts ├── conda_deps.sh ├── download_cyclegan_model.sh ├── download_pix2pix_model.sh ├── edges │ ├── PostprocessHED.m │ └── batch_hed.py ├── eval_cityscapes │ ├── caffemodel │ │ └── deploy.prototxt │ ├── cityscapes.py │ ├── download_fcn8s.sh │ ├── evaluate.py │ └── util.py ├── install_deps.sh ├── test_before_push.py ├── test_colorization.sh ├── test_cyclegan.sh ├── test_pix2pix.sh ├── test_single.sh ├── train_colorization.sh ├── train_cyclegan.sh └── train_pix2pix.sh ├── test.py ├── train.py └── util ├── __init__.py ├── get_data.py ├── html.py ├── image_pool.py ├── util.py └── visualizer.py /.gitignore: -------------------------------------------------------------------------------- 1 | .DS_Store 2 | debug* 3 | datasets/ 4 | checkpoints/ 5 | results/ 6 | build/ 7 | dist/ 8 | *.png 9 | torch.egg-info/ 10 | */**/__pycache__ 11 | torch/version.py 12 | torch/csrc/generic/TensorMethods.cpp 13 | torch/lib/*.so* 14 | torch/lib/*.dylib* 15 | torch/lib/*.h 16 | torch/lib/build 17 | torch/lib/tmp_install 18 | torch/lib/include 19 | torch/lib/torch_shm_manager 20 | torch/csrc/cudnn/cuDNN.cpp 21 | torch/csrc/nn/THNN.cwrap 22 | torch/csrc/nn/THNN.cpp 23 | torch/csrc/nn/THCUNN.cwrap 24 | torch/csrc/nn/THCUNN.cpp 25 | torch/csrc/nn/THNN_generic.cwrap 26 | torch/csrc/nn/THNN_generic.cpp 27 | torch/csrc/nn/THNN_generic.h 28 | docs/src/**/* 29 | test/data/legacy_modules.t7 30 | test/data/gpu_tensors.pt 31 | test/htmlcov 32 | test/.coverage 33 | */*.pyc 34 | */**/*.pyc 35 | */**/**/*.pyc 36 | */**/**/**/*.pyc 37 | */**/**/**/**/*.pyc 38 | */*.so* 39 | */**/*.so* 40 | */**/*.dylib* 41 | test/data/legacy_serialized.pt 42 | *~ 43 | .idea 44 | 45 | #Ignore Wandb 46 | wandb/ 47 | -------------------------------------------------------------------------------- /.replit: -------------------------------------------------------------------------------- 1 | language = "python3" 2 | run = "

[Tensorflow] (by Christopher Hesse), [Tensorflow] (by Eyyüb Sariu), [Tensorflow (face2face)] (by Dat Tran), [Tensorflow (film)] (by Arthur Juliani), [Tensorflow (zi2zi)] (by Yuchen Tian), [Chainer] (by mattya), [tf/torch/keras/lasagne] (by tjwei), [Pytorch] (by taey16)

" -------------------------------------------------------------------------------- /CycleGAN.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "colab_type": "text", 7 | "id": "view-in-github" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": { 16 | "colab_type": "text", 17 | "id": "5VIGyIus8Vr7" 18 | }, 19 | "source": [ 20 | "Take a look at the [repository](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix) for more information" 21 | ] 22 | }, 23 | { 24 | "cell_type": "markdown", 25 | "metadata": { 26 | "colab_type": "text", 27 | "id": "7wNjDKdQy35h" 28 | }, 29 | "source": [ 30 | "# Install" 31 | ] 32 | }, 33 | { 34 | "cell_type": "code", 35 | "execution_count": null, 36 | "metadata": { 37 | "colab": {}, 38 | "colab_type": "code", 39 | "id": "TRm-USlsHgEV" 40 | }, 41 | "outputs": [], 42 | "source": [ 43 | "!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix" 44 | ] 45 | }, 46 | { 47 | "cell_type": "code", 48 | "execution_count": null, 49 | "metadata": { 50 | "colab": {}, 51 | "colab_type": "code", 52 | "id": "Pt3igws3eiVp" 53 | }, 54 | "outputs": [], 55 | "source": [ 56 | "import os\n", 57 | "os.chdir('pytorch-CycleGAN-and-pix2pix/')" 58 | ] 59 | }, 60 | { 61 | "cell_type": "code", 62 | "execution_count": null, 63 | "metadata": { 64 | "colab": {}, 65 | "colab_type": "code", 66 | "id": "z1EySlOXwwoa" 67 | }, 68 | "outputs": [], 69 | "source": [ 70 | "!pip install -r requirements.txt" 71 | ] 72 | }, 73 | { 74 | "cell_type": "markdown", 75 | "metadata": { 76 | "colab_type": "text", 77 | "id": "8daqlgVhw29P" 78 | }, 79 | "source": [ 80 | "# Datasets\n", 81 | "\n", 82 | "Download one of the official datasets with:\n", 83 | "\n", 84 | "- `bash ./datasets/download_cyclegan_dataset.sh [apple2orange, summer2winter_yosemite, horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos]`\n", 85 | "\n", 86 | "Or use your own dataset by creating the appropriate folders and adding in the images.\n", 87 | "\n", 88 | "- Create a dataset folder under `/dataset` for your dataset.\n", 89 | "- Create subfolders `testA`, `testB`, `trainA`, and `trainB` under your dataset's folder. Place any images you want to transform from a to b (cat2dog) in the `testA` folder, images you want to transform from b to a (dog2cat) in the `testB` folder, and do the same for the `trainA` and `trainB` folders." 90 | ] 91 | }, 92 | { 93 | "cell_type": "code", 94 | "execution_count": null, 95 | "metadata": { 96 | "colab": {}, 97 | "colab_type": "code", 98 | "id": "vrdOettJxaCc" 99 | }, 100 | "outputs": [], 101 | "source": [ 102 | "!bash ./datasets/download_cyclegan_dataset.sh horse2zebra" 103 | ] 104 | }, 105 | { 106 | "cell_type": "markdown", 107 | "metadata": { 108 | "colab_type": "text", 109 | "id": "gdUz4116xhpm" 110 | }, 111 | "source": [ 112 | "# Pretrained models\n", 113 | "\n", 114 | "Download one of the official pretrained models with:\n", 115 | "\n", 116 | "- `bash ./scripts/download_cyclegan_model.sh [apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower]`\n", 117 | "\n", 118 | "Or add your own pretrained model to `./checkpoints/{NAME}_pretrained/latest_net_G.pt`" 119 | ] 120 | }, 121 | { 122 | "cell_type": "code", 123 | "execution_count": null, 124 | "metadata": { 125 | "colab": {}, 126 | "colab_type": "code", 127 | "id": "B75UqtKhxznS" 128 | }, 129 | "outputs": [], 130 | "source": [ 131 | "!bash ./scripts/download_cyclegan_model.sh horse2zebra" 132 | ] 133 | }, 134 | { 135 | "cell_type": "markdown", 136 | "metadata": { 137 | "colab_type": "text", 138 | "id": "yFw1kDQBx3LN" 139 | }, 140 | "source": [ 141 | "# Training\n", 142 | "\n", 143 | "- `python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan`\n", 144 | "\n", 145 | "Change the `--dataroot` and `--name` to your own dataset's path and model's name. Use `--gpu_ids 0,1,..` to train on multiple GPUs and `--batch_size` to change the batch size. I've found that a batch size of 16 fits onto 4 V100s and can finish training an epoch in ~90s.\n", 146 | "\n", 147 | "Once your model has trained, copy over the last checkpoint to a format that the testing model can automatically detect:\n", 148 | "\n", 149 | "Use `cp ./checkpoints/horse2zebra/latest_net_G_A.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class A to class B and `cp ./checkpoints/horse2zebra/latest_net_G_B.pth ./checkpoints/horse2zebra/latest_net_G.pth` if you want to transform images from class B to class A.\n" 150 | ] 151 | }, 152 | { 153 | "cell_type": "code", 154 | "execution_count": null, 155 | "metadata": { 156 | "colab": {}, 157 | "colab_type": "code", 158 | "id": "0sp7TCT2x9dB" 159 | }, 160 | "outputs": [], 161 | "source": [ 162 | "!python train.py --dataroot ./datasets/horse2zebra --name horse2zebra --model cycle_gan --display_id -1" 163 | ] 164 | }, 165 | { 166 | "cell_type": "markdown", 167 | "metadata": { 168 | "colab_type": "text", 169 | "id": "9UkcaFZiyASl" 170 | }, 171 | "source": [ 172 | "# Testing\n", 173 | "\n", 174 | "- `python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout`\n", 175 | "\n", 176 | "Change the `--dataroot` and `--name` to be consistent with your trained model's configuration.\n", 177 | "\n", 178 | "> from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix:\n", 179 | "> The option --model test is used for generating results of CycleGAN only for one side. This option will automatically set --dataset_mode single, which only loads the images from one set. On the contrary, using --model cycle_gan requires loading and generating results in both directions, which is sometimes unnecessary. The results will be saved at ./results/. Use --results_dir {directory_path_to_save_result} to specify the results directory.\n", 180 | "\n", 181 | "> For your own experiments, you might want to specify --netG, --norm, --no_dropout to match the generator architecture of the trained model." 182 | ] 183 | }, 184 | { 185 | "cell_type": "code", 186 | "execution_count": null, 187 | "metadata": { 188 | "colab": {}, 189 | "colab_type": "code", 190 | "id": "uCsKkEq0yGh0" 191 | }, 192 | "outputs": [], 193 | "source": [ 194 | "!python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout" 195 | ] 196 | }, 197 | { 198 | "cell_type": "markdown", 199 | "metadata": { 200 | "colab_type": "text", 201 | "id": "OzSKIPUByfiN" 202 | }, 203 | "source": [ 204 | "# Visualize" 205 | ] 206 | }, 207 | { 208 | "cell_type": "code", 209 | "execution_count": null, 210 | "metadata": { 211 | "colab": {}, 212 | "colab_type": "code", 213 | "id": "9Mgg8raPyizq" 214 | }, 215 | "outputs": [], 216 | "source": [ 217 | "import matplotlib.pyplot as plt\n", 218 | "\n", 219 | "img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_fake.png')\n", 220 | "plt.imshow(img)" 221 | ] 222 | }, 223 | { 224 | "cell_type": "code", 225 | "execution_count": null, 226 | "metadata": { 227 | "colab": {}, 228 | "colab_type": "code", 229 | "id": "0G3oVH9DyqLQ" 230 | }, 231 | "outputs": [], 232 | "source": [ 233 | "import matplotlib.pyplot as plt\n", 234 | "\n", 235 | "img = plt.imread('./results/horse2zebra_pretrained/test_latest/images/n02381460_1010_real.png')\n", 236 | "plt.imshow(img)" 237 | ] 238 | } 239 | ], 240 | "metadata": { 241 | "accelerator": "GPU", 242 | "colab": { 243 | "collapsed_sections": [], 244 | "include_colab_link": true, 245 | "name": "CycleGAN", 246 | "provenance": [] 247 | }, 248 | "environment": { 249 | "name": "tf2-gpu.2-3.m74", 250 | "type": "gcloud", 251 | "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-3:m74" 252 | }, 253 | "kernelspec": { 254 | "display_name": "Python 3", 255 | "language": "python", 256 | "name": "python3" 257 | }, 258 | "language_info": { 259 | "codemirror_mode": { 260 | "name": "ipython", 261 | "version": 3 262 | }, 263 | "file_extension": ".py", 264 | "mimetype": "text/x-python", 265 | "name": "python", 266 | "nbconvert_exporter": "python", 267 | "pygments_lexer": "ipython3", 268 | "version": "3.7.10" 269 | } 270 | }, 271 | "nbformat": 4, 272 | "nbformat_minor": 4 273 | } 274 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | Copyright (c) 2017, Jun-Yan Zhu and Taesung Park 2 | All rights reserved. 3 | 4 | Redistribution and use in source and binary forms, with or without 5 | modification, are permitted provided that the following conditions are met: 6 | 7 | * Redistributions of source code must retain the above copyright notice, this 8 | list of conditions and the following disclaimer. 9 | 10 | * Redistributions in binary form must reproduce the above copyright notice, 11 | this list of conditions and the following disclaimer in the documentation 12 | and/or other materials provided with the distribution. 13 | 14 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" 15 | AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE 16 | IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE 17 | DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE 18 | FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL 19 | DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR 20 | SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER 21 | CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, 22 | OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE 23 | OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 24 | 25 | 26 | --------------------------- LICENSE FOR pix2pix -------------------------------- 27 | BSD License 28 | 29 | For pix2pix software 30 | Copyright (c) 2016, Phillip Isola and Jun-Yan Zhu 31 | All rights reserved. 32 | 33 | Redistribution and use in source and binary forms, with or without 34 | modification, are permitted provided that the following conditions are met: 35 | 36 | * Redistributions of source code must retain the above copyright notice, this 37 | list of conditions and the following disclaimer. 38 | 39 | * Redistributions in binary form must reproduce the above copyright notice, 40 | this list of conditions and the following disclaimer in the documentation 41 | and/or other materials provided with the distribution. 42 | 43 | ----------------------------- LICENSE FOR DCGAN -------------------------------- 44 | BSD License 45 | 46 | For dcgan.torch software 47 | 48 | Copyright (c) 2015, Facebook, Inc. All rights reserved. 49 | 50 | Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 51 | 52 | Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 53 | 54 | Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 55 | 56 | Neither the name Facebook nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. 57 | 58 | THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. 59 | -------------------------------------------------------------------------------- /data/__init__.py: -------------------------------------------------------------------------------- 1 | """This package includes all the modules related to data loading and preprocessing 2 | 3 | To add a custom dataset class called 'dummy', you need to add a file called 'dummy_dataset.py' and define a subclass 'DummyDataset' inherited from BaseDataset. 4 | You need to implement four functions: 5 | -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). 6 | -- <__len__>: return the size of dataset. 7 | -- <__getitem__>: get a data point from data loader. 8 | -- : (optionally) add dataset-specific options and set default options. 9 | 10 | Now you can use the dataset class by specifying flag '--dataset_mode dummy'. 11 | See our template dataset class 'template_dataset.py' for more details. 12 | """ 13 | import importlib 14 | import torch.utils.data 15 | from data.base_dataset import BaseDataset 16 | 17 | 18 | def find_dataset_using_name(dataset_name): 19 | """Import the module "data/[dataset_name]_dataset.py". 20 | 21 | In the file, the class called DatasetNameDataset() will 22 | be instantiated. It has to be a subclass of BaseDataset, 23 | and it is case-insensitive. 24 | """ 25 | dataset_filename = "data." + dataset_name + "_dataset" 26 | datasetlib = importlib.import_module(dataset_filename) 27 | 28 | dataset = None 29 | target_dataset_name = dataset_name.replace('_', '') + 'dataset' 30 | for name, cls in datasetlib.__dict__.items(): 31 | if name.lower() == target_dataset_name.lower() \ 32 | and issubclass(cls, BaseDataset): 33 | dataset = cls 34 | 35 | if dataset is None: 36 | raise NotImplementedError("In %s.py, there should be a subclass of BaseDataset with class name that matches %s in lowercase." % (dataset_filename, target_dataset_name)) 37 | 38 | return dataset 39 | 40 | 41 | def get_option_setter(dataset_name): 42 | """Return the static method of the dataset class.""" 43 | dataset_class = find_dataset_using_name(dataset_name) 44 | return dataset_class.modify_commandline_options 45 | 46 | 47 | def create_dataset(opt): 48 | """Create a dataset given the option. 49 | 50 | This function wraps the class CustomDatasetDataLoader. 51 | This is the main interface between this package and 'train.py'/'test.py' 52 | 53 | Example: 54 | >>> from data import create_dataset 55 | >>> dataset = create_dataset(opt) 56 | """ 57 | data_loader = CustomDatasetDataLoader(opt) 58 | dataset = data_loader.load_data() 59 | return dataset 60 | 61 | 62 | class CustomDatasetDataLoader(): 63 | """Wrapper class of Dataset class that performs multi-threaded data loading""" 64 | 65 | def __init__(self, opt): 66 | """Initialize this class 67 | 68 | Step 1: create a dataset instance given the name [dataset_mode] 69 | Step 2: create a multi-threaded data loader. 70 | """ 71 | self.opt = opt 72 | dataset_class = find_dataset_using_name(opt.dataset_mode) 73 | self.dataset = dataset_class(opt) 74 | print("dataset [%s] was created" % type(self.dataset).__name__) 75 | self.dataloader = torch.utils.data.DataLoader( 76 | self.dataset, 77 | batch_size=opt.batch_size, 78 | shuffle=not opt.serial_batches, 79 | num_workers=int(opt.num_threads)) 80 | 81 | def load_data(self): 82 | return self 83 | 84 | def __len__(self): 85 | """Return the number of data in the dataset""" 86 | return min(len(self.dataset), self.opt.max_dataset_size) 87 | 88 | def __iter__(self): 89 | """Return a batch of data""" 90 | for i, data in enumerate(self.dataloader): 91 | if i * self.opt.batch_size >= self.opt.max_dataset_size: 92 | break 93 | yield data 94 | -------------------------------------------------------------------------------- /data/aligned_dataset.py: -------------------------------------------------------------------------------- 1 | import os 2 | from data.base_dataset import BaseDataset, get_params, get_transform 3 | from data.image_folder import make_dataset 4 | from PIL import Image 5 | 6 | 7 | class AlignedDataset(BaseDataset): 8 | """A dataset class for paired image dataset. 9 | 10 | It assumes that the directory '/path/to/data/train' contains image pairs in the form of {A,B}. 11 | During test time, you need to prepare a directory '/path/to/data/test'. 12 | """ 13 | 14 | def __init__(self, opt): 15 | """Initialize this dataset class. 16 | 17 | Parameters: 18 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 19 | """ 20 | BaseDataset.__init__(self, opt) 21 | self.dir_AB = os.path.join(opt.dataroot, opt.phase) # get the image directory 22 | self.AB_paths = sorted(make_dataset(self.dir_AB, opt.max_dataset_size)) # get image paths 23 | assert(self.opt.load_size >= self.opt.crop_size) # crop_size should be smaller than the size of loaded image 24 | self.input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc 25 | self.output_nc = self.opt.input_nc if self.opt.direction == 'BtoA' else self.opt.output_nc 26 | 27 | def __getitem__(self, index): 28 | """Return a data point and its metadata information. 29 | 30 | Parameters: 31 | index - - a random integer for data indexing 32 | 33 | Returns a dictionary that contains A, B, A_paths and B_paths 34 | A (tensor) - - an image in the input domain 35 | B (tensor) - - its corresponding image in the target domain 36 | A_paths (str) - - image paths 37 | B_paths (str) - - image paths (same as A_paths) 38 | """ 39 | # read a image given a random integer index 40 | AB_path = self.AB_paths[index] 41 | AB = Image.open(AB_path).convert('RGB') 42 | # split AB image into A and B 43 | w, h = AB.size 44 | w2 = int(w / 2) 45 | A = AB.crop((0, 0, w2, h)) 46 | B = AB.crop((w2, 0, w, h)) 47 | 48 | # apply the same transform to both A and B 49 | transform_params = get_params(self.opt, A.size) 50 | A_transform = get_transform(self.opt, transform_params, grayscale=(self.input_nc == 1)) 51 | B_transform = get_transform(self.opt, transform_params, grayscale=(self.output_nc == 1)) 52 | 53 | A = A_transform(A) 54 | B = B_transform(B) 55 | 56 | return {'A': A, 'B': B, 'A_paths': AB_path, 'B_paths': AB_path} 57 | 58 | def __len__(self): 59 | """Return the total number of images in the dataset.""" 60 | return len(self.AB_paths) 61 | -------------------------------------------------------------------------------- /data/base_dataset.py: -------------------------------------------------------------------------------- 1 | """This module implements an abstract base class (ABC) 'BaseDataset' for datasets. 2 | 3 | It also includes common transformation functions (e.g., get_transform, __scale_width), which can be later used in subclasses. 4 | """ 5 | import random 6 | import numpy as np 7 | import torch.utils.data as data 8 | from PIL import Image 9 | import torchvision.transforms as transforms 10 | from abc import ABC, abstractmethod 11 | 12 | 13 | class BaseDataset(data.Dataset, ABC): 14 | """This class is an abstract base class (ABC) for datasets. 15 | 16 | To create a subclass, you need to implement the following four functions: 17 | -- <__init__>: initialize the class, first call BaseDataset.__init__(self, opt). 18 | -- <__len__>: return the size of dataset. 19 | -- <__getitem__>: get a data point. 20 | -- : (optionally) add dataset-specific options and set default options. 21 | """ 22 | 23 | def __init__(self, opt): 24 | """Initialize the class; save the options in the class 25 | 26 | Parameters: 27 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 28 | """ 29 | self.opt = opt 30 | self.root = opt.dataroot 31 | 32 | @staticmethod 33 | def modify_commandline_options(parser, is_train): 34 | """Add new dataset-specific options, and rewrite default values for existing options. 35 | 36 | Parameters: 37 | parser -- original option parser 38 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 39 | 40 | Returns: 41 | the modified parser. 42 | """ 43 | return parser 44 | 45 | @abstractmethod 46 | def __len__(self): 47 | """Return the total number of images in the dataset.""" 48 | return 0 49 | 50 | @abstractmethod 51 | def __getitem__(self, index): 52 | """Return a data point and its metadata information. 53 | 54 | Parameters: 55 | index - - a random integer for data indexing 56 | 57 | Returns: 58 | a dictionary of data with their names. It ususally contains the data itself and its metadata information. 59 | """ 60 | pass 61 | 62 | 63 | def get_params(opt, size): 64 | w, h = size 65 | new_h = h 66 | new_w = w 67 | if opt.preprocess == 'resize_and_crop': 68 | new_h = new_w = opt.load_size 69 | elif opt.preprocess == 'scale_width_and_crop': 70 | new_w = opt.load_size 71 | new_h = opt.load_size * h // w 72 | 73 | x = random.randint(0, np.maximum(0, new_w - opt.crop_size)) 74 | y = random.randint(0, np.maximum(0, new_h - opt.crop_size)) 75 | 76 | flip = random.random() > 0.5 77 | 78 | return {'crop_pos': (x, y), 'flip': flip} 79 | 80 | 81 | def get_transform(opt, params=None, grayscale=False, method=transforms.InterpolationMode.BICUBIC, convert=True): 82 | transform_list = [] 83 | if grayscale: 84 | transform_list.append(transforms.Grayscale(1)) 85 | if 'resize' in opt.preprocess: 86 | osize = [opt.load_size, opt.load_size] 87 | transform_list.append(transforms.Resize(osize, method)) 88 | elif 'scale_width' in opt.preprocess: 89 | transform_list.append(transforms.Lambda(lambda img: __scale_width(img, opt.load_size, opt.crop_size, method))) 90 | 91 | if 'crop' in opt.preprocess: 92 | if params is None: 93 | transform_list.append(transforms.RandomCrop(opt.crop_size)) 94 | else: 95 | transform_list.append(transforms.Lambda(lambda img: __crop(img, params['crop_pos'], opt.crop_size))) 96 | 97 | if opt.preprocess == 'none': 98 | transform_list.append(transforms.Lambda(lambda img: __make_power_2(img, base=4, method=method))) 99 | 100 | if not opt.no_flip: 101 | if params is None: 102 | transform_list.append(transforms.RandomHorizontalFlip()) 103 | elif params['flip']: 104 | transform_list.append(transforms.Lambda(lambda img: __flip(img, params['flip']))) 105 | 106 | if convert: 107 | transform_list += [transforms.ToTensor()] 108 | if grayscale: 109 | transform_list += [transforms.Normalize((0.5,), (0.5,))] 110 | else: 111 | transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))] 112 | return transforms.Compose(transform_list) 113 | 114 | 115 | def __transforms2pil_resize(method): 116 | mapper = {transforms.InterpolationMode.BILINEAR: Image.BILINEAR, 117 | transforms.InterpolationMode.BICUBIC: Image.BICUBIC, 118 | transforms.InterpolationMode.NEAREST: Image.NEAREST, 119 | transforms.InterpolationMode.LANCZOS: Image.LANCZOS,} 120 | return mapper[method] 121 | 122 | 123 | def __make_power_2(img, base, method=transforms.InterpolationMode.BICUBIC): 124 | method = __transforms2pil_resize(method) 125 | ow, oh = img.size 126 | h = int(round(oh / base) * base) 127 | w = int(round(ow / base) * base) 128 | if h == oh and w == ow: 129 | return img 130 | 131 | __print_size_warning(ow, oh, w, h) 132 | return img.resize((w, h), method) 133 | 134 | 135 | def __scale_width(img, target_size, crop_size, method=transforms.InterpolationMode.BICUBIC): 136 | method = __transforms2pil_resize(method) 137 | ow, oh = img.size 138 | if ow == target_size and oh >= crop_size: 139 | return img 140 | w = target_size 141 | h = int(max(target_size * oh / ow, crop_size)) 142 | return img.resize((w, h), method) 143 | 144 | 145 | def __crop(img, pos, size): 146 | ow, oh = img.size 147 | x1, y1 = pos 148 | tw = th = size 149 | if (ow > tw or oh > th): 150 | return img.crop((x1, y1, x1 + tw, y1 + th)) 151 | return img 152 | 153 | 154 | def __flip(img, flip): 155 | if flip: 156 | return img.transpose(Image.FLIP_LEFT_RIGHT) 157 | return img 158 | 159 | 160 | def __print_size_warning(ow, oh, w, h): 161 | """Print warning information about image size(only print once)""" 162 | if not hasattr(__print_size_warning, 'has_printed'): 163 | print("The image size needs to be a multiple of 4. " 164 | "The loaded image size was (%d, %d), so it was adjusted to " 165 | "(%d, %d). This adjustment will be done to all images " 166 | "whose sizes are not multiples of 4" % (ow, oh, w, h)) 167 | __print_size_warning.has_printed = True 168 | -------------------------------------------------------------------------------- /data/colorization_dataset.py: -------------------------------------------------------------------------------- 1 | import os 2 | from data.base_dataset import BaseDataset, get_transform 3 | from data.image_folder import make_dataset 4 | from skimage import color # require skimage 5 | from PIL import Image 6 | import numpy as np 7 | import torchvision.transforms as transforms 8 | 9 | 10 | class ColorizationDataset(BaseDataset): 11 | """This dataset class can load a set of natural images in RGB, and convert RGB format into (L, ab) pairs in Lab color space. 12 | 13 | This dataset is required by pix2pix-based colorization model ('--model colorization') 14 | """ 15 | @staticmethod 16 | def modify_commandline_options(parser, is_train): 17 | """Add new dataset-specific options, and rewrite default values for existing options. 18 | 19 | Parameters: 20 | parser -- original option parser 21 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 22 | 23 | Returns: 24 | the modified parser. 25 | 26 | By default, the number of channels for input image is 1 (L) and 27 | the number of channels for output image is 2 (ab). The direction is from A to B 28 | """ 29 | parser.set_defaults(input_nc=1, output_nc=2, direction='AtoB') 30 | return parser 31 | 32 | def __init__(self, opt): 33 | """Initialize this dataset class. 34 | 35 | Parameters: 36 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 37 | """ 38 | BaseDataset.__init__(self, opt) 39 | self.dir = os.path.join(opt.dataroot, opt.phase) 40 | self.AB_paths = sorted(make_dataset(self.dir, opt.max_dataset_size)) 41 | assert(opt.input_nc == 1 and opt.output_nc == 2 and opt.direction == 'AtoB') 42 | self.transform = get_transform(self.opt, convert=False) 43 | 44 | def __getitem__(self, index): 45 | """Return a data point and its metadata information. 46 | 47 | Parameters: 48 | index - - a random integer for data indexing 49 | 50 | Returns a dictionary that contains A, B, A_paths and B_paths 51 | A (tensor) - - the L channel of an image 52 | B (tensor) - - the ab channels of the same image 53 | A_paths (str) - - image paths 54 | B_paths (str) - - image paths (same as A_paths) 55 | """ 56 | path = self.AB_paths[index] 57 | im = Image.open(path).convert('RGB') 58 | im = self.transform(im) 59 | im = np.array(im) 60 | lab = color.rgb2lab(im).astype(np.float32) 61 | lab_t = transforms.ToTensor()(lab) 62 | A = lab_t[[0], ...] / 50.0 - 1.0 63 | B = lab_t[[1, 2], ...] / 110.0 64 | return {'A': A, 'B': B, 'A_paths': path, 'B_paths': path} 65 | 66 | def __len__(self): 67 | """Return the total number of images in the dataset.""" 68 | return len(self.AB_paths) 69 | -------------------------------------------------------------------------------- /data/image_folder.py: -------------------------------------------------------------------------------- 1 | """A modified image folder class 2 | 3 | We modify the official PyTorch image folder (https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) 4 | so that this class can load images from both current directory and its subdirectories. 5 | """ 6 | 7 | import torch.utils.data as data 8 | 9 | from PIL import Image 10 | import os 11 | 12 | IMG_EXTENSIONS = [ 13 | '.jpg', '.JPG', '.jpeg', '.JPEG', 14 | '.png', '.PNG', '.ppm', '.PPM', '.bmp', '.BMP', 15 | '.tif', '.TIF', '.tiff', '.TIFF', 16 | ] 17 | 18 | 19 | def is_image_file(filename): 20 | return any(filename.endswith(extension) for extension in IMG_EXTENSIONS) 21 | 22 | 23 | def make_dataset(dir, max_dataset_size=float("inf")): 24 | images = [] 25 | assert os.path.isdir(dir), '%s is not a valid directory' % dir 26 | 27 | for root, _, fnames in sorted(os.walk(dir)): 28 | for fname in fnames: 29 | if is_image_file(fname): 30 | path = os.path.join(root, fname) 31 | images.append(path) 32 | return images[:min(max_dataset_size, len(images))] 33 | 34 | 35 | def default_loader(path): 36 | return Image.open(path).convert('RGB') 37 | 38 | 39 | class ImageFolder(data.Dataset): 40 | 41 | def __init__(self, root, transform=None, return_paths=False, 42 | loader=default_loader): 43 | imgs = make_dataset(root) 44 | if len(imgs) == 0: 45 | raise(RuntimeError("Found 0 images in: " + root + "\n" 46 | "Supported image extensions are: " + ",".join(IMG_EXTENSIONS))) 47 | 48 | self.root = root 49 | self.imgs = imgs 50 | self.transform = transform 51 | self.return_paths = return_paths 52 | self.loader = loader 53 | 54 | def __getitem__(self, index): 55 | path = self.imgs[index] 56 | img = self.loader(path) 57 | if self.transform is not None: 58 | img = self.transform(img) 59 | if self.return_paths: 60 | return img, path 61 | else: 62 | return img 63 | 64 | def __len__(self): 65 | return len(self.imgs) 66 | -------------------------------------------------------------------------------- /data/single_dataset.py: -------------------------------------------------------------------------------- 1 | from data.base_dataset import BaseDataset, get_transform 2 | from data.image_folder import make_dataset 3 | from PIL import Image 4 | 5 | 6 | class SingleDataset(BaseDataset): 7 | """This dataset class can load a set of images specified by the path --dataroot /path/to/data. 8 | 9 | It can be used for generating CycleGAN results only for one side with the model option '-model test'. 10 | """ 11 | 12 | def __init__(self, opt): 13 | """Initialize this dataset class. 14 | 15 | Parameters: 16 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 17 | """ 18 | BaseDataset.__init__(self, opt) 19 | self.A_paths = sorted(make_dataset(opt.dataroot, opt.max_dataset_size)) 20 | input_nc = self.opt.output_nc if self.opt.direction == 'BtoA' else self.opt.input_nc 21 | self.transform = get_transform(opt, grayscale=(input_nc == 1)) 22 | 23 | def __getitem__(self, index): 24 | """Return a data point and its metadata information. 25 | 26 | Parameters: 27 | index - - a random integer for data indexing 28 | 29 | Returns a dictionary that contains A and A_paths 30 | A(tensor) - - an image in one domain 31 | A_paths(str) - - the path of the image 32 | """ 33 | A_path = self.A_paths[index] 34 | A_img = Image.open(A_path).convert('RGB') 35 | A = self.transform(A_img) 36 | return {'A': A, 'A_paths': A_path} 37 | 38 | def __len__(self): 39 | """Return the total number of images in the dataset.""" 40 | return len(self.A_paths) 41 | -------------------------------------------------------------------------------- /data/template_dataset.py: -------------------------------------------------------------------------------- 1 | """Dataset class template 2 | 3 | This module provides a template for users to implement custom datasets. 4 | You can specify '--dataset_mode template' to use this dataset. 5 | The class name should be consistent with both the filename and its dataset_mode option. 6 | The filename should be _dataset.py 7 | The class name should be Dataset.py 8 | You need to implement the following functions: 9 | -- : Add dataset-specific options and rewrite default values for existing options. 10 | -- <__init__>: Initialize this dataset class. 11 | -- <__getitem__>: Return a data point and its metadata information. 12 | -- <__len__>: Return the number of images. 13 | """ 14 | from data.base_dataset import BaseDataset, get_transform 15 | # from data.image_folder import make_dataset 16 | # from PIL import Image 17 | 18 | 19 | class TemplateDataset(BaseDataset): 20 | """A template dataset class for you to implement custom datasets.""" 21 | @staticmethod 22 | def modify_commandline_options(parser, is_train): 23 | """Add new dataset-specific options, and rewrite default values for existing options. 24 | 25 | Parameters: 26 | parser -- original option parser 27 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 28 | 29 | Returns: 30 | the modified parser. 31 | """ 32 | parser.add_argument('--new_dataset_option', type=float, default=1.0, help='new dataset option') 33 | parser.set_defaults(max_dataset_size=10, new_dataset_option=2.0) # specify dataset-specific default values 34 | return parser 35 | 36 | def __init__(self, opt): 37 | """Initialize this dataset class. 38 | 39 | Parameters: 40 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 41 | 42 | A few things can be done here. 43 | - save the options (have been done in BaseDataset) 44 | - get image paths and meta information of the dataset. 45 | - define the image transformation. 46 | """ 47 | # save the option and dataset root 48 | BaseDataset.__init__(self, opt) 49 | # get the image paths of your dataset; 50 | self.image_paths = [] # You can call sorted(make_dataset(self.root, opt.max_dataset_size)) to get all the image paths under the directory self.root 51 | # define the default transform function. You can use ; You can also define your custom transform function 52 | self.transform = get_transform(opt) 53 | 54 | def __getitem__(self, index): 55 | """Return a data point and its metadata information. 56 | 57 | Parameters: 58 | index -- a random integer for data indexing 59 | 60 | Returns: 61 | a dictionary of data with their names. It usually contains the data itself and its metadata information. 62 | 63 | Step 1: get a random image path: e.g., path = self.image_paths[index] 64 | Step 2: load your data from the disk: e.g., image = Image.open(path).convert('RGB'). 65 | Step 3: convert your data to a PyTorch tensor. You can use helpder functions such as self.transform. e.g., data = self.transform(image) 66 | Step 4: return a data point as a dictionary. 67 | """ 68 | path = 'temp' # needs to be a string 69 | data_A = None # needs to be a tensor 70 | data_B = None # needs to be a tensor 71 | return {'data_A': data_A, 'data_B': data_B, 'path': path} 72 | 73 | def __len__(self): 74 | """Return the total number of images.""" 75 | return len(self.image_paths) 76 | -------------------------------------------------------------------------------- /data/unaligned_dataset.py: -------------------------------------------------------------------------------- 1 | import os 2 | from data.base_dataset import BaseDataset, get_transform 3 | from data.image_folder import make_dataset 4 | from PIL import Image 5 | import random 6 | 7 | 8 | class UnalignedDataset(BaseDataset): 9 | """ 10 | This dataset class can load unaligned/unpaired datasets. 11 | 12 | It requires two directories to host training images from domain A '/path/to/data/trainA' 13 | and from domain B '/path/to/data/trainB' respectively. 14 | You can train the model with the dataset flag '--dataroot /path/to/data'. 15 | Similarly, you need to prepare two directories: 16 | '/path/to/data/testA' and '/path/to/data/testB' during test time. 17 | """ 18 | 19 | def __init__(self, opt): 20 | """Initialize this dataset class. 21 | 22 | Parameters: 23 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 24 | """ 25 | BaseDataset.__init__(self, opt) 26 | self.dir_A = os.path.join(opt.dataroot, opt.phase + 'A') # create a path '/path/to/data/trainA' 27 | self.dir_B = os.path.join(opt.dataroot, opt.phase + 'B') # create a path '/path/to/data/trainB' 28 | 29 | self.A_paths = sorted(make_dataset(self.dir_A, opt.max_dataset_size)) # load images from '/path/to/data/trainA' 30 | self.B_paths = sorted(make_dataset(self.dir_B, opt.max_dataset_size)) # load images from '/path/to/data/trainB' 31 | self.A_size = len(self.A_paths) # get the size of dataset A 32 | self.B_size = len(self.B_paths) # get the size of dataset B 33 | btoA = self.opt.direction == 'BtoA' 34 | input_nc = self.opt.output_nc if btoA else self.opt.input_nc # get the number of channels of input image 35 | output_nc = self.opt.input_nc if btoA else self.opt.output_nc # get the number of channels of output image 36 | self.transform_A = get_transform(self.opt, grayscale=(input_nc == 1)) 37 | self.transform_B = get_transform(self.opt, grayscale=(output_nc == 1)) 38 | 39 | def __getitem__(self, index): 40 | """Return a data point and its metadata information. 41 | 42 | Parameters: 43 | index (int) -- a random integer for data indexing 44 | 45 | Returns a dictionary that contains A, B, A_paths and B_paths 46 | A (tensor) -- an image in the input domain 47 | B (tensor) -- its corresponding image in the target domain 48 | A_paths (str) -- image paths 49 | B_paths (str) -- image paths 50 | """ 51 | A_path = self.A_paths[index % self.A_size] # make sure index is within then range 52 | if self.opt.serial_batches: # make sure index is within then range 53 | index_B = index % self.B_size 54 | else: # randomize the index for domain B to avoid fixed pairs. 55 | index_B = random.randint(0, self.B_size - 1) 56 | B_path = self.B_paths[index_B] 57 | A_img = Image.open(A_path).convert('RGB') 58 | B_img = Image.open(B_path).convert('RGB') 59 | # apply image transformation 60 | A = self.transform_A(A_img) 61 | B = self.transform_B(B_img) 62 | 63 | return {'A': A, 'B': B, 'A_paths': A_path, 'B_paths': B_path} 64 | 65 | def __len__(self): 66 | """Return the total number of images in the dataset. 67 | 68 | As we have two datasets with potentially different number of images, 69 | we take a maximum of 70 | """ 71 | return max(self.A_size, self.B_size) 72 | -------------------------------------------------------------------------------- /datasets/bibtex/cityscapes.tex: -------------------------------------------------------------------------------- 1 | @inproceedings{Cordts2016Cityscapes, 2 | title={The Cityscapes Dataset for Semantic Urban Scene Understanding}, 3 | author={Cordts, Marius and Omran, Mohamed and Ramos, Sebastian and Rehfeld, Timo and Enzweiler, Markus and Benenson, Rodrigo and Franke, Uwe and Roth, Stefan and Schiele, Bernt}, 4 | booktitle={Proc. of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR)}, 5 | year={2016} 6 | } 7 | -------------------------------------------------------------------------------- /datasets/bibtex/facades.tex: -------------------------------------------------------------------------------- 1 | @INPROCEEDINGS{Tylecek13, 2 | author = {Radim Tyle{\v c}ek, Radim {\v S}{\' a}ra}, 3 | title = {Spatial Pattern Templates for Recognition of Objects with Regular Structure}, 4 | booktitle = {Proc. GCPR}, 5 | year = {2013}, 6 | address = {Saarbrucken, Germany}, 7 | } 8 | -------------------------------------------------------------------------------- /datasets/bibtex/handbags.tex: -------------------------------------------------------------------------------- 1 | @inproceedings{zhu2016generative, 2 | title={Generative Visual Manipulation on the Natural Image Manifold}, 3 | author={Zhu, Jun-Yan and Kr{\"a}henb{\"u}hl, Philipp and Shechtman, Eli and Efros, Alexei A.}, 4 | booktitle={Proceedings of European Conference on Computer Vision (ECCV)}, 5 | year={2016} 6 | } 7 | 8 | @InProceedings{xie15hed, 9 | author = {"Xie, Saining and Tu, Zhuowen"}, 10 | Title = {Holistically-Nested Edge Detection}, 11 | Booktitle = "Proceedings of IEEE International Conference on Computer Vision", 12 | Year = {2015}, 13 | } 14 | -------------------------------------------------------------------------------- /datasets/bibtex/shoes.tex: -------------------------------------------------------------------------------- 1 | @InProceedings{fine-grained, 2 | author = {A. Yu and K. Grauman}, 3 | title = {{F}ine-{G}rained {V}isual {C}omparisons with {L}ocal {L}earning}, 4 | booktitle = {Computer Vision and Pattern Recognition (CVPR)}, 5 | month = {June}, 6 | year = {2014} 7 | } 8 | 9 | @InProceedings{xie15hed, 10 | author = {"Xie, Saining and Tu, Zhuowen"}, 11 | Title = {Holistically-Nested Edge Detection}, 12 | Booktitle = "Proceedings of IEEE International Conference on Computer Vision", 13 | Year = {2015}, 14 | } 15 | -------------------------------------------------------------------------------- /datasets/bibtex/transattr.tex: -------------------------------------------------------------------------------- 1 | @article {Laffont14, 2 | title = {Transient Attributes for High-Level Understanding and Editing of Outdoor Scenes}, 3 | author = {Pierre-Yves Laffont and Zhile Ren and Xiaofeng Tao and Chao Qian and James Hays}, 4 | journal = {ACM Transactions on Graphics (proceedings of SIGGRAPH)}, 5 | volume = {33}, 6 | number = {4}, 7 | year = {2014} 8 | } 9 | -------------------------------------------------------------------------------- /datasets/combine_A_and_B.py: -------------------------------------------------------------------------------- 1 | import os 2 | import numpy as np 3 | import cv2 4 | import argparse 5 | from multiprocessing import Pool 6 | 7 | 8 | def image_write(path_A, path_B, path_AB): 9 | im_A = cv2.imread(path_A, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR 10 | im_B = cv2.imread(path_B, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR 11 | im_AB = np.concatenate([im_A, im_B], 1) 12 | cv2.imwrite(path_AB, im_AB) 13 | 14 | 15 | parser = argparse.ArgumentParser('create image pairs') 16 | parser.add_argument('--fold_A', dest='fold_A', help='input directory for image A', type=str, default='../dataset/50kshoes_edges') 17 | parser.add_argument('--fold_B', dest='fold_B', help='input directory for image B', type=str, default='../dataset/50kshoes_jpg') 18 | parser.add_argument('--fold_AB', dest='fold_AB', help='output directory', type=str, default='../dataset/test_AB') 19 | parser.add_argument('--num_imgs', dest='num_imgs', help='number of images', type=int, default=1000000) 20 | parser.add_argument('--use_AB', dest='use_AB', help='if true: (0001_A, 0001_B) to (0001_AB)', action='store_true') 21 | parser.add_argument('--no_multiprocessing', dest='no_multiprocessing', help='If used, chooses single CPU execution instead of parallel execution', action='store_true',default=False) 22 | args = parser.parse_args() 23 | 24 | for arg in vars(args): 25 | print('[%s] = ' % arg, getattr(args, arg)) 26 | 27 | splits = os.listdir(args.fold_A) 28 | 29 | if not args.no_multiprocessing: 30 | pool=Pool() 31 | 32 | for sp in splits: 33 | img_fold_A = os.path.join(args.fold_A, sp) 34 | img_fold_B = os.path.join(args.fold_B, sp) 35 | img_list = os.listdir(img_fold_A) 36 | if args.use_AB: 37 | img_list = [img_path for img_path in img_list if '_A.' in img_path] 38 | 39 | num_imgs = min(args.num_imgs, len(img_list)) 40 | print('split = %s, use %d/%d images' % (sp, num_imgs, len(img_list))) 41 | img_fold_AB = os.path.join(args.fold_AB, sp) 42 | if not os.path.isdir(img_fold_AB): 43 | os.makedirs(img_fold_AB) 44 | print('split = %s, number of images = %d' % (sp, num_imgs)) 45 | for n in range(num_imgs): 46 | name_A = img_list[n] 47 | path_A = os.path.join(img_fold_A, name_A) 48 | if args.use_AB: 49 | name_B = name_A.replace('_A.', '_B.') 50 | else: 51 | name_B = name_A 52 | path_B = os.path.join(img_fold_B, name_B) 53 | if os.path.isfile(path_A) and os.path.isfile(path_B): 54 | name_AB = name_A 55 | if args.use_AB: 56 | name_AB = name_AB.replace('_A.', '.') # remove _A 57 | path_AB = os.path.join(img_fold_AB, name_AB) 58 | if not args.no_multiprocessing: 59 | pool.apply_async(image_write, args=(path_A, path_B, path_AB)) 60 | else: 61 | im_A = cv2.imread(path_A, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR 62 | im_B = cv2.imread(path_B, 1) # python2: cv2.CV_LOAD_IMAGE_COLOR; python3: cv2.IMREAD_COLOR 63 | im_AB = np.concatenate([im_A, im_B], 1) 64 | cv2.imwrite(path_AB, im_AB) 65 | if not args.no_multiprocessing: 66 | pool.close() 67 | pool.join() 68 | -------------------------------------------------------------------------------- /datasets/download_cyclegan_dataset.sh: -------------------------------------------------------------------------------- 1 | FILE=$1 2 | 3 | if [[ $FILE != "ae_photos" && $FILE != "apple2orange" && $FILE != "summer2winter_yosemite" && $FILE != "horse2zebra" && $FILE != "monet2photo" && $FILE != "cezanne2photo" && $FILE != "ukiyoe2photo" && $FILE != "vangogh2photo" && $FILE != "maps" && $FILE != "cityscapes" && $FILE != "facades" && $FILE != "iphone2dslr_flower" && $FILE != "mini" && $FILE != "mini_pix2pix" && $FILE != "mini_colorization" ]]; then 4 | echo "Available datasets are: apple2orange, summer2winter_yosemite, horse2zebra, monet2photo, cezanne2photo, ukiyoe2photo, vangogh2photo, maps, cityscapes, facades, iphone2dslr_flower, ae_photos" 5 | exit 1 6 | fi 7 | 8 | if [[ $FILE == "cityscapes" ]]; then 9 | echo "Due to license issue, we cannot provide the Cityscapes dataset from our repository. Please download the Cityscapes dataset from https://cityscapes-dataset.com, and use the script ./datasets/prepare_cityscapes_dataset.py." 10 | echo "You need to download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip. For further instruction, please read ./datasets/prepare_cityscapes_dataset.py" 11 | exit 1 12 | fi 13 | 14 | echo "Specified [$FILE]" 15 | URL=http://efrosgans.eecs.berkeley.edu/cyclegan/datasets/$FILE.zip 16 | ZIP_FILE=./datasets/$FILE.zip 17 | TARGET_DIR=./datasets/$FILE/ 18 | wget -N $URL -O $ZIP_FILE 19 | mkdir $TARGET_DIR 20 | unzip $ZIP_FILE -d ./datasets/ 21 | rm $ZIP_FILE 22 | -------------------------------------------------------------------------------- /datasets/download_pix2pix_dataset.sh: -------------------------------------------------------------------------------- 1 | FILE=$1 2 | 3 | if [[ $FILE != "cityscapes" && $FILE != "night2day" && $FILE != "edges2handbags" && $FILE != "edges2shoes" && $FILE != "facades" && $FILE != "maps" ]]; then 4 | echo "Available datasets are cityscapes, night2day, edges2handbags, edges2shoes, facades, maps" 5 | exit 1 6 | fi 7 | 8 | if [[ $FILE == "cityscapes" ]]; then 9 | echo "Due to license issue, we cannot provide the Cityscapes dataset from our repository. Please download the Cityscapes dataset from https://cityscapes-dataset.com, and use the script ./datasets/prepare_cityscapes_dataset.py." 10 | echo "You need to download gtFine_trainvaltest.zip and leftImg8bit_trainvaltest.zip. For further instruction, please read ./datasets/prepare_cityscapes_dataset.py" 11 | exit 1 12 | fi 13 | 14 | echo "Specified [$FILE]" 15 | 16 | URL=http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/$FILE.tar.gz 17 | TAR_FILE=./datasets/$FILE.tar.gz 18 | TARGET_DIR=./datasets/$FILE/ 19 | wget -N $URL -O $TAR_FILE 20 | mkdir -p $TARGET_DIR 21 | tar -zxvf $TAR_FILE -C ./datasets/ 22 | rm $TAR_FILE 23 | -------------------------------------------------------------------------------- /datasets/make_dataset_aligned.py: -------------------------------------------------------------------------------- 1 | import os 2 | 3 | from PIL import Image 4 | 5 | 6 | def get_file_paths(folder): 7 | image_file_paths = [] 8 | for root, dirs, filenames in os.walk(folder): 9 | filenames = sorted(filenames) 10 | for filename in filenames: 11 | input_path = os.path.abspath(root) 12 | file_path = os.path.join(input_path, filename) 13 | if filename.endswith('.png') or filename.endswith('.jpg'): 14 | image_file_paths.append(file_path) 15 | 16 | break # prevent descending into subfolders 17 | return image_file_paths 18 | 19 | 20 | def align_images(a_file_paths, b_file_paths, target_path): 21 | if not os.path.exists(target_path): 22 | os.makedirs(target_path) 23 | 24 | for i in range(len(a_file_paths)): 25 | img_a = Image.open(a_file_paths[i]) 26 | img_b = Image.open(b_file_paths[i]) 27 | assert(img_a.size == img_b.size) 28 | 29 | aligned_image = Image.new("RGB", (img_a.size[0] * 2, img_a.size[1])) 30 | aligned_image.paste(img_a, (0, 0)) 31 | aligned_image.paste(img_b, (img_a.size[0], 0)) 32 | aligned_image.save(os.path.join(target_path, '{:04d}.jpg'.format(i))) 33 | 34 | 35 | if __name__ == '__main__': 36 | import argparse 37 | parser = argparse.ArgumentParser() 38 | parser.add_argument( 39 | '--dataset-path', 40 | dest='dataset_path', 41 | help='Which folder to process (it should have subfolders testA, testB, trainA and trainB' 42 | ) 43 | args = parser.parse_args() 44 | 45 | dataset_folder = args.dataset_path 46 | print(dataset_folder) 47 | 48 | test_a_path = os.path.join(dataset_folder, 'testA') 49 | test_b_path = os.path.join(dataset_folder, 'testB') 50 | test_a_file_paths = get_file_paths(test_a_path) 51 | test_b_file_paths = get_file_paths(test_b_path) 52 | assert(len(test_a_file_paths) == len(test_b_file_paths)) 53 | test_path = os.path.join(dataset_folder, 'test') 54 | 55 | train_a_path = os.path.join(dataset_folder, 'trainA') 56 | train_b_path = os.path.join(dataset_folder, 'trainB') 57 | train_a_file_paths = get_file_paths(train_a_path) 58 | train_b_file_paths = get_file_paths(train_b_path) 59 | assert(len(train_a_file_paths) == len(train_b_file_paths)) 60 | train_path = os.path.join(dataset_folder, 'train') 61 | 62 | align_images(test_a_file_paths, test_b_file_paths, test_path) 63 | align_images(train_a_file_paths, train_b_file_paths, train_path) 64 | -------------------------------------------------------------------------------- /datasets/prepare_cityscapes_dataset.py: -------------------------------------------------------------------------------- 1 | import os 2 | import glob 3 | from PIL import Image 4 | 5 | help_msg = """ 6 | The dataset can be downloaded from https://cityscapes-dataset.com. 7 | Please download the datasets [gtFine_trainvaltest.zip] and [leftImg8bit_trainvaltest.zip] and unzip them. 8 | gtFine contains the semantics segmentations. Use --gtFine_dir to specify the path to the unzipped gtFine_trainvaltest directory. 9 | leftImg8bit contains the dashcam photographs. Use --leftImg8bit_dir to specify the path to the unzipped leftImg8bit_trainvaltest directory. 