├── .gitignore ├── Linear_Regression.ipynb ├── decisiontree_kararagaci.py ├── evrişimli_sinir_agları_metin_sınıflandırma.ipynb ├── gdp_per_capita_2017.xlsx ├── iris.pdf ├── kmeans.ipynb ├── logistic_regression.ipynb ├── ml_notebook.ipynb ├── oecd_bli_2017.csv └── titanic.xls /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | env/ 12 | build/ 13 | develop-eggs/ 14 | dist/ 15 | downloads/ 16 | eggs/ 17 | .eggs/ 18 | lib/ 19 | lib64/ 20 | parts/ 21 | sdist/ 22 | var/ 23 | wheels/ 24 | *.egg-info/ 25 | .installed.cfg 26 | *.egg 27 | 28 | # PyInstaller 29 | # Usually these files are written by a python script from a template 30 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 31 | *.manifest 32 | *.spec 33 | 34 | # Installer logs 35 | pip-log.txt 36 | pip-delete-this-directory.txt 37 | 38 | # Unit test / coverage reports 39 | htmlcov/ 40 | .tox/ 41 | .coverage 42 | .coverage.* 43 | .cache 44 | nosetests.xml 45 | coverage.xml 46 | *.cover 47 | .hypothesis/ 48 | 49 | # Translations 50 | *.mo 51 | *.pot 52 | 53 | # Django stuff: 54 | *.log 55 | local_settings.py 56 | 57 | # Flask stuff: 58 | instance/ 59 | .webassets-cache 60 | 61 | # Scrapy stuff: 62 | .scrapy 63 | 64 | # Sphinx documentation 65 | docs/_build/ 66 | 67 | # PyBuilder 68 | target/ 69 | 70 | # Jupyter Notebook 71 | .ipynb_checkpoints 72 | 73 | # pyenv 74 | .python-version 75 | 76 | # celery beat schedule file 77 | celerybeat-schedule 78 | 79 | # SageMath parsed files 80 | *.sage.py 81 | 82 | # dotenv 83 | .env 84 | 85 | # virtualenv 86 | .venv 87 | venv/ 88 | ENV/ 89 | 90 | # Spyder project settings 91 | .spyderproject 92 | .spyproject 93 | 94 | # Rope project settings 95 | .ropeproject 96 | 97 | # mkdocs documentation 98 | /site 99 | 100 | # mypy 101 | .mypy_cache/ 102 | -------------------------------------------------------------------------------- /Linear_Regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "# Kullanılacak Modüller\n", 12 | "import matplotlib\n", 13 | "import matplotlib.pyplot as plt\n", 14 | "import numpy as np\n", 15 | "import pandas as pd\n", 16 | "import sklearn.linear_model" 17 | ] 18 | }, 19 | { 20 | "cell_type": "code", 21 | "execution_count": 2, 22 | "metadata": {}, 23 | "outputs": [ 24 | { 25 | "data": { 26 | "text/html": [ 27 | "
\n", 28 | "\n", 29 | " \n", 30 | " \n", 31 | " \n", 32 | " \n", 33 | " \n", 34 | " \n", 35 | " \n", 36 | " \n", 37 | " \n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | " \n", 145 | " \n", 146 | " \n", 147 | " \n", 148 | " \n", 149 | " \n", 150 | " \n", 151 | " \n", 152 | " \n", 153 | " \n", 154 | " \n", 155 | " \n", 156 | " \n", 157 | " \n", 158 | " \n", 159 | " \n", 160 | " \n", 161 | " \n", 162 | " \n", 163 | " \n", 164 | " \n", 165 | " \n", 166 | " \n", 167 | " \n", 168 | " \n", 169 | " \n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | " \n", 606 | " \n", 607 | " \n", 608 | " \n", 609 | " \n", 610 | " \n", 611 | " \n", 612 | " \n", 613 | " \n", 614 | " \n", 615 | " \n", 616 | " \n", 617 | " \n", 618 | " \n", 619 | " \n", 620 | " \n", 621 | " \n", 622 | " \n", 623 | " \n", 624 | " \n", 625 | " \n", 626 | " \n", 627 | " \n", 628 | " \n", 629 | " \n", 630 | " \n", 631 | " \n", 632 | " \n", 633 | " \n", 634 | " \n", 635 | " \n", 636 | " \n", 637 | " \n", 638 | " \n", 639 | " \n", 640 | " \n", 641 | " \n", 642 | " \n", 643 | " \n", 644 | " \n", 645 | " \n", 646 | " \n", 647 | " \n", 648 | " \n", 649 | " \n", 650 | " \n", 651 | " \n", 652 | " \n", 653 | " \n", 654 | " \n", 655 | " \n", 656 | " \n", 657 | " \n", 658 | " \n", 659 | " \n", 660 | " \n", 661 | " \n", 662 | " \n", 663 | " \n", 664 | " \n", 665 | " \n", 666 | " \n", 667 | " \n", 668 | " \n", 669 | " \n", 670 | " \n", 671 | " \n", 672 | " \n", 673 | " \n", 674 | " \n", 675 | " \n", 676 | " \n", 677 | " \n", 678 | " \n", 679 | " \n", 680 | " \n", 681 | " \n", 682 | " \n", 683 | " \n", 684 | " \n", 685 | " \n", 686 | " \n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | " \n", 884 | " \n", 885 | " \n", 886 | " \n", 887 | " \n", 888 | " \n", 889 | " \n", 890 | " \n", 891 | " \n", 892 | " \n", 893 | " \n", 894 | " \n", 895 | " \n", 896 | " \n", 897 | " \n", 898 | " \n", 899 | " \n", 900 | " \n", 901 | " \n", 902 | " \n", 903 | " \n", 904 | " \n", 905 | " \n", 906 | " \n", 907 | " \n", 908 | " \n", 909 | " \n", 910 | " \n", 911 | " \n", 912 | " \n", 913 | " \n", 914 | " \n", 915 | " \n", 916 | " \n", 917 | " \n", 918 | " \n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | "
IndicatorAir pollutionDwellings without basic facilitiesEducational attainmentEmployees working very long hoursEmployment rateFeeling safe walking alone at nightHomicide rateHousehold net adjusted disposable incomeHousehold net financial wealthHousing expenditure...Time devoted to leisure and personal careVoter turnoutWater qualityYears in educationSubject DescriptorUnitsScaleCountry/Series-specific NotesGDP per capitaEstimates Start After
Country
South Africa22.037.043.018.6843.036.110.010872.017042.018.0...14.7373.069.015.3Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...5588.9592016.0
Mexico16.04.237.029.4861.045.917.913891.04750.021.0...12.7463.067.014.8Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...7993.1742015.0
Turkey20.06.539.033.7751.060.61.717067.04429.020.0...12.5985.063.017.9Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...9826.2482016.0
Brazil10.06.749.07.1564.037.327.612227.07102.020.0...14.4579.072.015.9Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...10308.8112016.0
Russia15.013.895.00.1670.052.211.316657.02260.019.0...14.9065.054.016.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...10885.4842016.0
Poland22.02.791.06.6865.066.30.818906.014997.023.0...14.4255.080.017.7Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...12721.7582015.0
Hungary19.04.383.03.0567.050.71.216821.023289.018.0...15.0662.076.016.6Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...12767.0232015.0
Chile16.09.465.010.0662.051.14.516588.021409.018.0...14.9049.069.017.3Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...13662.9062015.0
Latvia11.012.989.02.0969.060.76.615269.017105.023.0...13.8359.077.017.9Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...14187.6022016.0
Slovak Republic21.01.492.05.0465.060.10.820265.010846.024.0...15.0160.082.015.9Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...16411.6862015.0
Greece18.00.572.07.3052.061.81.017002.018117.024.0...14.6764.069.016.9Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...17805.6862016.0
Estonia8.06.989.02.6972.067.23.118665.016967.018.0...14.9064.082.015.8Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...17891.0842016.0
Czech Republic20.00.693.05.7772.068.30.821103.024258.024.0...15.0659.087.017.3Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...18534.3332015.0
Portugal10.01.047.08.2065.072.11.020519.031877.021.0...14.8956.087.017.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...19707.4892015.0
Slovenia16.00.387.04.4666.084.70.620505.020048.018.0...14.7552.089.018.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...21061.5522015.0
Spain11.00.158.04.5560.083.10.623129.035443.022.0...15.9370.073.017.9Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...26643.3512016.0
Korea28.04.287.020.8466.063.91.121723.033495.015.0...14.7077.078.017.4Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...29114.7192015.0
Italy18.00.660.03.9057.058.30.826063.064019.023.0...14.8975.071.016.4Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...29747.1332016.0
France13.00.578.07.7665.069.60.631137.059479.021.0...16.3675.082.016.5Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...37294.7202016.0
United Kingdom11.00.481.012.6874.077.40.228408.083405.024.0...14.9269.085.016.8Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...37812.5092015.0
Japan14.06.494.021.8174.070.60.328641.097595.022.0...14.8553.086.016.4Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...38281.5792016.0
Israel21.04.487.015.0469.070.21.724036.061805.020.0...13.9372.067.015.8Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...39125.7182016.0
Belgium15.02.375.04.3162.070.71.029968.0104084.021.0...15.7789.084.018.2Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...40696.4722015.0
New Zealand5.00.377.015.0276.064.81.324366.052718.026.0...14.8777.090.017.8Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...41107.5092016.0
Germany14.00.186.04.6075.075.90.433652.057358.020.0...15.5572.093.018.3Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...41243.8752015.0
Finland6.00.588.03.9169.082.91.429374.027972.023.0...15.1769.094.019.8Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...42611.8252014.0
Canada7.00.291.03.7373.080.91.429850.085758.022.0...14.4168.091.016.7Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...43611.2642016.0
Austria16.01.085.06.7872.080.70.432544.059574.021.0...14.5575.093.017.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...43786.1102016.0
Netherlands14.00.077.00.4575.081.20.628783.090002.020.0...15.9082.093.018.7Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...44654.2292016.0
Sweden6.00.083.01.1176.075.91.030553.090708.020.0...15.1886.095.019.2Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...49824.3192014.0
Denmark9.00.681.02.2075.083.00.728950.073543.024.0...15.8786.094.019.7Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...52870.7902015.0
Australia5.01.180.013.2072.063.61.033417.057462.020.0...14.3591.092.021.2Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...55215.2752015.0
United States10.00.190.011.4569.074.14.944049.0176076.018.0...14.4468.084.017.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...59609.0702016.0
Ireland7.00.180.04.6665.075.50.625439.043493.021.0...15.2865.082.018.7Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...62085.4172016.0
Iceland3.00.078.015.0686.087.00.930453.064398.024.0...14.1579.099.019.3Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...67570.0582016.0
Norway5.00.082.03.1774.087.70.635739.020347.017.0...15.5678.096.018.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...73450.3962015.0
Switzerland15.00.087.06.9180.084.00.536378.0128415.021.0...15.0249.096.017.5Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...78245.4512016.0
Luxembourg12.00.079.03.7666.072.00.641317.074141.020.0...15.1591.085.015.1Gross domestic product per capita, current pricesU.S. dollarsUnitsSee notes for: Gross domestic product, curren...101715.4512015.0
\n", 994 | "

38 rows × 30 columns

\n", 995 | "
" 996 | ], 997 | "text/plain": [ 998 | "Indicator Air pollution Dwellings without basic facilities \\\n", 999 | "Country \n", 1000 | "South Africa 22.0 37.0 \n", 1001 | "Mexico 16.0 4.2 \n", 1002 | "Turkey 20.0 6.5 \n", 1003 | "Brazil 10.0 6.7 \n", 1004 | "Russia 15.0 13.8 \n", 1005 | "Poland 22.0 2.7 \n", 1006 | "Hungary 19.0 4.3 \n", 1007 | "Chile 16.0 9.4 \n", 1008 | "Latvia 11.0 12.9 \n", 1009 | "Slovak Republic 21.0 1.4 \n", 1010 | "Greece 18.0 0.5 \n", 1011 | "Estonia 8.0 6.9 \n", 1012 | "Czech Republic 20.0 0.6 \n", 1013 | "Portugal 10.0 1.0 \n", 1014 | "Slovenia 16.0 0.3 \n", 1015 | "Spain 11.0 0.1 \n", 1016 | "Korea 28.0 4.2 \n", 1017 | "Italy 18.0 0.6 \n", 1018 | "France 13.0 0.5 \n", 1019 | "United Kingdom 11.0 0.4 \n", 1020 | "Japan 14.0 6.4 \n", 1021 | "Israel 21.0 4.4 \n", 1022 | "Belgium 15.0 2.3 \n", 1023 | "New Zealand 5.0 0.3 \n", 1024 | "Germany 14.0 0.1 \n", 1025 | "Finland 6.0 0.5 \n", 1026 | "Canada 7.0 0.2 \n", 1027 | "Austria 16.0 1.0 \n", 1028 | "Netherlands 14.0 0.0 \n", 1029 | "Sweden 6.0 0.0 \n", 1030 | "Denmark 9.0 0.6 \n", 1031 | "Australia 5.0 1.1 \n", 1032 | "United States 10.0 0.1 \n", 1033 | "Ireland 7.0 0.1 \n", 1034 | "Iceland 3.0 0.0 \n", 1035 | "Norway 5.0 0.0 \n", 1036 | "Switzerland 15.0 0.0 \n", 1037 | "Luxembourg 12.0 0.0 \n", 1038 | "\n", 1039 | "Indicator Educational attainment Employees working very long hours \\\n", 1040 | "Country \n", 1041 | "South Africa 43.0 18.68 \n", 1042 | "Mexico 37.0 29.48 \n", 1043 | "Turkey 39.0 33.77 \n", 1044 | "Brazil 49.0 7.15 \n", 1045 | "Russia 95.0 0.16 \n", 1046 | "Poland 91.0 6.68 \n", 1047 | "Hungary 83.0 3.05 \n", 1048 | "Chile 65.0 10.06 \n", 1049 | "Latvia 89.0 2.09 \n", 1050 | "Slovak Republic 92.0 5.04 \n", 1051 | "Greece 72.0 7.30 \n", 1052 | "Estonia 89.0 2.69 \n", 1053 | "Czech Republic 93.0 5.77 \n", 1054 | "Portugal 47.0 8.20 \n", 1055 | "Slovenia 87.0 4.46 \n", 1056 | "Spain 58.0 4.55 \n", 1057 | "Korea 87.0 20.84 \n", 1058 | "Italy 60.0 3.90 \n", 1059 | "France 78.0 7.76 \n", 1060 | "United Kingdom 81.0 12.68 \n", 1061 | "Japan 94.0 21.81 \n", 1062 | "Israel 87.0 15.04 \n", 1063 | "Belgium 75.0 4.31 \n", 1064 | "New Zealand 77.0 15.02 \n", 1065 | "Germany 86.0 4.60 \n", 1066 | "Finland 88.0 3.91 \n", 1067 | "Canada 91.0 3.73 \n", 1068 | "Austria 85.0 6.78 \n", 1069 | "Netherlands 77.0 0.45 \n", 1070 | "Sweden 83.0 1.11 \n", 1071 | "Denmark 81.0 2.20 \n", 1072 | "Australia 80.0 13.20 \n", 1073 | "United States 90.0 11.45 \n", 1074 | "Ireland 80.0 4.66 \n", 1075 | "Iceland 78.0 15.06 \n", 1076 | "Norway 82.0 3.17 \n", 1077 | "Switzerland 87.0 6.91 \n", 1078 | "Luxembourg 79.0 3.76 \n", 1079 | "\n", 1080 | "Indicator Employment rate Feeling safe walking alone at night \\\n", 1081 | "Country \n", 1082 | "South Africa 43.0 36.1 \n", 1083 | "Mexico 61.0 45.9 \n", 1084 | "Turkey 51.0 60.6 \n", 1085 | "Brazil 64.0 37.3 \n", 1086 | "Russia 70.0 52.2 \n", 1087 | "Poland 65.0 66.3 \n", 1088 | "Hungary 67.0 50.7 \n", 1089 | "Chile 62.0 51.1 \n", 1090 | "Latvia 69.0 60.7 \n", 1091 | "Slovak Republic 65.0 60.1 \n", 1092 | "Greece 52.0 61.8 \n", 1093 | "Estonia 72.0 67.2 \n", 1094 | "Czech Republic 72.0 68.3 \n", 1095 | "Portugal 65.0 72.1 \n", 1096 | "Slovenia 66.0 84.7 \n", 1097 | "Spain 60.0 83.1 \n", 1098 | "Korea 66.0 63.9 \n", 1099 | "Italy 57.0 58.3 \n", 1100 | "France 65.0 69.6 \n", 1101 | "United Kingdom 74.0 77.4 \n", 1102 | "Japan 74.0 70.6 \n", 1103 | "Israel 69.0 70.2 \n", 1104 | "Belgium 62.0 70.7 \n", 1105 | "New Zealand 76.0 64.8 \n", 1106 | "Germany 75.0 75.9 \n", 1107 | "Finland 69.0 82.9 \n", 1108 | "Canada 73.0 80.9 \n", 1109 | "Austria 72.0 80.7 \n", 1110 | "Netherlands 75.0 81.2 \n", 1111 | "Sweden 76.0 75.9 \n", 1112 | "Denmark 75.0 83.0 \n", 1113 | "Australia 72.0 63.6 \n", 1114 | "United States 69.0 74.1 \n", 1115 | "Ireland 65.0 75.5 \n", 1116 | "Iceland 86.0 87.0 \n", 1117 | "Norway 74.0 87.7 \n", 1118 | "Switzerland 80.0 84.0 \n", 1119 | "Luxembourg 66.0 72.0 \n", 1120 | "\n", 1121 | "Indicator Homicide rate Household net adjusted disposable income \\\n", 1122 | "Country \n", 1123 | "South Africa 10.0 10872.0 \n", 1124 | "Mexico 17.9 13891.0 \n", 1125 | "Turkey 1.7 17067.0 \n", 1126 | "Brazil 27.6 12227.0 \n", 1127 | "Russia 11.3 16657.0 \n", 1128 | "Poland 0.8 18906.0 \n", 1129 | "Hungary 1.2 16821.0 \n", 1130 | "Chile 4.5 16588.0 \n", 1131 | "Latvia 6.6 15269.0 \n", 1132 | "Slovak Republic 0.8 20265.0 \n", 1133 | "Greece 1.0 17002.0 \n", 1134 | "Estonia 3.1 18665.0 \n", 1135 | "Czech Republic 0.8 21103.0 \n", 1136 | "Portugal 1.0 20519.0 \n", 1137 | "Slovenia 0.6 20505.0 \n", 1138 | "Spain 0.6 23129.0 \n", 1139 | "Korea 1.1 21723.0 \n", 1140 | "Italy 0.8 26063.0 \n", 1141 | "France 0.6 31137.0 \n", 1142 | "United Kingdom 0.2 28408.0 \n", 1143 | "Japan 0.3 28641.0 \n", 1144 | "Israel 1.7 24036.0 \n", 1145 | "Belgium 1.0 29968.0 \n", 1146 | "New Zealand 1.3 24366.0 \n", 1147 | "Germany 0.4 33652.0 \n", 1148 | "Finland 1.4 29374.0 \n", 1149 | "Canada 1.4 29850.0 \n", 1150 | "Austria 0.4 32544.0 \n", 1151 | "Netherlands 0.6 28783.0 \n", 1152 | "Sweden 1.0 30553.0 \n", 1153 | "Denmark 0.7 28950.0 \n", 1154 | "Australia 1.0 33417.0 \n", 1155 | "United States 4.9 44049.0 \n", 1156 | "Ireland 0.6 25439.0 \n", 1157 | "Iceland 0.9 30453.0 \n", 1158 | "Norway 0.6 35739.0 \n", 1159 | "Switzerland 0.5 36378.0 \n", 1160 | "Luxembourg 0.6 41317.0 \n", 1161 | "\n", 1162 | "Indicator Household net financial wealth Housing expenditure \\\n", 1163 | "Country \n", 1164 | "South Africa 17042.0 18.0 \n", 1165 | "Mexico 4750.0 21.0 \n", 1166 | "Turkey 4429.0 20.0 \n", 1167 | "Brazil 7102.0 20.0 \n", 1168 | "Russia 2260.0 19.0 \n", 1169 | "Poland 14997.0 23.0 \n", 1170 | "Hungary 23289.0 18.0 \n", 1171 | "Chile 21409.0 18.0 \n", 1172 | "Latvia 17105.0 23.0 \n", 1173 | "Slovak Republic 10846.0 24.0 \n", 1174 | "Greece 18117.0 24.0 \n", 1175 | "Estonia 16967.0 18.0 \n", 1176 | "Czech Republic 24258.0 24.0 \n", 1177 | "Portugal 31877.0 21.0 \n", 1178 | "Slovenia 20048.0 18.0 \n", 1179 | "Spain 35443.0 22.0 \n", 1180 | "Korea 33495.0 15.0 \n", 1181 | "Italy 64019.0 23.0 \n", 1182 | "France 59479.0 21.0 \n", 1183 | "United Kingdom 83405.0 24.0 \n", 1184 | "Japan 97595.0 22.0 \n", 1185 | "Israel 61805.0 20.0 \n", 1186 | "Belgium 104084.0 21.0 \n", 1187 | "New Zealand 52718.0 26.0 \n", 1188 | "Germany 57358.0 20.0 \n", 1189 | "Finland 27972.0 23.0 \n", 1190 | "Canada 85758.0 22.0 \n", 1191 | "Austria 59574.0 21.0 \n", 1192 | "Netherlands 90002.0 20.0 \n", 1193 | "Sweden 90708.0 20.0 \n", 1194 | "Denmark 73543.0 24.0 \n", 1195 | "Australia 57462.0 20.0 \n", 1196 | "United States 176076.0 18.0 \n", 1197 | "Ireland 43493.0 21.0 \n", 1198 | "Iceland 64398.0 24.0 \n", 1199 | "Norway 20347.0 17.0 \n", 1200 | "Switzerland 128415.0 21.0 \n", 1201 | "Luxembourg 74141.0 20.0 \n", 1202 | "\n", 1203 | "Indicator ... \\\n", 1204 | "Country ... \n", 1205 | "South Africa ... \n", 1206 | "Mexico ... \n", 1207 | "Turkey ... \n", 1208 | "Brazil ... \n", 1209 | "Russia ... \n", 1210 | "Poland ... \n", 1211 | "Hungary ... \n", 1212 | "Chile ... \n", 1213 | "Latvia ... \n", 1214 | "Slovak Republic ... \n", 1215 | "Greece ... \n", 1216 | "Estonia ... \n", 1217 | "Czech Republic ... \n", 1218 | "Portugal ... \n", 1219 | "Slovenia ... \n", 1220 | "Spain ... \n", 1221 | "Korea ... \n", 1222 | "Italy ... \n", 1223 | "France ... \n", 1224 | "United Kingdom ... \n", 1225 | "Japan ... \n", 1226 | "Israel ... \n", 1227 | "Belgium ... \n", 1228 | "New Zealand ... \n", 1229 | "Germany ... \n", 1230 | "Finland ... \n", 1231 | "Canada ... \n", 1232 | "Austria ... \n", 1233 | "Netherlands ... \n", 1234 | "Sweden ... \n", 1235 | "Denmark ... \n", 1236 | "Australia ... \n", 1237 | "United States ... \n", 1238 | "Ireland ... \n", 1239 | "Iceland ... \n", 1240 | "Norway ... \n", 1241 | "Switzerland ... \n", 1242 | "Luxembourg ... \n", 1243 | "\n", 1244 | "Indicator Time devoted to leisure and personal care Voter turnout \\\n", 1245 | "Country \n", 1246 | "South Africa 14.73 73.0 \n", 1247 | "Mexico 12.74 63.0 \n", 1248 | "Turkey 12.59 85.0 \n", 1249 | "Brazil 14.45 79.0 \n", 1250 | "Russia 14.90 65.0 \n", 1251 | "Poland 14.42 55.0 \n", 1252 | "Hungary 15.06 62.0 \n", 1253 | "Chile 14.90 49.0 \n", 1254 | "Latvia 13.83 59.0 \n", 1255 | "Slovak Republic 15.01 60.0 \n", 1256 | "Greece 14.67 64.0 \n", 1257 | "Estonia 14.90 64.0 \n", 1258 | "Czech Republic 15.06 59.0 \n", 1259 | "Portugal 14.89 56.0 \n", 1260 | "Slovenia 14.75 52.0 \n", 1261 | "Spain 15.93 70.0 \n", 1262 | "Korea 14.70 77.0 \n", 1263 | "Italy 14.89 75.0 \n", 1264 | "France 16.36 75.0 \n", 1265 | "United Kingdom 14.92 69.0 \n", 1266 | "Japan 14.85 53.0 \n", 1267 | "Israel 13.93 72.0 \n", 1268 | "Belgium 15.77 89.0 \n", 1269 | "New Zealand 14.87 77.0 \n", 1270 | "Germany 15.55 72.0 \n", 1271 | "Finland 15.17 69.0 \n", 1272 | "Canada 14.41 68.0 \n", 1273 | "Austria 14.55 75.0 \n", 1274 | "Netherlands 15.90 82.0 \n", 1275 | "Sweden 15.18 86.0 \n", 1276 | "Denmark 15.87 86.0 \n", 1277 | "Australia 14.35 91.0 \n", 1278 | "United States 14.44 68.0 \n", 1279 | "Ireland 15.28 65.0 \n", 1280 | "Iceland 14.15 79.0 \n", 1281 | "Norway 15.56 78.0 \n", 1282 | "Switzerland 15.02 49.0 \n", 1283 | "Luxembourg 15.15 91.0 \n", 1284 | "\n", 1285 | "Indicator Water quality Years in education \\\n", 1286 | "Country \n", 1287 | "South Africa 69.0 15.3 \n", 1288 | "Mexico 67.0 14.8 \n", 1289 | "Turkey 63.0 17.9 \n", 1290 | "Brazil 72.0 15.9 \n", 1291 | "Russia 54.0 16.1 \n", 1292 | "Poland 80.0 17.7 \n", 1293 | "Hungary 76.0 16.6 \n", 1294 | "Chile 69.0 17.3 \n", 1295 | "Latvia 77.0 17.9 \n", 1296 | "Slovak Republic 82.0 15.9 \n", 1297 | "Greece 69.0 16.9 \n", 1298 | "Estonia 82.0 15.8 \n", 1299 | "Czech Republic 87.0 17.3 \n", 1300 | "Portugal 87.0 17.1 \n", 1301 | "Slovenia 89.0 18.1 \n", 1302 | "Spain 73.0 17.9 \n", 1303 | "Korea 78.0 17.4 \n", 1304 | "Italy 71.0 16.4 \n", 1305 | "France 82.0 16.5 \n", 1306 | "United Kingdom 