├── .gitignore
├── LICENSE
├── README.md
├── assets
├── cj_mix.png
├── cn2kr.png
├── compare2.png
├── compare3.png
├── cover.png
├── cursive.png
├── demo.png
├── failure.png
├── intro.gif
├── ko_wiki.gif
├── kr_demo.png
├── kr_mix.png
├── kr_mix_v2.png
├── mingchao4.png
├── network.png
├── network.svg
├── network_v2.png
├── poem.gif
├── random.png
├── reddit_bonus_humor_easter_egg.gif
├── sample_per_font.png
└── transition.png
├── charset
└── cjk.json
├── export.py
├── font2img.py
├── infer.py
├── model
├── __init__.py
├── dataset.py
├── ops.py
├── unet.py
└── utils.py
├── package.py
└── train.py
/.gitignore:
--------------------------------------------------------------------------------
1 | *.pyc
2 | datasets/
3 | experiments/
4 | .DS_Store
5 | .idea/
6 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "{}"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright {yyyy} {name of copyright owner}
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # zi2zi: Master Chinese Calligraphy with Conditional Adversarial Networks
2 |
3 |
4 |
5 |
6 |
7 | ## Introduction
8 | Learning eastern asian language typefaces with GAN. zi2zi(字到字, meaning from character to character) is an application and extension of the recent popular [pix2pix](https://github.com/phillipi/pix2pix) model to Chinese characters.
9 |
10 | Details could be found in this [**blog post**](https://kaonashi-tyc.github.io/2017/04/06/zi2zi.html).
11 |
12 | ## Network Structure
13 | ### Original Model
14 | 
15 |
16 | The network structure is based off pix2pix with the addition of category embedding and two other losses, category loss and constant loss, from [AC-GAN](https://arxiv.org/abs/1610.09585) and [DTN](https://arxiv.org/abs/1611.02200) respectively.
17 |
18 | ### Updated Model with Label Shuffling
19 |
20 | 
21 |
22 | After sufficient training, **d_loss** will drop to near zero, and the model's performance plateaued. **Label Shuffling** mitigate this problem by presenting new challenges to the model.
23 |
24 | Specifically, within a given minibatch, for the same set of source characters, we generate two sets of target characters: one with correct embedding labels, the other with the shuffled labels. The shuffled set likely will not have the corresponding target images to compute **L1\_Loss**, but can be used as a good source for all other losses, forcing the model to further generalize beyond the limited set of provided examples. Empirically, label shuffling improves the model's generalization on unseen data with better details, and decrease the required number of characters.
25 |
26 | You can enable label shuffling by setting **flip_labels=1** option in **train.py** script. It is recommended that you enable this after **d_loss** flatlines around zero, for further tuning.
27 |
28 | ## Gallery
29 | ### Compare with Ground Truth
30 |
31 |
32 |
33 |
34 |
35 | ### Brush Writing Fonts
36 |
37 |
38 |
39 |
40 | ### Cursive Script (Requested by SNS audience)
41 |
42 |
43 |
44 |
45 |
46 | ### Mingchao Style (宋体/明朝体)
47 |
48 |
49 |
50 |
51 | ### Korean
52 |
53 |
54 |
55 |
56 | ### Interpolation
57 |
58 |
59 |
60 |
61 | ### Animation
62 |
63 |
64 |
65 |
66 |
67 |
68 |
69 |
70 |
71 |
72 | ## How to Use
73 | ### Step Zero
74 | Download tons of fonts as you please
75 | ### Requirement
76 | * Python 2.7
77 | * CUDA
78 | * cudnn
79 | * Tensorflow >= 1.0.1
80 | * Pillow(PIL)
81 | * numpy >= 1.12.1
82 | * scipy >= 0.18.1
83 | * imageio
84 |
85 | ### Preprocess
86 | To avoid IO bottleneck, preprocessing is necessary to pickle your data into binary and persist in memory during training.
87 |
88 | First run the below command to get the font images:
89 |
90 | ```sh
91 | python font2img.py --src_font=src.ttf
92 | --dst_font=tgt.otf
93 | --charset=CN
94 | --sample_count=1000
95 | --sample_dir=dir
96 | --label=0
97 | --filter=1
98 | --shuffle=1
99 | ```
100 | Four default charsets are offered: CN, CN_T(traditional), JP, KR. You can also point it to a one line file, it will generate the images of the characters in it. Note, **filter** option is highly recommended, it will pre sample some characters and filter all the images that have the same hash, usually indicating that character is missing. **label** indicating index in the category embeddings that this font associated with, default to 0.
101 |
102 | After obtaining all images, run **package.py** to pickle the images and their corresponding labels into binary format:
103 |
104 | ```sh
105 | python package.py --dir=image_directories
106 | --save_dir=binary_save_directory
107 | --split_ratio=[0,1]
108 | ```
109 |
110 | After running this, you will find two objects **train.obj** and **val.obj** under the save_dir for training and validation, respectively.
111 |
112 | ### Experiment Layout
113 | ```sh
114 | experiment/
115 | └── data
116 | ├── train.obj
117 | └── val.obj
118 | ```
119 | Create a **experiment** directory under the root of the project, and a data directory within it to place the two binaries. Assuming a directory layout enforce bettet data isolation, especially if you have multiple experiments running.
120 | ### Train
121 | To start training run the following command
122 |
123 | ```sh
124 | python train.py --experiment_dir=experiment
125 | --experiment_id=0
126 | --batch_size=16
127 | --lr=0.001
128 | --epoch=40
129 | --sample_steps=50
130 | --schedule=20
131 | --L1_penalty=100
132 | --Lconst_penalty=15
133 | ```
134 | **schedule** here means in between how many epochs, the learning rate will decay by half. The train command will create **sample,logs,checkpoint** directory under **experiment_dir** if non-existed, where you can check and manage the progress of your training.
135 |
136 | ### Infer and Interpolate
137 | After training is done, run the below command to infer test data:
138 |
139 | ```sh
140 | python infer.py --model_dir=checkpoint_dir/
141 | --batch_size=16
142 | --source_obj=binary_obj_path
143 | --embedding_ids=label[s] of the font, separate by comma
144 | --save_dir=save_dir/
145 | ```
146 |
147 | Also you can do interpolation with this command:
148 |
149 | ```sh
150 | python infer.py --model_dir= checkpoint_dir/
151 | --batch_size=10
152 | --source_obj=obj_path
153 | --embedding_ids=label[s] of the font, separate by comma
154 | --save_dir=frames/
155 | --output_gif=gif_path
156 | --interpolate=1
157 | --steps=10
158 | --uroboros=1
159 | ```
160 |
161 | It will run through all the pairs of fonts specified in embedding_ids and interpolate the number of steps as specified.
162 |
163 | ### Pretrained Model
164 | Pretained model can be downloaded [here](https://drive.google.com/open?id=0Bz6mX0EGe2ZuNEFSNWpTQkxPM2c) which is trained with 27 fonts, only generator is saved to reduce the model size. You can use encoder in the this pretrained model to accelerate the training process.
