├── screenshots
├── s3.png
├── task.png
├── dynamodb.png
├── insights.png
└── cloudwatchlogs.png
├── serving
├── build-image.sh
├── run-container.sh
├── Dockerfile
└── serve.py
├── serve
├── test.sh
├── variables.tf
├── app.json
└── main.tf
├── training
├── build-image.sh
├── run-container.sh
├── install-nvidia-runtime.sh
├── Dockerfile
└── train.py
├── dynamodb.tf
├── scripts
└── get-ecs-ami.sh
├── queue-training.sh
├── lambda-handler
├── src
│ ├── test
│ │ ├── resources
│ │ │ └── log4j2.xml
│ │ └── java
│ │ │ └── example
│ │ │ └── HandlerTest.java
│ └── main
│ │ └── java
│ │ └── example
│ │ ├── model
│ │ ├── ModelTrainingRequest.java
│ │ └── Model.java
│ │ └── Handler.java
└── pom.xml
├── resources.tf
├── main.tf
├── cloudwatch.tf
├── variables.tf
├── outputs.tf
├── lambda.tf
├── ecs.tf
├── .gitignore
├── README.md
└── LICENSE
/screenshots/s3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jzonthemtn/hashitalks2021-terraform-nlp/HEAD/screenshots/s3.png
--------------------------------------------------------------------------------
/screenshots/task.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jzonthemtn/hashitalks2021-terraform-nlp/HEAD/screenshots/task.png
--------------------------------------------------------------------------------
/screenshots/dynamodb.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jzonthemtn/hashitalks2021-terraform-nlp/HEAD/screenshots/dynamodb.png
--------------------------------------------------------------------------------
/screenshots/insights.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jzonthemtn/hashitalks2021-terraform-nlp/HEAD/screenshots/insights.png
--------------------------------------------------------------------------------
/screenshots/cloudwatchlogs.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/jzonthemtn/hashitalks2021-terraform-nlp/HEAD/screenshots/cloudwatchlogs.png
--------------------------------------------------------------------------------
/serving/build-image.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | GIT_COMMIT=`git rev-parse --short HEAD`
5 |
6 | docker build --label gitcommit="$GIT_COMMIT" -t $DOCKERHUB_USERNAME/ner-serving:latest .
7 |
--------------------------------------------------------------------------------
/serve/test.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | HOSTNAME=${1:-localhost:8080}
3 | curl -vvvv -X POST http://$HOSTNAME/ner --data "George Washington was president of the United States." -H "Content-type: text/plain"
4 |
--------------------------------------------------------------------------------
/training/build-image.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | GIT_COMMIT=`git rev-parse --short HEAD`
5 | FLAIR_VERSION="0.7"
6 |
7 | docker build --build-arg FLAIR_VERSION=$FLAIR_VERSION --label gitcommit="$GIT_COMMIT" -t $DOCKERHUB_USERNAME/ner-training:latest .
8 |
--------------------------------------------------------------------------------
/dynamodb.tf:
--------------------------------------------------------------------------------
1 | resource "aws_dynamodb_table" "models_dynamodb_table" {
2 | name = "${var.name_prefix}-models"
3 | billing_mode = "PAY_PER_REQUEST"
4 | hash_key = "modelId"
5 |
6 | attribute {
7 | name = "modelId"
8 | type = "S"
9 | }
10 |
11 | }
12 |
--------------------------------------------------------------------------------
/scripts/get-ecs-ami.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # Amazon Linux 2
4 | aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/recommended
5 |
6 | # Amazon Linux 2 (GPU)
7 | aws ssm get-parameters --names /aws/service/ecs/optimized-ami/amazon-linux-2/gpu/recommended
8 |
--------------------------------------------------------------------------------
/serve/variables.tf:
--------------------------------------------------------------------------------
1 | variable "region" {
2 | default = "us-east-1"
3 | }
4 |
5 | variable "name_prefix" {
6 | default = "nlp-ner"
7 | }
8 |
9 | variable "model_key" {
10 | default = "my-model"
11 | }
12 |
13 | variable "desired_count" {
14 | description = "desired number of tasks to run"
15 | default = "1"
16 | }
17 |
--------------------------------------------------------------------------------
/serving/run-container.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | VERSION=${1:-latest}
4 | S3_BUCKET=${2:-my-bucket}
5 |
6 | docker run \
7 | --env "AWS_ACCESS_KEY_ID=***" \
8 | --env "AWS_SECRET_ACCESS_KEY=***" \
9 | --env "AWS_DEFAULT_REGION=us-east-1" \
10 | --env "MODEL_BUCKET=$S3_BUCKET" \
11 | -p 8080:8080 \
12 | -it \
13 | --rm \
14 | $DOCKERHUB_USERNAME/ner-serving:$VERSION
15 |
--------------------------------------------------------------------------------
/queue-training.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | QUEUE_URL=`terraform output -raw queue_url`
5 | MODEL_NAME=${1:-"my-model"}
6 |
7 | echo "Publishing message to SQS queue $QUEUE_URL"
8 | aws sqs send-message \
9 | --queue-url $QUEUE_URL \
10 | --message-body "{\"name\": \"$MODEL_NAME\", \"image\": \"$DOCKERHUB_USERNAME/ner-training:latest\", \"embeddings\": \"distilbert-base-cased\"}"
11 |
--------------------------------------------------------------------------------
/lambda-handler/src/test/resources/log4j2.xml:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
6 |
7 |
8 |
9 |
10 |
11 |
12 |
--------------------------------------------------------------------------------
/training/run-container.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -e
3 |
4 | CONTAINER_VERSION=${1:-"latest"}
5 | MODEL_NAME_VERSION=${2:-"test-0.1"}
6 | EPOCHS=${3:-"1"}
7 | S3_BUCKET=`terraform output -raw s3_bucket`
8 |
9 | docker run \
10 | --env "MODEL=$MODEL_NAME_VERSION" \
11 | --env "EPOCHS=1" \
12 | --env "EMBEDDINGS=distilbert-base-cased" \
13 | --env "S3_BUCKET=$S3_BUCKET" \
14 | --rm \
15 | $DOCKERHUB_USERNAME/ner-training:$CONTAINER_VERSION
16 |
17 | # --runtime=nvidia \
18 |
--------------------------------------------------------------------------------
/training/install-nvidia-runtime.sh:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 |
3 | # This script needs executed on the host.