10 | The processed images will be placed at --output_dir. 11 | 12 | Example usage: 13 | 14 | python prepare_cityscapes_dataset.py --gtFine_dir ./gtFine/ --leftImg8bit_dir ./leftImg8bit --output_dir ./datasets/cityscapes/ 15 | """ 16 | 17 | def load_resized_img(path): 18 | return Image.open(path).convert('RGB').resize((256, 256)) 19 | 20 | def check_matching_pair(segmap_path, photo_path): 21 | segmap_identifier = os.path.basename(segmap_path).replace('_gtFine_color', '') 22 | photo_identifier = os.path.basename(photo_path).replace('_leftImg8bit', '') 23 | 24 | assert segmap_identifier == photo_identifier, \ 25 | "[%s] and [%s] don't seem to be matching. Aborting." % (segmap_path, photo_path) 26 | 27 | 28 | def process_cityscapes(gtFine_dir, leftImg8bit_dir, output_dir, phase): 29 | save_phase = 'test' if phase == 'val' else 'train' 30 | savedir = os.path.join(output_dir, save_phase) 31 | os.makedirs(savedir, exist_ok=True) 32 | os.makedirs(savedir + 'A', exist_ok=True) 33 | os.makedirs(savedir + 'B', exist_ok=True) 34 | print("Directory structure prepared at %s" % output_dir) 35 | 36 | segmap_expr = os.path.join(gtFine_dir, phase) + "/*/*_color.png" 37 | segmap_paths = glob.glob(segmap_expr) 38 | segmap_paths = sorted(segmap_paths) 39 | 40 | photo_expr = os.path.join(leftImg8bit_dir, phase) + "/*/*_leftImg8bit.png" 41 | photo_paths = glob.glob(photo_expr) 42 | photo_paths = sorted(photo_paths) 43 | 44 | assert len(segmap_paths) == len(photo_paths), \ 45 | "%d images that match [%s], and %d images that match [%s]. Aborting." % (len(segmap_paths), segmap_expr, len(photo_paths), photo_expr) 46 | 47 | for i, (segmap_path, photo_path) in enumerate(zip(segmap_paths, photo_paths)): 48 | check_matching_pair(segmap_path, photo_path) 49 | segmap = load_resized_img(segmap_path) 50 | photo = load_resized_img(photo_path) 51 | 52 | # data for pix2pix where the two images are placed side-by-side 53 | sidebyside = Image.new('RGB', (512, 256)) 54 | sidebyside.paste(segmap, (256, 0)) 55 | sidebyside.paste(photo, (0, 0)) 56 | savepath = os.path.join(savedir, "%d.jpg" % i) 57 | sidebyside.save(savepath, format='JPEG', subsampling=0, quality=100) 58 | 59 | # data for cyclegan where the two images are stored at two distinct directories 60 | savepath = os.path.join(savedir + 'A', "%d_A.jpg" % i) 61 | photo.save(savepath, format='JPEG', subsampling=0, quality=100) 62 | savepath = os.path.join(savedir + 'B', "%d_B.jpg" % i) 63 | segmap.save(savepath, format='JPEG', subsampling=0, quality=100) 64 | 65 | if i % (len(segmap_paths) // 10) == 0: 66 | print("%d / %d: last image saved at %s, " % (i, len(segmap_paths), savepath)) 67 | 68 | 69 | 70 | 71 | 72 | 73 | 74 | 75 | 76 | 77 | if __name__ == '__main__': 78 | import argparse 79 | parser = argparse.ArgumentParser() 80 | parser.add_argument('--gtFine_dir', type=str, required=True, 81 | help='Path to the Cityscapes gtFine directory.') 82 | parser.add_argument('--leftImg8bit_dir', type=str, required=True, 83 | help='Path to the Cityscapes leftImg8bit_trainvaltest directory.') 84 | parser.add_argument('--output_dir', type=str, required=True, 85 | default='./datasets/cityscapes', 86 | help='Directory the output images will be written to.') 87 | opt = parser.parse_args() 88 | 89 | print(help_msg) 90 | 91 | print('Preparing Cityscapes Dataset for val phase') 92 | process_cityscapes(opt.gtFine_dir, opt.leftImg8bit_dir, opt.output_dir, "val") 93 | print('Preparing Cityscapes Dataset for train phase') 94 | process_cityscapes(opt.gtFine_dir, opt.leftImg8bit_dir, opt.output_dir, "train") 95 | 96 | print('Done') 97 | 98 | 99 | 100 | -------------------------------------------------------------------------------- /docs/Dockerfile: -------------------------------------------------------------------------------- 1 | FROM nvidia/cuda:10.1-base 2 | 3 | #Nvidia Public GPG Key 4 | RUN apt-key adv --fetch-keys https://developer.download.nvidia.com/compute/cuda/repos/ubuntu1804/x86_64/3bf863cc.pub 5 | 6 | RUN apt update && apt install -y wget unzip curl bzip2 git 7 | RUN curl -LO http://repo.continuum.io/miniconda/Miniconda3-latest-Linux-x86_64.sh 8 | RUN bash Miniconda3-latest-Linux-x86_64.sh -p /miniconda -b 9 | RUN rm Miniconda3-latest-Linux-x86_64.sh 10 | ENV PATH=/miniconda/bin:${PATH} 11 | RUN conda update -y conda 12 | 13 | RUN conda install -y pytorch torchvision -c pytorch 14 | RUN mkdir /workspace/ && cd /workspace/ && git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix.git && cd pytorch-CycleGAN-and-pix2pix && pip install -r requirements.txt 15 | 16 | WORKDIR /workspace 17 | -------------------------------------------------------------------------------- /docs/datasets.md: -------------------------------------------------------------------------------- 1 | 2 | 3 | ### CycleGAN Datasets 4 | Download the CycleGAN datasets using the following script. Some of the datasets are collected by other researchers. Please cite their papers if you use the data. 5 | ```bash 6 | bash ./datasets/download_cyclegan_dataset.sh dataset_name 7 | ``` 8 | - `facades`: 400 images from the [CMP Facades dataset](http://cmp.felk.cvut.cz/~tylecr1/facade). [[Citation](../datasets/bibtex/facades.tex)] 9 | - `cityscapes`: 2975 images from the [Cityscapes training set](https://www.cityscapes-dataset.com). [[Citation](../datasets/bibtex/cityscapes.tex)]. Note: Due to license issue, we cannot directly provide the Cityscapes dataset. Please download the Cityscapes dataset from [https://cityscapes-dataset.com](https://cityscapes-dataset.com) and use the script `./datasets/prepare_cityscapes_dataset.py`. 10 | - `maps`: 1096 training images scraped from Google Maps. 11 | - `horse2zebra`: 939 horse images and 1177 zebra images downloaded from [ImageNet](http://www.image-net.org) using keywords `wild horse` and `zebra` 12 | - `apple2orange`: 996 apple images and 1020 orange images downloaded from [ImageNet](http://www.image-net.org) using keywords `apple` and `navel orange`. 13 | - `summer2winter_yosemite`: 1273 summer Yosemite images and 854 winter Yosemite images were downloaded using Flickr API. See more details in our paper. 14 | - `monet2photo`, `vangogh2photo`, `ukiyoe2photo`, `cezanne2photo`: The art images were downloaded from [Wikiart](https://www.wikiart.org/). The real photos are downloaded from Flickr using the combination of the tags *landscape* and *landscapephotography*. The training set size of each class is Monet:1074, Cezanne:584, Van Gogh:401, Ukiyo-e:1433, Photographs:6853. 15 | - `iphone2dslr_flower`: both classes of images were downlaoded from Flickr. The training set size of each class is iPhone:1813, DSLR:3316. See more details in our paper. 16 | 17 | To train a model on your own datasets, you need to create a data folder with two subdirectories `trainA` and `trainB` that contain images from domain A and B. You can test your model on your training set by setting `--phase train` in `test.py`. You can also create subdirectories `testA` and `testB` if you have test data. 18 | 19 | You should **not** expect our method to work on just any random combination of input and output datasets (e.g. `cats<->keyboards`). From our experiments, we find it works better if two datasets share similar visual content. For example, `landscape painting<->landscape photographs` works much better than `portrait painting <-> landscape photographs`. `zebras<->horses` achieves compelling results while `cats<->dogs` completely fails. 20 | 21 | ### pix2pix datasets 22 | Download the pix2pix datasets using the following script. Some of the datasets are collected by other researchers. Please cite their papers if you use the data. 23 | ```bash 24 | bash ./datasets/download_pix2pix_dataset.sh dataset_name 25 | ``` 26 | - `facades`: 400 images from [CMP Facades dataset](http://cmp.felk.cvut.cz/~tylecr1/facade). [[Citation](../datasets/bibtex/facades.tex)] 27 | - `cityscapes`: 2975 images from the [Cityscapes training set](https://www.cityscapes-dataset.com). [[Citation](../datasets/bibtex/cityscapes.tex)] 28 | - `maps`: 1096 training images scraped from Google Maps 29 | - `edges2shoes`: 50k training images from [UT Zappos50K dataset](http://vision.cs.utexas.edu/projects/finegrained/utzap50k). Edges are computed by [HED](https://github.com/s9xie/hed) edge detector + post-processing. [[Citation](datasets/bibtex/shoes.tex)] 30 | - `edges2handbags`: 137K Amazon Handbag images from [iGAN project](https://github.com/junyanz/iGAN). Edges are computed by [HED](https://github.com/s9xie/hed) edge detector + post-processing. [[Citation](datasets/bibtex/handbags.tex)] 31 | - `night2day`: around 20K natural scene images from [Transient Attributes dataset](http://transattr.cs.brown.edu/) [[Citation](datasets/bibtex/transattr.tex)]. To train a `day2night` pix2pix model, you need to add `--direction BtoA`. 32 | 33 | We provide a python script to generate pix2pix training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene. For example, these might be pairs {label map, photo} or {bw image, color image}. Then we can learn to translate A to B or B to A: 34 | 35 | Create folder `/path/to/data` with subfolders `A` and `B`. `A` and `B` should each have their own subfolders `train`, `val`, `test`, etc. In `/path/to/data/A/train`, put training images in style A. In `/path/to/data/B/train`, put the corresponding images in style B. Repeat same for other data splits (`val`, `test`, etc). 36 | 37 | Corresponding images in a pair {A,B} must be the same size and have the same filename, e.g., `/path/to/data/A/train/1.jpg` is considered to correspond to `/path/to/data/B/train/1.jpg`. 38 | 39 | Once the data is formatted this way, call: 40 | ```bash 41 | python datasets/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data 42 | ``` 43 | 44 | This will combine each pair of images (A,B) into a single image file, ready for training. 45 | -------------------------------------------------------------------------------- /docs/docker.md: -------------------------------------------------------------------------------- 1 | # Docker image with pytorch-CycleGAN-and-pix2pix 2 | 3 | We provide both Dockerfile and pre-built Docker container that can run this code repo. 4 | 5 | ## Prerequisite 6 | 7 | - Install [docker-ce](https://docs.docker.com/install/linux/docker-ce/ubuntu/) 8 | - Install [nvidia-docker](https://github.com/NVIDIA/nvidia-docker#quickstart) 9 | 10 | ## Running pre-built Dockerfile 11 | 12 | - Pull the pre-built docker file 13 | 14 | ```bash 15 | docker pull taesungp/pytorch-cyclegan-and-pix2pix 16 | ``` 17 | 18 | - Start an interactive docker session. `-p 8097:8097` option is needed if you want to run `visdom` server on the Docker container. 19 | 20 | ```bash 21 | nvidia-docker run -it -p 8097:8097 taesungp/pytorch-cyclegan-and-pix2pix 22 | ``` 23 | 24 | - Now you are in the Docker environment. Go to our code repo and start running things. 25 | ```bash 26 | cd /workspace/pytorch-CycleGAN-and-pix2pix 27 | bash datasets/download_pix2pix_dataset.sh facades 28 | python -m visdom.server & 29 | bash scripts/train_pix2pix.sh 30 | ``` 31 | 32 | ## Running with Dockerfile 33 | 34 | We also posted the [Dockerfile](Dockerfile). To generate the pre-built file, download the Dockerfile in this directory and run 35 | ```bash 36 | docker build -t [target_tag] . 37 | ``` 38 | in the directory that contains the Dockerfile. 39 | -------------------------------------------------------------------------------- /docs/overview.md: -------------------------------------------------------------------------------- 1 | ## Overview of Code Structure 2 | To help users better understand and use our codebase, we briefly overview the functionality and implementation of each package and each module. Please see the documentation in each file for more details. If you have questions, you may find useful information in [training/test tips](tips.md) and [frequently asked questions](qa.md). 3 | 4 | [train.py](../train.py) is a general-purpose training script. It works for various models (with option `--model`: e.g., `pix2pix`, `cyclegan`, `colorization`) and different datasets (with option `--dataset_mode`: e.g., `aligned`, `unaligned`, `single`, `colorization`). See the main [README](.../README.md) and [training/test tips](tips.md) for more details. 5 | 6 | [test.py](../test.py) is a general-purpose test script. Once you have trained your model with `train.py`, you can use this script to test the model. It will load a saved model from `--checkpoints_dir` and save the results to `--results_dir`. See the main [README](.../README.md) and [training/test tips](tips.md) for more details. 7 | 8 | 9 | [data](../data) directory contains all the modules related to data loading and preprocessing. To add a custom dataset class called `dummy`, you need to add a file called `dummy_dataset.py` and define a subclass `DummyDataset` inherited from `BaseDataset`. You need to implement four functions: `__init__` (initialize the class, you need to first call `BaseDataset.__init__(self, opt)`), `__len__` (return the size of dataset), `__getitem__` (get a data point), and optionally `modify_commandline_options` (add dataset-specific options and set default options). Now you can use the dataset class by specifying flag `--dataset_mode dummy`. See our template dataset [class](../data/template_dataset.py) for an example. Below we explain each file in details. 10 | 11 | * [\_\_init\_\_.py](../data/__init__.py) implements the interface between this package and training and test scripts. `train.py` and `test.py` call `from data import create_dataset` and `dataset = create_dataset(opt)` to create a dataset given the option `opt`. 12 | * [base_dataset.py](../data/base_dataset.py) implements an abstract base class ([ABC](https://docs.python.org/3/library/abc.html)) for datasets. It also includes common transformation functions (e.g., `get_transform`, `__scale_width`), which can be later used in subclasses. 13 | * [image_folder.py](../data/image_folder.py) implements an image folder class. We modify the official PyTorch image folder [code](https://github.com/pytorch/vision/blob/master/torchvision/datasets/folder.py) so that this class can load images from both the current directory and its subdirectories. 14 | * [template_dataset.py](../data/template_dataset.py) provides a dataset template with detailed documentation. Check out this file if you plan to implement your own dataset. 15 | * [aligned_dataset.py](../data/aligned_dataset.py) includes a dataset class that can load image pairs. It assumes a single image directory `/path/to/data/train`, which contains image pairs in the form of {A,B}. See [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md#prepare-your-own-datasets-for-pix2pix) on how to prepare aligned datasets. During test time, you need to prepare a directory `/path/to/data/test` as test data. 16 | * [unaligned_dataset.py](../data/unaligned_dataset.py) includes a dataset class that can load unaligned/unpaired datasets. It assumes that two directories to host training images from domain A `/path/to/data/trainA` and from domain B `/path/to/data/trainB` respectively. Then you can train the model with the dataset flag `--dataroot /path/to/data`. Similarly, you need to prepare two directories `/path/to/data/testA` and `/path/to/data/testB` during test time. 17 | * [single_dataset.py](../data/single_dataset.py) includes a dataset class that can load a set of single images specified by the path `--dataroot /path/to/data`. It can be used for generating CycleGAN results only for one side with the model option `-model test`. 18 | * [colorization_dataset.py](../data/colorization_dataset.py) implements a dataset class that can load a set of nature images in RGB, and convert RGB format into (L, ab) pairs in [Lab](https://en.wikipedia.org/wiki/CIELAB_color_space) color space. It is required by pix2pix-based colorization model (`--model colorization`). 19 | 20 | 21 | [models](../models) directory contains modules related to objective functions, optimizations, and network architectures. To add a custom model class called `dummy`, you need to add a file called `dummy_model.py` and define a subclass `DummyModel` inherited from `BaseModel`. You need to implement four functions: `__init__` (initialize the class; you need to first call `BaseModel.__init__(self, opt)`), `set_input` (unpack data from dataset and apply preprocessing), `forward` (generate intermediate results), `optimize_parameters` (calculate loss, gradients, and update network weights), and optionally `modify_commandline_options` (add model-specific options and set default options). Now you can use the model class by specifying flag `--model dummy`. See our template model [class](../models/template_model.py) for an example. Below we explain each file in details. 22 | 23 | * [\_\_init\_\_.py](../models/__init__.py) implements the interface between this package and training and test scripts. `train.py` and `test.py` call `from models import create_model` and `model = create_model(opt)` to create a model given the option `opt`. You also need to call `model.setup(opt)` to properly initialize the model. 24 | * [base_model.py](../models/base_model.py) implements an abstract base class ([ABC](https://docs.python.org/3/library/abc.html)) for models. It also includes commonly used helper functions (e.g., `setup`, `test`, `update_learning_rate`, `save_networks`, `load_networks`), which can be later used in subclasses. 25 | * [template_model.py](../models/template_model.py) provides a model template with detailed documentation. Check out this file if you plan to implement your own model. 26 | * [pix2pix_model.py](../models/pix2pix_model.py) implements the pix2pix [model](https://phillipi.github.io/pix2pix/), for learning a mapping from input images to output images given paired data. The model training requires `--dataset_mode aligned` dataset. By default, it uses a `--netG unet256` [U-Net](https://arxiv.org/pdf/1505.04597.pdf) generator, a `--netD basic` discriminator (PatchGAN), and a `--gan_mode vanilla` GAN loss (standard cross-entropy objective). 27 | * [colorization_model.py](../models/colorization_model.py) implements a subclass of `Pix2PixModel` for image colorization (black & white image to colorful image). The model training requires `-dataset_model colorization` dataset. It trains a pix2pix model, mapping from L channel to ab channels in [Lab](https://en.wikipedia.org/wiki/CIELAB_color_space) color space. By default, the `colorization` dataset will automatically set `--input_nc 1` and `--output_nc 2`. 28 | * [cycle_gan_model.py](../models/cycle_gan_model.py) implements the CycleGAN [model](https://junyanz.github.io/CycleGAN/), for learning image-to-image translation without paired data. The model training requires `--dataset_mode unaligned` dataset. By default, it uses a `--netG resnet_9blocks` ResNet generator, a `--netD basic` discriminator (PatchGAN introduced by pix2pix), and a least-square GANs [objective](https://arxiv.org/abs/1611.04076) (`--gan_mode lsgan`). 29 | * [networks.py](../models/networks.py) module implements network architectures (both generators and discriminators), as well as normalization layers, initialization methods, optimization scheduler (i.e., learning rate policy), and GAN objective function (`vanilla`, `lsgan`, `wgangp`). 30 | * [test_model.py](../models/test_model.py) implements a model that can be used to generate CycleGAN results for only one direction. This model will automatically set `--dataset_mode single`, which only loads the images from one set. See the test [instruction](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix#apply-a-pre-trained-model-cyclegan) for more details. 31 | 32 | [options](../options) directory includes our option modules: training options, test options, and basic options (used in both training and test). `TrainOptions` and `TestOptions` are both subclasses of `BaseOptions`. They will reuse the options defined in `BaseOptions`. 33 | * [\_\_init\_\_.py](../options/__init__.py) is required to make Python treat the directory `options` as containing packages, 34 | * [base_options.py](../options/base_options.py) includes options that are used in both training and test. It also implements a few helper functions such as parsing, printing, and saving the options. It also gathers additional options defined in `modify_commandline_options` functions in both dataset class and model class. 35 | * [train_options.py](../options/train_options.py) includes options that are only used during training time. 36 | * [test_options.py](../options/test_options.py) includes options that are only used during test time. 37 | 38 | 39 | [util](../util) directory includes a miscellaneous collection of useful helper functions. 40 | * [\_\_init\_\_.py](../util/__init__.py) is required to make Python treat the directory `util` as containing packages, 41 | * [get_data.py](../util/get_data.py) provides a Python script for downloading CycleGAN and pix2pix datasets. Alternatively, You can also use bash scripts such as [download_pix2pix_model.sh](../scripts/download_pix2pix_model.sh) and [download_cyclegan_model.sh](../scripts/download_cyclegan_model.sh). 42 | * [html.py](../util/html.py) implements a module that saves images into a single HTML file. It consists of functions such as `add_header` (add a text header to the HTML file), `add_images` (add a row of images to the HTML file), `save` (save the HTML to the disk). It is based on Python library `dominate`, a Python library for creating and manipulating HTML documents using a DOM API. 43 | * [image_pool.py](../util/image_pool.py) implements an image buffer that stores previously generated images. This buffer enables us to update discriminators using a history of generated images rather than the ones produced by the latest generators. The original idea was discussed in this [paper](http://openaccess.thecvf.com/content_cvpr_2017/papers/Shrivastava_Learning_From_Simulated_CVPR_2017_paper.pdf). The size of the buffer is controlled by the flag `--pool_size`. 44 | * [visualizer.py](../util/visualizer.py) includes several functions that can display/save images and print/save logging information. It uses a Python library `visdom` for display and a Python library `dominate` (wrapped in `HTML`) for creating HTML files with images. 45 | * [util.py](../util/util.py) consists of simple helper functions such as `tensor2im` (convert a tensor array to a numpy image array), `diagnose_network` (calculate and print the mean of average absolute value of gradients), and `mkdirs` (create multiple directories). 46 | -------------------------------------------------------------------------------- /docs/tips.md: -------------------------------------------------------------------------------- 1 | ## Training/test Tips 2 | #### Training/test options 3 | Please see `options/train_options.py` and `options/base_options.py` for the training flags; see `options/test_options.py` and `options/base_options.py` for the test flags. There are some model-specific flags as well, which are added in the model files, such as `--lambda_A` option in `model/cycle_gan_model.py`. The default values of these options are also adjusted in the model files. 4 | #### CPU/GPU (default `--gpu_ids 0`) 5 | Please set`--gpu_ids -1` to use CPU mode; set `--gpu_ids 0,1,2` for multi-GPU mode. You need a large batch size (e.g., `--batch_size 32`) to benefit from multiple GPUs. 6 | 7 | #### Visualization 8 | During training, the current results can be viewed using two methods. First, if you set `--display_id` > 0, the results and loss plot will appear on a local graphics web server launched by [visdom](https://github.com/facebookresearch/visdom). To do this, you should have `visdom` installed and a server running by the command `python -m visdom.server`. The default server URL is `http://localhost:8097`. `display_id` corresponds to the window ID that is displayed on the `visdom` server. The `visdom` display functionality is turned on by default. To avoid the extra overhead of communicating with `visdom` set `--display_id -1`. Second, the intermediate results are saved to `[opt.checkpoints_dir]/[opt.name]/web/` as an HTML file. To avoid this, set `--no_html`. 9 | 10 | #### Preprocessing 11 | Images can be resized and cropped in different ways using `--preprocess` option. The default option `'resize_and_crop'` resizes the image to be of size `(opt.load_size, opt.load_size)` and does a random crop of size `(opt.crop_size, opt.crop_size)`. `'crop'` skips the resizing step and only performs random cropping. `'scale_width'` resizes the image to have width `opt.crop_size` while keeping the aspect ratio. `'scale_width_and_crop'` first resizes the image to have width `opt.load_size` and then does random cropping of size `(opt.crop_size, opt.crop_size)`. `'none'` tries to skip all these preprocessing steps. However, if the image size is not a multiple of some number depending on the number of downsamplings of the generator, you will get an error because the size of the output image may be different from the size of the input image. Therefore, `'none'` option still tries to adjust the image size to be a multiple of 4. You might need a bigger adjustment if you change the generator architecture. Please see `data/base_dataset.py` do see how all these were implemented. 