165 | ## Acknowledgements
166 | Code derived and rehashed from:
167 |
168 | * [pix2pix-tensorflow](https://github.com/yenchenlin/pix2pix-tensorflow) by [yenchenlin](https://github.com/yenchenlin)
169 | * [Domain Transfer Network](https://github.com/yunjey/domain-transfer-network) by [yunjey](https://github.com/yunjey)
170 | * [ac-gan](https://github.com/buriburisuri/ac-gan) by [buriburisuri](https://github.com/buriburisuri)
171 | * [dc-gan](https://github.com/carpedm20/DCGAN-tensorflow) by [carpedm20](https://github.com/carpedm20)
172 | * [origianl pix2pix torch code](https://github.com/phillipi/pix2pix) by [phillipi](https://github.com/phillipi)
173 |
174 | ## License
175 | Apache 2.0
176 |
177 |
--------------------------------------------------------------------------------
/assets/cj_mix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/cj_mix.png
--------------------------------------------------------------------------------
/assets/cn2kr.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/cn2kr.png
--------------------------------------------------------------------------------
/assets/compare2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/compare2.png
--------------------------------------------------------------------------------
/assets/compare3.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/compare3.png
--------------------------------------------------------------------------------
/assets/cover.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/cover.png
--------------------------------------------------------------------------------
/assets/cursive.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/cursive.png
--------------------------------------------------------------------------------
/assets/demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/demo.png
--------------------------------------------------------------------------------
/assets/failure.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/failure.png
--------------------------------------------------------------------------------
/assets/intro.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/intro.gif
--------------------------------------------------------------------------------
/assets/ko_wiki.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/ko_wiki.gif
--------------------------------------------------------------------------------
/assets/kr_demo.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/kr_demo.png
--------------------------------------------------------------------------------
/assets/kr_mix.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/kr_mix.png
--------------------------------------------------------------------------------
/assets/kr_mix_v2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/kr_mix_v2.png
--------------------------------------------------------------------------------
/assets/mingchao4.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/mingchao4.png
--------------------------------------------------------------------------------
/assets/network.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/network.png
--------------------------------------------------------------------------------
/assets/network.svg:
--------------------------------------------------------------------------------
1 |
2 |
3 |
4 |
5 |
--------------------------------------------------------------------------------
/assets/network_v2.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/network_v2.png
--------------------------------------------------------------------------------
/assets/poem.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/poem.gif
--------------------------------------------------------------------------------
/assets/random.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/random.png
--------------------------------------------------------------------------------
/assets/reddit_bonus_humor_easter_egg.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/reddit_bonus_humor_easter_egg.gif
--------------------------------------------------------------------------------
/assets/sample_per_font.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/sample_per_font.png
--------------------------------------------------------------------------------
/assets/transition.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kaonashi-tyc/zi2zi/546025f59690b7c7c85de0146aba6f24f26f6b9d/assets/transition.png
--------------------------------------------------------------------------------
/export.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import tensorflow as tf
6 | import argparse
7 | from model.unet import UNet
8 |
9 | parser = argparse.ArgumentParser(description='Export generator weights from the checkpoint file')
10 | parser.add_argument('--model_dir', dest='model_dir', required=True,
11 | help='directory that saves the model checkpoints')
12 | parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='number of examples in batch')
13 | parser.add_argument('--inst_norm', dest='inst_norm', type=bool, default=False,
14 | help='use conditional instance normalization in your model')
15 | parser.add_argument('--save_dir', default='save_dir', type=str, help='path to save inferred images')
16 | args = parser.parse_args()
17 |
18 |
19 | def main(_):
20 | config = tf.ConfigProto()
21 | config.gpu_options.allow_growth = True
22 |
23 | with tf.Session(config=config) as sess:
24 | model = UNet(batch_size=args.batch_size)
25 | model.register_session(sess)
26 | model.build_model(is_training=False, inst_norm=args.inst_norm)
27 | model.export_generator(save_dir=args.save_dir, model_dir=args.model_dir)
28 |
29 |
30 | if __name__ == '__main__':
31 | tf.app.run()
32 |
--------------------------------------------------------------------------------
/font2img.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import argparse
6 | import sys
7 | import numpy as np
8 | import os
9 | from PIL import Image
10 | from PIL import ImageDraw
11 | from PIL import ImageFont
12 | import json
13 | import collections
14 |
15 | reload(sys)
16 | sys.setdefaultencoding("utf-8")
17 |
18 | CN_CHARSET = None
19 | CN_T_CHARSET = None
20 | JP_CHARSET = None
21 | KR_CHARSET = None
22 |
23 | DEFAULT_CHARSET = "./charset/cjk.json"
24 |
25 |
26 | def load_global_charset():
27 | global CN_CHARSET, JP_CHARSET, KR_CHARSET, CN_T_CHARSET
28 | cjk = json.load(open(DEFAULT_CHARSET))
29 | CN_CHARSET = cjk["gbk"]
30 | JP_CHARSET = cjk["jp"]
31 | KR_CHARSET = cjk["kr"]
32 | CN_T_CHARSET = cjk["gb2312_t"]
33 |
34 |
35 | def draw_single_char(ch, font, canvas_size, x_offset, y_offset):
36 | img = Image.new("RGB", (canvas_size, canvas_size), (255, 255, 255))
37 | draw = ImageDraw.Draw(img)
38 | draw.text((x_offset, y_offset), ch, (0, 0, 0), font=font)
39 | return img
40 |
41 |
42 | def draw_example(ch, src_font, dst_font, canvas_size, x_offset, y_offset, filter_hashes):
43 | dst_img = draw_single_char(ch, dst_font, canvas_size, x_offset, y_offset)
44 | # check the filter example in the hashes or not
45 | dst_hash = hash(dst_img.tobytes())
46 | if dst_hash in filter_hashes:
47 | return None
48 | src_img = draw_single_char(ch, src_font, canvas_size, x_offset, y_offset)
49 | example_img = Image.new("RGB", (canvas_size * 2, canvas_size), (255, 255, 255))
50 | example_img.paste(dst_img, (0, 0))
51 | example_img.paste(src_img, (canvas_size, 0))
52 | return example_img
53 |
54 |
55 | def filter_recurring_hash(charset, font, canvas_size, x_offset, y_offset):
56 | """ Some characters are missing in a given font, filter them
57 | by checking the recurring hashes
58 | """
59 | _charset = charset[:]
60 | np.random.shuffle(_charset)
61 | sample = _charset[:2000]
62 | hash_count = collections.defaultdict(int)
63 | for c in sample:
64 | img = draw_single_char(c, font, canvas_size, x_offset, y_offset)
65 | hash_count[hash(img.tobytes())] += 1
66 | recurring_hashes = filter(lambda d: d[1] > 2, hash_count.items())
67 | return [rh[0] for rh in recurring_hashes]
68 |
69 |
70 | def font2img(src, dst, charset, char_size, canvas_size,
71 | x_offset, y_offset, sample_count, sample_dir, label=0, filter_by_hash=True):
72 | src_font = ImageFont.truetype(src, size=char_size)
73 | dst_font = ImageFont.truetype(dst, size=char_size)
74 |
75 | filter_hashes = set()
76 | if filter_by_hash:
77 | filter_hashes = set(filter_recurring_hash(charset, dst_font, canvas_size, x_offset, y_offset))