85.0 16.8 \n", 1307 | "Japan 86.0 16.4 \n", 1308 | "Israel 67.0 15.8 \n", 1309 | "Belgium 84.0 18.2 \n", 1310 | "New Zealand 90.0 17.8 \n", 1311 | "Germany 93.0 18.3 \n", 1312 | "Finland 94.0 19.8 \n", 1313 | "Canada 91.0 16.7 \n", 1314 | "Austria 93.0 17.1 \n", 1315 | "Netherlands 93.0 18.7 \n", 1316 | "Sweden 95.0 19.2 \n", 1317 | "Denmark 94.0 19.7 \n", 1318 | "Australia 92.0 21.2 \n", 1319 | "United States 84.0 17.1 \n", 1320 | "Ireland 82.0 18.7 \n", 1321 | "Iceland 99.0 19.3 \n", 1322 | "Norway 96.0 18.1 \n", 1323 | "Switzerland 96.0 17.5 \n", 1324 | "Luxembourg 85.0 15.1 \n", 1325 | "\n", 1326 | "Indicator Subject Descriptor \\\n", 1327 | "Country \n", 1328 | "South Africa Gross domestic product per capita, current prices \n", 1329 | "Mexico Gross domestic product per capita, current prices \n", 1330 | "Turkey Gross domestic product per capita, current prices \n", 1331 | "Brazil Gross domestic product per capita, current prices \n", 1332 | "Russia Gross domestic product per capita, current prices \n", 1333 | "Poland Gross domestic product per capita, current prices \n", 1334 | "Hungary Gross domestic product per capita, current prices \n", 1335 | "Chile Gross domestic product per capita, current prices \n", 1336 | "Latvia Gross domestic product per capita, current prices \n", 1337 | "Slovak Republic Gross domestic product per capita, current prices \n", 1338 | "Greece Gross domestic product per capita, current prices \n", 1339 | "Estonia Gross domestic product per capita, current prices \n", 1340 | "Czech Republic Gross domestic product per capita, current prices \n", 1341 | "Portugal Gross domestic product per capita, current prices \n", 1342 | "Slovenia Gross domestic product per capita, current prices \n", 1343 | "Spain Gross domestic product per capita, current prices \n", 1344 | "Korea Gross domestic product per capita, current prices \n", 1345 | "Italy Gross domestic product per capita, current prices \n", 1346 | "France Gross domestic product per capita, current prices \n", 1347 | "United Kingdom Gross domestic product per capita, current prices \n", 1348 | "Japan Gross domestic product per capita, current prices \n", 1349 | "Israel Gross domestic product per capita, current prices \n", 1350 | "Belgium Gross domestic product per capita, current prices \n", 1351 | "New Zealand Gross domestic product per capita, current prices \n", 1352 | "Germany Gross domestic product per capita, current prices \n", 1353 | "Finland Gross domestic product per capita, current prices \n", 1354 | "Canada Gross domestic product per capita, current prices \n", 1355 | "Austria Gross domestic product per capita, current prices \n", 1356 | "Netherlands Gross domestic product per capita, current prices \n", 1357 | "Sweden Gross domestic product per capita, current prices \n", 1358 | "Denmark Gross domestic product per capita, current prices \n", 1359 | "Australia Gross domestic product per capita, current prices \n", 1360 | "United States Gross domestic product per capita, current prices \n", 1361 | "Ireland Gross domestic product per capita, current prices \n", 1362 | "Iceland Gross domestic product per capita, current prices \n", 1363 | "Norway Gross domestic product per capita, current prices \n", 1364 | "Switzerland Gross domestic product per capita, current prices \n", 1365 | "Luxembourg Gross domestic product per capita, current prices \n", 1366 | "\n", 1367 | "Indicator Units Scale \\\n", 1368 | "Country \n", 1369 | "South Africa U.S. dollars Units \n", 1370 | "Mexico U.S. dollars Units \n", 1371 | "Turkey U.S. dollars Units \n", 1372 | "Brazil U.S. dollars Units \n", 1373 | "Russia U.S. dollars Units \n", 1374 | "Poland U.S. dollars Units \n", 1375 | "Hungary U.S. dollars Units \n", 1376 | "Chile U.S. dollars Units \n", 1377 | "Latvia U.S. dollars Units \n", 1378 | "Slovak Republic U.S. dollars Units \n", 1379 | "Greece U.S. dollars Units \n", 1380 | "Estonia U.S. dollars Units \n", 1381 | "Czech Republic U.S. dollars Units \n", 1382 | "Portugal U.S. dollars Units \n", 1383 | "Slovenia U.S. dollars Units \n", 1384 | "Spain U.S. dollars Units \n", 1385 | "Korea U.S. dollars Units \n", 1386 | "Italy U.S. dollars Units \n", 1387 | "France U.S. dollars Units \n", 1388 | "United Kingdom U.S. dollars Units \n", 1389 | "Japan U.S. dollars Units \n", 1390 | "Israel U.S. dollars Units \n", 1391 | "Belgium U.S. dollars Units \n", 1392 | "New Zealand U.S. dollars Units \n", 1393 | "Germany U.S. dollars Units \n", 1394 | "Finland U.S. dollars Units \n", 1395 | "Canada U.S. dollars Units \n", 1396 | "Austria U.S. dollars Units \n", 1397 | "Netherlands U.S. dollars Units \n", 1398 | "Sweden U.S. dollars Units \n", 1399 | "Denmark U.S. dollars Units \n", 1400 | "Australia U.S. dollars Units \n", 1401 | "United States U.S. dollars Units \n", 1402 | "Ireland U.S. dollars Units \n", 1403 | "Iceland U.S. dollars Units \n", 1404 | "Norway U.S. dollars Units \n", 1405 | "Switzerland U.S. dollars Units \n", 1406 | "Luxembourg U.S. dollars Units \n", 1407 | "\n", 1408 | "Indicator Country/Series-specific Notes \\\n", 1409 | "Country \n", 1410 | "South Africa See notes for: Gross domestic product, curren... \n", 1411 | "Mexico See notes for: Gross domestic product, curren... \n", 1412 | "Turkey See notes for: Gross domestic product, curren... \n", 1413 | "Brazil See notes for: Gross domestic product, curren... \n", 1414 | "Russia See notes for: Gross domestic product, curren... \n", 1415 | "Poland See notes for: Gross domestic product, curren... \n", 1416 | "Hungary See notes for: Gross domestic product, curren... \n", 1417 | "Chile See notes for: Gross domestic product, curren... \n", 1418 | "Latvia See notes for: Gross domestic product, curren... \n", 1419 | "Slovak Republic See notes for: Gross domestic product, curren... \n", 1420 | "Greece See notes for: Gross domestic product, curren... \n", 1421 | "Estonia See notes for: Gross domestic product, curren... \n", 1422 | "Czech Republic See notes for: Gross domestic product, curren... \n", 1423 | "Portugal See notes for: Gross domestic product, curren... \n", 1424 | "Slovenia See notes for: Gross domestic product, curren... \n", 1425 | "Spain See notes for: Gross domestic product, curren... \n", 1426 | "Korea See notes for: Gross domestic product, curren... \n", 1427 | "Italy See notes for: Gross domestic product, curren... \n", 1428 | "France See notes for: Gross domestic product, curren... \n", 1429 | "United Kingdom See notes for: Gross domestic product, curren... \n", 1430 | "Japan See notes for: Gross domestic product, curren... \n", 1431 | "Israel See notes for: Gross domestic product, curren... \n", 1432 | "Belgium See notes for: Gross domestic product, curren... \n", 1433 | "New Zealand See notes for: Gross domestic product, curren... \n", 1434 | "Germany See notes for: Gross domestic product, curren... \n", 1435 | "Finland See notes for: Gross domestic product, curren... \n", 1436 | "Canada See notes for: Gross domestic product, curren... \n", 1437 | "Austria See notes for: Gross domestic product, curren... \n", 1438 | "Netherlands See notes for: Gross domestic product, curren... \n", 1439 | "Sweden See notes for: Gross domestic product, curren... \n", 1440 | "Denmark See notes for: Gross domestic product, curren... \n", 1441 | "Australia See notes for: Gross domestic product, curren... \n", 1442 | "United States See notes for: Gross domestic product, curren... \n", 1443 | "Ireland See notes for: Gross domestic product, curren... \n", 1444 | "Iceland See notes for: Gross domestic product, curren... \n", 1445 | "Norway See notes for: Gross domestic product, curren... \n", 1446 | "Switzerland See notes for: Gross domestic product, curren... \n", 1447 | "Luxembourg See notes for: Gross domestic product, curren... \n", 1448 | "\n", 1449 | "Indicator GDP per capita Estimates Start After \n", 1450 | "Country \n", 1451 | "South Africa 5588.959 2016.0 \n", 1452 | "Mexico 7993.174 2015.0 \n", 1453 | "Turkey 9826.248 2016.0 \n", 1454 | "Brazil 10308.811 2016.0 \n", 1455 | "Russia 10885.484 2016.0 \n", 1456 | "Poland 12721.758 2015.0 \n", 1457 | "Hungary 12767.023 2015.0 \n", 1458 | "Chile 13662.906 2015.0 \n", 1459 | "Latvia 14187.602 2016.0 \n", 1460 | "Slovak Republic 16411.686 2015.0 \n", 1461 | "Greece 17805.686 2016.0 \n", 1462 | "Estonia 17891.084 2016.0 \n", 1463 | "Czech Republic 18534.333 2015.0 \n", 1464 | "Portugal 19707.489 2015.0 \n", 1465 | "Slovenia 21061.552 2015.0 \n", 1466 | "Spain 26643.351 2016.0 \n", 1467 | "Korea 29114.719 2015.0 \n", 1468 | "Italy 29747.133 2016.0 \n", 1469 | "France 37294.720 2016.0 \n", 1470 | "United Kingdom 37812.509 2015.0 \n", 1471 | "Japan 38281.579 2016.0 \n", 1472 | "Israel 39125.718 2016.0 \n", 1473 | "Belgium 40696.472 2015.0 \n", 1474 | "New Zealand 41107.509 2016.0 \n", 1475 | "Germany 41243.875 2015.0 \n", 1476 | "Finland 42611.825 2014.0 \n", 1477 | "Canada 43611.264 2016.0 \n", 1478 | "Austria 43786.110 2016.0 \n", 1479 | "Netherlands 44654.229 2016.0 \n", 1480 | "Sweden 49824.319 2014.0 \n", 1481 | "Denmark 52870.790 2015.0 \n", 1482 | "Australia 55215.275 2015.0 \n", 1483 | "United States 59609.070 2016.0 \n", 1484 | "Ireland 62085.417 2016.0 \n", 1485 | "Iceland 67570.058 2016.0 \n", 1486 | "Norway 73450.396 2015.0 \n", 1487 | "Switzerland 78245.451 2016.0 \n", 1488 | "Luxembourg 101715.451 2015.0 \n", 1489 | "\n", 1490 | "[38 rows x 30 columns]" 1491 | ] 1492 | }, 1493 | "execution_count": 2, 1494 | "metadata": {}, 1495 | "output_type": "execute_result" 1496 | } 1497 | ], 1498 | "source": [ 1499 | "# Kullanılacak Data \n", 1500 | "\n", 1501 | "oecd_bli_2017 = pd.read_csv(\"oecd_bli_2017.csv\", thousands=',')\n", 1502 | "oecd_bli_2017 = oecd_bli_2017[oecd_bli_2017[\"INEQUALITY\"] == \"TOT\"]\n", 1503 | "oecd_bli_2017 = oecd_bli_2017.pivot(index=\"Country\", columns=\"Indicator\", values=\"Value\")\n", 1504 | "\n", 1505 | "\n", 1506 | "gdp_per_capita2017 = pd.read_excel(\"gdp_per_capita_2017.xlsx\", thousands=',', delimiter='\\t',encoding='latin1', na_values=\"n/a\")\n", 1507 | "gdp_per_capita2017.rename(columns={2017:\"GDP per capita\"}, inplace=True)\n", 1508 | "gdp_per_capita2017.set_index(\"Country\", inplace=True)\n", 1509 | "\n", 1510 | "\n", 1511 | "country_stats_2017 = pd.merge(left=oecd_bli_2017, right=gdp_per_capita2017, left_index=True, right_index=True)\n", 1512 | "country_stats_2017.sort_values(by=\"GDP per capita\", inplace=True)\n", 1513 | "country_stats_2017" 1514 | ] 1515 | }, 1516 | { 1517 | "cell_type": "code", 1518 | "execution_count": 3, 1519 | "metadata": {}, 1520 | "outputs": [ 1521 | { 1522 | "data": { 1523 | "text/plain": [ 1524 | "Indicator\n", 1525 | "GDP per capita 9826.248\n", 1526 | "Life satisfaction 5.500\n", 1527 | "Name: Turkey, dtype: float64" 1528 | ] 1529 | }, 1530 | "execution_count": 3, 1531 | "metadata": {}, 1532 | "output_type": "execute_result" 1533 | } 1534 | ], 1535 | "source": [ 1536 | "# Türkiyenin kişi başına düşen Gayrisafi yurt içi hasılası (GSYİH) ve Yaşam Memnuniyeti\n", 1537 | "country_stats_2017[[\"GDP per capita\", \"Life satisfaction\"]].loc[\"Turkey\"]" 1538 | ] 1539 | }, 1540 | { 1541 | "cell_type": "code", 1542 | "execution_count": 4, 1543 | "metadata": {}, 1544 | "outputs": [ 1545 | { 1546 | "name": "stderr", 1547 | "output_type": "stream", 1548 | "text": [ 1549 | "/Users/euclid/anaconda3/lib/python3.6/site-packages/scipy/linalg/basic.py:1226: RuntimeWarning: internal gelsd driver lwork query error, required iwork dimension not returned. This is likely the result of LAPACK bug 0038, fixed in LAPACK 3.2.2 (released July 21, 2010). Falling back to 'gelss' driver.\n", 1550 | " warnings.warn(mesg, RuntimeWarning)\n" 1551 | ] 1552 | }, 1553 | { 1554 | "data": { 1555 | "text/plain": [ 1556 | "(5.660176251069037, 2.453296652801671e-05)" 1557 | ] 1558 | }, 1559 | "execution_count": 4, 1560 | "metadata": {}, 1561 | "output_type": "execute_result" 1562 | } 1563 | ], 1564 | "source": [ 1565 | "# Doğrusal Regresyon\n", 1566 | "\n", 1567 | "from sklearn import linear_model\n", 1568 | "lin1 = linear_model.LinearRegression()\n", 1569 | "Xsample = np.c_[country_stats_2017[\"GDP per capita\"]]\n", 1570 | "ysample = np.c_[country_stats_2017[\"Life satisfaction\"]]\n", 1571 | "lin1.fit(Xsample, ysample)\n", 1572 | "t0, t1 = lin1.intercept_[0], lin1.coef_[0][0]\n", 1573 | "t0, t1" 1574 | ] 1575 | }, 1576 | { 1577 | "cell_type": "code", 1578 | "execution_count": 5, 1579 | "metadata": {}, 1580 | "outputs": [ 1581 | { 1582 | "data": { 1583 | "text/plain": [ 1584 | "5.901243264349029" 1585 | ] 1586 | }, 1587 | "execution_count": 5, 1588 | "metadata": {}, 1589 | "output_type": "execute_result" 1590 | } 1591 | ], 1592 | "source": [ 1593 | "# Turkiye için Tahmini Yaşam Memnuniyeti\n", 1594 | "\n", 1595 | "turkey_gdp_per_capita_2017 = gdp_per_capita2017.loc[\"Turkey\"][\"GDP per capita\"]\n", 1596 | "turkey_predicted_life_satisfaction_2017 = lin1.predict(turkey_gdp_per_capita_2017)[0][0]\n", 1597 | "turkey_predicted_life_satisfaction_2017" 1598 | ] 1599 | }, 1600 | { 1601 | "cell_type": "code", 1602 | "execution_count": 6, 1603 | "metadata": {}, 1604 | "outputs": [ 1605 | { 1606 | "data": { 1607 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVYAAADUCAYAAADHoAvkAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4wLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvpW3flQAAIABJREFUeJzt3Xe8VNW1wPHfoknvRVBpiqhgQVBE\nLBjUKLaYqGhsUSMvwYL9IZqosSUao6ixoMZKjIiGWIgvoIAi2BBUUBFFQSIKCCpSpK33xzrjnTt3\n2r33nDkz967v53M+M3PqmmFYd8/e++wtqopzzrnw1Ik7AOecq2k8sTrnXMg8sTrnXMg8sTrnXMg8\nsTrnXMg8sTrnXMgiS6wi8jcRWSYic5PWtRaRSSKyIHhsFdX1nXMuLlGWWB8CDktZNxJ4UVV7AC8G\nr51zrkaRKG8QEJGuwHOq2jt4PR8YpKpLRaQjMFVVe0YWgHPOxaDQdawdVHUpQPDYvsDXd865yNWL\nO4BMRGQYMAygSZMmfXfaaaeYI3LO1TSzZs1aoartwj5voRPrVyLSMakqYFmmHVV1DDAGoF+/fvrW\nW28VKkbnXC0hIouiOG+hqwKeAU4Pnp8O/KvA13fOuchF2d3qcWAm0FNElojIWcAfgUNEZAFwSPDa\nOedqlMiqAlT1pAybBkd1TeecKwZ+55VzzoXME2uKv/8ddt0VGjeGHj1g3Li4I3LOlRpPrEmeew7O\nOgsuvRTmzoWhQ+Hss2Hz5uivffXVIFJ+2Xrr/I5duhROPx3atYOGDWGXXWDatMrv45wLR9H2Y43D\nn/8M550Hp51mr485Bm64AeoU6M9Pz54wdWrZ67p1cx/zzTcwcCDstx88/7wlzoULoX37yu3jnAuP\nJ9bA2rUwfTpcc03ZuhdegN13t9JjIdSrl38pNeGmm6BjR3jkkbJ13bpVfh/nXHi8KiDw7ruwZQv0\n6QPr1sGjj1pp9dJLK3eeG26Apk2zL6+8kv7YhQthm20s6Z14or3OZcIE6N/fqi3at4c99oA774Tk\nISDy2cc5Fx4vsQbmzIHtt4ePP4Z+/Szp/PSncMIJtn3iRLjwQku+F14Iw4enP89vflN2TCbbbFNx\nXf/+8NBDsNNOsGwZXHcd7LsvzJsHbdpkPtfChXDXXRbTyJH2Ps47z7ade27++zjnQqSqRb/07dtX\nozZsmOoJJ6iuXq36+uuqd96p2qKF6nnnqW7cqLrDDqqLF6uuWaO6886qX3wRbTyrV6u2a6d6yy3Z\n96tfX3XAgPLrLr9cdaedKrePc7UR8JZGkLO8KiAwZw7suaf9VN97bzjnHOsRMHMmvPGGtaJvt511\nwzr2WOtBkE51qgKSNW0KvXrBggXZ9+vY0WJLtvPOsHhx5fZxzoXHqwKw7lTvvQdXXFF+/bvvwv77\nwxdfWFJN2HZb+O9/05+rqlUBqdavhw8/hIMOyr7fwIEwf375dR99BF26VG4f51x4PLFiSWfdOrj+\nekt6zZrBww/Dm2/C3XfDrFkVj8nUU6B1a1sq65JL4KijoHNnq2O99lpYs8b6nibceactH35Ytu7C\nC60u9vrrrXFq9my4/XYrOVdmH+dceDyxYommQwdo1QoGDYJGjWCffaxPaffu8OWX8PnnZfsvWQJd\nu4Ybw5IlcNJJsGKF9TPdZx947bXypcoVKyqWPPfay1r9R42yZNy5sz0mN67ls49zLjyRTs0SlqjH\nY730UisFPvts+u2bNllr/ZQp0LYt9O0LkydDp06RheScKwARmaWq/cI+r5dYsRJr//6Zt9erB7fe\nCoMHW3erESM8qTrnMvPECrzzjvUAyOaoo2xxzrlcPLECy5fHHYFzribxfqzOORcyT6zOORcyT6zO\nORcyT6zOORcyb7xyJadrV2je3AYgb9XK+hc7V0w8sbqSNGOGDVTjXDHyqoAUPpmgc666PLEmiXMy\nwRtvtHv6mze3sQKOOspiqIwbbrDBYVIHr67ORIWV8fLLcPTRNpCNiA3cnc5dd9ksCQ0b2u3B+Qyj\nmEwEDjzQPq+xY6sdtnOhiyWxisiFIjJPROaKyOMi0jCOOFIlTybYvbtNJrh6dWEmE5w61QZFmTED\nXnrJbqM9+GBYuTK/4197De67D3bbLf32nj1tptbE8t57mc81Ywb88EPF9Z9+Cp99lvm477+H3r1h\n9GgbyCadJ56wW4JHjbJbiffdFw4/vPzYsL17p18SA+G8+qqNOPbMM/bHJNt7cS4WUYyenW0BtgE+\nBRoFr8cBv8p2TCFmEFizRrVuXdWpU8vW/eEPqnvsEfml01q9WrVOHdVnnsm97zffqHbvrvrii6oH\nHqh6zjnlt191lWqvXvldd8sW1T33VD3ySNUNG8rWL1qk2qWL6qWX5neeJk1UH3yw4vq991b99a/L\nr9thB9WRI/M7b6pLLkl/HefyQQ2bQaAe0EhE6gGNgS9iiuNHxTCZYLLVqy2eVq1y7ztsGBx3HPzk\nJ5n3yXeiQhGb32vBAqsK2bTJhjQ86CAbyvDGG3PHk8mGDVbSPPTQ8usPPdRKyflYs8Y+G7AS8ksv\n2UwLzhWTgvcKUNX/isifgcXAOuA/qvqf1P1EZBgwDKBz586Rx5VrMsF8hTWDwIgRNpvqgAHZ97vv\nPov50Ucz71PZiQo7dLCEdeCB9l7mzrVYHnsM6tbNHXsmK1ZYfXWHDhWvN3lyfuf46iubGgfsXGef\nbXWtzhWTgidWEWkFHAN0A74BnhSRU1T1seT9VHUMMAZsPNao45o92+a82nFHq698802bquWii2y0\n/aOPtpLm4MEwfnzm81R1BoFkF10E06fbki2RzZ9vdZWvvAINGmTe7/DDy7/eZx+rQ374YbtWOp06\nwT/+YX9kOna0RqJ6IX1bUmdfUM08I0Oq7t1tNDLnilkcVQEHA5+q6nJV3Qg8DewbQxzlZJtMEGx6\nk0ceyX2e6lYFXHghPP64lRi7d89+rZkzrRTYu7clvXr1YNo0a3WvVy99AxTkN1HhihVwxhlw2GFQ\nv76VxLdsyf3+s2nb1v5QfPll+fXLllUsxTpXyuK4QWAxsI+INMaqAgYD0U0PkIdckwmC1TFOnZr7\nXNWpChgxwkqJU6faz/ZcfvYzK1EmO+MM6387alTmUmyuiQpXroRDDrFS64QJNnHigQdaXe599+Vf\nukzVoIF1r5o0CY4/vmz9pEnwi19U7ZzOFaM46lhfF5HxwNvAJmA2wU/+uOSaTLAyqloVcM45Vk86\nYYI1WCVKdYlSLlScTLBlS1uSNWli1+/du2xdPhMVJqjCEUdY3euECbDVVlZyfuklmw/syivtc0rn\n+++tvhesdLt4sf0SaN3arg1W9XDqqfarYOBAuOcemwX3N7+p/GfmXNGKoqtB2EvU3a0ee0y1QwfV\nn/5UtWlT1XbtVI86SvWdd8rvN2WK6i9+EU0MltIqLlddVbbPVVfZumzSdbcaOlS1Y0fV+vVVO3VS\n/fnPVefNy3yOSZOs+1mqDz5QnT8/83FTpqR/D6efXn6/v/7Vum41aGBdu6ZNy/6enIsKEXW38skE\nyT2ZYMLUqVZizNZ45ZwrHVFNJui3tGI9AjLdseRcMZq1aBWnPfA6sxatijuUKin1+HPxxIp138mV\nWA8+2BpcJk6Ebbct6y3gXBxGT/6IlxesYPTkj+IOpUpKPf5cfNhA8ptMMN8O7M4VwoiDdyz3mM6s\nRasYPfkjRhy8I3275HELXwHlE38p8zpW52qo0x54nZcXrOCAHm155Kz+cYdTlGKtYxWRuiLSSUQ6\nJ5awA3HOlVfZesjU/UccvCMH9GgbaamwEHWlpVgfmzOxish5wFfAJOD5YHku4ricq9HySRaVrYdM\n3b9vl1Y8clb/SKsBClFXWor1sfnUsY4Aeqrq11EH41xtkUgWQMaf6ZWth4yj3rIQ1wzzGqrw7bd2\no8yyZdU+XUY561hFZApwiKpuii6M7LyO1dU0xdywVGrWrbMG6ESyzLVs3Jh8dDR1rPmUWBcCU0Xk\neeDHYT1U9S9hB+NcbZH4me4q2rwZvv46/0SZGJ83VaNGNrhP+/Z2q3qfPvY8eUkdGzgs+STWxcHS\nIFiccwVSmZJtsZaCVS355ZsoV6ywY1LVrWvzwSWSYv/+FRNl8tKkSeHfa0LOxKqq1wCISDN7qd9H\nHpVztVhygsynLjahMvtW14YNuX9+f/VV2fNMQ1i2bFmWCHv2tNHkMiXKVq3CmX8u+fONSs7EKiK9\ngUeB1sHrFcBpqjovsqicq8WSE2RlGm6q08izZQusWpV/qfKbb9KfZ6utyifDXXfNnCjbtrX9Cy35\n841KPo1XM4ArVHVK8HoQcIOqFmxwam+8crVJWD/p16zJP1EuX55+mncRS4DZfnInL82aVX283kJJ\n/nz7dW0dSeNVPon1HVXdPde6KHlidc4mdlyxIv1P7XTL2rXpz9OsWf6Jsk2b6s1zVuyiuvMqr14B\nIvI7rDoA4BRs+moXsWJtjHD5y/ZvmNqnMtfydYae5PXrl0+GPXtmTpTt2llruYtWPon1TOAabG4q\nAV4GzogyqGJXqJbaKBsjPGlHY/368snw+vEref/T5swat56+HXL1qSzTunVZMuzVy6bRSU2Sia5E\nLVoU/8/v2iafXgGrgPMLEEvJKFRLbZR3tRSyBbmUVb9P5fYArGuorN06e5/K5Ead+vUL/lZdiDIm\nVhG5TVUvEJFngQoVsap6dKSRFbFCtdRG2Ym8pg/blomqzc2VK0Em6i/D61PpRcraJGPjlYj0VdVZ\nInJguu2qOi3SyJJ441XtUZUqinz6VCYv69enP0+LFul/ale2T6VXs5SOgjdeqeqs4Okeqjo6JZgR\nQMESq6s9Rk/+iGkfreCH7+tx9aF9Q+1T2atX9kadsPpUejWLy6fx6nRgdMq6X6VZ51xGa9dmvzMn\nsfx36V6s/FpYvEUYl3KO1D6V2eop4+xTWVurWVyZbHWsJwG/BLqJyDNJm5oBPoRgLZfapzLXsmZN\n+vMk96ns1g36969T8n0qfYAVl63EOgNYCrQFbklavxp4tzoXFZGWwP1Ab6xh7ExV9en5YhRWn8p6\n9conwx490ifJDh28T6WrubLVsS4CFonIycAXqroeQEQaAdsCn1XjuqOBF1T1OBFpADSuxrlckuSG\nk14dWuWdKKvbpzKxtGzpfSqdy6eOdRyQPC7AZuBJYK+qXFBEmgMHYPW0qOoGYENVzlXbbN4MK1dm\nT46vvlePVV/35h/rG7IxQ+t3PuNUep9K56oun8RaL0h+gCXCoJRZVd2B5cCDIrI7MAsYoaoZauFK\n0NixcMUVsHgxdO4M11/PrP2GVOiCk9qncsbc7xk/fRl92nek/oZGFZLmihU2ClGqOnXK+lR227oh\nTdp8y4Beddm1R90MfSoL/Hk4V8vkMwjLJOAOVX0meH0McL6qDq7SBUX6Aa8BA1X1dREZDXynqr9L\n2W8YMAygc+fOfRctWlSVyxXcpofHUue3w6izrmwEjI31G3PFzn/iri3H0FKa0nGrsp/o+fapzLa0\nbh3OOJXO1TZR9WPNJ7FuD4wFOmFjBXyOjcf6cZUuKLI18Jqqdg1e7w+MVNUjMh0T5w0CW7ZYP8l8\nugotWwazv+lKVyr+EVhEZ3Zp/RFdtqlL123rpU2QX2/+jqff/4RLjunKgB3Ldyz3TucVpQ5YXMyf\nj//7FafYRrdS1U+AfUSkKZaIM8wwkx9V/VJEPheRnqo6HxgMvF+dc1ZWuj6VmZbly61rUSoR6/6T\nqKtM1FN2uWNx2mt2ls9Z83WuHujNOfmIPmm3xN3pvBgTQ+qAxcXcKT/ufz9XWPnUsSIiRwC9gIYS\nNPmq6h+qcd3zgLFBXe1CqjlaVlh9Kps2LSs9dukCe+2VfZzKeuk+vWc6Q5pqC+ncuTpvMfZO58WY\nGNJ9JsXaKT/ufz9XWPlUBdyDdYc6COt7ehzwhqqeFX14Zocd+ukll7xV7T6V2ZZ27aBxGJ2+xo6F\nYcPKjzLcuDGMGQMnnxzCBeJRjCVW56orzjrWd1V1t6THpsDTqhrRxLHpYuinYHWsyX0qcy2x9akc\nOxbOOstmUOvSBa6/viiSqidH58qLcwaBRLv1WhHphN3O2i3sQLLZeWd48cUS6lN58slw3332fOrU\nWENJVow/552rifJJrM8Gt6DeDLyN3YJ6X6RRpWjcGDp2LOQVq2/1+k0sWbWWtYtWFU3p0Ov5nCuM\njL0fReT44OljqvqNqj4FdAF2UtXfFyS6ErZk1Vq+XbeR0ZM/ijuUHyUGBymWRO9cTZWtW/nlweNT\niRWq+oOqfhttSDXDtq0a06JRfS8dOlcLZasK+FpEplBx2ECgdk/Nko9mp/2SnQEqUTr0xiXnaoZs\nifUIYE9s2utbsuzn0hk+vNKHeOOSczVDxqoAVd2gqq8B+6rqtGCOq1eA2YWc76pkrV1bvi9rHkYc\nvCMH9GgbWfXBrEWrOO2B15m1aFWVtjvn8pPP0B2jRaS5iDTBbj2dLyKXRhxX6RsyxJZKiLpxKVEi\nztSglmu7cy4/+XS32kVVvwsGvJ4I/C821N/NkUbmQperu5V3x3IuHPkk1voiUh/4GXCnqm4Ukey3\na7milGsuJp+ryblw5FMVcC82DUsT4GUR6QJ8F2VQzjlXyvIZNvB24PakVYtE5KDoQnLOudKWbfrr\nU1T1MRG5KMMuf4kopprhV7+KOwLnXEyylVgTMyM1S7OtxtWxht453xOrc7VWtumv7w2eTlbVV5O3\nicjASKOKQeid81cEI9u3bVv9cznnSko+vQLuwO7AyrWupIXe1ei44+yxiIYNdM4VRrY61gHAvkC7\nlHrW5kDdqAMrtJrQ1WjkSJg8GaKYd3HrreHKK+Hcc8M/t3M1TbbuVg2ApljybZa0fIdNz+JCIpJ9\nKYbq2vfegzPPjDeGDz9M//nk+lEwfz4cfbTVyrRoAb/8ZVlNTcKKFXDSSdC8uc08ceaZsDpp2szv\nv4fTT4ddd7Upfw47LPS352qQbHWs04BpIvKQqlacHc+FZunSsufPPQdnn11+XaNGhY8pVbt2cUdQ\nZupU6Nmz7HXr1pn3/e47OOQQ6N8fpk2ziSdHjYJjj4WXXy6buueEE2DlSpg0CTZutMR65pnw5JO2\nfdMmG3D9/PNhwgTYvDmyt+dqgHxuEFgrIjeLyEQReSmxRB5ZLbL11mVLy5YV17VoYesuugh69LBE\n260bXHEFbNhQ8XyPPGLbmze3qt5VSWOqnHiirbv2Wpu6u2VL+P3vLVGMGmWluo4d4bbbKsZ45532\nfP16S0gPPmgJqnFj2H57GDcu/M8mnTZtyn8+DRpk3nfqVPjiC3joIejVC3bf3Z5Pnw6vBk2ys2fD\nlCnwwAOWgPfbD+66C8aPh88+s31atoS777Y/eqU2m4UrvHwS61jgQ2yeq2uwu7DejDCmmuG3v7Ul\nRC1aWNL84AO4/XZLbDenjNjw0Ufw7LO2TJwIM2fC1VeX3+c//4Hly63ENnq0JdkjjrD5xGbOtLra\niy6CuXOzx3PVVTB0KLz7LhxzDJx2WvmSdqoHHrApxrMtTz2V+fiEIUPsj8L++8O//pV93x9+gDp1\nyiffhg3tD8P06fZ65kwr9fbtW7bPQQeVfR7OVVY+vQLaqOoDIjIiqXrAhw3MZejQ0E951VVlz7t2\nhU8+gfvvt5Jrgqol3KZN7fWZZ8I//1n+PO3aWYm0Th37SX3zzfYz+JprbPuIEfDHP1ppr3fvzPGc\ndZaVgAFuvBHuuMNKgcdlqIE//ng48MDs73HrrTNva9ECbr0VBgyw2J9+2krM48ZlvubAgZZUR46E\n666zkvnFF9vnlPgj8OWXlqiT1a1rpfcvv8wer3Pp5JNYNwaPS0XkCOALYNvoQqohPv/cHrfbLrRT\nPv64Ja+FC60xZdOmij+Du3cvS6oAnTrBsmXl9+nd2xJTQocOlqiTtW9f8bhUu+1W9nyrrazUl+2Y\n5s1tqaqOHeGCC8pe77UXfPUV3HRT5sTaqZMl3uHDy/6YnHaafQZ1k/q2pJsmXTWm6dNdycunKuA6\nEWkBXAxcAtwPXFjdC4tIXRGZLSLPVfdcRenUU20JybRpdrqjj7YGrtmzrW40tY41dXpwEdiyJfc+\n+RyXqrLHhFUVkKx/f1iwIPs+Q4ZYXemXX1rr/333wZIlVg8NVkr+6qvyx2zeDF9/XbEk61w+8hmE\nJZH4vgXCHHxlBPAB1i/W5TB9ujUQjRxZti7RsFIqqlsVkM6cOfk3JiV6NkycaL0FjjzSXg8YYEn0\n7bdhz+C2l2nTrHfAgAGVi8c5yCOxishNwHXAOuAFYHfgAlV9rKoXFZFtsTm1rgcyDfLikuy4I3z6\nqf2s7dsXnn++8qW7uFW3KiBR4t19d3s9YYKVPu+4o2yf6dPh17+GJ54o2+/++63/aZs2Vgc8YoT9\ngUqUWPv0gUGD7Lh77rGEOny4VS8kV5HMm2fbVq60Pq5z5ljVQnKViHOQXx3roap6mYgcCywBjgem\nAFVOrMBtwGWkH+DFpXHccfDaa/Yf/ocf4PDDrTHrssvijqxwVK2Hw6JFVg3Rsyc89lhZAxpY3fP8\n+bBuXdm699+3Br5Vq6wO+tpr4bzzyp/7ySftrrLBgy1Z/vzn1mMi2eDB5asM+vSxuuX160N/q67E\niWr2gapEZJ6q9hKR+4CnVPUFEXlHVXev0gVFjgSGqOpwERkEXKKqR6bZbxgwDKBz5859Fy0qsXsU\nBg2yRx8rwLmiJSKzVLVf2OfNp8T6rIh8iFUFDBeRdkB1/kYPBI4WkSFAQ6C5iDymqqck76SqY4Ax\nAP369Su9YQovvjjuCJxzMclZYgUQkVbAd6q6OZittZmqVruHX7YSa7J+/frpW1GMLOKcq9XiLLGi\nqquSnq8B1oQdSI0zf749Jt/U7pyrFfJKrFFR1anA1DhjiMz//I89eh2rc7VOPjcIOOecq4SciVXM\nKSLy++B1ZxHZO/rQnHOuNOVTYr0LGACcFLxeDfw1soicc67E5VPH2l9V9xSR2WANWSKSZQRM55yr\n3fIa3UpE6hJMeR30Y80xPIfjyivjjsA5F5N8EuvtwD+B9iJyPTbflWeNXA4+OO4InHMxyTZLazdV\n/VRVx4rILGAwIMDPVPWDgkVYqubMscc99og3DudcwWUrsY4H+orIi6o6GJuexeUrMSKz92N1rtbJ\nlljriMhVwI4iUmFoP1X9S3RhOedc6crW3epEbLCVetjwfqmLc865NDKWWFV1PvAnEXlXVf9dwJic\nc66kZWu8OiWYJWAXEdk5dbtXBTjnXHrZ6libBI9N02wrvfFRC+2GG+KOwDkXk2xVAfcGj9ekbhOR\nCyoe4crZd9+4I3DOxaSqo1v5BIC5zJhhi3Ou1qnqeKwSahQ10ahR9uj9WJ2rdapaYvU6VuecyyBb\nr4DVpE+gAjSKLCLnnCtx2Rqv/CYA55yrAp+axTnnQhbrZII12m23xR2Bcy4mnlij4sMFOldreVVA\nVCZPtsU5V+t4iTUq111njz6TgHO1TsFLrCKynYhMEZEPRGSeiIwodAzOORelOEqsm4CLVfVtEWkG\nzBKRSar6fgyxOOdc6ApeYlXVpar6dvB8NfABsE2h43DOuajE2nglIl2BPsDrabYNE5G3ROSt5cuX\nFzo055yrstgar0SkKfAUcIGqfpe6XVXHAGMA+vXrV3pjE9x7b9wROOdiEktiFZH6WFIdq6pPxxFD\n5Hr2jDsC51xM4ugVIMADwAc1enqXZ5+1xTlX68RRYh0InAq8JyJzgnWjVHViDLFE55Zb7PGoo+KN\nwzlXcAVPrKo6HR8o2zlXg/ktrc45FzJPrM45FzJPrM45FzIfhCUqjz4adwTOuZh4Yo3KdtvFHYFz\nLiZeFRCVJ56wxTlX63iJNSp3322PQ4fGG4dzruC8xOqccyHzxOqccyHzxOqccyHzxOqccyHzxquo\njB8fdwTOuZh4Yo1K27ZxR+Cci4lXBUTloYdscc7VOp5Yo+KJ1blayxOrc86FzBOrc86FzBOrc86F\nzBOrc86FzLtbRWVizZob0TmXP0+sUWncOO4InHMx8aqAqNx1ly3OuVrHE2tUxo2zxTlX68SSWEXk\nMBGZLyIfi8jIOGJwzrmoFDyxikhd4K/A4cAuwEkiskuh43DOuajEUWLdG/hYVReq6gbgH8AxMcTh\nnHORiCOxbgN8nvR6SbDOOedqhDi6W0madVphJ5FhwLDg5Q8iMjfSqKLRFpEVcQdRRW2BUoy9VOOG\n0o29VOMG6BnFSeNIrEuA7ZJebwt8kbqTqo4BxgCIyFuq2q8w4YWnVOOG0o29VOOG0o29VOMGiz2K\n88ZRFfAm0ENEuolIA+BE4JkY4nDOuUgUvMSqqptE5Fzg/4C6wN9UdV6h43DOuajEckurqk4EKnMz\n/ZioYolYqcYNpRt7qcYNpRt7qcYNEcUuqhXajZxzzlWD39LqnHMhK+rEWiy3vorI30RkWXKXLxFp\nLSKTRGRB8NgqWC8icnsQ87sismfSMacH+y8QkdOT1vcVkfeCY24XkXRd0qoS93YiMkVEPhCReSIy\nohRiF5GGIvKGiLwTxH1NsL6biLwexPBE0PiJiGwVvP442N416VyXB+vni8hPk9ZH+t0SkboiMltE\nniuV2EXks+Dfck6itbzYvytJ524pIuNF5MPg+z4g1thVtSgXrGHrE6A70AB4B9glplgOAPYE5iat\nuwkYGTwfCfwpeD4E+DfWX3cf4PVgfWtgYfDYKnjeKtj2BjAgOObfwOEhxd0R2DN43gz4CLuNuKhj\nD87VNHheH3g9iGcccGKw/h7gt8Hz4cA9wfMTgSeC57sE35utgG7B96luIb5bwEXA34HngtdFHzvw\nGdA2ZV1Rf1eS4nwY+HXwvAHQMs7YC56kKvFBDQD+L+n15cDlMcbTlfKJdT7QMXjeEZgfPL8XOCl1\nP+Ak4N6k9fcG6zoCHyatL7dfyO/hX8AhpRQ70Bh4G+iPdUKvl/r9wHqYDAie1wv2k9TvTGK/qL9b\nWN/sF4GfAM8FsRR97KRPrEX/XQGaA58StBkVQ+zFXBVQ7Le+dlDVpQDBY/tgfaa4s61fkmZ9qIKf\nmH2w0l/Rxx78lJ4DLAMmYaUcVrkOAAAF2ElEQVS0b1R1U5pr/RhfsP1boE0V3k9YbgMuA7YEr9uU\nSOwK/EdEZond+Qgl8F3BSu/LgQeD6pf7RaRJnLEXc2LN69bXIpQp7squDy8gkabAU8AFqvpdtl0z\nxFLw2FV1s6rugZX+9gZ2znKtoolbRI4ElqnqrOTVWa5XNLEDA1V1T2zkuXNE5IAs+xZT3PWwqrq7\nVbUPsAb76Z9J5LEXc2LN69bXGH0lIh0BgsdlwfpMcWdbv22a9aEQkfpYUh2rqk+XUuwAqvoNMBWr\nC2spIom+18nX+jG+YHsLYGWOuKP6bg0EjhaRz7CR236ClWCLPnZV/SJ4XAb8E/uDVgrflSXAElV9\nPXg9Hku08cUeVr1S2Av2V2ghVnGfqKTvFWM8XSlfx3oz5SvGbwqeH0H5ivE3gvWtsXqgVsHyKdA6\n2PZmsG+iYnxISDEL8AhwW8r6oo4daAe0DJ43Al4BjgSepHwD0PDg+TmUbwAaFzzvRfkGoIVY409B\nvlvAIMoar4o6dqAJ0Czp+QzgsGL/riTF/wrQM3h+dRB3bLHHkqQq8WENwVqyPwGuiDGOx4GlwEbs\nr9dZWD3Yi8CC4DHxDyDYQN6fAO8B/ZLOcybwcbCckbS+HzA3OOZOUirhqxH3fthPlneBOcEypNhj\nB3YDZgdxzwV+H6zvjrXOfowlqq2C9Q2D1x8H27snneuKILb5JLXkFuK7RfnEWtSxB/G9EyzzEuct\n9u9K0rn3AN4KvjMTsMQYW+x+55VzzoWsmOtYnXOuJHlidc65kHlidc65kHlidc65kHlidc65kHli\nddUiIh1E5O8isjC4FXKmiBwbbBskIt8GtxnOF5GXgzuTEsdeLSL/DUZTmisiR8f3TipHRCYGIyq1\nFJHhccfjiosnVldlwdBpE4CXVbW7qvbFOrkn36Xyiqr2UdWewPnAnSIyOGn7rWq3rh4P/E1EQvtO\nBsPDRfIdV9UhaneFtcRGqHLuR55YXXX8BNigqvckVqjqIlW9I93OqjoH+ANwbpptHwCbsKmUfxSU\nah8VkZeCMTLPTtp2qYi8GYypmRiztWswHudd2KhY26Wcby8RmSE21usbItIsOOYVEXk7WPYN9h0U\nlLL/KSLvi8g9iUQtNnZpW+CPwPZBqftmEWkqIi8G53lPRI6pwufqSlwsc165GqMXlrwq423g0tSV\nItIfGw1qeZpjdsNuJ2wCzBaR54HeQA/sfnYBngkGDVmMzRV/hqqWK0mKDS79BDBUVd8UkebAOuwe\n8kNUdb2I9MDutEtM57w3NjbqIuAF4OfYvegJI4HeQak7cb//sar6XZB4XxORZ9TvxKlVPLG60IjI\nX7HbaDeo6l6Zdkt5faGInAKsxhJeugT0L1VdB6wTkSlYstsPOBS79RWgKZZoFwOLVPW1NOfpCSxV\n1TcBNBjpKxhi7k4R2QPYDOyYdMwbqrow2O/x4LrjyUyAG4IkvwUbXq4D8GWWY1wN44nVVcc84BeJ\nF6p6TlBKeyvLMX2AD5Je36qqf85xndRkmxjK7UZVvTd5QzDu7JoM55E05wK4EPgK2B2rHluf49rZ\nnIwNItNXVTcGo1w1zHGMq2G8jtVVx0tAQxH5bdK6xpl2FpHdgN9hA2BUxjFi82C1wQY2eRMbUf/M\nYKxZRGQbEWmf5RwAHwKdRGSv4JhmSUP1LVXVLcCp2ChSCXuLzVdVBxgKTE8552ps2puEFth4rBtF\n5CCgSyXfq6sBvMTqqkxVVUR+BtwqIpdh9aNrgP9N2m1/EZmNJdxlwPmq+mIlL/UG8DzQGbhWbdzQ\nL0RkZ2CmdU7ge+AU7Kd8png3iMhQ4A4RaYTVrx4M3AU8JSLHA1MoX+KdiTVQ7Qq8jI1TmnzOr0Xk\nVbGJJv8N/Al4VmwyvjlYMne1jI9u5YqaiFwNfJ9HdUEU1x4EXKKqR+ba17lkXhXgnHMh8xKrc86F\nzEuszjkXMk+szjkXMk+szjkXMk+szjkXMk+szjkXMk+szjkXsv8HphpZmimU+F4AAAAASUVORK5C\nYII=\n", 1608 | "text/plain": [ 1609 | "" 1610 | ] 1611 | }, 1612 | "metadata": {}, 1613 | "output_type": "display_data" 1614 | } 1615 | ], 1616 | "source": [ 1617 | "# Grafiğin Üretilmesi\n", 1618 | "\n", 1619 | "country_stats_2017.plot(kind=\"scatter\", x=\"GDP per capita\", y=\"Life satisfaction\", figsize=(5,3), s=2)\n", 1620 | "X=np.linspace(0,60000,1000)\n", 1621 | "plt.plot(X, t0 + t1*X, \"b\")\n", 1622 | "plt.axis([0, 60000, 0, 10])\n", 1623 | "plt.text(5000, 9.0, r\"$\\beta_0 = 5.66$\", fontsize=14, color=\"b\")\n", 1624 | "plt.text(5000, 7.6, r\"$\\beta_1 = 2.45 \\times 10^{-5}$\", fontsize=14, color=\"b\")\n", 1625 | "plt.plot([turkey_gdp_per_capita_2017, turkey_gdp_per_capita_2017], [0, turkey_predicted_life_satisfaction_2017], \"r--\")\n", 1626 | "plt.text(12000, 4.0, r\"Tahmin = 5.901\", fontsize=14, color=\"b\")\n", 1627 | "plt.plot(turkey_gdp_per_capita_2017, turkey_predicted_life_satisfaction_2017, \"ro\")\n", 1628 | "plt.show()" 1629 | ] 1630 | }, 1631 | { 1632 | "cell_type": "code", 1633 | "execution_count": null, 1634 | "metadata": { 1635 | "collapsed": true 1636 | }, 1637 | "outputs": [], 1638 | "source": [] 1639 | } 1640 | ], 1641 | "metadata": { 1642 | "kernelspec": { 1643 | "display_name": "Python 3", 1644 | "language": "python", 1645 | "name": "python3" 1646 | }, 1647 | "language_info": { 1648 | "codemirror_mode": { 1649 | "name": "ipython", 1650 | "version": 3 1651 | }, 1652 | "file_extension": ".py", 1653 | "mimetype": "text/x-python", 1654 | "name": "python", 1655 | "nbconvert_exporter": "python", 1656 | "pygments_lexer": "ipython3", 1657 | "version": "3.6.3" 1658 | } 1659 | }, 1660 | "nbformat": 4, 1661 | "nbformat_minor": 2 1662 | } 1663 | -------------------------------------------------------------------------------- /decisiontree_kararagaci.py: -------------------------------------------------------------------------------- 1 | import numpy as np 2 | import pandas as pd 3 | from sklearn import tree 4 | from sklearn import metrics 5 | from sklearn import datasets 6 | 7 | from matplotlib.colors import ListedColormap 8 | import matplotlib.pyplot as plt 9 | 10 | import warnings 11 | warnings.filterwarnings("ignore") 12 | 13 | # Bu çalışma kapsamında "iris" veri seti kullanılacak ! 14 | 15 | iris = datasets.load_iris() 16 | 17 | X = iris.data 18 | y = iris.target 19 | 20 | print('Class labels:', np.unique(y)) 21 | 22 | # Verimizi normalize ediyoruz ! 23 | 24 | from sklearn.preprocessing import StandardScaler 25 | 26 | ss = StandardScaler() 27 | ss.fit(X) 28 | X = ss.transform(X) 29 | 30 | # Veri setimizi train ve test diye ikiye ayırıyoruz ! 31 | 32 | from sklearn.cross_validation import train_test_split 33 | X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0) 34 | 35 | # Karar Ağacı algoritması ve elde edilen sonuçlar ! 36 | 37 | dtree = tree.DecisionTreeClassifier(criterion = 'entropy', random_state=0) 38 | dtree.fit(X_train, y_train) 39 | 40 | # generate evaluation metrics 41 | print("Train - Accuracy :", metrics.accuracy_score(y_train, dtree.predict(X_train))) 42 | print("Train - Confusion matrix :",metrics.confusion_matrix(y_train, dtree.predict(X_train))) 43 | print("Train - classification report :", metrics.classification_report(y_train, dtree.predict(X_train))) 44 | print("\n") 45 | print("Test - Accuracy :", metrics.accuracy_score(y_test, dtree.predict(X_test))) 46 | print("Test - Confusion matrix :",metrics.confusion_matrix(y_test, dtree.predict(X_test))) 47 | print("Test - classification report :", metrics.classification_report(y_test, dtree.predict(X_test))) 48 | 49 | # Karar ağacının oluşturulması ! 50 | 51 | import graphviz 52 | dot_data = tree.export_graphviz(dtree, out_file=None,feature_names=iris.feature_names, 53 | class_names=iris.target_names, filled=True, rounded=True, 54 | special_characters=True) 55 | graph = graphviz.Source(dot_data) 56 | graph.render("iris") 57 | 58 | dot_data = tree.export_graphviz(dtree, out_file=None, 59 | feature_names=iris.feature_names, 60 | class_names=iris.target_names, 61 | filled=True, rounded=True, 62 | special_characters=True) 63 | graph = graphviz.Source(dot_data) 64 | graph 65 | 66 | 67 | 68 | -------------------------------------------------------------------------------- /gdp_per_capita_2017.xlsx: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kaanulgen/Data-science-with-python/da5553317a1e71634a934d107ddd850392ae5e25/gdp_per_capita_2017.xlsx -------------------------------------------------------------------------------- /iris.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kaanulgen/Data-science-with-python/da5553317a1e71634a934d107ddd850392ae5e25/iris.pdf -------------------------------------------------------------------------------- /kmeans.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": {}, 7 | "outputs": [], 8 | "source": [ 9 | "import matplotlib.pyplot as plt\n", 10 | "from sklearn import datasets\n", 11 | "from sklearn.cluster import KMeans\n", 12 | "import sklearn.metrics as sm\n", 13 | " \n", 14 | "import pandas as pd\n", 15 | "import numpy as np" 16 | ] 17 | }, 18 | { 19 | "cell_type": "code", 20 | "execution_count": 2, 21 | "metadata": {}, 22 | "outputs": [], 23 | "source": [ 24 | "iris = datasets.load_iris()" 25 | ] 26 | }, 27 | { 28 | "cell_type": "code", 29 | "execution_count": 3, 30 | "metadata": {}, 31 | "outputs": [], 32 | "source": [ 33 | "x = pd.DataFrame(iris.data)\n", 34 | "x.columns = ['Sepal_Length','Sepal_Width','Petal_Length','Petal_Width']\n", 35 | " \n", 36 | "y = pd.DataFrame(iris.target)\n", 37 | "y.columns = ['Targets']" 38 | ] 39 | }, 40 | { 41 | "cell_type": "code", 42 | "execution_count": 4, 43 | "metadata": {}, 44 | "outputs": [ 45 | { 46 | "data": { 47 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAzYAAAGrCAYAAAASKAL1AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzs3Xl8VNX9//HXmckksyRhCasQQEUE\nUQFBwYqyiyKiIi4oWqug1Vb9SsVvrVq/AqL+pFYrba1oWy0WcMMFUXEBBFRkEaVWwZVVFgVZkpBt\nzu+Pm0AmMxNmwiSTSd7Px2MeZs49c+7nBjPnfu659xxjrUVERERERCSVuZIdgIiIiIiIyOFSYiMi\nIiIiIilPiY2IiIiIiKQ8JTYiIiIiIpLylNiIiIiIiEjKU2IjIiIiIiIpT4mNSBIYY74zxgxOdhwi\nIiLljDEdjDHWGJOW7FhEqkOJjTR4xpi+xpj3jTG7jTE7jTFLjTEnJzsuERGRcmUXxAqMMfuMMduM\nMf8wxmQe4jNXGWOW1FaMIsmmxEYaNGNMNjAXeBRoCrQB7gEKkxmXiIhIBOdaazOBk4CTgTuTHI9I\nnaLERhq6TgDW2pnW2lJrbYG1dr619lMAY8zVxpjPjTG7jDFvGmPal3+wbLj+JmPMN8aYH4wxDxpj\nXGXbjjbGvGuM+bFs2zPGmMbJOUQREalPrLWbgdeB440xjYwxTxpjvjfGbDbGTDbGuI0xXYDHgFPL\nRnl+AjDGnGOM+dgYs8cYs9EY839JPBSRhFJiIw3dOqDUGPOUMeZsY0yT8g3GmPOB3wEjgebAYmBm\npc9fAPTCuXp2HnB1+ceB+4AjgC5ALvB/NXcYIiLSUBhjcoFhwMfAU0AJ0BHoAZwJjLXWfg78EvjA\nWptprS2/uJYHXAk0Bs4Bri/r70RSnhIbadCstXuAvoAFpgM7jDGvGGNaAtcB91lrP7fWlgBTgO4V\nR22AB6y1O621G4CHgdFl7X5lrX3LWltord0BPAT0q8VDExGR+uelspGXJcAi4AngbOB/rLV51trt\nwB+BS6M1YK1daK1dY60Nlt2dMBP1T1JPaNYLafDKrmpdBWCM6QzMwElS2gOPGGP+UKG6wXkOZ33Z\n+40Vtq3HGaHBGNMC+BNwOpCFcxFhV40dhIiINATnW2vfLn9jjDkF8ADfG2PKi12E9k0hjDG9gfuB\n44F0IAN4rqYCFqlNGrERqcBa+wXwT5wv/I3AddbaxhVePmvt+xU+klvh53bAlrKf78MZBTrRWpsN\njMFJikRERBJlI85kN80q9FPZ1tquZdtthM/8G3gFyLXWNsJ5Dkf9k9QLSmykQTPGdDbG/MYY07bs\nfS7O7WQf4nzZ326M6Vq2rZEx5qJKTUwwxjQp+9zNwOyy8ixgH/CTMaYNMKEWDkdERBoQa+33wHzg\nD8aYbGOMq2zymvJby7YBbY0x6RU+lgXstNbuLxvxuayWwxapMUpspKHbC/QGlhlj8nASmv8Av7HW\nzgEeAGYZY/aUlZ9d6fMvAyuB1cBrwJNl5ffgTCiwu6z8xRo+DhERaZiuxLml7L84tzw/D7Qu2/Yu\n8Bmw1RjzQ1nZDcBEY8xe4PfAs7UbrkjNMdZGGqUUkUMxxljgGGvtV8mORURERKSh04iNiIiIiIik\nPCU2IiIiIiKS8nQrmoiIiIiIpDyN2IiIiIiISMpL2gKdzZo1sx06dEjW7kVEBFi5cuUP1trmyY6j\nLlI/JSKSfPH0UzEnNsYYN7AC2GytHV5p21XAg8DmsqJp1tonqmqvQ4cOrFixItbdi4hIDTDGrE92\nDHWV+ikRkeSLp5+KZ8TmZuBzIDvK9tnW2l/H0Z6IiIiIiEhCxPSMTdmq7OcAVY7CiIiIiIiIJEOs\nkwc8DNwGBKuoc6Ex5lNjzPPGmNxIFYwx1xpjVhhjVuzYsSPeWEVERERERCI6ZGJjjBkObLfWrqyi\n2qtAB2vticDbwFORKllrH7fW9rLW9mreXM+qioiIiIhIYsQyYnMaMMIY8x0wCxhojJlRsYK19kdr\nbWHZ2+lAz4RGKSIiIiIiUoVDJjbW2tuttW2ttR2AS4F3rbVjKtYxxrSu8HYEziQDIiIiIiIitaLa\n69gYYyYCK6y1rwA3GWNGACXATuCqxIQnIiIiIiJyaHElNtbahcDCsp9/X6H8duD2RAYmIiIiIiIS\nq1hnRRMREREREamzlNiIiIiIiEjKU2IjIiIiIiIpT4mNiIiIiIikPCU2IiIiIiKS8pTYSN23dy/8\n9rfQpg20bAk33ADbtyc7KhEREZEQ1lqeeOIJunTpQk5ODueccw4ff/xxXG2sWrWKYcOGkZOTQ5cu\nXXjyyScpKChg0qRJtGvXjubNm/OLX/yCjRs31tBRpC5jrU3Kjnv16mVXrFiRlH1LCikqgp494csv\nobDQKfN4oEUL+M9/oHHj5MYnkuKMMSuttb2SHcfhMMbkAk8DrYAg8Li19pFKdfoDLwPflhW9aK2d\nWFW76qdEJF433ngjf//738nPzwfAGIPP52PBggWccsoph/z8smXLGDhw4IHPA/h8Ppo0acKuXbso\nKCgAwO1207hxY9asWUPr1q1r5mDqiHj6KY3YSN324ovw3XcHkxqA4mLYuRMefzxpYYlInVIC/MZa\n2wXoA/zKGHNchHqLrbXdy15VJjUiIvHasmUL06dPD0lKrLXk5+czfvz4mNoYP358yOcBCgoK2LJl\ny4GkBqC0tJS9e/fy4IMPJib4ekKJjdRtb7wB+/aFlxcUwGuv1X48IlLnWGu/t9auKvt5L/A50Ca5\nUYlIQ/P++++TkZERcdtHH30UUxux1gMoKirijTfeiLl+Q6DERuq2Fi0gLS36NhGRCowxHYAewLII\nm081xnxijHndGNM1yuevNcasMMas2LFjRw1GKiL1TdOmTYn2iEdWVlZMbWRmZsa1z2bNmsVVv75T\nYiN12zXXOM/UVOb3w69/XfvxiEidZYzJBF4A/sdau6fS5lVAe2ttN+BR4KVIbVhrH7fW9rLW9mre\nvHnNBiwi9Uq/fv3w+Xxh5V6vl2uvvTamNsaNG4fX642pbiAQ4KabboorxvpOiY3UbcceC9OmgdcL\nmZlOQuP1wu23Q79+yY5OROoIY4wHJ6l5xlr7YuXt1to91tp9ZT/PAzzGGF3qFJGEcbvdvPnmm+Tk\n5JCVlYXP58Pv93PGGWfwf//3fzG1MXHiRPr27Yvf78fn85GVlUVOTg4PPfQQfr+fzMxM/H4/Xq+X\nsWPHcuGFF9bsQaUYzYomqeHHH+HVV6GkBM4+25n6WUQOWz2ZFc0ATwE7rbX/E6VOK2CbtdYaY04B\nnscZwYnaCaqfEpHqKCwsZN68eWzdupXevXtz0kknxd3GypUr+eijj2jVqhXnnHMO6enp7N69m1df\nfZW8vDzOPPNMjjzyyBqIvu6Jp59SYiMi0oDVk8SmL7AYWIMz3TPA74B2ANbax4wxvwaux5lBrQAY\nb619v6p21U+JiCRfPP1UlKeyRUREUoO1dglgDlFnGjCtdiISEZFk0DM2IiIiIiKS8pTYiIiIiIhI\nylNiIyIiIiIiKU+JjYiIiIiIpDwlNiIiIiJSL+Tl5fHEE09w3XXXMXXqVHbs2FFj+yopKWHy5Mmc\ncMIJ9OnTh5dffrnG9iWx0axoIiIiIpLyNmzYQO/evdm7dy95eXn4fD4mTpzI/Pnz6dOnT0L3lZ+f\nT25uLjt37jxQdv755zN8+HBeffXVhO5LYqcRGxERERFJeWPHjmXHjh3k5eUBUFBQwN69exk1ahSJ\nXrfxmmuuCUlqys2dO5eFCxcmdF8SOyU2IiIiIpLSCgoKWLBgAaWlpWHbdu/ezerVqxO6v6puO3vg\ngQcSui+JnRIbEREREUlpkRKaci6Xi6KiooTuLxgMRt1WWFiY0H1J7JTYiIiIiEhKy8zM5MQTT4y4\nzeVycdJJJyV0fz/72c+ibhs3blxC9yWxU2IjIiIiIinv8ccfJzMzE4/HAzgJjd/vZ/r06QfKEuXp\np5+O2OYxxxzD6NGjE7oviZ0SGxERERFJeT179uTTTz/luuuu4+STT2b06NEsWbKEUaNGJXxfbdu2\n5bvvvmPEiBFkZmaSk5PDhAkT+OKLLxK+L4mdpnsWERERkXrhyCOP5NFHH62VfR1xxBFau6aO0YiN\niIiIiIikPCU2IiIiIiKS8pTYiIiIiIhIylNiIyIiIiIiKU+JjYiIiIiIpDwlNlKzrIVPPoFFi2Df\nvmRHIyIiIvXc1q1bWbBgAd98882BstLSUj788EOWLl1KUVHRgfKNGzeyYMECNm7ceKCsqKiIpUuX\nsmzZMkpLS6sVwxdffMHChQvZuXNnlfWstXz66acsWrSIvXv3HrLuypUrWbx4MQUFBdWKqzbt2bOH\nRYsW8emnn2KtrZV9arpnqTlffAHnngvffw9uNxQXwz33wIQJyY5MRERE6pni4mLGjh3L7Nmz8Xq9\nFBUV0adPH26++WbGjh1LYWEhxhhcLhd/+ctfmDVrFvPnzycjI4PCwkLOOussLrroIm644QastVhr\n8Xq9PPvss/Tv3z+mGDZv3sy5557L2rVr8Xg8FBYWcsMNNzB16lSMMSF1161bx/Dhw9myZQtpaWkU\nFRVx1113cfvtt4e1u3LlSs4//3x++uknXC4XwWCQhx56iHHjxiXiV5dw9913H5MmTSI9PZ2SkhLa\ntGnDq6++SqdOnWp0v6a2MqjKevXqZVesWJGUfUstKCqC3FzYscMZtSnn98OMGXDBBcmLTUQOMMas\ntNb2SnYcdZH6KZHUMmHCBP785z+HjGZ4PB5KS0sJBoMhdd1uN263O2T0Jj09ndLS0rBRmkAgwNq1\na2nTpk2V+7fW0rVrV9atWxfSht/vZ8qUKdx8880HyoqLi2nXrh3btm0LGc3w+/3885//5KKLLjpQ\ntmfPHtq1a8fu3btD9uf3+5k3bx79+vWrMq7a9txzz3HVVVeRn59/oMwYQ8uWLdmwYQMejyeu9uLp\np3QrmtSMV1+FgoLQpAYgPx+mTElOTCIiIlIvlZSU8Ne//jXsFq3i4uKwpAacW9MqJjXg3IIW6daz\nkpISnnzyyUPG8NFHH7Fx48awNvLz83nwwQdDyubNm0deXl7YLVr5+flMqXSeNGvWLEpKSsL2l5+f\nzwMPPHDIuGrbvffeG5LUgJP05eXl8frrr9fovpXYSM3YsAEKCyNvq3Afq4iIiMjh2rdvH8XFxTXS\ndmFhIV9++eUh661fvx6XK/Kp9fbt20Peb9iwIWq8mzZtCnn/3XffkZeXF7Hut99+e8i4alvl+MsV\nFxezYcOGGt23EhupGd27Q3p6eLkx0KNH7ccjIiIi9VZ2djaNGjWqkbYDgQCnnnrqIet17949arJS\n+dmS7t2743a7I9bt1q1byPuTTjqJzMzMsHput5tTTjnlkHHVtu7du0csT0tLi7otUZTYSM3o3x+O\nOSY8ufH5nAkERERERBLE5XIxefJk/H5/SLnP58Pr9YaMpBhjyMjIwOfzhdT1er1kZGSElLndbgKB\nAFdcccUhY+jUqRMDBw7E6/WGxXD//feHlPXt25cuXbqQXuk8yefzMWnSpJCy8847jxYtWpCWFjrn\nl9frjTjRQLJNmjQp7N8hIyODLl26cNppp9XovpXYSM0wBhYsgEsugYwMZ1a0446DuXOhDl5dEBER\nkdR27bXX8sgjj9CqVSvS0tLIysri1ltv5T//+Q9DhgwhLS0Nt9tN3759WblyJRMnTqRp06akpaXR\ntGlTJk+ezIoVK+jbty9ut5u0tDSGDBnCRx99RFZWVkwxPP/884wbNw6/34/b7aZDhw7MmDGD4cOH\nh9QzxvDOO+8wevRoMjIycLvddO7cmVdeeSVsdMjj8fDBBx8wYsQIPB4Pbrebnj178s4779C5c+eE\n/f4S5dRTT+Xll1+mc+fOuN1uMjIyuPTSS3n77bfDZoZLNM2KJjWvpMSZ6rnSlRERST7Nihad+imR\n1GStJT8/H5/PFzJSU1RUhLU2ZFSmvK7f7w856S6fGrryiEqsSktLKSwsxOfzHfJkvqSkhOLi4rAR\npEiKi4spLS0NGxWqqwoKCvB4PGGjTfGIp5/SOjZS89LSnJeIiIhIDTPGEAgEwsojJSnR6la+JS1e\nbrc77HasaNLS0mI+8fd4PHFPl5xMsSRriaRb0UREREREJOUpsRERERERkZSnxEZERERERFKeEhsR\nEREREUl5SmxERERERCTlKbFpaKyFf/4TOnZ0pl8+8UR49dVkRyUiIiKSUtatW8d5551HIBAgJyeH\n8ePHs2/fvoh1P/74YwYPHozf76dly5bcfffdFBUV1XLEh6f8eDMzM8nJyeGWW26JerzJonVsGpop\nU+DeeyE//2CZ3w/Tp8NllyUvLhFJCq1jE536KRGJZv369XTr1o09e/ZQfi6dkZHB8ccfz0cffRSy\nfs6aNWs49dRTycvLO1Dm8/kYMGAAr732Wq3HXh0bNmzgxBNPjOl4Ey2efkojNg1JXl54UgPO+1tv\nhWAwOXGJiIiIpJD777+fvLw8Kg4QFBYWsnbtWt56662QunfccQf5lc69CgoKWLhwIatXr66VeA/X\n/fffT35+fsTjnT9/fhIjC6XEpiH573+jL5S5cyf88EPtxiMiIiKSghYsWEBJSUlY+b59+1i6dGlI\n2fvvv0+kO6SCwSDvv/9+jcWYSAsWLKC4uDisPNLxJpMSm4akRQuo6n7OrKzai0VEREQkRbVq1Spi\nuc/no2XLliFlzZo1i1jX4/HQokWLhMdWE+I53mRSYtOQtG8PPXqEj9pkZMCoUc5kAiIiIiJSpfHj\nxxMIBMLKXS4Xl156aUx13W43w4cPr7EYE6mq4x09enQSIopMiU1D88IL0KkTZGY6L78feveGv/41\n2ZGJiIiIpIQRI0Zwyy234PV6ycrKIjs7m+zsbF566SVycnJC6o4dO5YxY8YcqJuVlUVOTg7z58/H\n6/Um6Qjic+655/Kb3/wm5HizsrIiHm8yaVa0hsha+OAD+PZb6NoVundPdkQikiSaFS069VMicihb\nt25lwYIFBAIBzjzzzCoTlfXr17N06VKaNm3KoEGD8Hg8tRhpYmzdupWFCxfi9/sPebyJEk8/pcRG\nRKQBU2ITnfopEZHk03TPIiIiIiLSoCixERERERGRlKfERkREREREUp4SGxERERERSXlKbERERERE\nJOWlHbqKSAoIBuGNN2DWLHC74bLLYPBgMCbZkYmIiEiKCAaDzJs3j9mzZ+PxeBgzZgwDBgxg48aN\n/O1vf2Pt2rWceuqpXH311WRmZjJnzhzmzJlDdnY2V199Nb1792bdunU8/vjjbNiwgQEDBnDFFVeQ\nmZkZcX+ffPIJTzzxBNu3b2fYsGFccskldWJtmw0bNoQdb5MmTZId1iHFPN2zMcYNrAA2W2uHV9qW\nATwN9AR+BC6x1n5XVXuaRlMSJhiEUaNg/nzIy3PKAgEYORKeekrJjUgVNN1zdOqnRBqW0tJSzjvv\nPBYuXEhe2flEIBDgjDPOYNGiRZSUlFBUVITP58Pn85Gbm8vXX3/Nvn37cLlceL1ezjrrLN544w2K\nioooKSkhEAjQpEkTli9fTqtWrUL2N23aNP73f/+X/fv3EwwGCQQC5Obm8uGHH9KoUaNk/AoAeOed\ndzjvvPMoLi6mqKgIv9+Pz+fjww8/pGPHjrUeT01N93wz8HmUbdcAu6y1HYE/Ag/E0a7I4Xn55dCk\nBpyfX3wR3nkneXGJiIhIynjuuedCkhqAvLw8Xn/9dfLz8ykqKgKgoKCAnTt3smbNGvbt2wc4Iz35\n+fm8+OKL5OfnU1JScuDzW7du5dZbbw3Z19atW5kwYQL5+fkEg8EDdb/99lumTJlSG4cbUWlpKaNH\njyYvL+/A8ebn57Nr1y7GjRuXtLhiFVNiY4xpC5wDPBGlynnAU2U/Pw8MMkaXyaWW/OtfoUlNubw8\nmDGj9uMRERGRlPPUU0+FJDWHUp6QHEpJSQlz5swJKZs7dy5utzusbmFhIc8880zMMSTaqlWr2L9/\nf1h5MBhkyZIlFBQUJCGq2MU6YvMwcBsQ7V+wDbARwFpbAuwGcipXMsZca4xZYYxZsWPHjmqEKxJB\naWn0bTF+6YiIiEjDFmuiUh2VH/0IBoNhZbURx6Ecat+xPsKSLIdMbIwxw4Ht1tqVVVWLUBZ25Nba\nx621vay1vZo3bx5HmCJVuPxy55mayjIzYfTo2o9HREREUs6YMWMIRDqfiMLlim18wO12M3x4yOPp\nnHPOORGTiPT0dC655JKYY0i0nj174vF4wsqNMZxyyin4/f4kRBW7WP5FTgNGGGO+A2YBA40xle/v\n2QTkAhhj0oBGwM4ExikS3YUXwmmnhSY3gQAMGQJDhyYvLhEREUkZl156KaecckpIclM+eYDP5yMt\nzZlM2Ov1kp2dTceOHcPqDhkyBJ/Pd+A2M5/PR05ODn/4wx9C9tWmTRvuvvtu/H4/5U9v+P1+2rRp\nw1133VXThxpVWloaTz/9NH6/P+x4p0+fnrS4YhXzrGgAxpj+wK0RZkX7FXCCtfaXxphLgZHW2our\nakuzzUhClZY6kwXMmAEuF/z85zBihPOziESlWdGiUz8l0vCUlJTwwgsv8Mwzz+DxeLjqqqsYPnw4\n69atY9q0aQemP77hhhto1KgRM2fO5LnnniM7O5tx48YxaNAgPvnkE6ZNm8aGDRsYNGgQ48aNizpV\n8gcffMBf//pXtm/fzvDhw7nqqquiTg1dm9atW8ejjz4acrwtW7ZMSizx9FPVTmyMMROBFdbaV4wx\nXuBfQA+ckZpLrbXfVNWWOgwRkeRTYhOd+ikRkeSLp5+Ka4FOa+1CYGHZz7+vUL4fuCietkRERERE\nRBJF9+mIiIiIiEjKU2IjIiIiIiIpT4mNiIiIiIikPCU2IiIiIiKS8uKaPEAkRDAITzwB330HF18M\n3bsnOyIRERGphzZt2sTKlStp3bo1J598MsYYSkpKeO+998jPz6dv3740btwYgK+//po1a9Zw5JFH\n0q1bNwD279/Pe++9R2lpKWeccUZcC3HWJ59//jlr167l2GOPpUuXLnF//qeffmLJkiX4/X7OOOOM\nA2vd1BV1KxpJHW++Ceec46wfA3DffXDccfDJJ1DH/icXkfrNGJMLPA20AoLA49baRyrVMcAjwDAg\nH7jKWruqtmMVkfiUlpYyduxYZs6cSUZGBsFgkNatWzNp0iRuuOEGSkpKACgqKuLuu+/mgw8+YP78\n+aSnp1NSUsKxxx7LLbfcwq9+9asDC2GWlJTw17/+lSuvvDKZh1ar9uzZw4gRI1i+fDlpaWkUFxdz\nyimn8Morr5CdnR1TG1OnTuWuu+4iPT0dAI/Hw0svvUTfvn1rMvS4xLWOTSJpfYAUVlQEfv/BpKai\nkSPhhRdqPyYRqZb6sI6NMaY10Npau8oYkwWsBM631v63Qp1hwI04iU1v4BFrbe+q2lU/JZJ8U6ZM\n4d577yU/P/9AmcvlwlpL5XPYtLQ0jDEUFxcfKHO73VhrCQaDIXX9fj9LliyhR48eNXsAdcTIkSOZ\nN28ehYWFB8oyMjIYNmwYL7744iE//+abbzJy5MiQfweArKwsNmzYcGC0rCbE00/pGRuJ3yOPRE5q\nAF5+uXZjEZEGz1r7ffnoi7V2L/A50KZStfOAp63jQ6BxWUIkInXYww8/HHYyHQwGw5IacEZiKiY1\n4Iz4VE5qwLk17dFHH01ssHXUzp07w5IagMLCQubNm8euXbsO2caDDz4Y9u8Azu935syZCYv1cCmx\nkfh98030bdESHhGRWmCM6QD0AJZV2tQG2Fjh/SbCkx+MMdcaY1YYY1bs2LGjpsIUkRjt3LmzRtoN\nBoN8++23NdJ2XfPDDz/g8XgibvN4PPzwww+HbGPz5s0Ry/Pz86NuSwYlNhK/c8+Nvi0zs/biEBGp\nwBiTCbwA/I+1dk/lzRE+EnbJ11r7uLW2l7W2V/PmzWsiTBGJQ9euXWukXa/Xy4ABA2qk7bqmffv2\nB54vqswYQ/v27Q/ZxmmnnRZxooCsrCx6967yrt5apcRG4jdsGLRqFXnbfffVbiwiIoAxxoOT1Dxj\nrY10w/gmILfC+7bAltqITUSqb+rUqfh8vpAyn89Hdnb2gYfYy3m9Xrxeb1jdzMzMkJNyl8tFIBDg\n+uuvr7nA65CMjAzuvvtu/H5/SLnf7+fuu+8O+z1Gcvvtt4f9O6Snp9OuXTuGDRuW0HgPhxIbqZ4v\nv4Q+faD8CoDXC3/4A/z618mNS0QanLIZz54EPrfWPhSl2ivAlcbRB9htrf2+1oIUkWoZMmQIc+bM\n4YQTTsDlctG0aVNuu+02vvrqK8aMGYPP58PtdjNw4ECWL1/O008/TceOHXG5XLRs2ZLJkyezdu1a\nRo4cSUZGBmlpaQwbNoyPPvqIhjQqO378eB555BFyc3NxuVzk5ubypz/9ifHjx8f0+aOPPpqlS5cy\nYMAA3G43Pp+PMWPGsGTJEtxudw1HHzvNiiYi0oDVk1nR+gKLgTU40z0D/A5oB2Ctfaws+ZkGnIUz\n3fMvrLVVdkLqp0REki+efkoLjoiISEqz1i4h8jM0FetY4Fe1E5GIiCSDbkUTEREREZGUp8RGRERE\nRERSnhIbERERERFJeUpsREREREQk5Smxqa9KS5MdQeJZ67xEUlyiZqNM1qyWIiJ1hbU24ndhMBiM\nUDt6G6ki2vGKQ4lNfVJaCj/7mbO2TFqa899evVI/yfn+e7j4YmetHI8Hzj7bWUdHJIVYa3niiSfI\nzc3F7XbTpk0bHnvssbg7qJKSEiZOnEhOTg5ut5vOnTvz6quv1lDUIiJ1086dO/nFL36B3+8nLS2N\n/v378+mnn3LzzTfj8Xhwu924XC7OOeccSkpKwj5vreVvf/sbbdu2xe1207ZtW6ZPn15nk4Zdu3ZF\nPF6ppDzzq+1Xz549rSRY167lYxqhr6OPTnZk1ZeXZ23bttampR08HmOsbdLE2q1bkx2dSMymTp1q\n/X6/BQ68/H6/ve++++Jq56qrrorYzssvv1ytuIAVNkn9QF1/qZ8SqZuKi4tt586dbXp6esh3ocfj\nCXlf/urRo0dYG/fff3/E79LGacHGAAAgAElEQVQHH3wwCUdUteLiYtulS5ew483MzLRfffVVssOr\ncfH0UxqxqS9274bPPou87euvYfPm2o0nUZ55BnbtgopXW6yF/HyYNi15cYnEoaioiHvuuYf8/PyQ\n8vz8fO699172798fUzubN29m5syZEduZMGFCwuIVEanL5s6dy6ZNmygqKgopLy4ujlj/448/5ttv\nvz3wvrCwkMmTJ0f8Lp04cWJYu8n22muvsXHjxrC49u/fz3333ZekqOomJTb1xWuvVb19zpzaiSPR\nliyBvLzw8sJCWLSo9uMRqYYNGzZEvd/bGMN3330XUzurV6/G6/VG3LZu3bq47ikXEUlVy5YtY9++\nfXF95vXXXz/wc1XfudZaNmzYUN3QasRHH30U8XhLSkpYunRpEiKqu5TY1Bc9elS9vVev2okj0Y48\nEtLTw8tdLujQodbDEamOZs2aRbzHG5zRnObNm8fUTps2baK207hxY1wufaWLSP2Xm5uL3++P6zPH\nHXfcgZ+bN28edXSnuLiYZs2aHVZ8ida2bduox5ubm1vL0dRt6gXriy5dwOeLvC09Hfr0qd14EuWa\na5yJECrzeuHmm2s/HpFqaNy4MSNGjCAjIyOkPCMjg7PPPpucnJyY2unWrRtHHnkkbrc7pNzn83Hj\njTcmLF4Rkbps9OjRES/kGGMi1s/KyqJ///4H3jdt2pRhw4ZF/E4+99xzady4cULjPVyXXnpp2Pc+\ngN/v123IlSixqU/WrAlPAtxuWLkyOfEkQm4uPP88NGoE2dnOy++Hv/wFevZMdnQiMXvyySc5/fTT\n8fl8NGrUCJ/Px89+9jOeeuqpmNswxvD666/TpUsXAoEA2dnZeL1eRo0axe9///sajF5EpO5o0qQJ\nb7zxBs2aNSMrK4vs7Gx8Ph9TpkzhiCOOCKnr9/v54IMPwtr45z//yWmnnRbyndy3b1/+/ve/19Zh\nxKxJkya8/vrrNGvWjOzs7APHO3nyZIYMGZLs8OoUY5M0rV2vXr3sihUrkrLveu/JJ2H+fBg4EK67\nLtnRJEZRESxe7EwicPrpTnIjkoLWrVvH2rVrOeaYY+jcuXO12rDWsnr1ajZv3ky3bt0O61YEY8xK\na22K3qtas9RPidRt5c+Y5OXl0bdvX7KzswF47733eOutt+jevTsXXnhhlW2sXbuWdevW0alTJ449\n9tjaCLvaoh1vfRdPP6XERkSkAVNiE536KRGR5Iunn9KtaCIiIiIikvKU2IiIiIiISMpTYiMiIiIi\nIilPiY2IiIiIiKQ8JTYiIiIiIpLylNjUN+vXw4QJMGgQ3HILfPNN9dpZswbGjXPamTgRtm8Pr7N8\nOfz85zB4MPy//we7dh1e7CIiItKgjR//FwKBDng8OZx44kjWrdvCl19+yZlnnknTpk3p1KkTM2fO\njPr5LVu2cOeddzJo0CBuuOEGvvjii4TENXfuXI4//niaNm1K3759Wb16NQUFBTz++OMMHTqUiy66\niPnz5xNttuG9e/fyyCOPMGTIEMaMGcPSpUuj7uvHH39kypQpDB48mGuuuYaPP/44rliDwSBz5szh\nvPPOY9iwYfz73/+muLg4rjZSlrU2Ka+ePXtaSbAPPrA2M9Pa9HRrwVqPx9pAwNpFi+JrZ/Zsa/1+\na91upx2v19omTaz98suDdf78Z6eOy+XU8fmsbdXK2s2bE3tMIlKjgBU2Sf1AXX+pnxKpXUcdNdgC\nlV7uCGXYa665Juzza9assdnZ2TYjI8MCNi0tzfr9fjt37tzDiuvOO++MGEO7du1sIBA48D4QCNib\nbrop7PM//PCDbd++vfX7/Rawxhjr9/vtfffdF1Z3/fr1tnnz5tbr9VrAulwu6/P57N///veYYg0G\ng3bUqFE2MzMzJK5+/frZoqKiw/o9JEs8/ZQ6jPoiGLS2Uyfnn7Tyq107Z3ssCgqszcoKb8Plsnbo\nUKfOzp1OslO5TlqatVdcUXPHKCIJp8RG/ZRIXfDqqx9FTB6qen3//fchbfTp0ydivaZNm9ri4uJq\nxVVQUGCNMTHH5PP57Jo1a0LauOmmm2x6enpYXa/XazdXuiB84YUXWpfLFVbX7/fbvXv3HjLe+fPn\nhyRbFZObf/3rX9X6HSRbPP2UbkWrL7ZsgQ0bIm/74Qf4+uvY2lm6FIwJLw8G4e23nf++9RZ4POF1\nSkrgpZdij1lEREQEmDjx4bg/8+c///nAz3l5eURbULe4uJhVq1ZVK64ZM2Y4IwExKioqYs6cOSFl\nzz77LEVFRWF1XS4Xr732WkjZ3LlzCQaDYXXT0tJ49913D7n/2bNnk5eXF1ael5fHjBkzDvn5VKfE\npr5wuZxxk0isdbbHwu2Ovq084amqrVj3IyIiIlLGXdX5RxRpaWkHfjaRLsqWsdZWq/3qxGWMCYkL\nnAQmWt3K7UerG2ssbrc76u+iur+DVKKz0PqidWvo1CnytrZt4cgjY2vnZz+LPGLjdsOwYU7icuaZ\nzuhMZR4PXHJJ7DGLiIiIAPfee2vcn7nxxhsP/Oz3+znttNMiJgaBQIAePXpUK67LL7+8yqSpsrS0\nNC688MKwNjIyMsLqlpaWMnz48JCyCy64ICwxAmdCgAEDBhxy/5dddhl+vz+sPBAIcNVVVx3y86lO\niU19MmMGNGoEPp/z3uuFrCz4978jJyuRpKfDzJng9zs/g/Nzs2YwbZrzPjsbpk939lP+xxcIOAnU\nvfcm9phERESk3hs48EROOinSxVFPxMRiwoQJNG3aNKTsiSeeoEmTJgdO7DMyMggEAsyaNavKkZCq\npKenM3Xq1LByYwxdu3YlEAgAzkiL3+/nt7/9LZ0qXWi+8847Oeqoow7Udbvd+Hw+/vjHP9KiRYuQ\nug899BCtW7c+UNfj8eDz+fjnP/8ZMWGp7IwzzuCyyy4jEAgc+L0FAgEGDRrEyJEj4/8FpBgTz32D\nidSrVy8b7V5IOQw7dsDf/w6rVsGJJ8LYsdCyZfztfPcdPP64M1306afDlVc6SVJFa9c6Cc6mTTBk\nCIwe7SRBIpIyjDErrbW9kh1HXaR+SqT2PfTQC9x33yTy83fRp88wZs16AGv3c8stt7B48WJat27N\nlClTGDRoUMTP//TTT/zjH/9g2bJldOrUiWuvvZa2bdsedlzLli1jwoQJfPfdd5x00kk88sgjtGnT\nhpdffpkXX3yR7Oxsrr76ak4++eSIny8sLOTZZ5/l9ddfp0WLFowdO5bjjz8+Yt3y52EWLFhA+/bt\nGTduHB07dow5VmstixYtYsaMGRQXF3PppZcydOjQaid3yRZPP6XERkSkAVNiE536KRGR5Iunn0rN\n1E1ERERERKQCJTYiIiIiIpLylNiIiIiIiEjKU2IjIiIiIiIpT4mNiIiIiIikvPAVgCTU9u3wzjuQ\nkQFDhzrrtSTTJ584r/bt4YwzYl+fRqQe2rZtG++88w5er5ehQ4cemPdfRESSY8uWLSxYsIBAIMDQ\noUPxla+tVwPy82H+fOe/AwY4a5VLw6bEpipTpsCkSc4ilMZAMOgsdjliRO3HkpcH554Ly5ZB+Tzk\nrVo5SVe7drUfj0iSTZ48mXvvvZe0tDSMMQSDQWbNmhW2irOIiNQ8ay133HEHDz30EB6PB5fLhbWW\nF154gSFDhiR8f2++CaNGOadn1kJxMUyY4Jy2ScOldWyieestOP985zJART4ffPkltGlTu/GMGwcz\nZsD+/QfL3G444QT4+OPajUUkyebPn88FF1xAfqW/T5/Px1dffcURRxyRpMhSj9axia7O91MidchL\nL73EmDFjyMvLCyn3+/1s2LCBnJychO1r+3Y48sjwU7RAAGbOdK4DS/2hdWwS4eGHw/9iwBm1efrp\n2o2lpCQ8qQEoLYV16+CLL2o3HpEk++Mf/xiW1AAEg0FmzJiRhIhERBq2hx56KCypAWckZ9asWQnd\n18yZzulYZXl58Mc/JnRXkmKU2ESzdWvk8sJC+P772o2loMBJbiLxeJxLFyINyNYof5+FhYV8X9t/\nnyIiwrZt2yKWFxQURN1W/X2FX+stF+30TRoGJTbRDB4M6enh5ZmZ0L9/7caSmQlt20beVlgI3brV\nbjwiSTZ48GDSI/x9ZmZm0q9fvyREJCLSsA0cOJC0tPBHtzMzMzn99NMTuq++fZ1To8o8Huf0TRou\nJTbR3HILZGUdfFAfnJnROnSo/ckDjHHGVivPLOL3O0/KNWpUu/GIJNn48ePJzMzEVeHvMyMjg6OO\nOkqTB4iIJMFvf/tbAoFAyPey1+vluOOOY9CgQQnd19ChcOyxzmlZOZfLecZmwoSE7kpSjBKbaFq1\nghUr4KKLnASnaVP45S9h6VJnlrTadv758NJL0LOnk9AcfTQ8+ijcc0/txyKSZK1bt2bFihWMGjWK\nrKwscnJyuP7661myZEnEK4YiIlKz2rdvz/Llyzn//PPJzMykWbNm3HjjjSxYsCAk2UkEtxsWLoQb\nb4RmzZzRmwsugOXLITc3obuSFKNZ0UREGjDNihad+ikRkeTTrGgiIiIiItKgKLEREREREZGUp8RG\nRERERERSnhIbERERERFJeUpsREREREQk5SmxSTXBIGzaBEVF0euUlDh1Skqi1ykthT17oDZmxSsu\nhn37an4/IiIiknR5eVWfplS0b59zmpBI1jqnOKWliW03Efbt20dxog9YDlBik0rGjHHW0MnNdVal\nOvVU2L//4PZgEIYPh/R0p056Opx5ZmiCU1oKd98NTZo4k7+3aAHTptVMgvPTT3DZZc4E802aQOfO\n8M47id+PiIiIJN3770O3btC48cG1ZbZvj1z3zTfhmGOc04OsLLjiCicZOVx/+xu0bOmc4jRpAr/7\nXdXXeWvLm2++SadOnWjSpAlZWVlcccUV7N69O9lh1TuHXMfGGOMF3gMygDTgeWvt3ZXqXAU8CGwu\nK5pmrX2iqna1PkCcxoyBZ54JL+/UCdaudX4eMgTefju8zs9+5iwsCnDTTfDkk5Cff3C73w9TpsDN\nNycuXmuhRw/4/PPQyzZ+P7z7LvTunbh9iUi1aR2b6NRPicTuv/+Fk08OPb1IS4N27eCLL8DjOVi+\nZAkMHRpaNz0duneHDz8EY6oXw2OPwW9+E36KM2aMk/Aky9KlSxkyZAgFBQUHyjIyMjjxxBNZtmwZ\nproH3EAkeh2bQmCgtbYb0B04yxjTJ0K92dba7mWvKpMaiVMwCP/+d+Rt69Y5ycOePZGTGnAuoWzf\n7oygTJ8e+hcPzvt77knsmO2CBfD11+Fj0fn5zoiRiIiI1Bv33ht6Ewk4IyU7dsCrr4aW33VX+KlI\nURF89plzylIdwSD8/veRT3Gefhp++KF67SbCXXfdFZLUABQWFvL555+ztPzCsyTEIRMb6yh/QMJT\n9qqFBzPkgC1bqr5V7O23YdWqqtv48EMnCcrIiLy9oAB+/LH6MVb2ySfRb7BdvTpx+xEREZGkW77c\nSS4q27s3vNv/9NPIbZSWOqcP1bFnD0S7sysjwxk1SpZPoxxwSUkJn1T3gCWimJ6xMca4jTGrge3A\nW9baZRGqXWiM+dQY87wxJjdKO9caY1YYY1bs2LHjMMJuYFq0qHp7jx7OLWlV6doV2rYNv5xSzuWC\nRo2qF18k7dtHT6JyI/7vISIiIinqqKMilwcC0KFDaFnbtpHrejzO6UN1ZGaG3u5WUWFhck892kY5\nYI/HQ/vqHrBEFFNiY60ttdZ2B9oCpxhjjq9U5VWgg7X2ROBt4Kko7Txure1lre3VvHnzw4m7YUlP\nj/5MSpMm0LcvHHEEdOwYuU5uLhx9tFNn0KDwhMPng2uuiZ6IVMfw4U67le8b9fvhzjsTtx8RERFJ\nut/+1uniK/N44OKLQ8vuuCO8rssF2dnOszfVkZYG118f3m56Opx+evUTpkS444478FcKzBhDVlYW\nZ511VpKiqp/imhXNWvsTsBA4q1L5j9bawrK304GeCYlODlq40Jk+pKLGjWHlyoPvly8PvwzSsiVU\nfPh15kzo3x+8XmeEJiMDRo2CqVMTG296Orz3npNsBQLOt5XfD5MmwXnnJXZfIiIiklT9+8PDDzsj\nJ9nZzn/bt3ceuc3MDK178cXOczY+n3Mq4vfDscfCokVOglJdU6bAJZccPMXxep2k5tlnD+vQDttF\nF13EXXfdhc/no1GjRvj9fo499lgWLVpE2uEcsISJZVa05kCxtfYnY4wPmA88YK2dW6FOa2vt92U/\nXwD8r7U20gQDB2i2mWr67DNnVrFu3eCMMyLXWbUKFi92ZkM7+eTIddavd16dOkGrVjUXr7Xwn/84\nExf06BH+7SYiSaVZ0aJTPyUSv4IC55prZqZzqlLVhF/lz980bQrHHVf92dAq27bNmTC2Xbvw2+CS\nae/evaxevZqmTZty3HHHaTa0GMXTT8WS2JyIc2uZG2eE51lr7URjzERghbX2FWPMfcAIoATYCVxv\nra3yMS11GCIiyafEJjr1UyIiyRdPP3XI8S9r7adAjwjlv6/w8+3A7fEEKSIiIiIikihxPWMjIiIi\nIiJSFymxERERERGRlKfERkREREREUp4SGxERERERSXlKbKqSlwePPAKnngoDBjhrwASD8bfz+efO\n1MyBALRoAffeW714Fi6E4493Jnxv1w6efjryvq65Bnr2hJ//3JlqubLVq+Hyy506110HX35ZvXj+\n8AdnquhAwPkdRdpXivnpJ2ce/N694cwz4aWXnBmr47V582ZuvfVWevXqxciRI1m8eHFYnW+++YZf\n/epX9OzZk0svvRTNviQiIsn02Wdw1VXO6cHVV8N//xvf5xcscE4JjHFeRx0FxcXO+jTnnw+9esFt\nt8H338MPP8DddzurUgwbBq+/Hr3dVauceoGAs9b4o49CMBjkueeeY/DgwfTp04epU6eyd+9evvnm\nG2644QZ69uzJ6NGjWVlxvT+p/6y1SXn17NnT1mn79ll73HHW+nzWOue21gYC1o4aZW0wGHs7y5db\na8zBNspf/frFF8+//hXeBlh7440H67z7rrV+v7Vut7PN7Xbev/HGwTpz5jhlLpdTJy3NOa73348v\nnqFDw2MxxtrFi+Nrpw754Qdr27Wz1usN/Se//vr42vniiy9so0aNbHp6ugWsMcb6/X47bdq0A3VW\nrFhhMzMzbVpamgWsy+Wyfr/fzpw5M8FHJVI1nGn7k9YXJOIF/B3YDvwnyvb+wG5gddnr97G0W+f7\nKZEEmj8/8inEO+/E/vlIpyngtFP+c3q6tY0aWdusWXh/+7vfRW430mlUu3ZX2EAgYAELWJ/PZ3Nz\nc20gEAjrW2fPnp3YX5bUqnj6qUOuY1NT6vz6AA89BHfe6aw0VVEg4FxWOP302No55hj46qvI25Yv\ndy5fxCIQgPz8yNv27nW2H3UUfPdd+PYjjoCNG53RppYtYefO8Dpdu8Y+4vLZZ87IUSS5ubBhQ2zt\n1DG33QZ/+hMUFoaW+3ywYoWzeFgszj77bN58800q/235fD62bt1KdnY2PXv2ZNWqVWGfbdSoEdu3\nbyc9Pb26hyESl/qwjo0x5gxgH/C0tTbsy8kY0x+41Vo7PJ5263w/JZIg1jrd9+bN4dvat4dvvz30\n4pleb3j/WRVjwu+I8HoPLqxZrkUL2LGj8qc/AgYAoedFxpiwvhegcePGbNu2TX1rioqnn9KtaNHM\nnh2e1ICTXLz0UuztfP119G1/+UtsbfzwQ/SkBuCZZ2DTJmep3Uh273aSqzVrnDHhSL78MnLCE8nf\n/hZ928aNsbVRB73wQuQv5ZISmDcv9nbefvvtiF+sHo+HRYsWkZeXx6effhrxs9ZaDZuLxMla+x7O\n4tAiUg1ffw27dkXetn17bNcr40lqIPJt3i4XvPFGaFl4UgPwGrA/QpuRL9YHg8GIFxOl/lFiE01G\nRuRyt9u5pBCrqi5x+HyxtXGoKwyBgFMn2vM/waBzPBkZ0etYC2mHXK/VUdXxH+qSTh0W7dfsdkf/\n3yESj8cTdZvX68XtdkfdHgwGyYhnZyISq1ONMZ8YY143xnSNVskYc60xZoUxZsWOyGdUIvVOVacH\nweChT0MSxeWK9RQrHYjel1YWDAbxxnPuJilLiU00117rJAyVeTxw2WWxt3PyydG3/e//xtZGdjY0\naxZ5m8sFl17q3GJ2wgnhiYUxcPTRzlhyly7OmG6kNk47zdlPLG69Nfq2E0+MrY06aOzY6LnmyJGx\nt3PxxRdHTG6MMfTr1w+v18vgwYMjJjiNGjWie/fuse9MRGKxCmhvre0GPApEHXa31j5ure1lre3V\nvHnzWgtQJJlyc6FTp8inEF27QuvWh26jcePY9+dyORcNKysthXPPDS3r2DFSC5cA4RdjXS4XLlf4\nqW3jxo3p1q1b7AFKylJiE83o0TBkyMHpPdxu56z3d79z/spj9dJLkc+W/+d/Qm8iPZR585xvgsr+\n9reDIy3PPANNmx5MyPx+aNTImc0NnON4/nkngfH7nbJAwEma/vGP2GNp0cL5PVSWng6vvBJ7O3XM\nr3/t5KGZmc57j8f5p/vjH6FNm9jb+cMf/kC7du3ILGvI6/Xi9/t57rnnDtzfO336dFq0aHGgjs/n\nIysri+effz7il7KIVJ+1do+1dl/Zz/MAjzEmytUikYZp5kwnOSk/hQgEoEkT59QiFtFmUPP5nFOO\n8psRMjOdR4JPOOFgf5ue7tSbPt3ZZ0Xz5jn9caiOnHXWJHw+H2ll50CZmZmcfvrptGzZkkDZQVTs\nW00K31EisdPkAVWxFt57D+bMcf4qL7ss+kPzVdm/H+65B+bOhebNYdIkZ4QkXjt3Ok+4L1vmfCtM\nnepMTlDR3r3w73/Dp586T7uPGeMkNxXt2gX/+pfzhN5JJzkjPpFGpw5l+XK44w5n3sYzz3SOqzxh\nSlHBIMyf73yRNm4MV14Z7WpR1YqKinjxxRdZvHgx7dq14+c//zmtWrUKqVNQUMDs2bNZvnw5HTt2\n5MorryQnJydBRyISm/oweQCAMaYDMDfK5AGtgG3WWmuMOQV4HmcEp8oOMCX6KZEE2rMHZsxw5gg6\n4QRnZYisrNg/n58P/fs70zO7XM7NL9OmwZYtzgoVmzY5cy9dcIFzvXjuXHj7bed66RVXQIcOkdvd\nt8+5nrpggXOh8f77oXt3+Pzzz3nmmWfYu3cvI0aMYODAgRQUFPDss8+yfPlyjjnmGK644gr1rSku\nnn5KiY2ISANWHxIbY8xMnCmdmwHbgLsBD4C19jFjzK+B64ESoAAYb619/1Dtqp8SEUm+ePqpGJ8W\nFxERqZustaMPsX0aMK2WwhERkSTRzfwiIiIiIpLylNiIiIiIiEjKU2IjIiIiIiIpT4mNiIiIiIik\nPE0ekEqshcWL4ZNPnDkRzz774Bo25YJBePdd+PxzZ7WtwYMjr4IlSRcMWv7858UsWvQJXbp04I47\nzsbrTd6f5M6dO5k0aRKbNm1i5MiRjB5d5fPYIiJSx+za5Swnl5/vrMJw9NE1t6/8fLj3XmfliP79\n4YYbIi+3B86qF3Pnwtat0KcP9Cqb3+qFF2D2bGeN8bvucqZ93rfPOYZdu5x241k6MBm++uor3nrr\nLfx+P+eddx6N41mpVBJO0z2nit27YdAg5xukpMRZrSozExYtOriWzbZt0K8fbN58sE7z5s5aPPGs\nMCk1bsOG3XTuPJCCgnU4M9B6cLkymT//PQYNqsbCOYfpySefZOzYsSFlzZs355tvvjmwiKjUT/Vh\nuueaon5KUsnzzztrr7ndUFrqXAu99lp4+GFnfe5EeustOOss51pqOb/fuaZaee3xVauca6wlJVBc\n7CQ/ffrAF18469tU9KtfwVNPOfEWFzv/HTHCWSS0rl2jtdZy44038uSTT2KMwe12U1payjPPPMMF\nF1yQ7PDqFa1jUx+NGQPPPQdFRQfLjIHOnZ2VtIxxLs8sWOB8e5Rzu+HUU52RHqkzOnS4nPXrnwcq\n/HtiSE/vTGFhlOWba8i+ffvIzs4m0nfBgAEDePfdd2s1HqldSmyiUz8lqWLLFmcx6YKC0PJAwEkU\nLrwwcfsKBsHnCz0dKXfkkfDNNwffl5Q411W3bw+t53KFJkVV8fvhgQfg17+ufsw1Yfbs2VxzzTXk\n5eWFlPt8Pr799ltatmyZpMjqn3j6KT1jkwqKi8OTGnAux2zYAP/9L+zc6YzeVExqwLlss2IFfP99\n7cUrVdq3ryhCUgNgKSpazyuv1G5iM3Xq1IhJDcCiRYtqNRYREYnfzJmRE4W8PPjTnxK7r5dfjpzU\nAHz7rXPbWbmFC0Pfl4s1qQHnlrdEH0Mi/OlPfwpLasAZyZk1a1YSIhJQYpMaCgujfwukpTlJzZ49\n4c/bVKzz0081F5/EZc+eQiDat7qHTZt21mY4bNu2Leq2YDy9j4iIJMWPPzqnCtG2JdKmTVVv37Pn\n4M+7djnXYA/X7t2H30ai7dwZua/ev39/1G1S85TYpILMTGd8N5KiIujRA3JznTHnSNLSnDFqqRNa\ntcrE4+kQZWsRI0d2r81wuPzyy6Nuy8nJqcVIRESkOgYMcE4VKktPd+YZSqSqbmvzeJwJAMqddlr0\n0Z1YuVwwcODhtVETzjrrLNLT08PKA4EA/fv3r/2ABFBikzqmTXNuNK3I74d77nG+zdxueOSRyHUe\nesj5tpE6weUy3H33NMBXaYufYcPuoVWr2n1Yv2/fvnTu3Dnitr/85S+1GouIiMRv0CDnGqevQreS\nlgbZ2fCb3yR2X0cc4UwcEMnEieF1r7su9LqrMZCREfnzPl/oaYzL5ZziVG63LrjtttvIysrCXWFW\nA5/PR69evZTYJJESm1Rx5pnONCQDB0KzZs432NNPw4QJB+uMHu3c/HraaU6dPn2caVJ+8YvkxS0R\n3XHHUB577G0aNx6IMc3w+Xpw661P89prEw794RqwZs0aLr/8ctLT0zHG0Lp1a1566SUuvvjipMQj\nIiKxc7lg/ny44w5o36hWLHoAACAASURBVN6ZPvmqq2D1amjVKvH7e/11GD/eSUSMgSZN4LHH4Le/\nDa/78MPOMzLHHeecmgwfDsuWwRtvQNu2zuc9Hhg1yrltbsoU5yaT5s3h4oudx4TLJ3+tS1q3bs3H\nH3/Mz3/+c1q0aEGHDh248847efPNNzGJnoZOYqZZ0UREGjDNihad+ikRkeTTrGgiIiIiItKgKLER\nEREREZGUp8RGRERERERSnhIbERERERFJeUpsREREREQk5dXvxObHH2H79sNrw1rYtg2qWkU2GHTm\nVNyw4fD2FYviYmfZ34KCmt9XPWQtbN3qrIacKvbsKWT58k3s2RNlWWmclY43bdpE0eGuhBZTPHvY\nsmULVc2ouGvXLrZu3VplncT8eVq2bt3KrlT6BxURiSIYhC1bYM+exLa7ezfMnQubN4eWf/klfPZZ\naNmePbB8eXgMn33m1K+ooMA5JSkuPlhmLXz/Pfz0U2jdffuc/ZeWHt6xiFSlfiY2a9dC797OylDt\n2jmTp3/4YfztLF4MnTo5k8K3bg19+8LXX4fWmTjRWdq3Rw+nXk4OrFqVmOOoyFr4f//PmQT+2GOd\n/fzyl1AY/WRXQr33nvPP2aGDM69/377wzTfJjiq6kpIgp512B40a5XDKKcfSqFFTeve+jaKig71C\ncXExN954I02bNuXYY4+lWbNmTJ48ucqEorq2bdvGsGHDaN68OUcffTS5ubm88sorIXXWr19Pv379\naNWqFR06dKBjx468++67IXW++AJOOeXgn2fXrs6aBvF677336NSpEx06dKBVq1b07dv3/7N35/FN\nVen/wD83abPcJG1ZWihllX1ThAoIKJsbuICgKPBzYXAXN8ZtnHGBcdwYRx1HEb+4zriAIg4qArKp\nDLIU2RQQWUTZQba26Zbk+f1xWtokNzQpadK0n/frlRfJvafnPskl99wn99xzsKMm71AiolP46CMg\nKwto3VrN4XLFFeoHoNPh9ap2Ly0NuPxyNW9M/frA+++rSTPbtQO6dAFsNmD6dHXqlJqqjtGpqUCf\nPsC0aWpCzS5dVHmnU02Zd9tt6lSkfXt1ajJlippL54wz1KNRI2DgQGDzZjXNXsOGaj6aRo2AN96I\nzmdGFERE4vLo0aOHVIujR0Xq1xfRNBGVDqiH0ymyY0f49WzeLKLr/nWYTCIZGSJ5earM9On+68se\nSUkiBQXRfV//+EdwPHa7yOjR0d1OLbVpU+W7s6bp1eshAXQBUOGhS7du95wsM27cOLHb7X5ldF2X\np556KqqxeDweadeunSQnJwdt65tvvhERkYKCAsnMzBSz2RxUZsOGDSIicuSISL16xl/PnTvDj2fT\npk2i6/6fjclkkoyMDMmrqTu0hgKQI3FqB2r6o9raKaIAX30V3EYlJ4t07Sri81W93g4djE9TovGw\nWv1f22wq5orLzGYRiyW4rK6LzJwZvc+PardI2qnad8Xm3XeBwkL13amoqEhNfxuuKVOCr4b4fEB+\nPvDhh+r1I48Y/63HA0yaFP62KuPzAU8+Cbjd/ssLCoDZs9U1XzqlcHZnTXLkSAFWrnwZQMA+hxvr\n1r2O/fvz8Pvvv+ODDz5AQUC3RLfbjWeeeQYejydq8Xz11VfYu3cvSir2Nyjd1hNPPAEAmDVrFnJz\nc+EN6GdQWFiIp59+GgDw9tuhv54vvRR+PM899xyKAnaoz+dDfn4+ZsyYEX5FREQ1wGOPBTfxJSXA\nzp2qt0FVFBSoK+TVJbBNLSz075IGqCtGxcXBZd1u4C9/qb7YqO6qfYnN998HHx0A9W1bsyayeow6\ngubnA2vXquenukYcybYqk5cH5OYar7Naga1bo7etWupUu3P9+tjHU5l16/Yi9NczCatW/Yrt27fD\narUaliguLsaRU90XFqFNmzaFvH/nx9IO2hs3bkReXl7Qep/Ph3Xr1gFQ+8Ho9rBIv55r164NSqAA\nID8/H+tr4g4lIjqFUAmI1wts2lS1On/6qerxxMLOnfGOgGqj2pfYdOoE2O3By81m1Zk/knpMBh+P\nrgMdO6rnKSmh/z6SbVXG6TR+T4D6GeSMM6K3rVqqc2fj3elwAB06xD6eynTp0hhAqDssS9CtWxZa\ntGgRdNWiTFJSEurVqxe1eNq0aRMyiWrTpg0AoF27dnA4HEHrNU1Dh9IPuXNn1Zc7OF7VfztcHTt2\nhMlghzocDnQs+34SESWIVq2MlyclAaWH2IhV9e9iJSsr3hFQbVT7Eptx49SRIJDVCtx3X/j1PPCA\n8RmYxQL8v/+nnj/2mPHfmkzR7YpmMgF//KNKqiqyWoHBg4FmzaK3rVrq/vuNd2dyMjB2bOzjqUxG\nhgOdO98IIDChtaNt29Fo3jwVjRo1wmWXXQZbwBvTdR0TJkxAcnJy1OIZOnQoUlNTg5IJXdfx6KOP\nAgBGjRoFq9UKTdP8I7bb8fDDDwMA/vAH9ZkHsliAe+4JP54HH3ww6H0DQHJyMsaMGRN+RURENcBj\njwU38WazGkRg8OCq1el0qgFaqovF4v/aZjM+/TKbg4/7us6uaFRNwr0ZJ9qPar0pc/Vqkdat1d1p\nDodIZqbIvHmR1zNnjkh6urqzWddF2rcXWb/ev8wtt/jfCW23iyxcGJ33UZHXK/LHP6q781JS1L9X\nXimSmxv9bdVS//1v5buzJsnNLZJ27cYLYBMgRQCbtG59gxw/XniyTH5+vowaNUpsNpukpKSIzWaT\nu+66SzweT9Tj2blzp2RnZ4vNZhOXyyWpqanyxhtv+JX58ccfpXPnzmK328XpdErDhg3l448/9iuz\napXIGWf4fz0XLIg8nv/+97+Snp4uTqdTdF2XDh06nBykgMIHDh4Qn3aKKMCrr6rm3eVSTXzv3iK/\n/XZ6dbrdqt0LvMn/mWfUOEcVB9OZPFmdOlUs27atyOOPq/UVx0eaOlWdgpSdktjt6hTlgw9EGjRQ\n7azdrgY/WL5cZPBgVdblUsf9p546vUERqG6JpJ3SJPAu3hjJzs6WnJyc6tuAiBpwvaREdR0z6ocU\nDq9XjVVos4W+rut2A3Pnlo8hXJ1yc9WQ002aABkZ1butWiic3VnT7Nx5FKtW7UJ2dnO0bl3fsMzh\nw4exe/dutGrVCqmpqdUaz65du3D8+HF06NABlsCf7Ept374dbrcbnTp1gtlsDlpf9vX0eFRXwKp/\nPb3YvHkzbDbbyS5xFBlN09aISHa846iJqr2dIgpQVKTut6lfP7qdMTZvBubMUacoffuqZT4fMH++\nOk0aOrT8asv27UBOjhryuayLnMejTnOsVuDCC8uP2QcPqnl3WrcGXK7ysps3q67eFXvK790LHDqk\nhowO1bueyEgk7VTtTWyIiKhSTGxCYztFRBR/kbRTte8eGyIiIiIiqnOY2BARERERUcJjYkNERERE\nRAmPiQ0RERERESU8JjZERERERJTwmNicyrFjwBNPAJ06Ad27A1OnqnERI7V7N3DXXWqMw759gY8+\nUuPdVvSf/wCpqYCmqTEXa+KskRRzOTk5GDFiBNq2bYvhw4dj5cqV1bIdr1dw5ZWzkZR0PjStHerX\nvx2zZu2KuJ68vEL07n09TCYHNM2KZs36Yc2a7dUQMRERVeTxAP/3f0B2tprl4tFHgSNHgB9+AMaM\nAdq2BYYMAb7+OnQdq1YBw4ersiNGqGGfQ1myBLjkElV27Fjgxx8ji3fPHjUxc/v2QJ8+wIwZwadG\nRBELd8KbaD9q/MRnx4+LtGolYrWWz0ql6yIXXxzZrFI7dojUqyeSnFxej8Mhcu+95WWef95/Rqyy\nR5s20X9flDC++OIL0XVdNE0TAKJpmui6Lp988knUt9WkyZ8EcAiA0keSAKny1ltbw67D4/GKxdKo\nQh1lD7OsXbsj6jFTdIATdCZuO0VUyucTueIKdZpSdgphtYpkZKiJMitOsKnrIm++GVzHf/+r1pXN\nOa5p6vXnnweXnTbNf1smk3q9fHl48e7aJVK/fvCp0YQJp/c5UO0USTvFeWxCefZZdbWmsNB/udMJ\nfPopMHhwePWMHQt8+KGaCasim03NwtWiBZCcrH5qMbJ2LdCtW8ThU2ITETRr1gx79uwJWpeRkYF9\n+/bBVNVZLQPMn78Xl1xyBoCigDUm2GzDUVAwK6x6Jk58FS+8cKfhuhYt+uOXX5aeVpxUPTiPTWg1\nvp0iKrVsmbp6kp/vv1zTjK+CuFxqskyrVb32+dS83wcOBJdt0kR1PNE09bqgQM0PnpcXXLZbN3Xa\nUpkbbgDee09Nml2Rzaau/FSc2JOI89hEw8cfByc1gPomf/55+PV8+WVwUgMAZjOwcKF6HiqpAYAn\nnwx/W1Rr7Nq1C0eOHDFcl5+fj59//jlq25oyZQmAZIM1PhQWzg+7npkz3wu57tdfV0QeGBERheXL\nLwG3O3h5qN+uNc0/Adm+3ThRAVSv/F9+KX+9Zg0Q6ne1jRuN4wg0d25wUgOoer/6qvK/JwqFiU0o\nLpfx8qQkICUl/HrsduPlJpO6+lOZevXC3xbVGrquw2eUEAPwer1wOBxR21ZqqgOAFmJtiP+/BnQ9\nxHcGgKYZJU5ERBQNTqfq/BEurxeo2IzounGiUVZW18tfOxzGv9cC6tQmKany7VesL/Dvo9i8UR3E\nxCaU224z/nZFemP/TTepa6uBfD7g0kvV87S00H//97+Hvy2qNTIyMtC9e/eg7mYmkwmdOnVC06ZN\no7atf/7z4hBrbGjUaFzY9fztb38Jue6880ZHGBUREYXr2muNr6KYzcbLGzUCunQpf52VpV4HljWZ\ngLPPVuXLdOsGNGgQXGdSEnDZZYDFUnm8N99s/LuvzwdccUXlf08UChObUK6+GrjqKvWzgsmkvql2\nu7r3pl278Ov505/UECVlV2fsdlXnzJnly5YvL++8WtF996mR0qhOev/999GoUSM4S/+fOJ1ONGzY\nEDNmzIjqdrKy7PjDH2YBcKD8Co0TJtOZWLXqibDrufrqfujZMzjp1/XmWLDg1WiESkREBlq1Al58\nUf2OarGo0xZdV4lG8+blnVCcTtUR5NNPg087PvwQSE8vPzVxOtW9NO+/719O09Tfp6WV//7rcqlb\nhl97Lbx4H3gA6NlT/b2mqbh1XcUQSacYokAcPKAy33+vOoNarSrZadky8jpE1LiI33wDNGwIXHON\nOnpUVFCgru4sW6Z+Gpk+HTjzzKi8BUpcRUVF+OSTT7Blyxa0a9cOI0eOhM3oCmAUrFr1O26/fQYO\nHz6ACy7oh6lTB8Niify3j9mzv8Of//wUCgvduO666zFp0g3VEC1FCwcPCC1h2imiUr/+qmaUcLvV\nYALnnKNmqZgzB9iwQZ3CjBoVurtXYSEwaxawdSvQoYMa8rlsgIFAeXnqN9pdu9RVnMsvD68bWhkR\nYOlSdWpUv746NcrIiPQdU10QSTvFxIaIqA5jYhMa2ykiovjjqGhERERERFSnMLEhIiIiIqKEx8SG\niIiIiIgSHhMbIiIiIiJKeExsiIiIiIgo4UUwMF8Nsm8f8PHHajzDiy9W4wwG2rUL+OQTwONRA7l3\n7Bj7OMv4fMCrr6rxFtPTgSefVIPOB5ZZtAhYvRrIzFRz6LgCZnL3eoEvvwTWr1cDxo8caTzDVYwc\nO6Z2w8GDQJ8+QP/+xtPxVGbdOvWR5OcDN96ohnwMFK3dOWvWRkyfPhd2uw1/+tNInHNO8ESXq1ev\nxqJFi+ByuXD11VcjI2D8SZ9P8OqryzBnzrfIyGiIv/71arRqVa9qAUXB/v37ccMNN2D79u3o1q0b\n3n777ZNz35TJy1NDeO7eDfToAVx0UfBEbLt2HcOjj36E/fsP4dJL++Kuu86HyeS/Qw8fPoyPPvoI\nx44dw8CBA9GrVy9oVdnpYdi6dSvmzJkDk8mEK6+8Eq0CvzMANm7ciLlz58Jms+Gqq65CVlZWtcQS\nDq/Xi7lz52LDhg1o2bIlRowYAXvA97O4uBifffbZyeG7hw0bBks4s9kRUbXbuROYPbt8kshIpqyL\ntVCnDHv3qmN92XDPZ50V70iJYkxETvkAYAOwCsB6AD8CmGRQxgpgBoBtAFYCaFlZvT169JAqeftt\nEZtNPZKSRHRd5P/9PxGvt7zMP/6h1lutIsnJIna7yD33iPh8Vdvm6Th+XCQtTUQN2V7+eOqp8jIn\nToj06CHidIqYTCIOh0hKish335WXOXRIpH378jJOp0iDBiIbN8b+PYnIkiUqBIejPJy+fUXc7sjq\nGT8++KM54wyRkpLyMs8/H7w77703st3p9fqkffubBbALkCSATQCbjBnz2skyHo9HRowYIQ6HQ5KS\nksRut4vdbpeZM2eeLHP8eKGkpQ0UwCGAWQBdAIc8/fSCyN54lLz22msCIOixZMmSk2VyckRSU/3/\n65x5psixY+X1vPDCEgGcFd6XU1JS+snvv5fv0NmzZ4vdbhdd18VsNovD4ZDLLrtMSirurCh5+OGH\nxW63S3JyslgsFrHZbPJUhe+Mz+eTm266Sex2uyQlJYnNZhObzSbTpk2LeizhOHjwoLRr106cTqeY\nTCZxOp3SoEED+eGHH06W2bVrlzRt2lRcLpeYTCZxuVzSpEkT2blzZ1xiLgMgRyo5XtfVR5XbKUo4\nTz+t2hmLpbydefDBeEdlLNQpw1/+Enx6dP31/qdHRIkoknYqnMRGA+AsfZ5cmrj0DihzB4DXSp9f\nC2BGZfVWqcH49Vf1jQ08E3Y4RP79b1Vm40Z1RDIq8+WXkW/zdA0cGBxL2ePAAVXmjjvUWXvg+oYN\ny8/wR45UR1ujLCDGCVtBgTpRDgzFZhN5+OHw61m+PPRHc/vtqsyGDaF357x54W9r4sSPSk/aA5MA\nmyxc+LOIiLz66qui63pQGZvNJgcPHhQRkQEDnihNjgLrccqBA3nhBxQlRkkNALFYLCKiGrTMzODP\nz2IRGTdO1XH0aIEAKYafTe/eaoceOXJE7Pbg963rurz44otRfU+LFy8WhyN4X+m6Ljk5OSIiMnPm\nTMMydrtdtm3bFtV4wnHllVdKcnKyXyyapkmbNm3EV/r97Nu3r5jNZr8yJpNJevXqFfN4K2Jiw8Sm\nrsvJCd3OLFoU7+iChTplMHo4HCLvvRfviIlOT1QTG7/CgA7gewC9ApbPB3Bu6fMkAIdROvlnqEeV\nGowpU0J/m3v3VmUmThQxm43LDBsW+TZPl8kU+ohz772qjNNpvN7lUkfVoiLjpKbsqLV+fUzf0pw5\nKjSjcNLTw69n6NDQH43Tqcrcd1/o3Tl8ePjbSksbFCIJSJb+/Z8QEZGuXbsaltF1XV599VURETGZ\nmoSoxyX33TfzVCFE3euvvx4ysQEgO3bskGXLQu8rq1XlxI888l8BXIZ1aJraoW+88YZhIgFA2rVr\nF9X3de211xpux2Qyye2lGe/AgQMNyyQnJ8ukSZOiGk9lCgsLg5KasofD4ZANGzbIgQMHxGq1Gpax\nWq2yZ8+emMZcERMbJjZ13Z13hm6qR42Kd3TBQp0yhHr06RPviIlOTyTtVFiDB2iaZtY0bR2AgwC+\nEpGVAUWyAPwGACLiAXAcQAODem7RNC1H07ScQ4cOhbNpfydOAMXFodcB6sYPr9e4zNGjkW/zdImE\nXlcWT2Gh8XpNA3JzgZKS0PWYzeXvPUZyc0OH43aHX8+pwi4pUf+eanceOxb+toqLj4faEnJz1brc\n3NwQsZScXOfzhXqDPhw9avz31WXv3r2nXH/o0CHk5oa+76m4WO1HFbfxDhVR7zc3Nxcej8ewTF5e\nXtgxh+NYiB3r8/lOrjt+3Hh/lpSUhFxXXYqLiyEhvhBmsxm5ubnIz8+H2Ww2LJOUlBT1z5CIwnf0\nqLpnxUgk7UyshDplCCXGpwhEcRVWYiMiXhHpBqApgJ6apnUJKGJ06hTU0ovI6yKSLSLZ6enpkUd7\n4YWArgcvt1qB4cPV88svBwJunAag/m7kyMi3ebqaBt+cftIf/qD+7dfPeH1xsVrncADt2xuX8fnU\n3eAx1L+/uok/kKYBgwaFX8+oUaHXZWerf0PtTrsdGDEi/G317j0c6naxQE5cffUQAMBll12G5OTk\noBLJycm44IILAABNm14I46+NF+PHR/Dmo+COO+445foePXrg3HND/xbQq5caQGDcuP4AjJIWDY0a\nDQYADB48GKbA0QagTsovvfTSCCM/teHDh0M3+J47nU4MGzbsZBmbLXh/Op1ODBkyJKrxVMblcqFt\n27aG63w+H84++2y0aNECKSkphmV0XUfr1q2rM0QiOoUrrlDNbCBdB668MvbxVCbUKYORiqdHRHVC\nuJd2yh4AHgdwf8Cy2HRF8/lELr1U3RFXdo3VYhFp0kTdXC+i7kk591z/DrNWq0ibNiK5uZFv83Qt\nWmR8bbhLl/Iy69apa8sV+1w5HCIVu9R8/bV635pWXkbXRUq7SMXa/ferEMtCMZtVl6fNm8Ovw+tV\nXdcCPxqTSWTLFlWmpET1MgzcnW3bRrY7f/nlqJjNzQWwVOgGpEu9eoOlpETdWbl3715JT0/361ak\n67pcc801J+tZtGibAKmiBiAoq8chXbtOCD+YKOrbt69h96abbrrpZJnnnvP/ypTdbLpqVXk9PXr8\nUfzvQTILkCJffFG+Q6+77jq/7mjJycnSoEED+fXXX6P6ntxut3Ts2FFsNtvJbdntdunRo4cUFxeL\niLrnp3nz5n7du3RdlwsuuEC8cbhTdunSpaLrumia5hfP1KlTT5b59NNPg+7h0nVdPvroo5jHWxHY\nFS267RQlnOJikexs/3bGZhPp0EEkPz/e0QULdcrQpk3w6VFWlsjhw/GOmOj0RNJOhZPIpANIK31u\nB/AtgMsCytwJ/8EDZlZWb5UbjJISkVdeUcM6tW6tzrBLb+w+qaBA3Y/TsaM6A370UZGjR6u2vWj4\n9lt1hCwbpuT224OHKdmyRWTsWJGWLVWH2Nmzg+tZt04NItCypciAASLz58cmfgM+n8iMGSK9eqlw\nxo0Tqco92wUFItdco5KVpCTVuGzaFFwmcHdWHNErXFu3HpbevR+WpKTWYrV2liuvfElyc4v8yuzd\nu1fuueceOeOMM6Rbt27y+uuvi8fj8Svz7bc7pX37myUpqZXo+jlyxx3vidcbhxH3St16662SlJR0\n8n6NyZMnB5X57DOR885T++raa0V+/NF/vdfrk7vv/lAcjp6SlNRS2rQZJ4sWbQso45W33npLunfv\nLq1atZI777xTdu/eXS3v6cSJEzJp0iRp27atdOjQQZ555hnJDzjDOHz4sDz00EPSunVr6dKli7z0\n0ktSVFQUosbqt3btWhk5cqS0bNlSBg4cKAsWBI+Ut3z5chk6dKi0bNlSLrnkElm2bFkcIvXHxIaJ\nDakRPZ99VjXVbduq3xWPH493VKEZnTIUF4v8618iXbuq06MHHgg+PSJKRJG0U5oqH5qmaWcCeAeA\nGaoPzkwRmaxp2uTSDc3RNM0G4N8AzgZwBMC1IrLjVPVmZ2dLTk7OKbdNRETVS9O0NSKSHe84aiK2\nU0RE8RdJO1XpBJ0isgEqYQlc/liF54UAro4kSCIiIiIiomgJa/AAIiIiIiKimoyJDRERERERJTwm\nNkRERERElPCY2BARERERUcKr3YnNL78AP/+shnSnGu2334Cffgo9+zMQu93p9QJbtgB79oQuU1IC\nbN4M7N8fukxhIbBpE3DoUOgy+fn52LRpE44ePRqyTG6uqud0Z4/+/XdVT0HB6dWTaLxeL7Zs2YI9\np9qhRERRsH07MGcOcPhw5WV//BH4/PPwju379qk2x2hy7HDk56vjf8WmRgTYuRPYto2nSVR71M7E\nZt06oGNHoFMnoFs3oHlzYPHieEdFBrZuBbp3B9q1A3r0AJo0UY1CRWvX+u/OFi2AJUuqJ54ZM4DG\njYFzzgHatAF69VIJVUXTpgHp6UDPnkDLlsDAgf4Jjgjw7LOqTO/eQLNmwGWXAceOlZfx+Xx45JFH\nkJGRgd69e6NJkyYYPXo03G73yTIlJcCddwIZGaqeRo2AW28Fiosje08nTqjZs7OyVD3p6cBf/1o3\nGrIPPvgAjRs3xjnnnIM2bdqgd+/e+CVwh1KtoGnam5qmHdQ07YcQ6zVN0/6pado2TdM2aJrWPdYx\nUu118KA61WjTBhg2TB1n+/UzTkR+/lmt79IFuPxyIDVV/Y2R3btVPWecodqcjAzgnXfCj8vnAx56\nqLw9yswExo4F/vc/oEMHoHNn4KyzgFatgK+/rtp7J6pRwp3wJtqPapv47PBhkZQUCZrO3uEQ+emn\n6tkmVUl+vkh6uoim+e8qXRdZvVqVOXQo9O7cujW68Xz9tf+szYCIyaRmbi6b9/HTT4PLJCWpyUN9\npXN0vv56cBmLRaRfv/JtPfnkk0Gz0NtsNhk+fPjJMnfdFVyP3S5yyy2Rva9Bg9QEqIGf38svn+YH\nVsMtXbo06DM2mUySlZUlxcXF8Q6vxkAtmaATwPkAugP4IcT6oQC+BKAB6A1gZWV1coJOCldGRnA7\nBYhccklw2cDjetkj8Nju8Yi0aiViNge3kfPmhRfXpEnB2yubENuoXa3KRNtE1S2Sdqr2XbF56y31\nU3egoiLgxRdjHw+F9NFHqluUBFw5KCgAnn5aPY/l7vzrX4EKF0wAqF+7TpwAPvtMvX788eAyHo/q\nSvfNN6HrKS4Gvv8e+OEH1TVqypQpfldnAKCwsBDz5s3Dnj17kJ8PTJ8eXE9BAfDuu+F3S9u6Ffju\nO/V5VZSfDzz5ZHh1JKonn3wy6DP2+Xw4ceIEPivboVRriMg3UBNEhzIMwLul7eQKAGmapmXGJjqq\nzVauVFdsjMyf73/V5r33go/rZd58M/hvDx9W3aMrcruByZMrj8vrBZ5/Pnh7RUXGV5KKi4GXX668\nXqKarPYlNj/8YHwTgccDbNgQ+3gopC1bgLy84OUiqi8wENvd+dNPxsvdbpUgAKo/shGfr7xMqFs5\nkpJUF4S8vLygqGmrIwAAIABJREFUE+4yVqsV27dvx/79gNlsXE9ysuqeEI5t2wCLxXjdgQOnvqcp\n0W3ZssVweUFBAbaW7SyqS7IA/Fbh9e7SZX40TbtF07QcTdNyDp3qBjmiUt99F3qdiP/9NitXhi4b\nmGz8/HPorsc//1x5XCdOqHs9w1VSwtMkSny1L7E56yxA14OXJycDZ58d+3gopM6dAaczeLnJBJx5\npnoey93ZqZPxcl1X9/gAqv+0EZOpvEyzZsZlPB7Vp9nlcsHhcBiWKSoqQtu2bZGZGfwrXZmSktDb\nCNS+feiGMTNTxV1bde7c2XC53W5Hx7KdRXWJZrAs6E4zEXldRLJFJDs9PT0GYVGi69cv9DpNU/fF\nhFM2Odn/dYcOoX+Y6tCh8rhSUozbz1AsFnXPK1Eiq32nNTfeqL6dWkAbZrEA994bl5DI2MiRgMMR\nfHJtswEPP6yex3J3PvYYYLf7LzObgXr1gEsvVa8nTw5uKJKT1Y2Xffuq15MmBZexWtVABB07AiaT\nCY888gj0gEJ2ux2XX345MjMzoevAHXcE16PrwPjxgMsV3ntq3Rro319tP7CeJ54Ir45E9eijjwZ9\nxklJSahfvz4uLduhVJfsBlDxJ4GmAPbGKRaqRbKz1cA3Ri6/3L+NGzUq9PH7ttv8X194oRrMJinJ\nf3m4x2+zWQ0cENiO2GzBSRSglk2YUHm9RDVauDfjRPtRrTdl/vCDSLdu6g45m02kTRuRb7+tvu1R\nle3YIXLuuermertdpFmz4JsiN24UOess/925bFn1xPPppyKZmSoWq1Wkf3+R337zL/POOyING6ob\nMq1WkSFD1CAHFb30kkhqqroZ02oVufpqkePHy9f7fD6ZPHmyOJ1OcTgcYrPZZNy4cVJQUHCyjMcj\ncv/9ajsOh4rpnntESkoie0+5uSKjR6s4HA41GMPf/14+2EFtNnv2bMnMzBS73S5Wq1X69+8vvwXu\n0DoOtWTwAPVW0BKhBw+4FP6DB6yqrD4OHkDh+v13kdat/W/Gv+ACEa83uOyuXaqdKSunaeoYbWTf\nPlWPxaLagowMkRkzwo/L5xN54gkRp1Md/202kfHjRVatEjnzzPJ2tV07keXLq/beiapbJO2UJoF3\nbsdIdna25OTkVO9G9u9X/X+ysoJ/8qca5dAhdS9Ns2ahd1WsdqfPpwYDcDiAhg2Ny3i9qkxqqrqi\nY6SkRN0LU7++KmekqKgIe/fuRXp6OpxG/fKgPpd9+9Qvd5F0Kwh04oSayyYrK3T3htrI5/Pht99+\ng8PhQMNQO7QO0zRtjYhkxzuO06Vp2gcABgBoCOAAgMcBJAOAiLymaZoG4F8ALgHgBjBORE7ZCMWk\nnaJaZe9edW9jt26qK9ip/Pqrmk6gZ091FeVUjhxRx/DmzavWhbioSMWWnu7fBXzfPtXmNWnC0ySq\nuSJpp2p3YkNERKdUWxKb6sB2iogo/iJpp2rfPTZERERERFTnMLEhIiIiIqKEx8SGiIiIiIgSHhMb\nIiIiIiJKeExsiIiIiIgo4TGxobgqLi7GlClT0K5dOzRt2hR33HEH9u3b51fm8GFg4EA1eVhSkpoM\nbft2/3qOHTuGhx56CC1atECrVq3w6KOPIi8vr1pi/uoroGVLNfmZzQbccIMahrqijRs3YsSIEWjS\npAm6d++ODz/8EIEjEK5atQpDhgxBZmYmevfujc8++yxoWy+99BLq1asHs9mMtLQ0TJkyJajM3Llq\nctDMTOCii4Dvvovmuy3n9QKvvAJ06qSGjB43Tg1Vmuh+/vlnjB07Fk2aNEHXrl0xffp0+Hy+atnW\n0qVLMXDgQGRmZqJ///5YvHhxtWyHiIioTgp3wptoPzjxGfl8Phk8eLDY7XYBIAAkOTlZMjIy5MCB\nAyIikp+vJqasOOkZIJKUVD5xZl5enrRp00asVuvJeqxWq3Tp0kUKCwujGvPcucGxACLt25eXWb16\ntTgcDtE07WQ8uq7LI488crLMwoUL/d53WZkXXnjhZJn77rvPb33Z47bbbjtZZupUNWlbxVjsdhVn\ntI0a5b8ts1kkLU1k587obytWNm/eLC6XS0wmk99+uPnmm6O+rZkzZ4qu60H7/D//+U/UtxUJ1KIJ\nOqP9YDtFRBR/kbRTbDAobhYvXixOpzPoxN1isciDDz4oIiL33WecSAAiV1yh6nnllVeCThgBiMPh\nkH//+99RjbnibNGBj0WLVJk+ffoYJiQ2m00OHjwoIiLt2rUzLKPruuTl5UlJSYlfYlTxoWmaFBQU\nSEGBiMtlHEvLlmrG6WhZty44gSpLbm68MXrbibXhw4cbfs42m022b98ete14PB7JyMgw3J8NGjSQ\nkpKSqG0rUkxs2E4REdVkkbRT7IpGcbNw4ULD7mLFxcX4/PPPAQAGvbNO+vprlJb5DG63O2h9fn6+\nYfeu0xHQS87Pu++qf1euXGm43mKxYPny5cjNzcWOHTsMyyQlJWHt2rVYvnw51Hc5mIhg8eLF+OGH\n0DNF790L/P576FgjtWSJ6ooWyOsF5s+P3nZibcmSJYafs9lsxtKlS6O2nV27doXsGllUVITtgX0r\niYiIKGJMbChu6tevD6vVariuXr16AIDU1NB/73Cofxs2bAjN4AzfbDYjPT39tOP0rzP0urJN6bpu\nuF5EkJaWBqvVCpPJ+Kvn9XqRlpaGRo0anTKOJk2aIDU1+N6eikKEUSVpaer+JiOn2kc1ndPpNFxu\nMpmQlpYWte24XC54jTJDACUlJUhN5A+RiIiohmBiQ3Fz7bXXGiYkDocDd911FwDgscdC//2996p/\nb731Vtjt9qD1VqsVN910U1RiLTN4cOh1f/qT+nfcuHGGCZuu6+jXrx8sFguuvPJKWCwWv/WapiEr\nKwudO3dG+/btQ55YO51OdOvWDW3bAq1bA4E5UnIyMGRIdBObK69Unc8C6TowYUL0thNrd9xxh+H/\nHU3TMGTIkKhtJz09Heeeey7MAZmx2WxGdnY2GjduHLVtERER1VVMbChusrKy8Oabb8Jms8HhcMBq\ntcJut2Ps2LEYNWoUAOCKK4Brrgn+2z59gAceUM/79euHhx9+GDabDTabDXa7HTabDX/961/RrVu3\nqMY8e3b5lZmKXnwRqF9fPX/66afRo0cPOBwOWCwWuFwupKWlYe7cuSdPbKdOnYr27dvD6XSeLJOe\nno45c+acTPYWLVqEpIDLJGazGQsXLvSLp1EjwOUCLBbA6QTatAGmT4/q20ZqKjBrlkpknE7AalXP\nL70UuO226G4rlu6//34MGDDg5L5yOp1wOp2YM2eOYcJzOt577z00b94cLpfr5D5v2rQpPvzww6hu\nh4iIqK7SQvXjr27Z2dmSk5MTl21TzXL48GHMnj0bbrcbF198MTp06BBUZt064LnngOJi4O67gfPP\nD65n165d+Oyzz2AymTBs2DBkZWVVW8zvvgt88gnQuLG6qtSkif96EcH//vc/rFq1Ck2aNMGwYcOC\nTpR9Ph+WLFmC9evXo0WLFrj88suDruIUFxfj6aefRk5ODs4++2w88sgjsNlsfmVKSoAvvgB27AC6\ndAEuuCD4Kk60HD+ukqmjR4FBg4Czzqqe7cTa6tWrsWzZMjRs2BDDhw+Hy+Wqlu14vV7MmzcPP/30\nE9q1a4dLLrkkKHmNNU3T1ohIdlyDqKHYThERxV8k7RQTGyKiOoyJTWhsp4iI4i+Sdopd0YiIiIiI\nKOExsSEiIiIiooTHxIaIiIiIiBIeExsiIiIiIkp4TGyIiIiIiCjhxXecUYqLEyeADz4Atm4FunUD\nrroKiPKUHRHZtg14/30gP1/Ni3LeeYDBvJ2Vuv32/+A//5kKTTPh5pvvwfPPXxVxHSLA4sXA/PlA\nWhowZgzQsmXksYSjqKgIs2bNwpo1a9C6dWuMGTMmaFJOt9uNGTNm4IcffkCnTp1wzTXXwOl0Vk9A\nRERERAmMwz3XMevXAwMGqLlP8vPVZIsuF7BiBdC8eezj+ec/gYcfBjweFZPDoeZHmT0bCJikPSSP\nxweHoyuKizf5Ldf1nsjPXxl2LMXFKrFasQLIywOSk4GkJODll4Hx4yN5V5Xbu3cvevfujaNHjyIv\nLw+6riMpKQmLFi1CdrYa0XDbtm3o06cPCgoKkJeXB4fDAZvNhmXLlhnO9UNUFRzuOTS2U0RE8cfh\nnsmQCDByJHDsmEpqAHUCf/AgMG5c7OPZsQN46CGgoEAlNYCKa9Ei4J13wq/n0kufDUpqAMDtXoWx\nY6eFXc/UqcDy5eozAVRMBQXAhAnAvn3hxxOOW265BXv37kVe6cbcbjdOnDiBESNGoOzHhrFjx+L3\n338/WSY/Px9HjhzBtddeG91giIiIiGoBJjZ1yJYtxifoXi/w7bdAbm5s45kxQ207kNsNTAs/H8Gi\nRa+GXPfRRy+EXc+0aWrbgTQNmDUr/HgqU1RUhAULFsBr8OaPHj2K9evX48CBA1i/fj18Pp/fehHB\nTz/9hN9++y16ARERERHVAkxs6pCCgtDduzRNdcWKdTwej/E6owQjFJ+v6BTrCsOupzBEUa9XxRot\nHo8HobqAmkwmuN1uFBYWwmQy/nqazWYURDMgIiIiolqAiU0dcuaZ6p4RI61bAw0axDaeoUMBXQ9e\nbrMBo0aFX0/btsNCruvePfyKRowALJbg5WYzMGRI+PFUxuFwoEuXLobrRAQ9evRA8+bN0bBhQ8My\nKSkpaNOmTfQCIiIiIqoFmNjUIUlJqruVrpePOmY2q9evvx77eHr1Ai67TA0YUMZmAzIzgbvuCr+e\nRYueB2CQISEFCxZMDruehx4C0tMBq7V8mcMBjB0LhMhDqmzatGlwOBwwl15C0zQNuq7jlVdegdVq\nhaZpeOONN6Dr+skrNyaTCbquY/r06SGv5hARERHVVTw7qmOuvhpYulQNItC1K3DddUBODtCvX+xj\n0TQ1zPO0aWr7Z58NPPoosHatGmo5XE2bpmDnzj1o0mQkVILjQPPmo7Fv3x6kpdnCric9HdiwAfjT\nn9Qw2P37A2+9VT1JX8+ePbF27VrceOON6Nq1K4YPH46FCxfiuuuuO1nmwgsvxIoVKzBmzBh07doV\no0aNwv/+9z8MHTo0+gERERERJTgO90xEVIdxuOfQ2E4REcUfh3smIiIiIqI6hYkNERERERElPCY2\nRERERESU8JjYEBERERFRwmNiQ0RERERECY+JDVW7n34CVq4ECgqqXofPB6xfD6xZA3g8xmW8XuD7\n74F161T56pSfn48VK1Zg27Zt1bshqnUOHDiA7777Dvv37493KERERLUKExuqNtu2qYktu3cHLroI\nyMgA/vWvyOtZvhxo3lzNdTNwINCoEfD55/5l5s9XE3sOGACcdx6QlQV8/XVU3kaQZ599FhkZGbj4\n4otx5plnonv37vj111+rZ2NUaxQVFWHMmDFo0aIFhgwZgpYtW+Kaa65Bwelk/ERERHQS57GhalFS\nArRoAezfD1T8L6brwIwZwGWXhVfP/v1A27ZAXp7/cl0HVq0COncGfv5ZTajpdvuXcTiALVuApk1P\n771UNGPGDPzhD3+Au8LGzGYzmjdvjm3btsFk4m8FZGz8+PH44IMP/BIZm82Gq6++Gu+++27c4uI8\nNqGxnSIiij/OY0Nx98UXKhkJzJvdbuDJJ8Ov5403jLueFRUBL76onr/8MlBcHFzG4wGmTQt/W+GY\nPHmyX1IDAF6vF4cPH8bixYujuzGqNXJzc/H+++8HXZ0pLCzEzJkzcezYsThFRkREVHswsaFqsXOn\nSj6M/PJL+PVs3QoUFgYv93rVvTuAuioTKvnZvDn8bYVj9+7dhsu9Xi9+ieSNUZ1y4MABJCUlGa6z\nWCy834aIiCgKmNhQtejaFbBYjNedeWb49Zxzjup2FshiAXr1Us979QKs1uAydnt5mWjp1KmT4XJN\n09C1a9foboxqjaZNmyJUt1+Px4NmzZrFOCIiIqLah4kNVYtBg4CWLYHkZP/ldjswaVL49Vx/vUps\nAm9dsVqBu+9Wz++4Izix0TS1rfHjIw79lP72t79BD8i0rFYrunTpgp49e0Z3Y1Rr2Gw2TJw4Mej/\njq7ruPvuu+FwOOIUGRERUe3BxIaqhcmkRiW74gp1dcViAc44A/jkE+Dcc8OvJyUFWLFCjXSWnKwe\n3burust+5M7MBJYtA3r2LC/Tt68aTa1+/ei+r0GDBuG9995D8+bNYbFYYLVaMXLkSMyfPx+apkV3\nY1SrPPHEE3jkkUeQmpoKq9WKlJQUPPjgg3jqqafiHRoREVGtwFHRqNoVFKhHvXrqSkpV5eWpe2tS\nU0OXOXFCbcPlqvp2wiEiOHr0KHRdh81mq96NUa3i8Xhw/PhxpKamhrzvJpY4KlpobKeIiOIvknYq\n/q0q1Xp2u3qcLqez8jIpKae/nXBomob60b4cRHVCUlISGjRoEO8wiIiIah12RSMiIiIiooTHxIaI\niIiIiBIeExsiIiIiIkp4TGyIiIiIiCjhMbEhIiIiIqKEx8Smhli5ciUGDRqE1NRUtGnTBlOnTg05\nU/mpfPGFmuclNRU46yzg00+rIdgwlZQATz2l5ptJSwOuvBLYvNm/jNsN/PnPai6aevWAMWOAX37x\nL3P8+HHcd999yMjIQIMGDTB+/Hjs378/Zu+juvzjH0vgcvWBpqXCau2IO+54Dz5ffIZf93q9eOml\nl9CqVSukpqbi4osvxtq1a+MSCxFFwYoVwMCBqjFo0wZ47TUgTtM7EBHFjIic8gGgGYAlADYD+BHA\nPQZlBgA4DmBd6eOxyurt0aOHkLJs2TLRdV0AnHzoui4TJkyIqJ533hHRdRHVeqmHrotMnVpNgVfi\n0ktF7PbyWDRNxOUS+ekntd7rFenVS8RmKy9jMonUry+ye7cqU1hYKB06dBCLxXLys0lKSpLGjRvL\nkSNH4vPGouDRRz8TwO63zwFdBg/+a1ziuf766w3/D+bk5MQlHoodADlSyfG6rj4Stp365hvjxuDu\nu+MdGRFRxCJpp8K5YuMB8EcR6QigN4A7NU3rZFDuWxHpVvqYXIUcq86aOHEi3G633zK3243p06dj\n3759YdXh9QITJ6orIP71AA8/DBQXRyva8KxZAyxZoibmLCMC5OcDjz+uXn/1FfDjj0BhYXkZnw/I\nzQWmTFGvZ82ahd27d6O4whsom+Bw2rRpMXgn0efzCZ5++m4ABQFr3Fi06Cns3Zsb03i2b9+OmTNn\nGv4ffOihh2IaCxFFQajGYNo0oBZc7SYiCqXSxEZE9onI96XPc6Gu3GRVd2B1yZo1awyXWywWrFix\nIqw6fv3VP4moyOcDtm2ranRV8+23KtkyimXpUvX866+BvLzgMiUlwIIF6vmCBQuQZ1CooKAAc+fO\njV7AMbR3by48nt9CrLXg00/XxzSe5cuXIynJeK7e7777LqaxEFEUfP+98XKrFVi5MraxEBHFUET3\n2Gia1hLA2QCMjoznapq2XtO0LzVN6xzi72/RNC1H07ScQ4cORRxsbeVyuQyXiwgaNmwYVh1pacaJ\nBKCu1tSvX9XoqqZhQyA52XhdWSwZGYDNZlwmI0P927hxYyQbVKRpGjIzM6MQaezVr28HYA6xtgQt\nW4a3z6OlYcOGMJmMDwVpaWkxjYWIoiBEmwIRdXAmIqqlwk5sNE1zApgF4F4RORGw+nsALUTkLAAv\nAzC8ZV1EXheRbBHJTk9Pr2rMtc6tt94Ku90etDw1NRV9+/YNq4569YBBg4KTiaQkoE8foHHjaEQa\nvuHDAU0LXq7rwL33quejRwNG59MOR3mZ8ePHG15NsNvtmDBhQhQjjh1dT8YZZ1wDwBqwxgSrtTWG\nDu0Q03guuOACWCyWoOWJ/BkT1Wk33wwEtimapn4BO/fc+MRERBQDYSU2mqYlQyU174nIJ4HrReSE\niOSVPp8LIFnTNP4sFKZJkyZhwIAB0HUduq7D5XKhUaNGmDdvXshf0o28+y7QsSPgdKrkwOkE2rYF\nPvigGoMPwekEPv8cSElRPx46HOrqzJgxwPjxqkyjRsCMGWpdWRmrFbjzTmDYMFWmbdu2mDZtGux2\nO1wuF5xOJ2w2Gx5//HGcd955sX9jUfLtt/+Cy9UDgAOADsAFs7kZFi6cE/NYkpOTMX/+fDRo0AAu\nlwsOhwN2ux1Dhw7FAw88EPN4iOg0Pfkk0L+/+iVJ19UBNiMDmDfP+NckIqJaQpNKhn/UNE0D8A6A\nIyJyb4gyjQEcEBHRNK0ngI+hruCErDw7O1tycnKqHnkttGHDBqxevRqZmZm46KKLQt73cCoiwPLl\naljldu2A884zvnISKwUFwJdfAseOqXa2devgMnl5wNy56t7WCy4AmjYNLnPs2DHMnTsXHo8HF198\nMRo1alT9wcfAO++sxpIlG9CpUwtMnDgISUnxO+koLi7G/PnzcfDgQfTp0wcdO3aMWywUO5qmrRGR\n7HjHURMlfDu1YQOwejXQpAlw4YXqEj4RUYKJpJ0KJ7HpB+BbABsB+EoXPwKgOQCIyGuapk0AcDvU\nCGoFACaKyPJT1ZvwDQYRUS3AxCY0tlNERPEXSTtV6c83IrIMwCl/8xeRfwH4V3jhERERERERRRc7\n2xIRERERUcJjYkNERERERAmPiQ0RERERESU8JjZERERERJTwmNjUEG438OabwI03Ao89BuzaFe+I\nouPzz4FzzlHz6UycqN4nERHFyfffA/fcA9x0kzpA+3yV/w0RUYLgoPY1wMGDQM+ewOHDQH4+YLEA\nzz+vJq+87LJ4R1d1Y8b4Tw76wgvAa68Bv/yi5oojIooWTdMuAfASADOA6SLyTMD6GwFMAbCndNG/\nRGR6TIOMt0mTgGefBYqKVEIzYwbQq5eabCw5Od7RERGdNl6xqQEmTgT27FFJDQAUF6srG2PGAIWF\n8Y2tqjZs8E9qyhQUAKNGxT4eIqq9NE0zA3gFwBAAnQCM1jStk0HRGSLSrfRRt5KaTZtUUlNQUH6V\nJi8P+O474K234hsbEVGUMLGpAT75BPB4gpdrGrB0aczDiYpnnw29btmy2MVBRHVCTwDbRGSHiBQD\n+BDAsDjHVLPMnAmUlAQvd7uBN96IfTxERNWAiU0N4PWGXmfUDiWCRI2biBJSFoDfKrzeXbos0EhN\n0zZomvaxpmnNjCrSNO0WTdNyNE3LOXToUHXEGh8eT+j7aXjAJqJagolNDXDxxYDJYE+UlAADBsQ8\nnKiYMCH0urPOil0cRFQnaAbLJOD1ZwBaisiZABYCeMeoIhF5XUSyRSQ7PT09ymHG0bBhgM0WvNxu\nB8aOjX08RETVgIlNDfDii0BaGmC1qtcmE6DrwMsvAy5XfGOrqvPPB/r2DV5uNgMffhj7eIioVtsN\noOIVmKYA9lYsICK/i0hR6cv/A9AjRrHVDOecA1x7LeBwlC/TdaBNG+C22+IXFxFRFDGxqQHOOAPY\nvBl48EGgXz9g9GhgyRJg/Ph4R3Z6li0DnnsOaNIESElRI7z98osa+pmIKIpWA2iraVorTdMsAK4F\nMKdiAU3TMiu8vALA5hjGVzNMnw68/746GA8YoIbfXLnSP9khIkpgmkjg1frYyM7OlpycnLhsm4iI\nFE3T1ohIdrzjOF2apg0F8CLUcM9visjfNE2bDCBHROZomvY0VELjAXAEwO0isuVUdbKdIiKKv0ja\nKc5jQ0RECU9E5gKYG7DssQrP/wTgT7GOi4iIYodd0YiIiIiIKOExsSEiIiIiooTHxIaIiIiIiBIe\nExsiIiIiIkp4dTuxKSoCli4Fvv4aKC6OdzRh2b0bmD8f2HLKsXxqDhFg9Wrgq6+A48fjHU3Nk2j7\nk4hiRARYtw5YsAA4dOjUZb1e4PHH1RwBGzaULz9wQB1gNm70L7t8ObBoEZCff+p6S0qAb75R8w8U\nFZ26LBFRDVB3R0WbNQv4wx/KX5tMwHvvAUOHxi+mUyguBm68EZg9W03kWVwMnHUW8NlnQMOG8Y7O\n2A8/qOkSfv9dTcxZVAT8+c/AX/4S78jir7gYuOEG4NNP1f4sKVH7c86cmrs/iShGfvkFuPRSYNcu\nIClJHTxvuQV44QXVVlX04ovAffeVv37zTaBVK+Cii4C33wZsNsDjAVq3BiZPBm69FXC7AU1Ty//x\nD7Us0JdfAmPHqkQIUInWm28CV11VXe+aiOi01c15bDZtUrMwu93+y3Vd/bJ1xhnxiesUJk4EXnsN\nKCgoX5acDPTqBXz7bfziCqWoCGjaFDh82H+5w6Ha2rreNt53HzBtWvD+7N1b/UBKFCu1ZR6b6hCX\ndkpEzWK8cyfg85Uv13XgmWeAu+4qX3boEJCRYVyPyeT/92azqrvisrJ6584F+vcvX7ZzJ9Cli3Eb\nuXKlWkdEFCORtFN1syvav/5lfFm9pESdbdYwXi/w+uv+J8GACnfNGmD79vjEdSpz5hh/xPn5wNNP\nxz6emsTjCb0/c3KAHTviExcR1QDLlqkuZIEJiNsNPPec/7KKvQ4CBf691xu8rKzev//df9nrr6sD\nVaCiItV+EhHVUHUzsdm+vfzyekUlJcC2bbGPpxL5+aG7N1sswJ49sY0nHLt3h465JsYbS/n56r+a\nkZq6P4koRnbvVt3EjATea/PLL9HZ5s6d/q+3bze+79TrrZm/pBERlaqbic1556l+x4F0HTj//NjH\nUwmXK/R9F0VFQOfOsY0nHN27q5P0QJoGZNfxTi8pKUCDBsbrioqATp1iGw8R1SBnn218tQQIPtgP\nGnT620tKAvr29V/Wr59qDwPZbKr9JCKqoepmYnPbbeqgXfEmTLMZcDrVHfo1jKaprtWB7Yyuq54I\noU6S4+n884GOHdWN8RXZ7cCkSfGJqabQNNUdL5H2JxHFSIcOwAUXqINlRXa7aggq+sc/ggcTKJMU\nMDaQ3a5uckxO9l9uswEPPui/7MYbVXtoNpcv0zRVx223hf1WiIhirW4mNg0bqhsgBw9WB26zGbj4\nYmDVKiDfPYe2AAAShklEQVQ1Nd7RGbrhBnX7T7Nmqn2pVw94+GHgn/+Md2TGNE2NJnrddSq50TSg\nWzdg3jygR494Rxd/N96oBoNIlP1JRDH00UfA7berRETTgPbtgY8/Bi680L+c2Qxs3uzfbmkacM89\nqo7WrdVrlwu4+25g61ZgxAiV3JhMQJ8+avSZ1q39601JUeP0DxlS3kYOHqzazVCDFRAR1QB1c1S0\nirxedeAP9atXDVRSon6MC9UNu6YRUR9z4A+IpCTa/qTahaOihRb3diqSg6fXq0YkcTr9l3s8KjGp\neIDx+VTdFa/IhBJJWSKiahBJO8VTzQQ8WAf2JKjpNI1Jzakk2v4kohiJ5OBZ1p06kNHfR/JDXgL9\n6EdExCMWERERERElPCY2RERERESU8JjYEBERERFRwmNiQ0RERERECY+JDRERERERJTwmNkQVfPzx\nBtSrNxiaZoWmpeHss+/FwYP5EdezaBHQvTtgsQCNG6sJOb3eagiYiGqfwkJg0CA1IpmmqflsXn4Z\n+POfy4du1jQgKwv49Vfg/vvVZFgWCzBgAPD998b1Hj+uJthMSVETcw4dCvz0U0zfGhFRdeI8NkSl\nvvzyJwwdmg0gr8JSKxyObjhx4juYTOFNNLNwIXDFFWpKiTK6DlxzDfDmm1ENmei0cR6b0OLWTjVv\nDvz2W/jlbTaVDJVxOIAVK4AuXcqXeTxqluSffwaKi9UyTVNJzoYNaptERDVQJO0Ur9gQlbr99skA\nCgKWFiE//0e8+OLSsOu5/37/pAYA3G7ggw8iO1chojpo8eLIDxQVkxpAHXAee8x/2eefA7t2lSc1\ngJp40+0GpkypWqxERDUMExuiUrt3LwNg1F+sEAsWrAy7no0bjZdbLMCaNVUKjYjqitmzT78OEWD5\ncv9ly5cDeXnBZUtKgKVLT3+bREQ1ABMbolI2W+NQa9C0aah1werVM17u86n7bYiIQmrdOjr1NGrk\n/zorC7DbjctmZUVnm0REccbEhqjUrbc+AMBhsMaEJ5+8Kux67rpL3VPjV4NJJTW9ep1WiERU202Y\noAYIOB26DjzwgP+yMWPUgcio7B//eHrbIyKqIZjYEJWaMmUk+va9F4AVQAoAFzStPqZNm4fGjZ1h\n1/PnPwOXX67u501JAVwuoEULYN48da8uEVFISUnAZ58FJzetWhlfDr7nHiA9XR1sUlIAqxW4/XZg\n7Fj/cunpwH//C6Smlpe12YDHHwcuvLD63g8RUQxxVDSiAD/+eBBvv/0tGjRIwd13D4CuJ1epnh07\n1D01mZlA375Maqhm4qhoocW1nfJ4gKlTgZ07gZEj1UEEAObOVcubNQOef151L/N41H0yx46pcpmZ\noestKgKWLFGDBvTvDzRoEJO3Q0RUVZG0U0xsiIjqMCY2obGdIiKKPw73TEREREREdQoTGyIiIiIi\nSnhMbIiIiIiIKOExsSEiIiIiooTHxIaIiIiIiBIeExsiIqJo8niAjz8GrrpKzSezYAEQagTSEyeA\nW24BmjQB2rRRQzkDwEMPqXlmTCa1bvVqNQ+NyaTGjtc0oHNnVbZfv/JlLheQkwN8+SXgdKplZrOa\n2wZQw0Jffz0wYgTw/vtASYlxXCJqaOnRo4GrrwY+/RTweqP6MRERRRuHeyYiqsM43HNoVWqnSkqA\nSy4BVq4E8vPVMocDGDUKeOMN/wmtDh8GmjcHCgr867Ba1Xwz0eZ0qoTF7Vb/OhxAly4q2bHZysuJ\nAGPGqIlCy96D0wmcfz4wZ07w5KFERNWIwz0TERHFwwcf+Cc1gHo+cyawbJl/2euuC05qgOpJagAg\nL0/FUvaDZn4+sHEj8H//51/uq6/8k5qyv/36a+CTT6onNiKiKGBiQ0REFC3vvOOfEJRxu4EZM/yX\nLVkSm5hOxe1WMVf0wQfG7yE/H/j3v2MTFxFRFTCxISIiIiKihMfEhoiIKFpuuEHduxJI14FrrvFf\nNnBgbGI6FV1XMVc0erTxe3A4VPc5IqIaiokNERFRtIweDfTurW62L+NwqKSmXz//sv/+N2C3B9dh\ntVZPbE6niqVsAAOHA+jaFbj5Zv9yF14IXH65f3LjcAD9+6vR1IiIaigmNkRERNGSnAzMmwe8/bYa\n7nnMGGD2bGD6dP8R0QCgYUNg/37g1luBzEw13POrrwKFhcCDD6oER9PUcM+rVqkhlyvW0bWrGgjg\nvPPKlzmdamjouXPLkyuTCbjzTiA3F/jiC3XVZcQINWjAt9/6j4gGqG28/z7w0UfAtdeq4Z7/8x+O\niEZENR6HeyYiqsM43HNobKeIiOKPwz0TEREREVGdwsSGiIiIiIgSHhMbIiIiIiJKeExsiIiIiIgo\n4TGxISIiIiKihMfEJsFs2QLMnAmsXKlG+SQiogQhAqxYoQ7iW7dWrY49e4CPPwYWLwa8XrXs2DFg\n6FCgRw/gww+jFy8RUYJJqqyApmnNALwLoDEAH4DXReSlgDIagJcADAXgBnCjiHwf/XDrroICYORI\nYOlSNU2C1wu0bAksWKCmOCAiohps927goouA335T88oUFwMXXKDmigmcR8aICDBhAvDGG2p+GxE1\naWafPsAnn5SXGz0aGD8eOH4cSKq0iSciqlXCuWLjAfBHEekIoDeAOzVN6xRQZgiAtqWPWwBMjWqU\nhIkTgSVLVIJz4gSQn6+u3gwbFu/IiIioUpdfrq7S5OWpg3hhIbBwoZqIMxzTpqlJP4uK1N/n5qrJ\nPSsmNWXcbuCss6IaPhFRIqg0sRGRfWVXX0QkF8BmAFkBxYYBeFeUFQDSNE3LjHq0dZTHA7zzjmoH\nK/J6gR9/rHqPBiIiioFNm9SBuqzrWJnCQnUFxuervI7nn1cJSyTbJCKqYyK6x0bTtJYAzgawMmBV\nFoDfKrzejeDkB5qm3aJpWo6maTmHDh2KLNI6rKAAKCkxXmexqB/tiIiohtq/X/UhNlJUpB6V+f33\n6MZERFQLhZ3YaJrmBDALwL0iciJwtcGfBN3aLiKvi0i2iGSnp6dHFmkd5nQCmSGufxUVAWeeGdt4\niIgoAmedFTp5ad48vHtszjknsm2aODYQEdU9YR35NE1Lhkpq3hMRgw692A2gWYXXTQHsPf3wCAA0\nTfVC0HX/5boO3H03kJYWn7iIiCgMDRoAd9wRfBC329XBXTP6bTDAU08F/32oq0AAcP/9kcdJRJTg\nKk1sSkc8ewPAZhH5R4hicwBcrym9ARwXkX3/v737jZGrqsM4/n1kK1AUMKVR7FaKgZBUohQ2Fawh\nSNUUJG2IJS6JCgSDEhQwJgZ5oZGkCU0aRcVAKkX+WooFzGqAgEEjvKC6LVWoQFIrwtJqV4pFlIDV\nny/u3TLcnd25u52de8/M80k2nZl7dvqcXzZzzpl75k4bc/a8887LruK5cGE2lvX3w+rVcO21VScz\nM7OW1qyBVauyy1jOmgUnnphdEe3cc8v9/imnZJd4XrIk+/05c7LFy7Zt4xc8l16aDRBmZj1G0eLL\nUCR9FHgUeJLscs8AVwPvA4iIG/PFz/XAMrLLPV8UEcOTPe/AwEAMD0/axMzMZpikzRExUHWOOvI4\nZWZWvamMUy0vch8Rj9H8MzSNbQK4rFw8MzMzMzOz9vKnC83MzMzMLHle2JiZmZmZWfK8sDEzMzMz\ns+R5YWNmZmZmZsnzwsbMzMzMzJLnhY2ZmZmZmSXPCxszM0uepGWSnpW0XdJVTY4fLGlDfnyTpAWd\nT2lmZjPJCxszM0uapIOAHwJnAQuB8yUtLDS7GHg5Io4Dvgus7mxKMzObaV7YmJlZ6hYD2yNiR0S8\nAdwFrCi0WQHcmt/eCCyVNOmXT5uZWVq8sDEzs9TNA15ouD+SP9a0TUTsA/YCc4pPJOkSScOShkdH\nR2corpmZzQQvbMzMLHXNzrzENNoQEWsjYiAiBubOnduWcGZm1hle2JiZWepGgPkN9/uBnRO1kdQH\nHAHs6Ug6MzPrCC9szMwsdb8Djpd0rKS3A4PAUKHNEHBBfnsl8EhEjDtjY2Zm6VJVr+uSRoG/VPKf\nj3cU8PeqQ0xRaplTywvpZU4tLzhzJ7TKe0xEJL/nStLZwHXAQcDNEbFK0jXAcEQMSToEuB1YRHam\nZjAidrR4znaMU6n9vZTVrf0C9y1F3dov6N6+TaVfpcepyhY2dSJpOCIGqs4xFallTi0vpJc5tbzg\nzJ2QWt5u063179Z+gfuWom7tF3Rv32aqX96KZmZmZmZmyfPCxszMzMzMkueFTWZt1QGmIbXMqeWF\n9DKnlhecuRNSy9tturX+3dovcN9S1K39gu7t24z0y5+xMTMzMzOz5PmMjZmZmZmZJc8LGzMzMzMz\nS15PLWwkHSTpCUm/aHLsQkmjkrbmP1+oImMh03OSnszzDDc5Lknfl7Rd0h8knVxFzkKmVpnPkLS3\noc7frCJnIdORkjZKekbS05JOKxyvVZ1L5K1VjSWd0JBlq6RXJF1ZaFObGpfMW6sa55m+KmmbpKck\nrc+/t6Xx+MGSNuQ13iRpQTVJe4OkmyXtlvRU1VnaSdJ8Sb/KX3u2Sbqi6kztIukQSb+V9Pu8b9+u\nOlM7TTYHSlmreUeqWo31qSozxh6IvnY9USKuAJ4GDp/g+IaI+HIH85TxsYiY6AuMzgKOz38+DNyQ\n/1u1yTIDPBoR53QsTWvfAx6MiJXKvrV8duF43ercKi/UqMYR8SxwEmQDK/AicF+hWW1qXDIv1KjG\nkuYBlwMLI+I1SXcDg8AtDc0uBl6OiOMkDQKrgc90PGzvuAW4Hrit4hzttg/4WkRskfROYLOkhyPi\nj1UHa4PXgTMj4lVJs4DHJD0QEY9XHaxNWs2BUtZq3pGiMmN9cqYwxk5Lz5yxkdQPfAq4qeosbbQC\nuC0yjwNHSjq66lApkXQ4cDqwDiAi3oiIfxSa1abOJfPW2VLgTxFR/Db32tS4YKK8ddQHHCqpj2wA\n3Fk4vgK4Nb+9EVgqSR3M11Mi4jfAnqpztFtE7IqILfntf5JNlOdVm6o98tefV/O7s/KfrrjCUpfO\ngbpWF4z1ZbV9jO2ZhQ1wHfB14H+TtPl0vg1mo6T5Hco1mQAekrRZ0iVNjs8DXmi4P0L1A0yrzACn\n5af6H5D0gU6Ga+L9wCjw4/wU/U2SDiu0qVOdy+SFetW40SCwvsnjdapxo4nyQo1qHBEvAmuA54Fd\nwN6IeKjQbH+NI2IfsBeY08mc1l3y7YyLgE3VJmmffLvWVmA38HBEdEvfysyBUlVm3pGasmN96iYb\nY6elJxY2ks4BdkfE5kma/RxYEBEfBH7Jm+9sVmlJRJxMtk3nMkmnF443e7e16neXWmXeAhwTER8C\nfgD8rNMBC/qAk4EbImIR8C/gqkKbOtW5TN661RiA/FT6cuCnzQ43eazSv+UWeWtVY0nvIjsjcyzw\nXuAwSZ8tNmvyq1W/XliiJL0DuAe4MiJeqTpPu0TEfyPiJKAfWCzpxKozHaiSc6CUtZp3pKjMWJ+0\nFmPstPXEwgZYAiyX9BxwF3CmpDsaG0TESxHxen73R8ApnY04XkTszP/dTbb/cHGhyQjQeGapn/Hb\nTzqqVeaIeGXsVH9E3A/MknRUx4O+aQQYaXhXbiPZi0mxTV3q3DJvDWs85ixgS0T8rcmxOtV4zIR5\na1jjjwN/jojRiPgPcC/wkUKb/TXOt6sdQRdulbKZl3/+5B7gzoi4t+o8MyHf9vNrYFnFUdqh5Rwo\nZSXmSikqMzdJ3WRzgmnriYVNRHwjIvojYgHZaa9HIuIt72YW9vMvJ9s3XBlJh+UfzCQ//fhJoHh1\nnSHg88qcSrb9ZFeHo+5XJrOk94zt65e0mOxv8KVOZx0TEX8FXpB0Qv7QUqD4Idja1LlM3rrVuMH5\nTHzKuTY1bjBh3hrW+HngVEmz81xLGf8aNgRckN9eSfY66DM2NiX539c64OmI+E7VedpJ0lxJR+a3\nDyV7w+CZalMduDJzoFSVnCslp+TcJHWTzQmmrdeuivYWkq4BhiNiCLhc0nKyK77sAS6sMhvwbuC+\nfO7UB/wkIh6U9CWAiLgRuB84G9gO/Bu4qKKsY8pkXglcKmkf8BowWIPJ1VeAO/PTojuAi2pe51Z5\na1djSbOBTwBfbHistjUukbdWNY6ITZI2km2R2wc8AawtvMatA26XtJ3sNW6wqry9QNJ64AzgKEkj\nwLciYl21qdpiCfA54Mn8sygAV+dnLlN3NHCrsis1vQ24OyK66tLIXajpvKPaSG0zbqyvOE/bNBtj\n2/bc1c8pzczMzMzMDkxPbEUzMzMzM7Pu5oWNmZmZmZklzwsbMzMzMzNLnhc2ZmZmZmaWPC9szMzM\nzMwseV7YmJmZmZlZ8rywMTMzMzOz5P0flvGydSXsF0AAAAAASUVORK5CYII=\n", 