├── .gitignore ├── .vscode └── settings.json ├── AA_222_Final_Project.pdf ├── Industrial-Warehouse.csv ├── LICENSE ├── README.md ├── Reference-Hospital.csv ├── Reference-Secondary School.csv ├── Reference-Supermarket.csv ├── bldg_load.csv ├── building1retail.csv ├── building2retail.csv ├── building61duringoffice.csv ├── building_data.py ├── dataviz.py ├── ess_E_summary_4H_wk1_deg.png ├── ess_E_summary_4H_wk1_nodeg.png ├── ess_E_summary_4H_wk30_nodeg.png ├── ess_E_summary_8H_wk1_nodeg.png ├── ess_summary_4H_wk1_deg.png ├── gurobitest.py ├── mg_pf.png ├── optim.py ├── optim_grb.py ├── pf_summary_4H_wk1_deg.png ├── pf_summary_4H_wk1_nodeg.png ├── pf_summary_4H_wk30_nodeg.png ├── pf_summary_8H_wk1_nodeg.png ├── pv_data.py ├── pv_gen.csv ├── pv_summary_4H_wk1_nodeg.png ├── resi_data.py ├── resi_load.csv └── solar_PV_15min_kWh.csv /.gitignore: -------------------------------------------------------------------------------- 1 | # Byte-compiled / optimized / DLL files 2 | __pycache__/ 3 | *.py[cod] 4 | *$py.class 5 | 6 | # C extensions 7 | *.so 8 | 9 | # Distribution / packaging 10 | .Python 11 | build/ 12 | develop-eggs/ 13 | dist/ 14 | downloads/ 15 | eggs/ 16 | .eggs/ 17 | lib/ 18 | lib64/ 19 | parts/ 20 | sdist/ 21 | var/ 22 | wheels/ 23 | pip-wheel-metadata/ 24 | share/python-wheels/ 25 | *.egg-info/ 26 | .installed.cfg 27 | *.egg 28 | MANIFEST 29 | 30 | # PyInstaller 31 | # Usually these files are written by a python script from a template 32 | # before PyInstaller builds the exe, so as to inject date/other infos into it. 33 | *.manifest 34 | *.spec 35 | 36 | # Installer logs 37 | pip-log.txt 38 | pip-delete-this-directory.txt 39 | 40 | # Unit test / coverage reports 41 | htmlcov/ 42 | .tox/ 43 | .nox/ 44 | .coverage 45 | .coverage.* 46 | .cache 47 | nosetests.xml 48 | coverage.xml 49 | *.cover 50 | *.py,cover 51 | .hypothesis/ 52 | .pytest_cache/ 53 | 54 | # Translations 55 | *.mo 56 | *.pot 57 | 58 | # Django stuff: 59 | *.log 60 | local_settings.py 61 | db.sqlite3 62 | db.sqlite3-journal 63 | 64 | # Flask stuff: 65 | instance/ 66 | .webassets-cache 67 | 68 | # Scrapy stuff: 69 | .scrapy 70 | 71 | # Sphinx documentation 72 | docs/_build/ 73 | 74 | # PyBuilder 75 | target/ 76 | 77 | # Jupyter Notebook 78 | .ipynb_checkpoints 79 | 80 | # IPython 81 | profile_default/ 82 | ipython_config.py 83 | 84 | # pyenv 85 | .python-version 86 | 87 | # pipenv 88 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control. 89 | # However, in case of collaboration, if having platform-specific dependencies or dependencies 90 | # having no cross-platform support, pipenv may install dependencies that don't work, or not 91 | # install all needed dependencies. 92 | #Pipfile.lock 93 | 94 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow 95 | __pypackages__/ 96 | 97 | # Celery stuff 98 | celerybeat-schedule 99 | celerybeat.pid 100 | 101 | # SageMath parsed files 102 | *.sage.py 103 | 104 | # Environments 105 | .env 106 | .venv 107 | env/ 108 | venv/ 109 | ENV/ 110 | env.bak/ 111 | venv.bak/ 112 | 113 | # Spyder project settings 114 | .spyderproject 115 | .spyproject 116 | 117 | # Rope project settings 118 | .ropeproject 119 | 120 | # mkdocs documentation 121 | /site 122 | 123 | # mypy 124 | .mypy_cache/ 125 | .dmypy.json 126 | dmypy.json 127 | 128 | # Pyre type checker 129 | .pyre/ 130 | .DS_Store 131 | 15minute_data_california/~$metadata.xlsx 132 | Read-Me_Simulated-Dataset.pdf 133 | Simulated_Dataset_Final_Report.pdf 134 | 15minute_data_california/15minute_data_california_readme.txt 135 | 15minute_data_california/Metadata Column descriptions.pdf 136 | 15minute_data_california/metadata.csv 137 | 15minute_data_california/metadata.xlsx 138 | 15minute_data_california/15minute_data_california.csv 139 | -------------------------------------------------------------------------------- /.vscode/settings.json: -------------------------------------------------------------------------------- 1 | { 2 | "python.pythonPath": "/Users/kmoy14/anaconda3/bin/python" 3 | } -------------------------------------------------------------------------------- /AA_222_Final_Project.