78 | print("filter hashes -> %s" % (",".join([str(h) for h in filter_hashes])))
79 |
80 | count = 0
81 |
82 | for c in charset:
83 | if count == sample_count:
84 | break
85 | e = draw_example(c, src_font, dst_font, canvas_size, x_offset, y_offset, filter_hashes)
86 | if e:
87 | e.save(os.path.join(sample_dir, "%d_%04d.jpg" % (label, count)))
88 | count += 1
89 | if count % 100 == 0:
90 | print("processed %d chars" % count)
91 |
92 |
93 | load_global_charset()
94 | parser = argparse.ArgumentParser(description='Convert font to images')
95 | parser.add_argument('--src_font', dest='src_font', required=True, help='path of the source font')
96 | parser.add_argument('--dst_font', dest='dst_font', required=True, help='path of the target font')
97 | parser.add_argument('--filter', dest='filter', type=int, default=0, help='filter recurring characters')
98 | parser.add_argument('--charset', dest='charset', type=str, default='CN',
99 | help='charset, can be either: CN, JP, KR or a one line file')
100 | parser.add_argument('--shuffle', dest='shuffle', type=int, default=0, help='shuffle a charset before processings')
101 | parser.add_argument('--char_size', dest='char_size', type=int, default=150, help='character size')
102 | parser.add_argument('--canvas_size', dest='canvas_size', type=int, default=256, help='canvas size')
103 | parser.add_argument('--x_offset', dest='x_offset', type=int, default=20, help='x offset')
104 | parser.add_argument('--y_offset', dest='y_offset', type=int, default=20, help='y_offset')
105 | parser.add_argument('--sample_count', dest='sample_count', type=int, default=1000, help='number of characters to draw')
106 | parser.add_argument('--sample_dir', dest='sample_dir', help='directory to save examples')
107 | parser.add_argument('--label', dest='label', type=int, default=0, help='label as the prefix of examples')
108 |
109 | args = parser.parse_args()
110 |
111 | if __name__ == "__main__":
112 | if args.charset in ['CN', 'JP', 'KR', 'CN_T']:
113 | charset = locals().get("%s_CHARSET" % args.charset)
114 | else:
115 | charset = [c for c in open(args.charset).readline()[:-1].decode("utf-8")]
116 | if args.shuffle:
117 | np.random.shuffle(charset)
118 | font2img(args.src_font, args.dst_font, charset, args.char_size,
119 | args.canvas_size, args.x_offset, args.y_offset,
120 | args.sample_count, args.sample_dir, args.label, args.filter)
121 |
--------------------------------------------------------------------------------
/infer.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import tensorflow as tf
6 | import os
7 | import argparse
8 | from model.unet import UNet
9 | from model.utils import compile_frames_to_gif
10 |
11 | """
12 | People are made to have fun and be 中二 sometimes
13 | --Bored Yan LeCun
14 | """
15 |
16 | parser = argparse.ArgumentParser(description='Inference for unseen data')
17 | parser.add_argument('--model_dir', dest='model_dir', required=True,
18 | help='directory that saves the model checkpoints')
19 | parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='number of examples in batch')
20 | parser.add_argument('--source_obj', dest='source_obj', type=str, required=True, help='the source images for inference')
21 | parser.add_argument('--embedding_ids', default='embedding_ids', type=str, help='embeddings involved')
22 | parser.add_argument('--save_dir', default='save_dir', type=str, help='path to save inferred images')
23 | parser.add_argument('--inst_norm', dest='inst_norm', type=int, default=0,
24 | help='use conditional instance normalization in your model')
25 | parser.add_argument('--interpolate', dest='interpolate', type=int, default=0,
26 | help='interpolate between different embedding vectors')
27 | parser.add_argument('--steps', dest='steps', type=int, default=10, help='interpolation steps in between vectors')
28 | parser.add_argument('--output_gif', dest='output_gif', type=str, default=None, help='output name transition gif')
29 | parser.add_argument('--uroboros', dest='uroboros', type=int, default=0,
30 | help='Shōnen yo, you have stepped into uncharted territory')
31 | args = parser.parse_args()
32 |
33 |
34 | def main(_):
35 | config = tf.ConfigProto()
36 | config.gpu_options.allow_growth = True
37 |
38 | with tf.Session(config=config) as sess:
39 | model = UNet(batch_size=args.batch_size)
40 | model.register_session(sess)
41 | model.build_model(is_training=False, inst_norm=args.inst_norm)
42 | embedding_ids = [int(i) for i in args.embedding_ids.split(",")]
43 | if not args.interpolate:
44 | if len(embedding_ids) == 1:
45 | embedding_ids = embedding_ids[0]
46 | model.infer(model_dir=args.model_dir, source_obj=args.source_obj, embedding_ids=embedding_ids,
47 | save_dir=args.save_dir)
48 | else:
49 | if len(embedding_ids) < 2:
50 | raise Exception("no need to interpolate yourself unless you are a narcissist")
51 | chains = embedding_ids[:]
52 | if args.uroboros:
53 | chains.append(chains[0])
54 | pairs = list()
55 | for i in range(len(chains) - 1):
56 | pairs.append((chains[i], chains[i + 1]))
57 | for s, e in pairs:
58 | model.interpolate(model_dir=args.model_dir, source_obj=args.source_obj, between=[s, e],
59 | save_dir=args.save_dir, steps=args.steps)
60 | if args.output_gif:
61 | gif_path = os.path.join(args.save_dir, args.output_gif)
62 | compile_frames_to_gif(args.save_dir, gif_path)
63 | print("gif saved at %s" % gif_path)
64 |
65 |
66 | if __name__ == '__main__':
67 | tf.app.run()
68 |
--------------------------------------------------------------------------------
/model/__init__.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
--------------------------------------------------------------------------------
/model/dataset.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 | import cPickle as pickle
5 | import numpy as np
6 | import random
7 | import os
8 | from .utils import pad_seq, bytes_to_file, \
9 | read_split_image, shift_and_resize_image, normalize_image
10 |
11 |
12 | class PickledImageProvider(object):
13 | def __init__(self, obj_path):
14 | self.obj_path = obj_path
15 | self.examples = self.load_pickled_examples()
16 |
17 | def load_pickled_examples(self):
18 | with open(self.obj_path, "rb") as of:
19 | examples = list()
20 | while True:
21 | try:
22 | e = pickle.load(of)
23 | examples.append(e)
24 | if len(examples) % 1000 == 0:
25 | print("processed %d examples" % len(examples))
26 | except EOFError:
27 | break
28 | except Exception:
29 | pass
30 | print("unpickled total %d examples" % len(examples))
31 | return examples
32 |
33 |
34 | def get_batch_iter(examples, batch_size, augment):
35 | # the transpose ops requires deterministic
36 | # batch size, thus comes the padding
37 | padded = pad_seq(examples, batch_size)
38 |
39 | def process(img):
40 | img = bytes_to_file(img)
41 | try:
42 | img_A, img_B = read_split_image(img)
43 | if augment:
44 | # augment the image by:
45 | # 1) enlarge the image
46 | # 2) random crop the image back to its original size
47 | # NOTE: image A and B needs to be in sync as how much
48 | # to be shifted
49 | w, h, _ = img_A.shape
50 | multiplier = random.uniform(1.00, 1.20)
51 | # add an eps to prevent cropping issue
52 | nw = int(multiplier * w) + 1
53 | nh = int(multiplier * h) + 1
54 | shift_x = int(np.ceil(np.random.uniform(0.01, nw - w)))
55 | shift_y = int(np.ceil(np.random.uniform(0.01, nh - h)))
56 | img_A = shift_and_resize_image(img_A, shift_x, shift_y, nw, nh)
57 | img_B = shift_and_resize_image(img_B, shift_x, shift_y, nw, nh)
58 | img_A = normalize_image(img_A)
59 | img_B = normalize_image(img_B)
60 | return np.concatenate([img_A, img_B], axis=2)
61 | finally:
62 | img.close()
63 |
64 | def batch_iter():
65 | for i in range(0, len(padded), batch_size):
66 | batch = padded[i: i + batch_size]
67 | labels = [e[0] for e in batch]
68 | processed = [process(e[1]) for e in batch]
69 | # stack into tensor
70 | yield labels, np.array(processed).astype(np.float32)
71 |
72 | return batch_iter()
73 |
74 |
75 | class TrainDataProvider(object):
76 | def __init__(self, data_dir, train_name="train.obj", val_name="val.obj", filter_by=None):
77 | self.data_dir = data_dir
78 | self.filter_by = filter_by
79 | self.train_path = os.path.join(self.data_dir, train_name)
80 | self.val_path = os.path.join(self.data_dir, val_name)
81 | self.train = PickledImageProvider(self.train_path)
82 | self.val = PickledImageProvider(self.val_path)
83 | if self.filter_by:
84 | print("filter by label ->", filter_by)