48 | "text/plain": [ 49 | "" 50 | ] 51 | }, 52 | "metadata": {}, 53 | "output_type": "display_data" 54 | } 55 | ], 56 | "source": [ 57 | "plt.figure(figsize=(14,7))\n", 58 | " \n", 59 | "colormap = np.array(['red', 'blue', 'black'])\n", 60 | " \n", 61 | "plt.subplot(1, 2, 1)\n", 62 | "plt.scatter(x.Sepal_Length, x.Sepal_Width, c=colormap[y.Targets], s=40)\n", 63 | "plt.title('Sepal')\n", 64 | " \n", 65 | "plt.subplot(1, 2, 2)\n", 66 | "plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[y.Targets], s=40)\n", 67 | "plt.title('Petal')\n", 68 | "plt.show()\n", 69 | "plt.close()" 70 | ] 71 | }, 72 | { 73 | "cell_type": "code", 74 | "execution_count": 5, 75 | "metadata": {}, 76 | "outputs": [ 77 | { 78 | "data": { 79 | "text/plain": [ 80 | "KMeans(algorithm='auto', copy_x=True, init='k-means++', max_iter=300,\n", 81 | " n_clusters=3, n_init=10, n_jobs=1, precompute_distances='auto',\n", 82 | " random_state=None, tol=0.0001, verbose=0)" 83 | ] 84 | }, 85 | "execution_count": 5, 86 | "metadata": {}, 87 | "output_type": "execute_result" 88 | } 89 | ], 90 | "source": [ 91 | "model = KMeans(n_clusters=3)\n", 92 | "model.fit(x)" 93 | ] 94 | }, 95 | { 96 | "cell_type": "code", 97 | "execution_count": 6, 98 | "metadata": {}, 99 | "outputs": [ 100 | { 101 | "data": { 102 | "text/plain": [ 103 | "Text(0.5,1,'K Mean Classification')" 104 | ] 105 | }, 106 | "execution_count": 6, 107 | "metadata": {}, 108 | "output_type": "execute_result" 109 | } 110 | ], 111 | "source": [ 112 | "plt.figure(figsize=(14,7))\n", 113 | " \n", 114 | "colormap = np.array(['red', 'blue', 'black'])\n", 115 | " \n", 116 | "plt.subplot(1, 2, 1)\n", 117 | "plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[y.Targets], s=40)\n", 118 | "plt.title('Real Classification')\n", 119 | " \n", 120 | "plt.subplot(1, 2, 2)\n", 121 | "plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[model.labels_], s=40)\n", 122 | "plt.title('K Mean Classification')" 123 | ] 124 | }, 125 | { 126 | "cell_type": "code", 127 | "execution_count": 7, 128 | "metadata": {}, 129 | "outputs": [ 130 | { 131 | "name": "stdout", 132 | "output_type": "stream", 133 | "text": [ 134 | "[1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", 135 | " 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", 136 | " 0 0 0 2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 2 0 2 2 2 2 0 2 2 2 2\n", 137 | " 2 2 0 0 2 2 2 2 0 2 0 2 0 2 2 0 0 2 2 2 2 2 0 2 2 2 2 0 2 2 2 0 2 2 2 0 2\n", 138 | " 2 0]\n", 139 | "[0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0\n", 140 | " 0 0 0 0 0 0 0 0 0 0 0 0 0 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1\n", 141 | " 1 1 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 1 2 2 2 2 1 2 2 2 2\n", 142 | " 2 2 1 1 2 2 2 2 1 2 1 2 1 2 2 1 1 2 2 2 2 2 1 2 2 2 2 1 2 2 2 1 2 2 2 1 2\n", 143 | " 2 1]\n" 144 | ] 145 | } 146 | ], 147 | "source": [ 148 | "predY = np.choose(model.labels_, [1, 0, 2]).astype(np.int64)\n", 149 | "print (model.labels_)\n", 150 | "print (predY)" 151 | ] 152 | }, 153 | { 154 | "cell_type": "code", 155 | "execution_count": 8, 156 | "metadata": {}, 157 | "outputs": [ 158 | { 159 | "data": { 160 | "text/plain": [ 161 | "Text(0.5,1,'K Mean Classification')" 162 | ] 163 | }, 164 | "execution_count": 8, 165 | "metadata": {}, 166 | "output_type": "execute_result" 167 | } 168 | ], 169 | "source": [ 170 | "plt.figure(figsize=(14,7))\n", 171 | " \n", 172 | "colormap = np.array(['red', 'blue', 'black'])\n", 173 | " \n", 174 | "plt.subplot(1, 2, 1)\n", 175 | "plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[y.Targets], s=40)\n", 176 | "plt.title('Real Classification')\n", 177 | " \n", 178 | "plt.subplot(1, 2, 2)\n", 179 | "plt.scatter(x.Petal_Length, x.Petal_Width, c=colormap[predY], s=40)\n", 180 | "plt.title('K Mean Classification')" 181 | ] 182 | }, 183 | { 184 | "cell_type": "code", 185 | "execution_count": 9, 186 | "metadata": {}, 187 | "outputs": [ 188 | { 189 | "data": { 190 | "text/plain": [ 191 | "0.89333333333333331" 192 | ] 193 | }, 194 | "execution_count": 9, 195 | "metadata": {}, 196 | "output_type": "execute_result" 197 | } 198 | ], 199 | "source": [ 200 | "sm.accuracy_score(y, predY)" 201 | ] 202 | }, 203 | { 204 | "cell_type": "code", 205 | "execution_count": null, 206 | "metadata": {}, 207 | "outputs": [], 208 | "source": [] 209 | }, 210 | { 211 | "cell_type": "code", 212 | "execution_count": null, 213 | "metadata": {}, 214 | "outputs": [], 215 | "source": [] 216 | } 217 | ], 218 | "metadata": { 219 | "kernelspec": { 220 | "display_name": "Python 3", 221 | "language": "python", 222 | "name": "python3" 223 | }, 224 | "language_info": { 225 | "codemirror_mode": { 226 | "name": "ipython", 227 | "version": 3 228 | }, 229 | "file_extension": ".py", 230 | "mimetype": "text/x-python", 231 | "name": "python", 232 | "nbconvert_exporter": "python", 233 | "pygments_lexer": "ipython3", 234 | "version": "3.6.3" 235 | } 236 | }, 237 | "nbformat": 4, 238 | "nbformat_minor": 2 239 | } 240 | -------------------------------------------------------------------------------- /logistic_regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "code", 5 | "execution_count": 1, 6 | "metadata": { 7 | "collapsed": true 8 | }, 9 | "outputs": [], 10 | "source": [ 11 | "import pandas as pd\n", 12 | "import numpy as np" 13 | ] 14 | }, 15 | { 16 | "cell_type": "code", 17 | "execution_count": 2, 18 | "metadata": {}, 19 | "outputs": [ 20 | { 21 | "data": { 22 | "text/html": [ 23 | "
\n", 24 | "\n", 37 | "\n", 38 | " \n", 39 | " \n", 40 | " \n", 41 | " \n", 42 | " \n", 43 | " \n", 44 | " \n", 45 | " \n", 46 | " \n", 47 | " \n", 48 | " \n", 49 | " \n", 50 | " \n", 51 | " \n", 52 | " \n", 53 | " \n", 54 | " \n", 55 | " \n", 56 | " \n", 57 | " \n", 58 | " \n", 59 | " \n", 60 | " \n", 61 | " \n", 62 | " \n", 63 | " \n", 64 | " \n", 65 | " \n", 66 | " \n", 67 | " \n", 68 | " \n", 69 | " \n", 70 | " \n", 71 | " \n", 72 | " \n", 73 | " \n", 74 | " \n", 75 | " \n", 76 | " \n", 77 | " \n", 78 | " \n", 79 | " \n", 80 | " \n", 81 | " \n", 82 | " \n", 83 | " \n", 84 | " \n", 85 | " \n", 86 | " \n", 87 | " \n", 88 | " \n", 89 | " \n", 90 | " \n", 91 | " \n", 92 | " \n", 93 | " \n", 94 | " \n", 95 | " \n", 96 | " \n", 97 | " \n", 98 | " \n", 99 | " \n", 100 | " \n", 101 | " \n", 102 | " \n", 103 | " \n", 104 | " \n", 105 | " \n", 106 | " \n", 107 | " \n", 108 | " \n", 109 | " \n", 110 | " \n", 111 | " \n", 112 | " \n", 113 | " \n", 114 | " \n", 115 | " \n", 116 | " \n", 117 | " \n", 118 | " \n", 119 | " \n", 120 | " \n", 121 | " \n", 122 | " \n", 123 | " \n", 124 | " \n", 125 | " \n", 126 | " \n", 127 | " \n", 128 | " \n", 129 | " \n", 130 | " \n", 131 | " \n", 132 | " \n", 133 | " \n", 134 | " \n", 135 | " \n", 136 | " \n", 137 | " \n", 138 | " \n", 139 | " \n", 140 | " \n", 141 | " \n", 142 | " \n", 143 | " \n", 144 | "
pclasssurvivednamesexagesibspparchticketfarecabinembarkedboatbodyhome.dest
011Allen, Miss. Elisabeth Waltonfemale29.00000024160211.3375B5S2NaNSt Louis, MO
111Allison, Master. Hudson Trevormale0.916712113781151.5500C22 C26S11NaNMontreal, PQ / Chesterville, ON
210Allison, Miss. Helen Lorainefemale2.000012113781151.5500C22 C26SNaNNaNMontreal, PQ / Chesterville, ON
310Allison, Mr. Hudson Joshua Creightonmale30.000012113781151.5500C22 C26SNaN135.0Montreal, PQ / Chesterville, ON
410Allison, Mrs. Hudson J C (Bessie Waldo Daniels)female25.000012113781151.5500C22 C26SNaNNaNMontreal, PQ / Chesterville, ON
\n", 145 | "
" 146 | ], 147 | "text/plain": [ 148 | " pclass survived name sex \\\n", 149 | "0 1 1 Allen, Miss. Elisabeth Walton female \n", 150 | "1 1 1 Allison, Master. Hudson Trevor male \n", 151 | "2 1 0 Allison, Miss. Helen Loraine female \n", 152 | "3 1 0 Allison, Mr. Hudson Joshua Creighton male \n", 153 | "4 1 0 Allison, Mrs. Hudson J C (Bessie Waldo Daniels) female \n", 154 | "\n", 155 | " age sibsp parch ticket fare cabin embarked boat body \\\n", 156 | "0 29.0000 0 0 24160 211.3375 B5 S 2 NaN \n", 157 | "1 0.9167 1 2 113781 151.5500 C22 C26 S 11 NaN \n", 158 | "2 2.0000 1 2 113781 151.5500 C22 C26 S NaN NaN \n", 159 | "3 30.0000 1 2 113781 151.5500 C22 C26 S NaN 135.0 \n", 160 | "4 25.0000 1 2 113781 151.5500 C22 C26 S NaN NaN \n", 161 | "\n", 162 | " home.dest \n", 163 | "0 St Louis, MO \n", 164 | "1 Montreal, PQ / Chesterville, ON \n", 165 | "2 Montreal, PQ / Chesterville, ON \n", 166 | "3 Montreal, PQ / Chesterville, ON \n", 167 | "4 Montreal, PQ / Chesterville, ON " 168 | ] 169 | }, 170 | "execution_count": 2, 171 | "metadata": {}, 172 | "output_type": "execute_result" 173 | } 174 | ], 175 | "source": [ 176 | "data = pd.read_excel(\"titanic.xls\")\n", 177 | "data.head()" 178 | ] 179 | }, 180 | { 181 | "cell_type": "code", 182 | "execution_count": 3, 183 | "metadata": {}, 184 | "outputs": [ 185 | { 186 | "name": "stdout", 187 | "output_type": "stream", 188 | "text": [ 189 | "\n", 190 | "RangeIndex: 1309 entries, 0 to 1308\n", 191 | "Data columns (total 14 columns):\n", 192 | "pclass 1309 non-null int64\n", 193 | "survived 1309 non-null int64\n", 194 | "name 1309 non-null object\n", 195 | "sex 1309 non-null object\n", 196 | "age 1046 non-null float64\n", 197 | "sibsp 1309 non-null int64\n", 198 | "parch 1309 non-null int64\n", 199 | "ticket 1309 non-null object\n", 200 | "fare 1308 non-null float64\n", 201 | "cabin 295 non-null object\n", 202 | "embarked 1307 non-null object\n", 203 | "boat 486 non-null object\n", 204 | "body 121 non-null float64\n", 205 | "home.dest 745 non-null object\n", 206 | "dtypes: float64(3), int64(4), object(7)\n", 207 | "memory usage: 143.2+ KB\n" 208 | ] 209 | } 210 | ], 211 | "source": [ 212 | "data.info()" 213 | ] 214 | }, 215 | { 216 | "cell_type": "code", 217 | "execution_count": 4, 218 | "metadata": {}, 219 | "outputs": [ 220 | { 221 | "data": { 222 | "text/html": [ 223 | "
\n", 224 | "\n", 237 | "\n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | "
pclasssurvivedsexagesibspparchticketfarecabinembarkedboat
011female29.00000024160211.3375B5S2
111male0.916712113781151.5500C22 C26S11
210female2.000012113781151.5500C22 C26SNaN
310male30.000012113781151.5500C22 C26SNaN
410female25.000012113781151.5500C22 C26SNaN
\n", 327 | "
" 328 | ], 329 | "text/plain": [ 330 | " pclass survived sex age sibsp parch ticket fare cabin \\\n", 331 | "0 1 1 female 29.0000 0 0 24160 211.3375 B5 \n", 332 | "1 1 1 male 0.9167 1 2 113781 151.5500 C22 C26 \n", 333 | "2 1 0 female 2.0000 1 2 113781 151.5500 C22 C26 \n", 334 | "3 1 0 male 30.0000 1 2 113781 151.5500 C22 C26 \n", 335 | "4 1 0 female 25.0000 1 2 113781 151.5500 C22 C26 \n", 336 | "\n", 337 | " embarked boat \n", 338 | "0 S 2 \n", 339 | "1 S 11 \n", 340 | "2 S NaN \n", 341 | "3 S NaN \n", 342 | "4 S NaN " 343 | ] 344 | }, 345 | "execution_count": 4, 346 | "metadata": {}, 347 | "output_type": "execute_result" 348 | } 349 | ], 350 | "source": [ 351 | "data.drop(['body','name','home.dest'], 1, inplace=True)\n", 352 | "data.head()" 353 | ] 354 | }, 355 | { 356 | "cell_type": "code", 357 | "execution_count": 5, 358 | "metadata": {}, 359 | "outputs": [ 360 | { 361 | "data": { 362 | "text/html": [ 363 | "
\n", 364 | "\n", 377 | "\n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | "
pclasssurvivedagesibspparchfare
count1309.0000001309.0000001046.0000001309.0000001309.0000001308.000000
mean2.2948820.38197129.8811350.4988540.38502733.295479
std0.8378360.48605514.4135001.0416580.86556051.758668
min1.0000000.0000000.1667000.0000000.0000000.000000
25%2.0000000.00000021.0000000.0000000.0000007.895800
50%3.0000000.00000028.0000000.0000000.00000014.454200
75%3.0000001.00000039.0000001.0000000.00000031.275000
max3.0000001.00000080.0000008.0000009.000000512.329200
\n", 464 | "
" 465 | ], 466 | "text/plain": [ 467 | " pclass survived age sibsp parch \\\n", 468 | "count 1309.000000 1309.000000 1046.000000 1309.000000 1309.000000 \n", 469 | "mean 2.294882 0.381971 29.881135 0.498854 0.385027 \n", 470 | "std 0.837836 0.486055 14.413500 1.041658 0.865560 \n", 471 | "min 1.000000 0.000000 0.166700 0.000000 0.000000 \n", 472 | "25% 2.000000 0.000000 21.000000 0.000000 0.000000 \n", 473 | "50% 3.000000 0.000000 28.000000 0.000000 0.000000 \n", 474 | "75% 3.000000 1.000000 39.000000 1.000000 0.000000 \n", 475 | "max 3.000000 1.000000 80.000000 8.000000 9.000000 \n", 476 | "\n", 477 | " fare \n", 478 | "count 1308.000000 \n", 479 | "mean 33.295479 \n", 480 | "std 51.758668 \n", 481 | "min 0.000000 \n", 482 | "25% 7.895800 \n", 483 | "50% 14.454200 \n", 484 | "75% 31.275000 \n", 485 | "max 512.329200 " 486 | ] 487 | }, 488 | "execution_count": 5, 489 | "metadata": {}, 490 | "output_type": "execute_result" 491 | } 492 | ], 493 | "source": [ 494 | "data.describe()" 495 | ] 496 | }, 497 | { 498 | "cell_type": "code", 499 | "execution_count": 6, 500 | "metadata": {}, 501 | "outputs": [ 502 | { 503 | "data": { 504 | "text/html": [ 505 | "
\n", 506 | "\n", 519 | "\n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | " \n", 544 | " \n", 545 | " \n", 546 | " \n", 547 | " \n", 548 | " \n", 549 | " \n", 550 | " \n", 551 | " \n", 552 | " \n", 553 | " \n", 554 | " \n", 555 | " \n", 556 | " \n", 557 | " \n", 558 | " \n", 559 | " \n", 560 | " \n", 561 | " \n", 562 | " \n", 563 | " \n", 564 | " \n", 565 | " \n", 566 | " \n", 567 | " \n", 568 | " \n", 569 | " \n", 570 | " \n", 571 | " \n", 572 | " \n", 573 | " \n", 574 | " \n", 575 | " \n", 576 | " \n", 577 | " \n", 578 | " \n", 579 | " \n", 580 | " \n", 581 | " \n", 582 | " \n", 583 | " \n", 584 | " \n", 585 | " \n", 586 | " \n", 587 | " \n", 588 | " \n", 589 | " \n", 590 | " \n", 591 | " \n", 592 | " \n", 593 | " \n", 594 | " \n", 595 | " \n", 596 | " \n", 597 | " \n", 598 | " \n", 599 | " \n", 600 | " \n", 601 | " \n", 602 | " \n", 603 | " \n", 604 | " \n", 605 | "
pclasssurvivedagesibspparchfare
count1309.0000001309.0000001309.0000001309.0000001309.0000001309.000000
mean2.2948820.38197129.5031830.4988540.38502733.281086
std0.8378360.48605512.9052461.0416580.86556051.741500
min1.0000000.0000000.1667000.0000000.0000000.000000
25%2.0000000.00000022.0000000.0000000.0000007.895800
50%3.0000000.00000028.0000000.0000000.00000014.454200
75%3.0000001.00000035.0000001.0000000.00000031.275000
max3.0000001.00000080.0000008.0000009.000000512.329200
\n", 606 | "
" 607 | ], 608 | "text/plain": [ 609 | " pclass survived age sibsp parch \\\n", 610 | "count 1309.000000 1309.000000 1309.000000 1309.000000 1309.000000 \n", 611 | "mean 2.294882 0.381971 29.503183 0.498854 0.385027 \n", 612 | "std 0.837836 0.486055 12.905246 1.041658 0.865560 \n", 613 | "min 1.000000 0.000000 0.166700 0.000000 0.000000 \n", 614 | "25% 2.000000 0.000000 22.000000 0.000000 0.000000 \n", 615 | "50% 3.000000 0.000000 28.000000 0.000000 0.000000 \n", 616 | "75% 3.000000 1.000000 35.000000 1.000000 0.000000 \n", 617 | "max 3.000000 1.000000 80.000000 8.000000 9.000000 \n", 618 | "\n", 619 | " fare \n", 620 | "count 1309.000000 \n", 621 | "mean 33.281086 \n", 622 | "std 51.741500 \n", 623 | "min 0.000000 \n", 624 | "25% 7.895800 \n", 625 | "50% 14.454200 \n", 626 | "75% 31.275000 \n", 627 | "max 512.329200 " 628 | ] 629 | }, 630 | "execution_count": 6, 631 | "metadata": {}, 632 | "output_type": "execute_result" 633 | } 634 | ], 635 | "source": [ 636 | "data[\"age\"].fillna(data[\"age\"].median(), inplace=True)\n", 637 | "data[\"fare\"].fillna(data[\"fare\"].median(), inplace=True)\n", 638 | "data.describe()" 639 | ] 640 | }, 641 | { 642 | "cell_type": "code", 643 | "execution_count": 7, 644 | "metadata": {}, 645 | "outputs": [ 646 | { 647 | "data": { 648 