├── .gitignore ├── LICENSE ├── README.md ├── fonts ├── EmblemaOne.woff2 ├── josefinsans.woff2 ├── lilitaone.woff2 ├── multi_1_en.otf ├── multi_1_zh.ttf ├── phosphate.ttf └── wendao.ttf ├── icons ├── douban.png ├── emby.png └── speed.png ├── images ├── multi_1.jpg ├── plugin.webp ├── single_1.jpg └── single_2.jpg ├── package.v2.json └── plugins.v2 └── mediacovergenerator ├── __init__.py ├── requirements.txt ├── static ├── multi_1.py ├── single_1.py └── single_2.py ├── style_multi_1.py ├── style_single_1.py └── style_single_2.py /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | share/python-wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | MANIFEST 28 | 29 | # PyInstaller 30 | # Usually these files are written by a python script from a template 31 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 32 | *.manifest 33 | *.spec 34 | 35 | # Installer logs 36 | pip-log.txt 37 | pip-delete-this-directory.txt 38 | 39 | # Unit test / coverage reports 40 | htmlcov/ 41 | .tox/ 42 | .nox/ 43 | .coverage 44 | .coverage.* 45 | .cache 46 | nosetests.xml 47 | coverage.xml 48 | *.cover 49 | *.py,cover 50 | .hypothesis/ 51 | .pytest_cache/ 52 | cover/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | .pybuilder/ 76 | target/ 77 | 78 | # Jupyter Notebook 79 | .ipynb_checkpoints 80 | 81 | # IPython 82 | profile_default/ 83 | ipython_config.py 84 | 85 | # pyenv 86 | # For a library or package, you might want to ignore these files since the code is 87 | # intended to run in multiple environments; otherwise, check them in: 88 | # .python-version 89 | 90 | # pipenv 91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 94 | # install all needed dependencies. 95 | #Pipfile.lock 96 | 97 | # poetry 98 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control. 99 | # This is especially recommended for binary packages to ensure reproducibility, and is more 100 | # commonly ignored for libraries. 101 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control 102 | #poetry.lock 103 | 104 | # pdm 105 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control. 106 | #pdm.lock 107 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it 108 | # in version control. 109 | # https://pdm.fming.dev/#use-with-ide 110 | .pdm.toml 111 | 112 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm 113 | __pypackages__/ 114 | 115 | # Celery stuff 116 | celerybeat-schedule 117 | celerybeat.pid 118 | 119 | # SageMath parsed files 120 | *.sage.py 121 | 122 | # Environments 123 | .env 124 | .venv 125 | env/ 126 | venv/ 127 | ENV/ 128 | env.bak/ 129 | venv.bak/ 130 | 131 | # Spyder project settings 132 | .spyderproject 133 | .spyproject 134 | 135 | # Rope project settings 136 | .ropeproject 137 | 138 | # mkdocs documentation 139 | /site 140 | 141 | # mypy 142 | .mypy_cache/ 143 | .dmypy.json 144 | dmypy.json 145 | 146 | # Pyre type checker 147 | .pyre/ 148 | 149 | # pytype static type analyzer 150 | .pytype/ 151 | 152 | # Cython debug symbols 153 | cython_debug/ 154 | 155 | # PyCharm 156 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can 157 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore 158 | # and can be added to the global gitignore or merged into this file. For a more nuclear 159 | # option (not recommended) you can uncomment the following to ignore the entire idea folder. 160 | #.idea/ 161 | 162 | .idea/ 163 | .vscode/ 164 | .DS_Store 165 | plugins.v2/.DS_Store 166 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # MoviePilot-Plugins 2 | MoviePilot官方插件市场:https://github.com/jxxghp/MoviePilot-Plugins 3 | 4 | ### [媒体库封面生成](https://github.com/justzerock/MoviePilot-Plugins/tree/main/plugins.v2/mediacovergenerator) 5 | > 参考项目:https://github.com/HappyQuQu/jellyfin-library-poster 6 | 7 | 在群里受到这个项目的启发,督促 AI 帮我写封面处理的代码,于是有了这个插件,支持切换风格 8 | 9 | ![插件界面](https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/main/images/plugin.webp) -------------------------------------------------------------------------------- /fonts/EmblemaOne.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/EmblemaOne.woff2 -------------------------------------------------------------------------------- /fonts/josefinsans.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/josefinsans.woff2 -------------------------------------------------------------------------------- /fonts/lilitaone.woff2: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/lilitaone.woff2 -------------------------------------------------------------------------------- /fonts/multi_1_en.otf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/multi_1_en.otf -------------------------------------------------------------------------------- /fonts/multi_1_zh.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/multi_1_zh.ttf -------------------------------------------------------------------------------- /fonts/phosphate.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/phosphate.ttf -------------------------------------------------------------------------------- /fonts/wendao.ttf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/fonts/wendao.ttf -------------------------------------------------------------------------------- /icons/douban.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/icons/douban.png -------------------------------------------------------------------------------- /icons/emby.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/icons/emby.png -------------------------------------------------------------------------------- /icons/speed.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/icons/speed.png -------------------------------------------------------------------------------- /images/multi_1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/images/multi_1.jpg -------------------------------------------------------------------------------- /images/plugin.webp: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/images/plugin.webp -------------------------------------------------------------------------------- /images/single_1.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/images/single_1.jpg -------------------------------------------------------------------------------- /images/single_2.jpg: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/8ef476f9e5ae4d3d549300bad74083c084a46f1d/images/single_2.jpg -------------------------------------------------------------------------------- /package.v2.json: -------------------------------------------------------------------------------- 1 | { 2 | "MediaCoverGenerator": { 3 | "name": "媒体库封面生成", 4 | "description": "自动生成媒体库封面,支持 Emby,Jellyfin", 5 | "labels": "封面,媒体库", 6 | "version": "0.8.7", 7 | "icon": "https://raw.githubusercontent.com/justzerock/MoviePilot-Plugins/main/icons/emby.png", 8 | "author": "justzerock", 9 | "level": 1, 10 | "history": { 11 | "v0.8.7": "支持生成播放列表封面", 12 | "v0.8.6": "修复无参数造成无法生图的错误", 13 | "v0.8.5": "可选优先使用海报或者背景图,修复部分bug", 14 | "v0.8.4": "补充部分信息", 15 | "v0.8.3": "修复合集等库图片获取问题,改善字体下载问题,增加无用的若干选项", 16 | "v0.8.2": "1. 支持添加本地字体路径 2. 未设置标题或参数错误时,自动使用媒体库名", 17 | "v0.8.1": "修复 bug,也许还有漏网之鱼", 18 | "v0.8": "改界面,加风格,可能还有新 bug", 19 | "v0.7": "修复一个非常简单的小问题,我真是太菜了", 20 | "v0.6": "修复部分问题", 21 | "v0.5": "微调图片处理颜色", 22 | "v0.4": "自定义背景图目录", 23 | "v0.3": "修复bug", 24 | "v0.2": "测试", 25 | "v0.1": "自定义字体" 26 | } 27 | } 28 | } 29 | -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/requirements.txt: -------------------------------------------------------------------------------- 1 | pillow==11.2.1 2 | numpy==2.2.0 3 | pytz==2025.2 4 | pyyaml==6.0.2 -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/static/multi_1.py: -------------------------------------------------------------------------------- 1 | multi_1 = "" -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/static/single_1.py: -------------------------------------------------------------------------------- 1 | single_1 = "" -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/static/single_2.py: -------------------------------------------------------------------------------- 1 | single_2 = "" -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/style_multi_1.py: -------------------------------------------------------------------------------- 1 | import base64 2 | from collections import Counter 3 | import io 4 | from pathlib import Path 5 | from PIL import Image, ImageFilter, ImageDraw, ImageFont, ImageOps 6 | import numpy as np 7 | import os 8 | import math 9 | import random # 添加随机模块 10 | import colorsys 11 | from app.log import logger 12 | 13 | """ 14 | 代码修改自 https://github.com/HappyQuQu/jellyfin-library-poster/blob/main/gen_poster.py 15 | """ 16 | 17 | # 海报生成配置 18 | POSTER_GEN_CONFIG = { 19 | "ROWS": 3, # 每列图片数 20 | "COLS": 3, # 总列数 21 | "MARGIN": 22, # 图片垂直间距 22 | "CORNER_RADIUS": 46.1, # 圆角半径 23 | "ROTATION_ANGLE": -15.8, # 旋转角度 24 | "START_X": 835, # 第一列的 x 坐标 25 | "START_Y": -362, # 第一列的 y 坐标 26 | "COLUMN_SPACING": 100, # 列间距 27 | "SAVE_COLUMNS": True, # 是否保存每列图片 28 | "CELL_WIDTH": 410, # 海报宽度 29 | "CELL_HEIGHT": 610, # 海报高度 30 | "CANVAS_WIDTH": 1920, # 画布宽度 31 | "CANVAS_HEIGHT": 1080, # 画布高度 32 | } 33 | 34 | def add_shadow(img, offset=(5, 5), shadow_color=(0, 0, 0, 100), blur_radius=3): 35 | """ 36 | 给图片添加右侧和底部阴影 37 | 38 | 参数: 39 | img: 原始图片(PIL.Image对象) 40 | offset: 阴影偏移量,(x, y)格式 41 | shadow_color: 阴影颜色,RGBA格式 42 | blur_radius: 阴影模糊半径 43 | 44 | 返回: 