85 | self.train.examples = filter(lambda e: e[0] in self.filter_by, self.train.examples)
86 | self.val.examples = filter(lambda e: e[0] in self.filter_by, self.val.examples)
87 | print("train examples -> %d, val examples -> %d" % (len(self.train.examples), len(self.val.examples)))
88 |
89 | def get_train_iter(self, batch_size, shuffle=True):
90 | training_examples = self.train.examples[:]
91 | if shuffle:
92 | np.random.shuffle(training_examples)
93 | return get_batch_iter(training_examples, batch_size, augment=True)
94 |
95 | def get_val_iter(self, batch_size, shuffle=True):
96 | """
97 | Validation iterator runs forever
98 | """
99 | val_examples = self.val.examples[:]
100 | if shuffle:
101 | np.random.shuffle(val_examples)
102 | while True:
103 | val_batch_iter = get_batch_iter(val_examples, batch_size, augment=False)
104 | for labels, examples in val_batch_iter:
105 | yield labels, examples
106 |
107 | def compute_total_batch_num(self, batch_size):
108 | """Total padded batch num"""
109 | return int(np.ceil(len(self.train.examples) / float(batch_size)))
110 |
111 | def get_all_labels(self):
112 | """Get all training labels"""
113 | return list({e[0] for e in self.train.examples})
114 |
115 | def get_train_val_path(self):
116 | return self.train_path, self.val_path
117 |
118 |
119 | class InjectDataProvider(object):
120 | def __init__(self, obj_path):
121 | self.data = PickledImageProvider(obj_path)
122 | print("examples -> %d" % len(self.data.examples))
123 |
124 | def get_single_embedding_iter(self, batch_size, embedding_id):
125 | examples = self.data.examples[:]
126 | batch_iter = get_batch_iter(examples, batch_size, augment=False)
127 | for _, images in batch_iter:
128 | # inject specific embedding style here
129 | labels = [embedding_id] * batch_size
130 | yield labels, images
131 |
132 | def get_random_embedding_iter(self, batch_size, embedding_ids):
133 | examples = self.data.examples[:]
134 | batch_iter = get_batch_iter(examples, batch_size, augment=False)
135 | for _, images in batch_iter:
136 | # inject specific embedding style here
137 | labels = [random.choice(embedding_ids) for i in range(batch_size)]
138 | yield labels, images
139 |
140 |
141 | class NeverEndingLoopingProvider(InjectDataProvider):
142 | def __init__(self, obj_path):
143 | super(NeverEndingLoopingProvider, self).__init__(obj_path)
144 |
145 | def get_random_embedding_iter(self, batch_size, embedding_ids):
146 | while True:
147 | # np.random.shuffle(self.data.examples)
148 | rand_iter = super(NeverEndingLoopingProvider, self) \
149 | .get_random_embedding_iter(batch_size, embedding_ids)
150 | for labels, images in rand_iter:
151 | yield labels, images
152 |
--------------------------------------------------------------------------------
/model/ops.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 | import tensorflow as tf
5 |
6 |
7 | def batch_norm(x, is_training, epsilon=1e-5, decay=0.9, scope="batch_norm"):
8 | return tf.contrib.layers.batch_norm(x, decay=decay, updates_collections=None, epsilon=epsilon,
9 | scale=True, is_training=is_training, scope=scope)
10 |
11 |
12 | def conv2d(x, output_filters, kh=5, kw=5, sh=2, sw=2, stddev=0.02, scope="conv2d"):
13 | with tf.variable_scope(scope):
14 | shape = x.get_shape().as_list()
15 | W = tf.get_variable('W', [kh, kw, shape[-1], output_filters],
16 | initializer=tf.truncated_normal_initializer(stddev=stddev))
17 | Wconv = tf.nn.conv2d(x, W, strides=[1, sh, sw, 1], padding='SAME')
18 |
19 | biases = tf.get_variable('b', [output_filters], initializer=tf.constant_initializer(0.0))
20 | Wconv_plus_b = tf.reshape(tf.nn.bias_add(Wconv, biases), Wconv.get_shape())
21 |
22 | return Wconv_plus_b
23 |
24 |
25 | def deconv2d(x, output_shape, kh=5, kw=5, sh=2, sw=2, stddev=0.02, scope="deconv2d"):
26 | with tf.variable_scope(scope):
27 | # filter : [height, width, output_channels, in_channels]
28 | input_shape = x.get_shape().as_list()
29 | W = tf.get_variable('W', [kh, kw, output_shape[-1], input_shape[-1]],
30 | initializer=tf.random_normal_initializer(stddev=stddev))
31 |
32 | deconv = tf.nn.conv2d_transpose(x, W, output_shape=output_shape,
33 | strides=[1, sh, sw, 1])
34 |
35 | biases = tf.get_variable('b', [output_shape[-1]], initializer=tf.constant_initializer(0.0))
36 | deconv_plus_b = tf.reshape(tf.nn.bias_add(deconv, biases), deconv.get_shape())
37 |
38 | return deconv_plus_b
39 |
40 |
41 | def lrelu(x, leak=0.2):
42 | return tf.maximum(x, leak * x)
43 |
44 |
45 | def fc(x, output_size, stddev=0.02, scope="fc"):
46 | with tf.variable_scope(scope):
47 | shape = x.get_shape().as_list()
48 | W = tf.get_variable("W", [shape[1], output_size], tf.float32,
49 | tf.random_normal_initializer(stddev=stddev))
50 | b = tf.get_variable("b", [output_size],
51 | initializer=tf.constant_initializer(0.0))
52 | return tf.matmul(x, W) + b
53 |
54 |
55 | def init_embedding(size, dimension, stddev=0.01, scope="embedding"):
56 | with tf.variable_scope(scope):
57 | return tf.get_variable("E", [size, 1, 1, dimension], tf.float32,
58 | tf.random_normal_initializer(stddev=stddev))
59 |
60 |
61 | def conditional_instance_norm(x, ids, labels_num, mixed=False, scope="conditional_instance_norm"):
62 | with tf.variable_scope(scope):
63 | shape = x.get_shape().as_list()
64 | batch_size, output_filters = shape[0], shape[-1]
65 | scale = tf.get_variable("scale", [labels_num, output_filters], tf.float32, tf.constant_initializer(1.0))
66 | shift = tf.get_variable("shift", [labels_num, output_filters], tf.float32, tf.constant_initializer(0.0))
67 |
68 | mu, sigma = tf.nn.moments(x, [1, 2], keep_dims=True)
69 | norm = (x - mu) / tf.sqrt(sigma + 1e-5)
70 |
71 | batch_scale = tf.reshape(tf.nn.embedding_lookup([scale], ids=ids), [batch_size, 1, 1, output_filters])
72 | batch_shift = tf.reshape(tf.nn.embedding_lookup([shift], ids=ids), [batch_size, 1, 1, output_filters])
73 |
74 | z = norm * batch_scale + batch_shift
75 | return z
76 |
--------------------------------------------------------------------------------
/model/unet.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import tensorflow as tf
6 | import numpy as np
7 | import scipy.misc as misc
8 | import os
9 | import time
10 | from collections import namedtuple
11 | from .ops import conv2d, deconv2d, lrelu, fc, batch_norm, init_embedding, conditional_instance_norm
12 | from .dataset import TrainDataProvider, InjectDataProvider, NeverEndingLoopingProvider
13 | from .utils import scale_back, merge, save_concat_images
14 |
15 | # Auxiliary wrapper classes
16 | # Used to save handles(important nodes in computation graph) for later evaluation
17 | LossHandle = namedtuple("LossHandle", ["d_loss", "g_loss", "const_loss", "l1_loss",
18 | "category_loss", "cheat_loss", "tv_loss"])
19 | InputHandle = namedtuple("InputHandle", ["real_data", "embedding_ids", "no_target_data", "no_target_ids"])
20 | EvalHandle = namedtuple("EvalHandle", ["encoder", "generator", "target", "source", "embedding"])
21 | SummaryHandle = namedtuple("SummaryHandle", ["d_merged", "g_merged"])
22 |
23 |
24 | class UNet(object):
25 | def __init__(self, experiment_dir=None, experiment_id=0, batch_size=16, input_width=256, output_width=256,
26 | generator_dim=64, discriminator_dim=64, L1_penalty=100, Lconst_penalty=15, Ltv_penalty=0.0,
27 | Lcategory_penalty=1.0, embedding_num=40, embedding_dim=128, input_filters=3, output_filters=3):
28 | self.experiment_dir = experiment_dir
29 | self.experiment_id = experiment_id
30 | self.batch_size = batch_size
31 | self.input_width = input_width
32 | self.output_width = output_width
33 | self.generator_dim = generator_dim
34 | self.discriminator_dim = discriminator_dim
35 | self.L1_penalty = L1_penalty
36 | self.Lconst_penalty = Lconst_penalty
37 | self.Ltv_penalty = Ltv_penalty
38 | self.Lcategory_penalty = Lcategory_penalty
39 | self.embedding_num = embedding_num
40 | self.embedding_dim = embedding_dim
41 | self.input_filters = input_filters
42 | self.output_filters = output_filters
43 | # init all the directories
44 | self.sess = None
45 | # experiment_dir is needed for training
46 | if experiment_dir:
47 | self.data_dir = os.path.join(self.experiment_dir, "data")
48 | self.checkpoint_dir = os.path.join(self.experiment_dir, "checkpoint")
49 | self.sample_dir = os.path.join(self.experiment_dir, "sample")
50 | self.log_dir = os.path.join(self.experiment_dir, "logs")
51 |
52 | if not os.path.exists(self.checkpoint_dir):