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXoAAAEdCAYAAAACUaxyAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAF+RJREFUeJzt3X+QXWWd5/H3N/yKuIFAbBhMA+lZ\nMxAlhGCjEcYdIc4CKoRVM4OTGqPGyqrsjq67Iigp8QeWTlEwA6y4cTKbYIGKOpishbNgDLKuCyEx\nEHEClYAx9CQDbYAIYaIBv/vHfRrbdIe+nf5xO0/er6pb55znPPfe7w3Np08/95znRGYiSarXuFYX\nIEkaWQa9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIHt7oAgFe84hU5ZcqUVpch\nSfuVtWvX/jIz2wbqNyaCfsqUKaxZs6bVZUjSfiUiftFMP4duJKlyBr0kVc6gl6TKjYkx+v7s3r2b\nrq4udu3a1epSxpTx48fT3t7OIYcc0upSJO0nxmzQd3V1MWHCBKZMmUJEtLqcMSEz2b59O11dXXR0\ndLS6HEn7iTE7dLNr1y4mTZpkyPcSEUyaNMm/ciQNypgNesCQ74f/JpIGq6mgj4j/EhE/i4gHI+Jr\nETE+Ijoi4t6I2BgR34iIQ0vfw8r2prJ/ykh+AEnSSxsw6CNiMvBXQGdmngIcBFwMfBG4NjOnAk8B\nC8pTFgBPZeargGtLv6GLGN5HE6677jqmTZvGvHnzhuUj7OnKK6/k6quvHpHXlqQezX4ZezDwsojY\nDRwObAPOAf6i7F8GXAncCMwp6wDfAm6IiMj98C7kX/rSl/je977nF58a8xzRG177X1q9tAGP6DPz\nn4GrgS00An4HsBZ4OjOfL926gMllfTLwWHnu86X/pOEte+R94AMf4NFHH+XCCy/kqquu4n3vex9n\nnHEGM2fOZPny5QAsXbqUiy66iAsuuICOjg5uuOEGrrnmGmbOnMmsWbN48sknAfjKV77CGWecwYwZ\nM3jHO97Bc8891+f9HnnkEc477zxe+9rX8sY3vpGHHnpoVD+vpHo1M3RzFI2j9A7glcDLgfP76drz\nO7C/Y4s+vx8jYmFErImINd3d3c1XPEq+/OUv88pXvpJVq1axc+dOzjnnHO677z5WrVrFxz72MXbu\n3AnAgw8+yC233MLq1av55Cc/yeGHH866det4wxvewE033QTA29/+du677z4eeOABpk2bxpIlS/q8\n38KFC7n++utZu3YtV199NR/60IdG9fNKqlczQzdvBn6emd0AEfEPwJnAxIg4uBy1twNbS/8u4Hig\nKyIOBo4EntzzRTNzMbAYoLOzc0z/oXTHHXewYsWKF8fTd+3axZYtWwA4++yzmTBhAhMmTODII4/k\nggsuAGD69OmsX78eaPwyuOKKK3j66ad59tlnOffcc3/v9Z999ll+/OMfM3fu3Bfbfv3rX4/GR5N0\nAGgm6LcAsyLicOBfgdnAGmAV8E7g68B8YHnpv6Js/7+y/wf74/h8b5nJt7/9bU466aTfa7/33ns5\n7LDDXtweN27ci9vjxo3j+ecbI1vvec97+M53vsOMGTNYunQpd9111++9zm9/+1smTpzI/fffP7If\nRNIBqZkx+ntpfKn6E+Cn5TmLgY8DH42ITTTG4HvGI5YAk0r7R4HLRqDuUXXuuedy/fXX0/P7at26\ndYN6/jPPPMNxxx3H7t27ufnmm/vsP+KII+jo6OCb3/wm0PjF8sADDwy9cEmiybNuMvNTwKf2aH4U\neF0/fXcBc/dsH7IW/lGwaNEiPvKRj3DqqaeSmUyZMoXvfve7TT//s5/9LK9//es58cQTmT59Os88\n80yfPjfffDMf/OAH+dznPsfu3bu5+OKLmTFjxnB+DEkHqBgLoyqdnZ25541HNmzYwLRp01pU0djm\nv4325OmVw2sMxGJTImJtZnYO1G9MT4EgSRo6g16SKmfQS1LlDHpJqpxBL0mVM+glqXL7TdC3YJbi\nIbnrrrt429veNvJvJEkD2G+CXpK0bwz6l7B582ZOPvlk3v/+93PKKacwb948vv/973PWWWcxdepU\nVq9ezerVqznzzDOZOXMmZ555Jg8//HCf19m5c2e/0xxL0mgw6AewadMmPvzhD7N+/Xoeeughbrnl\nFn70ox9x9dVX8/nPf56TTz6Zu+++m3Xr1vGZz3yGT3ziE31e46qrrtrrNMeSNNKavcPUAaujo4Pp\n06cD8JrXvIbZs2cTEUyfPp3NmzezY8cO5s+fz8aNG4kIdu/e3ec19jbNsdMYSBoNBv0ABpqGeNGi\nRZx99tncdtttbN68mTe96U19XmNv0xxL0mhw6GaIduzYweTJjbsoLl26tN8+Q53mWJKGYr8J+szh\nfQyXSy+9lMsvv5yzzjqLF154od8+ixYtYvfu3Zx66qmccsopLFq0aPgKkKQBOE3xfsh/G+3JaYqH\n1xiIxaY4TbEkCWgi6CPipIi4v9fjVxHxkYg4OiLujIiNZXlU6R8RcV1EbIqI9RFx+sh/DEnS3jRz\nz9iHM/O0zDwNeC3wHHAbjXvBrszMqcBKfndv2POBqeWxELhxX4sbC8NKY43/JpIGa7BDN7OBRzLz\nF8AcYFlpXwZcVNbnADdlwz3AxIg4brCFjR8/nu3btxtsvWQm27dvZ/z48a0uRdJ+ZLDn0V8MfK2s\nH5uZ2wAyc1tEHFPaJwOP9XpOV2nbNpg3am9vp6uri+7u7kGWWLfx48fT3t7e6jIk7UeaDvqIOBS4\nELh8oK79tPU5LI+IhTSGdjjhhBP6POGQQw6ho6Oj2fIkSXsxmKGb84GfZObjZfvxniGZsnyitHcB\nx/d6Xjuwdc8Xy8zFmdmZmZ1tbW2Dr1yS1JTBBP27+N2wDcAKYH5Znw8s79X+7nL2zSxgR88QjyRp\n9DU1dBMRhwN/CvzHXs1fAG6NiAXAFmBuab8deAuwicYZOu8dtmolSYPWVNBn5nPApD3attM4C2fP\nvglcMizVSZKGzCtjJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXO\noJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXJNBX1ETIyIb0XEQxGxISLeEBFHR8SdEbGx\nLI8qfSMirouITRGxPiJOH9mPIEl6Kc0e0f8t8I+ZeTIwA9gAXAaszMypwMqyDXA+MLU8FgI3DmvF\nkqRBGTDoI+II4N8BSwAy8zeZ+TQwB1hWui0DLirrc4CbsuEeYGJEHDfslUuSmtLMEf0fAt3A/4yI\ndRHxdxHxcuDYzNwGUJbHlP6Tgcd6Pb+rtP2eiFgYEWsiYk13d/eQPoQkae+aCfqDgdOBGzNzJrCT\n3w3T9Cf6acs+DZmLM7MzMzvb2tqaKlaSNHjNBH0X0JWZ95btb9EI/sd7hmTK8ole/Y/v9fx2YOvw\nlCtJGqwBgz4z/wV4LCJOKk2zgX8CVgDzS9t8YHlZXwG8u5x9MwvY0TPEI0kafQc32e8/AzdHxKHA\no8B7afySuDUiFgBbgLml7+3AW4BNwHOlrySpRZoK+sy8H+jsZ9fsfvomcMkQ65IkDROvjJWkyhn0\nklQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6SaqcQS9J\nlTPoJalyBr0kVa6poI+IzRHx04i4PyLWlLajI+LOiNhYlkeV9oiI6yJiU0Ssj4jTR/IDSJJe2mCO\n6M/OzNMys+dOU5cBKzNzKrCybAOcD0wtj4XAjcNVrCRp8IYydDMHWFbWlwEX9Wq/KRvuASZGxHFD\neB9J0hA0G/QJ3BERayNiYWk7NjO3AZTlMaV9MvBYr+d2lTZJUgs0dXNw4KzM3BoRxwB3RsRDL9E3\n+mnLPp0avzAWApxwwglNltFa0d8n0z7LPj8VkkZCU0f0mbm1LJ8AbgNeBzzeMyRTlk+U7l3A8b2e\n3g5s7ec1F2dmZ2Z2trW17fsnkCS9pAGDPiJeHhETetaBfw88CKwA5pdu84HlZX0F8O5y9s0sYEfP\nEI8kafQ1M3RzLHBbNMYtDgZuycx/jIj7gFsjYgGwBZhb+t8OvAXYBDwHvHfYq5YkNW3AoM/MR4EZ\n/bRvB2b3057AJcNSnSRpyLwyVpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXOoJekyhn0klQ5g16S\nKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekirXdNBHxEERsS4ivlu2OyLi3ojY\nGBHfiIhDS/thZXtT2T9lZEqXJDVjMEf0HwY29Nr+InBtZk4FngIWlPYFwFOZ+Srg2tJPktQiTQV9\nRLQDbwX+rmwHcA7wrdJlGXBRWZ9Ttin7Z5f+kqQWaPaI/m+AS4Hflu1JwNOZ+XzZ7gIml/XJwGMA\nZf+O0l+S1AIDBn1EvA14IjPX9m7up2s2sa/36y6MiDURsaa7u7upYiVJg9fMEf1ZwIURsRn4Oo0h\nm78BJkbEwaVPO7C1rHcBxwOU/UcCT+75opm5ODM7M7Ozra1tSB9CkrR3AwZ9Zl6eme2ZOQW4GPhB\nZs4DVgHvLN3mA8vL+oqyTdn/g8zsc0QvSRodQzmP/uPARyNiE40x+CWlfQkwqbR/FLhsaCVKkobi\n4IG7/E5m3gXcVdYfBV7XT59dwNxhqE2SNAy8MlaSKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCX\npMoZ9JJUOYNekipn0EtS5QY1BcKBLvudgVn7zrnupNHgEb0kVc6gl6TKGfSSVDmDXpIqZ9BLUuWa\nuTn4+IhYHREPRMTPIuLTpb0jIu6NiI0R8Y2IOLS0H1a2N5X9U0b2I0iSXkozR/S/Bs7JzBnAacB5\nETEL+CJwbWZOBZ4CFpT+C4CnMvNVwLWlnySpRZq5OXhm5rNl85DySOAc4FulfRlwUVmfU7Yp+2dH\nhCegS1KLNDVGHxEHRcT9wBPAncAjwNOZ+Xzp0gVMLuuTgccAyv4dNG4eLklqgaaCPjNfyMzTgHYa\nNwSf1l+3suzv6L3PJZARsTAi1kTEmu7u7mbrlSQN0qDOusnMp4G7gFnAxIjomUKhHdha1ruA4wHK\n/iOBJ/t5rcWZ2ZmZnW1tbftWvSRpQM2cddMWERPL+suANwMbgFXAO0u3+cDysr6ibFP2/yAzndRE\nklqkmUnNjgOWRcRBNH4x3JqZ342IfwK+HhGfA9YBS0r/JcBXI2ITjSP5i0egbklSkwYM+sxcD8zs\np/1RGuP1e7bvAuYOS3WSpCHzylhJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekipn0EtS5Qx6\nSaqcQS9JlTPoJalyBr0kVc6gl6TKGfSSVDmDXpIqZ9BLUuUMekmqXDP3jD0+IlZFxIaI+FlEfLi0\nHx0Rd0bExrI8qrRHRFwXEZsiYn1EnD7SH0KStHfNHNE/D/zXzJwGzAIuiYhXA5cBKzNzKrCybAOc\nD0wtj4XAjcNetSSpaQMGfWZuy8yflPVngA3AZGAOsKx0WwZcVNbnADdlwz3AxIg4btgrlyQ1ZVBj\n9BExhcaNwu8Fjs3MbdD4ZQAcU7pNBh7r9bSu0iZJaoGmgz4i/g3wbeAjmfmrl+raT1v283oLI2JN\nRKzp7u5utgxJ0iA1FfQRcQiNkL85M/+hND/eMyRTlk+U9i7g+F5Pbwe27vmambk4Mzszs7OtrW1f\n65ckDaCZs24CWAJsyMxreu1aAcwv6/OB5b3a313OvpkF7OgZ4pEkjb6Dm+hzFvCXwE8j4v7S9gng\nC8CtEbEA2ALMLftuB94CbAKeA947rBVLkgZlwKDPzB/R/7g7wOx++idwyRDrkiQNE6+MlaTKGfSS\nVDmDXpIqZ9BLUuUMekmqnEEvSZUz6CWpcga9JFXOoJekyhn0klQ5g16SKmfQS1LlDHpJqlwz0xRL\nGuNyrxPMat/0uSnefs0jekmqnEEvSZUz6CWpcs3cM/bvI+KJiHiwV9vREXFnRGwsy6NKe0TEdRGx\nKSLWR8TpI1m8JGlgzRzRLwXO26PtMmBlZk4FVpZtgPOBqeWxELhxeMqUJO2rAYM+M+8GntyjeQ6w\nrKwvAy7q1X5TNtwDTIyI44arWEnS4O3rGP2xmbkNoCyPKe2Tgcd69esqbX1ExMKIWBMRa7q7u/ex\nDEnSQIb7y9j+Tubt94TUzFycmZ2Z2dnW1jbMZUiSeuxr0D/eMyRTlk+U9i7g+F792oGt+16eJGmo\n9jXoVwDzy/p8YHmv9neXs29mATt6hngkSa0x4BQIEfE14E3AKyKiC/gU8AXg1ohYAGwB5pbutwNv\nATYBzwHvHYGaJUmDMGDQZ+a79rJrdj99E7hkqEVJkoaPV8ZKUuUMekmqnEEvSZUz6CWpcga9JFXO\noJekyhn0klQ5g16SKmfQS1LlDHpJqpxBL0mVM+glqXIGvSRVzqCXpMoZ9JJUOYNekio3IkEfEedF\nxMMRsSkiLhuJ95AkNWfYgz4iDgL+O3A+8GrgXRHx6uF+H0lSc0biiP51wKbMfDQzfwN8HZgzAu8j\nSWrCSAT9ZOCxXttdpU2S1AID3hx8H0Q/bdmnU8RCYGHZfDYiHh6BWg5UrwB+2eoiBhT9/aiocv5s\nDq8Tm+k0EkHfBRzfa7sd2Lpnp8xcDCwegfc/4EXEmszsbHUd0p782WyNkRi6uQ+YGhEdEXEocDGw\nYgTeR5LUhGE/os/M5yPiPwH/GzgI+PvM/Nlwv48kqTkjMXRDZt4O3D4Sr62mOCSmscqfzRaIzD7f\nk0qSKuIUCJJUOYNekipn0EtS5Ubky1hJioijX2p/Zj45WrUc6Pwydj8WEc/Qz1XHPTLziFEsR/o9\nEfFzGj+fAZwAPFXWJwJbMrOjheUdUDyi349l5gSAiPgM8C/AV2n8jzQPmNDC0iR6gjwivgysKKdd\nExHnA29uZW0HGo/oKxAR92bm6wdqk1ohItZm5mv3aHMqhFHkl7F1eCEi5kXEQRExLiLmAS+0uiip\n+GVEXBERUyLixIj4JLC91UUdSAz6OvwF8GfA4+Uxt7RJY8G7gDbgNuA7wDGlTaPEoRtJqpxfxlYg\nIv4IuBE4NjNPiYhTgQsz83MtLk0iItqAS4HXAON72jPznJYVdYBx6KYOXwEuB3YDZOZ6GtNDS2PB\nzcBDQAfwaWAzjenMNUoM+jocnpmr92h7viWVSH1NyswlwO7M/GFmvg+Y1eqiDiQO3dThlxHxbykX\nT0XEO4FtrS1JetHustwWEW+lcce59hbWc8Dxy9gKRMQf0pjn+0waVx/+HJiXmb9oaWESEBFvA/4P\njVuMXg8cAXw6M73z3Cgx6CsQEQdl5gsR8XJgXGY+0+qaJI0djtHX4ecRsZjGuOezrS5G6i0i/igi\nVkbEg2X71Ii4otV1HUgM+jqcBHwfuIRG6N8QEX/c4pqkHp4V1mIGfQUy818z89bMfDswk8YY6A9b\nXJbUw7PCWsygr0RE/ElEfAn4CY2LUv6sxSVJPTwrrMX8MrYCZd7v+4FbaUwHu7PFJUkv8qyw1jPo\nKxARR2Tmr1pdh9RbRHx0j6aX0RhF2AmQmdeMelEHKC+Y2o9FxKWZ+dfAVRHR5zd2Zv5VC8qSevTc\n/OYk4AxgOY0b4/wlcHerijoQGfT7tw1luaalVUj9yMxPA0TEHcDpPdd3RMSVwDdbWNoBx6Dfj2Xm\n/yqr6zNzXUuLkfbuBOA3vbZ/A0xpTSkHJoO+DtdExHE0jpK+npk/a3VBUi9fBVZHxG00zrz5D8Cy\n1pZ0YPHL2EpExB/QOKXyz2mcR/8N56PXWBERpwNvLJt3+xfo6DLoKxMR02nc5OHPM/PQVtcjqfW8\nYKoCETEtIq4sc4ncAPwYp4GVVHhEX4GIuAf4GvDNzNza6nokjS1+Gbufi4iDgEcy829bXYukscmh\nm/1cZr4ATIoIx+Ml9csj+jr8Avi/EbGCcnk5eIm5pAaDvg5by2Mcv7vsXJIAv4yVpOp5RF+BiFhF\nmeu7t8w8pwXlSBpjDPo6/Lde6+OBd+AdfCQVDt1UKiJ+mJl/0uo6JLWeR/QViIije22OAzqBP2hR\nOZLGGIO+DmtpjNEHsBvYDCxoZUGSxg4vmKrDx4HTMrODxpSwO4HnWluSpLHCoK/DFZn5q4j4Y+BP\ngaXAja0tSdJYYdDX4YWyfCvw5cxcDjglgiTAoK/FP0fE/6Bx45HbI+Iw/G8rqfD0ygpExOHAecBP\nM3Njua3g9My8o8WlSRoDDHpJqpx/3ktS5Qx6SaqcQS9JlTPoJalyBr0kVe7/A+5R7y9fKg99AAAA\nAElFTkSuQmCC\n", 649 | "text/plain": [ 650 | "" 651 | ] 652 | }, 653 | "metadata": {}, 654 | "output_type": "display_data" 655 | } 656 | ], 657 | "source": [ 658 | "import matplotlib.pyplot as plt\n", 659 | "colors = [\"r\", \"b\",\"k\"]\n", 660 | "survived_ = data[data[\"survived\"]== 1][\"sex\"].value_counts()\n", 661 | "dead_ = data[data[\"survived\"]==0][\"sex\"].value_counts()\n", 662 | "data_ = pd.DataFrame([survived_, dead_])\n", 663 | "data_.index = [\"survived\",\"dead\"]\n", 664 | "data_.plot.bar(stacked=True,color=colors)\n", 665 | "plt.show()\n", 666 | "plt.close()" 667 | ] 668 | }, 669 | { 670 | "cell_type": "code", 671 | "execution_count": 8, 672 | "metadata": {}, 673 | "outputs": [ 674 | { 675 | "name": "stderr", 676 | "output_type": "stream", 677 | "text": [ 678 | "/Users/euclid/anaconda3/lib/python3.6/site-packages/numpy/core/fromnumeric.py:57: FutureWarning: reshape is deprecated and will raise in a subsequent release. Please use .values.reshape(...) instead\n", 679 | " return getattr(obj, method)(*args, **kwds)\n" 680 | ] 681 | }, 682 | { 683 | "data": { 684 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAA34AAAJQCAYAAADR+LbmAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3X+w5XV95/nXO90dQFAQaAzSHRsz\nqEiAFi6ELKvVAy6gYxqtEhvjIJXVahOlhkwymai1WXFmqTJZI2OMy8oEA5mgDWII6DhZXcQY8wPp\nxpaISEBEaemlG9AWUJAfn/3jfsErXKGh7zmn7+c+HlW37vl+zvec+7nfak7z7O+vaq0FAACAfv3c\npCcAAADAaAk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzi2e\n9AR2xL777ttWrFgx6WkAAABMxIYNG+5srS19qvXmdfitWLEi69evn/Q0AAAAJqKqvr096znUEwAA\noHPCDwAAoHPCDwAAoHPz+hw/AABg/njwwQezadOm3H///ZOeyryz6667ZtmyZVmyZMkzer3wAwAA\nxmLTpk159rOfnRUrVqSqJj2deaO1lrvuuiubNm3KgQce+Izew6GeAADAWNx///3ZZ599RN/TVFXZ\nZ599dmhPqfADAADGRvQ9Mzu63YQfAABA54QfAAAwGVVz+7Wdzj777BxyyCE57LDDsnLlylx99dU7\n/KtcccUVed/73rfD75Mke+yxx5y8z0wjv7hLVS1Ksj7Jd1trr6mqA5OsS7J3kmuTnNZa+3FV7ZLk\nL5IcmeSuJGtaa7eOen4AAMDC8Y//+I/59Kc/nWuvvTa77LJL7rzzzvz4xz/ertc+9NBDWbx49oRa\nvXp1Vq9ePZdTnVPj2ON3ZpIbZiz/YZJzWmsHJflekrcM429J8r3W2r9Kcs6wHgAAwJzZvHlz9t13\n3+yyyy5Jkn333TfPf/7zs2LFitx5551JkvXr12fVqlVJkrPOOitr167NCSeckDe/+c35lV/5lVx/\n/fWPvd+qVauyYcOGXHDBBTnjjDOybdu2rFixIo888kiS5Ic//GGWL1+eBx98MN/85jdz0kkn5cgj\nj8zLX/7yfOMb30iSfOtb38qv/uqv5qijjsof/MEfjOT3Hmn4VdWyJP8myZ8Ny5XkuCSXDqtcmOS1\nw+OTh+UMzx9fzvwEAADm0AknnJDbbrstL3rRi/L2t789f/u3f/uUr9mwYUMuv/zyfOxjH8upp56a\nSy65JMl0RN5+++058sgjH1t3zz33zOGHH/7Y+37qU5/KiSeemCVLlmTt2rX50Ic+lA0bNuT9739/\n3v72tydJzjzzzPzWb/1WrrnmmvzCL/zCCH7r0e/x+y9J/mOSR4blfZJ8v7X20LC8KckBw+MDktyW\nJMPz24b1f0pVra2q9VW1fuvWraOcOwAA0Jk99tgjGzZsyHnnnZelS5dmzZo1ueCCC570NatXr85u\nu+2WJHnDG96QT3ziE0mSSy65JKeccsoT1l+zZk0uvvjiJMm6deuyZs2a3HvvvfmHf/iHnHLKKVm5\ncmXe9ra3ZfPmzUmSv//7v88b3/jGJMlpp502V7/qTxnZOX5V9ZokW1prG6pq1aPDs6zatuO5nwy0\ndl6S85JkamrqCc8DAAA8mUWLFmXVqlVZtWpVDj300Fx44YVZvHjxY4dnPv5+ebvvvvtjjw844IDs\ns88+ue6663LxxRfnIx/5yBPef/Xq1XnXu96Vu+++Oxs2bMhxxx2X++67L3vttVc2btw465xGfbDj\nKPf4HZtkdVXdmumLuRyX6T2Ae1XVo8G5LMntw+NNSZYnyfD8nknuHuH8AACABebGG2/MTTfd9Njy\nxo0b84IXvCArVqzIhg0bkiSf/OQnn/Q9Tj311PzRH/1Rtm3blkMPPfQJz++xxx45+uijc+aZZ+Y1\nr3lNFi1alOc85zk58MADH9tb2FrLV7/61STJsccem3Xr1iVJLrroojn5PR9vZOHXWntXa21Za21F\nklOTfL619qYkVyV5/bDa6UkuHx5fMSxneP7zrTV79AAAoFetze3Xdrj33ntz+umn56UvfWkOO+yw\nfP3rX89ZZ52V97znPTnzzDPz8pe/PIsWLXrS93j961+fdevW5Q1veMPPXGfNmjX5y7/8y6xZs+ax\nsYsuuijnn39+Dj/88BxyyCG5/PLpFPrgBz+YD3/4wznqqKOybdu27fo9nq4aR1sNh3r+h+F2Di/M\nT27n8JUk/7a19kBV7ZrkvyV5Wab39J3aWrvlyd53amqqrV+/frSTBwAA5sQNN9yQgw8+eNLTmLdm\n235VtaG1NvVUrx35ffySpLX2hSRfGB7fkuToWda5P8kTz4wEAABgh4zjPn4AAABMkPADAADonPAD\nAADonPADAADonPADAADonPADAAAmompuv7bHokWLsnLlyhxyyCE5/PDD84EPfCCPPPLInPw+Z511\nVt7//vfPyXvNtbHczgFgkrb3L4K5MobbowIAz9Buu+2WjRs3Jkm2bNmSX//1X8+2bdvy3ve+d8Iz\nGy17/AAAgAVpv/32y3nnnZc//dM/TWstDz/8cH7v934vRx11VA477LB85CMfSZLce++9Of7443PE\nEUfk0EMPzeWXX/7Ye5x99tl58YtfnFe+8pW58cYbJ/WrPCV7/AAAgAXrhS98YR555JFs2bIll19+\nefbcc89cc801eeCBB3LsscfmhBNOyPLly3PZZZflOc95Tu68884cc8wxWb16da699tqsW7cuX/nK\nV/LQQw/liCOOyJFHHjnpX2lWwg8AAFjQ2nCexmc/+9lcd911ufTSS5Mk27Zty0033ZRly5bl3e9+\nd774xS/m537u5/Ld7343d9xxR/7u7/4ur3vd6/KsZz0rSbJ69eqJ/Q5PRfgBAAAL1i233JJFixZl\nv/32S2stH/rQh3LiiSf+1DoXXHBBtm7dmg0bNmTJkiVZsWJF7r///iRJjftiAs+Qc/wAAIAFaevW\nrfnN3/zNnHHGGamqnHjiiTn33HPz4IMPJkn+5V/+Jffdd1+2bduW/fbbL0uWLMlVV12Vb3/720mS\nV7ziFbnsssvyox/9KPfcc08+9alPTfLXeVL2+AEAABMxiSth/+hHP8rKlSvz4IMPZvHixTnttNPy\nO7/zO0mSt771rbn11ltzxBFHpLWWpUuX5q//+q/zpje9Kb/2a7+WqamprFy5Mi95yUuSJEcccUTW\nrFmTlStX5gUveEFe/vKXj/8X2k7V5vF1x6emptr69esnPQ1gJ+d2DgCwc7jhhhty8MEHT3oa89Zs\n26+qNrTWpp7qtQ71BAAA6JzwAwAA6JzwAwAAxmY+n2o2STu63YQfAAAwFrvuumvuuusu8fc0tdZy\n1113Zdddd33G7+GqngAAwFgsW7YsmzZtytatWyc9lXln1113zbJly57x64UfAAAwFkuWLMmBBx44\n6WksSA71BAAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA\n6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6Jzw\nAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA\n6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6JzwAwAA6NzI\nwq+qdq2qL1fVV6vq+qp67zB+QVV9q6o2Dl8rh/Gqqj+pqpur6rqqOmJUcwMAAFhIFo/wvR9Iclxr\n7d6qWpLkS1X1P4bnfq+1dunj1n9VkoOGr19Jcu7wHQAAgB0wsj1+bdq9w+KS4as9yUtOTvIXw+v+\nKcleVbX/qOYHAACwUIz0HL+qWlRVG5NsSfK51trVw1NnD4dznlNVuwxjByS5bcbLNw1jj3/PtVW1\nvqrWb926dZTTBwAA6MJIw6+19nBrbWWSZUmOrqpfTvKuJC9JclSSvZP8/rB6zfYWs7znea21qdba\n1NKlS0c0cwAAgH6M5aqerbXvJ/lCkpNaa5uHwzkfSPLnSY4eVtuUZPmMly1Lcvs45gcAANCzUV7V\nc2lV7TU83i3JK5N849Hz9qqqkrw2ydeGl1yR5M3D1T2PSbKttbZ5VPMDAABYKEZ5Vc/9k1xYVYsy\nHZiXtNY+XVWfr6qlmT60c2OS3xzW/0ySVye5OckPk/zGCOcGAACwYIws/Fpr1yV52Szjx/2M9VuS\nd4xqPgAAAAvVWM7xAwAAYHKEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAA\nQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeE\nHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAA\nQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeE\nHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAA\nQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeE\nHwAAQOeEHwAAQOdGFn5VtWtVfbmqvlpV11fVe4fxA6vq6qq6qaourqqfH8Z3GZZvHp5fMaq5AQAA\nLCSj3OP3QJLjWmuHJ1mZ5KSqOibJHyY5p7V2UJLvJXnLsP5bknyvtfavkpwzrAcAAMAOGln4tWn3\nDotLhq+W5Lgklw7jFyZ57fD45GE5w/PHV1WNan4AAAALxUjP8auqRVW1McmWJJ9L8s0k32+tPTSs\nsinJAcPjA5LcliTD89uS7DPK+QEAACwEIw2/1trDrbWVSZYlOTrJwbOtNnyfbe9ee/xAVa2tqvVV\ntX7r1q1zN1kAAIBOjeWqnq217yf5QpJjkuxVVYuHp5YluX14vCnJ8iQZnt8zyd2zvNd5rbWp1trU\n0qVLRz11AACAeW+UV/VcWlV7DY93S/LKJDckuSrJ64fVTk9y+fD4imE5w/Ofb609YY8fAAAAT8/i\np17lGds/yYVVtSjTgXlJa+3TVfX1JOuq6v9I8pUk5w/rn5/kv1XVzZne03fqCOcGAACwYIws/Fpr\n1yV52Szjt2T6fL/Hj9+f5JRRzQcAAGChGss5fgAAAEyO8AMAAOic8AMAAOic8AMAAOic8AMAAOic\n8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMA\nAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic\n8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMA\nAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic\n8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOic8AMA\nAOic8AMAAOic8AMAAOic8AMAAOic8AMAAOjcyMKvqpZX1VVVdUNVXV9VZw7jZ1XVd6tq4/D16hmv\neVdV3VxVN1bViaOaGwAAwEKyeITv/VCS322tXVtVz06yoao+Nzx3Tmvt/TNXrqqXJjk1ySFJnp/k\n/62qF7XWHh7hHAEAALo3sj1+rbXNrbVrh8f3JLkhyQFP8pKTk6xrrT3QWvtWkpuTHD2q+QEAACwU\nYznHr6pWJHlZkquHoTOq6rqq+mhVPXcYOyDJbTNetilPHooAAABsh5GHX1XtkeSTSX67tfaDJOcm\n+aUkK5NsTvLHj646y8vbLO+3tqrWV9X6rVu3jmjWAAAA/Rhp+FXVkkxH30Wttb9KktbaHa21h1tr\njyT5r/nJ4Zybkiyf8fJlSW5//Hu21s5rrU211qaWLl06yukDAAB0YZRX9awk5ye5obX2gRnj+89Y\n7XVJvjY8viLJqVW1S1UdmOSgJF8e1fwAAAAWilFe1fPYJKcl+eeq2jiMvTvJG6tqZaYP47w1yduS\npLV2fVVdkuTrmb4i6Dtc0RMAAGDHjSz8Wmtfyuzn7X3mSV5zdpKzRzUnAACAhWgsV/UEAABgcoQf\nAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA\n54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54Qf\nAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA\n54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54Qf\nAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA54QfAABA\n54QfAABA54QfAABA54QfAABA54QfAABA5xY/2ZNV9b8/ydOttfaf53g+AAAAzLEnDb8k980y9qwk\nb02yTxLhBwAAsJN70vBrrf3xo4+r6tlJzkzyvyZZl+SPf9brAAAA2Hk81R6/VNXeSX4nyZuSXJjk\niNba90Y9MQAAAObGk17cpar+zyTXJLknyaGttbO2N/qqanlVXVVVN1TV9VV15jC+d1V9rqpuGr4/\ndxivqvqTqrq5qq6rqiN28HcDAAAgT31Vz99N8vwk/1uS26vqB8PXPVX1g6d47UNJfre1dnCSY5K8\no6pemuSdSa5srR2U5MphOUleleSg4WttknOf0W8EAADAT3mqc/ye8e0eWmubk2weHt9TVTckOSDJ\nyUlWDatdmOQLSX5/GP+L1lpL8k9VtVdV7T+8DwAAAM/QWO7jV1UrkrwsydVJnvdozA3f9xtWOyDJ\nbTNetmkYAwAAYAeMPPyqao8kn0zy2621Jzs8tGYZa7O839qqWl9V67du3TpX0wQAAOjWSMOvqpZk\nOvouaq391TB8R1XtPzy/f5Itw/imJMtnvHxZktsf/56ttfNaa1OttamlS5eObvIAAACdGFn4VVUl\nOT/JDa21D8x46ookpw+PT09y+YzxNw9X9zwmyTbn9wEAAOy4p7yP3w44NslpSf65qjYOY+9O8r4k\nl1TVW5J8J8kpw3OfSfLqJDcn+WGS3xjh3AAAABaMkYVfa+1Lmf28vSQ5fpb1W5J3jGo+AAAAC9VY\nruoJAADA5Ag/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/\nAACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACA\nzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/\nAACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACA\nzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/AACAzgk/\nAACAzi2e9ASAPlSN/2e2Nv6fCQAwH9njBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA\n0DnhBwAA0DnhBwAA0DnhBwAA0LmRhV9VfbSqtlTV12aMnVVV362qjcPXq2c8966qurmqbqyqE0c1\nLwAAgIVmlHv8Lkhy0izj57TWVg5fn0mSqnppklOTHDK85v+qqkUjnBsAAMCCMbLwa619Mcnd27n6\nyUnWtdYeaK19K8nNSY4e1dwAAAAWkkmc43dGVV03HAr63GHsgCS3zVhn0zD2BFW1tqrWV9X6rVu3\njnquAAAA8964w+/cJL+UZGWSzUn+eBivWdZts71Ba+281tpUa21q6dKlo5klAABAR8Yafq21O1pr\nD7fWHknyX/OTwzk3JVk+Y9VlSW4f59wAAAB6Ndbwq6r9Zyy+LsmjV/y8IsmpVbVLVR2Y5KAkXx7n\n3AAAAHq1eFRvXFUfT7Iqyb5VtSnJe5KsqqqVmT6M89Ykb0uS1tr1VXVJkq8neSjJO1prD49qbgAA\nAAtJtTbrqXTzwtTUVFu/fv2kpwEkqdnO1B2x7f34Gvfc5vHHKgAwz1TVhtba1FOtN4mregIAADBG\nwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8A\nAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBz\nwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8AAKBzwg8A\nAKBzwg8AAKBziyc9AYCFqmq8P6+18f48AGDnYY8fAABA54QfAABA54QfAABA54QfAABA54QfAABA\n54QfAABA54QfAABA59zHD+hey5hvmBc3zAMAdi72+AEAAHRO+AEAAHTOoZ4wz9S4j1pM0hy5CAAw\nr9njBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0Dnh\nBwAA0DnhBwAA0DnhBwAA0DnhBwAA0DnhBwAA0LmRhV9VfbSqtlTV12aM7V1Vn6uqm4bvzx3Gq6r+\npKpurqrrquqIUc0LAABgoRnlHr8Lkpz0uLF3JrmytXZQkiuH5SR5VZKDhq+1Sc4d4bwAAAAWlJGF\nX2vti0nuftzwyUkuHB5fmOS1M8b/ok37pyR7VdX+o5obAADAQjLuc/ye11rbnCTD9/2G8QOS3DZj\nvU3D2BNU1dqqWl9V67du3TrSyQIAAPRgZ7m4S80y1mZbsbV2XmttqrU2tXTp0hFPCwAAYP4bd/jd\n8eghnMP3LcP4piTLZ6y3LMntY54bAABAl8YdflckOX14fHqSy2eMv3m4uucxSbY9ekgoAAAAO2bx\nqN64qj6eZFWSfatqU5L3JHlfkkuq6i1JvpPklGH1zyR5dZKbk/wwyW+Mal4APLma7eD7EWqzHtgP\nAMylkYVfa+2NP+Op42dZtyV5x6jmAgAAsJDtLBd3AQAAYESEHwAAQOeEHwAAQOeEHwAAQOeEHwAA\nQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeE\nHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAA\nQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeE\nHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOeEHwAAQOcWT3oC\nALA9qsb781ob788DgFESfsCcaBnz/5UPPxUAgKfmUE8AAIDOCT8AAIDOCT8AAIDOCT8AAIDOCT8A\nAIDOCT8AAIDOCT8AAIDOuY8fAHTIDe8BmMkePwAAgM4JPwAAgM4JPwAAgM4JPwAAgM4JPwAAgM5N\n5KqeVXVrknuSPJzkodbaVFXtneTiJCuS3JrkDa21701ifgAAAD2Z5B6/f91aW9lamxqW35nkytba\nQUmuHJYBAADYQTvTffxOTrJqeHxhki8k+f1JTWZHjPveSYn7J8F81DLuDwsfFKPgfnkAzAeT2uPX\nkny2qjZU1dph7Hmttc1JMnzfb0JzAwAA6Mqk9vgd21q7var2S/K5qvrG9r5wCMW1SfKLv/iLo5of\nAABANyayx6+1dvvwfUuSy5IcneSOqto/SYbvW37Ga89rrU211qaWLl06rikDAADMW2MPv6ravaqe\n/ejjJCck+VqSK5KcPqx2epLLxz03AACAHk3iUM/nJbmsps+GX5zkY621v6mqa5JcUlVvSfKdJKdM\nYG4AAADdGXv4tdZuSXL4LON3JTl+3PMBAADo3STv4wcAAMAYCD8AAIDOCT8AAIDOCT8AAIDOTeoG\n7gDspFpq7D8RABgte/wAAAA6J/wAAAA6J/wAAAA65xw/+Blq3Kc5JWnbcarT+M+/mv6pAADMX/b4\nAQAAdM4ePwBgbMZ9NMX2HEkBsBDY4wcAANA54QcAANA54QcAANA54QcAANA54QcAANA54QcAANA5\nt3MYATfYBgAAdib2+AEAAHRO+AEAAHRO+AEAAHRO+AEAAHRO+AEAAHRO+AEAAHRO+AEAAHTOffwA\noEPjv6fs/L6fbI15c7X5vbmAecgePwAAgM4JPwAAgM4JPwAAgM4JPwAAgM65uAsA84KLlQDAM2eP\nHwAAQOfs8WPixn0J7cRltAEAWFiE3wIisABgfnF/QWCuCD/4GcZ/PtH0TwWAnZ1/TIb5xzl+AAAA\nnRN+AAAAnRN+AAAAnXOOHwAwNu7HCDAZ9vgBAAB0TvgBAAB0zqGeAMCC5xBUoHfCDwB2gGAAYD5w\nqCcAAEDn7PFbQMb/r9LTPxUAAJgse/wAAAA6J/wAAAA6J/wAAAA6J/wAAAA65+IuAAA7KbcLAeaK\n8GPiXG0UAABGy6GeAAAAnRN+AAAAnXOoJwAAT4vTNGD+EX4AAHShJtCjbTt6dGedFwuLQz0BAAA6\nJ/wAAAA6t9OFX1WdVFU3VtXNVfXOSc8HAABgvtupzvGrqkVJPpzkf0myKck1VXVFa+3rk50ZAAD0\nxbmHC8tOFX5Jjk5yc2vtliQ2vPakAAAHyElEQVSpqnVJTk4i/AAAYA7ttFdnVaQjsbMd6nlAkttm\nLG8axgAAAHiGdrY9frPl/U/ld1WtTbJ2WLy3qm4c+ayenn2T3Dn2nzqJfxnZHuOd1/Zve9vr6Xnq\neflzP9P457V929/2enq2b17j/7M/v7fXXPLnfhS2f17+7A8mMK3t2vY76ebaeSe2s37mb58XbM9K\nO1v4bUqyfMbysiS3z1yhtXZekvPGOamno6rWt9amJj2Phci2nxzbfrJs/8mx7SfHtp8s239ybPvJ\nme/bfmc71POaJAdV1YFV9fNJTk1yxYTnBAAAMK/tVHv8WmsPVdUZSf6fJIuSfLS1dv2EpwUAADCv\n7VThlySttc8k+cyk57EDdtrDUBcA235ybPvJsv0nx7afHNt+smz/ybHtJ2deb/tqC+DSpQAAAAvZ\nznaOHwAAAHNM+M2Rqjqpqm6sqpur6p2Tnk/vquqjVbWlqr42Y2zvqvpcVd00fH/uJOfYq6paXlVX\nVdUNVXV9VZ05jNv+I1ZVu1bVl6vqq8O2f+8wfmBVXT1s+4uHi2MxAlW1qKq+UlWfHpZt+zGpqlur\n6p+ramNVrR/GfO6MQVXtVVWXVtU3hs/+X7XtR6+qXjz8eX/06wdV9du2/fhU1b8f/r79WlV9fPh7\neN5+7gu/OVBVi5J8OMmrkrw0yRur6qWTnVX3Lkhy0uPG3pnkytbaQUmuHJaZew8l+d3W2sFJjkny\njuHPu+0/eg8kOa61dniSlUlOqqpjkvxhknOGbf+9JG+Z4Bx7d2aSG2Ys2/bj9a9baytnXE7d5854\nfDDJ37TWXpLk8Ez/N2Dbj1hr7cbhz/vKJEcm+WGSy2Lbj0VVHZDk3yWZaq39cqYvPHlq5vHnvvCb\nG0cnubm1dktr7cdJ1iU5ecJz6lpr7YtJ7n7c8MlJLhweX5jktWOd1ALRWtvcWrt2eHxPpv8H4IDY\n/iPXpt07LC4ZvlqS45JcOozb9iNSVcuS/JskfzYsV2z7SfO5M2JV9Zwkr0hyfpK01n7cWvt+bPtx\nOz7JN1tr345tP06Lk+xWVYuTPCvJ5szjz33hNzcOSHLbjOVNwxjj9bzW2uZkOk6S7Dfh+XSvqlYk\neVmSq2P7j8VwqOHGJFuSfC7JN5N8v7X20LCKz5/R+S9J/mOSR4blfWLbj1NL8tmq2lBVa4cxnzuj\n98IkW5P8+XCY859V1e6x7cft1CQfHx7b9mPQWvtukvcn+U6mg29bkg2Zx5/7wm9u1CxjLpdK16pq\njySfTPLbrbUfTHo+C0Vr7eHhsJ9lmT7a4ODZVhvvrPpXVa9JsqW1tmHm8Cyr2vajc2xr7YhMn1bx\njqp6xaQntEAsTnJEknNbay9Lcl8cWjhWwzlkq5N8YtJzWUiGcydPTnJgkucn2T3Tnz+PN28+94Xf\n3NiUZPmM5WVJbp/QXBayO6pq/yQZvm+Z8Hy6VVVLMh19F7XW/moYtv3HaDjU6guZPs9yr+EwlMTn\nz6gcm2R1Vd2a6cP5j8v0HkDbfkxaa7cP37dk+jyno+NzZxw2JdnUWrt6WL400yFo24/Pq5Jc21q7\nY1i27cfjlUm+1Vrb2lp7MMlfJfmfMo8/94Xf3LgmyUHDVX5+PtO746+Y8JwWoiuSnD48Pj3J5ROc\nS7eG85rOT3JDa+0DM56y/UesqpZW1V7D490y/ZfSDUmuSvL6YTXbfgRaa+9qrS1rra3I9Gf851tr\nb4ptPxZVtXtVPfvRx0lOSPK1+NwZudba/5fktqp68TB0fJKvx7YfpzfmJ4d5Jrb9uHwnyTFV9azh\n/30e/bM/bz/33cB9jlTVqzP9r7+Lkny0tXb2hKfUtar6eJJVSfZNckeS9yT56ySXJPnFTP/Hekpr\n7fEXgGEHVdX/nOTvkvxzfnKu07szfZ6f7T9CVXVYpk8kX5Tpf7i7pLX2n6rqhZneC7V3kq8k+bet\ntQcmN9O+VdWqJP+htfYa2348hu182bC4OMnHWmtnV9U+8bkzclW1MtMXNfr5JLck+Y0Mn0Gx7Ueq\nqp6V6etIvLC1tm0Y8+d+TIbbJq3J9BXNv5LkrZk+p29efu4LPwAAgM451BMAAKBzwg8AAKBzwg8A\nAKBzwg8AAKBzwg8AAKBzwg8Afoaa9qWqetWMsTdU1d9Mcl4A8HS5nQMAPImq+uUkn0jyskzfQ3Fj\nkpNaa9+c6MQA4GkQfgDwFKrqj5Lcl2T3JPe01v5zVX0qyfOT7JrknNban1XV4iR/nmRlkkpyXmvt\nTyY1bwB4lPADgKdQVbsnuTbJj5NMtdYeqKq9W2t3V9WzkqxPcmySFyU5q7X2quF1e7XWvj+xiQPA\nYPGkJwAAO7vW2n1VdXGSe1trDwzD/76qVg+PlyX5pSQ3J3lxVX0wyWeSfHb8swWAJ3JxFwDYPo8M\nX6mqVyZ5RZJjWmuHJ7kuya6ttbuSHJbkS0n+XZKPTGiuAPBT7PEDgKdvzyR3t9Z+VFWHJDkqSapq\naZL7W2ufqKpvJfm/JzlJAHiU8AOAp++/J1lbVV9N8o0kVw/jy5OcX1V7Jbk/yZkTmh8A/BQXdwGA\nOVZVz0/y1tbaf5r0XAAgcY4fAMypqlqV5MokD054KgDwGHv8AAAAOmePHwAAQOeEHwAAQOeEHwAA\nQOeEHwAAQOeEHwAAQOeEHwAAQOf+f39NA+wg1MaiAAAAAElFTkSuQmCC\n", 