12 | 13 | #### Fine-tuning/resume training 14 | To fine-tune a pre-trained model, or resume the previous training, use the `--continue_train` flag. The program will then load the model based on `epoch`. By default, the program will initialize the epoch count as 1. Set `--epoch_count ` to specify a different starting epoch count. 15 | 16 | 17 | #### Prepare your own datasets for CycleGAN 18 | You need to create two directories to host images from domain A `/path/to/data/trainA` and from domain B `/path/to/data/trainB`. Then you can train the model with the dataset flag `--dataroot /path/to/data`. Optionally, you can create hold-out test datasets at `/path/to/data/testA` and `/path/to/data/testB` to test your model on unseen images. 19 | 20 | #### Prepare your own datasets for pix2pix 21 | Pix2pix's training requires paired data. We provide a python script to generate training data in the form of pairs of images {A,B}, where A and B are two different depictions of the same underlying scene. For example, these might be pairs {label map, photo} or {bw image, color image}. Then we can learn to translate A to B or B to A: 22 | 23 | Create folder `/path/to/data` with subdirectories `A` and `B`. `A` and `B` should each have their own subdirectories `train`, `val`, `test`, etc. In `/path/to/data/A/train`, put training images in style A. In `/path/to/data/B/train`, put the corresponding images in style B. Repeat same for other data splits (`val`, `test`, etc). 24 | 25 | Corresponding images in a pair {A,B} must be the same size and have the same filename, e.g., `/path/to/data/A/train/1.jpg` is considered to correspond to `/path/to/data/B/train/1.jpg`. 26 | 27 | Once the data is formatted this way, call: 28 | ```bash 29 | python datasets/combine_A_and_B.py --fold_A /path/to/data/A --fold_B /path/to/data/B --fold_AB /path/to/data 30 | ``` 31 | 32 | This will combine each pair of images (A,B) into a single image file, ready for training. 33 | 34 | 35 | #### About image size 36 | Since the generator architecture in CycleGAN involves a series of downsampling / upsampling operations, the size of the input and output image may not match if the input image size is not a multiple of 4. As a result, you may get a runtime error because the L1 identity loss cannot be enforced with images of different size. Therefore, we slightly resize the image to become multiples of 4 even with `--preprocess none` option. For the same reason, `--crop_size` needs to be a multiple of 4. 37 | 38 | #### Training/Testing with high res images 39 | CycleGAN is quite memory-intensive as four networks (two generators and two discriminators) need to be loaded on one GPU, so a large image cannot be entirely loaded. In this case, we recommend training with cropped images. For example, to generate 1024px results, you can train with `--preprocess scale_width_and_crop --load_size 1024 --crop_size 360`, and test with `--preprocess scale_width --load_size 1024`. This way makes sure the training and test will be at the same scale. At test time, you can afford higher resolution because you don’t need to load all networks. 40 | 41 | #### Training/Testing with rectangular images 42 | Both pix2pix and CycleGAN can work for rectangular images. To make them work, you need to use different preprocessing flags. Let's say that you are working with `360x256` images. During training, you can specify `--preprocess crop` and `--crop_size 256`. This will allow your model to be trained on randomly cropped `256x256` images during training time. During test time, you can apply the model on `360x256` images with the flag `--preprocess none`. 43 | 44 | There are practical restrictions regarding image sizes for each generator architecture. For `unet256`, it only supports images whose width and height are divisible by 256. For `unet128`, the width and height need to be divisible by 128. For `resnet_6blocks` and `resnet_9blocks`, the width and height need to be divisible by 4. 45 | 46 | #### About loss curve 47 | Unfortunately, the loss curve does not reveal much information in training GANs, and CycleGAN is no exception. To check whether the training has converged or not, we recommend periodically generating a few samples and looking at them. 48 | 49 | #### About batch size 50 | For all experiments in the paper, we set the batch size to be 1. If there is room for memory, you can use higher batch size with batch norm or instance norm. (Note that the default batchnorm does not work well with multi-GPU training. You may consider using [synchronized batchnorm](https://github.com/vacancy/Synchronized-BatchNorm-PyTorch) instead). But please be aware that it can impact the training. In particular, even with Instance Normalization, different batch sizes can lead to different results. Moreover, increasing `--crop_size` may be a good alternative to increasing the batch size. 51 | 52 | 53 | #### Notes on Colorization 54 | No need to run `combine_A_and_B.py` for colorization. Instead, you need to prepare natural images and set `--dataset_mode colorization` and `--model colorization` in the script. The program will automatically convert each RGB image into Lab color space, and create `L -> ab` image pair during the training. Also set `--input_nc 1` and `--output_nc 2`. The training and test directory should be organized as `/your/data/train` and `your/data/test`. See example scripts `scripts/train_colorization.sh` and `scripts/test_colorization` for more details. 55 | 56 | #### Notes on Extracting Edges 57 | We provide python and Matlab scripts to extract coarse edges from photos. Run `scripts/edges/batch_hed.py` to compute [HED](https://github.com/s9xie/hed) edges. Run `scripts/edges/PostprocessHED.m` to simplify edges with additional post-processing steps. Check the code documentation for more details. 58 | 59 | #### Evaluating Labels2Photos on Cityscapes 60 | We provide scripts for running the evaluation of the Labels2Photos task on the Cityscapes **validation** set. We assume that you have installed `caffe` (and `pycaffe`) in your system. If not, see the [official website](http://caffe.berkeleyvision.org/installation.html) for installation instructions. Once `caffe` is successfully installed, download the pre-trained FCN-8s semantic segmentation model (512MB) by running 61 | ```bash 62 | bash ./scripts/eval_cityscapes/download_fcn8s.sh 63 | ``` 64 | Then make sure `./scripts/eval_cityscapes/` is in your system's python path. If not, run the following command to add it 65 | ```bash 66 | export PYTHONPATH=${PYTHONPATH}:./scripts/eval_cityscapes/ 67 | ``` 68 | Now you can run the following command to evaluate your predictions: 69 | ```bash 70 | python ./scripts/eval_cityscapes/evaluate.py --cityscapes_dir /path/to/original/cityscapes/dataset/ --result_dir /path/to/your/predictions/ --output_dir /path/to/output/directory/ 71 | ``` 72 | Images stored under `--result_dir` should contain your model predictions on the Cityscapes **validation** split, and have the original Cityscapes naming convention (e.g., `frankfurt_000001_038418_leftImg8bit.png`). The script will output a text file under `--output_dir` containing the metric. 73 | 74 | **Further notes**: Our pre-trained FCN model is **not** supposed to work on Cityscapes in the original resolution (1024x2048) as it was trained on 256x256 images that are then upsampled to 1024x2048 during training. The purpose of the resizing during training was to 1) keep the label maps in the original high resolution untouched and 2) avoid the need of changing the standard FCN training code and the architecture for Cityscapes. During test time, you need to synthesize 256x256 results. Our test code will automatically upsample your results to 1024x2048 before feeding them to the pre-trained FCN model. The output is at 1024x2048 resolution and will be compared to 1024x2048 ground truth labels. You do not need to resize the ground truth labels. The best way to verify whether everything is correct is to reproduce the numbers for real images in the paper first. To achieve it, you need to resize the original/real Cityscapes images (**not** labels) to 256x256 and feed them to the evaluation code. 75 | -------------------------------------------------------------------------------- /environment.yml: -------------------------------------------------------------------------------- 1 | name: pytorch-CycleGAN-and-pix2pix 2 | channels: 3 | - pytorch 4 | - defaults 5 | dependencies: 6 | - python=3.8 7 | - pytorch=1.8.1 8 | - scipy 9 | - pip 10 | - pip: 11 | - dominate==2.6.0 12 | - torchvision==0.9.1 13 | - Pillow==8.0.1 14 | - numpy==1.19.2 15 | - visdom==0.1.8 16 | - wandb==0.12.18 17 | 18 | -------------------------------------------------------------------------------- /imgs/edges2cats.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/junyanz/pytorch-CycleGAN-and-pix2pix/c3268edd50ec37a81600c9b981841f48929671b8/imgs/edges2cats.jpg -------------------------------------------------------------------------------- /imgs/horse2zebra.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/junyanz/pytorch-CycleGAN-and-pix2pix/c3268edd50ec37a81600c9b981841f48929671b8/imgs/horse2zebra.gif -------------------------------------------------------------------------------- /models/__init__.py: -------------------------------------------------------------------------------- 1 | """This package contains modules related to objective functions, optimizations, and network architectures. 2 | 3 | To add a custom model class called 'dummy', you need to add a file called 'dummy_model.py' and define a subclass DummyModel inherited from BaseModel. 4 | You need to implement the following five functions: 5 | -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). 6 | -- : unpack data from dataset and apply preprocessing. 7 | -- : produce intermediate results. 8 | -- : calculate loss, gradients, and update network weights. 9 | -- : (optionally) add model-specific options and set default options. 10 | 11 | In the function <__init__>, you need to define four lists: 12 | -- self.loss_names (str list): specify the training losses that you want to plot and save. 13 | -- self.model_names (str list): define networks used in our training. 14 | -- self.visual_names (str list): specify the images that you want to display and save. 15 | -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an usage. 16 | 17 | Now you can use the model class by specifying flag '--model dummy'. 18 | See our template model class 'template_model.py' for more details. 19 | """ 20 | 21 | import importlib 22 | from models.base_model import BaseModel 23 | 24 | 25 | def find_model_using_name(model_name): 26 | """Import the module "models/[model_name]_model.py". 27 | 28 | In the file, the class called DatasetNameModel() will 29 | be instantiated. It has to be a subclass of BaseModel, 30 | and it is case-insensitive. 31 | """ 32 | model_filename = "models." + model_name + "_model" 33 | modellib = importlib.import_module(model_filename) 34 | model = None 35 | target_model_name = model_name.replace('_', '') + 'model' 36 | for name, cls in modellib.__dict__.items(): 37 | if name.lower() == target_model_name.lower() \ 38 | and issubclass(cls, BaseModel): 39 | model = cls 40 | 41 | if model is None: 42 | print("In %s.py, there should be a subclass of BaseModel with class name that matches %s in lowercase." % (model_filename, target_model_name)) 43 | exit(0) 44 | 45 | return model 46 | 47 | 48 | def get_option_setter(model_name): 49 | """Return the static method of the model class.""" 50 | model_class = find_model_using_name(model_name) 51 | return model_class.modify_commandline_options 52 | 53 | 54 | def create_model(opt): 55 | """Create a model given the option. 56 | 57 | This function warps the class CustomDatasetDataLoader. 58 | This is the main interface between this package and 'train.py'/'test.py' 59 | 60 | Example: 61 | >>> from models import create_model 62 | >>> model = create_model(opt) 63 | """ 64 | model = find_model_using_name(opt.model) 65 | instance = model(opt) 66 | print("model [%s] was created" % type(instance).__name__) 67 | return instance 68 | -------------------------------------------------------------------------------- /models/base_model.py: -------------------------------------------------------------------------------- 1 | import os 2 | import torch 3 | from collections import OrderedDict 4 | from abc import ABC, abstractmethod 5 | from . import networks 6 | 7 | 8 | class BaseModel(ABC): 9 | """This class is an abstract base class (ABC) for models. 10 | To create a subclass, you need to implement the following five functions: 11 | -- <__init__>: initialize the class; first call BaseModel.__init__(self, opt). 12 | -- : unpack data from dataset and apply preprocessing. 13 | -- : produce intermediate results. 14 | -- : calculate losses, gradients, and update network weights. 15 | -- : (optionally) add model-specific options and set default options. 16 | """ 17 | 18 | def __init__(self, opt): 19 | """Initialize the BaseModel class. 20 | 21 | Parameters: 22 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 23 | 24 | When creating your custom class, you need to implement your own initialization. 25 | In this function, you should first call 26 | Then, you need to define four lists: 27 | -- self.loss_names (str list): specify the training losses that you want to plot and save. 28 | -- self.model_names (str list): define networks used in our training. 29 | -- self.visual_names (str list): specify the images that you want to display and save. 30 | -- self.optimizers (optimizer list): define and initialize optimizers. You can define one optimizer for each network. If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. 31 | """ 32 | self.opt = opt 33 | self.gpu_ids = opt.gpu_ids 34 | self.isTrain = opt.isTrain 35 | self.device = torch.device('cuda:{}'.format(self.gpu_ids[0])) if self.gpu_ids else torch.device('cpu') # get device name: CPU or GPU 36 | self.save_dir = os.path.join(opt.checkpoints_dir, opt.name) # save all the checkpoints to save_dir 37 | if opt.preprocess != 'scale_width': # with [scale_width], input images might have different sizes, which hurts the performance of cudnn.benchmark. 38 | torch.backends.cudnn.benchmark = True 39 | self.loss_names = [] 40 | self.model_names = [] 41 | self.visual_names = [] 42 | self.optimizers = [] 43 | self.image_paths = [] 44 | self.metric = 0 # used for learning rate policy 'plateau' 45 | 46 | @staticmethod 47 | def modify_commandline_options(parser, is_train): 48 | """Add new model-specific options, and rewrite default values for existing options. 49 | 50 | Parameters: 51 | parser -- original option parser 52 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 53 | 54 | Returns: 55 | the modified parser. 56 | """ 57 | return parser 58 | 59 | @abstractmethod 60 | def set_input(self, input): 61 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 62 | 63 | Parameters: 64 | input (dict): includes the data itself and its metadata information. 65 | """ 66 | pass 67 | 68 | @abstractmethod 69 | def forward(self): 70 | """Run forward pass; called by both functions and .""" 71 | pass 72 | 73 | @abstractmethod 74 | def optimize_parameters(self): 75 | """Calculate losses, gradients, and update network weights; called in every training iteration""" 76 | pass 77 | 78 | def setup(self, opt): 79 | """Load and print networks; create schedulers 80 | 81 | Parameters: 82 | opt (Option class) -- stores all the experiment flags; needs to be a subclass of BaseOptions 83 | """ 84 | if self.isTrain: 85 | self.schedulers = [networks.get_scheduler(optimizer, opt) for optimizer in self.optimizers] 86 | if not self.isTrain or opt.continue_train: 87 | load_suffix = 'iter_%d' % opt.load_iter if opt.load_iter > 0 else opt.epoch 88 | self.load_networks(load_suffix) 89 | self.print_networks(opt.verbose) 90 | 91 | def eval(self): 92 | """Make models eval mode during test time""" 93 | for name in self.model_names: 94 | if isinstance(name, str): 95 | net = getattr(self, 'net' + name) 96 | net.eval() 97 | 98 | def test(self): 99 | """Forward function used in test time. 100 | 101 | This function wraps function in no_grad() so we don't save intermediate steps for backprop 102 | It also calls to produce additional visualization results 103 | """ 104 | with torch.no_grad(): 105 | self.forward() 106 | self.compute_visuals() 107 | 108 | def compute_visuals(self): 109 | """Calculate additional output images for visdom and HTML visualization""" 110 | pass 111 | 112 | def get_image_paths(self): 113 | """ Return image paths that are used to load current data""" 114 | return self.image_paths 115 | 116 | def update_learning_rate(self): 117 | """Update learning rates for all the networks; called at the end of every epoch""" 118 | old_lr = self.optimizers[0].param_groups[0]['lr'] 119 | for scheduler in self.schedulers: 120 | if self.opt.lr_policy == 'plateau': 121 | scheduler.step(self.metric) 122 | else: 123 | scheduler.step() 124 | 125 | lr = self.optimizers[0].param_groups[0]['lr'] 126 | print('learning rate %.7f -> %.7f' % (old_lr, lr)) 127 | 128 | def get_current_visuals(self): 129 | """Return visualization images. train.py will display these images with visdom, and save the images to a HTML""" 130 | visual_ret = OrderedDict() 131 | for name in self.visual_names: 132 | if isinstance(name, str): 133 | visual_ret[name] = getattr(self, name) 134 | return visual_ret 135 | 136 | def get_current_losses(self): 137 | """Return traning losses / errors. train.py will print out these errors on console, and save them to a file""" 138 | errors_ret = OrderedDict() 139 | for name in self.loss_names: 140 | if isinstance(name, str): 141 | errors_ret[name] = float(getattr(self, 'loss_' + name)) # float(...) works for both scalar tensor and float number 142 | return errors_ret 143 | 144 | def save_networks(self, epoch): 145 | """Save all the networks to the disk. 146 | 147 | Parameters: 148 | epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) 149 | """ 150 | for name in self.model_names: 151 | if isinstance(name, str): 152 | save_filename = '%s_net_%s.pth' % (epoch, name) 153 | save_path = os.path.join(self.save_dir, save_filename) 154 | net = getattr(self, 'net' + name) 155 | 156 | if len(self.gpu_ids) > 0 and torch.cuda.is_available(): 157 | torch.save(net.module.cpu().state_dict(), save_path) 158 | net.cuda(self.gpu_ids[0]) 159 | else: 160 | torch.save(net.cpu().state_dict(), save_path) 161 | 162 | def __patch_instance_norm_state_dict(self, state_dict, module, keys, i=0): 163 | """Fix InstanceNorm checkpoints incompatibility (prior to 0.4)""" 164 | key = keys[i] 165 | if i + 1 == len(keys): # at the end, pointing to a parameter/buffer 166 | if module.__class__.__name__.startswith('InstanceNorm') and \ 167 | (key == 'running_mean' or key == 'running_var'): 168 | if getattr(module, key) is None: 169 | state_dict.pop('.'.join(keys)) 170 | if module.__class__.__name__.startswith('InstanceNorm') and \ 171 | (key == 'num_batches_tracked'): 172 | state_dict.pop('.'.join(keys)) 173 | else: 174 | self.__patch_instance_norm_state_dict(state_dict, getattr(module, key), keys, i + 1) 175 | 176 | def load_networks(self, epoch): 177 | """Load all the networks from the disk. 178 | 179 | Parameters: 180 | epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) 181 | """ 182 | for name in self.model_names: 183 | if isinstance(name, str): 184 | load_filename = '%s_net_%s.pth' % (epoch, name) 185 | load_path = os.path.join(self.save_dir, load_filename) 186 | net = getattr(self, 'net' + name) 187 | if isinstance(net, torch.nn.DataParallel): 188 | net = net.module 189 | print('loading the model from %s' % load_path) 190 | # if you are using PyTorch newer than 0.4 (e.g., built from 191 | # GitHub source), you can remove str() on self.device 192 | state_dict = torch.load(load_path, map_location=str(self.device)) 193 | if hasattr(state_dict, '_metadata'): 194 | del state_dict._metadata 195 | 196 | # patch InstanceNorm checkpoints prior to 0.4 197 | for key in list(state_dict.keys()): # need to copy keys here because we mutate in loop 198 | self.__patch_instance_norm_state_dict(state_dict, net, key.split('.')) 199 | net.load_state_dict(state_dict) 200 | 201 | def print_networks(self, verbose): 202 | """Print the total number of parameters in the network and (if verbose) network architecture 203 | 204 | Parameters: 205 | verbose (bool) -- if verbose: print the network architecture 206 | """ 207 | print('---------- Networks initialized -------------') 208 | for name in self.model_names: 209 | if isinstance(name, str): 210 | net = getattr(self, 'net' + name) 211 | num_params = 0 212 | for param in net.parameters(): 213 | num_params += param.numel() 214 | if verbose: 215 | print(net) 216 | print('[Network %s] Total number of parameters : %.3f M' % (name, num_params / 1e6)) 217 | print('-----------------------------------------------') 218 | 219 | def set_requires_grad(self, nets, requires_grad=False): 220 | """Set requies_grad=Fasle for all the networks to avoid unnecessary computations 221 | Parameters: 222 | nets (network list) -- a list of networks 223 | requires_grad (bool) -- whether the networks require gradients or not 224 | """ 225 | if not isinstance(nets, list): 226 | nets = [nets] 227 | for net in nets: 228 | if net is not None: 229 | for param in net.parameters(): 230 | param.requires_grad = requires_grad 231 | -------------------------------------------------------------------------------- /models/colorization_model.py: -------------------------------------------------------------------------------- 1 | from .pix2pix_model import Pix2PixModel 2 | import torch 3 | from skimage import color # used for lab2rgb 4 | import numpy as np 5 | 6 | 7 | class ColorizationModel(Pix2PixModel): 8 | """This is a subclass of Pix2PixModel for image colorization (black & white image -> colorful images). 9 | 10 | The model training requires '-dataset_model colorization' dataset. 11 | It trains a pix2pix model, mapping from L channel to ab channels in Lab color space. 12 | By default, the colorization dataset will automatically set '--input_nc 1' and '--output_nc 2'. 13 | """ 14 | @staticmethod 15 | def modify_commandline_options(parser, is_train=True): 16 | """Add new dataset-specific options, and rewrite default values for existing options. 17 | 18 | Parameters: 19 | parser -- original option parser 20 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 21 | 22 | Returns: 23 | the modified parser. 24 | 25 | By default, we use 'colorization' dataset for this model. 26 | See the original pix2pix paper (https://arxiv.org/pdf/1611.07004.pdf) and colorization results (Figure 9 in the paper) 27 | """ 28 | Pix2PixModel.modify_commandline_options(parser, is_train) 29 | parser.set_defaults(dataset_mode='colorization') 30 | return parser 31 | 32 | def __init__(self, opt): 33 | """Initialize the class. 34 | 35 | Parameters: 36 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 37 | 38 | For visualization, we set 'visual_names' as 'real_A' (input real image), 39 | 'real_B_rgb' (ground truth RGB image), and 'fake_B_rgb' (predicted RGB image) 40 | We convert the Lab image 'real_B' (inherited from Pix2pixModel) to a RGB image 'real_B_rgb'. 41 | we convert the Lab image 'fake_B' (inherited from Pix2pixModel) to a RGB image 'fake_B_rgb'. 42 | """ 43 | # reuse the pix2pix model 44 | Pix2PixModel.__init__(self, opt) 45 | # specify the images to be visualized. 46 | self.visual_names = ['real_A', 'real_B_rgb', 'fake_B_rgb'] 47 | 48 | def lab2rgb(self, L, AB): 49 | """Convert an Lab tensor image to a RGB numpy output 50 | Parameters: 51 | L (1-channel tensor array): L channel images (range: [-1, 1], torch tensor array) 52 | AB (2-channel tensor array): ab channel images (range: [-1, 1], torch tensor array) 53 | 54 | Returns: 55 | rgb (RGB numpy image): rgb output images (range: [0, 255], numpy array) 56 | """ 57 | AB2 = AB * 110.0 58 | L2 = (L + 1.0) * 50.0 59 | Lab = torch.cat([L2, AB2], dim=1) 60 | Lab = Lab[0].data.cpu().float().numpy() 61 | Lab = np.transpose(Lab.astype(np.float64), (1, 2, 0)) 62 | rgb = color.lab2rgb(Lab) * 255 63 | return rgb 64 | 65 | def compute_visuals(self): 66 | """Calculate additional output images for visdom and HTML visualization""" 67 | self.real_B_rgb = self.lab2rgb(self.real_A, self.real_B) 68 | self.fake_B_rgb = self.lab2rgb(self.real_A, self.fake_B) 69 | -------------------------------------------------------------------------------- /models/cycle_gan_model.py: -------------------------------------------------------------------------------- 1 | import torch 2 | import itertools 3 | from util.image_pool import ImagePool 4 | from .base_model import BaseModel 5 | from . import networks 6 | 7 | 8 | class CycleGANModel(BaseModel): 9 | """ 10 | This class implements the CycleGAN model, for learning image-to-image translation without paired data. 11 | 12 | The model training requires '--dataset_mode unaligned' dataset. 13 | By default, it uses a '--netG resnet_9blocks' ResNet generator, 14 | a '--netD basic' discriminator (PatchGAN introduced by pix2pix), 15 | and a least-square GANs objective ('--gan_mode lsgan'). 