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/AA_222_Final_Project.pdf -------------------------------------------------------------------------------- /Industrial-Warehouse.csv: -------------------------------------------------------------------------------- 1 | Power [kW] 2 | 33.5 3 | 36.5 4 | 33.5 5 | 36.5 6 | 33.5 7 | 36.5 8 | 33.5 9 | 36.5 10 | 84.4 11 | 92.7 12 | 98.3 13 | 100.6 14 | 87.5 15 | 90.2 16 | 96.4 17 | 99.4 18 | 39.8 19 | 36.5 20 | 33.5 21 | 36.5 22 | 33.5 23 | 36.5 24 | 33.5 25 | 36.5 26 | 33.5 27 | 36.5 28 | 33.5 29 | 36.5 30 | 33.5 31 | 36.5 32 | 33.5 33 | 36.5 34 | 81.9 35 | 89.9 36 | 95.8 37 | 98.4 38 | 85.6 39 | 88.3 40 | 95.1 41 | 98.4 42 | 39.8 43 | 36.5 44 | 33.5 45 | 36.5 46 | 33.5 47 | 36.5 48 | 33.5 49 | 36.5 50 | 33.5 51 | 36.5 52 | 33.5 53 | 36.5 54 | 33.5 55 | 36.5 56 | 33.5 57 | 36.5 58 | 23.5 59 | 26.5 60 | 23.5 61 | 26.5 62 | 23.5 63 | 26.5 64 | 23.5 65 | 26.5 66 | 33.5 67 | 36.5 68 | 33.5 69 | 36.5 70 | 33.5 71 | 36.5 72 | 33.5 73 | 36.5 74 | 33.5 75 | 36.5 76 | 36.1 77 | 36.5 78 | 33.5 79 | 39.1 80 | 36.2 81 | 39.3 82 | 26.3 83 | 29.3 84 | 26.5 85 | 29.5 86 | 28.3 87 | 31.4 88 | 28.4 89 | 31.6 90 | 38.6 91 | 41.6 92 | 38.6 93 | 41.5 94 | 38.6 95 | 39.6 96 | 36.5 97 | 39.3 98 | 33.5 99 | 36.5 100 | 33.5 101 | 36.5 102 | 33.5 103 | 36.5 104 | 33.5 105 | 36.5 106 | 80.9 107 | 90.2 108 | 97.0 109 | 99.7 110 | 88.1 111 | 90.2 112 | 97.3 113 | 101.3 114 | 39.8 115 | 36.5 116 | 33.5 117 | 36.5 118 | 33.5 119 | 36.5 120 | 33.5 121 | 36.5 122 | 33.5 123 | 36.5 124 | 33.5 125 | 36.5 126 | 33.5 127 | 36.5 128 | 33.5 129 | 36.5 130 | 87.2 131 | 96.4 132 | 102.9 133 | 105.6 134 | 93.1 135 | 95.5 136 | 102.0 137 | 105.0 138 | 39.8 139 | 36.5 140 | 33.5 141 | 36.5 142 | 33.5 143 | 36.5 144 | 33.5 145 | 36.5 146 | 33.5 147 | 36.5 148 | 33.5 149 | 36.5 150 | 33.5 151 | 36.5 152 | 33.5 153 | 36.5 154 | 86.3 155 | 95.2 156 | 101.1 157 | 104.4 158 | 91.6 159 | 94.6 160 | 102.6 161 | 105.6 162 | 39.8 163 | 36.5 164 | 33.5 165 | 36.5 166 | 33.5 167 | 36.5 168 | 33.5 169 | 36.5 170 | 33.5 171 | 36.5 172 | 33.5 173 | 36.5 174 | 33.5 175 | 36.5 176 | 33.5 177 | 36.5 178 | 89.4 179 | 97.7 180 | 103.6 181 | 105.9 182 | 93.1 183 | 95.8 184 | 102.3 185 | 105.6 186 | 39.8 187 | 36.5 188 | 33.5 189 | 36.5 190 | 33.5 191 | 36.5 192 | 33.5 193 | 36.5 194 | 33.5 195 | 36.5 196 | 33.5 197 | 36.5 198 | 33.5 199 | 36.5 200 | 33.5 201 | 36.5 202 | 86.3 203 | 94.6 204 | 100.4 205 | 101.9 206 | 89.4 207 | 92.1 208 | 98.9 209 | 102.2 210 | 39.8 211 | 36.5 212 | 33.5 213 | 36.5 214 | 33.5 215 | 36.5 216 | 33.5 217 | 36.5 218 | 33.5 219 | 36.5 220 | 33.5 221 | 36.5 222 | 33.5 223 | 36.5 224 | 33.5 225 | 36.5 226 | 23.5 227 | 26.5 228 | 23.5 229 | 26.5 230 | 23.5 231 | 26.5 232 | 23.5 233 | 26.5 234 | 33.5 235 | 36.5 236 | 33.5 237 | 36.5 238 | 33.5 239 | 36.5 240 | 33.5 241 | 36.5 242 | 33.5 243 | 36.5 244 | 33.5 245 | 36.5 246 | 33.5 247 | 36.5 248 | 33.5 249 | 36.5 250 | 23.5 251 | 26.5 252 | 23.5 253 | 26.5 254 | 23.5 255 | 26.5 256 | 23.5 257 | 26.5 258 | 33.5 259 | 36.5 260 | 33.5 261 | 36.5 262 | 33.5 263 | 36.5 264 | 33.5 265 | 36.5 266 | 33.5 267 | 36.5 268 | 33.5 269 | 36.5 270 | 33.5 271 | 36.5 272 | 33.5 273 | 36.5 274 | 82.5 275 | 91.4 276 | 97.9 