45 | 添加了阴影的新图片 46 | """ 47 | # 创建一个透明背景,比原图大一些,以容纳阴影 48 | shadow_width = img.width + offset[0] + blur_radius * 2 49 | shadow_height = img.height + offset[1] + blur_radius * 2 50 | 51 | shadow = Image.new("RGBA", (shadow_width, shadow_height), (0, 0, 0, 0)) 52 | 53 | # 创建阴影层 54 | shadow_layer = Image.new("RGBA", img.size, shadow_color) 55 | 56 | # 将阴影层粘贴到偏移位置 57 | shadow.paste(shadow_layer, (blur_radius + offset[0], blur_radius + offset[1])) 58 | 59 | # 模糊阴影 60 | shadow = shadow.filter(ImageFilter.GaussianBlur(blur_radius)) 61 | 62 | # 创建结果图像 63 | result = Image.new("RGBA", shadow.size, (0, 0, 0, 0)) 64 | 65 | # 将原图粘贴到结果图像上 66 | result.paste(img, (blur_radius, blur_radius), img if img.mode == "RGBA" else None) 67 | 68 | # 合并阴影和原图(保持原图在上层) 69 | shadow_img = Image.alpha_composite(shadow, result) 70 | 71 | return shadow_img 72 | 73 | 74 | # 单行文字 75 | def draw_text_on_image( 76 | image, text, position, font_path, default_font_path, font_size, fill_color=(255, 255, 255, 255), 77 | shadow=False, shadow_color=None, shadow_offset=10, shadow_alpha=75 78 | ): 79 | """ 80 | 在图像上绘制文字,可选择添加阴影效果 81 | 82 | 参数: 83 | image: PIL.Image对象 84 | text: 要绘制的文字 85 | position: 文字位置 (x, y) 86 | font_path: 字体文件路径 87 | default_font_path: 默认字体路径 88 | font_size: 字体大小 89 | fill_color: 文字颜色,RGBA格式 90 | shadow: 是否添加阴影效果 91 | shadow_color: 阴影颜色,RGB格式,如果为None则自动生成 92 | shadow_offset: 阴影偏移量 93 | shadow_alpha: 阴影透明度(0-255) 94 | 95 | 返回: 96 | 添加了文字的图像 97 | """ 98 | # 创建一个可绘制的图像副本 99 | img_copy = image.copy() 100 | text_layer = Image.new('RGBA', img_copy.size, (255, 255, 255, 0)) 101 | shadow_layer = Image.new('RGBA', img_copy.size, (0, 0, 0, 0)) 102 | draw = ImageDraw.Draw(text_layer) 103 | shadow_draw = ImageDraw.Draw(shadow_layer) 104 | font = ImageFont.truetype(font_path, font_size) 105 | 106 | # 如果需要添加阴影 107 | if shadow: 108 | fill_color = (fill_color[0], fill_color[1], fill_color[2], 229) 109 | if shadow_color is None: 110 | if len(fill_color) >= 3: 111 | r = max(0, int(fill_color[0] * 0.7)) 112 | g = max(0, int(fill_color[1] * 0.7)) 113 | b = max(0, int(fill_color[2] * 0.7)) 114 | shadow_color_with_alpha = (r, g, b, shadow_alpha) 115 | else: 116 | shadow_color_with_alpha = (50, 50, 50, shadow_alpha) 117 | else: 118 | # 确保 shadow_color 是 RGB 或 RGBA 119 | if len(shadow_color) == 3: 120 | shadow_color_with_alpha = shadow_color + (shadow_alpha,) 121 | elif len(shadow_color) == 4: 122 | shadow_color_with_alpha = shadow_color[:3] + (shadow_alpha,) # 修正:取前三个元素 123 | else: 124 | raise ValueError("shadow_color 格式不正确") # 抛出异常,明确错误 125 | 126 | for offset in range(3, shadow_offset + 1, 2): 127 | shadow_draw.text( 128 | (position[0] + offset, position[1] + offset), 129 | text, 130 | font=font, 131 | fill=shadow_color_with_alpha 132 | ) 133 | # 绘制主文字 134 | draw.text(position, text, font=font, fill=fill_color) 135 | blurred_shadow = shadow_layer.filter(ImageFilter.GaussianBlur(radius=shadow_offset)) 136 | combined = Image.alpha_composite(img_copy, blurred_shadow) 137 | img_copy = Image.alpha_composite(combined, text_layer) 138 | 139 | return img_copy 140 | 141 | # 多行文字 142 | def draw_multiline_text_on_image( 143 | image, 144 | text, 145 | position, 146 | font_path, 147 | default_font_path, 148 | font_size, 149 | line_spacing=10, 150 | fill_color=(255, 255, 255, 255), 151 | shadow=False, 152 | shadow_color=None, 153 | shadow_offset=4, 154 | shadow_alpha=100 155 | ): 156 | """ 157 | 在图像上绘制多行文字,根据空格自动换行,可选择添加阴影效果 158 | 159 | 参数: 160 | image: PIL.Image对象 161 | text: 要绘制的文字 162 | position: 第一行文字位置 (x, y) 163 | font_path: 字体文件路径 164 | default_font_path: 默认字体路径 165 | font_size: 字体大小 166 | line_spacing: 行间距 167 | fill_color: 文字颜色,RGBA格式 168 | shadow: 是否添加阴影效果 169 | shadow_color: 阴影颜色,RGB格式,如果为None则自动生成 170 | shadow_offset: 阴影偏移量 171 | shadow_alpha: 阴影透明度(0-255) 172 | 173 | 返回: 174 | 添加了文字的图像和行数 175 | """ 176 | # 创建一个可绘制的图像副本 177 | img_copy = image.copy() 178 | text_layer = Image.new('RGBA', img_copy.size, (255, 255, 255, 0)) 179 | draw = ImageDraw.Draw(text_layer) 180 | font = ImageFont.truetype(font_path, font_size) 181 | 182 | # 按空格分割文本 183 | lines = text.split(" ") 184 | 185 | # 如果未指定阴影颜色,则根据填充颜色生成 186 | if shadow: 187 | fill_color = (fill_color[0], fill_color[1], fill_color[2], 229) 188 | if shadow_color is None: 189 | # 使用文字颜色的暗化版本作为阴影 190 | if len(fill_color) >= 3: 191 | # 暗化颜色 192 | r = max(0, int(fill_color[0] * 0.7)) 193 | g = max(0, int(fill_color[1] * 0.7)) 194 | b = max(0, int(fill_color[2] * 0.7)) 195 | shadow_color_with_alpha = (r, g, b, shadow_alpha) 196 | else: 197 | # 默认灰色阴影 198 | shadow_color_with_alpha = (50, 50, 50, shadow_alpha) 199 | else: 200 | # 确保 shadow_color 是 RGB 或 RGBA 201 | if len(shadow_color) == 3: 202 | shadow_color_with_alpha = shadow_color + (shadow_alpha,) 203 | elif len(shadow_color) == 4: 204 | shadow_color_with_alpha = shadow_color[:3] + (shadow_alpha,) 205 | else: 206 | raise ValueError("shadow_color 格式不正确") 207 | 208 | # 如果只有一行,直接绘制并返回 209 | if len(lines) <= 1: 210 | if shadow: 211 | for offset in range(3, shadow_offset + 1, 2): 212 | draw.text( 213 | (position[0] + offset, position[1] + offset), 214 | text, 215 | font=font, 216 | fill=shadow_color_with_alpha 217 | ) 218 | draw.text(position, text, font=font, fill=fill_color) 219 | img_copy = Image.alpha_composite(img_copy, text_layer) 220 | return img_copy, 1 221 | 222 | # 绘制多行文本 223 | x, y = position 224 | for i, line in enumerate(lines): 225 | current_y = y + i * (font_size + line_spacing) 226 | 227 | if shadow: 228 | for offset in range(3, shadow_offset + 1, 2): 229 | draw.text( 230 | (x + offset, current_y + offset), 231 | line, 232 | font=font, 233 | fill=shadow_color_with_alpha 234 | ) 235 | draw.text((x, current_y), line, font=font, fill=fill_color) 236 | img_copy = Image.alpha_composite(img_copy, text_layer) 237 | return img_copy, len(lines) 238 | 239 | 240 | def get_random_color(image_path): 241 | """ 242 | 获取图片随机位置的颜色 243 | 244 | 参数: 245 | image_path: 图片文件路径 246 | 247 | 返回: 248 | 随机点颜色,RGBA格式 249 | """ 250 | try: 251 | img = Image.open(image_path) 252 | # 获取图片尺寸 253 | width, height = img.size 254 | 255 | # 在图片范围内随机选择一个点 256 | # 避免边缘区域,缩小范围到图片的20%-80%区域 257 | random_x = random.randint(int(width * 0.5), int(width * 0.8)) 258 | random_y = random.randint(int(height * 0.5), int(height * 0.8)) 259 | 260 | # 获取随机点的颜色 261 | if img.mode == "RGBA": 262 | r, g, b, a = img.getpixel((random_x, random_y)) 263 | return (r, g, b, a) 264 | elif img.mode == "RGB": 265 | r, g, b = img.getpixel((random_x, random_y)) 266 | return (r + 100, g + 50, b, 255) 267 | else: 268 | img = img.convert("RGBA") 269 | r, g, b, a = img.getpixel((random_x, random_y)) 270 | return (r, g, b, a) 271 | except Exception as e: 272 | # logger.error(f"获取图片颜色时出错: {e}") 273 | # 返回随机颜色作为备选 274 | return ( 275 | random.randint(50, 200), 276 | random.randint(50, 200), 277 | random.randint(50, 200), 278 | 255, 279 | ) 280 | 281 | 282 | def draw_color_block(image, position, size, color): 283 | """ 284 | 在图像上绘制色块 285 | 286 | 参数: 287 | image: PIL.Image对象 288 | position: 色块位置 (x, y) 289 | size: 色块大小 (width, height) 290 | color: 色块颜色,RGBA格式 291 | 292 | 返回: 293 | 添加了色块的图像 294 | """ 295 | # 创建一个可绘制的图像副本 296 | img_copy = image.copy() 297 | draw = ImageDraw.Draw(img_copy) 298 | 299 | # 绘制矩形色块 300 | draw.rectangle( 301 | [position, (position[0] + size[0], position[1] + size[1])], fill=color 302 | ) 303 | 304 | return img_copy 305 | 306 | 307 | def create_gradient_background(width, height, color=None): 308 | """ 309 | 创建一个从左到右的渐变背景,使用遮罩技术实现渐变效果 310 | 左侧颜色更深,右侧颜色适中,提供更明显的渐变效果 311 | 312 | 参数: 313 | width: 背景宽度 314 | height: 背景高度 315 | color: 颜色数组或单个颜色,如果为None则随机生成 316 | 如果是数组,会依次尝试每个颜色,跳过太黑或太淡的颜色 317 | 318 | 返回: 319 | 渐变背景图像 320 | """ 321 | def _normalize_rgb(input_rgb): 322 | """ 323 | 将各种可能的输入格式,统一提取成 (r, g, b) 三元组。 324 | 支持: 325 | - (r, g, b) 326 | - (r, g, b, a) 327 | - ((r, g, b), idx) or ((r, g, b, a), idx) 328 | """ 329 | if isinstance(input_rgb, tuple): 330 | # 情况 3: ((r,g,b,a), idx) 或 ((r,g,b), idx) 331 | if len(input_rgb) == 2 and isinstance(input_rgb[0], tuple): 332 | return _normalize_rgb(input_rgb[0]) 333 | # 情况 2: RGBA 334 | if len(input_rgb) == 4 and all(isinstance(v, (int, float)) for v in input_rgb): 335 | return input_rgb[:3] 336 | # 情况 1: RGB 337 | if len(input_rgb) == 3 and all(isinstance(v, (int, float)) for v in input_rgb): 338 | return input_rgb 339 | raise ValueError(f"无法识别的颜色格式: {input_rgb!r}") 340 | 341 | def _is_mid_bright(input_rgb, min_lum=80, max_lum=200): 342 | """ 343 | 基于相对亮度判断:不过暗(>=min_lum)也不过白(<=max_lum)。 344 | input_rgb 可为多种格式,函数内部会 normalize。 345 | """ 346 | r, g, b = _normalize_rgb(input_rgb) 347 | lum = 0.299*r + 0.587*g + 0.114*b 348 | return min_lum <= lum <= max_lum 349 | # 定义用于判断颜色是否合适的函数 350 | def _is_mid_bright_hsl(input_rgb, min_l=0.3, max_l=0.7): 351 | """ 352 | 基于 HSL Lightness 判断。Lightness 在 [0,1]。 