4 | # The ndivia runtime will then be available to the containers.
5 |
6 | distribution=$(. /etc/os-release;echo $ID$VERSION_ID)
7 | curl -s -L https://nvidia.github.io/nvidia-docker/gpgkey | sudo apt-key add -
8 | curl -s -L https://nvidia.github.io/nvidia-docker/$distribution/nvidia-docker.list | sudo tee /etc/apt/sources.list.d/nvidia-docker.list
9 |
10 | sudo apt-get update && sudo apt-get install -y nvidia-container-toolkit
11 | sudo systemctl restart docker
12 |
--------------------------------------------------------------------------------
/serve/app.json:
--------------------------------------------------------------------------------
1 | [{
2 | "essential": true,
3 | "image": "jzemerick/ner-serving:latest",
4 | "memory": 4096,
5 | "memoryReservation": 4096,
6 | "name": "${name}",
7 | "portMappings": [{
8 | "containerPort": 8080,
9 | "hostPort": 0
10 | }],
11 | "logConfiguration": {
12 | "logDriver": "awslogs",
13 | "options": {
14 | "awslogs-group": "${log_group}",
15 | "awslogs-region": "us-east-1",
16 | "awslogs-stream-prefix": "my-model/final-model.pt"
17 | }
18 | },
19 | "environment": [{
20 | "name": "MODEL_BUCKET",
21 | "value": "${bucket}"
22 | },
23 | {
24 | "name": "MODEL_KEY",
25 | "value": "${key}"
26 | }
27 | ]
28 | }]
29 |
--------------------------------------------------------------------------------
/serving/Dockerfile:
--------------------------------------------------------------------------------
1 | # The version of the base container must
2 | # match the driver installed on the local system.
3 | # Download the driver from: https://developer.nvidia.com/cuda-downloads
4 |
5 | FROM nvidia/cuda:11.1-devel-ubi8
6 |
7 | RUN yum upgrade -y \
8 | && yum install -y python38 \
9 | && yum install -y python38-devel
10 |
11 | # Note: These RUN lines could be combined into a single RUN command to reduce layers
12 | RUN python3.8 -m pip install wheel flair==0.7 awscli
13 | RUN python3.8 -m pip install nltk textblob cherrypy awscli boto3
14 | RUN python3.8 -c "import nltk; nltk.download('punkt')"
15 | RUN python3.8 -m pip freeze
16 | RUN python3.8 --version
17 |
18 | COPY serve.py /tmp/serve.py
19 |
20 | ENV MODEL_BUCKET=""
21 | ENV MODEL_KEY=""
22 |
23 | EXPOSE 8080
24 |
25 | CMD python3.8 /tmp/serve.py --b ${MODEL_BUCKET} --k ${MODEL_KEY}
26 |
--------------------------------------------------------------------------------
/lambda-handler/src/main/java/example/model/ModelTrainingRequest.java:
--------------------------------------------------------------------------------
1 | package example.model;
2 |
3 | public class ModelTrainingRequest {
4 |
5 | private String name;
6 | private int epochs = 1;
7 | private String embeddings;
8 | private String image;
9 |
10 | public String getName() {
11 | return name;
12 | }
13 |
14 | public void setName(String name) {
15 | this.name = name;
16 | }
17 |
18 | public int getEpochs() {
19 | return epochs;
20 | }
21 |
22 | public void setEpochs(int epochs) {
23 | this.epochs = epochs;
24 | }
25 |
26 | public String getEmbeddings() {
27 | return embeddings;
28 | }
29 |
30 | public void setEmbeddings(String embeddings) {
31 | this.embeddings = embeddings;
32 | }
33 |
34 | public String getImage() {
35 | return image;
36 | }
37 |
38 | public void setImage(String image) {
39 | this.image = image;
40 | }
41 | }
42 |
--------------------------------------------------------------------------------
/resources.tf:
--------------------------------------------------------------------------------
1 | resource "aws_sqs_queue" "queue" {
2 | name = "${var.name_prefix}-queue"
3 | delay_seconds = 10
4 | max_message_size = 2048
5 | message_retention_seconds = 1209600
6 | receive_wait_time_seconds = 10
7 | visibility_timeout_seconds = 60
8 | }
9 |
10 | resource "aws_s3_bucket" "bucket" {
11 | acl = "private"
12 | force_destroy = true
13 | }
14 |
15 | # Upload a sample model to S3 to illustrate serving without having to
16 | # spend time training a model.
17 |
18 | #resource "aws_s3_bucket_object" "object-model" {
19 | # bucket = aws_s3_bucket.bucket.id
20 | # key = "models/my-model/final-model.pt"
21 | # source = "my-model/final-model.pt"
22 | # etag = filemd5("my-model/final-model.pt")
23 | #}
24 |
25 | #resource "aws_s3_bucket_object" "object-weights" {
26 | # bucket = aws_s3_bucket.bucket.id
27 | # key = "models/my-model/weights.txt"
28 | # source = "my-model/weights.txt"
29 | # etag = filemd5("my-model/weights.txt")
30 | #}
31 |
--------------------------------------------------------------------------------
/main.tf:
--------------------------------------------------------------------------------
1 | terraform {
2 | required_providers {
3 | aws = {
4 | source = "hashicorp/aws"
5 | version = "~> 3.0"
6 | }
7 | }
8 | }
9 |
10 | provider "aws" {
11 | region = var.region
12 | }
13 |
14 | resource "aws_vpc" "ml_vpc" {
15 | cidr_block = var.vpc_cidr_block
16 | enable_dns_hostnames = true
17 | tags = {
18 | Name = "${var.name_prefix}-vpc"
19 | }
20 | }
21 |
22 | resource "aws_subnet" "ml_vpc_subnet" {
23 | vpc_id = aws_vpc.ml_vpc.id
24 | cidr_block = var.subnet_1_cidr_block
25 | map_public_ip_on_launch = true
26 | availability_zone = var.availability_zone_1
27 | tags = {
28 | Name = "${var.name_prefix}-subnet-1"
29 | }
30 | }
31 |
32 | resource "aws_subnet" "ml_vpc_subnet_2" {
33 | vpc_id = aws_vpc.ml_vpc.id
34 | cidr_block = var.subnet_2_cidr_block
35 | map_public_ip_on_launch = true
36 | availability_zone = var.availability_zone_2
37 | tags = {
38 | Name = "${var.name_prefix}-subnet-2"
39 | }
40 | }
41 |
--------------------------------------------------------------------------------
/training/Dockerfile:
--------------------------------------------------------------------------------
1 | # The version of the base container must
2 | # match the driver installed on the local system.