53 | os.makedirs(self.checkpoint_dir)
54 | print("create checkpoint directory")
55 | if not os.path.exists(self.log_dir):
56 | os.makedirs(self.log_dir)
57 | print("create log directory")
58 | if not os.path.exists(self.sample_dir):
59 | os.makedirs(self.sample_dir)
60 | print("create sample directory")
61 |
62 | def encoder(self, images, is_training, reuse=False):
63 | with tf.variable_scope("generator"):
64 | if reuse:
65 | tf.get_variable_scope().reuse_variables()
66 |
67 | encode_layers = dict()
68 |
69 | def encode_layer(x, output_filters, layer):
70 | act = lrelu(x)
71 | conv = conv2d(act, output_filters=output_filters, scope="g_e%d_conv" % layer)
72 | enc = batch_norm(conv, is_training, scope="g_e%d_bn" % layer)
73 | encode_layers["e%d" % layer] = enc
74 | return enc
75 |
76 | e1 = conv2d(images, self.generator_dim, scope="g_e1_conv")
77 | encode_layers["e1"] = e1
78 | e2 = encode_layer(e1, self.generator_dim * 2, 2)
79 | e3 = encode_layer(e2, self.generator_dim * 4, 3)
80 | e4 = encode_layer(e3, self.generator_dim * 8, 4)
81 | e5 = encode_layer(e4, self.generator_dim * 8, 5)
82 | e6 = encode_layer(e5, self.generator_dim * 8, 6)
83 | e7 = encode_layer(e6, self.generator_dim * 8, 7)
84 | e8 = encode_layer(e7, self.generator_dim * 8, 8)
85 |
86 | return e8, encode_layers
87 |
88 | def decoder(self, encoded, encoding_layers, ids, inst_norm, is_training, reuse=False):
89 | with tf.variable_scope("generator"):
90 | if reuse:
91 | tf.get_variable_scope().reuse_variables()
92 |
93 | s = self.output_width
94 | s2, s4, s8, s16, s32, s64, s128 = int(s / 2), int(s / 4), int(s / 8), int(s / 16), int(s / 32), int(
95 | s / 64), int(s / 128)
96 |
97 | def decode_layer(x, output_width, output_filters, layer, enc_layer, dropout=False, do_concat=True):
98 | dec = deconv2d(tf.nn.relu(x), [self.batch_size, output_width,
99 | output_width, output_filters], scope="g_d%d_deconv" % layer)
100 | if layer != 8:
101 | # IMPORTANT: normalization for last layer
102 | # Very important, otherwise GAN is unstable
103 | # Trying conditional instance normalization to
104 | # overcome the fact that batch normalization offers
105 | # different train/test statistics
106 | if inst_norm:
107 | dec = conditional_instance_norm(dec, ids, self.embedding_num, scope="g_d%d_inst_norm" % layer)
108 | else:
109 | dec = batch_norm(dec, is_training, scope="g_d%d_bn" % layer)
110 | if dropout:
111 | dec = tf.nn.dropout(dec, 0.5)
112 | if do_concat:
113 | dec = tf.concat([dec, enc_layer], 3)
114 | return dec
115 |
116 | d1 = decode_layer(encoded, s128, self.generator_dim * 8, layer=1, enc_layer=encoding_layers["e7"],
117 | dropout=True)
118 | d2 = decode_layer(d1, s64, self.generator_dim * 8, layer=2, enc_layer=encoding_layers["e6"], dropout=True)
119 | d3 = decode_layer(d2, s32, self.generator_dim * 8, layer=3, enc_layer=encoding_layers["e5"], dropout=True)
120 | d4 = decode_layer(d3, s16, self.generator_dim * 8, layer=4, enc_layer=encoding_layers["e4"])
121 | d5 = decode_layer(d4, s8, self.generator_dim * 4, layer=5, enc_layer=encoding_layers["e3"])
122 | d6 = decode_layer(d5, s4, self.generator_dim * 2, layer=6, enc_layer=encoding_layers["e2"])
123 | d7 = decode_layer(d6, s2, self.generator_dim, layer=7, enc_layer=encoding_layers["e1"])
124 | d8 = decode_layer(d7, s, self.output_filters, layer=8, enc_layer=None, do_concat=False)
125 |
126 | output = tf.nn.tanh(d8) # scale to (-1, 1)
127 | return output
128 |
129 | def generator(self, images, embeddings, embedding_ids, inst_norm, is_training, reuse=False):
130 | e8, enc_layers = self.encoder(images, is_training=is_training, reuse=reuse)
131 | local_embeddings = tf.nn.embedding_lookup(embeddings, ids=embedding_ids)
132 | local_embeddings = tf.reshape(local_embeddings, [self.batch_size, 1, 1, self.embedding_dim])
133 | embedded = tf.concat([e8, local_embeddings], 3)
134 | output = self.decoder(embedded, enc_layers, embedding_ids, inst_norm, is_training=is_training, reuse=reuse)
135 | return output, e8
136 |
137 | def discriminator(self, image, is_training, reuse=False):
138 | with tf.variable_scope("discriminator"):
139 | if reuse:
140 | tf.get_variable_scope().reuse_variables()
141 | h0 = lrelu(conv2d(image, self.discriminator_dim, scope="d_h0_conv"))
142 | h1 = lrelu(batch_norm(conv2d(h0, self.discriminator_dim * 2, scope="d_h1_conv"),
143 | is_training, scope="d_bn_1"))
144 | h2 = lrelu(batch_norm(conv2d(h1, self.discriminator_dim * 4, scope="d_h2_conv"),
145 | is_training, scope="d_bn_2"))
146 | h3 = lrelu(batch_norm(conv2d(h2, self.discriminator_dim * 8, sh=1, sw=1, scope="d_h3_conv"),
147 | is_training, scope="d_bn_3"))
148 | # real or fake binary loss
149 | fc1 = fc(tf.reshape(h3, [self.batch_size, -1]), 1, scope="d_fc1")
150 | # category loss
151 | fc2 = fc(tf.reshape(h3, [self.batch_size, -1]), self.embedding_num, scope="d_fc2")
152 |
153 | return tf.nn.sigmoid(fc1), fc1, fc2
154 |
155 | def build_model(self, is_training=True, inst_norm=False, no_target_source=False):
156 | real_data = tf.placeholder(tf.float32,
157 | [self.batch_size, self.input_width, self.input_width,
158 | self.input_filters + self.output_filters],
159 | name='real_A_and_B_images')
160 | embedding_ids = tf.placeholder(tf.int64, shape=None, name="embedding_ids")
161 | no_target_data = tf.placeholder(tf.float32,
162 | [self.batch_size, self.input_width, self.input_width,
163 | self.input_filters + self.output_filters],
164 | name='no_target_A_and_B_images')
165 | no_target_ids = tf.placeholder(tf.int64, shape=None, name="no_target_embedding_ids")
166 |
167 | # target images
168 | real_B = real_data[:, :, :, :self.input_filters]
169 | # source images
170 | real_A = real_data[:, :, :, self.input_filters:self.input_filters + self.output_filters]
171 |
172 | embedding = init_embedding(self.embedding_num, self.embedding_dim)
173 | fake_B, encoded_real_A = self.generator(real_A, embedding, embedding_ids, is_training=is_training,
174 | inst_norm=inst_norm)
175 | real_AB = tf.concat([real_A, real_B], 3)
176 | fake_AB = tf.concat([real_A, fake_B], 3)
177 |
178 | # Note it is not possible to set reuse flag back to False
179 | # initialize all variables before setting reuse to True
180 | real_D, real_D_logits, real_category_logits = self.discriminator(real_AB, is_training=is_training, reuse=False)
181 | fake_D, fake_D_logits, fake_category_logits = self.discriminator(fake_AB, is_training=is_training, reuse=True)
182 |
183 | # encoding constant loss
184 | # this loss assume that generated imaged and real image
185 | # should reside in the same space and close to each other
186 | encoded_fake_B = self.encoder(fake_B, is_training, reuse=True)[0]
187 | const_loss = (tf.reduce_mean(tf.square(encoded_real_A - encoded_fake_B))) * self.Lconst_penalty
188 |
189 | # category loss
190 | true_labels = tf.reshape(tf.one_hot(indices=embedding_ids, depth=self.embedding_num),
191 | shape=[self.batch_size, self.embedding_num])
192 | real_category_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_category_logits,
193 | labels=true_labels))
194 | fake_category_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_category_logits,
195 | labels=true_labels))
196 | category_loss = self.Lcategory_penalty * (real_category_loss + fake_category_loss)
197 |
198 | # binary real/fake loss
199 | d_loss_real = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=real_D_logits,
200 | labels=tf.ones_like(real_D)))
201 | d_loss_fake = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_D_logits,
202 | labels=tf.zeros_like(fake_D)))
203 | # L1 loss between real and generated images
204 | l1_loss = self.L1_penalty * tf.reduce_mean(tf.abs(fake_B - real_B))
205 | # total variation loss
206 | width = self.output_width
207 | tv_loss = (tf.nn.l2_loss(fake_B[:, 1:, :, :] - fake_B[:, :width - 1, :, :]) / width
208 | + tf.nn.l2_loss(fake_B[:, :, 1:, :] - fake_B[:, :, :width - 1, :]) / width) * self.Ltv_penalty
209 |
210 | # maximize the chance generator fool the discriminator
211 | cheat_loss = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=fake_D_logits,
212 | labels=tf.ones_like(fake_D)))
213 |
214 | d_loss = d_loss_real + d_loss_fake + category_loss / 2.0
215 | g_loss = cheat_loss + l1_loss + self.Lcategory_penalty * fake_category_loss + const_loss + tv_loss
216 |
217 | if no_target_source:
218 | # no_target source are examples that don't have the corresponding target images