353 | """ 354 | r, g, b = _normalize_rgb(input_rgb) 355 | # 归一到 [0,1] 356 | r1, g1, b1 = r/255.0, g/255.0, b/255.0 357 | h, l, s = colorsys.rgb_to_hls(r1, g1, b1) 358 | return min_l <= l <= max_l 359 | 360 | selected_color = None 361 | 362 | # 如果传入的是颜色数组 363 | if isinstance(color, list) and len(color) > 0: 364 | # 尝试找到合适的颜色,最多尝试5个 365 | for i in range(min(10, len(color))): 366 | if _is_mid_bright_hsl(color[i]): 367 | # 如果是(color_tuple, count)格式,提取颜色元组 368 | if isinstance(color[i], tuple) and len(color[i]) == 2 and isinstance(color[i][0], tuple): 369 | selected_color = color[i][0] 370 | else: 371 | selected_color = color[i] 372 | # logger.info(f" 海报主题色:[{selected_color}]适合做背景") 373 | break 374 | else: 375 | pass 376 | # logger.info(f" 海报主题色:[{color[i]}]不适合做背景,尝试做下一个颜色") 377 | 378 | # 如果没有找到合适的颜色,随机生成一个颜色 379 | if selected_color is None: 380 | 381 | def random_hsl_to_rgb( 382 | hue_range=(0, 360), 383 | sat_range=(0.5, 1.0), 384 | light_range=(0.5, 0.8) 385 | ): 386 | """ 387 | hue_range: 色相范围,取值 0~360 388 | sat_range: 饱和度范围,取值 0~1 389 | light_range: 明度范围,取值 0~1 390 | 返回值:RGB 三元组,每个通道 0~255 391 | """ 392 | h = random.uniform(hue_range[0]/360.0, hue_range[1]/360.0) 393 | s = random.uniform(sat_range[0], sat_range[1]) 394 | l = random.uniform(light_range[0], light_range[1]) 395 | # colorsys.hls_to_rgb 接受 H, L, S (注意顺序) 都是 0~1 396 | r, g, b = colorsys.hls_to_rgb(h, l, s) 397 | # 转回 0~255 398 | return (int(r*255), int(g*255), int(b*255)) 399 | 400 | # 生成颜色示例 401 | selected_color = random_hsl_to_rgb() 402 | # logger.info(f"海报所有主题色不适合做背景,随机生成一个颜色[{selected_color}]。") 403 | 404 | # 如果是已经提供的颜色,将其加深 405 | # 降低各通道的亮度,使颜色更深 406 | r = int(selected_color[0] * 0.65) # 降低35% 407 | g = int(selected_color[1] * 0.65) # 降低35% 408 | b = int(selected_color[2] * 0.65) # 降低35% 409 | 410 | # 确保RGB值不会小于0 411 | r = max(0, r) 412 | g = max(0, g) 413 | b = max(0, b) 414 | 415 | # 更新颜色 416 | selected_color = (r, g, b, selected_color[3] if len(selected_color) > 3 else 255) 417 | 418 | # 确保selected_color包含alpha通道 419 | if len(selected_color) == 3: 420 | selected_color = (selected_color[0], selected_color[1], selected_color[2], 255) 421 | 422 | # 基于selected_color自动生成浅色版本作为右侧颜色 423 | # 将selected_color的RGB值增加更合适的比例,使右侧颜色适中 424 | # 限制最大值为255 425 | r = min(255, int(selected_color[0] * 1.9)) # 从2.2降到1.9 426 | g = min(255, int(selected_color[1] * 1.9)) # 从2.2降到1.9 427 | b = min(255, int(selected_color[2] * 1.9)) # 从2.2降到1.9 428 | 429 | # 确保至少有一定的亮度增加,但比之前小 430 | r = max(r, selected_color[0] + 80) # 从100降到80 431 | g = max(g, selected_color[1] + 80) # 从100降到80 432 | b = max(b, selected_color[2] + 80) # 从100降到80 433 | 434 | # 确保右侧颜色不会太亮 435 | r = min(r, 230) # 限制最大亮度 436 | g = min(g, 230) # 限制最大亮度 437 | b = min(b, 230) # 限制最大亮度 438 | 439 | # 创建右侧浅色 440 | color2 = (r, g, b, selected_color[3]) 441 | 442 | # 创建左右两个纯色图像 443 | left_image = Image.new("RGBA", (width, height), selected_color) 444 | right_image = Image.new("RGBA", (width, height), color2) 445 | 446 | # 创建渐变遮罩(从黑到白的横向线性渐变) 447 | mask = Image.new("L", (width, height), 0) 448 | mask_data = [] 449 | 450 | # 生成遮罩数据,使用更加平滑的过渡 451 | for y in range(height): 452 | for x in range(width): 453 | # 计算从左到右的渐变值 (0-255) 454 | # 使用更加非线性的渐变,使左侧深色区域更大 455 | mask_value = int(255.0 * (x / width) ** 0.7) # 从0.85改为0.7 456 | mask_data.append(mask_value) 457 | 458 | # 应用遮罩数据到遮罩图像 459 | mask.putdata(mask_data) 460 | 461 | # 使用遮罩合成左右两个图像 462 | # 遮罩中黑色部分(0)显示left_image,白色部分(255)显示right_image 463 | gradient = Image.composite(right_image, left_image, mask) 464 | 465 | return gradient 466 | 467 | 468 | def get_poster_primary_color(image_path): 469 | """ 470 | 分析图片并提取主色调 471 | 472 | 参数: 473 | image_path: 图片文件路径 474 | 475 | 返回: 476 | 主色调颜色,RGBA格式 477 | """ 478 | try: 479 | from collections import Counter 480 | 481 | # 打开图片 482 | img = Image.open(image_path) 483 | 484 | # 缩小图片尺寸以加快处理速度 485 | img = img.resize((100, 150), Image.LANCZOS) 486 | 487 | # 确保图片为RGBA模式 488 | if img.mode != 'RGBA': 489 | img = img.convert('RGBA') 490 | 491 | # 获取图片中心部分的像素数据(避免边框和角落) 492 | # width, height = img.size 493 | # center_x1 = int(width * 0.2) 494 | # center_y1 = int(height * 0.2) 495 | # center_x2 = int(width * 0.8) 496 | # center_y2 = int(height * 0.8) 497 | 498 | # # 裁剪出中心区域 499 | # center_img = img.crop((center_x1, center_y1, center_x2, center_y2)) 500 | 501 | # 获取所有像素 502 | pixels = list(img.getdata()) 503 | 504 | # 过滤掉接近黑色和白色的像素,以及透明度低的像素 505 | filtered_pixels = [] 506 | for pixel in pixels: 507 | r, g, b, a = pixel 508 | 509 | # 跳过透明度低的像素 510 | if a < 200: 511 | continue 512 | 513 | # 计算亮度 514 | brightness = (r + g + b) / 3 515 | 516 | # 跳过过暗或过亮的像素 517 | if brightness < 30 or brightness > 220: 518 | continue 519 | 520 | # 添加到过滤后的列表 521 | filtered_pixels.append((r, g, b, 255)) 522 | 523 | # 如果过滤后没有像素,使用全部像素 524 | if not filtered_pixels: 525 | filtered_pixels = [(p[0], p[1], p[2], 255) for p in pixels if p[3] > 100] 526 | 527 | # 如果仍然没有像素,返回默认颜色 528 | if not filtered_pixels: 529 | return (150, 100, 50, 255) 530 | 531 | # 使用Counter找到出现最多的颜色 532 | color_counter = Counter(filtered_pixels) 533 | common_colors = color_counter.most_common(10) 534 | 535 | # 如果找到了颜色,返回最常见的颜色 536 | if common_colors: 537 | return common_colors 538 | 539 | # 如果无法找到主色调,使用平均值 540 | r_avg = sum(p[0] for p in filtered_pixels) // len(filtered_pixels) 541 | g_avg = sum(p[1] for p in filtered_pixels) // len(filtered_pixels) 542 | b_avg = sum(p[2] for p in filtered_pixels) // len(filtered_pixels) 543 | 544 | return [(r_avg, g_avg, b_avg, 255)] 545 | 546 | 547 | except Exception as e: 548 | # logger.error(f"获取图片主色调时出错: {e}") 549 | # 返回默认颜色作为备选 550 | return [(150, 100, 50, 255)] 551 | 552 | def create_blur_background(image_path, template_width, template_height, background_color, blur_size, color_ratio, lighten_gradient_strength=0.6): 553 | """ 554 | 创建模糊背景图像,将原始图像模糊化并与指定颜色混合,添加胶片颗粒效果 555 | 556 | 参数: 557 | image_path (str): 原始图像的路径 558 | template_width (int): 模板宽度 559 | template_height (int): 模板高度 560 | color (tuple or list): 背景混合颜色列表或颜色元组,包含(R,G,B,A)格式的颜色 561 | 562 | 返回: 563 | PIL.Image: 处理后的背景图像 564 | """ 565 | 566 | # 加载原始图像 567 | original_img = Image.open(image_path) 568 | 569 | # 确保原图像有正确的模式(RGB或RGBA) 570 | if original_img.mode != 'RGBA': 571 | original_img = original_img.convert('RGBA') 572 | 573 | canvas_size = (template_width, template_height) 574 | 575 | # 背景处理 576 | bg_img = original_img.copy() 577 | bg_img = ImageOps.fit(bg_img, canvas_size, method=Image.LANCZOS) 578 | bg_img = bg_img.filter(ImageFilter.GaussianBlur(radius=int(blur_size))) 579 | 580 | # 2. 与指定颜色混合 581 | # 假设 select_suitable_color 和 darken_color 函数存在且正常工作 582 | actual_color = darken_color(background_color, 0.85) 583 | 584 | # 确保 bg_color 是元组形式的RGB颜色 585 | if len(actual_color) >= 3: 586 | bg_color = (int(actual_color[0]), int(actual_color[1]), int(actual_color[2])) 587 | else: 588 | # 默认颜色,以防颜色格式不正确 589 | bg_color = (0, 0, 0) 590 | 591 | # 将背景图片与背景色混合 592 | bg_img_array = np.array(bg_img, dtype=float) 593 | height, width, channels = bg_img_array.shape 594 | 595 | # 创建和背景图片相同大小的颜色数组 596 | bg_color_array = np.zeros_like(bg_img_array) 597 | 598 | # 填充RGB通道 599 | for i in range(min(3, channels)): 600 | bg_color_array[:, :, i] = float(bg_color[i]) 601 | 602 | # 如果有Alpha通道,设置为完全不透明 603 | if channels == 4: 604 | bg_color_array[:, :, 3] = 255.0 605 | 606 | # 混合背景图和颜色 607 | blended_bg_array = bg_img_array * (1 - float(color_ratio)) + bg_color_array * float(color_ratio) 608 | blended_bg_array = np.clip(blended_bg_array, 0, 255).astype(np.uint8) 609 | 610 | # 转回PIL图像 611 | mode = 'RGBA' if channels == 4 else 'RGB' 612 | blended_bg_img = Image.fromarray(blended_bg_array, mode) 613 | 614 | if blended_bg_img.mode != 'RGBA': 615 | blended_bg_img = blended_bg_img.convert('RGBA') 616 | 617 | # 3. 从左到右颜色变浅的渐变处理 618 | if lighten_gradient_strength > 0: 619 | gradient_mask = Image.new("L", canvas_size, 0) 620 | draw_mask = ImageDraw.Draw(gradient_mask) 621 | 622 | for x in range(template_width): 623 | max_alpha_for_gradient = int(255 * np.clip(lighten_gradient_strength, 0.0, 1.0)) 624 | alpha_value = int((x / template_width) * max_alpha_for_gradient) 625 | draw_mask.line([(x, 0), (x, template_height)], fill=alpha_value) 626 | 627 | # 创建一个白色的叠加层 628 | lighten_layer = Image.new("RGBA", canvas_size, (255, 255, 255, 0)) 629 | lighten_layer.putalpha(gradient_mask) 630 | 631 | blended_bg_img = Image.alpha_composite(blended_bg_img, lighten_layer) 632 | 633 | # 4. 添加胶片颗粒效果 634 | # 假设 add_film_grain 函数存在且正常工作 635 | final_bg_img = add_film_grain(blended_bg_img, intensity=0.03) 636 | 637 | return final_bg_img 638 | 639 | def add_film_grain(image, intensity=0.05): 640 | """ 641 | 为图像添加胶片颗粒效果 642 | 643 | 参数: 644 | image (PIL.Image): 输入图像 645 | intensity (float): 颗粒强度,范围从0到1 646 | 647 | 返回: 648 | PIL.Image: 添加颗粒效果后的图像 649 | """ 650 | # 获取图像模式 651 | mode = image.mode 652 | 653 | # 转换为numpy数组 654 | img_array = np.array(image, dtype=np.float32) 655 | 656 | # 确定通道数 657 | if mode == 'RGBA': 658 | # 只对RGB通道添加噪声 659 | channels = img_array.shape[2] 660 | for i in range(min(3, channels)): # 只处理RGB通道 661 | channel = img_array[:, :, i] 662 | noise = np.random.normal(0, 255 * intensity, channel.shape) 663 | img_array[:, :, i] = np.clip(channel + noise, 0, 255) 664 | else: 665 | # RGB或其他模式 666 | noise = np.random.normal(0, 255 * intensity, img_array.shape) 667 | img_array = np.clip(img_array + noise, 0, 255) 668 | 669 | # 转换回PIL图像 670 | grainy_image = Image.fromarray(img_array.astype(np.uint8), mode) 671 | 672 | return grainy_image 673 | 674 | def is_not_black_white_gray_near(color, threshold=20): 675 | """判断颜色既不是黑、白、灰,也不是接近黑、白。""" 676 | r, g, b = color 677 | if (r < threshold and g < threshold and b < threshold) or \ 678 | (r > 255 - threshold and g > 255 - threshold and b > 255 - threshold): 679 | return False 680 | gray_diff_threshold = 10 681 | if abs(r - g) < gray_diff_threshold and abs(g - b) < gray_diff_threshold and abs(r - b) < gray_diff_threshold: 682 | return False 683 | return True 684 | 685 | def rgb_to_hsv(color): 686 | """将 RGB 颜色转换为 HSV 颜色。""" 