16 | 17 | CycleGAN paper: https://arxiv.org/pdf/1703.10593.pdf 18 | """ 19 | @staticmethod 20 | def modify_commandline_options(parser, is_train=True): 21 | """Add new dataset-specific options, and rewrite default values for existing options. 22 | 23 | Parameters: 24 | parser -- original option parser 25 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 26 | 27 | Returns: 28 | the modified parser. 29 | 30 | For CycleGAN, in addition to GAN losses, we introduce lambda_A, lambda_B, and lambda_identity for the following losses. 31 | A (source domain), B (target domain). 32 | Generators: G_A: A -> B; G_B: B -> A. 33 | Discriminators: D_A: G_A(A) vs. B; D_B: G_B(B) vs. A. 34 | Forward cycle loss: lambda_A * ||G_B(G_A(A)) - A|| (Eqn. (2) in the paper) 35 | Backward cycle loss: lambda_B * ||G_A(G_B(B)) - B|| (Eqn. (2) in the paper) 36 | Identity loss (optional): lambda_identity * (||G_A(B) - B|| * lambda_B + ||G_B(A) - A|| * lambda_A) (Sec 5.2 "Photo generation from paintings" in the paper) 37 | Dropout is not used in the original CycleGAN paper. 38 | """ 39 | parser.set_defaults(no_dropout=True) # default CycleGAN did not use dropout 40 | if is_train: 41 | parser.add_argument('--lambda_A', type=float, default=10.0, help='weight for cycle loss (A -> B -> A)') 42 | parser.add_argument('--lambda_B', type=float, default=10.0, help='weight for cycle loss (B -> A -> B)') 43 | parser.add_argument('--lambda_identity', type=float, default=0.5, help='use identity mapping. Setting lambda_identity other than 0 has an effect of scaling the weight of the identity mapping loss. For example, if the weight of the identity loss should be 10 times smaller than the weight of the reconstruction loss, please set lambda_identity = 0.1') 44 | 45 | return parser 46 | 47 | def __init__(self, opt): 48 | """Initialize the CycleGAN class. 49 | 50 | Parameters: 51 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 52 | """ 53 | BaseModel.__init__(self, opt) 54 | # specify the training losses you want to print out. The training/test scripts will call 55 | self.loss_names = ['D_A', 'G_A', 'cycle_A', 'idt_A', 'D_B', 'G_B', 'cycle_B', 'idt_B'] 56 | # specify the images you want to save/display. The training/test scripts will call 57 | visual_names_A = ['real_A', 'fake_B', 'rec_A'] 58 | visual_names_B = ['real_B', 'fake_A', 'rec_B'] 59 | if self.isTrain and self.opt.lambda_identity > 0.0: # if identity loss is used, we also visualize idt_B=G_A(B) ad idt_A=G_A(B) 60 | visual_names_A.append('idt_B') 61 | visual_names_B.append('idt_A') 62 | 63 | self.visual_names = visual_names_A + visual_names_B # combine visualizations for A and B 64 | # specify the models you want to save to the disk. The training/test scripts will call and . 65 | if self.isTrain: 66 | self.model_names = ['G_A', 'G_B', 'D_A', 'D_B'] 67 | else: # during test time, only load Gs 68 | self.model_names = ['G_A', 'G_B'] 69 | 70 | # define networks (both Generators and discriminators) 71 | # The naming is different from those used in the paper. 72 | # Code (vs. paper): G_A (G), G_B (F), D_A (D_Y), D_B (D_X) 73 | self.netG_A = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, 74 | not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 75 | self.netG_B = networks.define_G(opt.output_nc, opt.input_nc, opt.ngf, opt.netG, opt.norm, 76 | not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 77 | 78 | if self.isTrain: # define discriminators 79 | self.netD_A = networks.define_D(opt.output_nc, opt.ndf, opt.netD, 80 | opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) 81 | self.netD_B = networks.define_D(opt.input_nc, opt.ndf, opt.netD, 82 | opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) 83 | 84 | if self.isTrain: 85 | if opt.lambda_identity > 0.0: # only works when input and output images have the same number of channels 86 | assert(opt.input_nc == opt.output_nc) 87 | self.fake_A_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images 88 | self.fake_B_pool = ImagePool(opt.pool_size) # create image buffer to store previously generated images 89 | # define loss functions 90 | self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) # define GAN loss. 91 | self.criterionCycle = torch.nn.L1Loss() 92 | self.criterionIdt = torch.nn.L1Loss() 93 | # initialize optimizers; schedulers will be automatically created by function . 94 | self.optimizer_G = torch.optim.Adam(itertools.chain(self.netG_A.parameters(), self.netG_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) 95 | self.optimizer_D = torch.optim.Adam(itertools.chain(self.netD_A.parameters(), self.netD_B.parameters()), lr=opt.lr, betas=(opt.beta1, 0.999)) 96 | self.optimizers.append(self.optimizer_G) 97 | self.optimizers.append(self.optimizer_D) 98 | 99 | def set_input(self, input): 100 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 101 | 102 | Parameters: 103 | input (dict): include the data itself and its metadata information. 104 | 105 | The option 'direction' can be used to swap domain A and domain B. 106 | """ 107 | AtoB = self.opt.direction == 'AtoB' 108 | self.real_A = input['A' if AtoB else 'B'].to(self.device) 109 | self.real_B = input['B' if AtoB else 'A'].to(self.device) 110 | self.image_paths = input['A_paths' if AtoB else 'B_paths'] 111 | 112 | def forward(self): 113 | """Run forward pass; called by both functions and .""" 114 | self.fake_B = self.netG_A(self.real_A) # G_A(A) 115 | self.rec_A = self.netG_B(self.fake_B) # G_B(G_A(A)) 116 | self.fake_A = self.netG_B(self.real_B) # G_B(B) 117 | self.rec_B = self.netG_A(self.fake_A) # G_A(G_B(B)) 118 | 119 | def backward_D_basic(self, netD, real, fake): 120 | """Calculate GAN loss for the discriminator 121 | 122 | Parameters: 123 | netD (network) -- the discriminator D 124 | real (tensor array) -- real images 125 | fake (tensor array) -- images generated by a generator 126 | 127 | Return the discriminator loss. 128 | We also call loss_D.backward() to calculate the gradients. 129 | """ 130 | # Real 131 | pred_real = netD(real) 132 | loss_D_real = self.criterionGAN(pred_real, True) 133 | # Fake 134 | pred_fake = netD(fake.detach()) 135 | loss_D_fake = self.criterionGAN(pred_fake, False) 136 | # Combined loss and calculate gradients 137 | loss_D = (loss_D_real + loss_D_fake) * 0.5 138 | loss_D.backward() 139 | return loss_D 140 | 141 | def backward_D_A(self): 142 | """Calculate GAN loss for discriminator D_A""" 143 | fake_B = self.fake_B_pool.query(self.fake_B) 144 | self.loss_D_A = self.backward_D_basic(self.netD_A, self.real_B, fake_B) 145 | 146 | def backward_D_B(self): 147 | """Calculate GAN loss for discriminator D_B""" 148 | fake_A = self.fake_A_pool.query(self.fake_A) 149 | self.loss_D_B = self.backward_D_basic(self.netD_B, self.real_A, fake_A) 150 | 151 | def backward_G(self): 152 | """Calculate the loss for generators G_A and G_B""" 153 | lambda_idt = self.opt.lambda_identity 154 | lambda_A = self.opt.lambda_A 155 | lambda_B = self.opt.lambda_B 156 | # Identity loss 157 | if lambda_idt > 0: 158 | # G_A should be identity if real_B is fed: ||G_A(B) - B|| 159 | self.idt_A = self.netG_A(self.real_B) 160 | self.loss_idt_A = self.criterionIdt(self.idt_A, self.real_B) * lambda_B * lambda_idt 161 | # G_B should be identity if real_A is fed: ||G_B(A) - A|| 162 | self.idt_B = self.netG_B(self.real_A) 163 | self.loss_idt_B = self.criterionIdt(self.idt_B, self.real_A) * lambda_A * lambda_idt 164 | else: 165 | self.loss_idt_A = 0 166 | self.loss_idt_B = 0 167 | 168 | # GAN loss D_A(G_A(A)) 169 | self.loss_G_A = self.criterionGAN(self.netD_A(self.fake_B), True) 170 | # GAN loss D_B(G_B(B)) 171 | self.loss_G_B = self.criterionGAN(self.netD_B(self.fake_A), True) 172 | # Forward cycle loss || G_B(G_A(A)) - A|| 173 | self.loss_cycle_A = self.criterionCycle(self.rec_A, self.real_A) * lambda_A 174 | # Backward cycle loss || G_A(G_B(B)) - B|| 175 | self.loss_cycle_B = self.criterionCycle(self.rec_B, self.real_B) * lambda_B 176 | # combined loss and calculate gradients 177 | self.loss_G = self.loss_G_A + self.loss_G_B + self.loss_cycle_A + self.loss_cycle_B + self.loss_idt_A + self.loss_idt_B 178 | self.loss_G.backward() 179 | 180 | def optimize_parameters(self): 181 | """Calculate losses, gradients, and update network weights; called in every training iteration""" 182 | # forward 183 | self.forward() # compute fake images and reconstruction images. 184 | # G_A and G_B 185 | self.set_requires_grad([self.netD_A, self.netD_B], False) # Ds require no gradients when optimizing Gs 186 | self.optimizer_G.zero_grad() # set G_A and G_B's gradients to zero 187 | self.backward_G() # calculate gradients for G_A and G_B 188 | self.optimizer_G.step() # update G_A and G_B's weights 189 | # D_A and D_B 190 | self.set_requires_grad([self.netD_A, self.netD_B], True) 191 | self.optimizer_D.zero_grad() # set D_A and D_B's gradients to zero 192 | self.backward_D_A() # calculate gradients for D_A 193 | self.backward_D_B() # calculate graidents for D_B 194 | self.optimizer_D.step() # update D_A and D_B's weights 195 | -------------------------------------------------------------------------------- /models/pix2pix_model.py: -------------------------------------------------------------------------------- 1 | import torch 2 | from .base_model import BaseModel 3 | from . import networks 4 | 5 | 6 | class Pix2PixModel(BaseModel): 7 | """ This class implements the pix2pix model, for learning a mapping from input images to output images given paired data. 8 | 9 | The model training requires '--dataset_mode aligned' dataset. 10 | By default, it uses a '--netG unet256' U-Net generator, 11 | a '--netD basic' discriminator (PatchGAN), 12 | and a '--gan_mode' vanilla GAN loss (the cross-entropy objective used in the orignal GAN paper). 13 | 14 | pix2pix paper: https://arxiv.org/pdf/1611.07004.pdf 15 | """ 16 | @staticmethod 17 | def modify_commandline_options(parser, is_train=True): 18 | """Add new dataset-specific options, and rewrite default values for existing options. 19 | 20 | Parameters: 21 | parser -- original option parser 22 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 23 | 24 | Returns: 25 | the modified parser. 26 | 27 | For pix2pix, we do not use image buffer 28 | The training objective is: GAN Loss + lambda_L1 * ||G(A)-B||_1 29 | By default, we use vanilla GAN loss, UNet with batchnorm, and aligned datasets. 30 | """ 31 | # changing the default values to match the pix2pix paper (https://phillipi.github.io/pix2pix/) 32 | parser.set_defaults(norm='batch', netG='unet_256', dataset_mode='aligned') 33 | if is_train: 34 | parser.set_defaults(pool_size=0, gan_mode='vanilla') 35 | parser.add_argument('--lambda_L1', type=float, default=100.0, help='weight for L1 loss') 36 | 37 | return parser 38 | 39 | def __init__(self, opt): 40 | """Initialize the pix2pix class. 41 | 42 | Parameters: 43 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 44 | """ 45 | BaseModel.__init__(self, opt) 46 | # specify the training losses you want to print out. The training/test scripts will call 47 | self.loss_names = ['G_GAN', 'G_L1', 'D_real', 'D_fake'] 48 | # specify the images you want to save/display. The training/test scripts will call 49 | self.visual_names = ['real_A', 'fake_B', 'real_B'] 50 | # specify the models you want to save to the disk. The training/test scripts will call and 51 | if self.isTrain: 52 | self.model_names = ['G', 'D'] 53 | else: # during test time, only load G 54 | self.model_names = ['G'] 55 | # define networks (both generator and discriminator) 56 | self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, opt.norm, 57 | not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 58 | 59 | if self.isTrain: # define a discriminator; conditional GANs need to take both input and output images; Therefore, #channels for D is input_nc + output_nc 60 | self.netD = networks.define_D(opt.input_nc + opt.output_nc, opt.ndf, opt.netD, 61 | opt.n_layers_D, opt.norm, opt.init_type, opt.init_gain, self.gpu_ids) 62 | 63 | if self.isTrain: 64 | # define loss functions 65 | self.criterionGAN = networks.GANLoss(opt.gan_mode).to(self.device) 66 | self.criterionL1 = torch.nn.L1Loss() 67 | # initialize optimizers; schedulers will be automatically created by function . 68 | self.optimizer_G = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 69 | self.optimizer_D = torch.optim.Adam(self.netD.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 70 | self.optimizers.append(self.optimizer_G) 71 | self.optimizers.append(self.optimizer_D) 72 | 73 | def set_input(self, input): 74 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 75 | 76 | Parameters: 77 | input (dict): include the data itself and its metadata information. 78 | 79 | The option 'direction' can be used to swap images in domain A and domain B. 80 | """ 81 | AtoB = self.opt.direction == 'AtoB' 82 | self.real_A = input['A' if AtoB else 'B'].to(self.device) 83 | self.real_B = input['B' if AtoB else 'A'].to(self.device) 84 | self.image_paths = input['A_paths' if AtoB else 'B_paths'] 85 | 86 | def forward(self): 87 | """Run forward pass; called by both functions and .""" 88 | self.fake_B = self.netG(self.real_A) # G(A) 89 | 90 | def backward_D(self): 91 | """Calculate GAN loss for the discriminator""" 92 | # Fake; stop backprop to the generator by detaching fake_B 93 | fake_AB = torch.cat((self.real_A, self.fake_B), 1) # we use conditional GANs; we need to feed both input and output to the discriminator 94 | pred_fake = self.netD(fake_AB.detach()) 95 | self.loss_D_fake = self.criterionGAN(pred_fake, False) 96 | # Real 97 | real_AB = torch.cat((self.real_A, self.real_B), 1) 98 | pred_real = self.netD(real_AB) 99 | self.loss_D_real = self.criterionGAN(pred_real, True) 100 | # combine loss and calculate gradients 101 | self.loss_D = (self.loss_D_fake + self.loss_D_real) * 0.5 102 | self.loss_D.backward() 103 | 104 | def backward_G(self): 105 | """Calculate GAN and L1 loss for the generator""" 106 | # First, G(A) should fake the discriminator 107 | fake_AB = torch.cat((self.real_A, self.fake_B), 1) 108 | pred_fake = self.netD(fake_AB) 109 | self.loss_G_GAN = self.criterionGAN(pred_fake, True) 110 | # Second, G(A) = B 111 | self.loss_G_L1 = self.criterionL1(self.fake_B, self.real_B) * self.opt.lambda_L1 112 | # combine loss and calculate gradients 113 | self.loss_G = self.loss_G_GAN + self.loss_G_L1 114 | self.loss_G.backward() 115 | 116 | def optimize_parameters(self): 117 | self.forward() # compute fake images: G(A) 118 | # update D 119 | self.set_requires_grad(self.netD, True) # enable backprop for D 120 | self.optimizer_D.zero_grad() # set D's gradients to zero 121 | self.backward_D() # calculate gradients for D 122 | self.optimizer_D.step() # update D's weights 123 | # update G 124 | self.set_requires_grad(self.netD, False) # D requires no gradients when optimizing G 125 | self.optimizer_G.zero_grad() # set G's gradients to zero 126 | self.backward_G() # calculate graidents for G 127 | self.optimizer_G.step() # update G's weights 128 | -------------------------------------------------------------------------------- /models/template_model.py: -------------------------------------------------------------------------------- 1 | """Model class template 2 | 3 | This module provides a template for users to implement custom models. 4 | You can specify '--model template' to use this model. 5 | The class name should be consistent with both the filename and its model option. 6 | The filename should be _dataset.py 7 | The class name should be Dataset.py 8 | It implements a simple image-to-image translation baseline based on regression loss. 9 | Given input-output pairs (data_A, data_B), it learns a network netG that can minimize the following L1 loss: 10 | min_ ||netG(data_A) - data_B||_1 11 | You need to implement the following functions: 12 | : Add model-specific options and rewrite default values for existing options. 13 | <__init__>: Initialize this model class. 14 | : Unpack input data and perform data pre-processing. 15 | : Run forward pass. This will be called by both and . 16 | : Update network weights; it will be called in every training iteration. 17 | """ 18 | import torch 19 | from .base_model import BaseModel 20 | from . import networks 21 | 22 | 23 | class TemplateModel(BaseModel): 24 | @staticmethod 25 | def modify_commandline_options(parser, is_train=True): 26 | """Add new model-specific options and rewrite default values for existing options. 27 | 28 | Parameters: 29 | parser -- the option parser 30 | is_train -- if it is training phase or test phase. You can use this flag to add training-specific or test-specific options. 31 | 32 | Returns: 33 | the modified parser. 34 | """ 35 | parser.set_defaults(dataset_mode='aligned') # You can rewrite default values for this model. For example, this model usually uses aligned dataset as its dataset. 36 | if is_train: 37 | parser.add_argument('--lambda_regression', type=float, default=1.0, help='weight for the regression loss') # You can define new arguments for this model. 38 | 39 | return parser 40 | 41 | def __init__(self, opt): 42 | """Initialize this model class. 43 | 44 | Parameters: 45 | opt -- training/test options 46 | 47 | A few things can be done here. 48 | - (required) call the initialization function of BaseModel 49 | - define loss function, visualization images, model names, and optimizers 50 | """ 51 | BaseModel.__init__(self, opt) # call the initialization method of BaseModel 52 | # specify the training losses you want to print out. The program will call base_model.get_current_losses to plot the losses to the console and save them to the disk. 53 | self.loss_names = ['loss_G'] 54 | # specify the images you want to save and display. The program will call base_model.get_current_visuals to save and display these images. 55 | self.visual_names = ['data_A', 'data_B', 'output'] 56 | # specify the models you want to save to the disk. The program will call base_model.save_networks and base_model.load_networks to save and load networks. 57 | # you can use opt.isTrain to specify different behaviors for training and test. For example, some networks will not be used during test, and you don't need to load them. 58 | self.model_names = ['G'] 59 | # define networks; you can use opt.isTrain to specify different behaviors for training and test. 60 | self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, gpu_ids=self.gpu_ids) 61 | if self.isTrain: # only defined during training time 62 | # define your loss functions. You can use losses provided by torch.nn such as torch.nn.L1Loss. 63 | # We also provide a GANLoss class "networks.GANLoss". self.criterionGAN = networks.GANLoss().to(self.device) 64 | self.criterionLoss = torch.nn.L1Loss() 65 | # define and initialize optimizers. You can define one optimizer for each network. 66 | # If two networks are updated at the same time, you can use itertools.chain to group them. See cycle_gan_model.py for an example. 67 | self.optimizer = torch.optim.Adam(self.netG.parameters(), lr=opt.lr, betas=(opt.beta1, 0.999)) 68 | self.optimizers = [self.optimizer] 69 | 70 | # Our program will automatically call to define schedulers, load networks, and print networks 71 | 72 | def set_input(self, input): 73 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 74 | 75 | Parameters: 76 | input: a dictionary that contains the data itself and its metadata information. 77 | """ 78 | AtoB = self.opt.direction == 'AtoB' # use to swap data_A and data_B 79 | self.data_A = input['A' if AtoB else 'B'].to(self.device) # get image data A 80 | self.data_B = input['B' if AtoB else 'A'].to(self.device) # get image data B 81 | self.image_paths = input['A_paths' if AtoB else 'B_paths'] # get image paths 82 | 83 | def forward(self): 84 | """Run forward pass. This will be called by both functions and .""" 85 | self.output = self.netG(self.data_A) # generate output image given the input data_A 86 | 87 | def backward(self): 88 | """Calculate losses, gradients, and update network weights; called in every training iteration""" 89 | # caculate the intermediate results if necessary; here self.output has been computed during function 90 | # calculate loss given the input and intermediate results 91 | self.loss_G = self.criterionLoss(self.output, self.data_B) * self.opt.lambda_regression 92 | self.loss_G.backward() # calculate gradients of network G w.r.t. loss_G 93 | 94 | def optimize_parameters(self): 95 | """Update network weights; it will be called in every training iteration.""" 96 | self.forward() # first call forward to calculate intermediate results 97 | self.optimizer.zero_grad() # clear network G's existing gradients 98 | self.backward() # calculate gradients for network G 99 | self.optimizer.step() # update gradients for network G 100 | -------------------------------------------------------------------------------- /models/test_model.py: -------------------------------------------------------------------------------- 1 | from .base_model import BaseModel 2 | from . import networks 3 | 4 | 5 | class TestModel(BaseModel): 6 | """ This TesteModel can be used to generate CycleGAN results for only one direction. 7 | This model will automatically set '--dataset_mode single', which only loads the images from one collection. 8 | 9 | See the test instruction for more details. 10 | """ 11 | @staticmethod 12 | def modify_commandline_options(parser, is_train=True): 13 | """Add new dataset-specific options, and rewrite default values for existing options. 14 | 15 | Parameters: 16 | parser -- original option parser 17 | is_train (bool) -- whether training phase or test phase. You can use this flag to add training-specific or test-specific options. 18 | 19 | Returns: 20 | the modified parser. 21 | 22 | The model can only be used during test time. It requires '--dataset_mode single'. 23 | You need to specify the network using the option '--model_suffix'. 24 | """ 25 | assert not is_train, 'TestModel cannot be used during training time' 26 | parser.set_defaults(dataset_mode='single') 27 | parser.add_argument('--model_suffix', type=str, default='', help='In checkpoints_dir, [epoch]_net_G[model_suffix].pth will be loaded as the generator.') 28 | 29 | return parser 30 | 31 | def __init__(self, opt): 32 | """Initialize the pix2pix class. 33 | 34 | Parameters: 35 | opt (Option class)-- stores all the experiment flags; needs to be a subclass of BaseOptions 36 | """ 37 | assert(not opt.isTrain) 38 | BaseModel.__init__(self, opt) 39 | # specify the training losses you want to print out. The training/test scripts will call 40 | self.loss_names = [] 41 | # specify the images you want to save/display. The training/test scripts will call 42 | self.visual_names = ['real', 'fake'] 43 | # specify the models you want to save to the disk. The training/test scripts will call and 44 | self.model_names = ['G' + opt.model_suffix] # only generator is needed. 45 | self.netG = networks.define_G(opt.input_nc, opt.output_nc, opt.ngf, opt.netG, 46 | opt.norm, not opt.no_dropout, opt.init_type, opt.init_gain, self.gpu_ids) 47 | 48 | # assigns the model to self.netG_[suffix] so that it can be loaded 49 | # please see 50 | setattr(self, 'netG' + opt.model_suffix, self.netG) # store netG in self. 51 | 52 | def set_input(self, input): 53 | """Unpack input data from the dataloader and perform necessary pre-processing steps. 54 | 55 | Parameters: 56 | input: a dictionary that contains the data itself and its metadata information. 57 | 58 | We need to use 'single_dataset' dataset mode. It only load images from one domain. 59 | """ 60 | self.real = input['A'].to(self.device) 61 | self.image_paths = input['A_paths'] 62 | 63 | def forward(self): 64 | """Run forward pass.""" 65 | self.fake = self.netG(self.real) # G(real) 66 | 67 | def optimize_parameters(self): 68 | """No optimization for test model.""" 69 | pass 70 | -------------------------------------------------------------------------------- /options/__init__.py: -------------------------------------------------------------------------------- 1 | """This package options includes option modules: training options, test options, and basic options (used in both training and test).""" 2 | -------------------------------------------------------------------------------- /options/base_options.py: -------------------------------------------------------------------------------- 1 | import argparse 2 | import os 3 | from util import util 4 | import torch 5 | import models 6 | import data 7 | 8 | 9 | class BaseOptions(): 10 | """This class defines options used during both training and test time. 11 | 12 | It also implements several helper functions such as parsing, printing, and saving the options. 13 | It also gathers additional options defined in functions in both dataset class and model class. 