277 | 100.9 278 | 88.1 279 | 90.8 280 | 97.3 281 | 100.3 282 | 39.8 283 | 36.5 284 | 33.5 285 | 36.5 286 | 33.5 287 | 36.5 288 | 33.5 289 | 36.5 290 | 33.5 291 | 36.5 292 | 33.5 293 | 36.5 294 | 33.5 295 | 36.5 296 | 33.5 297 | 36.5 298 | 84.1 299 | 93.6 300 | 100.1 301 | 103.1 302 | 90.6 303 | 93.6 304 | 100.8 305 | 104.4 306 | 39.8 307 | 36.5 308 | 33.5 309 | 36.5 310 | 33.5 311 | 36.5 312 | 33.5 313 | 36.5 314 | 33.5 315 | 36.5 316 | 33.5 317 | 36.5 318 | 33.5 319 | 36.5 320 | 33.5 321 | 36.5 322 | 87.8 323 | 95.5 324 | 100.8 325 | 103.8 326 | 89.7 327 | 92.7 328 | 98.9 329 | 102.2 330 | 39.8 331 | 36.5 332 | 33.5 333 | 36.5 334 | 33.5 335 | 36.5 336 | 33.5 337 | 36.5 338 | 33.5 339 | 36.5 340 | 33.5 341 | 36.5 342 | 33.5 343 | 36.5 344 | 33.5 345 | 36.5 346 | 84.4 347 | 93.6 348 | 99.5 349 | 101.6 350 | 88.4 351 | 91.1 352 | 97.6 353 | 100.9 354 | 39.8 355 | 36.5 356 | 33.5 357 | 36.5 358 | 33.5 359 | 36.5 360 | 33.5 361 | 36.5 362 | 33.5 363 | 36.5 364 | 33.5 365 | 36.5 366 | 33.5 367 | 36.5 368 | 33.5 369 | 36.5 370 | 83.4 371 | 91.1 372 | 96.7 373 | 98.8 374 | 86.3 375 | 88.9 376 | 96.7 377 | 99.7 378 | 39.8 379 | 36.5 380 | 33.5 381 | 36.5 382 | 33.5 383 | 36.5 384 | 33.5 385 | 36.5 386 | 33.5 387 | 36.5 388 | 33.5 389 | 36.5 390 | 33.5 391 | 36.5 392 | 33.5 393 | 36.5 394 | 23.5 395 | 26.5 396 | 23.5 397 | 26.5 398 | 23.5 399 | 26.5 400 | 23.5 401 | 26.5 402 | 33.5 403 | 36.5 404 | 33.5 405 | 36.5 406 | 33.5 407 | 36.5 408 | 33.5 409 | 36.5 410 | 33.5 411 | 36.5 412 | 33.5 413 | 36.5 414 | 33.5 415 | 36.5 416 | 33.5 417 | 36.5 418 | 23.5 419 | 26.5 420 | 23.5 421 | 26.5 422 | 23.5 423 | 26.5 424 | 23.5 425 | 26.5 426 | 33.5 427 | 36.5 428 | 33.5 429 | 36.5 430 | 33.5 431 | 36.5 432 | 33.5 433 | 36.5 434 | 33.5 435 | 36.5 436 | 33.5 437 | 36.5 438 | 33.5 439 | 36.5 440 | 33.5 441 | 36.5 442 | 81.3 443 | 89.9 444 | 96.1 445 | 98.4 446 | 86.6 447 | 88.9 448 | 95.8 449 | 99.1 450 | 39.8 451 | 36.5 452 | 33.5 453 | 36.5 454 | 33.5 455 | 36.5 456 | 33.5 457 | 36.5 458 | 33.5 459 | 36.5 460 | 33.5 461 | 36.5 462 | 33.5 463 | 36.5 464 | 33.5 465 | 36.5 466 | 81.9 467 | 90.5 468 | 96.4 469 | 98.8 470 | 86.6 471 | 89.6 472 | 95.8 473 | 99.1 474 | 39.8 475 | 36.5 476 | 33.5 477 | 36.5 478 | 33.5 479 | 36.5 480 | 33.5 481 | 36.5 482 | 33.5 483 | 36.5 484 | 33.5 485 | 36.5 486 | 33.5 487 | 36.5 488 | 33.5 489 | 36.5 490 | 85.0 491 | 93.6 492 | 99.8 493 | 102.2 494 | 88.8 495 | 91.8 496 | 97.9 497 | 100.9 498 | 39.8 499 | 36.5 500 | 33.5 501 | 36.5 502 | 33.5 503 | 36.5 504 | 33.5 505 | 36.5 506 | 33.5 507 | 36.5 508 | 33.5 509 | 36.5 510 | 33.5 511 | 36.5 512 | 33.5 513 | 36.5 514 | 82.5 515 | 92.1 516 | 97.9 517 | 100.6 518 | 87.2 519 | 90.2 520 | 96.4 521 | 99.4 522 | 39.8 523 | 36.5 524 | 33.5 525 | 36.5 526 | 33.5 527 | 36.5 528 | 33.5 529 | 36.5 530 | 33.5 531 | 36.5 532 | 33.5 533 | 36.5 534 | 33.5 535 | 36.5 536 | 33.5 537 | 36.5 538 | 83.4 539 | 92.1 540 | 97.9 541 | 100.3 542 | 87.2 543 | 89.9 544 | 96.4 545 | 99.7 546 | 39.8 547 | 36.5 548 | 33.5 549 | 36.5 550 | 33.5 551 | 36.5 552 | 33.5 553 | 36.5 554 | 33.5 555 | 36.5 556 | 33.5 557 | 36.5 558 | 33.5 559 | 36.5 560 | 33.5 561 | 36.5 562 | 23.5 563 | 26.5 564 | 23.5 565 | 26.5 566 | 23.5 567 | 26.5 568 | 23.5 569 | 26.5 570 | 33.5 571 | 36.5 572 | 33.5 573 | 36.5 574 | 33.5 575 | 36.5 576 | 33.5 577 | 36.5 578 | 33.5 579 | 36.5 580 | 33.5 581 | 36.5 582 | 33.5 583 | 36.5 584 | 33.5 585 | 36.5 586 | 23.5 587 | 26.5 588 | 23.5 589 | 26.5 590 | 23.5 591 | 26.5 592 | 23.5 593 | 26.5 594 | 33.5 595 | 36.5 596 | 33.5 597 | 36.5 598 | 33.5 599 | 36.5 600 | 33.5 601 | 36.5 602 | 33.5 603 | 36.5 604 | 33.5 605 | 36.5 606 | 33.5 607 | 36.5 608 | 33.5 609 | 36.5 610 | 85.0 611 | 94.3 612 | 100.8 613 | 103.8 614 | 91.9 615 | 94.9 616 | 102.0 617 | 104.7 618 | 39.8 619 | 36.5 620 | 33.5 621 | 36.5 622 | 33.5 623 | 36.5 624 | 33.5 625 | 36.5 626 | 33.5 627 | 36.5 628 | 33.5 629 | 36.5 630 | 33.5 631 | 36.5 632 | 33.5 633 | 36.5 634 | 86.3 635 | 94.6 636 | 100.8 637 | 103.1 638 | 90.6 639 | 93.0 640 | 99.5 641 | 102.8 642 | 39.8 643 | 36.5 644 | 33.5 645 | 36.5 646 | 33.5 647 | 36.5 648 | 33.5 649 | 36.5 650 | 33.5 651 | 36.5 652 | 33.5 653 | 36.5 654 | 33.5 655 | 36.5 656 | 33.5 657 | 36.5 658 | 86.6 659 | 94.9 660 | 100.8 661 | 102.8 662 | 90.0 663 | 92.4 664 | 98.3 665 | 101.6 666 | 39.8 667 | 36.5 668 | 33.5 669 | 36.5 670 | 33.5 671 | 36.5 672 | 33.5 673 | 36.5 674 | 33.5 675 | 36.5 676 | 33.5 677 | 36.5 678 | 33.5 679 | 36.5 680 | 33.5 681 | 36.5 682 | 87.2 683 | 94.9 684 | 100.1 685 | 102.5 686 | 90.0 687 | 92.7 688 | 99.2 689 | 102.2 690 | 39.8 691 | 36.5 692 | 33.5 693 | 36.5 694 | 33.5 695 | 36.5 696 | 33.5 697 | 36.5 698 | 33.5 699 | 36.5 700 | 33.5 701 | 36.5 702 | 33.5 703 | 36.5 704 | 33.5 705 | 36.5 706 | 83.4 707 | 92.1 708 | 97.6 709 | 100.6 710 | 87.8 711 | 90.5 712 | 96.7 713 | 100.3 714 | 39.8 715 | 36.5 716 | 33.5 717 | 36.5 718 | 33.5 719 | 36.5 720 | 33.5 721 | 36.5 722 | 33.5 723 | 36.5 724 | 33.5 725 | 36.5 726 | 33.5 727 | 36.5 728 | 33.5 729 | 36.5 730 | 23.5 731 | 26.5 732 | 23.5 733 | 26.5 734 | 23.5 735 | 26.5 736 | 23.5 737 | 26.5 738 | 33.5 739 | 36.5 740 | 33.5 741 | 36.5 742 | 33.5 743 | 36.5 744 | 33.5 745 | 36.5 746 | 33.5 747 | 36.5 748 | 33.5 749 | 36.5 750 | 33.5 751 | 36.5 752 | 33.5 753 | 26.5 754 | 23.5 755 | 26.5 756 | 23.5 757 | 26.5 758 | 23.5 759 | 26.5 760 | 23.5 761 | 26.5 762 | 23.5 763 | 36.5 764 | 33.5 765 | 36.5 766 | 33.5 767 | 36.5 768 | 33.5 769 | 36.5 770 | 33.5 771 | 36.5 772 | 33.5 773 | 36.5 774 | 33.5 775 | 36.5 776 | 33.5 777 | 26.5 778 | 83.4 779 | 92.7 780 | 99.2 781 | 102.8 782 | 90.6 783 | 93.6 784 | 100.8 785 | 103.8 786 | 29.8 787 | 36.5 788 | 33.5 789 | 36.5 790 | 33.5 791 | 36.5 792 | 33.5 793 | 36.5 794 | 33.5 795 | 36.5 796 | 33.5 797 | 36.5 798 | 33.5 799 | 36.5 800 | 33.5 801 | 26.5 802 | 87.5 803 | 96.4 804 | 102.6 805 | 105.0 806 | 91.9 807 | 94.6 808 | 101.1 809 | 104.1 810 | 29.8 811 | 36.5 812 | 33.5 813 | 36.5 814 | 33.5 815 | 36.5 816 | 33.5 817 | 36.5 818 | 33.5 819 | 36.5 820 | 33.5 821 | 36.5 822 | 33.5 823 | 36.5 824 | 33.5 825 | 26.5 826 | 84.4 827 | 92.7 828 | 98.6 829 | 101.3 830 | 88.4 831 | 90.8 832 | 97.0 833 | 99.4 834 | 29.8 835 | 36.5 836 | 33.5 837 | 36.5 838 | 33.5 839 | 36.5 840 | 33.5 841 | 36.5 842 | 33.5 843 | 36.5 844 | 33.5 845 | 36.5 846 | 33.5 847 | 36.5 848 | 33.5 849 | 26.5 850 | 83.8 851 | 93.3 852 | 99.8 853 | 102.8 854 | 90.3 855 | 92.1 856 | 98.6 857 | 102.5 858 | 29.8 859 | 36.5 860 | 33.5 861 | 36.5 862 | 33.5 863 | 36.5 864 | 33.5 865 | 36.5 866 | 33.5 867 | 36.5 868 | 33.5 869 | 36.5 870 | 33.5 871 | 36.5 872 | 33.5 873 | 26.5 874 | 88.4 875 | 97.1 876 | 102.9 877 | 105.6 878 | 92.5 879 | 94.9 880 | 100.4 881 | 103.1 882 | 29.8 883 | 36.5 884 | 33.5 885 | 36.5 886 | 33.5 887 | 36.5 888 | 33.5 889 | 36.5 890 | 33.5 891 | 36.5 892 | 33.5 893 | 36.5 894 | 33.5 895 | 36.5 896 | 33.5 897 | 26.5 898 | 23.5 899 | 26.5 900 | 23.5 901 | 26.5 902 | 23.5 903 | 26.5 904 | 23.5 905 | 26.5 906 | 23.5 907 | 36.5 908 | 33.5 909 | 36.5 910 | 33.5 911 | 36.5 912 | 33.5 913 | 36.5 914 | 33.5 915 | 36.5 916 | 33.5 917 | 36.5 918 | 33.5 919 | 36.5 920 | 33.5 921 | 26.5 922 | 23.5 923 | 26.5 924 | 23.5 925 | 26.5 926 | 23.5 927 | 26.5 928 | 23.5 929 | 26.5 930 | 23.5 931 | 36.5 932 | 33.5 933 | 36.5 934 | 33.5 935 | 36.5 936 | 33.5 937 | 36.5 938 | 33.5 939 | 36.5 