3 | # Download the driver from: https://developer.nvidia.com/cuda-downloads
4 |
5 | FROM nvidia/cuda:11.1-devel-ubi8
6 |
7 | ARG FLAIR_VERSION
8 |
9 | LABEL flair="${FLAIR_VERSION}"
10 | LABEL python="3.8"
11 |
12 | RUN yum upgrade -y \
13 | && yum install -y python38 \
14 | && yum install -y python38-devel
15 |
16 | # Note: These RUN lines could be combined into a single RUN command to reduce layers
17 | RUN python3.8 -m pip install --upgrade pip
18 | RUN python3.8 -m pip install --upgrade setuptools wheel
19 | RUN python3.8 -m pip install flair==${FLAIR_VERSION}
20 | RUN python3.8 -m pip install awscli boto3
21 | RUN python3.8 -m pip freeze
22 | RUN python3.8 --version
23 |
24 | ENV MODEL="ner-model"
25 | ENV EPOCHS="20"
26 | ENV EMBEDDINGS="distilbert-base-cased"
27 | ENV S3_BUCKET="my-models"
28 | ENV MODEL_ID=""
29 | ENV REGION="us-east-1"
30 | ENV TABLE_NAME=""
31 |
32 | COPY train.py /tmp/train.py
33 |
34 | CMD python3.8 /tmp/train.py --m ${MODEL} --e ${EPOCHS} --v ${EMBEDDINGS} --i ${MODEL_ID} --r ${REGION} --t ${TABLE_NAME} && aws s3 sync /tmp/$MODEL/ s3://${S3_BUCKET}/$MODEL/
35 |
--------------------------------------------------------------------------------
/lambda-handler/src/test/java/example/HandlerTest.java:
--------------------------------------------------------------------------------
1 | package example;
2 |
3 | import com.amazonaws.services.lambda.runtime.Context;
4 | import com.amazonaws.services.lambda.runtime.LambdaLogger;
5 | import com.amazonaws.services.lambda.runtime.events.ScheduledEvent;
6 | import org.junit.Test;
7 | import org.mockito.Mockito;
8 | import org.slf4j.Logger;
9 | import org.slf4j.LoggerFactory;
10 |
11 | import static org.mockito.Mockito.when;
12 |
13 | public class HandlerTest {
14 |
15 | @Test
16 | public void invokeTest() {
17 |
18 | final ScheduledEvent event = Mockito.mock(ScheduledEvent.class);
19 |
20 | final Context context = Mockito.mock(Context.class);
21 | when(context.getLogger()).thenReturn(new MockLogger());
22 |
23 | final Handler handler = new Handler();
24 | handler.handleRequest(event, context);
25 |
26 | }
27 |
28 | public static class MockLogger implements LambdaLogger {
29 |
30 | private static final Logger LOGGER = LoggerFactory.getLogger(MockLogger.class);
31 |
32 | @Override
33 | public void log(String message) {
34 | LOGGER.info(message);
35 | }
36 |
37 | @Override
38 | public void log(byte[] message) {
39 | LOGGER.info(new String(message));
40 | }
41 |
42 | }
43 |
44 | }
45 |
--------------------------------------------------------------------------------
/cloudwatch.tf:
--------------------------------------------------------------------------------
1 | resource "aws_cloudwatch_log_group" "log_group" {
2 | name = "/aws/lambda/java_lambda_function"
3 | }
4 |
5 | resource "aws_cloudwatch_log_group" "nlp-training" {
6 | name = "nlp-training"
7 | }
8 |
9 | data "aws_iam_policy_document" "cloudwatch_log_group_access_document" {
10 | statement {
11 | actions = [
12 | "logs:CreateLogGroup",
13 | "logs:CreateLogStream",
14 | "logs:PutLogEvents"
15 | ]
16 |
17 | resources = [
18 | "arn:aws:logs:::*",
19 | ]
20 | }
21 | }
22 |
23 | resource "aws_cloudwatch_event_rule" "every_one_minute" {
24 | name = "consume-nlp-training-queue"
25 | description = "Fires every one minutes"
26 | schedule_expression = "rate(1 minute)"
27 | }
28 |
29 | resource "aws_cloudwatch_event_target" "run_lambda_every_one_minute" {
30 | rule = aws_cloudwatch_event_rule.every_one_minute.name
31 | target_id = "lambda"
32 | arn = aws_lambda_function.aws_lambda_test.arn
33 | }
34 |
35 | resource "aws_lambda_permission" "allow_cloudwatch_to_call_lambda" {
36 | statement_id = "AllowExecutionFromCloudWatch"
37 | action = "lambda:InvokeFunction"
38 | function_name = aws_lambda_function.aws_lambda_test.function_name
39 | principal = "events.amazonaws.com"
40 | source_arn = aws_cloudwatch_event_rule.every_one_minute.arn
41 | }
42 |
--------------------------------------------------------------------------------
/variables.tf:
--------------------------------------------------------------------------------
1 | variable "name_prefix" {
2 | default = "nlp-ner"
3 | }
4 |
5 | variable "region" {
6 | default = "us-east-1"
7 | }
8 |
9 | variable "availability_zone_1" {
10 | default = "us-east-1a"
11 | }
12 |
13 | variable "availability_zone_2" {
14 | default = "us-east-1b"
15 | }
16 |
17 | variable "vpc_cidr_block" {
18 | default = "10.0.0.0/16"
19 | }
20 |
21 | variable "subnet_1_cidr_block" {
22 | default = "10.0.1.0/24"
23 | }
24 |
25 | variable "subnet_2_cidr_block" {
26 | default = "10.0.2.0/24"
27 | }
28 |
29 | variable "destination_cidr_block" {
30 | default = "0.0.0.0/0"
31 | }
32 |
33 | variable "ingress_cidr_block" {