687 | r, g, b = [x / 255.0 for x in color] 688 | return colorsys.rgb_to_hsv(r, g, b) 689 | 690 | def hsv_to_rgb(h, s, v): 691 | """将 HSV 颜色转换为 RGB 颜色。""" 692 | r, g, b = colorsys.hsv_to_rgb(h, s, v) 693 | return (int(r * 255), int(g * 255), int(b * 255)) 694 | 695 | def adjust_to_macaron(h, s, v, target_saturation_range=(0.2, 0.7), target_value_range=(0.55, 0.85)): 696 | """将颜色的饱和度和亮度调整到接近马卡龙色系的范围,同时避免颜色过亮。""" 697 | adjusted_s = min(max(s, target_saturation_range[0]), target_saturation_range[1]) 698 | adjusted_v = min(max(v, target_value_range[0]), target_value_range[1]) 699 | return adjusted_s, adjusted_v 700 | 701 | def find_dominant_vibrant_colors(image, num_colors=5): 702 | """ 703 | 从图像中提取出现次数较多的前 N 种非黑非白非灰的颜色, 704 | 并将其调整到接近马卡龙色系。 705 | """ 706 | img = image.copy() 707 | img.thumbnail((100, 100)) 708 | img = img.convert('RGB') 709 | pixels = list(img.getdata()) 710 | filtered_pixels = [p for p in pixels if is_not_black_white_gray_near(p)] 711 | if not filtered_pixels: 712 | return [] 713 | color_counter = Counter(filtered_pixels) 714 | dominant_colors = color_counter.most_common(num_colors * 3) # 提取更多候选 715 | 716 | macaron_colors = [] 717 | seen_hues = set() # 避免提取过于相似的颜色 718 | 719 | for color, count in dominant_colors: 720 | h, s, v = rgb_to_hsv(color) 721 | adjusted_s, adjusted_v = adjust_to_macaron(h, s, v) 722 | adjusted_rgb = hsv_to_rgb(h, adjusted_s, adjusted_v) 723 | 724 | # 可以加入一些色调的判断,例如避免过于接近的色调 725 | hue_degree = int(h * 360) 726 | is_similar_hue = any(abs(hue_degree - seen) < 15 for seen in seen_hues) # 15度范围内的色调认为是相似的 727 | 728 | if not is_similar_hue and adjusted_rgb not in macaron_colors: 729 | macaron_colors.append(adjusted_rgb) 730 | seen_hues.add(hue_degree) 731 | if len(macaron_colors) >= num_colors: 732 | break 733 | 734 | return macaron_colors 735 | 736 | def darken_color(color, factor=0.7): 737 | """ 738 | 将颜色加深。 739 | """ 740 | r, g, b = color 741 | return (int(r * factor), int(g * factor), int(b * factor)) 742 | 743 | 744 | def add_film_grain(image, intensity=0.05): 745 | """添加胶片颗粒效果""" 746 | img_array = np.array(image) 747 | 748 | # 创建随机噪点 749 | noise = np.random.normal(0, intensity * 255, img_array.shape) 750 | 751 | # 应用噪点 752 | img_array = img_array + noise 753 | img_array = np.clip(img_array, 0, 255).astype(np.uint8) 754 | 755 | return Image.fromarray(img_array) 756 | 757 | def create_style_multi_1(library_dir, title, font_path, font_size=(1,1), is_blur=False, blur_size=50, color_ratio=0.8): 758 | """ 759 | 生成海报:多张图片以旋转列的形式排列在渐变背景上。 760 | 输入: 761 | image_datas_base64: base64编码的图片字符串列表。 762 | title_zh: 中文标题文本。 763 | title_en: 英文标题文本。 764 | zh_font_path: 首选的中文字体文件路径 (可以是None)。 765 | en_font_path: 首选的英文字体文件路径 (可以是None)。 766 | 返回: 767 | 生成的PNG海报图片的base64编码字符串,失败则返回None。 768 | """ 769 | """ 770 | 将多张电影海报排列成三列,每列三张,然后将每列作为整体旋转并放在渐变背景上 771 | 不再依赖外部模板文件,直接生成渐变背景 772 | """ 773 | 774 | try: 775 | zh_font_size_ratio, en_font_size_ratio = font_size 776 | 777 | if int(blur_size) < 0: 778 | blur_size = 50 779 | 780 | if float(color_ratio) < 0 or float(color_ratio) > 1: 781 | color_ratio = 0.8 782 | 783 | if float(zh_font_size_ratio) <= 0: 784 | zh_font_size_ratio = 1 785 | if float(en_font_size_ratio) <= 0: 786 | en_font_size_ratio = 1 787 | 788 | zh_font_path, en_font_path = font_path 789 | title_zh, title_en = title 790 | # logger.info(f"[3/4] 正在生成海报...") 791 | # logger.info("-" * 40) 792 | poster_folder = Path(library_dir) 793 | first_image_path = poster_folder / "1.jpg" 794 | # output_path = os.path.join(cover_path, 'output', f"{library_name}.png") 795 | rows = POSTER_GEN_CONFIG["ROWS"] 796 | cols = POSTER_GEN_CONFIG["COLS"] 797 | margin = POSTER_GEN_CONFIG["MARGIN"] 798 | corner_radius = POSTER_GEN_CONFIG["CORNER_RADIUS"] 799 | rotation_angle = POSTER_GEN_CONFIG["ROTATION_ANGLE"] 800 | start_x = POSTER_GEN_CONFIG["START_X"] 801 | start_y = POSTER_GEN_CONFIG["START_Y"] 802 | column_spacing = POSTER_GEN_CONFIG["COLUMN_SPACING"] 803 | save_columns = POSTER_GEN_CONFIG["SAVE_COLUMNS"] 804 | 805 | # 定义模板尺寸(可以根据需要调整) 806 | template_width = POSTER_GEN_CONFIG["CANVAS_WIDTH"] 807 | template_height = POSTER_GEN_CONFIG["CANVAS_HEIGHT"] 808 | 809 | # 加载首图并处理 810 | color_img = Image.open(first_image_path).convert("RGB") 811 | # 获取前景图中最鲜明的颜色 812 | vibrant_colors = find_dominant_vibrant_colors(color_img) 813 | 814 | # 柔和的颜色备选(马卡龙风格) 815 | soft_colors = [ 816 | (237, 159, 77), # 原默认色 817 | (255, 183, 197), # 淡粉色 818 | (186, 225, 255), # 淡蓝色 819 | (255, 223, 186), # 浅橘色 820 | (202, 231, 200), # 淡绿色 821 | (245, 203, 255), # 淡紫色 822 | ] 823 | # 如果有鲜明的颜色,则选择第一个(饱和度最高)作为背景色,否则使用默认颜色 824 | if vibrant_colors: 825 | blur_color = vibrant_colors[0] 826 | else: 827 | blur_color = random.choice(soft_colors) # 默认橙色 828 | 829 | gradient_color = get_poster_primary_color(first_image_path) 830 | 831 | # 创建渐变背景作为模板 832 | if is_blur: 833 | colored_bg_img = create_blur_background(first_image_path, template_width, template_height, blur_color, blur_size, color_ratio) 834 | else: 835 | colored_bg_img = create_gradient_background(template_width, template_height, gradient_color) 836 | 837 | # 创建保存中间文件的文件夹 838 | # output_dir = os.path.dirname(output_path) 839 | # if not os.path.exists(output_dir): 840 | # os.makedirs(output_dir) 841 | # columns_dir = os.path.join(output_dir, "columns") 842 | # if save_columns and not os.path.exists(columns_dir): 843 | # os.makedirs(columns_dir) 844 | 845 | # 支持的图片格式 846 | supported_formats = (".jpg", ".jpeg", ".png", ".bmp", ".gif", ".webp") 847 | # 自定义排序顺序,如果custom_order=123456789,则代表九宫格图第一列第一行(1,1)为1.jpg,第一列第二行(1,2)为2.jpg,第一列第三行(1,3)为3.jpg,(2,1)=4.jpg以此类推,(3,3)=9.jpg 848 | custom_order = "315426987" 849 | # 这个顺序是优先把最开始的两张图1.jpg和2.jpg放在最显眼的位置(1,2)和(2,2),而最后一个9.jpg放在看不见的位置(3,1) 850 | order_map = {num: index for index, num in enumerate(custom_order)} 851 | 852 | # 获取并排序图片 853 | poster_files = sorted( 854 | [ 855 | os.path.join(poster_folder, f) 856 | for f in os.listdir(poster_folder) 857 | if os.path.isfile(os.path.join(poster_folder, f)) 858 | and f.lower().endswith(supported_formats) 859 | and os.path.splitext(f)[0] 860 | in order_map # 文件名(不含扩展名)必须在自定义顺序里 861 | ], 862 | key=lambda x: order_map[os.path.splitext(os.path.basename(x))[0]], 863 | ) 864 | 865 | # 确保至少有一张图片 866 | if not poster_files: 867 | # logger.error(f"错误: 在 {poster_folder} 中没有找到支持的图片文件") 868 | return False 869 | 870 | # 限制最多处理 rows*cols 张图片 871 | max_posters = rows * cols 872 | poster_files = poster_files[:max_posters] 873 | 874 | # 固定海报尺寸 875 | cell_width = POSTER_GEN_CONFIG["CELL_WIDTH"] 876 | cell_height = POSTER_GEN_CONFIG["CELL_HEIGHT"] 877 | 878 | # 将图片分成3组,每组3张 879 | grouped_posters = [ 880 | poster_files[i : i + rows] for i in range(0, len(poster_files), rows) 881 | ] 882 | 883 | # 以渐变背景作为起点 884 | result = colored_bg_img.copy() 885 | # 处理每一组(每一列)图片 886 | for col_index, column_posters in enumerate(grouped_posters): 887 | if col_index >= cols: 888 | break 889 | 890 | # 计算当前列的 x 坐标 891 | column_x = start_x + col_index * column_spacing 892 | 893 | # 计算当前列所有图片组合后的高度(包括间距) 894 | column_height = rows * cell_height + (rows - 1) * margin 895 | 896 | # 创建一个透明的画布用于当前列的所有图片,增加宽度以容纳右侧阴影 897 | shadow_extra_width = 20 + 20 * 2 # 右侧阴影需要的额外宽度 898 | shadow_extra_height = 20 + 20 * 2 # 底部阴影需要的额外高度 899 | 900 | # 修改列画布的尺寸,确保有足够空间容纳阴影 901 | column_image = Image.new( 902 | "RGBA", 903 | (cell_width + shadow_extra_width, column_height + shadow_extra_height), 904 | (0, 0, 0, 0), 905 | ) 906 | 907 | # 在列画布上放置每张图片 908 | for row_index, poster_path in enumerate(column_posters): 909 | try: 910 | # 打开海报 911 | poster = Image.open(poster_path) 912 | 913 | # 调整海报大小为固定尺寸 914 | # resized_poster = poster.resize( 915 | # (cell_width, cell_height), Image.LANCZOS 916 | # ) 917 | resized_poster = ImageOps.fit(poster, (cell_width, cell_height), method=Image.LANCZOS) 918 | 919 | # 创建圆角遮罩(如果需要) 920 | if corner_radius > 0: 921 | # 创建一个透明的遮罩 922 | mask = Image.new("L", (cell_width, cell_height), 0) 923 | 924 | # 绘制圆角 925 | draw = ImageDraw.Draw(mask) 926 | draw.rounded_rectangle( 927 | [(0, 0), (cell_width, cell_height)], 928 | radius=corner_radius, 929 | fill=255, 930 | ) 931 | 932 | # 应用遮罩 933 | poster_with_corners = Image.new( 934 | "RGBA", resized_poster.size, (0, 0, 0, 0) 935 | ) 936 | poster_with_corners.paste(resized_poster, (0, 0), mask) 937 | resized_poster = poster_with_corners 938 | 939 | # 添加阴影效果到每张海报 940 | resized_poster_with_shadow = add_shadow( 941 | resized_poster, 942 | offset=(20, 20), # 较大的偏移量 943 | shadow_color=( 944 | 0, 945 | 0, 946 | 0, 947 | 216, 948 | ), # 更深的黑色,但不要超过255的透明度 949 | blur_radius=20, # 保持模糊半径 950 | ) 951 | 952 | # 计算在列画布上的位置(垂直排列) 953 | y_position = row_index * (cell_height + margin) 954 | x_position = 0 # 一般为0,但在有阴影时可能需要调整 955 | 956 | # 粘贴到列画布上时,不要减去偏移量,确保阴影有空间 957 | column_image.paste( 958 | resized_poster_with_shadow, 959 | (0, y_position), # 不减去偏移量,确保阴影有空间 960 | resized_poster_with_shadow, 961 | ) 962 | 963 | except Exception as e: 964 | # logger.error(f"处理图片 {os.path.basename(poster_path)} 时出错: {e}") 965 | continue 966 | 967 | # 保存原始列图像(旋转前) 968 | # if save_columns: 969 | # column_orig_path = os.path.join( 970 | # columns_dir, f"{name}_column_{col_index+1}_original.png" 971 | # ) 972 | # column_image.save(column_orig_path) 973 | # # logger.debug( 