940 | 33.5 941 | 36.5 942 | 33.5 943 | 36.5 944 | 33.5 945 | 26.5 946 | 84.4 947 | 93.6 948 | 100.1 949 | 103.1 950 | 90.9 951 | 93.9 952 | 100.4 953 | 103.4 954 | 29.8 955 | 36.5 956 | 33.5 957 | 36.5 958 | 33.5 959 | 36.5 960 | 33.5 961 | 36.5 962 | 33.5 963 | 36.5 964 | 33.5 965 | 36.5 966 | 33.5 967 | 36.5 968 | 33.5 969 | 26.5 970 | 84.4 971 | 93.0 972 | 99.2 973 | 101.9 974 | 88.8 975 | 90.8 976 | 97.0 977 | 100.0 978 | 29.8 979 | 36.5 980 | 33.5 981 | 36.5 982 | 33.5 983 | 36.5 984 | 33.5 985 | 36.5 986 | 33.5 987 | 36.5 988 | 33.5 989 | 36.5 990 | 33.5 991 | 36.5 992 | 33.5 993 | 26.5 994 | 85.6 995 | 94.3 996 | 100.4 997 | 103.1 998 | 90.0 999 | 92.4 1000 | 98.6 1001 | 101.3 1002 | 29.8 1003 | 36.5 1004 | 33.5 1005 | 36.5 1006 | 33.5 1007 | 36.5 1008 | 33.5 1009 | 36.5 1010 | 33.5 1011 | 36.5 1012 | 33.5 1013 | 36.5 1014 | 33.5 1015 | 36.5 1016 | 33.5 1017 | 26.5 1018 | 83.4 1019 | 92.1 1020 | 97.9 1021 | 100.3 1022 | 87.8 1023 | 89.9 1024 | 96.7 1025 | 100.0 1026 | 29.8 1027 | 36.5 1028 | 33.5 1029 | 36.5 1030 | 33.5 1031 | 36.5 1032 | 33.5 1033 | 36.5 1034 | 33.5 1035 | 36.5 1036 | 33.5 1037 | 36.5 1038 | 33.5 1039 | 36.5 1040 | 33.5 1041 | 26.5 1042 | 89.7 1043 | 98.3 1044 | 104.2 1045 | 106.3 1046 | 93.1 1047 | 96.1 1048 | 102.3 1049 | 105.0 1050 | 29.8 1051 | 36.5 1052 | 33.5 1053 | 36.5 1054 | 33.5 1055 | 36.5 1056 | 33.5 1057 | 36.5 1058 | 33.5 1059 | 36.5 1060 | 33.5 1061 | 36.5 1062 | 33.5 1063 | 36.5 1064 | 33.5 1065 | 26.5 1066 | 23.5 1067 | 26.5 1068 | 23.5 1069 | 26.5 1070 | 23.5 1071 | 26.5 1072 | 23.5 1073 | 26.5 1074 | 23.5 1075 | 36.5 1076 | 33.5 1077 | 36.5 1078 | 33.5 1079 | 36.5 1080 | 33.5 1081 | 36.5 1082 | 33.5 1083 | 36.5 1084 | 33.5 1085 | 36.5 1086 | 33.5 1087 | 36.5 1088 | 33.5 1089 | 26.5 1090 | 23.5 1091 | 26.5 1092 | 23.5 1093 | 26.5 1094 | 23.5 1095 | 26.5 1096 | 23.5 1097 | 26.5 1098 | 23.5 1099 | 36.5 1100 | 33.5 1101 | 36.5 1102 | 33.5 1103 | 36.5 1104 | 33.5 1105 | 36.5 1106 | 33.5 1107 | 36.5 1108 | 33.5 1109 | 36.5 1110 | 33.5 1111 | 36.5 1112 | 33.5 1113 | 26.5 1114 | 90.9 1115 | 98.9 1116 | 104.5 1117 | 106.6 1118 | 93.1 1119 | 95.8 1120 | 102.3 1121 | 105.3 1122 | 29.8 1123 | 36.5 1124 | 33.5 1125 | 36.5 1126 | 33.5 1127 | 36.5 1128 | 33.5 1129 | 36.5 1130 | 33.5 1131 | 36.5 1132 | 33.5 1133 | 36.5 1134 | 33.5 1135 | 36.5 1136 | 33.5 1137 | 26.5 1138 | 88.4 1139 | 97.1 1140 | 103.3 1141 | 105.6 1142 | 92.2 1143 | 94.3 1144 | 100.4 1145 | 103.1 1146 | 29.8 1147 | 36.5 1148 | 33.5 1149 | 36.5 1150 | 33.5 1151 | 36.5 1152 | 33.5 1153 | 36.5 1154 | 33.5 1155 | 36.5 1156 | 33.5 1157 | 36.5 1158 | 33.5 1159 | 36.5 1160 | 33.5 1161 | 26.5 1162 | 86.9 1163 | 95.5 1164 | 100.8 1165 | 103.1 1166 | 90.0 1167 | 92.7 1168 | 99.2 1169 | 102.5 1170 | 29.8 1171 | 36.5 1172 | 33.5 1173 | 36.5 1174 | 33.5 1175 | 36.5 1176 | 33.5 1177 | 36.5 1178 | 33.5 1179 | 36.5 1180 | 33.5 1181 | 36.5 1182 | 33.5 1183 | 36.5 1184 | 33.5 1185 | 26.5 1186 | 88.1 1187 | 96.8 1188 | 102.3 1189 | 105.0 1190 | 92.2 1191 | 95.5 1192 | 102.0 1193 | 105.3 1194 | 29.8 1195 | 36.5 1196 | 33.5 1197 | 36.5 1198 | 33.5 1199 | 36.5 1200 | 33.5 1201 | 36.5 1202 | 33.5 1203 | 36.5 1204 | 33.5 1205 | 36.5 1206 | 33.5 1207 | 36.5 1208 | 33.5 1209 | 26.5 1210 | 91.6 1211 | 100.2 1212 | 105.8 1213 | 107.5 1214 | 94.1 1215 | 96.4 1216 | 102.3 1217 | 105.6 1218 | 29.8 1219 | 36.5 1220 | 33.5 1221 | 36.5 1222 | 33.5 1223 | 36.5 1224 | 33.5 1225 | 36.5 1226 | 33.5 1227 | 36.5 1228 | 33.5 1229 | 36.5 1230 | 33.5 1231 | 36.5 1232 | 33.5 1233 | 26.5 1234 | 23.5 1235 | 26.5 1236 | 23.5 1237 | 26.5 1238 | 23.5 1239 | 26.5 1240 | 23.5 1241 | 26.5 1242 | 23.5 1243 | 36.5 1244 | 33.5 1245 | 36.5 1246 | 33.5 1247 | 