34 | type = list(any)
35 | default = ["0.0.0.0/0"]
36 | }
37 |
38 | variable "ec2_instance_type" {
39 | description = "ECS cluster instance type"
40 | default = "t3.large"
41 | }
42 |
43 | variable "max_cluster_size" {
44 | description = "Maximum number of instances in the cluster"
45 | default = 1
46 | }
47 |
48 | variable "min_cluster_size" {
49 | description = "Minimum number of instances in the cluster"
50 | default = 1
51 | }
52 |
53 | variable "desired_capacity" {
54 | description = "Desired number of instances in the cluster"
55 | default = 1
56 | }
57 |
58 | variable "lambda_payload_filename" {
59 | default = "lambda-handler/target/java-events-1.0-SNAPSHOT.jar"
60 | }
61 |
--------------------------------------------------------------------------------
/lambda-handler/src/main/java/example/model/Model.java:
--------------------------------------------------------------------------------
1 | package example.model;
2 |
3 | public class Model {
4 |
5 | private String modelID;
6 | private String image;
7 | private String progress;
8 | private String serviceArn;
9 | private String serviceName;
10 | private long startTime;
11 |
12 | public String getModelID() {
13 | return modelID;
14 | }
15 |
16 | public void setModelID(String modelID) {
17 | this.modelID = modelID;
18 | }
19 |
20 | public String getImage() {
21 | return image;
22 | }
23 |
24 | public void setImage(String image) {
25 | this.image = image;
26 | }
27 |
28 | public String getProgress() {
29 | return progress;
30 | }
31 |
32 | public void setProgress(String progress) {
33 | this.progress = progress;
34 | }
35 |
36 | public String getServiceArn() {
37 | return serviceArn;
38 | }
39 |
40 | public void setServiceArn(String serviceArn) {
41 | this.serviceArn = serviceArn;
42 | }
43 |
44 | public String getServiceName() {
45 | return serviceName;
46 | }
47 |
48 | public void setServiceName(String serviceName) {
49 | this.serviceName = serviceName;
50 | }
51 |
52 | public long getStartTime() {
53 | return startTime;
54 | }
55 |
56 | public void setStartTime(long startTime) {
57 | this.startTime = startTime;
58 | }
59 |
60 | }
61 |
--------------------------------------------------------------------------------
/outputs.tf:
--------------------------------------------------------------------------------
1 | output "queue_url" {
2 | value = aws_sqs_queue.queue.id
3 | }
4 |
5 | output "s3_bucket" {
6 | value = aws_s3_bucket.bucket.id
7 | }
8 |
9 | output "ml_vpc_subnet_id" {
10 | value = aws_subnet.ml_vpc_subnet.id
11 | }
12 |
13 | resource "aws_ssm_parameter" "param_subnet1" {
14 | name = "${var.name_prefix}-subnet1"
15 | type = "String"
16 | value = aws_subnet.ml_vpc_subnet.id
17 | }
18 |
19 | output "ml_vpc_subnet2_id" {
20 | value = aws_subnet.ml_vpc_subnet_2.id
21 | }
22 |
23 | resource "aws_ssm_parameter" "param_subnet2" {
24 | name = "${var.name_prefix}-subnet2"
25 | type = "String"
26 | value = aws_subnet.ml_vpc_subnet_2.id
27 | }
28 |
29 | output "ecs_cluster_name" {
30 | value = "${var.name_prefix}-ecs"
31 | }
32 |
33 | output "task_role_arn" {
34 | value = aws_iam_role.task_role.arn
35 | }
36 |
37 | resource "aws_ssm_parameter" "param_ecs_cluster_name" {
38 | name = "${var.name_prefix}-ecs-cluster-name"
39 | type = "String"
40 | value = "${var.name_prefix}-ecs"
41 | }
42 |
43 | resource "aws_ssm_parameter" "param_s3_bucket" {
44 | name = "${var.name_prefix}-s3-bucket"
45 | type = "String"
46 | value = aws_s3_bucket.bucket.id
47 | }
48 |
49 | resource "aws_ssm_parameter" "param_ecs_sg" {
50 | name = "${var.name_prefix}-ecs-sg"
51 | type = "String"
52 | value = aws_security_group.ecs_sg.id
53 | }
54 |
55 | resource "aws_ssm_parameter" "param_vpc" {
56 | name = "${var.name_prefix}-vpc"
57 | type = "String"
58 | value = aws_vpc.ml_vpc.id
59 | }
60 |
--------------------------------------------------------------------------------
/serving/serve.py:
--------------------------------------------------------------------------------
1 | #!/usr/bin/python3
2 |
3 | import argparse
4 | from flair.models import SequenceTagger
5 | from flair.data import Sentence
6 | import cherrypy
7 | import json
8 | import boto3
9 | from textblob import TextBlob
10 | import os
11 |
12 |
13 | class Span:
14 | def __init__(self, text, tag, score, start, end):
15 | self.text = text
16 | self.tag = tag
17 | self.score = score
18 | self.start = start
19 | self.end = end
20 |
21 |
22 | def obj_dict(obj):
23 | return obj.__dict__
24 |
25 |
26 | parser = argparse.ArgumentParser(description='Model Serving')
27 | parser.add_argument('--b', action="store", dest='bucket', default="")
28 | parser.add_argument('--k', action="store", dest='key', default=20)
29 | args = parser.parse_args()
30 |
31 | # Download the model.