685 | "text/plain": [ 686 | "" 687 | ] 688 | }, 689 | "metadata": {}, 690 | "output_type": "display_data" 691 | } 692 | ], 693 | "source": [ 694 | "fig = plt.figure(figsize=(15,10))\n", 695 | "plt.hist([data[data[\"survived\"]==1][\"age\"], data[data[\"survived\"]==0][\"age\"]],histtype='bar',stacked=True,bins=20,color=[\"r\",\"b\"],width=3, label=[\"Survived\",\"Dead\"])\n", 696 | "plt.xlabel(\"Yaş\")\n", 697 | "plt.ylabel(\"N\")\n", 698 | "plt.legend()\n", 699 | "plt.show()\n", 700 | "plt.close()" 701 | ] 702 | }, 703 | { 704 | "cell_type": "code", 705 | "execution_count": 9, 706 | "metadata": {}, 707 | "outputs": [ 708 | { 709 | "data": { 710 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAe0AAAGoCAYAAABrIb0kAAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDIuMS4xLCBo\ndHRwOi8vbWF0cGxvdGxpYi5vcmcvAOZPmwAAIABJREFUeJzt3X2clWW97/Hvd2ZAfBgQBRsdRDEQ\nQcTNg5TVTiC3R80wt89lVkfkZFru41ay8ODOLBO37R29tBwfUkt8AjOOWqSJZqYJqCgIJBEq4Bwl\n1EFUYJjf+WOtqeUwD4uce9ZcM5/36zWvWfd1X+tev5n54zvX/XBdjggBAIDOr6zUBQAAgOIQ2gAA\nJILQBgAgEYQ2AACJILQBAEgEoQ0AQCIIbQAAEkFoAwCQCEIbAIBEVJS6gH8Q07gBQPpc6gJSw0gb\nAIBEENoAACSC0AYAIBGENgAAiSC0AQBIBKENAEAiCG0AABJBaAMAkAhCGwCARBDaAAAkgtAGACAR\nmYa27Ztsv2Z7SQv7bXum7ZW2n7M9Ost6AABIWdYj7ZslHd3K/mMkDcl/TZH044zrAQAgWZmGdkT8\nTtKGVrocL+nWyHlS0u62986yJgAAUlXqa9rVkl4p2F6Tb9uO7Sm2F9peWFNT0yHFAQDQmZR6Pe3m\n1lJtdq3siKiRVNNaHwAAurJSh/YaSfsWbA+QtK5EtfzDpk6dqtraWlVVVWnGjBmlLgcA0EWV+vT4\nXEln5u8i/6iktyLi1RLXtMNqa2u1du1a1dbWlroUAEAXlulI2/btksZL6md7jaRLJfWQpIj4iaQH\nJB0raaWkdyR9Oct6AABIWaahHRGnt7E/JJ2bZQ0AAHQVpT49DgAAikRoAwCQCEIbAIBEENoAACSC\n0AYAIBGENgAAiSC0AQBIhHOPSidnh4oec9GtWdUhSapc+guVb67Ttp16a+PBJ2TyGYuuOjOT4wJA\nCTW3/gRawUgbAIBEENoAACSC0AYAIBGENgAAiSC0AQBIBKENAEAiMl2aE+iKpk6dqtraWlVVVWnG\njBmlLgdAN0JoAzuotrZWa9euLXUZALohTo8DAJAIQhsAgEQQ2gAAJILQBgAgEdyI1g4aeu76vu8A\nAGSB0G4Hm4YcVeoSAADdAKfHAQBIBKENAEAiCG0AABJBaAMAkAhCGwCARBDaAAAkgtAGACARhDYA\nAIkgtAEASAShDQBAIghtAAASQWgDAJAIQhsAgESwyhe6nDEX3Zrp8SvXb1S5pJfXb8zssxZddWYm\nxwWQNkbaAAAkgtAGACARhDYAAIkgtAEASAShDQBAIghtAAASQWgDAJAIQhsAgEQQ2gAAJILQBgAg\nEYQ2AACJILQBAEgEoQ0AQCIIbQAAEkFoAwCQCEIbAIBEENoAACSC0AYAIBGENgAAiSC0AQBIBKEN\nAEAiCG0AABJBaAMAkAhCGwCARFSUugAgNQ09d33fdwDoKIQ2sIM2DTmq1CUA6KY4PQ4AQCIyDW3b\nR9teYXul7Yub2T/Q9nzbz9h+zvaxWdYDAEDKMgtt2+WSrpF0jKThkk63PbxJt0sk3RURoySdJuna\nrOoBACB1WY60x0laGRGrImKLpDskHd+kT0jqnX/dR9K6DOsBACBpWYZ2taRXCrbX5NsK/YekM2yv\nkfSApK+1dDDbU2wvtL2wpqamvWsFAKDTy/LucTfTFk22T5d0c0RcbftwST+zPSIiGrZ7Y0SNpMa0\nbnocAAC6vCxH2msk7VuwPUDbn/4+S9JdkhQRT0jqJalfhjUBAJCsLEN7gaQhtgfZ7qncjWZzm/R5\nWdKnJMn2MOVC+/UMawIAIFmZhXZE1Es6T9I8ScuUu0t8qe3LbE/Kd/t3SWfbXizpdklfighOfQMA\n0IxMZ0SLiAeUu8GssG16wesXJH08yxoAAOgqmBENAIBEENoAACSC0AYAIBGENgAAiSC0AQBIBKEN\nAEAiCG0AABJBaAMAkAhCGwCARBDaAAAkgtAGACARhDYAAIkgtAEASAShDQBAIghtAAASQWgDAJAI\nQhsAgEQQ2gAAJILQBgAgEYQ2AACJILQBAEgEoQ0AQCIIbQAAEkFoAwCQCEIbAIBEENoAACSC0AYA\nIBGENgAAiSC0AQBIBKENAEAiCG0AABJBaAMAkAhCGwCARBDaAAAkgtAGACARhDYAAIkgtAEASASh\nDQBAIghtAAASQWgDAJCIimI62b6gufaI+EH7lgMAAFpSVGhLqsy0CgAA0KaiQjsivp11IQAAoHXF\nnh6f2UzzW5IWRsQv27ckAADQnBZvRLN9gu2j85u9JP2TpBfzXyMl7SHpLNv/nXmVAACg1ZH2byXd\nL+nXkgZLmhgR9ZJk+8eSfiPpXyQ9n3WRAACg9Ue+PiJpVf51taRdC/btKmmfiNgmaXNGtQEAgAKt\njbSXSDo7/3qGpGdtPyLJkj4p6Xu2d5X0UKYVAgAASa2EdkS8WvD6RtsPSBqnXGh/KyLW5XdflG2J\nAABAKv7u8dH5l6/kv1fZroqIp7MpCwAANFXs5CpXN9MWkia2Yy0AAKAVxU6uMiHrQgAAQOtaDW3b\n/9ra/oi4p33LAQAALWlrpP2ZVvaFJEIbAIAO0mpoR8SXO6oQAADQOpbmBAAgESzNCQBAIliaEwCA\nRLQ29/jf2J5hu7ftHrZ/a3u97TOyLg4AAPxdUaEt6aiIqJN0nKQ1kg4U05cCANChig3tHvnvx0q6\nPSI2ZFQPAABoQbE3ov1f28slvSvpq7b7S3ovu7IAAEBTRY20I+JiSYdLGhsRWyVtknR8loUBAID3\nK/b0uCRVSzrR9pmSTpJ0VFtvsH207RW2V9q+uIU+p9h+wfZS27N2oB4AALqVYidXuVTSeEnDJT0g\n6RhJv5d0ayvvKZd0jaR/Ue7mtQW250bECwV9hkj6pqSPR8Qbtvf6B38OAAC6vGJH2idJ+pSk2vzU\npodK2qmN94yTtDIiVkXEFkl3aPtT6mdLuiYi3pCkiHit6MoBAOhmig3tdyOiQVK97d6SXpN0QBvv\nqZb0SsH2mnxboQMlHWj7cdtP2j66pYPZnmJ7oe2FNTU1RZYNAEDXUezd4wtt7y7pekmLJL0t6ak2\n3uNm2qKZzx+i3Kn3AZIesz0iIt7c7o0RNZIa07rpcQAA6PKKncb0q/mXP7H9a0m9I+K5Nt62RtK+\nBdsDJK1rps+T+TvS/2J7hXIhvqCYugAA6E5aDW3bo1vbFxFPt/L2BZKG2B4kaa2k0yR9rkmfeyWd\nLulm2/2UO12+qpjCAQDobtoaaV/dyr6QNLHFnRH1ts+TNE9SuaSbImKp7cskLYyIufl9R9l+QdI2\nSRdFxF936CcAAKCbaDW0I2LCBzl4RDyg3CNihW3TC16HpAvyXwAAoBXFPqfdQ9I5kj6Zb3pE0nX5\na9EAAKADFHv3+I+VWzTk2vz2F/Jtk7MoCgAAbK/Y0D4sIg4t2H7Y9uIsCgIAAM0rdnKVbbY/3Lhh\n+wDlbhwDAAAdpNiR9kWS5ttepdykKftJ+nJmVQEAgO0UO7nKb/OLewxVLrSXR8TmTCsDAADvU+xI\nW/mQbmsWNAAAkJEdWU8bAACUUNEjbQDobqZOnara2lpVVVVpxowZpS4HKD60bfdVbjGPXo1tEfG7\nLIoCgM6gtrZWa9euLXUZwN8UOyPaZEnnK7dS17OSPirpCbUy9zgAAGhfxV7TPl/SYZJeys9HPkrS\n65lVBQAAtlNsaL8XEe9Jku2dImK5co9/AQCADlLsNe01tndXbv3rB22/IWlddmUBALqLRYsW7VVR\nUXGDpBHiqaZGDZKW1NfXTx4zZsxrjY3FTq5yQv7lf9ieL6mPpF+3f40AgO6moqLihqqqqmH9+/d/\no6ysLEpdT2fQ0NDg119/fXhtbe0NkiY1thf9H43tvrZHStooaY1y/xEBAPBBjejfv38dgf13ZWVl\n0b9//7fUJGuLvXv8O5K+JGmVckN2SQpx9zgA4IMrI7C3l/+dvG9wXew17VMkfTgitrR7VQAAoCjF\nnh5fImn3LAsBAACtKza0r5D0jO15tuc2fmVZGAAAWairqysbP3784KFDhw4fMmTIwddff33fxx57\nbJfDDjts6MEHHzzsE5/4xJCXXnqpx9atWzVixIhh9913X6UknXvuudVf+9rXqktZe7Gnx2+RdKWk\n5/X3a9oAACTnnnvu6V1VVbX1kUceWSlJf/3rX8uPPPLIIffff//KffbZp/7666/ve+GFF1bffffd\nq2+++ea/nHLKKR/eunXrKw8//HCfZ555Zlkpay82tNdHxMxMKwEAoAOMHj363WnTpu17zjnnVB9/\n/PFv7bnnnvUvvvjizhMnTjxQkhoaGtS/f/+tkjR27Nj3TjnllL+edtppgx9++OFlvXr1KukNc8WG\n9iLbV0iaK2lzY2NEPJ1JVQAAZGTkyJGbn3766RfmzJnTZ9q0adXjx4+vGzx48LvPPvvs8ub6L126\ndOfKysptr776ag9J73Zwue9TbGiPyn//aEEbj3wBAJKzevXqHnvttVf9V7/61Q2VlZUNN9xwQ78N\nGzZUPPTQQ7seeeSRmzZv3uznn39+p7Fjx753yy237L5hw4aKhx9+ePmkSZOGjB8/flm/fv22lar2\nYmdEm5B1IQAAdIRFixbt/M1vfnNAWVmZKioq4tprr32poqIivv71rw/cuHFj+bZt23zOOef8v+rq\n6vpLL710wEMPPbRi8ODBWydPnvzalClT9r3nnntWl6r2VkPb9gWt7Y+IH7RvOQAAZOvEE0+sO/HE\nE19o2r5w4cIVTdtWr169pPH1JZdc8lrT/R2trZF2ZYdUAQAA2tRqaEfEtzuqEAAA0Lpi5x7vJeks\nSQdL6tXYHhH/M6O6AABAE8XOiPYzSVWS/oekRyUNUG61LwAA0EGKDe3BEfF/JG2KiFskfVrSIdmV\nBQAAmio2tLfmv79pe4SkPpL2z6QiAADQrGJDu8Z2X0mXKDcr2guSZmRWFQAAHezyyy/f64ADDjh4\n0qRJg7I4/gUXXLDP9OnTP/RBjlHsjGg/i4jNkn4n6QBJsr3HB/lgAACaM+aiW8e05/EWXXXmomL6\n3Xjjjf1/9atfvXjQQQdtac/Pb0/FhvY9tj8bEVslyXaVpPsltesvFgB21JiLbs3s2JXrN6pc0svr\nN2b6OYuuOjOzY6M4n/vc5wauWbNmp0mTJg0+4YQTNqxatarXsmXLdt62bZunTZu27owzznhz5syZ\ne86dO3f3hoYGr1ixYudzzz23dsuWLWV33nnnnj179mz4zW9+8+KHPvShbVdffXW/n/70p/23bt3q\n/ffff/Ps2bP/UllZ+b4VMpcuXbrTV77ylYEbNmyo6NWrV8MNN9zw0qhRo95rq85iT4/fK+lu2+W2\n95f0G0nf3NFfCgAAndGsWbNe3muvvbY++uijf9q0aVP5hAkT6pYsWbLsscceW3HJJZcMqKurK5Ok\nP/3pTzvPmTNn1YIFC5ZdccUV1bvsskvDsmXLXhg7duym6667bk9J+vznP//GkiVLlq1YseKFoUOH\nvjtz5sx+TT9v8uTJ+1177bUvL126dNlVV1215pxzzhlYTJ3Fzj1+ve2eyoX3/pL+V0T8odhfBgAA\nqXjkkUd6z5s3b/eZM2dWSdLmzZu9cuXKnpL0sY99bGPfvn0b+vbt27DbbrttO/nkk9+UpEMOOeSd\n5557bhcpN7f59OnTqzdu3Fi+adOm8iOOOOKtwuO/9dZbZc8888xuJ5988ocb27Zs2eJiatuRucct\naV9Jz0r6qO2PMvc4AKCriQjNnj175aGHHrq5sP33v//9rj179vzbetplZWVqXF+7rKxM9fX1lqQp\nU6YMmj179srDDz/83ZkzZ+756KOPvm9K8G3btqmysrJ++fLl281/3pa2To9XFnztJukXklYWtAEA\n0KVMmDCh7uqrr/5QQ0PuMvTjjz++8468/5133ikbOHDg1s2bN/uOO+7Y7qbtPfbYo2HAgAFbbrrp\npr6S1NDQoCeeeKKoz2DucQAACnz/+99fN2XKlIEHHXTQ8IjwgAEDNs+fP39lse+/+OKL140bN25Y\ndXX1lmHDhr3z9ttvlzftc/vtt686++yz97vyyiv3rq+v9wknnLDh8MMPf7etYzsi2urTGe1Q0Vne\n9dlRuLu0ePy9u5dM7x5f+guVb67Ttp16a+PBJ2T2Od34721JWrx48epDDz10famL6YwWL17c79BD\nD92/cbvYu8cBAECJEdoAACSCpTkBAEgES3MCAJAIluYEACARLM0JAEAiPsjSnFdmVhUAAIm47777\nKidMmDC4Iz6r2FW+fhsRb+j9S3Nmst4oAKB7e/myQ9p1BcmB058vamnOFBQ70p7TTNvs9iwEAIBS\nWbFiRc9BgwYdfOqpp+43ZMiQgydNmjTo3nvvrRw9evRB++2334j58+fvMn/+/F1GjRp10LBhw4aP\nGjXqoMWLF+/U9Dh1dXVlJ5988v4jRowYNmzYsOE///nPd2/POttaMOQg5R7z6mP7Xwt29VbBo18A\nAKTulVde6XXnnXeuGjNmzEsjR44cdtttt+25cOHC5bNmzdr9u9/97t533XXXX5566qnlPXr00L33\n3ls5derUAfPmzftz4TG+9a1v7T1hwoS6u+++e/X69evLx44dO2zSpEl1vXv3bmjpc3dEW6fHh0o6\nTtLukj5T0L5R0tntUQAAAJ1BdXX15nHjxr0rSQceeOC7EydOrCsrK9Po0aPfufzyy/fZsGFD+amn\nnjpo9erVvWzH1q1bt1tOs6VlPUePHv1ee9TY1oIhv5T0S9ufjIjfFe6z/fH2KAAAgM6gpWU3y8vL\ntW3bNn/jG9+oPuKIIzY++OCDf16xYkXPiRMnDm16jJaW9WwvxV7T/u9m2n7UnoUAANCZ1dXVlQ8Y\nMGCLJF133XX9muvzQZf1bEtb17QPl/QxSf1tX1Cwq7ek7ZYaAwCgq/rGN75RO3ny5EEzZ86s+ud/\n/ue65vp80GU929LWNe2eknbL96ssaK+TdFJ7FQEAQKNSPKI1dOjQLS+++OLSxu05c+asbm7f6tWr\nlzS2//CHP1wnSccdd9zG4447bqMk7bbbbjFr1qyXsqqzrWvaj0p61PbNEZFZEQAAoG3FTq7yju2r\ntP0qXxMzqQoAAGyn2BvRbpO0XNIgSd+WtFrSgoxqAoBOoaHnrtq2U2819Ny11KUAkoofae8ZETfa\nPr/glPmjWRYGAKW2achRpS6hu2hoaGhwWVlZtN21+2hoaLCk903KsqOrfL1q+9O2Rym3pjYAAB/U\nktdff71PPqSgXGC//vrrfSQtKWwvdqR9ue0+kv5dueeze0v63+1bIgCgO6qvr59cW1t7Q21t7QgV\nP5js6hokLamvr59c2FhsaP8hIt6S9JakCe1dGQCg+xozZsxrkiaVuo4UFPsfzR9t3237WNtFn76w\nfbTtFbZX2r64lX4n2Q7bY4s9NtrX1KlTdeaZZ2rq1KmlLgUA0IJiQ/tASTWSviBppe3v2T6wtTfY\nLpd0jaRjJA2XdLrt4c30q5T0dUl/3JHC0b5qa2u1du1a1dbWlroUAEALigrtyHkwIk6XNFnSFyU9\nZfvR/FSnzRknaWVErIqILZLukHR8M/2+I2mGpHZZAQUAgK6qqNC2vaft820vlHShpK9J6qfcjWmz\nWnhbtaRXCrbX5NsKjztK0r4Rcd+OFg4AQHdT7OnxJ5S7Y/yzEfHpiLgnIuojYqGkn7Twnuauff/t\nGTzbZZL+S7ngb5PtKbYX2l5YU1NTZNkAAHQdxd49PjQimn3oPSKubOE9ayTtW7A9QNK6gu1KSSMk\nPZK/t61K0lzbk/L/DDT9nBrlrqtLBeEPAEB3UWxo97M9VTs29/gCSUNsD5K0VtJpkj5X8N63lDvF\nLkmy/YikC5sLbAAAkOHc4xFRL+k8SfMkLZN0V0QstX2ZbZ7HAwBgB2U693hEPCDpgSZt01voO77I\nWgAA6JaKDe33zT2u3LVp5h4HAKADMfc4AACJKCq0C56jZu5xAABKpNXQtv0jtfJ4VUR8vd0rAgAA\nzWprpF34+NW3JV2aYS0AAKAVrYZ2RNzS+Nr2vxVuAwCAjrUji40zCxkAACW0I6ENAABKqK0b0Tbq\n7yPsXWzXNe5SbsXO3lkWBwAA/q6ta9qVHVUIAABoHafHAQBIBKENAEAiCG0AABJBaAMAkAhCGwCA\nRBDaAAAkotilOVFiL192SKbHr9+wh6QK1W94KdPPGjj9+cyODQBdHSNtAAASQWgDAJAIQhsAgEQQ\n2gAAJILQBgAgEYQ2AACJILQBAEgEoQ0AQCIIbQAAEkFoAwCQCEIbAIBEENoAACSC0AYAIBGENgAA\niSC0AQBIBKENAEAiCG0AABJBaAMAkAhCGwCARBDaAAAkgtAGACARhDYAAIkgtAEASAShDQBAIght\nAAASQWgDAJCIilIXgM6hX68GSfX57wCAzojQhiTpwpFvlroEAEAbOD0OAEAiCG0AABJBaAMAkAhC\nGwCARBDaAAAkgtAGACARhDYAAIkgtAEASAShDQBAIghtAAASQWgDAJAIQhsAgEQQ2gAAJILQBgAg\nEYQ2AACJILQBAEgEoQ0AQCIIbQAAEpFpaNs+2vYK2yttX9zM/gtsv2D7Odu/tb1flvUAAJCyzELb\ndrmkayQdI2m4pNNtD2/S7RlJYyNipKTZkmZkVQ8AAKnLcqQ9TtLKiFgVEVsk3SHp+MIOETE/It7J\nbz4paUCG9QAAkLSKDI9dLemVgu01kj7SSv+zJP0qw3oA5E2dOlW1tbWqqqrSjBmc4AJSkeVI2820\nRbMd7TMkjZV0VYsHs6fYXmh7YU1NTTuVCHRPtbW1Wrt2rWpra0tdCoAdkOVIe42kfQu2B0ha17ST\n7SMlTZN0RERsbulgEVEjqTGtmw1/AAC6sixH2gskDbE9yHZPSadJmlvYwfYoSddJmhQRr2VYCwAA\nycsstCOiXtJ5kuZJWibprohYavsy25Py3a6StJuku20/a3tuC4cDAKDby/L0uCLiAUkPNGmbXvD6\nyCw/HwDAjYddSaahDQAovcYbD5E+pjEFACARhDYAAIkgtAEASAShDQBAIghtAAASQWgDAJAIQhsA\ngEQQ2gAAJILQBgAgEYQ2AACJILQBAEgEc48DQIm9fNkhmR6/fsMekipUv+GlTD9r4PTnMzs2chhp\nAwCQCEbaQCfEyAtAcxhpAwCQCEIbAIBEENoAACSC0AYAIBGENgAAiSC0AQBIBKENAEAiCG0AABJB\naAMAkAhmRAOALq5frwZJ9fnvSBmhDQBd3IUj3yx1CWgnnB4HACARhDYAAIkgtAEASAShDQBAIght\nAAASQWgDAJAIQhsAgEQQ2gAAJILJVYBuiBmygDQR2kA3xAxZQJo4PQ4AQCIIbQAAEkFoAwCQCEIb\nAIBEENoAACSC0AYAIBGENgAAiSC0AQBIBKENAEAiCG0AABJBaAMAkAhCGwCARBDaAAAkgtAGACAR\nhDYAAIkgtAEASAShDQBAIghtAAASQWgDAJAIQhsAgEQQ2gAAJILQBgAgEYQ2AACJILQBAEgEoQ0A\nQCIIbQAAEkFoAwCQCEIbAIBEZBrato+2vcL2StsXN7N/J9t35vf/0fb+WdYDAEDKMgtt2+WSrpF0\njKThkk63PbxJt7MkvRERgyX9l6Qrs6oHAIDUZTnSHidpZUSsiogtku6QdHyTPsdLuiX/erakT9l2\nhjUBAJAsR0Q2B7ZPknR0REzOb39B0kci4ryCPkvyfdbkt/+c77O+meNNkTQlv9lL0nuZFN559ZO0\n3e8FXRZ/7+6lu/6910fE0aUuIiUVGR67uRFz0/8QiumTa4yokVTzQYtKle2FETG21HWgY/D37l74\ne6NYWZ4eXyNp34LtAZLWtdTHdoWkPpI2ZFgTAADJyjK0F0gaYnuQ7Z6STpM0t0mfuZK+mH99kqSH\nI6vz9QAAJC6z0+MRUW/7PEnzJJVLuikiltq+TNLCiJgr6UZJP7O9UrkR9mlZ1dMFdNtLA90Uf+/u\nhb83ipLZjWgAAKB9MSMaAACJILQBAEgEod3J2b7J9mv5Z9rRxdne1/Z828tsL7V9fqlrQnZs97L9\nlO3F+b/3t0tdEzo3rml3crY/KeltSbdGxIhS14Ns2d5b0t4R8bTtSkmLJH02Il4ocWnIQH4GyF0j\n4m3bPST9XtL5EfFkiUtDJ8VIu5OLiN+JZ9e7jYh4NSKezr/eKGmZpOrSVoWsRM7b+c0e+S9GUmgR\noQ10UvlV70ZJ+mNpK0GWbJfbflbSa5IejAj+3mgRoQ10QrZ3kzRH0r9FRF2p60F2ImJbRPyTcrNG\njrPNZTC0iNAGOpn8tc05km6LiHtKXQ86RkS8KekRSSyggRYR2kAnkr8x6UZJyyLiB6WuB9my3d/2\n7vnXO0s6UtLy0laFzozQ7uRs3y7pCUlDba+xfVapa0KmPi7pC5Im2n42/3VsqYtCZvaWNN/2c8qt\n1/BgRNxX4prQifHIFwAAiWCkDQBAIghtAAASQWgDAJAIQhsAgEQQ2gAAJILQBjoJ2+Nt87gPgBYR\n2gAAJILQBjJke3/by23fYvs527Nt72L7MNt/yK+j/FR+Gc7C943L738m/31ovv3gfP9n88cbYntX\n2/fnj7XE9qml+WkBZK2i1AUA3cBQSWdFxOO2b5J0nqSvSDo1IhbY7i3p3SbvWS7pkxFRb/tISd+T\ndGL+fT+MiNts95RULulYSesi4tOSZLtPx/xYADoaoQ1k75WIeDz/+ueSpkl6NSIWSFLjKl65acf/\npo+kW2wPUW595R759ickTbM9QNI9EfGi7ecl/aftKyXdFxGPZf4TASgJTo8D2Ws6V3BdM21NfUfS\n/IgYIekzknpJUkTMkjRJuZH5PNsTI+JPksZIel7SFbant2fxADoPQhvI3kDbh+dfny7pSUn72D5M\nkmxX2m561quPpLX5119qbLR9gKRVETFT0lxJI23vI+mdiPi5pP+UNDqznwRASRHaQPaWSfpifiWn\nPST9SNKpkn5ke7GkB5UfSReYodyo+XHlrls3OlXSEtvPSjpI0q2SDpH0VL5tmqTLs/xhAJQOq3wB\nGbK9v3LXmUeUuBQAXQAjbQDBQY2TAAAAKklEQVQAEsFIGwCARDDSBgAgEYQ2AACJILQBAEgEoQ0A\nQCIIbQAAEvH/AfOCdPguWo+xAAAAAElFTkSuQmCC\n", 711 | "text/plain": [ 712 | "" 713 | ] 714 | }, 715 | "metadata": {}, 716 | "output_type": "display_data" 717 | } 718 | ], 719 | "source": [ 720 | "import seaborn as sns\n", 721 | "g = sns.factorplot(x=\"pclass\", y=\"survived\", hue=\"sex\", data=data, size=6, kind=\"bar\")\n", 722 | "g.despine(left=True)\n", 723 | "g.set_ylabels(\"Hayatta kalma olasılığı\")\n", 724 | "plt.show()\n", 725 | "plt.close()" 726 | ] 727 | }, 728 | { 729 | "cell_type": "code", 730 | "execution_count": 10, 731 | "metadata": {}, 732 | "outputs": [], 733 | "source": [ 734 | "sex = pd.get_dummies(data[\"sex\"],drop_first=True)\n", 735 | "embark = pd.get_dummies(data[\"embarked\"],drop_first=True)" 736 | ] 737 | }, 738 | { 739 | "cell_type": "code", 740 | "execution_count": 11, 741 | "metadata": {}, 742 | "outputs": [ 743 | { 744 | "data": { 745 | "text/html": [ 746 | "
\n", 747 | "\n", 760 | "\n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | "
pclasssurvivedsexagesibspparchticketfarecabinembarkedboatmaleQS
011female29.00000024160211.3375B5S2001
111male0.916712113781151.5500C22 C26S11101
210female2.000012113781151.5500C22 C26SNaN001
310male30.000012113781151.5500C22 C26SNaN101
410female25.000012113781151.5500C22 C26SNaN001
\n", 868 | "
" 869 | ], 870 | "text/plain": [ 871 | " pclass survived sex age sibsp parch ticket fare cabin \\\n", 872 | "0 1 1 female 29.0000 0 0 24160 211.3375 B5 \n", 873 | "1 1 1 male 0.9167 1 2 113781 151.5500 C22 C26 \n", 874 | "2 1 0 female 2.0000 1 2 113781 151.5500 C22 C26 \n", 875 | "3 1 0 male 30.0000 1 2 113781 151.5500 C22 C26 \n", 876 | "4 1 0 female 25.0000 1 2 113781 151.5500 C22 C26 \n", 877 | "\n", 878 | " embarked boat male Q S \n", 879 | "0 S 2 0 0 1 \n", 880 | "1 S 11 1 0 1 \n", 881 | "2 S NaN 0 0 1 \n", 882 | "3 S NaN 1 0 1 \n", 883 | "4 S NaN 0 0 1 " 884 | ] 885 | }, 886 | "execution_count": 11, 887 | "metadata": {}, 888 | "output_type": "execute_result" 889 | } 890 | ], 891 | "source": [ 892 | "data_ = pd.concat([data, sex, embark], axis=1)\n", 893 | "data_.head()" 894 | ] 895 | }, 896 | { 897 | "cell_type": "code", 898 | "execution_count": 12, 899 | "metadata": {}, 900 | "outputs": [ 901 | { 902 | "data": { 903 | "text/html": [ 904 | "
\n", 905 | "\n", 918 | "\n", 919 | " \n", 920 | " \n", 921 | " \n", 922 | " \n", 923 | " \n", 924 | " \n", 925 | " \n", 926 | " \n", 927 | " \n", 928 | " \n", 929 | " \n", 930 | " \n", 931 | " \n", 932 | " \n", 933 | " \n", 934 | " \n", 935 | " \n", 936 | " \n", 937 | " \n", 938 | " \n", 939 | " \n", 940 | " \n", 941 | " \n", 942 | " \n", 943 | " \n", 944 | " \n", 945 | " \n", 946 | " \n", 947 | " \n", 948 | " \n", 949 | " \n", 950 | " \n", 951 | " \n", 952 | " \n", 953 | " \n", 954 | " \n", 955 | " \n", 956 | " \n", 957 | " \n", 958 | " \n", 959 | " \n", 960 | " \n", 961 | " \n", 962 | " \n", 963 | " \n", 964 | " \n", 965 | " \n", 966 | " \n", 967 | " \n", 968 | " \n", 969 | " \n", 970 | " \n", 971 | " \n", 972 | " \n", 973 | " \n", 974 | " \n", 975 | " \n", 976 | " \n", 977 | " \n", 978 | " \n", 979 | " \n", 980 | " \n", 981 | " \n", 982 | " \n", 983 | " \n", 984 | " \n", 985 | " \n", 986 | " \n", 987 | " \n", 988 | " \n", 989 | " \n", 990 | " \n", 991 | " \n", 992 | " \n", 993 | " \n", 994 | " \n", 995 | "
pclasssurvivedagesibspparchfaremaleQS
01129.000000211.3375001
1110.916712151.5500101
2102.000012151.5500001
31030.000012151.5500101
41025.000012151.5500001
\n", 996 | "
" 997 | ], 998 | "text/plain": [ 999 | " pclass survived age sibsp parch fare male Q S\n", 1000 | "0 1 1 29.0000 0 0 211.3375 0 0 1\n", 1001 | "1 1 1 0.9167 1 2 151.5500 1 0 1\n", 1002 | "2 1 0 2.0000 1 2 151.5500 0 0 1\n", 1003 | "3 1 0 30.0000 1 2 151.5500 1 0 1\n", 1004 | "4 1 0 25.0000 1 2 151.5500 0 0 1" 1005 | ] 1006 | }, 1007 | "execution_count": 12, 1008 | "metadata": {}, 1009 | "output_type": "execute_result" 1010 | } 1011 | ], 1012 | "source": [ 1013 | "data_.drop([\"sex\",\"embarked\",\"ticket\",\"cabin\",\"boat\"], axis=1, inplace=True)\n", 1014 | "data_.head()" 1015 | ] 1016 | }, 1017 | { 1018 | "cell_type": "code", 1019 | "execution_count": 13, 1020 | "metadata": {}, 1021 | "outputs": [ 1022 | { 1023 | "name": "stderr", 1024 | "output_type": "stream", 1025 | "text": [ 1026 | "/Users/euclid/anaconda3/lib/python3.6/site-packages/sklearn/cross_validation.py:41: DeprecationWarning: This module was deprecated in version 0.18 in favor of the model_selection module into which all the refactored classes and functions are moved. Also note that the interface of the new CV iterators are different from that of this module. This module will be removed in 0.20.\n", 1027 | " \"This module will be removed in 0.20.\", DeprecationWarning)\n" 1028 | ] 1029 | } 1030 | ], 1031 | "source": [ 1032 | "X = data_.drop(\"survived\", axis=1)\n", 1033 | "y = data_[\"survived\"]\n", 1034 | "\n", 1035 | "from sklearn.cross_validation import train_test_split\n", 1036 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)\n", 1037 | "\n", 1038 | "from sklearn.preprocessing import StandardScaler\n", 1039 | "sc = StandardScaler()\n", 1040 | "sc.fit(X_train)\n", 1041 | "X_train_std = sc.transform(X_train)\n", 1042 | "X_test_std = sc.transform(X_test)" 1043 | ] 1044 | }, 1045 | { 1046 | "cell_type": "code", 1047 | "execution_count": 14, 1048 | "metadata": {}, 1049 | "outputs": [ 1050 | { 1051 | "data": { 1052 | "text/plain": [ 1053 | "LogisticRegression(C=1.0, class_weight=None, dual=False, fit_intercept=True,\n", 1054 | " intercept_scaling=1, max_iter=100, multi_class='ovr', n_jobs=1,\n", 1055 | " penalty='l2', random_state=None, solver='liblinear', tol=0.0001,\n", 1056 | " verbose=0, warm_start=False)" 1057 | ] 1058 | }, 1059 | "execution_count": 14, 1060 | "metadata": {}, 1061 | "output_type": "execute_result" 1062 | } 1063 | ], 1064 | "source": [ 1065 | "from sklearn.linear_model import LogisticRegression\n", 1066 | "lr = LogisticRegression()\n", 1067 | "lr.fit(X_train_std, y_train)" 1068 | ] 1069 | }, 1070 | { 1071 | "cell_type": "code", 1072 | "execution_count": 15, 1073 | "metadata": {}, 1074 | "outputs": [ 1075 | { 1076 | "name": "stdout", 1077 | "output_type": "stream", 1078 | "text": [ 1079 | " precision recall f1-score support\n", 1080 | "\n", 1081 | " 0 0.82 0.87 0.84 246\n", 1082 | " 1 0.76 0.67 0.71 147\n", 1083 | "\n", 1084 | "avg / total 0.79 0.80 0.79 393\n", 1085 | "\n" 1086 | ] 1087 | } 1088 | ], 1089 | "source": [ 1090 | "prediction = lr.predict(X_test_std)\n", 1091 | "from sklearn.metrics import classification_report\n", 1092 | "print(classification_report(y_test, prediction))" 1093 | ] 1094 | }, 1095 | { 1096 | "cell_type": "code", 1097 | "execution_count": 16, 1098 | "metadata": {}, 1099 | "outputs": [ 1100 | { 1101 | "data": { 1102 | "text/plain": [ 1103 | "array([[214, 32],\n", 1104 | " [ 48, 99]])" 1105 | ] 1106 | }, 1107 | "execution_count": 16, 1108 | "metadata": {}, 1109 | "output_type": "execute_result" 1110 | } 1111 | ], 1112 | "source": [ 1113 | "from sklearn.metrics import confusion_matrix\n", 1114 | "confusion_matrix(y_test, prediction)" 1115 | ] 1116 | } 1117 | ], 1118 | "metadata": { 1119 | "kernelspec": { 1120 | "display_name": "Python 3", 1121 | "language": "python", 1122 | "name": "python3" 1123 | }, 1124 | "language_info": { 1125 | "codemirror_mode": { 1126 | "name": "ipython", 1127 | "version": 3 1128 | }, 1129 | "file_extension": ".py", 1130 | "mimetype": "text/x-python", 1131 | "name": "python", 1132 | "nbconvert_exporter": "python", 1133 | "pygments_lexer": "ipython3", 1134 | "version": "3.6.3" 1135 | } 1136 | }, 1137 | "nbformat": 4, 1138 | "nbformat_minor": 2 1139 | } 1140 | -------------------------------------------------------------------------------- /titanic.xls: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kaanulgen/Data-science-with-python/da5553317a1e71634a934d107ddd850392ae5e25/titanic.xls --------------------------------------------------------------------------------