36.5 1248 | 33.5 1249 | 36.5 1250 | 33.5 1251 | 36.5 1252 | 33.5 1253 | 36.5 1254 | 33.5 1255 | 36.5 1256 | 33.5 1257 | 26.5 1258 | 23.5 1259 | 26.5 1260 | 23.5 1261 | 26.5 1262 | 23.5 1263 | 26.5 1264 | 23.5 1265 | 26.5 1266 | 23.5 1267 | 36.5 1268 | 33.5 1269 | 36.5 1270 | 33.5 1271 | 36.5 1272 | 33.5 1273 | 36.5 1274 | 33.5 1275 | 36.5 1276 | 33.5 1277 | 36.5 1278 | 33.5 1279 | 36.5 1280 | 33.5 1281 | 26.5 1282 | 85.9 1283 | 95.5 1284 | 102.0 1285 | 104.4 1286 | 91.9 1287 | 94.6 1288 | 101.1 1289 | 104.7 1290 | 29.8 1291 | 36.5 1292 | 33.5 1293 | 36.5 1294 | 33.5 1295 | 36.5 1296 | 33.5 1297 | 36.5 1298 | 33.5 1299 | 36.5 1300 | 33.5 1301 | 36.5 1302 | 33.5 1303 | 36.5 1304 | 33.5 1305 | 26.5 1306 | 89.7 1307 | 98.3 1308 | 104.5 1309 | 106.6 1310 | 93.4 1311 | 96.1 1312 | 102.3 1313 | 105.0 1314 | 29.8 1315 | 36.5 1316 | 33.5 1317 | 36.5 1318 | 33.5 1319 | 36.5 1320 | 33.5 1321 | 36.5 1322 | 33.5 1323 | 36.5 1324 | 33.5 1325 | 36.5 1326 | 33.5 1327 | 36.5 1328 | 33.5 1329 | 26.5 1330 | 84.7 1331 | 92.4 1332 | 98.3 1333 | 100.9 1334 | 88.1 1335 | 90.8 1336 | 97.3 1337 | 100.3 1338 | 29.8 1339 | 36.5 1340 | 33.5 1341 | 36.5 1342 | 33.5 1343 | 36.5 1344 | 33.5 1345 | 36.5 1346 | 33.5 1347 | 36.5 1348 | 33.5 1349 | 36.5 1350 | 33.5 1351 | 36.5 1352 | 33.5 1353 | 26.5 1354 | 86.6 1355 | 95.5 1356 | 101.7 1357 | 104.4 1358 | 91.6 1359 | 94.6 1360 | 100.8 1361 | 103.4 1362 | 29.8 1363 | 36.5 1364 | 33.5 1365 | 36.5 1366 | 33.5 1367 | 36.5 1368 | 33.5 1369 | 36.5 1370 | 33.5 1371 | 36.5 1372 | 33.5 1373 | 36.5 1374 | 33.5 1375 | 36.5 1376 | 33.5 1377 | 26.5 1378 | 86.6 1379 | 95.2 1380 | 101.4 1381 | 103.4 1382 | 90.6 1383 | 93.0 1384 | 99.2 1385 | 102.5 1386 | 29.8 1387 | 36.5 1388 | 33.5 1389 | 36.5 1390 | 33.5 1391 | 36.5 1392 | 33.5 1393 | 36.5 1394 | 33.5 1395 | 36.5 1396 | 33.5 1397 | 36.5 1398 | 33.5 1399 | 36.5 1400 | 33.5 1401 | 26.5 1402 | 23.5 1403 | 26.5 1404 | 23.5 1405 | 26.5 1406 | 23.5 1407 | 26.5 1408 | 23.5 1409 | 26.5 1410 | 23.5 1411 | 36.5 1412 | 33.5 1413 | 36.5 1414 | 33.5 1415 | 36.5 1416 | 33.5 1417 | 36.5 1418 | 33.5 1419 | 36.5 1420 | 33.5 1421 | 36.5 1422 | 33.5 1423 | 36.5 1424 | 23.5 1425 | 26.5 1426 | 23.5 1427 | 26.5 1428 | 23.5 1429 | 26.5 1430 | 23.5 1431 | 26.5 1432 | 23.5 1433 | 26.5 1434 | 23.5 1435 | 36.5 1436 | 33.5 1437 | 36.5 1438 | 33.5 1439 | 36.5 1440 | 33.5 1441 | 36.5 1442 | 33.5 1443 | 36.5 1444 | 33.5 1445 | 36.5 1446 | 33.5 1447 | 36.5 1448 | 23.5 1449 | 26.5 1450 | 82.2 1451 | 91.4 1452 | 97.6 1453 | 100.3 1454 | 87.5 1455 | 90.2 1456 | 96.7 1457 | 99.7 1458 | 29.8 1459 | 36.5 1460 | 33.5 1461 | 36.5 1462 | 33.5 1463 | 36.5 1464 | 33.5 1465 | 36.5 1466 | 33.5 1467 | 36.5 1468 | 33.5 1469 | 36.5 1470 | 33.5 1471 | 36.5 1472 | 23.5 1473 | 26.5 1474 | 85.0 1475 | 93.6 1476 | 99.5 1477 | 102.2 1478 | 89.4 1479 | 92.4 1480 | 98.6 1481 | 102.2 1482 | 29.8 1483 | 36.5 1484 | 33.5 1485 | 36.5 1486 | 33.5 1487 | 36.5 1488 | 33.5 1489 | 36.5 1490 | 33.5 1491 | 36.5 1492 | 33.5 1493 | 36.5 1494 | 33.5 1495 | 36.5 1496 | 23.5 1497 | 26.5 1498 | 81.6 1499 | 90.5 1500 | 96.7 1501 | 99.4 1502 | 86.3 1503 | 91.5 1504 | 98.0 1505 | 101.0 1506 | 32.3 1507 | 39.1 1508 | 36.1 1509 | 36.5 1510 | 33.5 1511 | 36.5 1512 | 36.1 1513 | 39.1 1514 | 33.5 1515 | 36.5 1516 | 33.5 1517 | 36.5 1518 | 33.5 1519 | 36.5 1520 | 23.5 1521 | 26.5 1522 | 83.4 1523 | 93.3 1524 | 100.1 1525 | 103.8 1526 | 91.3 1527 | 95.5 1528 | 101.4 1529 | 104.4 1530 | 29.8 1531 | 36.5 1532 | 33.5 1533 | 36.5 1534 | 33.5 1535 | 36.5 1536 | 33.5 1537 | 36.5 1538 | 33.5 1539 | 36.5 1540 | 33.5 1541 | 36.5 1542 | 33.5 1543 | 36.5 1544 | 23.5 1545 | 26.5 1546 | 87.8 1547 | 95.8 1548 | 102.3 1549 | 104.1 1550 | 91.3 