32 | #s3 = boto3.resource('s3')
33 | #s3.Bucket(args.bucket).download_file(args.key, '/tmp/final-model.pt')
34 |
35 | print("Downloading model s3://" + args.bucket + "/" + args.key)
36 | s3 = boto3.client('s3')
37 | s3.download_file(args.bucket, args.key + '/final-model.pt', '/tmp/final-model.pt')
38 | print("Model downloaded.")
39 |
40 | model = SequenceTagger.load('/tmp/final-model.pt')
41 |
42 | class NerModelService(object):
43 |
44 | @cherrypy.expose
45 | def ner(self):
46 |
47 | input = cherrypy.request.body.read().decode('utf-8')
48 |
49 | sentences = []
50 |
51 | blob = TextBlob(input)
52 | for s in blob.sentences:
53 | sentences.append(Sentence(s.raw))
54 |
55 | model.predict(sentences)
56 |
57 | spans = []
58 | index = 0
59 |
60 | for i in sentences:
61 |
62 | start_pos = blob.sentences[index].start_index
63 |
64 | for entity in i.get_spans('ner'):
65 | p1 = Span(entity.text, entity.tag, entity.score, (entity.start_pos + start_pos),
66 | (entity.end_pos + start_pos))
67 | spans.append(p1)
68 |
69 | index = index + 1
70 |
71 | s = json.dumps(spans, default=obj_dict)
72 |
73 | return s
74 |
75 | @cherrypy.expose
76 | def health(self):
77 | return "healthy"
78 |
79 |
80 | if __name__ == '__main__':
81 | cherrypy.config.update({'server.socket_host': '0.0.0.0', 'server.socket_port': 8080})
82 | cherrypy.quickstart(NerModelService())
83 |
--------------------------------------------------------------------------------
/training/train.py:
--------------------------------------------------------------------------------
1 | import argparse
2 | import os
3 | import sys
4 | import boto3
5 | from typing import List
6 | from pathlib import Path
7 |
8 | from flair.data import Corpus
9 | from flair.datasets import WIKINER_ENGLISH
10 | from flair.embeddings import BertEmbeddings, TokenEmbeddings, StackedEmbeddings, TransformerWordEmbeddings
11 | from flair.models import SequenceTagger
12 | from flair.trainers import ModelTrainer
13 |
14 | parser = argparse.ArgumentParser(description='Model Training')
15 | parser.add_argument('--m', action="store", dest='model', default="")
16 | parser.add_argument('--e', action="store", dest='epochs', default=20)
17 | parser.add_argument('--v', action="store", dest='embeddings', default="distilbert-base-cased")
18 | parser.add_argument('--i', action="store", dest='model_id', default="")
19 | parser.add_argument('--r', action="store", dest='region', default="us-east-1")
20 | parser.add_argument('--t', action="store", dest='table', default="")
21 | parser.add_argument('--c', action="store", dest='cluster', default="")
22 | parser.add_argument('--s', action="store", dest='service', default="")
23 |
24 | args = parser.parse_args()
25 |
26 | corpus: Corpus = WIKINER_ENGLISH().downsample(0.1)
27 |
28 | dynamodb = boto3.resource('dynamodb', region_name=args.region)
29 |
30 | table = dynamodb.Table(args.table)
31 | table.update_item(
32 | Key={
33 | 'modelId': args.model_id
34 | },
35 | UpdateExpression="set progress=:s",
36 | ExpressionAttributeValues={
37 | ':s': 'In Progress'
38 | }
39 | )
40 |
41 |
42 | tag_type = 'ner'
43 | tag_dictionary = corpus.make_tag_dictionary(tag_type=tag_type)
44 | embeddings = TransformerWordEmbeddings(model=args.embeddings)
45 |
46 | tagger: SequenceTagger = SequenceTagger(hidden_size=256,
47 | embeddings=embeddings,
48 | tag_dictionary=tag_dictionary,
49 | tag_type=tag_type,
50 | use_crf=True)
51 |
52 | trainer: ModelTrainer = ModelTrainer(tagger, corpus, use_tensorboard=True)
53 |
54 | os.mkdir('/tmp/' + args.model)
55 | print('Saving model to ' + '/tmp/' + args.model)
56 |
57 | trainer.train('/tmp/' + args.model,
58 | learning_rate=0.1,
59 | mini_batch_size=32,
60 | max_epochs=int(args.epochs),
61 | num_workers=12,
62 | checkpoint=True,
63 | save_final_model=True,
64 | shuffle=True,
65 | embeddings_storage_mode='cpu')
66 |
67 |
68 | table.update_item(
69 | Key={
70 | 'modelId': args.model_id
71 | },
72 | UpdateExpression="set progress=:s",
73 | ExpressionAttributeValues={
74 | ':s': 'Completed'
75 | }
76 | )
77 |
--------------------------------------------------------------------------------
/lambda.tf:
--------------------------------------------------------------------------------
1 | resource "aws_lambda_function" "aws_lambda_test" {
2 | runtime = "java11"
3 | filename = var.lambda_payload_filename
4 | source_code_hash = filebase64sha256(var.lambda_payload_filename)
5 | function_name = "${var.name_prefix}-consumer-function"
6 | handler = "example.Handler"
7 | timeout = 60
8 | memory_size = 256
9 | role = aws_iam_role.iam_role_for_lambda.arn
10 | environment {
11 | variables = {
12 | s3_bucket = aws_s3_bucket.bucket.id
13 | aws_logs_group = aws_cloudwatch_log_group.nlp-training.name