974 | # f"已保存原始列图像到: {column_orig_path}" 975 | # ) 976 | 977 | # 现在我们有了完整的一列图片,准备旋转它 978 | # 创建一个足够大的画布来容纳旋转后的列 979 | rotation_canvas_size = int( 980 | math.sqrt( 981 | (cell_width + shadow_extra_width) ** 2 982 | + (column_height + shadow_extra_height) ** 2 983 | ) 984 | * 1.5 985 | ) 986 | rotation_canvas = Image.new( 987 | "RGBA", (rotation_canvas_size, rotation_canvas_size), (0, 0, 0, 0) 988 | ) 989 | 990 | # 将列图片放在旋转画布的中央 991 | paste_x = (rotation_canvas_size - cell_width) // 2 992 | paste_y = (rotation_canvas_size - column_height) // 2 993 | rotation_canvas.paste(column_image, (paste_x, paste_y), column_image) 994 | 995 | # 旋转整个列 996 | rotated_column = rotation_canvas.rotate( 997 | rotation_angle, Image.BICUBIC, expand=True 998 | ) 999 | 1000 | # 保存旋转后的列图像 1001 | # if save_columns: 1002 | # column_rotated_path = os.path.join( 1003 | # columns_dir, f"column_{col_index+1}_rotated.png" 1004 | # ) 1005 | # rotated_column.save(column_rotated_path) 1006 | # # logger.debug( 1007 | # f"已保存旋转后的列图像到: {column_rotated_path}" 1008 | # ) 1009 | 1010 | # 计算列在模板上的位置(不同的列有不同的y起点) 1011 | column_center_y = start_y + column_height // 2 1012 | column_center_x = column_x 1013 | 1014 | # 根据列索引调整位置 1015 | if col_index == 1: # 中间列 1016 | column_center_x += cell_width - 50 1017 | elif col_index == 2: # 右侧列 1018 | column_center_y += -155 1019 | column_center_x += (cell_width) * 2 - 40 1020 | 1021 | # 计算最终放置位置 1022 | final_x = column_center_x - rotated_column.width // 2 + cell_width // 2 1023 | final_y = column_center_y - rotated_column.height // 2 1024 | 1025 | # 粘贴旋转后的列到结果图像 1026 | result.paste(rotated_column, (final_x, final_y), rotated_column) 1027 | 1028 | # 获取第一张图片的随机点颜色 1029 | if poster_files: 1030 | first_image_path = poster_files[0] 1031 | random_color = get_random_color(first_image_path) 1032 | else: 1033 | # 如果没有图片,生成一个随机颜色 1034 | random_color = ( 1035 | random.randint(50, 200), 1036 | random.randint(50, 200), 1037 | random.randint(50, 200), 1038 | 255, 1039 | ) 1040 | 1041 | # 根据name匹配template_mapping中的配置 1042 | library_ch_name = title_zh # 默认使用输入的name作为中文名 1043 | library_eng_name = title_en # 默认英文名为空 1044 | 1045 | text_shadow_color = darken_color(blur_color, 0.8) 1046 | result = draw_text_on_image( 1047 | result, library_ch_name, (73.32, 427.34), zh_font_path, "ch.ttf", 163 * float(zh_font_size_ratio), 1048 | shadow=is_blur, shadow_color=text_shadow_color 1049 | ) 1050 | 1051 | # 如果有英文名,才添加英文名文字 1052 | if library_eng_name: 1053 | # 动态调整字体大小,但统一使用一个字体大小 1054 | base_font_size = 50 * float(en_font_size_ratio) # 默认字体大小 1055 | line_spacing = base_font_size * 0.1 # 行间距 1056 | 1057 | # 计算行数和调整字体大小 1058 | word_count = len(library_eng_name.split()) 1059 | max_chars_per_line = max([len(word) for word in library_eng_name.split()]) 1060 | 1061 | # 根据单词数量或最长单词长度调整字体大小 1062 | if max_chars_per_line > 10 or word_count > 3: 1063 | # 字体大小与文本长度成反比 1064 | font_size = ( 1065 | base_font_size 1066 | * (10 / max(max_chars_per_line, word_count * 3)) ** 0.8 1067 | ) 1068 | # 设置最小字体大小限制,确保文字不会太小 1069 | font_size = max(font_size, 30) 1070 | else: 1071 | font_size = base_font_size 1072 | 1073 | # 打印调试信息 1074 | # logger.debug(f"英文名 '{library_eng_name}' 单词数量: {word_count}, 最长单词长度: {max_chars_per_line}") 1075 | # logger.debug(f"使用字体大小: {font_size:.2f}") 1076 | 1077 | 1078 | # 使用多行文本绘制 1079 | result, line_count = draw_multiline_text_on_image( 1080 | result, 1081 | library_eng_name, 1082 | (124.68, 624.55), 1083 | en_font_path, "en.otf", 1084 | int(font_size), 1085 | line_spacing, 1086 | shadow=is_blur, 1087 | shadow_color=text_shadow_color 1088 | ) 1089 | 1090 | # 根据行数调整色块高度 1091 | color_block_position = (84.38, 620.06) 1092 | # 基础高度为55,每增加一行增加(font_size + line_spacing)的高度 1093 | color_block_height = base_font_size + line_spacing + (line_count - 1) * (int(font_size) + line_spacing) 1094 | color_block_size = (21.51, color_block_height) 1095 | 1096 | # logger.debug(f"色块高度调整为: {color_block_height} (行数: {line_count})") 1097 | 1098 | result = draw_color_block( 1099 | result, color_block_position, color_block_size, random_color 1100 | ) 1101 | # 保存结果 1102 | def image_to_base64(image, format="auto", quality=85): 1103 | buffer = io.BytesIO() 1104 | if format.lower() == "auto": 1105 | if image.mode == "RGBA" or (image.info.get('transparency') is not None): 1106 | format = "PNG" 1107 | else: 1108 | try: 1109 | image.save(buffer, format="WEBP", quality=quality, optimize=True) 1110 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 1111 | return base64_str 1112 | except Exception: 1113 | format = "JPEG" # Fallback to JPEG if WebP fails 1114 | if format.lower() == "png": 1115 | image.save(buffer, format="PNG", optimize=True) 1116 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 1117 | return base64_str 1118 | elif format.lower() == "jpeg": 1119 | image = image.convert("RGB") # Ensure RGB for JPEG 1120 | image.save(buffer, format="JPEG", quality=quality, optimize=True, progressive=True) 1121 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 1122 | return base64_str 1123 | else: 1124 | raise ValueError(f"Unsupported format: {format}") 1125 | 1126 | return image_to_base64(result) 1127 | 1128 | except Exception as e: 1129 | logger.error(f"创建多图封面时出错: {e}") 1130 | return False 1131 | -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/style_single_1.py: -------------------------------------------------------------------------------- 1 | import base64 2 | import random 3 | import colorsys 4 | from collections import Counter 5 | from io import BytesIO 6 | from pathlib import Path 7 | import math 8 | 9 | import numpy as np 10 | from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps 11 | 12 | from app.log import logger 13 | 14 | 15 | # ========== 配置 ========== 16 | canvas_size = (1920, 1080) 17 | 18 | def is_not_black_white_gray_near(color, threshold=20): 19 | """判断颜色既不是黑、白、灰,也不是接近黑、白。""" 20 | r, g, b = color 21 | if (r < threshold and g < threshold and b < threshold) or \ 22 | (r > 255 - threshold and g > 255 - threshold and b > 255 - threshold): 23 | return False 24 | gray_diff_threshold = 10 25 | if abs(r - g) < gray_diff_threshold and abs(g - b) < gray_diff_threshold and abs(r - b) < gray_diff_threshold: 26 | return False 27 | return True 28 | 29 | def rgb_to_hsv(color): 30 | """将 RGB 颜色转换为 HSV 颜色。""" 31 | r, g, b = [x / 255.0 for x in color] 32 | return colorsys.rgb_to_hsv(r, g, b) 33 | 34 | def hsv_to_rgb(h, s, v): 35 | """将 HSV 颜色转换为 RGB 颜色。""" 36 | r, g, b = colorsys.hsv_to_rgb(h, s, v) 37 | return (int(r * 255), int(g * 255), int(b * 255)) 38 | 39 | def adjust_color_macaron(color): 40 | """ 41 | 调整颜色使其更接近马卡龙风格: 42 | - 如果颜色太暗,增加亮度 43 | - 如果颜色太亮,降低亮度 44 | - 调整饱和度到适当范围 45 | """ 46 | h, s, v = rgb_to_hsv(color) 47 | 48 | # 马卡龙风格的理想范围 49 | target_saturation_range = (0.3, 0.7) # 饱和度范围 50 | target_value_range = (0.6, 0.85) # 亮度范围 51 | 52 | # 调整饱和度 53 | if s < target_saturation_range[0]: 54 | s = target_saturation_range[0] 55 | elif s > target_saturation_range[1]: 56 | s = target_saturation_range[1] 57 | 58 | # 调整亮度 59 | if v < target_value_range[0]: 60 | v = target_value_range[0] # 太暗,加亮 61 | elif v > target_value_range[1]: 62 | v = target_value_range[1] # 太亮,加暗 63 | 64 | return hsv_to_rgb(h, s, v) 65 | 66 | def color_distance(color1, color2): 67 | """计算两个颜色在HSV空间中的距离""" 68 | h1, s1, v1 = rgb_to_hsv(color1) 69 | h2, s2, v2 = rgb_to_hsv(color2) 70 | 71 | # 色调在环形空间中,需要特殊处理 72 | h_dist = min(abs(h1 - h2), 1 - abs(h1 - h2)) 73 | 74 | # 综合距离,给予色调更高的权重 75 | return h_dist * 5 + abs(s1 - s2) + abs(v1 - v2) 76 | 77 | def find_dominant_macaron_colors(image, num_colors=5): 78 | """ 79 | 从图像中提取主要颜色并调整为马卡龙风格: 80 | 1. 过滤掉黑白灰颜色 81 | 2. 从剩余颜色中找到出现频率最高的几种 82 | 3. 调整这些颜色使其接近马卡龙风格 83 | 4. 确保提取的颜色之间有足够的差异 84 | """ 85 | # 缩小图片以提高效率 86 | img = image.copy() 87 | img.thumbnail((150, 150)) 88 | img = img.convert('RGB') 89 | pixels = list(img.getdata()) 90 | 91 | # 过滤掉黑白灰颜色 92 | filtered_pixels = [p for p in pixels if is_not_black_white_gray_near(p)] 93 | if not filtered_pixels: 94 | return [] 95 | 96 | # 统计颜色出现频率 97 | color_counter = Counter(filtered_pixels) 98 | candidate_colors = color_counter.most_common(num_colors * 5) # 提取更多候选颜色 99 | 100 | macaron_colors = [] 101 | min_color_distance = 0.15 # 颜色差异阈值 102 | 103 | for color, _ in candidate_colors: 104 | # 调整为马卡龙风格 105 | adjusted_color = adjust_color_macaron(color) 106 | 107 | # 检查与已选颜色的差异 108 | if not any(color_distance(adjusted_color, existing) < min_color_distance for existing in macaron_colors): 109 | macaron_colors.append(adjusted_color) 110 | if len(macaron_colors) >= num_colors: 111 | break 112 | 113 | return macaron_colors 114 | 115 | def adjust_background_color(color, darken_factor=0.85): 116 | """ 117 | 调整背景色,使其适合作为背景: 118 | - 降低亮度以减少对比度 119 | - 略微降低饱和度 120 | """ 121 | h, s, v = rgb_to_hsv(color) 122 | # 降低亮度 123 | v = v * darken_factor 124 | # 略微降低饱和度 125 | s = s * 0.9 126 | return hsv_to_rgb(h, s, v) 127 | 128 | def darken_color(color, factor=0.7): 129 | """ 130 | 将颜色加深。 