1551 | 94.6 1552 | 100.4 1553 | 103.1 1554 | 29.8 1555 | 36.5 1556 | 33.5 1557 | 36.5 1558 | 33.5 1559 | 36.5 1560 | 33.5 1561 | 36.5 1562 | 33.5 1563 | 36.5 1564 | 33.5 1565 | 36.5 1566 | 33.5 1567 | 36.5 1568 | 23.5 1569 | 26.5 1570 | 23.5 1571 | 26.5 1572 | 23.5 1573 | 26.5 1574 | 23.5 1575 | 26.5 1576 | 23.5 1577 | 26.5 1578 | 23.5 1579 | 36.5 1580 | 33.5 1581 | 36.5 1582 | 33.5 1583 | 36.5 1584 | 33.5 1585 | 36.5 1586 | 33.5 1587 | 36.5 1588 | 33.5 1589 | 36.5 1590 | 33.5 1591 | 36.5 1592 | 23.5 1593 | 26.5 1594 | 23.5 1595 | 26.5 1596 | 23.5 1597 | 26.5 1598 | 23.5 1599 | 26.5 1600 | 23.5 1601 | 26.5 1602 | 23.5 1603 | 36.5 1604 | 33.5 1605 | 36.5 1606 | 33.5 1607 | 36.5 1608 | 33.5 1609 | 36.5 1610 | 33.5 1611 | 36.5 1612 | 33.5 1613 | 36.5 1614 | 33.5 1615 | 36.5 1616 | 23.5 1617 | 26.5 1618 | 79.1 1619 | 88.0 1620 | 95.9 1621 | 98.2 1622 | 85.5 1623 | 88.2 1624 | 94.7 1625 | 97.4 1626 | 32.5 1627 | 39.1 1628 | 33.5 1629 | 36.5 1630 | 33.5 1631 | 36.5 1632 | 33.5 1633 | 36.5 1634 | 33.5 1635 | 36.5 1636 | 33.5 1637 | 36.5 1638 | 33.5 1639 | 36.5 1640 | 23.5 1641 | 26.5 1642 | 79.1 1643 | 89.6 1644 | 95.6 1645 | 98.4 1646 | 85.7 1647 | 88.7 1648 | 95.3 1649 | 99.4 1650 | 32.7 1651 | 39.4 1652 | 36.4 1653 | 39.3 1654 | 36.3 1655 | 39.4 1656 | 36.3 1657 | 39.4 1658 | 36.3 1659 | 39.4 1660 | 36.4 1661 | 39.4 1662 | 36.3 1663 | 39.3 1664 | 26.2 1665 | 29.4 1666 | 80.2 1667 | 88.3 1668 | 94.4 1669 | 97.5 1670 | 86.1 1671 | 88.2 1672 | 94.1 1673 | 95.3 1674 | 32.8 1675 | 39.4 1676 | 36.5 1677 | 39.3 1678 | 36.3 1679 | 39.2 1680 | 33.5 1681 | 36.5 1682 | 33.5 1683 | 36.5 1684 | 33.5 1685 | 36.5 1686 | 33.5 1687 | 36.5 1688 | 23.5 1689 | 26.5 1690 | 79.4 1691 | 88.0 1692 | 94.2 1693 | 96.9 1694 | 84.1 1695 | 86.8 1696 | 93.3 1697 | 96.3 1698 | 29.8 1699 | 36.5 1700 | 33.5 1701 | 36.5 1702 | 33.5 1703 | 36.5 1704 | 33.5 1705 | 36.5 1706 | 33.5 1707 | 36.5 1708 | 33.5 1709 | 36.5 1710 | 33.5 1711 | 36.5 1712 | 23.5 1713 | 26.5 1714 | 81.3 1715 | 89.9 1716 | 96.1 1717 | 99.1 1718 | 86.6 1719 | 89.3 1720 | 95.8 1721 | 98.8 1722 | 29.8 1723 | 36.5 1724 | 33.5 1725 | 36.5 1726 | 33.5 1727 | 36.5 1728 | 33.5 1729 | 36.5 1730 | 33.5 1731 | 36.5 1732 | 33.5 1733 | 36.5 1734 | 33.5 1735 | 36.5 1736 | 23.5 1737 | 29.3 1738 | 26.3 1739 | 29.4 1740 | 26.4 1741 | 29.4 1742 | 26.6 1743 | 29.6 1744 | 26.6 1745 | 29.6 1746 | 26.6 1747 | 39.5 1748 | 36.5 1749 | 39.4 1750 | 36.4 1751 | 39.4 1752 | 36.3 1753 | 39.3 1754 | 36.3 1755 | 39.3 1756 | 36.2 1757 | 39.1 1758 | 33.5 1759 | 36.5 1760 | 23.5 1761 | 26.5 1762 | 23.5 1763 | 26.5 1764 | 23.5 1765 | 26.5 1766 | 23.5 1767 | 26.5 1768 | 23.5 1769 | 26.5 1770 | 23.5 1771 | 36.5 1772 | 33.5 1773 | 36.5 1774 | 33.5 1775 | 36.5 1776 | 33.5 1777 | 36.5 1778 | 33.5 1779 | 36.5 1780 | 33.5 1781 | 36.5 1782 | 33.5 1783 | 36.5 1784 | 23.5 1785 | 26.5 1786 | 80.6 1787 | 89.6 1788 | 94.8 1789 | 97.2 1790 | 86.3 1791 | 89.0 1792 | 95.3 1793 | 97.8 1794 | 32.5 1795 | 39.2 1796 | 36.2 1797 | 39.1 1798 | 36.2 1799 | 39.2 1800 | 36.2 1801 | 39.1 1802 | 36.2 1803 | 39.3 1804 | 36.3 1805 | 39.2 1806 | 36.2 1807 | 39.3 1808 | 26.3 1809 | 29.3 1810 | 80.6 1811 | 88.0 1812 | 95.0 1813 | 96.6 1814 | 84.0 1815 | 87.2 1816 | 94.3 1817 | 98.5 1818 | 29.8 1819 | 36.5 1820 | 33.5 1821 | 36.5 1822 | 33.5 1823 | 36.5 1824 | 33.5 1825 | 36.5 1826 | 33.5 1827 | 36.5 1828 | 33.5 1829 | 36.5 1830 | 33.5 1831 | 36.5 1832 | 23.5 1833 | 26.5 1834 | 83.1 1835 | 91.8 1836 | 97.6 1837 | 100.3 1838 | 87.5 1839 | 88.9 1840 | 96.1 1841 | 99.1 1842 | 29.8 1843 | 36.5 1844 | 33.5 1845 | 36.5 1846 | 33.5 1847 | 36.5 1848 | 33.5 1849 | 36.5 1850 | 33.5 1851 | 36.5 1852 | 33.5 1853 | 36.5 1854 | 33.5 1855 | 36.5 1856 | 