14 | """ 15 | 16 | def __init__(self): 17 | """Reset the class; indicates the class hasn't been initailized""" 18 | self.initialized = False 19 | 20 | def initialize(self, parser): 21 | """Define the common options that are used in both training and test.""" 22 | # basic parameters 23 | parser.add_argument('--dataroot', required=True, help='path to images (should have subfolders trainA, trainB, valA, valB, etc)') 24 | parser.add_argument('--name', type=str, default='experiment_name', help='name of the experiment. It decides where to store samples and models') 25 | parser.add_argument('--gpu_ids', type=str, default='0', help='gpu ids: e.g. 0 0,1,2, 0,2. use -1 for CPU') 26 | parser.add_argument('--checkpoints_dir', type=str, default='./checkpoints', help='models are saved here') 27 | # model parameters 28 | parser.add_argument('--model', type=str, default='cycle_gan', help='chooses which model to use. [cycle_gan | pix2pix | test | colorization]') 29 | parser.add_argument('--input_nc', type=int, default=3, help='# of input image channels: 3 for RGB and 1 for grayscale') 30 | parser.add_argument('--output_nc', type=int, default=3, help='# of output image channels: 3 for RGB and 1 for grayscale') 31 | parser.add_argument('--ngf', type=int, default=64, help='# of gen filters in the last conv layer') 32 | parser.add_argument('--ndf', type=int, default=64, help='# of discrim filters in the first conv layer') 33 | parser.add_argument('--netD', type=str, default='basic', help='specify discriminator architecture [basic | n_layers | pixel]. The basic model is a 70x70 PatchGAN. n_layers allows you to specify the layers in the discriminator') 34 | parser.add_argument('--netG', type=str, default='resnet_9blocks', help='specify generator architecture [resnet_9blocks | resnet_6blocks | unet_256 | unet_128]') 35 | parser.add_argument('--n_layers_D', type=int, default=3, help='only used if netD==n_layers') 36 | parser.add_argument('--norm', type=str, default='instance', help='instance normalization or batch normalization [instance | batch | none]') 37 | parser.add_argument('--init_type', type=str, default='normal', help='network initialization [normal | xavier | kaiming | orthogonal]') 38 | parser.add_argument('--init_gain', type=float, default=0.02, help='scaling factor for normal, xavier and orthogonal.') 39 | parser.add_argument('--no_dropout', action='store_true', help='no dropout for the generator') 40 | # dataset parameters 41 | parser.add_argument('--dataset_mode', type=str, default='unaligned', help='chooses how datasets are loaded. [unaligned | aligned | single | colorization]') 42 | parser.add_argument('--direction', type=str, default='AtoB', help='AtoB or BtoA') 43 | parser.add_argument('--serial_batches', action='store_true', help='if true, takes images in order to make batches, otherwise takes them randomly') 44 | parser.add_argument('--num_threads', default=4, type=int, help='# threads for loading data') 45 | parser.add_argument('--batch_size', type=int, default=1, help='input batch size') 46 | parser.add_argument('--load_size', type=int, default=286, help='scale images to this size') 47 | parser.add_argument('--crop_size', type=int, default=256, help='then crop to this size') 48 | parser.add_argument('--max_dataset_size', type=int, default=float("inf"), help='Maximum number of samples allowed per dataset. If the dataset directory contains more than max_dataset_size, only a subset is loaded.') 49 | parser.add_argument('--preprocess', type=str, default='resize_and_crop', help='scaling and cropping of images at load time [resize_and_crop | crop | scale_width | scale_width_and_crop | none]') 50 | parser.add_argument('--no_flip', action='store_true', help='if specified, do not flip the images for data augmentation') 51 | parser.add_argument('--display_winsize', type=int, default=256, help='display window size for both visdom and HTML') 52 | # additional parameters 53 | parser.add_argument('--epoch', type=str, default='latest', help='which epoch to load? set to latest to use latest cached model') 54 | parser.add_argument('--load_iter', type=int, default='0', help='which iteration to load? if load_iter > 0, the code will load models by iter_[load_iter]; otherwise, the code will load models by [epoch]') 55 | parser.add_argument('--verbose', action='store_true', help='if specified, print more debugging information') 56 | parser.add_argument('--suffix', default='', type=str, help='customized suffix: opt.name = opt.name + suffix: e.g., {model}_{netG}_size{load_size}') 57 | # wandb parameters 58 | parser.add_argument('--use_wandb', action='store_true', help='if specified, then init wandb logging') 59 | parser.add_argument('--wandb_project_name', type=str, default='CycleGAN-and-pix2pix', help='specify wandb project name') 60 | self.initialized = True 61 | return parser 62 | 63 | def gather_options(self): 64 | """Initialize our parser with basic options(only once). 65 | Add additional model-specific and dataset-specific options. 66 | These options are defined in the function 67 | in model and dataset classes. 68 | """ 69 | if not self.initialized: # check if it has been initialized 70 | parser = argparse.ArgumentParser(formatter_class=argparse.ArgumentDefaultsHelpFormatter) 71 | parser = self.initialize(parser) 72 | 73 | # get the basic options 74 | opt, _ = parser.parse_known_args() 75 | 76 | # modify model-related parser options 77 | model_name = opt.model 78 | model_option_setter = models.get_option_setter(model_name) 79 | parser = model_option_setter(parser, self.isTrain) 80 | opt, _ = parser.parse_known_args() # parse again with new defaults 81 | 82 | # modify dataset-related parser options 83 | dataset_name = opt.dataset_mode 84 | dataset_option_setter = data.get_option_setter(dataset_name) 85 | parser = dataset_option_setter(parser, self.isTrain) 86 | 87 | # save and return the parser 88 | self.parser = parser 89 | return parser.parse_args() 90 | 91 | def print_options(self, opt): 92 | """Print and save options 93 | 94 | It will print both current options and default values(if different). 95 | It will save options into a text file / [checkpoints_dir] / opt.txt 96 | """ 97 | message = '' 98 | message += '----------------- Options ---------------\n' 99 | for k, v in sorted(vars(opt).items()): 100 | comment = '' 101 | default = self.parser.get_default(k) 102 | if v != default: 103 | comment = '\t[default: %s]' % str(default) 104 | message += '{:>25}: {:<30}{}\n'.format(str(k), str(v), comment) 105 | message += '----------------- End -------------------' 106 | print(message) 107 | 108 | # save to the disk 109 | expr_dir = os.path.join(opt.checkpoints_dir, opt.name) 110 | util.mkdirs(expr_dir) 111 | file_name = os.path.join(expr_dir, '{}_opt.txt'.format(opt.phase)) 112 | with open(file_name, 'wt') as opt_file: 113 | opt_file.write(message) 114 | opt_file.write('\n') 115 | 116 | def parse(self): 117 | """Parse our options, create checkpoints directory suffix, and set up gpu device.""" 118 | opt = self.gather_options() 119 | opt.isTrain = self.isTrain # train or test 120 | 121 | # process opt.suffix 122 | if opt.suffix: 123 | suffix = ('_' + opt.suffix.format(**vars(opt))) if opt.suffix != '' else '' 124 | opt.name = opt.name + suffix 125 | 126 | self.print_options(opt) 127 | 128 | # set gpu ids 129 | str_ids = opt.gpu_ids.split(',') 130 | opt.gpu_ids = [] 131 | for str_id in str_ids: 132 | id = int(str_id) 133 | if id >= 0: 134 | opt.gpu_ids.append(id) 135 | if len(opt.gpu_ids) > 0: 136 | torch.cuda.set_device(opt.gpu_ids[0]) 137 | 138 | self.opt = opt 139 | return self.opt 140 | -------------------------------------------------------------------------------- /options/test_options.py: -------------------------------------------------------------------------------- 1 | from .base_options import BaseOptions 2 | 3 | 4 | class TestOptions(BaseOptions): 5 | """This class includes test options. 6 | 7 | It also includes shared options defined in BaseOptions. 8 | """ 9 | 10 | def initialize(self, parser): 11 | parser = BaseOptions.initialize(self, parser) # define shared options 12 | parser.add_argument('--results_dir', type=str, default='./results/', help='saves results here.') 13 | parser.add_argument('--aspect_ratio', type=float, default=1.0, help='aspect ratio of result images') 14 | parser.add_argument('--phase', type=str, default='test', help='train, val, test, etc') 15 | # Dropout and Batchnorm has different behavioir during training and test. 16 | parser.add_argument('--eval', action='store_true', help='use eval mode during test time.') 17 | parser.add_argument('--num_test', type=int, default=50, help='how many test images to run') 18 | # rewrite devalue values 19 | parser.set_defaults(model='test') 20 | # To avoid cropping, the load_size should be the same as crop_size 21 | parser.set_defaults(load_size=parser.get_default('crop_size')) 22 | self.isTrain = False 23 | return parser 24 | -------------------------------------------------------------------------------- /options/train_options.py: -------------------------------------------------------------------------------- 1 | from .base_options import BaseOptions 2 | 3 | 4 | class TrainOptions(BaseOptions): 5 | """This class includes training options. 6 | 7 | It also includes shared options defined in BaseOptions. 8 | """ 9 | 10 | def initialize(self, parser): 11 | parser = BaseOptions.initialize(self, parser) 12 | # visdom and HTML visualization parameters 13 | parser.add_argument('--display_freq', type=int, default=400, help='frequency of showing training results on screen') 14 | parser.add_argument('--display_ncols', type=int, default=4, help='if positive, display all images in a single visdom web panel with certain number of images per row.') 15 | parser.add_argument('--display_id', type=int, default=1, help='window id of the web display') 16 | parser.add_argument('--display_server', type=str, default="http://localhost", help='visdom server of the web display') 17 | parser.add_argument('--display_env', type=str, default='main', help='visdom display environment name (default is "main")') 18 | parser.add_argument('--display_port', type=int, default=8097, help='visdom port of the web display') 19 | parser.add_argument('--update_html_freq', type=int, default=1000, help='frequency of saving training results to html') 20 | parser.add_argument('--print_freq', type=int, default=100, help='frequency of showing training results on console') 21 | parser.add_argument('--no_html', action='store_true', help='do not save intermediate training results to [opt.checkpoints_dir]/[opt.name]/web/') 22 | # network saving and loading parameters 23 | parser.add_argument('--save_latest_freq', type=int, default=5000, help='frequency of saving the latest results') 24 | parser.add_argument('--save_epoch_freq', type=int, default=5, help='frequency of saving checkpoints at the end of epochs') 25 | parser.add_argument('--save_by_iter', action='store_true', help='whether saves model by iteration') 26 | parser.add_argument('--continue_train', action='store_true', help='continue training: load the latest model') 27 | parser.add_argument('--epoch_count', type=int, default=1, help='the starting epoch count, we save the model by , +, ...') 28 | parser.add_argument('--phase', type=str, default='train', help='train, val, test, etc') 29 | # training parameters 30 | parser.add_argument('--n_epochs', type=int, default=100, help='number of epochs with the initial learning rate') 31 | parser.add_argument('--n_epochs_decay', type=int, default=100, help='number of epochs to linearly decay learning rate to zero') 32 | parser.add_argument('--beta1', type=float, default=0.5, help='momentum term of adam') 33 | parser.add_argument('--lr', type=float, default=0.0002, help='initial learning rate for adam') 34 | parser.add_argument('--gan_mode', type=str, default='lsgan', help='the type of GAN objective. [vanilla| lsgan | wgangp]. vanilla GAN loss is the cross-entropy objective used in the original GAN paper.') 35 | parser.add_argument('--pool_size', type=int, default=50, help='the size of image buffer that stores previously generated images') 36 | parser.add_argument('--lr_policy', type=str, default='linear', help='learning rate policy. [linear | step | plateau | cosine]') 37 | parser.add_argument('--lr_decay_iters', type=int, default=50, help='multiply by a gamma every lr_decay_iters iterations') 38 | 39 | self.isTrain = True 40 | return parser 41 | -------------------------------------------------------------------------------- /pix2pix.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": { 6 | "colab_type": "text", 7 | "id": "view-in-github" 8 | }, 9 | "source": [ 10 | "\"Open" 11 | ] 12 | }, 13 | { 14 | "cell_type": "markdown", 15 | "metadata": { 16 | "colab_type": "text", 17 | "id": "7wNjDKdQy35h" 18 | }, 19 | "source": [ 20 | "# Install" 21 | ] 22 | }, 23 | { 24 | "cell_type": "code", 25 | "execution_count": null, 26 | "metadata": { 27 | "colab": {}, 28 | "colab_type": "code", 29 | "id": "TRm-USlsHgEV" 30 | }, 31 | "outputs": [], 32 | "source": [ 33 | "!git clone https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix" 34 | ] 35 | }, 36 | { 37 | "cell_type": "code", 38 | "execution_count": null, 39 | "metadata": { 40 | "colab": {}, 41 | "colab_type": "code", 42 | "id": "Pt3igws3eiVp" 43 | }, 44 | "outputs": [], 45 | "source": [ 46 | "import os\n", 47 | "os.chdir('pytorch-CycleGAN-and-pix2pix/')" 48 | ] 49 | }, 50 | { 51 | "cell_type": "code", 52 | "execution_count": null, 53 | "metadata": { 54 | "colab": {}, 55 | "colab_type": "code", 56 | "id": "z1EySlOXwwoa" 57 | }, 58 | "outputs": [], 59 | "source": [ 60 | "!pip install -r requirements.txt" 61 | ] 62 | }, 63 | { 64 | "cell_type": "markdown", 65 | "metadata": { 66 | "colab_type": "text", 67 | "id": "8daqlgVhw29P" 68 | }, 69 | "source": [ 70 | "# Datasets\n", 71 | "\n", 72 | "Download one of the official datasets with:\n", 73 | "\n", 74 | "- `bash ./datasets/download_pix2pix_dataset.sh [cityscapes, night2day, edges2handbags, edges2shoes, facades, maps]`\n", 75 | "\n", 76 | "Or use your own dataset by creating the appropriate folders and adding in the images. Follow the instructions [here](https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/datasets.md#pix2pix-datasets)." 77 | ] 78 | }, 79 | { 80 | "cell_type": "code", 81 | "execution_count": null, 82 | "metadata": { 83 | "colab": {}, 84 | "colab_type": "code", 85 | "id": "vrdOettJxaCc" 86 | }, 87 | "outputs": [], 88 | "source": [ 89 | "!bash ./datasets/download_pix2pix_dataset.sh facades" 90 | ] 91 | }, 92 | { 93 | "cell_type": "markdown", 94 | "metadata": { 95 | "colab_type": "text", 96 | "id": "gdUz4116xhpm" 97 | }, 98 | "source": [ 99 | "# Pretrained models\n", 100 | "\n", 101 | "Download one of the official pretrained models with:\n", 102 | "\n", 103 | "- `bash ./scripts/download_pix2pix_model.sh [edges2shoes, sat2map, map2sat, facades_label2photo, and day2night]`\n", 104 | "\n", 105 | "Or add your own pretrained model to `./checkpoints/{NAME}_pretrained/latest_net_G.pt`" 106 | ] 107 | }, 108 | { 109 | "cell_type": "code", 110 | "execution_count": null, 111 | "metadata": { 112 | "colab": {}, 113 | "colab_type": "code", 114 | "id": "GC2DEP4M0OsS" 115 | }, 116 | "outputs": [], 117 | "source": [ 118 | "!bash ./scripts/download_pix2pix_model.sh facades_label2photo" 119 | ] 120 | }, 121 | { 122 | "cell_type": "markdown", 123 | "metadata": { 124 | "colab_type": "text", 125 | "id": "yFw1kDQBx3LN" 126 | }, 127 | "source": [ 128 | "# Training\n", 129 | "\n", 130 | "- `python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA`\n", 131 | "\n", 132 | "Change the `--dataroot` and `--name` to your own dataset's path and model's name. Use `--gpu_ids 0,1,..` to train on multiple GPUs and `--batch_size` to change the batch size. Add `--direction BtoA` if you want to train a model to transfrom from class B to A." 133 | ] 134 | }, 135 | { 136 | "cell_type": "code", 137 | "execution_count": null, 138 | "metadata": { 139 | "colab": {}, 140 | "colab_type": "code", 141 | "id": "0sp7TCT2x9dB" 142 | }, 143 | "outputs": [], 144 | "source": [ 145 | "!python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA --display_id -1" 146 | ] 147 | }, 148 | { 149 | "cell_type": "markdown", 150 | "metadata": { 151 | "colab_type": "text", 152 | "id": "9UkcaFZiyASl" 153 | }, 154 | "source": [ 155 | "# Testing\n", 156 | "\n", 157 | "- `python test.py --dataroot ./datasets/facades --direction BtoA --model pix2pix --name facades_pix2pix`\n", 158 | "\n", 159 | "Change the `--dataroot`, `--name`, and `--direction` to be consistent with your trained model's configuration and how you want to transform images.\n", 160 | "\n", 161 | "> from https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix:\n", 162 | "> Note that we specified --direction BtoA as Facades dataset's A to B direction is photos to labels.\n", 163 | "\n", 164 | "> If you would like to apply a pre-trained model to a collection of input images (rather than image pairs), please use --model test option. See ./scripts/test_single.sh for how to apply a model to Facade label maps (stored in the directory facades/testB).\n", 165 | "\n", 166 | "> See a list of currently available models at ./scripts/download_pix2pix_model.sh" 167 | ] 168 | }, 169 | { 170 | "cell_type": "code", 171 | "execution_count": null, 172 | "metadata": { 173 | "colab": {}, 174 | "colab_type": "code", 175 | "id": "mey7o6j-0368" 176 | }, 177 | "outputs": [], 178 | "source": [ 179 | "!ls checkpoints/" 180 | ] 181 | }, 182 | { 183 | "cell_type": "code", 184 | "execution_count": null, 185 | "metadata": { 186 | "colab": {}, 187 | "colab_type": "code", 188 | "id": "uCsKkEq0yGh0" 189 | }, 190 | "outputs": [], 191 | "source": [ 192 | "!python test.py --dataroot ./datasets/facades --direction BtoA --model pix2pix --name facades_label2photo_pretrained --use_wandb" 193 | ] 194 | }, 195 | { 196 | "cell_type": "markdown", 197 | "metadata": { 198 | "colab_type": "text", 199 | "id": "OzSKIPUByfiN" 200 | }, 201 | "source": [ 202 | "# Visualize" 203 | ] 204 | }, 205 | { 206 | "cell_type": "code", 207 | "execution_count": null, 208 | "metadata": { 209 | "colab": {}, 210 | "colab_type": "code", 211 | "id": "9Mgg8raPyizq" 212 | }, 213 | "outputs": [], 214 | "source": [ 215 | "import matplotlib.pyplot as plt\n", 216 | "\n", 217 | "img = plt.imread('./results/facades_label2photo_pretrained/test_latest/images/100_fake_B.png')\n", 218 | "plt.imshow(img)" 219 | ] 220 | }, 221 | { 222 | "cell_type": "code", 223 | "execution_count": null, 224 | "metadata": { 225 | "colab": {}, 226 | "colab_type": "code", 227 | "id": "0G3oVH9DyqLQ" 228 | }, 229 | "outputs": [], 230 | "source": [ 231 | "img = plt.imread('./results/facades_label2photo_pretrained/test_latest/images/100_real_A.png')\n", 232 | "plt.imshow(img)" 233 | ] 234 | }, 235 | { 236 | "cell_type": "code", 237 | "execution_count": null, 238 | "metadata": { 239 | "colab": {}, 240 | "colab_type": "code", 241 | "id": "ErK5OC1j1LH4" 242 | }, 243 | "outputs": [], 244 | "source": [ 245 | "img = plt.imread('./results/facades_label2photo_pretrained/test_latest/images/100_real_B.png')\n", 246 | "plt.imshow(img)" 247 | ] 248 | } 249 | ], 250 | "metadata": { 251 | "accelerator": "GPU", 252 | "colab": { 253 | "collapsed_sections": [], 254 | "include_colab_link": true, 255 | "name": "pix2pix", 256 | "provenance": [] 257 | }, 258 | "environment": { 259 | "name": "tf2-gpu.2-3.m74", 260 | "type": "gcloud", 261 | "uri": "gcr.io/deeplearning-platform-release/tf2-gpu.2-3:m74" 262 | }, 263 | "kernelspec": { 264 | "display_name": "Python 3", 265 | "language": "python", 266 | "name": "python3" 267 | }, 268 | "language_info": { 269 | "codemirror_mode": { 270 | "name": "ipython", 271 | "version": 3 272 | }, 273 | "file_extension": ".py", 274 | "mimetype": "text/x-python", 275 | "name": "python", 276 | "nbconvert_exporter": "python", 277 | "pygments_lexer": "ipython3", 278 | "version": "3.7.10" 279 | } 280 | }, 281 | "nbformat": 4, 282 | "nbformat_minor": 4 283 | } 284 | -------------------------------------------------------------------------------- /requirements.txt: -------------------------------------------------------------------------------- 1 | torch>=1.4.0 2 | torchvision>=0.5.0 3 | dominate>=2.4.0 4 | visdom>=0.1.8.8 5 | wandb 6 | -------------------------------------------------------------------------------- /scripts/conda_deps.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | conda install numpy pyyaml mkl mkl-include setuptools cmake cffi typing 3 | conda install pytorch torchvision -c pytorch # add cuda90 if CUDA 9 4 | conda install visdom dominate -c conda-forge # install visdom and dominate 5 | -------------------------------------------------------------------------------- /scripts/download_cyclegan_model.sh: -------------------------------------------------------------------------------- 1 | FILE=$1 2 | 3 | echo "Note: available models are apple2orange, orange2apple, summer2winter_yosemite, winter2summer_yosemite, horse2zebra, zebra2horse, monet2photo, style_monet, style_cezanne, style_ukiyoe, style_vangogh, sat2map, map2sat, cityscapes_photo2label, cityscapes_label2photo, facades_photo2label, facades_label2photo, iphone2dslr_flower" 4 | 5 | echo "Specified [$FILE]" 6 | 7 | mkdir -p ./checkpoints/${FILE}_pretrained 8 | MODEL_FILE=./checkpoints/${FILE}_pretrained/latest_net_G.pth 9 | URL=http://efrosgans.eecs.berkeley.edu/cyclegan/pretrained_models/$FILE.pth 10 | 11 | wget -N $URL -O $MODEL_FILE 12 | -------------------------------------------------------------------------------- /scripts/download_pix2pix_model.sh: -------------------------------------------------------------------------------- 1 | FILE=$1 2 | 3 | echo "Note: available models are edges2shoes, sat2map, map2sat, facades_label2photo, and day2night" 4 | echo "Specified [$FILE]" 5 | 6 | mkdir -p ./checkpoints/${FILE}_pretrained 7 | MODEL_FILE=./checkpoints/${FILE}_pretrained/latest_net_G.pth 8 | URL=http://efrosgans.eecs.berkeley.edu/pix2pix/models-pytorch/$FILE.pth 9 | 10 | wget -N $URL -O $MODEL_FILE 11 | -------------------------------------------------------------------------------- /scripts/edges/PostprocessHED.m: -------------------------------------------------------------------------------- 1 | %%% Prerequisites 2 | % You need to get the cpp file edgesNmsMex.cpp from https://raw.githubusercontent.com/pdollar/edges/master/private/edgesNmsMex.cpp 3 | % and compile it in Matlab: mex edgesNmsMex.cpp 4 | % You also need to download and install Piotr's Computer Vision Matlab Toolbox: https://pdollar.github.io/toolbox/ 5 | 6 | %%% parameters 7 | % hed_mat_dir: the hed mat file directory (the output of 'batch_hed.py') 8 | % edge_dir: the output HED edges directory 9 | % image_width: resize the edge map to [image_width, image_width] 10 | % threshold: threshold for image binarization (default 25.0/255.0) 11 | % small_edge: remove small edges (default 5) 12 | 13 | function [] = PostprocessHED(hed_mat_dir, edge_dir, image_width, threshold, small_edge) 14 | 15 | if ~exist(edge_dir, 'dir') 16 | mkdir(edge_dir); 17 | end 18 | fileList = dir(fullfile(hed_mat_dir, '*.mat')); 19 | nFiles = numel(fileList); 20 | fprintf('find %d mat files\n', nFiles); 21 | 22 | for n = 1 : nFiles 23 | if mod(n, 1000) == 0 24 | fprintf('process %d/%d images\n', n, nFiles); 25 | end 26 | fileName = fileList(n).name; 27 | filePath = fullfile(hed_mat_dir, fileName); 28 | jpgName = strrep(fileName, '.mat', '.jpg'); 29 | edge_path = fullfile(edge_dir, jpgName); 30 | 31 | if ~exist(edge_path, 'file') 32 | E = GetEdge(filePath); 33 | E = imresize(E,[image_width,image_width]); 34 | E_simple = SimpleEdge(E, threshold, small_edge); 35 | E_simple = uint8(E_simple*255); 36 | imwrite(E_simple, edge_path, 'Quality',100); 37 | end 38 | end 39 | end 40 | 41 | 42 | 43 | 44 | function [E] = GetEdge(filePath) 45 | load(filePath); 46 | E = 1-edge_predict; 47 | end 48 | 49 | function [E4] = SimpleEdge(E, threshold, small_edge) 50 | if nargin <= 1 51 | threshold = 25.0/255.0; 52 | end 53 | 54 | if nargin <= 2 55 | small_edge = 5; 56 | end 57 | 58 | if ndims(E) == 3 59 | E = E(:,:,1); 60 | end 61 | 62 | E1 = 1 - E; 63 | E2 = EdgeNMS(E1); 64 | E3 = double(E2>=max(eps,threshold)); 65 | E3 = bwmorph(E3,'thin',inf); 66 | E4 = bwareaopen(E3, small_edge); 67 | E4=1-E4; 68 | end 69 | 70 | function [E_nms] = EdgeNMS( E ) 71 | E=single(E); 72 | [Ox,Oy] = gradient2(convTri(E,4)); 73 | [Oxx,~] = gradient2(Ox); 74 | [Oxy,Oyy] = gradient2(Oy); 75 | O = mod(atan(Oyy.*sign(-Oxy)./(Oxx+1e-5)),pi); 76 | E_nms = edgesNmsMex(E,O,1,5,1.01,1); 77 | end 78 | -------------------------------------------------------------------------------- /scripts/edges/batch_hed.py: -------------------------------------------------------------------------------- 1 | # HED batch processing script; modified from https://github.com/s9xie/hed/blob/master/examples/hed/HED-tutorial.ipynb 2 | # Step 1: download the hed repo: https://github.com/s9xie/hed 3 | # Step 2: download the models and protoxt, and put them under {caffe_root}/examples/hed/ 4 | # Step 3: put this script under {caffe_root}/examples/hed/ 5 | # Step 4: run the following script: 6 | # python batch_hed.py --images_dir=/data/to/path/photos/ --hed_mat_dir=/data/to/path/hed_mat_files/ 7 | # The code sometimes crashes after computation is done. Error looks like "Check failed: ... driver shutting down". You can just kill the job. 8 | # For large images, it will produce gpu memory issue. Therefore, you better resize the images before running this script. 