219 | # however, except L1 loss, we can compute category loss, binary loss and constant losses with those examples
220 | # it is useful when discriminator get saturated and d_loss drops to near zero
221 | # those data could be used as additional source of losses to break the saturation
222 | no_target_A = no_target_data[:, :, :, self.input_filters:self.input_filters + self.output_filters]
223 | no_target_B, encoded_no_target_A = self.generator(no_target_A, embedding, no_target_ids,
224 | is_training=is_training,
225 | inst_norm=inst_norm, reuse=True)
226 | no_target_labels = tf.reshape(tf.one_hot(indices=no_target_ids, depth=self.embedding_num),
227 | shape=[self.batch_size, self.embedding_num])
228 | no_target_AB = tf.concat([no_target_A, no_target_B], 3)
229 | no_target_D, no_target_D_logits, no_target_category_logits = self.discriminator(no_target_AB,
230 | is_training=is_training,
231 | reuse=True)
232 | encoded_no_target_B = self.encoder(no_target_B, is_training, reuse=True)[0]
233 | no_target_const_loss = tf.reduce_mean(
234 | tf.square(encoded_no_target_A - encoded_no_target_B)) * self.Lconst_penalty
235 | no_target_category_loss = tf.reduce_mean(
236 | tf.nn.sigmoid_cross_entropy_with_logits(logits=no_target_category_logits,
237 | labels=no_target_labels)) * self.Lcategory_penalty
238 |
239 | d_loss_no_target = tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=no_target_D_logits,
240 | labels=tf.zeros_like(
241 | no_target_D)))
242 | cheat_loss += tf.reduce_mean(tf.nn.sigmoid_cross_entropy_with_logits(logits=no_target_D_logits,
243 | labels=tf.ones_like(no_target_D)))
244 | d_loss = d_loss_real + d_loss_fake + d_loss_no_target + (category_loss + no_target_category_loss) / 3.0
245 | g_loss = cheat_loss / 2.0 + l1_loss + \
246 | (self.Lcategory_penalty * fake_category_loss + no_target_category_loss) / 2.0 + \
247 | (const_loss + no_target_const_loss) / 2.0 + tv_loss
248 |
249 | d_loss_real_summary = tf.summary.scalar("d_loss_real", d_loss_real)
250 | d_loss_fake_summary = tf.summary.scalar("d_loss_fake", d_loss_fake)
251 | category_loss_summary = tf.summary.scalar("category_loss", category_loss)
252 | cheat_loss_summary = tf.summary.scalar("cheat_loss", cheat_loss)
253 | l1_loss_summary = tf.summary.scalar("l1_loss", l1_loss)
254 | fake_category_loss_summary = tf.summary.scalar("fake_category_loss", fake_category_loss)
255 | const_loss_summary = tf.summary.scalar("const_loss", const_loss)
256 | d_loss_summary = tf.summary.scalar("d_loss", d_loss)
257 | g_loss_summary = tf.summary.scalar("g_loss", g_loss)
258 | tv_loss_summary = tf.summary.scalar("tv_loss", tv_loss)
259 |
260 | d_merged_summary = tf.summary.merge([d_loss_real_summary, d_loss_fake_summary,
261 | category_loss_summary, d_loss_summary])
262 | g_merged_summary = tf.summary.merge([cheat_loss_summary, l1_loss_summary,
263 | fake_category_loss_summary,
264 | const_loss_summary,
265 | g_loss_summary, tv_loss_summary])
266 |
267 | # expose useful nodes in the graph as handles globally
268 | input_handle = InputHandle(real_data=real_data,
269 | embedding_ids=embedding_ids,
270 | no_target_data=no_target_data,
271 | no_target_ids=no_target_ids)
272 |
273 | loss_handle = LossHandle(d_loss=d_loss,
274 | g_loss=g_loss,
275 | const_loss=const_loss,
276 | l1_loss=l1_loss,
277 | category_loss=category_loss,
278 | cheat_loss=cheat_loss,
279 | tv_loss=tv_loss)
280 |
281 | eval_handle = EvalHandle(encoder=encoded_real_A,
282 | generator=fake_B,
283 | target=real_B,
284 | source=real_A,
285 | embedding=embedding)
286 |
287 | summary_handle = SummaryHandle(d_merged=d_merged_summary,
288 | g_merged=g_merged_summary)
289 |
290 | # those operations will be shared, so we need
291 | # to make them visible globally
292 | setattr(self, "input_handle", input_handle)
293 | setattr(self, "loss_handle", loss_handle)
294 | setattr(self, "eval_handle", eval_handle)
295 | setattr(self, "summary_handle", summary_handle)
296 |
297 | def register_session(self, sess):
298 | self.sess = sess
299 |
300 | def retrieve_trainable_vars(self, freeze_encoder=False):
301 | t_vars = tf.trainable_variables()
302 |
303 | d_vars = [var for var in t_vars if 'd_' in var.name]
304 | g_vars = [var for var in t_vars if 'g_' in var.name]
305 |
306 | if freeze_encoder:
307 | # exclude encoder weights
308 | print("freeze encoder weights")
309 | g_vars = [var for var in g_vars if not ("g_e" in var.name)]
310 |
311 | return g_vars, d_vars
312 |
313 | def retrieve_generator_vars(self):
314 | all_vars = tf.global_variables()
315 | generate_vars = [var for var in all_vars if 'embedding' in var.name or "g_" in var.name]
316 | return generate_vars
317 |
318 | def retrieve_handles(self):
319 | input_handle = getattr(self, "input_handle")
320 | loss_handle = getattr(self, "loss_handle")
321 | eval_handle = getattr(self, "eval_handle")
322 | summary_handle = getattr(self, "summary_handle")
323 |
324 | return input_handle, loss_handle, eval_handle, summary_handle
325 |
326 | def get_model_id_and_dir(self):
327 | model_id = "experiment_%d_batch_%d" % (self.experiment_id, self.batch_size)
328 | model_dir = os.path.join(self.checkpoint_dir, model_id)
329 | return model_id, model_dir
330 |
331 | def checkpoint(self, saver, step):
332 | model_name = "unet.model"
333 | model_id, model_dir = self.get_model_id_and_dir()
334 |
335 | if not os.path.exists(model_dir):
336 | os.makedirs(model_dir)
337 |
338 | saver.save(self.sess, os.path.join(model_dir, model_name), global_step=step)
339 |
340 | def restore_model(self, saver, model_dir):
341 |
342 | ckpt = tf.train.get_checkpoint_state(model_dir)
343 |
344 | if ckpt:
345 | saver.restore(self.sess, ckpt.model_checkpoint_path)
346 | print("restored model %s" % model_dir)
347 | else:
348 | print("fail to restore model %s" % model_dir)
349 |
350 | def generate_fake_samples(self, input_images, embedding_ids):
351 | input_handle, loss_handle, eval_handle, summary_handle = self.retrieve_handles()
352 | fake_images, real_images, \
353 | d_loss, g_loss, l1_loss = self.sess.run([eval_handle.generator,
354 | eval_handle.target,
355 | loss_handle.d_loss,
356 | loss_handle.g_loss,
357 | loss_handle.l1_loss],
358 | feed_dict={
359 | input_handle.real_data: input_images,
360 | input_handle.embedding_ids: embedding_ids,
361 | input_handle.no_target_data: input_images,
362 | input_handle.no_target_ids: embedding_ids
363 | })
364 | return fake_images, real_images, d_loss, g_loss, l1_loss
365 |
366 | def validate_model(self, val_iter, epoch, step):
367 | labels, images = next(val_iter)
368 | fake_imgs, real_imgs, d_loss, g_loss, l1_loss = self.generate_fake_samples(images, labels)
369 | print("Sample: d_loss: %.5f, g_loss: %.5f, l1_loss: %.5f" % (d_loss, g_loss, l1_loss))
370 |
371 | merged_fake_images = merge(scale_back(fake_imgs), [self.batch_size, 1])
372 | merged_real_images = merge(scale_back(real_imgs), [self.batch_size, 1])
373 | merged_pair = np.concatenate([merged_real_images, merged_fake_images], axis=1)
374 |
375 | model_id, _ = self.get_model_id_and_dir()
376 |
377 | model_sample_dir = os.path.join(self.sample_dir, model_id)
378 | if not os.path.exists(model_sample_dir):
379 | os.makedirs(model_sample_dir)
380 |
381 | sample_img_path = os.path.join(model_sample_dir, "sample_%02d_%04d.png" % (epoch, step))
382 | misc.imsave(sample_img_path, merged_pair)
383 |
384 | def export_generator(self, save_dir, model_dir, model_name="gen_model"):
385 | saver = tf.train.Saver()
386 | self.restore_model(saver, model_dir)
387 |
388 | gen_saver = tf.train.Saver(var_list=self.retrieve_generator_vars())
389 | gen_saver.save(self.sess, os.path.join(save_dir, model_name), global_step=0)
390 |
391 | def infer(self, source_obj, embedding_ids, model_dir, save_dir):
392 | source_provider = InjectDataProvider(source_obj)
393 |
394 | if isinstance(embedding_ids, int) or len(embedding_ids) == 1:
395 | embedding_id = embedding_ids if isinstance(embedding_ids, int) else embedding_ids[0]
396 | source_iter = source_provider.get_single_embedding_iter(self.batch_size, embedding_id)
397 | else:
398 | source_iter = source_provider.get_random_embedding_iter(self.batch_size, embedding_ids)
399 |
400 | tf.global_variables_initializer().run()
401 | saver = tf.train.Saver(var_list=self.retrieve_generator_vars())
402 | self.restore_model(saver, model_dir)
403 |
404 | def save_imgs(imgs, count):
405 | p = os.path.join(save_dir, "inferred_%04d.png" % count)
406 | save_concat_images(imgs, img_path=p)
407 | print("generated images saved at %s" % p)