14 | queue_url = aws_sqs_queue.queue.id
15 | ecs_cluster_name = "${var.name_prefix}-ecs"
16 | region = var.region
17 | max_tasks = "1"
18 | debug = "false"
19 | table_name = aws_dynamodb_table.models_dynamodb_table.id
20 | task_role_arn = aws_iam_role.task_role.arn
21 | }
22 | }
23 | }
24 |
25 | resource "aws_iam_role" "iam_role_for_lambda" {
26 | name = "${var.name_prefix}-lambda-invoke-role"
27 | assume_role_policy = <
3 | 4.0.0
4 | com.example
5 | java-events
6 | jar
7 | 1.0-SNAPSHOT
8 | java-events-function
9 |
10 | UTF-8
11 | 1.11.949
12 |
13 |
14 |
15 |
16 | maven-surefire-plugin
17 | 2.22.2
18 |
19 |
20 | org.apache.maven.plugins
21 | maven-shade-plugin
22 | 3.2.2
23 |
24 | false
25 |
26 |
27 |
28 | package
29 |
30 | shade
31 |
32 |
33 |
34 |
35 |
36 | org.apache.maven.plugins
37 | maven-compiler-plugin
38 | 3.8.0
39 |
40 | 11
41 |
42 |
43 |
44 |
45 |
46 |
47 | com.amazonaws
48 | aws-java-sdk-sqs
49 | ${aws.sdk.version}
50 |
51 |
52 | com.amazonaws
53 | aws-java-sdk-ecs
54 | ${aws.sdk.version}
55 |
56 |
57 | com.amazonaws
58 | aws-java-sdk-dynamodb
59 | ${aws.sdk.version}
60 |
61 |
62 | com.amazonaws
63 | aws-lambda-java-core
64 | 1.2.1
65 |
66 |
67 | com.amazonaws
68 | aws-lambda-java-events
69 | 2.2.9
70 |
71 |
72 | com.google.code.gson
73 | gson
74 | 2.8.9
75 |
76 |
77 | org.apache.commons
78 | commons-lang3
79 | 3.11
80 |
81 |
82 | org.apache.logging.log4j
83 | log4j-api
84 | 2.17.1
85 |
86 |
87 | org.apache.logging.log4j
88 | log4j-core
89 | 2.17.1
90 |
91 |
92 | org.apache.logging.log4j
93 | log4j-slf4j18-impl
94 | 2.13.0
95 |
96 |
97 | org.mockito
98 | mockito-all
99 | 1.10.19
100 | test
101 |
102 |
103 | junit
104 | junit
105 | 4.13.1
106 | test
107 |
108 |
109 |
110 |
--------------------------------------------------------------------------------
/serve/main.tf:
--------------------------------------------------------------------------------
1 | terraform {
2 | required_providers {
3 | aws = {
4 | source = "hashicorp/aws"
5 | version = "~> 3.0"
6 | }
7 | }
8 | }
9 |
10 | provider "aws" {
11 | region = var.region
12 | }
13 |
14 | data "aws_ssm_parameter" "cluster" {
15 | name = "${var.name_prefix}-ecs-cluster-name"
16 | }
17 |
18 | data "aws_ssm_parameter" "bucket_name" {
19 | name = "${var.name_prefix}-s3-bucket"
20 | }
21 |
22 | data "aws_ssm_parameter" "subnet1" {
23 | name = "${var.name_prefix}-subnet1"
24 | }
25 |
26 | data "aws_ssm_parameter" "subnet2" {
27 | name = "${var.name_prefix}-subnet2"
28 | }
29 |
30 | data "aws_ssm_parameter" "vpc" {
31 | name = "${var.name_prefix}-vpc"
32 | }
33 |
34 | resource "aws_ecs_service" "service" {
35 | name = "${var.name_prefix}-${var.model_key}-serving"
36 | cluster = data.aws_ssm_parameter.cluster.value
37 | desired_count = var.desired_count
38 | task_definition = aws_ecs_task_definition.app.arn
39 | scheduling_strategy = "REPLICA"
40 |
41 | # 50 percent must be healthy during deploys
42 | deployment_minimum_healthy_percent = 50
43 | deployment_maximum_percent = 100
44 |
45 | load_balancer {
46 | target_group_arn = aws_alb_target_group.target_group.arn
47 | container_name = "${var.name_prefix}-${var.model_key}-serving"
48 | container_port = 8080
49 | }
50 | }
51 |
52 | data "template_file" "task_definition" {
53 | template = file("${path.module}/app.json")
54 |
55 | vars = {
56 | bucket = data.aws_ssm_parameter.bucket_name.value
57 | key = var.model_key
58 | name = "${var.name_prefix}-${var.model_key}-serving"
59 | log_group = "${var.name_prefix}-${var.model_key}-serving"
60 | }
61 | }
62 |
63 | resource "aws_ecs_task_definition" "app" {
64 | family = "${var.name_prefix}-${var.model_key}-serving"
65 | container_definitions = data.template_file.task_definition.rendered
66 | task_role_arn = aws_iam_role.task_role.arn
67 | }
68 |
69 | resource "aws_cloudwatch_log_group" "nlp-serving" {
70 | name = "${var.name_prefix}-${var.model_key}-serving"
71 | }
72 |
73 | resource "aws_iam_role_policy_attachment" "test-attach" {
74 | role = aws_iam_role.task_role.name
75 | policy_arn = aws_iam_policy.task_policy.arn
76 | }
77 |
78 | resource "aws_iam_role" "task_role" {
79 | name = "${var.name_prefix}-serving-task-role"
80 |
81 | assume_role_policy = < **Note: this project will create resources outside the AWS free tier. You are responsible for all associated costs/charges.**
25 |
26 | ### Building the Containers
27 |
28 | This project uses Docker containers for model training and serving. One container is used for training an NLP NER model and another container is used to serve a model via a simple REST API. Refer to each container's Dockerfile for details on the training and serving. The NLP is handled by [Flair](https://github.com/flairNLP/flair).
29 |
30 | **Important First Steps**
31 |
32 | * You will need a DockerHub account.