131 | """ 132 | r, g, b = color 133 | return (int(r * factor), int(g * factor), int(b * factor)) 134 | 135 | def add_film_grain(image, intensity=0.05): 136 | """添加胶片颗粒效果""" 137 | img_array = np.array(image) 138 | 139 | # 创建随机噪点 140 | noise = np.random.normal(0, intensity * 255, img_array.shape) 141 | 142 | # 应用噪点 143 | img_array = img_array + noise 144 | img_array = np.clip(img_array, 0, 255).astype(np.uint8) 145 | 146 | return Image.fromarray(img_array) 147 | 148 | def crop_to_square(img): 149 | """将图片裁剪为正方形""" 150 | width, height = img.size 151 | size = min(width, height) 152 | 153 | left = (width - size) // 2 154 | top = (height - size) // 2 155 | right = left + size 156 | bottom = top + size 157 | 158 | return img.crop((left, top, right, bottom)) 159 | 160 | def add_rounded_corners(img, radius=30): 161 | """ 162 | 给图片添加圆角,通过超采样技术消除锯齿 163 | 164 | Args: 165 | img: PIL.Image对象 166 | radius: 圆角半径 167 | 168 | Returns: 169 | 带圆角的图片(RGBA模式) 170 | """ 171 | # 超采样倍数 172 | factor = 2 173 | 174 | # 获取原始尺寸 175 | width, height = img.size 176 | 177 | # 创建更大尺寸的空白图像(用于超采样) 178 | enlarged_img = img.resize((width * factor, height * factor), Image.Resampling.LANCZOS) 179 | enlarged_img = enlarged_img.convert("RGBA") 180 | 181 | # 创建透明蒙版,尺寸为放大后的尺寸 182 | mask = Image.new('L', (width * factor, height * factor), 0) 183 | draw = ImageDraw.Draw(mask) 184 | 185 | draw.rounded_rectangle([(0, 0), (width * factor, height * factor)], 186 | radius=radius * factor, fill=255) 187 | 188 | # 创建超采样尺寸的透明背景 189 | background = Image.new("RGBA", (width * factor, height * factor), (255, 255, 255, 0)) 190 | 191 | # 使用蒙版合成图像(在高分辨率下) 192 | high_res_result = Image.composite(enlarged_img, background, mask) 193 | 194 | # 将结果缩小回原来的尺寸,应用抗锯齿 195 | result = high_res_result.resize((width, height), Image.Resampling.LANCZOS) 196 | 197 | return result 198 | 199 | 200 | 201 | def add_card_shadow(img, offset=(10, 10), radius=10, opacity=0.5): 202 | """给卡片添加更真实的阴影效果""" 203 | # 获取原图尺寸 204 | width, height = img.size 205 | 206 | # 创建一个更大的画布以容纳阴影和旋转后的图像 207 | # 提供足够的边距,确保旋转后阴影不会被截断 208 | padding = max(width, height) // 2 209 | shadow = Image.new("RGBA", (width + padding * 2, height + padding * 2), (0, 0, 0, 0)) 210 | 211 | # 在原图轮廓绘制黑色阴影,放置在中心偏移的位置 212 | orig_mask = Image.new("L", (width, height), 255) 213 | rounded_mask = add_rounded_corners(orig_mask, radius).convert("L") 214 | 215 | # 阴影位置计算,从中心位置开始偏移 216 | shadow_x = padding + offset[0] 217 | shadow_y = padding + offset[1] 218 | shadow.paste((0, 0, 0, int(255 * opacity)), 219 | (shadow_x, shadow_y, width + shadow_x, height + shadow_y), 220 | rounded_mask) 221 | 222 | # 模糊阴影以获得更自然的效果 223 | shadow = shadow.filter(ImageFilter.GaussianBlur(radius)) 224 | 225 | # 创建结果图像 226 | result = Image.new("RGBA", shadow.size, (0, 0, 0, 0)) 227 | 228 | # 先放置阴影 229 | result.paste(shadow, (0, 0), shadow) 230 | 231 | # 放置原图到中心位置 232 | result.paste(img, (padding, padding), img if img.mode == "RGBA" else None) 233 | 234 | return result 235 | 236 | def add_shadow_and_rotate(canvas, img, angle, offset=(10, 10), radius=10, opacity=0.5, center_pos=None): 237 | """ 238 | 先创建阴影并旋转放置,然后旋转图像并放置 239 | 240 | Args: 241 | canvas: 目标画布 242 | img: 需要处理的图像 243 | angle: 旋转角度 244 | offset: 阴影偏移 245 | radius: 阴影模糊半径 246 | opacity: 阴影透明度 247 | center_pos: 放置中心位置 (x, y) 248 | 249 | Returns: 250 | 更新后的画布 251 | """ 252 | # 获取原图尺寸 253 | width, height = img.size 254 | 255 | # 如果没有指定中心位置,默认使用画布中心 256 | if center_pos is None: 257 | center_pos = (canvas.width // 2, canvas.height // 2) 258 | 259 | # 1. 创建阴影 260 | # 创建一个更大的阴影画布,给阴影留足空间,避免截断 261 | padding = max(radius * 4, 100) # 为阴影提供足够的空间 262 | shadow_size = (width + padding * 2, height + padding * 2) 263 | shadow = Image.new("RGBA", shadow_size, (0, 0, 0, 0)) 264 | 265 | # 准备阴影蒙版 266 | mask_size = (width, height) 267 | shadow_mask = Image.new("L", mask_size, 255) # 白色蒙版 268 | 269 | # 如果原图是RGBA模式,使用其透明通道作为蒙版 270 | if img.mode == "RGBA": 271 | shadow_mask = img.split()[3] # 获取Alpha通道作为蒙版 272 | 273 | # 在阴影中心位置创建阴影形状 274 | shadow_center = (padding, padding) 275 | shadow.paste((0, 0, 0, int(255 * opacity)), 276 | (shadow_center[0], shadow_center[1], 277 | shadow_center[0] + width, shadow_center[1] + height), 278 | shadow_mask) 279 | 280 | # 模糊阴影,使用较大的半径确保柔和效果 281 | shadow = shadow.filter(ImageFilter.GaussianBlur(radius)) 282 | 283 | # 2. 旋转阴影和图像 284 | # 旋转阴影 285 | rotated_shadow = rotate_image(shadow, angle) 286 | shadow_width, shadow_height = rotated_shadow.size 287 | 288 | # 计算旋转后的阴影位置(考虑偏移) 289 | shadow_x = center_pos[0] - shadow_width // 2 + offset[0] 290 | shadow_y = center_pos[1] - shadow_height // 2 + offset[1] 291 | 292 | # 将阴影粘贴到画布上 293 | canvas.paste(rotated_shadow, (shadow_x, shadow_y), rotated_shadow) 294 | 295 | # 旋转原图 296 | rotated_img = rotate_image(img, angle) 297 | img_width, img_height = rotated_img.size 298 | 299 | # 计算旋转后的图片位置 300 | img_x = center_pos[0] - img_width // 2 301 | img_y = center_pos[1] - img_height // 2 302 | 303 | # 将图片粘贴到画布上 304 | canvas.paste(rotated_img, (img_x, img_y), rotated_img) 305 | 306 | return canvas 307 | 308 | 309 | def rotate_image(img, angle, bg_color=(0, 0, 0, 0)): 310 | """旋转图片并确保不会截断图片内容""" 311 | # expand=True 确保旋转后的图片不会被截断 312 | return img.rotate(angle, Image.BICUBIC, expand=True, fillcolor=bg_color) 313 | 314 | 315 | def create_style_single_1(image_path, title, font_path, font_size=(1,1), blur_size=50, color_ratio=0.8): 316 | try: 317 | zh_font_path, en_font_path = font_path 318 | title_zh, title_en = title 319 | zh_font_size_ratio, en_font_size_ratio = font_size 320 | 321 | if int(blur_size) < 0: 322 | blur_size = 50 323 | 324 | if float(color_ratio) < 0 or float(color_ratio) > 1: 325 | color_ratio = 0.8 326 | 327 | if not float(zh_font_size_ratio) > 0: 328 | zh_font_size_ratio = 1 329 | if not float(en_font_size_ratio) > 0: 330 | en_font_size_ratio = 1 331 | 332 | 333 | num_colors = 6 334 | # 加载原始图片 335 | original_img = Image.open(image_path).convert("RGB") 336 | 337 | # 从图片提取马卡龙风格的颜色 338 | candidate_colors = find_dominant_macaron_colors(original_img, num_colors=num_colors) 339 | 340 | random.shuffle(candidate_colors) 341 | extracted_colors = candidate_colors[:num_colors] 342 | 343 | # 柔和的马卡龙备选颜色 344 | soft_macaron_colors = [ 345 | (237, 159, 77), # 杏色 346 | (186, 225, 255), # 淡蓝色 347 | (255, 223, 186), # 浅橘色 348 | (202, 231, 200), # 淡绿色 349 | ] 350 | 351 | # 确保有足够的颜色 352 | while len(extracted_colors) < num_colors: 353 | # 从备选颜色中选择一个与已有颜色差异最大的 354 | if not extracted_colors: 355 | extracted_colors.append(random.choice(soft_macaron_colors)) 356 | else: 357 | max_diff = 0 358 | best_color = None 359 | for color in soft_macaron_colors: 360 | min_dist = min(color_distance(color, existing) for existing in extracted_colors) 361 | if min_dist > max_diff: 362 | max_diff = min_dist 363 | best_color = color 364 | extracted_colors.append(best_color or random.choice(soft_macaron_colors)) 365 | 366 | # 处理颜色 367 | bg_color = darken_color(extracted_colors[0], 0.85) # 背景色 368 | card_colors = [extracted_colors[1], extracted_colors[2]] # 卡片颜色 369 | 370 | # 2. 背景处理 371 | bg_img = original_img.copy() 372 | bg_img = ImageOps.fit(bg_img, canvas_size, method=Image.LANCZOS) 373 | bg_img = bg_img.filter(ImageFilter.GaussianBlur(radius=int(blur_size))) # 强烈模糊化 374 | 375 | # 将背景图片与背景色混合 376 | bg_img_array = np.array(bg_img, dtype=float) 377 | bg_color_array = np.array([[bg_color]], dtype=float) 378 | 379 | # 混合背景图和颜色 (15% 背景图 + 85% 颜色) 380 | blended_bg = bg_img_array * (1 - float(color_ratio)) + bg_color_array * float(color_ratio) 381 | blended_bg = np.clip(blended_bg, 0, 255).astype(np.uint8) 382 | blended_bg_img = Image.fromarray(blended_bg) 383 | 384 | # 添加胶片颗粒效果增强纹理感 385 | blended_bg_img = add_film_grain(blended_bg_img, intensity=0.03) 386 | 387 | # 创建最终画布 388 | canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0)) 389 | canvas.paste(blended_bg_img) 390 | 391 | # 3. 处理卡片效果 392 | # 裁剪为正方形 393 | square_img = crop_to_square(original_img) 394 | 395 | # 计算卡片尺寸 (画布高度的60%) 396 | card_size = int(canvas_size[1] * 0.7) 397 | square_img = square_img.resize((card_size, card_size), Image.LANCZOS) 398 | 399 | # 准备三张卡片图像 400 | cards = [] 401 | 402 | # 主卡片 - 原始图 403 | main_card = add_rounded_corners(square_img, radius=card_size//8) 404 | main_card = main_card.convert("RGBA") 405 | 406 | # 辅助卡片1 (中间层) - 与第二种颜色混合,加深颜色 407 | aux_card1 = square_img.copy().filter(ImageFilter.GaussianBlur(radius=8)) 408 | aux_card1_array = np.array(aux_card1, dtype=float) 409 | card_color1_array = np.array([[card_colors[0]]], dtype=float) 410 | # 降低原图比例,增加颜色混合比例 411 | blended_card1 = aux_card1_array * 0.5 + card_color1_array * 0.5 412 | blended_card1 = np.clip(blended_card1, 0, 255).astype(np.uint8) 413 | aux_card1 = Image.fromarray(blended_card1) 414 | aux_card1 = add_rounded_corners(aux_card1, radius=card_size//8) 415 | aux_card1 = aux_card1.convert("RGBA") 416 | 417 | # 辅助卡片2 (底层) - 与第三种颜色混合,加深颜色 418 | aux_card2 = square_img.copy().filter(ImageFilter.GaussianBlur(radius=16)) 419 | aux_card2_array = np.array(aux_card2, dtype=float) 420 | card_color2_array = np.array([[card_colors[1]]], dtype=float) 421 | # 降低原图比例,增加颜色混合比例 422 | blended_card2 = aux_card2_array * 0.4 + card_color2_array * 0.6 423 | blended_card2 = np.clip(blended_card2, 0, 255).astype(np.uint8) 424 | aux_card2 = Image.fromarray(blended_card2) 425 | aux_card2 = add_rounded_corners(aux_card2, radius=card_size//8) 426 | aux_card2 = aux_card2.convert("RGBA") 427 | 428 | # 4. 