408 |
409 | count = 0
410 | batch_buffer = list()
411 | for labels, source_imgs in source_iter:
412 | fake_imgs = self.generate_fake_samples(source_imgs, labels)[0]
413 | merged_fake_images = merge(scale_back(fake_imgs), [self.batch_size, 1])
414 | batch_buffer.append(merged_fake_images)
415 | if len(batch_buffer) == 10:
416 | save_imgs(batch_buffer, count)
417 | batch_buffer = list()
418 | count += 1
419 | if batch_buffer:
420 | # last batch
421 | save_imgs(batch_buffer, count)
422 |
423 | def interpolate(self, source_obj, between, model_dir, save_dir, steps):
424 | tf.global_variables_initializer().run()
425 | saver = tf.train.Saver(var_list=self.retrieve_generator_vars())
426 | self.restore_model(saver, model_dir)
427 | # new interpolated dimension
428 | new_x_dim = steps + 1
429 | alphas = np.linspace(0.0, 1.0, new_x_dim)
430 |
431 | def _interpolate_tensor(_tensor):
432 | """
433 | Compute the interpolated tensor here
434 | """
435 |
436 | x = _tensor[between[0]]
437 | y = _tensor[between[1]]
438 |
439 | interpolated = list()
440 | for alpha in alphas:
441 | interpolated.append(x * (1. - alpha) + alpha * y)
442 |
443 | interpolated = np.asarray(interpolated, dtype=np.float32)
444 | return interpolated
445 |
446 | def filter_embedding_vars(var):
447 | var_name = var.name
448 | if var_name.find("embedding") != -1:
449 | return True
450 | if var_name.find("inst_norm/shift") != -1 or var_name.find("inst_norm/scale") != -1:
451 | return True
452 | return False
453 |
454 | embedding_vars = filter(filter_embedding_vars, tf.trainable_variables())
455 | # here comes the hack, we overwrite the original tensor
456 | # with interpolated ones. Note, the shape might differ
457 |
458 | # this is to restore the embedding at the end
459 | embedding_snapshot = list()
460 | for e_var in embedding_vars:
461 | val = e_var.eval(session=self.sess)
462 | embedding_snapshot.append((e_var, val))
463 | t = _interpolate_tensor(val)
464 | op = tf.assign(e_var, t, validate_shape=False)
465 | print("overwrite %s tensor" % e_var.name, "old_shape ->", e_var.get_shape(), "new shape ->", t.shape)
466 | self.sess.run(op)
467 |
468 | source_provider = InjectDataProvider(source_obj)
469 | input_handle, _, eval_handle, _ = self.retrieve_handles()
470 | for step_idx in range(len(alphas)):
471 | alpha = alphas[step_idx]
472 | print("interpolate %d -> %.4f + %d -> %.4f" % (between[0], 1. - alpha, between[1], alpha))
473 | source_iter = source_provider.get_single_embedding_iter(self.batch_size, 0)
474 | batch_buffer = list()
475 | count = 0
476 | for _, source_imgs in source_iter:
477 | count += 1
478 | labels = [step_idx] * self.batch_size
479 | generated, = self.sess.run([eval_handle.generator],
480 | feed_dict={
481 | input_handle.real_data: source_imgs,
482 | input_handle.embedding_ids: labels
483 | })
484 | merged_fake_images = merge(scale_back(generated), [self.batch_size, 1])
485 | batch_buffer.append(merged_fake_images)
486 | if len(batch_buffer):
487 | save_concat_images(batch_buffer,
488 | os.path.join(save_dir, "frame_%02d_%02d_step_%02d.png" % (
489 | between[0], between[1], step_idx)))
490 | # restore the embedding variables
491 | print("restore embedding values")
492 | for var, val in embedding_snapshot:
493 | op = tf.assign(var, val, validate_shape=False)
494 | self.sess.run(op)
495 |
496 | def train(self, lr=0.0002, epoch=100, schedule=10, resume=True, flip_labels=False,
497 | freeze_encoder=False, fine_tune=None, sample_steps=50, checkpoint_steps=500):
498 | g_vars, d_vars = self.retrieve_trainable_vars(freeze_encoder=freeze_encoder)
499 | input_handle, loss_handle, _, summary_handle = self.retrieve_handles()
500 |
501 | if not self.sess:
502 | raise Exception("no session registered")
503 |
504 | learning_rate = tf.placeholder(tf.float32, name="learning_rate")
505 | d_optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.5).minimize(loss_handle.d_loss, var_list=d_vars)
506 | g_optimizer = tf.train.AdamOptimizer(learning_rate, beta1=0.5).minimize(loss_handle.g_loss, var_list=g_vars)
507 | tf.global_variables_initializer().run()
508 | real_data = input_handle.real_data
509 | embedding_ids = input_handle.embedding_ids
510 | no_target_data = input_handle.no_target_data
511 | no_target_ids = input_handle.no_target_ids
512 |
513 | # filter by one type of labels
514 | data_provider = TrainDataProvider(self.data_dir, filter_by=fine_tune)
515 | total_batches = data_provider.compute_total_batch_num(self.batch_size)
516 | val_batch_iter = data_provider.get_val_iter(self.batch_size)
517 |
518 | saver = tf.train.Saver(max_to_keep=3)
519 | summary_writer = tf.summary.FileWriter(self.log_dir, self.sess.graph)
520 |
521 | if resume:
522 | _, model_dir = self.get_model_id_and_dir()
523 | self.restore_model(saver, model_dir)
524 |
525 | current_lr = lr
526 | counter = 0
527 | start_time = time.time()
528 |
529 | for ei in range(epoch):
530 | train_batch_iter = data_provider.get_train_iter(self.batch_size)
531 |
532 | if (ei + 1) % schedule == 0:
533 | update_lr = current_lr / 2.0
534 | # minimum learning rate guarantee
535 | update_lr = max(update_lr, 0.0002)
536 | print("decay learning rate from %.5f to %.5f" % (current_lr, update_lr))
537 | current_lr = update_lr
538 |
539 | for bid, batch in enumerate(train_batch_iter):
540 | counter += 1
541 | labels, batch_images = batch
542 | shuffled_ids = labels[:]
543 | if flip_labels:
544 | np.random.shuffle(shuffled_ids)
545 | # Optimize D
546 | _, batch_d_loss, d_summary = self.sess.run([d_optimizer, loss_handle.d_loss,
547 | summary_handle.d_merged],
548 | feed_dict={
549 | real_data: batch_images,
550 | embedding_ids: labels,
551 | learning_rate: current_lr,
552 | no_target_data: batch_images,
553 | no_target_ids: shuffled_ids
554 | })
555 | # Optimize G
556 | _, batch_g_loss = self.sess.run([g_optimizer, loss_handle.g_loss],
557 | feed_dict={
558 | real_data: batch_images,
559 | embedding_ids: labels,
560 | learning_rate: current_lr,
561 | no_target_data: batch_images,
562 | no_target_ids: shuffled_ids
563 | })
564 | # magic move to Optimize G again
565 | # according to https://github.com/carpedm20/DCGAN-tensorflow
566 | # collect all the losses along the way
567 | _, batch_g_loss, category_loss, cheat_loss, \
568 | const_loss, l1_loss, tv_loss, g_summary = self.sess.run([g_optimizer,
569 | loss_handle.g_loss,
570 | loss_handle.category_loss,
571 | loss_handle.cheat_loss,
572 | loss_handle.const_loss,
573 | loss_handle.l1_loss,
574 | loss_handle.tv_loss,
575 | summary_handle.g_merged],
576 | feed_dict={
577 | real_data: batch_images,
578 | embedding_ids: labels,
579 | learning_rate: current_lr,
580 | no_target_data: batch_images,
581 | no_target_ids: shuffled_ids
582 | })
583 | passed = time.time() - start_time
584 | log_format = "Epoch: [%2d], [%4d/%4d] time: %4.4f, d_loss: %.5f, g_loss: %.5f, " + \
585 | "category_loss: %.5f, cheat_loss: %.5f, const_loss: %.5f, l1_loss: %.5f, tv_loss: %.5f"
586 | print(log_format % (ei, bid, total_batches, passed, batch_d_loss, batch_g_loss,
587 | category_loss, cheat_loss, const_loss, l1_loss, tv_loss))
588 | summary_writer.add_summary(d_summary, counter)
589 | summary_writer.add_summary(g_summary, counter)
590 |
591 | if counter % sample_steps == 0:
592 | # sample the current model states with val data
593 | self.validate_model(val_batch_iter, ei, counter)
594 |
595 | if counter % checkpoint_steps == 0:
596 | print("Checkpoint: save checkpoint step %d" % counter)
597 | self.checkpoint(saver, counter)
598 | # save the last checkpoint
599 | print("Checkpoint: last checkpoint step %d" % counter)
600 | self.checkpoint(saver, counter)
601 |
--------------------------------------------------------------------------------
/model/utils.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import os
6 | import glob
7 |
8 | import imageio
9 | import scipy.misc as misc
10 | import numpy as np
11 | from cStringIO import StringIO
12 |
13 |
14 | def pad_seq(seq, batch_size):
15 | # pad the sequence to be the multiples of batch_size
16 | seq_len = len(seq)
17 | if seq_len % batch_size == 0:
18 | return seq
19 | padded = batch_size - (seq_len % batch_size)
20 | seq.extend(seq[:padded])
21 | return seq
22 |
23 |
24 | def bytes_to_file(bytes_img):
25 | return StringIO(bytes_img)
26 |
27 |
28 | def normalize_image(img):
29 | """
30 | Make image zero centered and in between (-1, 1)
31 | """
32 | normalized = (img / 127.5) - 1.