33 | * You will need to log the Docker CLI into your account `docker login`
34 | * Export your DockerHub username to the shell you'll be using `export DOCKERHUB_USERNAME=`
35 |
36 | Now you can build and push the NLP NER training container:
37 |
38 | ```
39 | cd training
40 | ./build-image.sh
41 | docker push $DOCKERHUB_USERNAME/ner-training:latest
42 | ```
43 |
44 | Now build and push the serving container:
45 |
46 | ```
47 | cd serving
48 | ./build-image.sh
49 | docker push $DOCKERHUB_USERNAME/ner-serving:latest
50 | ```
51 |
52 | ### Building the Lambda Function
53 |
54 | The Lambda function is implemented in Java. The Lambda function controls the creation of ECS tasks.
55 |
56 | To build the Lambda function, run `build.sh` or the command:
57 |
58 | ```
59 | mvn clean package -f ./lambda-handler/pom.xml -DskipTests=true
60 | ```
61 |
62 | ### Creating the infrastructure using Terraform
63 |
64 | With the Docker images built and pushed we can now create the infrastructure using Terraform. In `variables.tf` there is a `name_prefix` variable that you can set in order to instantiate multiple copies of the infrastructure.
65 |
66 | ```
67 | terraform init
68 | terraform apply
69 | ```
70 |
71 | This step creates:
72 |
73 | * An SQS queue that holds the model training definitions (the models we want to train).
74 | * An ECS cluster on which the model training and model serving containers will be run.
75 | * An EventsBridge rule to trigger the Lambda function.
76 | * A Lambda function that consumes from the SQS queue and initiates model training by creating the ECS service and task.
77 | * An S3 bucket that will contain the trained models and their associated files.
78 | * A DynamoDB table that will contain metadata about the models.
79 |
80 | To delete the resources and clean up run `terraform destroy`.
81 |
82 | #### Lambda Function
83 |
84 | The Lambda function is deployed via Terraform. It is a Java 11 function that is triggered by an Amazon EventBridge (CloudWatch Events) Rule. The function consumes messages from the SQS queue. The function is parameterized through environment variables set by the terraform script.
85 |
86 | ### Training a Model
87 |
88 | To train a model, publish a message to the SQS queue. Using the `queue-training.sh` scripts. Look at the contents of this script to change things such as the number of epochs and embeddings. The only required argument is the name of the model to train, shown below as `my-model`.
89 |
90 | `./queue-training.sh my-model`
91 |
92 | This publishes a message to the SQS queue which describes a desired model training. The Lambda function will be triggered by a Cloud Watch EventBridge (Events) rule. The function will consume the message(s) from the queue and launch a model training container on the ECS cluster if the cluster's number of running tasks is below a set threshold. The function will also insert a row into the DynamoDB table indicating the model's training is in progress. A `modelId` will be generated by the function that is the concatenation of the given model's name and a random UUID.
93 |
94 | When model training is complete, the model and its associated files will be uploaded to the S3 bucket by the container prior to exiting. The model's metadata in the DynamoDB table will be updated to reflect that training is complete.
95 |
96 | ### Serving a Model
97 |
98 | To serve a model, change to the `serve` directory. Edit `variables.tf` to set the name of the model to serve and then run `terraform init` and `terraform apply`.
99 |
100 | This will launch a service and task on the ECS cluster to serve the given given model. The model can then be used by referencing the output DNS name of the load balancer:
101 |
102 | ```
103 | curl -X POST http://$ALB:8080/ner --data "George Washington was president of the United States." -H "Content-type: text/plain"
104 | ```
105 |
106 | The response will be a JSON-encoded list of JSON entities (`George Washington` and `United States`) from the text. (The actual output will vary based on the model's training and input text.)
107 |
108 | > Note: if you receive a `503 Service Temporarily Unavailable` response, be patient and try again in a few moments.
109 |
110 | ## GPU
111 |
112 | For training and serving on a GPU:
113 |
114 | 1. Use a GPU-capable EC2 instance type for the ECS cluster.
115 | 1. Install the appropriate CUDA runtime on the EC2 instance(s).
116 |
117 | ## License
118 |
119 | This project is licensed under the Apache License, version 2.0.
120 |
--------------------------------------------------------------------------------
/lambda-handler/src/main/java/example/Handler.java:
--------------------------------------------------------------------------------
1 | package example;
2 |
3 | import com.amazonaws.regions.Regions;
4 | import com.amazonaws.services.dynamodbv2.AmazonDynamoDB;
5 | import com.amazonaws.services.dynamodbv2.AmazonDynamoDBClientBuilder;
6 | import com.amazonaws.services.dynamodbv2.model.AttributeValue;
7 | import com.amazonaws.services.ecs.AmazonECS;
8 | import com.amazonaws.services.ecs.AmazonECSClientBuilder;
9 | import com.amazonaws.services.ecs.model.*;
10 | import com.amazonaws.services.lambda.runtime.Context;
11 | import com.amazonaws.services.lambda.runtime.LambdaLogger;
12 | import com.amazonaws.services.lambda.runtime.RequestHandler;
13 | import com.amazonaws.services.lambda.runtime.events.ScheduledEvent;
14 | import com.amazonaws.services.sqs.AmazonSQS;
15 | import com.amazonaws.services.sqs.AmazonSQSClientBuilder;
16 | import com.amazonaws.services.sqs.model.Message;
17 | import com.amazonaws.util.CollectionUtils;
18 | import com.google.gson.Gson;
19 | import com.google.gson.GsonBuilder;
20 | import example.model.ModelTrainingRequest;
21 | import org.apache.commons.lang3.StringUtils;
22 |
23 | import java.util.*;
24 |
25 | public class Handler implements RequestHandler {