分别添加阴影和旋转 429 | # 计算卡片放置中心位置 (画布右侧) 430 | center_x = int(canvas_size[0] - canvas_size[1] * 0.5) # 稍微左移,给旋转后的卡片留出空间 431 | center_y = int(canvas_size[1] * 0.5) 432 | center_pos = (center_x, center_y) 433 | 434 | # 按照需求指定旋转角度 435 | rotation_angles = [36, 18, 0] # 底层、中间层、顶层的旋转角度 436 | 437 | # 阴影配置 438 | shadow_configs = [ 439 | {'offset': (10, 16), 'radius': 12, 'opacity': 0.4}, # 底层卡片阴影配置 440 | {'offset': (15, 22), 'radius': 15, 'opacity': 0.5}, # 中间层卡片阴影配置 441 | {'offset': (20, 26), 'radius': 18, 'opacity': 0.6}, # 顶层卡片阴影配置 442 | ] 443 | 444 | # 创建一个临时画布,用于叠加卡片和阴影效果 445 | cards_canvas = Image.new("RGBA", canvas_size, (0, 0, 0, 0)) 446 | 447 | # 从底层到顶层依次添加阴影和卡片 448 | cards = [aux_card2, aux_card1, main_card] 449 | 450 | for i, (card, angle, shadow_config) in enumerate(zip(cards, rotation_angles, shadow_configs)): 451 | # 使用优化后的函数添加阴影和旋转图片 452 | cards_canvas = add_shadow_and_rotate( 453 | cards_canvas, 454 | card, 455 | angle, 456 | offset=shadow_config['offset'], 457 | radius=shadow_config['radius'], 458 | opacity=shadow_config['opacity'], 459 | center_pos=center_pos 460 | ) 461 | 462 | # 将裁剪后的卡片画布与背景合并 463 | canvas = Image.alpha_composite(canvas.convert("RGBA"), cards_canvas) 464 | 465 | # 5. 文字处理 466 | text_layer = Image.new('RGBA', canvas_size, (255, 255, 255, 0)) 467 | shadow_layer = Image.new("RGBA", canvas_size, (0, 0, 0, 0)) 468 | 469 | shadow_draw = ImageDraw.Draw(shadow_layer) 470 | draw = ImageDraw.Draw(text_layer) 471 | 472 | # 计算左侧区域的中心 X 位置 (画布宽度的四分之一处) 473 | left_area_center_x = int(canvas_size[0] * 0.25) 474 | left_area_center_y = canvas_size[1] // 2 475 | 476 | zh_font_size = int(canvas_size[1] * 0.17 * float(zh_font_size_ratio)) 477 | en_font_size = int(canvas_size[1] * 0.07 * float(en_font_size_ratio)) 478 | 479 | zh_font = ImageFont.truetype(zh_font_path, zh_font_size) 480 | en_font = ImageFont.truetype(en_font_path, en_font_size) 481 | 482 | # 文字颜色和阴影颜色 483 | text_color = (255, 255, 255, 229) # 85% 不透明度 484 | shadow_color = darken_color(bg_color, 0.8) + (75,) # 阴影颜色加透明度 485 | shadow_offset = 12 486 | shadow_alpha = 75 487 | 488 | # 计算中文标题的位置 489 | zh_bbox = draw.textbbox((0, 0), title_zh, font=zh_font) 490 | zh_text_w = zh_bbox[2] - zh_bbox[0] 491 | zh_text_h = zh_bbox[3] - zh_bbox[1] 492 | zh_x = left_area_center_x - zh_text_w // 2 493 | zh_y = left_area_center_y - zh_text_h - en_font_size // 2 - 5 494 | 495 | # 中文标题阴影效果 496 | for offset in range(3, shadow_offset + 1, 2): 497 | current_shadow_color = shadow_color[:3] + (shadow_alpha,) 498 | shadow_draw.text((zh_x + offset, zh_y + offset), title_zh, font=zh_font, fill=current_shadow_color) 499 | 500 | # 中文标题 501 | draw.text((zh_x, zh_y), title_zh, font=zh_font, fill=text_color) 502 | 503 | if title_en: 504 | # 计算英文标题的位置 505 | en_bbox = draw.textbbox((0, 0), title_en, font=en_font) 506 | en_text_w = en_bbox[2] - en_bbox[0] 507 | en_text_h = en_bbox[3] - en_bbox[1] 508 | en_x = left_area_center_x - en_text_w // 2 509 | en_y = zh_y + zh_text_h + en_font_size # 调整英文标题位置,与中文标题有一定间距 510 | 511 | # 英文标题阴影效果 512 | for offset in range(2, shadow_offset // 2 + 1): 513 | current_shadow_color = shadow_color[:3] + (shadow_alpha,) 514 | shadow_draw.text((en_x + offset, en_y + offset), title_en, font=en_font, fill=current_shadow_color) 515 | 516 | # 英文标题 517 | draw.text((en_x, en_y), title_en, font=en_font, fill=text_color) 518 | 519 | blurred_shadow = shadow_layer.filter(ImageFilter.GaussianBlur(radius=shadow_offset)) 520 | combined = Image.alpha_composite(canvas, blurred_shadow) 521 | # 合并所有图层 522 | combined = Image.alpha_composite(combined, text_layer) 523 | 524 | # 转为 RGB 525 | # rgb_image = combined.convert("RGB") 526 | 527 | def image_to_base64(image, format="auto", quality=85): 528 | buffer = BytesIO() 529 | if format.lower() == "auto": 530 | if image.mode == "RGBA" or (image.info.get('transparency') is not None): 531 | format = "PNG" 532 | else: 533 | try: 534 | image.save(buffer, format="WEBP", quality=quality, optimize=True) 535 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 536 | return base64_str 537 | except Exception: 538 | format = "JPEG" # Fallback to JPEG if WebP fails 539 | if format.lower() == "png": 540 | image.save(buffer, format="PNG", optimize=True) 541 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 542 | return base64_str 543 | elif format.lower() == "jpeg": 544 | image = image.convert("RGB") # Ensure RGB for JPEG 545 | image.save(buffer, format="JPEG", quality=quality, optimize=True, progressive=True) 546 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 547 | return base64_str 548 | else: 549 | raise ValueError(f"Unsupported format: {format}") 550 | 551 | return image_to_base64(combined) 552 | 553 | except Exception as e: 554 | logger.error(f"创建单图封面时出错: {e}") 555 | return False -------------------------------------------------------------------------------- /plugins.v2/mediacovergenerator/style_single_2.py: -------------------------------------------------------------------------------- 1 | import base64 2 | import os 3 | import random 4 | import colorsys 5 | from collections import Counter 6 | from io import BytesIO 7 | from pathlib import Path 8 | 9 | import numpy as np 10 | from PIL import Image, ImageDraw, ImageFilter, ImageFont, ImageOps 11 | 12 | from app.log import logger 13 | 14 | # ========== 配置 ========== 15 | canvas_size = (1920, 1080) 16 | 17 | def is_not_black_white_gray_near(color, threshold=20): 18 | """判断颜色既不是黑、白、灰,也不是接近黑、白。""" 19 | r, g, b = color 20 | if (r < threshold and g < threshold and b < threshold) or \ 21 | (r > 255 - threshold and g > 255 - threshold and b > 255 - threshold): 22 | return False 23 | gray_diff_threshold = 10 24 | if abs(r - g) < gray_diff_threshold and abs(g - b) < gray_diff_threshold and abs(r - b) < gray_diff_threshold: 25 | return False 26 | return True 27 | 28 | def rgb_to_hsv(color): 29 | """将 RGB 颜色转换为 HSV 颜色。""" 30 | r, g, b = [x / 255.0 for x in color] 31 | return colorsys.rgb_to_hsv(r, g, b) 32 | 33 | def hsv_to_rgb(h, s, v): 34 | """将 HSV 颜色转换为 RGB 颜色。""" 35 | r, g, b = colorsys.hsv_to_rgb(h, s, v) 36 | return (int(r * 255), int(g * 255), int(b * 255)) 37 | 38 | def adjust_to_macaron(h, s, v, target_saturation_range=(0.2, 0.7), target_value_range=(0.55, 0.85)): 39 | """将颜色的饱和度和亮度调整到接近马卡龙色系的范围,同时避免颜色过亮。""" 40 | adjusted_s = min(max(s, target_saturation_range[0]), target_saturation_range[1]) 41 | adjusted_v = min(max(v, target_value_range[0]), target_value_range[1]) 42 | return adjusted_s, adjusted_v 43 | 44 | def find_dominant_vibrant_colors(image, num_colors=5): 45 | """ 46 | 从图像中提取出现次数较多的前 N 种非黑非白非灰的颜色, 47 | 并将其调整到接近马卡龙色系。 48 | """ 49 | img = image.copy() 50 | img.thumbnail((100, 100)) 51 | img = img.convert('RGB') 52 | pixels = list(img.getdata()) 53 | filtered_pixels = [p for p in pixels if is_not_black_white_gray_near(p)] 54 | if not filtered_pixels: 55 | return [] 56 | color_counter = Counter(filtered_pixels) 57 | dominant_colors = color_counter.most_common(num_colors * 3) # 提取更多候选 58 | 59 | macaron_colors = [] 60 | seen_hues = set() # 避免提取过于相似的颜色 61 | 62 | for color, count in dominant_colors: 63 | h, s, v = rgb_to_hsv(color) 64 | adjusted_s, adjusted_v = adjust_to_macaron(h, s, v) 65 | adjusted_rgb = hsv_to_rgb(h, adjusted_s, adjusted_v) 66 | 67 | # 可以加入一些色调的判断,例如避免过于接近的色调 68 | hue_degree = int(h * 360) 69 | is_similar_hue = any(abs(hue_degree - seen) < 15 for seen in seen_hues) # 15度范围内的色调认为是相似的 70 | 71 | if not is_similar_hue and adjusted_rgb not in macaron_colors: 72 | macaron_colors.append(adjusted_rgb) 73 | seen_hues.add(hue_degree) 74 | if len(macaron_colors) >= num_colors: 75 | break 76 | 77 | return macaron_colors 78 | 79 | def darken_color(color, factor=0.7): 80 | """ 81 | 将颜色加深。 82 | """ 83 | r, g, b = color 84 | return (int(r * factor), int(g * factor), int(b * factor)) 85 | 86 | 87 | def add_film_grain(image, intensity=0.05): 88 | """添加胶片颗粒效果""" 89 | img_array = np.array(image) 90 | 91 | # 创建随机噪点 92 | noise = np.random.normal(0, intensity * 255, img_array.shape) 93 | 94 | # 应用噪点 95 | img_array = img_array + noise 96 | img_array = np.clip(img_array, 0, 255).astype(np.uint8) 97 | 98 | return Image.fromarray(img_array) 99 | 100 | 101 | def crop_to_16_9(img): 102 | """直接将图片裁剪为16:9的比例""" 103 | target_ratio = 16 / 9 104 | current_ratio = img.width / img.height 105 | 106 | if current_ratio > target_ratio: 107 | # 图片太宽,裁剪两侧 108 | new_width = int(img.height * target_ratio) 109 | left = (img.width - new_width) // 2 110 | img = img.crop((left, 0, left + new_width, img.height)) 111 | else: 112 | # 图片太高,裁剪上下 113 | new_height = int(img.width / target_ratio) 114 | top = (img.height - new_height) // 2 115 | img = img.crop((0, top, img.width, top + new_height)) 116 | 117 | return img 118 | 119 | 120 | def align_image_right(img, canvas_size): 121 | """ 122 | 将图片调整为与画布相同高度,裁剪出画布60%宽度的部分, 123 | 然后将裁剪后的图片靠右放置(因为左侧40%会被其他内容遮盖)。 