33 | return normalized
34 |
35 |
36 | def read_split_image(img):
37 | mat = misc.imread(img).astype(np.float)
38 | side = int(mat.shape[1] / 2)
39 | assert side * 2 == mat.shape[1]
40 | img_A = mat[:, :side] # target
41 | img_B = mat[:, side:] # source
42 |
43 | return img_A, img_B
44 |
45 |
46 | def shift_and_resize_image(img, shift_x, shift_y, nw, nh):
47 | w, h, _ = img.shape
48 | enlarged = misc.imresize(img, [nw, nh])
49 | return enlarged[shift_x:shift_x + w, shift_y:shift_y + h]
50 |
51 |
52 | def scale_back(images):
53 | return (images + 1.) / 2.
54 |
55 |
56 | def merge(images, size):
57 | h, w = images.shape[1], images.shape[2]
58 | img = np.zeros((h * size[0], w * size[1], 3))
59 | for idx, image in enumerate(images):
60 | i = idx % size[1]
61 | j = idx // size[1]
62 | img[j * h:j * h + h, i * w:i * w + w, :] = image
63 |
64 | return img
65 |
66 |
67 | def save_concat_images(imgs, img_path):
68 | concated = np.concatenate(imgs, axis=1)
69 | misc.imsave(img_path, concated)
70 |
71 |
72 | def compile_frames_to_gif(frame_dir, gif_file):
73 | frames = sorted(glob.glob(os.path.join(frame_dir, "*.png")))
74 | print(frames)
75 | images = [misc.imresize(imageio.imread(f), interp='nearest', size=0.33) for f in frames]
76 | imageio.mimsave(gif_file, images, duration=0.1)
77 | return gif_file
78 |
--------------------------------------------------------------------------------
/package.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import argparse
6 | import glob
7 | import os
8 | import cPickle as pickle
9 | import random
10 |
11 |
12 | def pickle_examples(paths, train_path, val_path, train_val_split=0.1):
13 | """
14 | Compile a list of examples into pickled format, so during
15 | the training, all io will happen in memory
16 | """
17 | with open(train_path, 'wb') as ft:
18 | with open(val_path, 'wb') as fv:
19 | for p in paths:
20 | label = int(os.path.basename(p).split("_")[0])
21 | with open(p, 'rb') as f:
22 | print("img %s" % p, label)
23 | img_bytes = f.read()
24 | r = random.random()
25 | example = (label, img_bytes)
26 | if r < train_val_split:
27 | pickle.dump(example, fv)
28 | else:
29 | pickle.dump(example, ft)
30 |
31 |
32 | parser = argparse.ArgumentParser(description='Compile list of images into a pickled object for training')
33 | parser.add_argument('--dir', dest='dir', required=True, help='path of examples')
34 | parser.add_argument('--save_dir', dest='save_dir', required=True, help='path to save pickled files')
35 | parser.add_argument('--split_ratio', type=float, default=0.1, dest='split_ratio',
36 | help='split ratio between train and val')
37 | args = parser.parse_args()
38 |
39 | if __name__ == "__main__":
40 | train_path = os.path.join(args.save_dir, "train.obj")
41 | val_path = os.path.join(args.save_dir, "val.obj")
42 | pickle_examples(sorted(glob.glob(os.path.join(args.dir, "*.jpg"))), train_path=train_path, val_path=val_path,
43 | train_val_split=args.split_ratio)
44 |
--------------------------------------------------------------------------------
/train.py:
--------------------------------------------------------------------------------
1 | # -*- coding: utf-8 -*-
2 | from __future__ import print_function
3 | from __future__ import absolute_import
4 |
5 | import tensorflow as tf
6 | import argparse
7 |
8 | from model.unet import UNet
9 |
10 | parser = argparse.ArgumentParser(description='Train')
11 | parser.add_argument('--experiment_dir', dest='experiment_dir', required=True,
12 | help='experiment directory, data, samples,checkpoints,etc')
13 | parser.add_argument('--experiment_id', dest='experiment_id', type=int, default=0,
14 | help='sequence id for the experiments you prepare to run')
15 | parser.add_argument('--image_size', dest='image_size', type=int, default=256,
16 | help="size of your input and output image")
17 | parser.add_argument('--L1_penalty', dest='L1_penalty', type=int, default=100, help='weight for L1 loss')
18 | parser.add_argument('--Lconst_penalty', dest='Lconst_penalty', type=int, default=15, help='weight for const loss')
19 | parser.add_argument('--Ltv_penalty', dest='Ltv_penalty', type=float, default=0.0, help='weight for tv loss')
20 | parser.add_argument('--Lcategory_penalty', dest='Lcategory_penalty', type=float, default=1.0,
21 | help='weight for category loss')
22 | parser.add_argument('--embedding_num', dest='embedding_num', type=int, default=40,
23 | help="number for distinct embeddings")
24 | parser.add_argument('--embedding_dim', dest='embedding_dim', type=int, default=128, help="dimension for embedding")
25 | parser.add_argument('--epoch', dest='epoch', type=int, default=100, help='number of epoch')
26 | parser.add_argument('--batch_size', dest='batch_size', type=int, default=16, help='number of examples in batch')
27 | parser.add_argument('--lr', dest='lr', type=float, default=0.001, help='initial learning rate for adam')
28 | parser.add_argument('--schedule', dest='schedule', type=int, default=10, help='number of epochs to half learning rate')
29 | parser.add_argument('--resume', dest='resume', type=int, default=1, help='resume from previous training')
30 | parser.add_argument('--freeze_encoder', dest='freeze_encoder', type=int, default=0,
31 | help="freeze encoder weights during training")
32 | parser.add_argument('--fine_tune', dest='fine_tune', type=str, default=None,
33 | help='specific labels id to be fine tuned')
34 | parser.add_argument('--inst_norm', dest='inst_norm', type=int, default=0,
35 | help='use conditional instance normalization in your model')
36 | parser.add_argument('--sample_steps', dest='sample_steps', type=int, default=10,
37 | help='number of batches in between two samples are drawn from validation set')
38 | parser.add_argument('--checkpoint_steps', dest='checkpoint_steps', type=int, default=500,
39 | help='number of batches in between two checkpoints')
40 | parser.add_argument('--flip_labels', dest='flip_labels', type=int, default=None,
41 | help='whether flip training data labels or not, in fine tuning')
42 | args = parser.parse_args()
43 |
44 |
45 | def main(_):
46 | config = tf.ConfigProto()
47 | config.gpu_options.allow_growth = True
48 |
49 | with tf.Session(config=config) as sess:
50 | model = UNet(args.experiment_dir, batch_size=args.batch_size, experiment_id=args.experiment_id,
51 | input_width=args.image_size, output_width=args.image_size, embedding_num=args.embedding_num,
52 | embedding_dim=args.embedding_dim, L1_penalty=args.L1_penalty, Lconst_penalty=args.Lconst_penalty,
53 | Ltv_penalty=args.Ltv_penalty, Lcategory_penalty=args.Lcategory_penalty)
54 | model.register_session(sess)
55 | if args.flip_labels:
56 | model.build_model(is_training=True, inst_norm=args.inst_norm, no_target_source=True)
57 | else:
58 | model.build_model(is_training=True, inst_norm=args.inst_norm)
59 | fine_tune_list = None
60 | if args.fine_tune:
61 | ids = args.fine_tune.split(",")
62 | fine_tune_list = set([int(i) for i in ids])
63 | model.train(lr=args.lr, epoch=args.epoch, resume=args.resume,
64 | schedule=args.schedule, freeze_encoder=args.freeze_encoder, fine_tune=fine_tune_list,
65 | sample_steps=args.sample_steps, checkpoint_steps=args.checkpoint_steps,
66 | flip_labels=args.flip_labels)
67 |
68 |
69 | if __name__ == '__main__':
70 | tf.app.run()
71 |
--------------------------------------------------------------------------------