9 | # Step 5: run the MATLAB post-processing script "PostprocessHED.m" 10 | 11 | 12 | import caffe 13 | import numpy as np 14 | from PIL import Image 15 | import os 16 | import argparse 17 | import sys 18 | import scipy.io as sio 19 | 20 | 21 | def parse_args(): 22 | parser = argparse.ArgumentParser(description='batch proccesing: photos->edges') 23 | parser.add_argument('--caffe_root', dest='caffe_root', help='caffe root', default='../../', type=str) 24 | parser.add_argument('--caffemodel', dest='caffemodel', help='caffemodel', default='./hed_pretrained_bsds.caffemodel', type=str) 25 | parser.add_argument('--prototxt', dest='prototxt', help='caffe prototxt file', default='./deploy.prototxt', type=str) 26 | parser.add_argument('--images_dir', dest='images_dir', help='directory to store input photos', type=str) 27 | parser.add_argument('--hed_mat_dir', dest='hed_mat_dir', help='directory to store output hed edges in mat file', type=str) 28 | parser.add_argument('--border', dest='border', help='padding border', type=int, default=128) 29 | parser.add_argument('--gpu_id', dest='gpu_id', help='gpu id', type=int, default=1) 30 | args = parser.parse_args() 31 | return args 32 | 33 | 34 | args = parse_args() 35 | for arg in vars(args): 36 | print('[%s] =' % arg, getattr(args, arg)) 37 | # Make sure that caffe is on the python path: 38 | caffe_root = args.caffe_root # this file is expected to be in {caffe_root}/examples/hed/ 39 | sys.path.insert(0, caffe_root + 'python') 40 | 41 | 42 | if not os.path.exists(args.hed_mat_dir): 43 | print('create output directory %s' % args.hed_mat_dir) 44 | os.makedirs(args.hed_mat_dir) 45 | 46 | imgList = os.listdir(args.images_dir) 47 | nImgs = len(imgList) 48 | print('#images = %d' % nImgs) 49 | 50 | caffe.set_mode_gpu() 51 | caffe.set_device(args.gpu_id) 52 | # load net 53 | net = caffe.Net(args.prototxt, args.caffemodel, caffe.TEST) 54 | # pad border 55 | border = args.border 56 | 57 | for i in range(nImgs): 58 | if i % 500 == 0: 59 | print('processing image %d/%d' % (i, nImgs)) 60 | im = Image.open(os.path.join(args.images_dir, imgList[i])) 61 | 62 | in_ = np.array(im, dtype=np.float32) 63 | in_ = np.pad(in_, ((border, border), (border, border), (0, 0)), 'reflect') 64 | 65 | in_ = in_[:, :, 0:3] 66 | in_ = in_[:, :, ::-1] 67 | in_ -= np.array((104.00698793, 116.66876762, 122.67891434)) 68 | in_ = in_.transpose((2, 0, 1)) 69 | # remove the following two lines if testing with cpu 70 | 71 | # shape for input (data blob is N x C x H x W), set data 72 | net.blobs['data'].reshape(1, *in_.shape) 73 | net.blobs['data'].data[...] = in_ 74 | # run net and take argmax for prediction 75 | net.forward() 76 | fuse = net.blobs['sigmoid-fuse'].data[0][0, :, :] 77 | # get rid of the border 78 | fuse = fuse[(border + 35):(-border + 35), (border + 35):(-border + 35)] 79 | # save hed file to the disk 80 | name, ext = os.path.splitext(imgList[i]) 81 | sio.savemat(os.path.join(args.hed_mat_dir, name + '.mat'), {'edge_predict': fuse}) 82 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/cityscapes.py: -------------------------------------------------------------------------------- 1 | # The following code is modified from https://github.com/shelhamer/clockwork-fcn 2 | import sys 3 | import os 4 | import glob 5 | import numpy as np 6 | from PIL import Image 7 | 8 | 9 | class cityscapes: 10 | def __init__(self, data_path): 11 | # data_path something like /data2/cityscapes 12 | self.dir = data_path 13 | self.classes = ['road', 'sidewalk', 'building', 'wall', 'fence', 14 | 'pole', 'traffic light', 'traffic sign', 'vegetation', 'terrain', 15 | 'sky', 'person', 'rider', 'car', 'truck', 16 | 'bus', 'train', 'motorcycle', 'bicycle'] 17 | self.mean = np.array((72.78044, 83.21195, 73.45286), dtype=np.float32) 18 | # import cityscapes label helper and set up label mappings 19 | sys.path.insert(0, '{}/scripts/helpers/'.format(self.dir)) 20 | labels = __import__('labels') 21 | self.id2trainId = {label.id: label.trainId for label in labels.labels} # dictionary mapping from raw IDs to train IDs 22 | self.trainId2color = {label.trainId: label.color for label in labels.labels} # dictionary mapping train IDs to colors as 3-tuples 23 | 24 | def get_dset(self, split): 25 | ''' 26 | List images as (city, id) for the specified split 27 | 28 | TODO(shelhamer) generate splits from cityscapes itself, instead of 29 | relying on these separately made text files. 30 | ''' 31 | if split == 'train': 32 | dataset = open('{}/ImageSets/segFine/train.txt'.format(self.dir)).read().splitlines() 33 | else: 34 | dataset = open('{}/ImageSets/segFine/val.txt'.format(self.dir)).read().splitlines() 35 | return [(item.split('/')[0], item.split('/')[1]) for item in dataset] 36 | 37 | def load_image(self, split, city, idx): 38 | im = Image.open('{}/leftImg8bit_sequence/{}/{}/{}_leftImg8bit.png'.format(self.dir, split, city, idx)) 39 | return im 40 | 41 | def assign_trainIds(self, label): 42 | """ 43 | Map the given label IDs to the train IDs appropriate for training 44 | Use the label mapping provided in labels.py from the cityscapes scripts 45 | """ 46 | label = np.array(label, dtype=np.float32) 47 | if sys.version_info[0] < 3: 48 | for k, v in self.id2trainId.iteritems(): 49 | label[label == k] = v 50 | else: 51 | for k, v in self.id2trainId.items(): 52 | label[label == k] = v 53 | return label 54 | 55 | def load_label(self, split, city, idx): 56 | """ 57 | Load label image as 1 x height x width integer array of label indices. 58 | The leading singleton dimension is required by the loss. 59 | """ 60 | label = Image.open('{}/gtFine/{}/{}/{}_gtFine_labelIds.png'.format(self.dir, split, city, idx)) 61 | label = self.assign_trainIds(label) # get proper labels for eval 62 | label = np.array(label, dtype=np.uint8) 63 | label = label[np.newaxis, ...] 64 | return label 65 | 66 | def preprocess(self, im): 67 | """ 68 | Preprocess loaded image (by load_image) for Caffe: 69 | - cast to float 70 | - switch channels RGB -> BGR 71 | - subtract mean 72 | - transpose to channel x height x width order 73 | """ 74 | in_ = np.array(im, dtype=np.float32) 75 | in_ = in_[:, :, ::-1] 76 | in_ -= self.mean 77 | in_ = in_.transpose((2, 0, 1)) 78 | return in_ 79 | 80 | def palette(self, label): 81 | ''' 82 | Map trainIds to colors as specified in labels.py 83 | ''' 84 | if label.ndim == 3: 85 | label = label[0] 86 | color = np.empty((label.shape[0], label.shape[1], 3)) 87 | if sys.version_info[0] < 3: 88 | for k, v in self.trainId2color.iteritems(): 89 | color[label == k, :] = v 90 | else: 91 | for k, v in self.trainId2color.items(): 92 | color[label == k, :] = v 93 | return color 94 | 95 | def make_boundaries(label, thickness=None): 96 | """ 97 | Input is an image label, output is a numpy array mask encoding the boundaries of the objects 98 | Extract pixels at the true boundary by dilation - erosion of label. 99 | Don't just pick the void label as it is not exclusive to the boundaries. 100 | """ 101 | assert(thickness is not None) 102 | import skimage.morphology as skm 103 | void = 255 104 | mask = np.logical_and(label > 0, label != void)[0] 105 | selem = skm.disk(thickness) 106 | boundaries = np.logical_xor(skm.dilation(mask, selem), 107 | skm.erosion(mask, selem)) 108 | return boundaries 109 | 110 | def list_label_frames(self, split): 111 | """ 112 | Select labeled frames from a split for evaluation 113 | collected as (city, shot, idx) tuples 114 | """ 115 | def file2idx(f): 116 | """Helper to convert file path into frame ID""" 117 | city, shot, frame = (os.path.basename(f).split('_')[:3]) 118 | return "_".join([city, shot, frame]) 119 | frames = [] 120 | cities = [os.path.basename(f) for f in glob.glob('{}/gtFine/{}/*'.format(self.dir, split))] 121 | for c in cities: 122 | files = sorted(glob.glob('{}/gtFine/{}/{}/*labelIds.png'.format(self.dir, split, c))) 123 | frames.extend([file2idx(f) for f in files]) 124 | return frames 125 | 126 | def collect_frame_sequence(self, split, idx, length): 127 | """ 128 | Collect sequence of frames preceding (and including) a labeled frame 129 | as a list of Images. 130 | 131 | Note: 19 preceding frames are provided for each labeled frame. 132 | """ 133 | SEQ_LEN = length 134 | city, shot, frame = idx.split('_') 135 | frame = int(frame) 136 | frame_seq = [] 137 | for i in range(frame - SEQ_LEN, frame + 1): 138 | frame_path = '{0}/leftImg8bit_sequence/val/{1}/{1}_{2}_{3:0>6d}_leftImg8bit.png'.format( 139 | self.dir, city, shot, i) 140 | frame_seq.append(Image.open(frame_path)) 141 | return frame_seq 142 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/download_fcn8s.sh: -------------------------------------------------------------------------------- 1 | URL=http://efrosgans.eecs.berkeley.edu/pix2pix_extra/fcn-8s-cityscapes.caffemodel 2 | OUTPUT_FILE=./scripts/eval_cityscapes/caffemodel/fcn-8s-cityscapes.caffemodel 3 | wget -N $URL -O $OUTPUT_FILE 4 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/evaluate.py: -------------------------------------------------------------------------------- 1 | import os 2 | import caffe 3 | import argparse 4 | import numpy as np 5 | import scipy.misc 6 | from PIL import Image 7 | from util import segrun, fast_hist, get_scores 8 | from cityscapes import cityscapes 9 | 10 | parser = argparse.ArgumentParser() 11 | parser.add_argument("--cityscapes_dir", type=str, required=True, help="Path to the original cityscapes dataset") 12 | parser.add_argument("--result_dir", type=str, required=True, help="Path to the generated images to be evaluated") 13 | parser.add_argument("--output_dir", type=str, required=True, help="Where to save the evaluation results") 14 | parser.add_argument("--caffemodel_dir", type=str, default='./scripts/eval_cityscapes/caffemodel/', help="Where the FCN-8s caffemodel stored") 15 | parser.add_argument("--gpu_id", type=int, default=0, help="Which gpu id to use") 16 | parser.add_argument("--split", type=str, default='val', help="Data split to be evaluated") 17 | parser.add_argument("--save_output_images", type=int, default=0, help="Whether to save the FCN output images") 18 | args = parser.parse_args() 19 | 20 | 21 | def main(): 22 | if not os.path.isdir(args.output_dir): 23 | os.makedirs(args.output_dir) 24 | if args.save_output_images > 0: 25 | output_image_dir = args.output_dir + 'image_outputs/' 26 | if not os.path.isdir(output_image_dir): 27 | os.makedirs(output_image_dir) 28 | CS = cityscapes(args.cityscapes_dir) 29 | n_cl = len(CS.classes) 30 | label_frames = CS.list_label_frames(args.split) 31 | caffe.set_device(args.gpu_id) 32 | caffe.set_mode_gpu() 33 | net = caffe.Net(args.caffemodel_dir + '/deploy.prototxt', 34 | args.caffemodel_dir + 'fcn-8s-cityscapes.caffemodel', 35 | caffe.TEST) 36 | 37 | hist_perframe = np.zeros((n_cl, n_cl)) 38 | for i, idx in enumerate(label_frames): 39 | if i % 10 == 0: 40 | print('Evaluating: %d/%d' % (i, len(label_frames))) 41 | city = idx.split('_')[0] 42 | # idx is city_shot_frame 43 | label = CS.load_label(args.split, city, idx) 44 | im_file = args.result_dir + '/' + idx + '_leftImg8bit.png' 45 | im = np.array(Image.open(im_file)) 46 | im = scipy.misc.imresize(im, (label.shape[1], label.shape[2])) 47 | # im = np.array(Image.fromarray(im).resize((label.shape[1], label.shape[2]))) # Note: scipy.misc.imresize is deprecated, but we still use it for reproducibility. 48 | out = segrun(net, CS.preprocess(im)) 49 | hist_perframe += fast_hist(label.flatten(), out.flatten(), n_cl) 50 | if args.save_output_images > 0: 51 | label_im = CS.palette(label) 52 | pred_im = CS.palette(out) 53 | scipy.misc.imsave(output_image_dir + '/' + str(i) + '_pred.jpg', pred_im) 54 | scipy.misc.imsave(output_image_dir + '/' + str(i) + '_gt.jpg', label_im) 55 | scipy.misc.imsave(output_image_dir + '/' + str(i) + '_input.jpg', im) 56 | 57 | mean_pixel_acc, mean_class_acc, mean_class_iou, per_class_acc, per_class_iou = get_scores(hist_perframe) 58 | with open(args.output_dir + '/evaluation_results.txt', 'w') as f: 59 | f.write('Mean pixel accuracy: %f\n' % mean_pixel_acc) 60 | f.write('Mean class accuracy: %f\n' % mean_class_acc) 61 | f.write('Mean class IoU: %f\n' % mean_class_iou) 62 | f.write('************ Per class numbers below ************\n') 63 | for i, cl in enumerate(CS.classes): 64 | while len(cl) < 15: 65 | cl = cl + ' ' 66 | f.write('%s: acc = %f, iou = %f\n' % (cl, per_class_acc[i], per_class_iou[i])) 67 | 68 | 69 | main() 70 | -------------------------------------------------------------------------------- /scripts/eval_cityscapes/util.py: -------------------------------------------------------------------------------- 1 | # The following code is modified from https://github.com/shelhamer/clockwork-fcn 2 | import numpy as np 3 | 4 | 5 | def get_out_scoremap(net): 6 | return net.blobs['score'].data[0].argmax(axis=0).astype(np.uint8) 7 | 8 | 9 | def feed_net(net, in_): 10 | """ 11 | Load prepared input into net. 12 | """ 13 | net.blobs['data'].reshape(1, *in_.shape) 14 | net.blobs['data'].data[...] = in_ 15 | 16 | 17 | def segrun(net, in_): 18 | feed_net(net, in_) 19 | net.forward() 20 | return get_out_scoremap(net) 21 | 22 | 23 | def fast_hist(a, b, n): 24 | k = np.where((a >= 0) & (a < n))[0] 25 | bc = np.bincount(n * a[k].astype(int) + b[k], minlength=n**2) 26 | if len(bc) != n**2: 27 | # ignore this example if dimension mismatch 28 | return 0 29 | return bc.reshape(n, n) 30 | 31 | 32 | def get_scores(hist): 33 | # Mean pixel accuracy 34 | acc = np.diag(hist).sum() / (hist.sum() + 1e-12) 35 | 36 | # Per class accuracy 37 | cl_acc = np.diag(hist) / (hist.sum(1) + 1e-12) 38 | 39 | # Per class IoU 40 | iu = np.diag(hist) / (hist.sum(1) + hist.sum(0) - np.diag(hist) + 1e-12) 41 | 42 | return acc, np.nanmean(cl_acc), np.nanmean(iu), cl_acc, iu 43 | -------------------------------------------------------------------------------- /scripts/install_deps.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | pip install visdom 3 | pip install dominate 4 | -------------------------------------------------------------------------------- /scripts/test_before_push.py: -------------------------------------------------------------------------------- 1 | # Simple script to make sure basic usage 2 | # such as training, testing, saving and loading 3 | # runs without errors. 4 | import os 5 | 6 | 7 | def run(command): 8 | print(command) 9 | exit_status = os.system(command) 10 | if exit_status > 0: 11 | exit(1) 12 | 13 | 14 | if __name__ == '__main__': 15 | # download mini datasets 16 | if not os.path.exists('./datasets/mini'): 17 | run('bash ./datasets/download_cyclegan_dataset.sh mini') 18 | 19 | if not os.path.exists('./datasets/mini_pix2pix'): 20 | run('bash ./datasets/download_cyclegan_dataset.sh mini_pix2pix') 21 | 22 | # pretrained cyclegan model 23 | if not os.path.exists('./checkpoints/horse2zebra_pretrained/latest_net_G.pth'): 24 | run('bash ./scripts/download_cyclegan_model.sh horse2zebra') 25 | run('python test.py --model test --dataroot ./datasets/mini --name horse2zebra_pretrained --no_dropout --num_test 1 --no_dropout') 26 | 27 | # pretrained pix2pix model 28 | if not os.path.exists('./checkpoints/facades_label2photo_pretrained/latest_net_G.pth'): 29 | run('bash ./scripts/download_pix2pix_model.sh facades_label2photo') 30 | if not os.path.exists('./datasets/facades'): 31 | run('bash ./datasets/download_pix2pix_dataset.sh facades') 32 | run('python test.py --dataroot ./datasets/facades/ --direction BtoA --model pix2pix --name facades_label2photo_pretrained --num_test 1') 33 | 34 | # cyclegan train/test 35 | run('python train.py --model cycle_gan --name temp_cyclegan --dataroot ./datasets/mini --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 10 --print_freq 1 --display_id -1') 36 | run('python test.py --model test --name temp_cyclegan --dataroot ./datasets/mini --num_test 1 --model_suffix "_A" --no_dropout') 37 | 38 | # pix2pix train/test 39 | run('python train.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --n_epochs 1 --n_epochs_decay 5 --save_latest_freq 10 --display_id -1') 40 | run('python test.py --model pix2pix --name temp_pix2pix --dataroot ./datasets/mini_pix2pix --num_test 1') 41 | 42 | # template train/test 43 | run('python train.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 10 --display_id -1') 44 | run('python test.py --model template --name temp2 --dataroot ./datasets/mini_pix2pix --num_test 1') 45 | 46 | # colorization train/test (optional) 47 | if not os.path.exists('./datasets/mini_colorization'): 48 | run('bash ./datasets/download_cyclegan_dataset.sh mini_colorization') 49 | 50 | run('python train.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --n_epochs 1 --n_epochs_decay 0 --save_latest_freq 5 --display_id -1') 51 | run('python test.py --model colorization --name temp_color --dataroot ./datasets/mini_colorization --num_test 1') 52 | -------------------------------------------------------------------------------- /scripts/test_colorization.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/colorization --name color_pix2pix --model colorization 3 | -------------------------------------------------------------------------------- /scripts/test_cyclegan.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --phase test --no_dropout 3 | -------------------------------------------------------------------------------- /scripts/test_pix2pix.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --netG unet_256 --direction BtoA --dataset_mode aligned --norm batch 3 | -------------------------------------------------------------------------------- /scripts/test_single.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python test.py --dataroot ./datasets/facades/testB/ --name facades_pix2pix --model test --netG unet_256 --direction BtoA --dataset_mode single --norm batch 3 | -------------------------------------------------------------------------------- /scripts/train_colorization.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python train.py --dataroot ./datasets/colorization --name color_pix2pix --model colorization 3 | -------------------------------------------------------------------------------- /scripts/train_cyclegan.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan --pool_size 50 --no_dropout 3 | -------------------------------------------------------------------------------- /scripts/train_pix2pix.sh: -------------------------------------------------------------------------------- 1 | set -ex 2 | python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --netG unet_256 --direction BtoA --lambda_L1 100 --dataset_mode aligned --norm batch --pool_size 0 3 | -------------------------------------------------------------------------------- /test.py: -------------------------------------------------------------------------------- 1 | """General-purpose test script for image-to-image translation. 2 | 3 | Once you have trained your model with train.py, you can use this script to test the model. 4 | It will load a saved model from '--checkpoints_dir' and save the results to '--results_dir'. 5 | 6 | It first creates model and dataset given the option. It will hard-code some parameters. 7 | It then runs inference for '--num_test' images and save results to an HTML file. 8 | 9 | Example (You need to train models first or download pre-trained models from our website): 10 | Test a CycleGAN model (both sides): 11 | python test.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan 12 | 13 | Test a CycleGAN model (one side only): 14 | python test.py --dataroot datasets/horse2zebra/testA --name horse2zebra_pretrained --model test --no_dropout 15 | 16 | The option '--model test' is used for generating CycleGAN results only for one side. 17 | This option will automatically set '--dataset_mode single', which only loads the images from one set. 18 | On the contrary, using '--model cycle_gan' requires loading and generating results in both directions, 19 | which is sometimes unnecessary. The results will be saved at ./results/. 20 | Use '--results_dir ' to specify the results directory. 21 | 22 | Test a pix2pix model: 23 | python test.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA 24 | 25 | See options/base_options.py and options/test_options.py for more test options. 26 | See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md 27 | See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md 28 | """ 29 | import os 30 | from options.test_options import TestOptions 31 | from data import create_dataset 32 | from models import create_model 33 | from util.visualizer import save_images 34 | from util import html 35 | 36 | try: 37 | import wandb 38 | except ImportError: 39 | print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.') 40 | 41 | 42 | if __name__ == '__main__': 43 | opt = TestOptions().parse() # get test options 44 | # hard-code some parameters for test 45 | opt.num_threads = 0 # test code only supports num_threads = 0 46 | opt.batch_size = 1 # test code only supports batch_size = 1 47 | opt.serial_batches = True # disable data shuffling; comment this line if results on randomly chosen images are needed. 48 | opt.no_flip = True # no flip; comment this line if results on flipped images are needed. 49 | opt.display_id = -1 # no visdom display; the test code saves the results to a HTML file. 50 | dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options 51 | model = create_model(opt) # create a model given opt.model and other options 52 | model.setup(opt) # regular setup: load and print networks; create schedulers 53 | 54 | # initialize logger 55 | if opt.use_wandb: 56 | wandb_run = wandb.init(project=opt.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run 57 | wandb_run._label(repo='CycleGAN-and-pix2pix') 58 | 59 | # create a website 60 | web_dir = os.path.join(opt.results_dir, opt.name, '{}_{}'.format(opt.phase, opt.epoch)) # define the website directory 61 | if opt.load_iter > 0: # load_iter is 0 by default 62 | web_dir = '{:s}_iter{:d}'.format(web_dir, opt.load_iter) 63 | print('creating web directory', web_dir) 64 | webpage = html.HTML(web_dir, 'Experiment = %s, Phase = %s, Epoch = %s' % (opt.name, opt.phase, opt.epoch)) 65 | # test with eval mode. This only affects layers like batchnorm and dropout. 66 | # For [pix2pix]: we use batchnorm and dropout in the original pix2pix. You can experiment it with and without eval() mode. 67 | # For [CycleGAN]: It should not affect CycleGAN as CycleGAN uses instancenorm without dropout. 68 | if opt.eval: 69 | model.eval() 70 | for i, data in enumerate(dataset): 71 | if i >= opt.num_test: # only apply our model to opt.num_test images. 72 | break 73 | model.set_input(data) # unpack data from data loader 74 | model.test() # run inference 75 | visuals = model.get_current_visuals() # get image results 76 | img_path = model.get_image_paths() # get image paths 77 | if i % 5 == 0: # save images to an HTML file 78 | print('processing (%04d)-th image... %s' % (i, img_path)) 79 | save_images(webpage, visuals, img_path, aspect_ratio=opt.aspect_ratio, width=opt.display_winsize, use_wandb=opt.use_wandb) 80 | webpage.save() # save the HTML 81 | -------------------------------------------------------------------------------- /train.py: -------------------------------------------------------------------------------- 1 | """General-purpose training script for image-to-image translation. 2 | 3 | This script works for various models (with option '--model': e.g., pix2pix, cyclegan, colorization) and 4 | different datasets (with option '--dataset_mode': e.g., aligned, unaligned, single, colorization). 5 | You need to specify the dataset ('--dataroot'), experiment name ('--name'), and model ('--model'). 6 | 7 | It first creates model, dataset, and visualizer given the option. 8 | It then does standard network training. During the training, it also visualize/save the images, print/save the loss plot, and save models. 9 | The script supports continue/resume training. Use '--continue_train' to resume your previous training. 10 | 11 | Example: 12 | Train a CycleGAN model: 13 | python train.py --dataroot ./datasets/maps --name maps_cyclegan --model cycle_gan 14 | Train a pix2pix model: 15 | python train.py --dataroot ./datasets/facades --name facades_pix2pix --model pix2pix --direction BtoA 16 | 17 | See options/base_options.py and options/train_options.py for more training options. 18 | See training and test tips at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/tips.md 19 | See frequently asked questions at: https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix/blob/master/docs/qa.md 20 | """ 21 | import time 22 | from options.train_options import TrainOptions 23 | from data import create_dataset 24 | from models import create_model 25 | from util.visualizer import Visualizer 26 | 27 | if __name__ == '__main__': 28 | opt = TrainOptions().parse() # get training options 29 | dataset = create_dataset(opt) # create a dataset given opt.dataset_mode and other options 30 | dataset_size = len(dataset) # get the number of images in the dataset. 