124 | """ 125 | canvas_width, canvas_height = canvas_size 126 | target_width = int(canvas_width * 0.675) # 只需要画布60%的宽度 127 | img_width, img_height = img.size 128 | 129 | # 计算缩放比例以匹配画布高度 130 | scale_factor = canvas_height / img_height 131 | new_img_width = int(img_width * scale_factor) 132 | resized_img = img.resize((new_img_width, canvas_height), Image.LANCZOS) 133 | 134 | # 检查缩放后的图片是否足够宽以覆盖目标宽度 135 | if new_img_width < target_width: 136 | # 如果图片不够宽,基于宽度而非高度进行缩放 137 | scale_factor = target_width / img_width 138 | new_img_height = int(img_height * scale_factor) 139 | resized_img = img.resize((target_width, new_img_height), Image.LANCZOS) 140 | 141 | # 将图片垂直居中裁剪 142 | if new_img_height > canvas_height: 143 | crop_top = (new_img_height - canvas_height) // 2 144 | resized_img = resized_img.crop((0, crop_top, target_width, crop_top + canvas_height)) 145 | 146 | # 创建画布并将图片靠右放置 147 | final_img = Image.new("RGB", canvas_size) 148 | final_img.paste(resized_img, (canvas_width - target_width, 0)) 149 | return final_img 150 | 151 | # 以下是原始图片足够宽的情况处理 152 | 153 | # 计算图片中心,确保主体在截取的部分中居中 154 | resized_img_center_x = new_img_width / 2 155 | 156 | # 计算裁剪的左右边界,使目标部分居中 157 | crop_left = max(0, resized_img_center_x - target_width / 2) 158 | # 确保右边界不超过图片宽度 159 | if crop_left + target_width > new_img_width: 160 | crop_left = new_img_width - target_width 161 | crop_right = crop_left + target_width 162 | 163 | # 确保裁剪边界不为负 164 | crop_left = max(0, crop_left) 165 | crop_right = min(new_img_width, crop_right) 166 | 167 | # 进行裁剪 168 | cropped_img = resized_img.crop((int(crop_left), 0, int(crop_right), canvas_height)) 169 | 170 | # 创建画布并将裁剪后的图片靠右放置 171 | final_img = Image.new("RGB", canvas_size) 172 | paste_x = canvas_width - cropped_img.width + int(canvas_width * 0.075) 173 | final_img.paste(cropped_img, (paste_x, 0)) 174 | 175 | return final_img 176 | 177 | def create_diagonal_mask(size, split_top=0.5, split_bottom=0.33): 178 | """ 179 | 创建斜线分割的蒙版。左侧为背景 (255),右侧为前景 (0)。 180 | """ 181 | mask = Image.new('L', size, 255) 182 | draw = ImageDraw.Draw(mask) 183 | width, height = size 184 | top_x = int(width * split_top) 185 | bottom_x = int(width * split_bottom) 186 | 187 | # 绘制前景区域 (右侧) - 填充为黑色 188 | draw.polygon( 189 | [ 190 | (top_x, 0), 191 | (width, 0), 192 | (width, height), 193 | (bottom_x, height) 194 | ], 195 | fill=0 196 | ) 197 | 198 | # 绘制背景区域 (左侧) - 填充为白色 199 | draw.polygon( 200 | [ 201 | (0, 0), 202 | (top_x, 0), 203 | (bottom_x, height), 204 | (0, height) 205 | ], 206 | fill=255 207 | ) 208 | return mask 209 | 210 | def create_shadow_mask(size, split_top=0.5, split_bottom=0.33, feather_size=40): 211 | """ 212 | 创建一个阴影蒙版,用于左侧图片向右侧图片投射阴影 213 | """ 214 | width, height = size 215 | top_x = int(width * split_top) 216 | bottom_x = int(width * split_bottom) 217 | 218 | # 创建基础蒙版 - 左侧完全透明,右侧完全不透明 219 | mask = Image.new('L', size, 0) 220 | draw = ImageDraw.Draw(mask) 221 | 222 | # 阴影宽度再缩小一半 (原来的六分之一) 223 | shadow_width = feather_size // 3 224 | 225 | # 绘制阴影区域的多边形 - 向左靠拢 226 | draw.polygon( 227 | [ 228 | (top_x - 5, 0), # 向左偏移5像素,确保没有空隙 229 | (top_x - 5 + shadow_width, 0), 230 | (bottom_x - 5 + shadow_width, height), 231 | (bottom_x - 5, height) 232 | ], 233 | fill=255 234 | ) 235 | 236 | # 模糊阴影边缘,创造渐变效果,但保持较小的模糊半径 237 | mask = mask.filter(ImageFilter.GaussianBlur(radius=feather_size//3)) 238 | 239 | return mask 240 | 241 | def create_style_single_2(image_path, title, font_path, font_size=(1,1), blur_size=50, color_ratio=0.8): 242 | try: 243 | zh_font_path, en_font_path = font_path 244 | title_zh, title_en = title 245 | 246 | zh_font_size_ratio, en_font_size_ratio = font_size 247 | 248 | if int(blur_size) < 0: 249 | blur_size = 50 250 | 251 | if float(color_ratio) < 0 or float(color_ratio) > 1: 252 | color_ratio = 0.8 253 | 254 | if not float(zh_font_size_ratio) > 0: 255 | zh_font_size_ratio = 1 256 | if not float(en_font_size_ratio) > 0: 257 | en_font_size_ratio = 1 258 | 259 | # 定义斜线分割位置 260 | split_top = 0.55 # 顶部分割点在画面五分之三的位置 261 | split_bottom = 0.4 # 底部分割点在画面二分之一的位置 262 | 263 | # 加载前景图片并处理 264 | fg_img_original = Image.open(image_path).convert("RGB") 265 | # 以画面四分之三处为中心处理前景图 266 | fg_img = align_image_right(fg_img_original, canvas_size) 267 | 268 | # 获取前景图中最鲜明的颜色 269 | vibrant_colors = find_dominant_vibrant_colors(fg_img) 270 | 271 | # 柔和的颜色备选(马卡龙风格) 272 | soft_colors = [ 273 | (237, 159, 77), # 原默认色 274 | (255, 183, 197), # 淡粉色 275 | (186, 225, 255), # 淡蓝色 276 | (255, 223, 186), # 浅橘色 277 | (202, 231, 200), # 淡绿色 278 | (245, 203, 255), # 淡紫色 279 | ] 280 | # 如果有鲜明的颜色,则选择第一个(饱和度最高)作为背景色,否则使用默认颜色 281 | if vibrant_colors: 282 | bg_color = vibrant_colors[0] 283 | else: 284 | bg_color = random.choice(soft_colors) # 默认橙色 285 | shadow_color = darken_color(bg_color, 0.5) # 加深阴影颜色到50% 286 | 287 | # 加载背景图片 288 | bg_img_original = Image.open(image_path).convert("RGB") 289 | bg_img = ImageOps.fit(bg_img_original, canvas_size, method=Image.LANCZOS) 290 | 291 | # 强烈模糊化背景图 292 | bg_img = bg_img.filter(ImageFilter.GaussianBlur(radius=int(blur_size))) 293 | 294 | # 将背景图片与背景色混合 295 | bg_color = darken_color(bg_color, 0.85) 296 | bg_img_array = np.array(bg_img, dtype=float) 297 | bg_color_array = np.array([[bg_color]], dtype=float) 298 | 299 | # 混合背景图和颜色 (10% 背景图 + 90% 颜色) - 使原图几乎不可见,只保留极少纹理 300 | blended_bg = bg_img_array * (1 - float(color_ratio)) + bg_color_array * float(color_ratio) 301 | blended_bg = np.clip(blended_bg, 0, 255).astype(np.uint8) 302 | blended_bg_img = Image.fromarray(blended_bg) 303 | 304 | # 添加胶片颗粒效果增强纹理感 305 | blended_bg_img = add_film_grain(blended_bg_img, intensity=0.05) 306 | 307 | # 创建斜线分割的蒙版 308 | diagonal_mask = create_diagonal_mask(canvas_size, split_top, split_bottom) 309 | 310 | # 创建基础画布 - 前景图 311 | canvas = fg_img.copy() 312 | 313 | # 创建阴影蒙版 - 使用加深的背景色作为阴影颜色,减小阴影距离 314 | shadow_mask = create_shadow_mask(canvas_size, split_top, split_bottom, feather_size=30) 315 | 316 | # 创建阴影层 - 使用更加深的背景色 317 | shadow_layer = Image.new('RGB', canvas_size, shadow_color) 318 | 319 | # 创建临时画布用于组合 320 | temp_canvas = Image.new('RGB', canvas_size) 321 | 322 | # 应用阴影到前景图(先将阴影应用到前景图上) 323 | temp_canvas.paste(canvas) 324 | temp_canvas.paste(shadow_layer, mask=shadow_mask) 325 | 326 | # 使用蒙版将背景图应用到画布上(背景图会覆盖前景图的左侧部分) 327 | canvas = Image.composite(blended_bg_img, temp_canvas, diagonal_mask) 328 | 329 | # ===== 标题绘制 ===== 330 | # 使用RGBA模式进行绘制,以便设置文字透明度 331 | 332 | canvas_rgba = canvas.convert('RGBA') 333 | text_layer = Image.new('RGBA', canvas_size, (255, 255, 255, 0)) 334 | shadow_layer = Image.new("RGBA", canvas_size, (0, 0, 0, 0)) 335 | 336 | shadow_draw = ImageDraw.Draw(shadow_layer) 337 | draw = ImageDraw.Draw(text_layer) 338 | 339 | # 计算左侧区域的中心 X 位置 (画布宽度的四分之一处) 340 | left_area_center_x = int(canvas_size[0] * 0.25) 341 | left_area_center_y = canvas_size[1] // 2 342 | 343 | zh_font_size = int(canvas_size[1] * 0.17 * float(zh_font_size_ratio)) 344 | en_font_size = int(canvas_size[1] * 0.07 * float(en_font_size_ratio)) 345 | 346 | zh_font = ImageFont.truetype(str(zh_font_path), zh_font_size) 347 | en_font = ImageFont.truetype(str(en_font_path), en_font_size) 348 | 349 | # 设置80%透明度的文字颜色 (255, 255, 255, 204) - 204是80%不透明度 350 | text_color = (255, 255, 255, 229) 351 | shadow_color = darken_color(bg_color, 0.8) + (75,) # 原始阴影透明度 352 | shadow_offset = 12 353 | shadow_alpha = 75 354 | # 计算中文标题的位置 355 | zh_bbox = draw.textbbox((0, 0), title_zh, font=zh_font) 356 | zh_text_w = zh_bbox[2] - zh_bbox[0] 357 | zh_text_h = zh_bbox[3] - zh_bbox[1] 358 | zh_x = left_area_center_x - zh_text_w // 2 359 | zh_y = left_area_center_y - zh_text_h - en_font_size // 2 - 5 360 | 361 | # 恢复原始的字体阴影效果 - 完全参考原代码 362 | for offset in range(3, shadow_offset + 1, 2): 363 | # shadow_alpha = int(210 * (1 - offset / shadow_offset)) 364 | current_shadow_color = shadow_color[:3] + (shadow_alpha,) 365 | shadow_draw.text((zh_x + offset, zh_y + offset), title_zh, font=zh_font, fill=current_shadow_color) 366 | 367 | # 80%透明度的主文字 368 | draw.text((zh_x, zh_y), title_zh, font=zh_font, fill=text_color) 369 | 370 | # 计算英文标题的位置 371 | if title_en: 372 | en_bbox = draw.textbbox((0, 0), title_en, font=en_font) 373 | en_text_w = en_bbox[2] - en_bbox[0] 374 | en_text_h = en_bbox[3] - en_bbox[1] 375 | en_x = left_area_center_x - en_text_w // 2 376 | en_y = zh_y + zh_text_h + en_font_size 377 | # 恢复原始的英文标题阴影效果 378 | for offset in range(2, shadow_offset // 2 + 1): 379 | # shadow_alpha = int(210 * (1 - offset / (shadow_offset // 2))) 380 | current_shadow_color = shadow_color[:3] + (shadow_alpha,) 381 | shadow_draw.text((en_x + offset, en_y + offset), title_en, font=en_font, fill=current_shadow_color) 382 | 383 | # 80%透明度的英文主文字 384 | draw.text((en_x, en_y), title_en, font=en_font, fill=text_color) 385 | 386 | blurred_shadow = shadow_layer.filter(ImageFilter.GaussianBlur(radius=shadow_offset)) 387 | 388 | combined = Image.alpha_composite(canvas_rgba, blurred_shadow) 389 | # 把 text_layer 合并到 canvas_rgba 上 390 | combined = Image.alpha_composite(combined, text_layer) 391 | 392 | def image_to_base64(image, format="auto", quality=85): 393 | buffer = BytesIO() 394 | if format.lower() == "auto": 395 | if image.mode == "RGBA" or (image.info.get('transparency') is not None): 396 | format = "PNG" 397 | else: 398 | try: 399 | image.save(buffer, format="WEBP", quality=quality, optimize=True) 400 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 401 | return base64_str 402 | except Exception: 403 | format = "JPEG" # Fallback to JPEG if WebP fails 404 | if format.lower() == "png": 405 | image.save(buffer, format="PNG", optimize=True) 406 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 407 | return base64_str 408 | elif format.lower() == "jpeg": 409 | image = image.convert("RGB") # Ensure RGB for JPEG 410 | image.save(buffer, format="JPEG", quality=quality, optimize=True, progressive=True) 411 | base64_str = base64.b64encode(buffer.getvalue()).decode('utf-8') 412 | return base64_str 413 | else: 414 | raise ValueError(f"Unsupported format: {format}") 415 | 416 | return image_to_base64(combined) 417 | except Exception as e: 418 | logger.error(f"创建单图封面时出错: {e}") 419 | return False 420 | --------------------------------------------------------------------------------