├── 01_geospatial_data_workflow_stepbystep.ipynb
├── 02_geospatial_data_workflow_guided_challenge.ipynb
├── README.md
├── img
├── access_button.png
├── climate_graph_london.png
├── data_workflow.png
├── ecmwf.png
├── ecmwf_data.png
├── ecmwf_data_dimensions.png
├── global_anomaly_field.png
├── global_average.png
├── logos_combined.png
├── ogc_standards.jpg
├── processing_button.png
├── pydata.png
└── visualisation_button.png
└── jupyter_notebooks_for_geospatial_data_analysis_tutorial.ipynb
/README.md:
--------------------------------------------------------------------------------
1 | # Pydata Tutorial 2017 - Jupyter Notebooks for Geospatial Data Analysis
2 |
3 | This tutorial was given during PyData London on 5 May 2017.
4 |
5 | Examples specifically from Climate Sciences show, how large volumes of geospatial data can be accessed processed and visualised on-demand, with the help of standardised web services.
6 |
7 |
8 | The tutorial can be followed interactively via
9 | https://jupyter.eofrom.space.
10 |
11 |
12 | UPDATE 2019:
13 | * the OGC service this tutorial gives as an example has unfortunately been switched off. However, the tutorial still gives an idea about how OGC WCS requests work.
14 |
--------------------------------------------------------------------------------
/img/access_button.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/access_button.png
--------------------------------------------------------------------------------
/img/climate_graph_london.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/climate_graph_london.png
--------------------------------------------------------------------------------
/img/data_workflow.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/data_workflow.png
--------------------------------------------------------------------------------
/img/ecmwf.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/ecmwf.png
--------------------------------------------------------------------------------
/img/ecmwf_data.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/ecmwf_data.png
--------------------------------------------------------------------------------
/img/ecmwf_data_dimensions.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/ecmwf_data_dimensions.png
--------------------------------------------------------------------------------
/img/global_anomaly_field.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/global_anomaly_field.png
--------------------------------------------------------------------------------
/img/global_average.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/global_average.png
--------------------------------------------------------------------------------
/img/logos_combined.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/logos_combined.png
--------------------------------------------------------------------------------
/img/ogc_standards.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/ogc_standards.jpg
--------------------------------------------------------------------------------
/img/processing_button.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/processing_button.png
--------------------------------------------------------------------------------
/img/pydata.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/pydata.png
--------------------------------------------------------------------------------
/img/visualisation_button.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jwagemann/2017_pydata_tutorial/ea63b634a2c780a0afca2c38f4d785c098569111/img/visualisation_button.png
--------------------------------------------------------------------------------
/jupyter_notebooks_for_geospatial_data_analysis_tutorial.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {
6 | "collapsed": true
7 | },
8 | "source": [
9 | "\n",
10 | "
"
11 | ]
12 | },
13 | {
14 | "cell_type": "markdown",
15 | "metadata": {},
16 | "source": [
17 | "# Jupyter Notebooks for Geospatial Data Analysis"
18 | ]
19 | },
20 | {
21 | "cell_type": "markdown",
22 | "metadata": {},
23 | "source": [
24 | "\n",
25 | "Tutorial created for [PyData London 2017](https://pydata.org/london2017/schedule/presentation/8/)
\n",
26 | "Friday, 05 May 2017, 12:15 - 13:50 | Dining Room, Bloomberg, London\n",
27 | "\n",
28 | "### Speakers\n",
29 | "[Julia Wagemann](https://pydata.org/london2017/speaker/profile/75/) - European Centre for Medium-Range Weather Forecasts
\n",
30 | "[Dr. Stephan Siemen](https://pydata.org/london2017/speaker/profile/229/) - European Centre for Medium-Range Weather Forecasts
\n",
31 | "\n",
32 | "### Access to tutorial material \n",
33 | "\n",
34 | "The tutorial material can be accessed via https://jupyter.eofrom.space.
\n",
35 | "You will need to log in with your GitHub credentials.\n",
36 | "
\n",
37 | "\n",
38 | "The notebooks are also on GitHub: https://github.com/JuliaWagemann/pydata_tutorial_2017\n",
39 | "\n",
40 | "\n",
41 | "### Don't forget to give feedback!\n",
42 | "\n",
43 | "Please give us [feedback](https://goo.gl/forms/XrNYo8Ci4snUL9Vl1) and let's us know if you liked the tutorial and in what areas we can do better. It takes less than 2 minutes. Thanks!"
44 | ]
45 | },
46 | {
47 | "cell_type": "markdown",
48 | "metadata": {},
49 | "source": [
50 | "