26 |
27 | private final Gson gson = new GsonBuilder().setPrettyPrinting().create();
28 |
29 | @Override
30 | public String handleRequest(ScheduledEvent event, Context context) {
31 |
32 | final LambdaLogger logger = context.getLogger();
33 |
34 | final String ecsClusterName = System.getenv("ecs_cluster_name");
35 | logger.log("Using ECS cluster " + ecsClusterName);
36 |
37 | final String queueUrl = System.getenv("queue_url");
38 | logger.log("Using SQS queue " + queueUrl);
39 |
40 | final String region = System.getenv("region");
41 | logger.log("Using region " + region);
42 |
43 | final String debug = System.getenv("debug");
44 | logger.log("Using debug " + debug);
45 |
46 | final String tableName = System.getenv("table_name");
47 | logger.log("Using table name " + tableName);
48 |
49 | final String taskRoleArn = System.getenv("task_role_arn");
50 | logger.log("Using task role arn " + taskRoleArn);
51 |
52 | final AmazonECS ecs = AmazonECSClientBuilder.standard().withRegion(region).build();
53 | final AmazonSQS sqs = AmazonSQSClientBuilder.standard().withRegion(region).build();
54 | final AmazonDynamoDB ddb = AmazonDynamoDBClientBuilder.standard().withRegion(region).build();
55 |
56 | final List messages = sqs.receiveMessage(queueUrl).getMessages();
57 |
58 | if(messages.isEmpty()) {
59 |
60 | logger.log("No messages were consumed.");
61 |
62 | } else {
63 |
64 | for (final Message message : messages) {
65 |
66 | final ModelTrainingRequest modelTrainingRequest = gson.fromJson(message.getBody(), ModelTrainingRequest.class);
67 | final String modelId = modelTrainingRequest.getName() + "-" + UUID.randomUUID().toString();
68 |
69 | logger.log("Received training request for model " + modelTrainingRequest.getName() + " (" + modelId + ")");
70 |
71 | final ContainerDefinition containerDefinition = new ContainerDefinition();
72 | containerDefinition.setName(modelTrainingRequest.getName());
73 | containerDefinition.setMemoryReservation(1024);
74 | containerDefinition.setMemory(4096);
75 | containerDefinition.setImage(modelTrainingRequest.getImage());
76 |
77 | final LogConfiguration logConfiguration = new LogConfiguration();
78 | logConfiguration.setLogDriver("awslogs");
79 |
80 | // See https://aws.amazon.com/blogs/compute/centralized-container-logs-with-amazon-ecs-and-amazon-cloudwatch-logs/
81 | final Map options = new LinkedHashMap<>();
82 | options.put("awslogs-group", System.getenv("aws_logs_group"));
83 | options.put("awslogs-region", Regions.US_EAST_1.getName());
84 | options.put("awslogs-stream-prefix", modelId);
85 | logConfiguration.setOptions(options);
86 | containerDefinition.setLogConfiguration(logConfiguration);
87 |
88 | final String s3Bucket = System.getenv("s3_bucket");
89 | logger.log("Using s3 bucket " + s3Bucket);
90 |
91 | final Collection environmentVariables = new LinkedList<>();
92 | environmentVariables.add(new KeyValuePair().withName("MODEL").withValue(modelTrainingRequest.getName()));
93 | environmentVariables.add(new KeyValuePair().withName("MODEL_ID").withValue(modelId));
94 | environmentVariables.add(new KeyValuePair().withName("EPOCHS").withValue(String.valueOf(modelTrainingRequest.getEpochs())));
95 | environmentVariables.add(new KeyValuePair().withName("EMBEDDINGS").withValue(modelTrainingRequest.getEmbeddings()));
96 | environmentVariables.add(new KeyValuePair().withName("S3_BUCKET").withValue(s3Bucket));
97 | environmentVariables.add(new KeyValuePair().withName("TABLE_NAME").withValue(tableName));
98 | environmentVariables.add(new KeyValuePair().withName("REGION").withValue(region));
99 | containerDefinition.setEnvironment(environmentVariables);
100 |
101 | final RegisterTaskDefinitionRequest registerTaskDefinitionRequest = new RegisterTaskDefinitionRequest();
102 | registerTaskDefinitionRequest.setNetworkMode(NetworkMode.Host);
103 | registerTaskDefinitionRequest.setContainerDefinitions(Arrays.asList(containerDefinition));
104 | registerTaskDefinitionRequest.setFamily(modelTrainingRequest.getName());
105 | registerTaskDefinitionRequest.setTaskRoleArn(taskRoleArn);
106 |
107 | final RegisterTaskDefinitionResult registerTaskDefinitionResult = ecs.registerTaskDefinition(registerTaskDefinitionRequest);
108 |
109 | final RunTaskRequest runTaskRequest = new RunTaskRequest();
110 | runTaskRequest.setCluster(ecsClusterName);
111 | runTaskRequest.setCount(1);
112 | runTaskRequest.setTaskDefinition(registerTaskDefinitionResult.getTaskDefinition().getTaskDefinitionArn());
113 | runTaskRequest.setLaunchType("EC2");
114 |
115 | logger.log("Running task for model " + modelId);
116 | final RunTaskResult runTaskResult = ecs.runTask(runTaskRequest);
117 |
118 | if(!CollectionUtils.isNullOrEmpty(runTaskResult.getTasks())) {
119 |
120 | final HashMap itemValues = new HashMap<>();
121 | itemValues.put("modelId", new AttributeValue(modelId));
122 | itemValues.put("image", new AttributeValue(modelTrainingRequest.getImage()));
123 | itemValues.put("startTime", new AttributeValue(String.valueOf(System.currentTimeMillis())));
124 | itemValues.put("progress", new AttributeValue("Pending"));
125 |
126 | try {
127 |
128 | // Store in the table.
129 | ddb.putItem(tableName, itemValues);
130 |
131 | // Delete this message from the queue.
132 | sqs.deleteMessage(queueUrl, message.getReceiptHandle());
133 |
134 | } catch (Exception ex) {
135 |
136 | System.err.println(ex.getMessage());
137 |
138 | }
139 |
140 | }
141 |
142 | }
143 |
144 | if(StringUtils.equalsIgnoreCase(debug, "true")) {
145 | logger.log("ENVIRONMENT VARIABLES: " + gson.toJson(System.getenv()));
146 | logger.log("CONTEXT: " + gson.toJson(context));
147 | logger.log("EVENT: " + gson.toJson(event));
148 | logger.log("EVENT TYPE: " + event.getClass().toString());
149 | }
150 |
151 | }
152 |
153 | return "done";
154 |
155 | }
156 |
157 | }
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------