31 | print('The number of training images = %d' % dataset_size) 32 | 33 | model = create_model(opt) # create a model given opt.model and other options 34 | model.setup(opt) # regular setup: load and print networks; create schedulers 35 | visualizer = Visualizer(opt) # create a visualizer that display/save images and plots 36 | total_iters = 0 # the total number of training iterations 37 | 38 | for epoch in range(opt.epoch_count, opt.n_epochs + opt.n_epochs_decay + 1): # outer loop for different epochs; we save the model by , + 39 | epoch_start_time = time.time() # timer for entire epoch 40 | iter_data_time = time.time() # timer for data loading per iteration 41 | epoch_iter = 0 # the number of training iterations in current epoch, reset to 0 every epoch 42 | visualizer.reset() # reset the visualizer: make sure it saves the results to HTML at least once every epoch 43 | model.update_learning_rate() # update learning rates in the beginning of every epoch. 44 | for i, data in enumerate(dataset): # inner loop within one epoch 45 | iter_start_time = time.time() # timer for computation per iteration 46 | if total_iters % opt.print_freq == 0: 47 | t_data = iter_start_time - iter_data_time 48 | 49 | total_iters += opt.batch_size 50 | epoch_iter += opt.batch_size 51 | model.set_input(data) # unpack data from dataset and apply preprocessing 52 | model.optimize_parameters() # calculate loss functions, get gradients, update network weights 53 | 54 | if total_iters % opt.display_freq == 0: # display images on visdom and save images to a HTML file 55 | save_result = total_iters % opt.update_html_freq == 0 56 | model.compute_visuals() 57 | visualizer.display_current_results(model.get_current_visuals(), epoch, save_result) 58 | 59 | if total_iters % opt.print_freq == 0: # print training losses and save logging information to the disk 60 | losses = model.get_current_losses() 61 | t_comp = (time.time() - iter_start_time) / opt.batch_size 62 | visualizer.print_current_losses(epoch, epoch_iter, losses, t_comp, t_data) 63 | if opt.display_id > 0: 64 | visualizer.plot_current_losses(epoch, float(epoch_iter) / dataset_size, losses) 65 | 66 | if total_iters % opt.save_latest_freq == 0: # cache our latest model every iterations 67 | print('saving the latest model (epoch %d, total_iters %d)' % (epoch, total_iters)) 68 | save_suffix = 'iter_%d' % total_iters if opt.save_by_iter else 'latest' 69 | model.save_networks(save_suffix) 70 | 71 | iter_data_time = time.time() 72 | if epoch % opt.save_epoch_freq == 0: # cache our model every epochs 73 | print('saving the model at the end of epoch %d, iters %d' % (epoch, total_iters)) 74 | model.save_networks('latest') 75 | model.save_networks(epoch) 76 | 77 | print('End of epoch %d / %d \t Time Taken: %d sec' % (epoch, opt.n_epochs + opt.n_epochs_decay, time.time() - epoch_start_time)) 78 | -------------------------------------------------------------------------------- /util/__init__.py: -------------------------------------------------------------------------------- 1 | """This package includes a miscellaneous collection of useful helper functions.""" 2 | -------------------------------------------------------------------------------- /util/get_data.py: -------------------------------------------------------------------------------- 1 | from __future__ import print_function 2 | import os 3 | import tarfile 4 | import requests 5 | from warnings import warn 6 | from zipfile import ZipFile 7 | from bs4 import BeautifulSoup 8 | from os.path import abspath, isdir, join, basename 9 | 10 | 11 | class GetData(object): 12 | """A Python script for downloading CycleGAN or pix2pix datasets. 13 | 14 | Parameters: 15 | technique (str) -- One of: 'cyclegan' or 'pix2pix'. 16 | verbose (bool) -- If True, print additional information. 17 | 18 | Examples: 19 | >>> from util.get_data import GetData 20 | >>> gd = GetData(technique='cyclegan') 21 | >>> new_data_path = gd.get(save_path='./datasets') # options will be displayed. 22 | 23 | Alternatively, You can use bash scripts: 'scripts/download_pix2pix_model.sh' 24 | and 'scripts/download_cyclegan_model.sh'. 25 | """ 26 | 27 | def __init__(self, technique='cyclegan', verbose=True): 28 | url_dict = { 29 | 'pix2pix': 'http://efrosgans.eecs.berkeley.edu/pix2pix/datasets/', 30 | 'cyclegan': 'https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets' 31 | } 32 | self.url = url_dict.get(technique.lower()) 33 | self._verbose = verbose 34 | 35 | def _print(self, text): 36 | if self._verbose: 37 | print(text) 38 | 39 | @staticmethod 40 | def _get_options(r): 41 | soup = BeautifulSoup(r.text, 'lxml') 42 | options = [h.text for h in soup.find_all('a', href=True) 43 | if h.text.endswith(('.zip', 'tar.gz'))] 44 | return options 45 | 46 | def _present_options(self): 47 | r = requests.get(self.url) 48 | options = self._get_options(r) 49 | print('Options:\n') 50 | for i, o in enumerate(options): 51 | print("{0}: {1}".format(i, o)) 52 | choice = input("\nPlease enter the number of the " 53 | "dataset above you wish to download:") 54 | return options[int(choice)] 55 | 56 | def _download_data(self, dataset_url, save_path): 57 | if not isdir(save_path): 58 | os.makedirs(save_path) 59 | 60 | base = basename(dataset_url) 61 | temp_save_path = join(save_path, base) 62 | 63 | with open(temp_save_path, "wb") as f: 64 | r = requests.get(dataset_url) 65 | f.write(r.content) 66 | 67 | if base.endswith('.tar.gz'): 68 | obj = tarfile.open(temp_save_path) 69 | elif base.endswith('.zip'): 70 | obj = ZipFile(temp_save_path, 'r') 71 | else: 72 | raise ValueError("Unknown File Type: {0}.".format(base)) 73 | 74 | self._print("Unpacking Data...") 75 | obj.extractall(save_path) 76 | obj.close() 77 | os.remove(temp_save_path) 78 | 79 | def get(self, save_path, dataset=None): 80 | """ 81 | 82 | Download a dataset. 83 | 84 | Parameters: 85 | save_path (str) -- A directory to save the data to. 86 | dataset (str) -- (optional). A specific dataset to download. 87 | Note: this must include the file extension. 88 | If None, options will be presented for you 89 | to choose from. 90 | 91 | Returns: 92 | save_path_full (str) -- the absolute path to the downloaded data. 93 | 94 | """ 95 | if dataset is None: 96 | selected_dataset = self._present_options() 97 | else: 98 | selected_dataset = dataset 99 | 100 | save_path_full = join(save_path, selected_dataset.split('.')[0]) 101 | 102 | if isdir(save_path_full): 103 | warn("\n'{0}' already exists. Voiding Download.".format( 104 | save_path_full)) 105 | else: 106 | self._print('Downloading Data...') 107 | url = "{0}/{1}".format(self.url, selected_dataset) 108 | self._download_data(url, save_path=save_path) 109 | 110 | return abspath(save_path_full) 111 | -------------------------------------------------------------------------------- /util/html.py: -------------------------------------------------------------------------------- 1 | import dominate 2 | from dominate.tags import meta, h3, table, tr, td, p, a, img, br 3 | import os 4 | 5 | 6 | class HTML: 7 | """This HTML class allows us to save images and write texts into a single HTML file. 8 | 9 | It consists of functions such as (add a text header to the HTML file), 10 | (add a row of images to the HTML file), and (save the HTML to the disk). 11 | It is based on Python library 'dominate', a Python library for creating and manipulating HTML documents using a DOM API. 12 | """ 13 | 14 | def __init__(self, web_dir, title, refresh=0): 15 | """Initialize the HTML classes 16 | 17 | Parameters: 18 | web_dir (str) -- a directory that stores the webpage. HTML file will be created at /index.html; images will be saved at 0: 32 | with self.doc.head: 33 | meta(http_equiv="refresh", content=str(refresh)) 34 | 35 | def get_image_dir(self): 36 | """Return the directory that stores images""" 37 | return self.img_dir 38 | 39 | def add_header(self, text): 40 | """Insert a header to the HTML file 41 | 42 | Parameters: 43 | text (str) -- the header text 44 | """ 45 | with self.doc: 46 | h3(text) 47 | 48 | def add_images(self, ims, txts, links, width=400): 49 | """add images to the HTML file 50 | 51 | Parameters: 52 | ims (str list) -- a list of image paths 53 | txts (str list) -- a list of image names shown on the website 54 | links (str list) -- a list of hyperref links; when you click an image, it will redirect you to a new page 55 | """ 56 | self.t = table(border=1, style="table-layout: fixed;") # Insert a table 57 | self.doc.add(self.t) 58 | with self.t: 59 | with tr(): 60 | for im, txt, link in zip(ims, txts, links): 61 | with td(style="word-wrap: break-word;", halign="center", valign="top"): 62 | with p(): 63 | with a(href=os.path.join('images', link)): 64 | img(style="width:%dpx" % width, src=os.path.join('images', im)) 65 | br() 66 | p(txt) 67 | 68 | def save(self): 69 | """save the current content to the HMTL file""" 70 | html_file = '%s/index.html' % self.web_dir 71 | f = open(html_file, 'wt') 72 | f.write(self.doc.render()) 73 | f.close() 74 | 75 | 76 | if __name__ == '__main__': # we show an example usage here. 77 | html = HTML('web/', 'test_html') 78 | html.add_header('hello world') 79 | 80 | ims, txts, links = [], [], [] 81 | for n in range(4): 82 | ims.append('image_%d.png' % n) 83 | txts.append('text_%d' % n) 84 | links.append('image_%d.png' % n) 85 | html.add_images(ims, txts, links) 86 | html.save() 87 | -------------------------------------------------------------------------------- /util/image_pool.py: -------------------------------------------------------------------------------- 1 | import random 2 | import torch 3 | 4 | 5 | class ImagePool(): 6 | """This class implements an image buffer that stores previously generated images. 7 | 8 | This buffer enables us to update discriminators using a history of generated images 9 | rather than the ones produced by the latest generators. 10 | """ 11 | 12 | def __init__(self, pool_size): 13 | """Initialize the ImagePool class 14 | 15 | Parameters: 16 | pool_size (int) -- the size of image buffer, if pool_size=0, no buffer will be created 17 | """ 18 | self.pool_size = pool_size 19 | if self.pool_size > 0: # create an empty pool 20 | self.num_imgs = 0 21 | self.images = [] 22 | 23 | def query(self, images): 24 | """Return an image from the pool. 25 | 26 | Parameters: 27 | images: the latest generated images from the generator 28 | 29 | Returns images from the buffer. 30 | 31 | By 50/100, the buffer will return input images. 32 | By 50/100, the buffer will return images previously stored in the buffer, 33 | and insert the current images to the buffer. 34 | """ 35 | if self.pool_size == 0: # if the buffer size is 0, do nothing 36 | return images 37 | return_images = [] 38 | for image in images: 39 | image = torch.unsqueeze(image.data, 0) 40 | if self.num_imgs < self.pool_size: # if the buffer is not full; keep inserting current images to the buffer 41 | self.num_imgs = self.num_imgs + 1 42 | self.images.append(image) 43 | return_images.append(image) 44 | else: 45 | p = random.uniform(0, 1) 46 | if p > 0.5: # by 50% chance, the buffer will return a previously stored image, and insert the current image into the buffer 47 | random_id = random.randint(0, self.pool_size - 1) # randint is inclusive 48 | tmp = self.images[random_id].clone() 49 | self.images[random_id] = image 50 | return_images.append(tmp) 51 | else: # by another 50% chance, the buffer will return the current image 52 | return_images.append(image) 53 | return_images = torch.cat(return_images, 0) # collect all the images and return 54 | return return_images 55 | -------------------------------------------------------------------------------- /util/util.py: -------------------------------------------------------------------------------- 1 | """This module contains simple helper functions """ 2 | from __future__ import print_function 3 | import torch 4 | import numpy as np 5 | from PIL import Image 6 | import os 7 | 8 | 9 | def tensor2im(input_image, imtype=np.uint8): 10 | """"Converts a Tensor array into a numpy image array. 11 | 12 | Parameters: 13 | input_image (tensor) -- the input image tensor array 14 | imtype (type) -- the desired type of the converted numpy array 15 | """ 16 | if not isinstance(input_image, np.ndarray): 17 | if isinstance(input_image, torch.Tensor): # get the data from a variable 18 | image_tensor = input_image.data 19 | else: 20 | return input_image 21 | image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array 22 | if image_numpy.shape[0] == 1: # grayscale to RGB 23 | image_numpy = np.tile(image_numpy, (3, 1, 1)) 24 | image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling 25 | else: # if it is a numpy array, do nothing 26 | image_numpy = input_image 27 | return image_numpy.astype(imtype) 28 | 29 | 30 | def diagnose_network(net, name='network'): 31 | """Calculate and print the mean of average absolute(gradients) 32 | 33 | Parameters: 34 | net (torch network) -- Torch network 35 | name (str) -- the name of the network 36 | """ 37 | mean = 0.0 38 | count = 0 39 | for param in net.parameters(): 40 | if param.grad is not None: 41 | mean += torch.mean(torch.abs(param.grad.data)) 42 | count += 1 43 | if count > 0: 44 | mean = mean / count 45 | print(name) 46 | print(mean) 47 | 48 | 49 | def save_image(image_numpy, image_path, aspect_ratio=1.0): 50 | """Save a numpy image to the disk 51 | 52 | Parameters: 53 | image_numpy (numpy array) -- input numpy array 54 | image_path (str) -- the path of the image 55 | """ 56 | 57 | image_pil = Image.fromarray(image_numpy) 58 | h, w, _ = image_numpy.shape 59 | 60 | if aspect_ratio > 1.0: 61 | image_pil = image_pil.resize((h, int(w * aspect_ratio)), Image.BICUBIC) 62 | if aspect_ratio < 1.0: 63 | image_pil = image_pil.resize((int(h / aspect_ratio), w), Image.BICUBIC) 64 | image_pil.save(image_path) 65 | 66 | 67 | def print_numpy(x, val=True, shp=False): 68 | """Print the mean, min, max, median, std, and size of a numpy array 69 | 70 | Parameters: 71 | val (bool) -- if print the values of the numpy array 72 | shp (bool) -- if print the shape of the numpy array 73 | """ 74 | x = x.astype(np.float64) 75 | if shp: 76 | print('shape,', x.shape) 77 | if val: 78 | x = x.flatten() 79 | print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( 80 | np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) 81 | 82 | 83 | def mkdirs(paths): 84 | """create empty directories if they don't exist 85 | 86 | Parameters: 87 | paths (str list) -- a list of directory paths 88 | """ 89 | if isinstance(paths, list) and not isinstance(paths, str): 90 | for path in paths: 91 | mkdir(path) 92 | else: 93 | mkdir(paths) 94 | 95 | 96 | def mkdir(path): 97 | """create a single empty directory if it didn't exist 98 | 99 | Parameters: 100 | path (str) -- a single directory path 101 | """ 102 | if not os.path.exists(path): 103 | os.makedirs(path) 104 | -------------------------------------------------------------------------------- /util/visualizer.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import os 3 | import sys 4 | import ntpath 5 | import time 6 | from . import util, html 7 | from subprocess import Popen, PIPE 8 | 9 | 10 | try: 11 | import wandb 12 | except ImportError: 13 | print('Warning: wandb package cannot be found. The option "--use_wandb" will result in error.') 14 | 15 | if sys.version_info[0] == 2: 16 | VisdomExceptionBase = Exception 17 | else: 18 | VisdomExceptionBase = ConnectionError 19 | 20 | 21 | def save_images(webpage, visuals, image_path, aspect_ratio=1.0, width=256, use_wandb=False): 22 | """Save images to the disk. 23 | 24 | Parameters: 25 | webpage (the HTML class) -- the HTML webpage class that stores these imaegs (see html.py for more details) 26 | visuals (OrderedDict) -- an ordered dictionary that stores (name, images (either tensor or numpy) ) pairs 27 | image_path (str) -- the string is used to create image paths 28 | aspect_ratio (float) -- the aspect ratio of saved images 29 | width (int) -- the images will be resized to width x width 30 | 31 | This function will save images stored in 'visuals' to the HTML file specified by 'webpage'. 32 | """ 33 | image_dir = webpage.get_image_dir() 34 | short_path = ntpath.basename(image_path[0]) 35 | name = os.path.splitext(short_path)[0] 36 | 37 | webpage.add_header(name) 38 | ims, txts, links = [], [], [] 39 | ims_dict = {} 40 | for label, im_data in visuals.items(): 41 | im = util.tensor2im(im_data) 42 | image_name = '%s_%s.png' % (name, label) 43 | save_path = os.path.join(image_dir, image_name) 44 | util.save_image(im, save_path, aspect_ratio=aspect_ratio) 45 | ims.append(image_name) 46 | txts.append(label) 47 | links.append(image_name) 48 | if use_wandb: 49 | ims_dict[label] = wandb.Image(im) 50 | webpage.add_images(ims, txts, links, width=width) 51 | if use_wandb: 52 | wandb.log(ims_dict) 53 | 54 | 55 | class Visualizer(): 56 | """This class includes several functions that can display/save images and print/save logging information. 57 | 58 | It uses a Python library 'visdom' for display, and a Python library 'dominate' (wrapped in 'HTML') for creating HTML files with images. 59 | """ 60 | 61 | def __init__(self, opt): 62 | """Initialize the Visualizer class 63 | 64 | Parameters: 65 | opt -- stores all the experiment flags; needs to be a subclass of BaseOptions 66 | Step 1: Cache the training/test options 67 | Step 2: connect to a visdom server 68 | Step 3: create an HTML object for saveing HTML filters 69 | Step 4: create a logging file to store training losses 70 | """ 71 | self.opt = opt # cache the option 72 | self.display_id = opt.display_id 73 | self.use_html = opt.isTrain and not opt.no_html 74 | self.win_size = opt.display_winsize 75 | self.name = opt.name 76 | self.port = opt.display_port 77 | self.saved = False 78 | self.use_wandb = opt.use_wandb 79 | self.wandb_project_name = opt.wandb_project_name 80 | self.current_epoch = 0 81 | self.ncols = opt.display_ncols 82 | 83 | if self.display_id > 0: # connect to a visdom server given and 84 | import visdom 85 | self.vis = visdom.Visdom(server=opt.display_server, port=opt.display_port, env=opt.display_env) 86 | if not self.vis.check_connection(): 87 | self.create_visdom_connections() 88 | 89 | if self.use_wandb: 90 | self.wandb_run = wandb.init(project=self.wandb_project_name, name=opt.name, config=opt) if not wandb.run else wandb.run 91 | self.wandb_run._label(repo='CycleGAN-and-pix2pix') 92 | 93 | if self.use_html: # create an HTML object at /web/; images will be saved under /web/images/ 94 | self.web_dir = os.path.join(opt.checkpoints_dir, opt.name, 'web') 95 | self.img_dir = os.path.join(self.web_dir, 'images') 96 | print('create web directory %s...' % self.web_dir) 97 | util.mkdirs([self.web_dir, self.img_dir]) 98 | # create a logging file to store training losses 99 | self.log_name = os.path.join(opt.checkpoints_dir, opt.name, 'loss_log.txt') 100 | with open(self.log_name, "a") as log_file: 101 | now = time.strftime("%c") 102 | log_file.write('================ Training Loss (%s) ================\n' % now) 103 | 104 | def reset(self): 105 | """Reset the self.saved status""" 106 | self.saved = False 107 | 108 | def create_visdom_connections(self): 109 | """If the program could not connect to Visdom server, this function will start a new server at port < self.port > """ 110 | cmd = sys.executable + ' -m visdom.server -p %d &>/dev/null &' % self.port 111 | print('\n\nCould not connect to Visdom server. \n Trying to start a server....') 112 | print('Command: %s' % cmd) 113 | Popen(cmd, shell=True, stdout=PIPE, stderr=PIPE) 114 | 115 | def display_current_results(self, visuals, epoch, save_result): 116 | """Display current results on visdom; save current results to an HTML file. 117 | 118 | Parameters: 119 | visuals (OrderedDict) - - dictionary of images to display or save 120 | epoch (int) - - the current epoch 121 | save_result (bool) - - if save the current results to an HTML file 122 | """ 123 | if self.display_id > 0: # show images in the browser using visdom 124 | ncols = self.ncols 125 | if ncols > 0: # show all the images in one visdom panel 126 | ncols = min(ncols, len(visuals)) 127 | h, w = next(iter(visuals.values())).shape[:2] 128 | table_css = """""" % (w, h) # create a table css 132 | # create a table of images. 133 | title = self.name 134 | label_html = '' 135 | label_html_row = '' 136 | images = [] 137 | idx = 0 138 | for label, image in visuals.items(): 139 | image_numpy = util.tensor2im(image) 140 | label_html_row += '%s' % label 141 | images.append(image_numpy.transpose([2, 0, 1])) 142 | idx += 1 143 | if idx % ncols == 0: 144 | label_html += '%s' % label_html_row 145 | label_html_row = '' 146 | white_image = np.ones_like(image_numpy.transpose([2, 0, 1])) * 255 147 | while idx % ncols != 0: 148 | images.append(white_image) 149 | label_html_row += '' 150 | idx += 1 151 | if label_html_row != '': 152 | label_html += '%s' % label_html_row 153 | try: 154 | self.vis.images(images, nrow=ncols, win=self.display_id + 1, 155 | padding=2, opts=dict(title=title + ' images')) 156 | label_html = '%s
' % label_html 157 | self.vis.text(table_css + label_html, win=self.display_id + 2, 158 | opts=dict(title=title + ' labels')) 159 | except VisdomExceptionBase: 160 | self.create_visdom_connections() 161 | 162 | else: # show each image in a separate visdom panel; 163 | idx = 1 164 | try: 165 | for label, image in visuals.items(): 166 | image_numpy = util.tensor2im(image) 167 | self.vis.image(image_numpy.transpose([2, 0, 1]), opts=dict(title=label), 168 | win=self.display_id + idx) 169 | idx += 1 170 | except VisdomExceptionBase: 171 | self.create_visdom_connections() 172 | 173 | if self.use_wandb: 174 | columns = [key for key, _ in visuals.items()] 175 | columns.insert(0, 'epoch') 176 | result_table = wandb.Table(columns=columns) 177 | table_row = [epoch] 178 | ims_dict = {} 179 | for label, image in visuals.items(): 180 | image_numpy = util.tensor2im(image) 181 | wandb_image = wandb.Image(image_numpy) 182 | table_row.append(wandb_image) 183 | ims_dict[label] = wandb_image 184 | self.wandb_run.log(ims_dict) 185 | if epoch != self.current_epoch: 186 | self.current_epoch = epoch 187 | result_table.add_data(*table_row) 188 | self.wandb_run.log({"Result": result_table}) 189 | 190 | if self.use_html and (save_result or not self.saved): # save images to an HTML file if they haven't been saved. 191 | self.saved = True 192 | # save images to the disk 193 | for label, image in visuals.items(): 194 | image_numpy = util.tensor2im(image) 195 | img_path = os.path.join(self.img_dir, 'epoch%.3d_%s.png' % (epoch, label)) 196 | util.save_image(image_numpy, img_path) 197 | 198 | # update website 199 | webpage = html.HTML(self.web_dir, 'Experiment name = %s' % self.name, refresh=1) 200 | for n in range(epoch, 0, -1): 201 | webpage.add_header('epoch [%d]' % n) 202 | ims, txts, links = [], [], [] 203 | 204 | for label, image_numpy in visuals.items(): 205 | image_numpy = util.tensor2im(image) 206 | img_path = 'epoch%.3d_%s.png' % (n, label) 207 | ims.append(img_path) 208 | txts.append(label) 209 | links.append(img_path) 210 | webpage.add_images(ims, txts, links, width=self.win_size) 211 | webpage.save() 212 | 213 | def plot_current_losses(self, epoch, counter_ratio, losses): 214 | """display the current losses on visdom display: dictionary of error labels and values 215 | 216 | Parameters: 217 | epoch (int) -- current epoch 218 | counter_ratio (float) -- progress (percentage) in the current epoch, between 0 to 1 219 | losses (OrderedDict) -- training losses stored in the format of (name, float) pairs 220 | """ 221 | if not hasattr(self, 'plot_data'): 222 | self.plot_data = {'X': [], 'Y': [], 'legend': list(losses.keys())} 223 | self.plot_data['X'].append(epoch + counter_ratio) 224 | self.plot_data['Y'].append([losses[k] for k in self.plot_data['legend']]) 225 | try: 226 | self.vis.line( 227 | X=np.stack([np.array(self.plot_data['X'])] * len(self.plot_data['legend']), 1), 228 | Y=np.array(self.plot_data['Y']), 229 | opts={ 230 | 'title': self.name + ' loss over time', 231 | 'legend': self.plot_data['legend'], 232 | 'xlabel': 'epoch', 233 | 'ylabel': 'loss'}, 234 | win=self.display_id) 235 | except VisdomExceptionBase: 236 | self.create_visdom_connections() 237 | if self.use_wandb: 238 | self.wandb_run.log(losses) 239 | 240 | # losses: same format as |losses| of plot_current_losses 241 | def print_current_losses(self, epoch, iters, losses, t_comp, t_data): 242 | """print current losses on console; also save the losses to the disk 243 | 244 | Parameters: 245 | epoch (int) -- current epoch 246 | iters (int) -- current training iteration during this epoch (reset to 0 at the end of every epoch) 247 | losses (OrderedDict) -- training losses stored in the format of (name, float) pairs 248 | t_comp (float) -- computational time per data point (normalized by batch_size) 249 | t_data (float) -- data loading time per data point (normalized by batch_size) 250 | """ 251 | message = '(epoch: %d, iters: %d, time: %.3f, data: %.3f) ' % (epoch, iters, t_comp, t_data) 252 | for k, v in losses.items(): 253 | message += '%s: %.3f ' % (k, v) 254 | 255 | print(message) # print the message 256 | with open(self.log_name, "a") as log_file: 257 | log_file.write('%s\n' % message) # save the message 258 | --------------------------------------------------------------------------------