23.5 1857 | 26.5 1858 | 82.8 1859 | 91.4 1860 | 97.3 1861 | 99.4 1862 | 86.6 1863 | 89.3 1864 | 95.1 1865 | 97.8 1866 | 29.8 1867 | 36.5 1868 | 33.5 1869 | 36.5 1870 | 33.5 1871 | 36.5 1872 | 33.5 1873 | 36.5 1874 | 33.5 1875 | 36.5 1876 | 33.5 1877 | 36.5 1878 | 33.5 1879 | 36.5 1880 | 23.5 1881 | 26.5 1882 | 81.6 1883 | 90.8 1884 | 97.0 1885 | 100.3 1886 | 88.4 1887 | 91.8 1888 | 97.9 1889 | 101.6 1890 | 29.8 1891 | 36.5 1892 | 33.5 1893 | 36.5 1894 | 33.5 1895 | 36.5 1896 | 33.5 1897 | 36.5 1898 | 33.5 1899 | 36.5 1900 | 33.5 1901 | 36.5 1902 | 33.5 1903 | 36.5 1904 | 23.5 1905 | 26.5 1906 | 23.5 1907 | 26.5 1908 | 23.5 1909 | 26.5 1910 | 23.5 1911 | 26.5 1912 | 26.1 1913 | 29.1 1914 | 26.2 1915 | 39.1 1916 | 36.1 1917 | 39.2 1918 | 36.3 1919 | 39.3 1920 | 36.1 1921 | 36.5 1922 | 33.5 1923 | 36.5 1924 | 33.5 1925 | 36.5 1926 | 33.5 1927 | 36.5 1928 | 23.5 1929 | 26.5 1930 | 23.5 1931 | 26.5 1932 | 23.5 1933 | 26.5 1934 | 23.5 1935 | 26.5 1936 | 23.5 1937 | 26.5 1938 | 23.5 1939 | 36.5 1940 | 33.5 1941 | 36.5 1942 | 33.5 1943 | 36.5 1944 | 33.5 1945 | 36.5 1946 | 33.5 1947 | 36.5 1948 | 33.5 1949 | 36.5 1950 | 33.5 1951 | 36.5 1952 | 23.5 1953 | 26.5 1954 | 83.8 1955 | 91.8 1956 | 97.9 1957 | 100.0 1958 | 86.9 1959 | 89.6 1960 | 96.4 1961 | 99.7 1962 | 29.8 1963 | 36.5 1964 | 33.5 1965 | 36.5 1966 | 33.5 1967 | 36.5 1968 | 33.5 1969 | 36.5 1970 | 33.5 1971 | 36.5 1972 | 33.5 1973 | 36.5 1974 | 33.5 1975 | 36.5 1976 | 23.5 1977 | 26.5 1978 | 83.1 1979 | 91.4 1980 | 97.0 1981 | 99.4 1982 | 86.3 1983 | 88.6 1984 | 94.5 1985 | 97.5 1986 | 29.8 1987 | 36.5 1988 | 33.5 1989 | 36.5 1990 | 33.5 1991 | 36.5 1992 | 33.5 1993 | 36.5 1994 | 33.5 1995 | 36.5 1996 | 33.5 1997 | 36.5 1998 | 33.5 1999 | 36.5 2000 | 23.5 2001 | 26.5 2002 | 80.0 2003 | 88.6 2004 | 93.9 2005 | 97.5 2006 | 85.0 2007 | 88.9 2008 | 96.1 2009 | 99.1 2010 | 29.8 2011 | 36.5 2012 | 33.5 2013 | 36.5 2014 | 33.5 2015 | 36.5 2016 | 36.1 2017 | 39.1 2018 | 36.1 2019 | 39.1 2020 | 36.1 2021 | 39.1 2022 | 36.1 2023 | 39.2 2024 | 26.2 2025 | 29.2 2026 | 81.6 2027 | 90.8 2028 | 96.8 2029 | 100.1 2030 | 87.1 2031 | 90.6 2032 | 97.1 2033 | 99.8 2034 | 34.8 2035 | 41.6 2036 | 39.3 2037 | 42.3 2038 | 38.6 2039 | 41.3 2040 | 36.5 2041 | 39.4 2042 | 36.4 2043 | 39.3 2044 | 36.3 2045 | 39.2 2046 | 36.1 2047 | 36.5 2048 | 23.5 2049 | 26.5 2050 | 80.0 2051 | 91.2 2052 | 97.7 2053 | 99.9 2054 | 87.2 2055 | 90.2 2056 | 96.7 2057 | 99.4 2058 | 29.8 2059 | 36.5 2060 | 33.5 2061 | 36.5 2062 | 33.5 2063 | 36.5 2064 | 33.5 2065 | 36.5 2066 | 33.5 2067 | 36.5 2068 | 33.5 2069 | 36.5 2070 | 33.5 2071 | 36.5 2072 | 23.5 2073 | 26.5 2074 | 23.5 2075 | 26.5 2076 | 23.5 2077 | 26.5 2078 | 23.5 2079 | 26.5 2080 | 23.5 2081 | 26.5 2082 | 23.5 2083 | 36.5 2084 | 33.5 2085 | 36.5 2086 | 33.5 2087 | 36.5 2088 | 33.5 2089 | 36.5 2090 | 33.5 2091 | 36.5 2092 | 33.5 2093 | 36.5 2094 | 33.5 2095 | 36.5 2096 | 23.5 2097 | 26.5 2098 | 23.5 2099 | 26.5 2100 | 23.5 2101 | 26.5 2102 | 23.5 2103 | 26.5 2104 | 23.5 2105 | 26.5 2106 | 23.5 2107 | 36.5 2108 | 33.5 2109 | 36.5 2110 | 33.5 2111 | 36.5 2112 | 33.5 2113 | 36.5 2114 | 33.5 2115 | 36.5 2116 | 33.5 2117 | 36.5 2118 | 33.5 2119 | 36.5 2120 | 23.5 2121 | 26.5 2122 | 80.9 2123 | 89.6 2124 | 94.8 2125 | 98.9 2126 | 85.0 2127 | 87.9 2128 | 95.0 2129 | 97.9 2130 | 32.4 2131 | 39.1 2132 | 36.1 2133 | 36.5 2134 | 36.1 2135 | 36.5 2136 | 33.5 2137 | 39.1 2138 | 33.5 2139 | 36.5 2140 | 33.5 2141 | 36.5 2142 | 33.5 2143 | 36.5 2144 | 23.5 2145 | 26.5 2146 | 78.8 2147 | 87.7 2148 | 94.2 2149 | 97.5 2150 | 85.3 2151 | 89.3 2152 | 96.4 2153 | 99.4 2154 | 29.8 2155 | 36.5 2156 | 33.5 2157 | 36.5 2158 | 33.5 2159 | 36.5 2160 | 33.5 2161 | 36.5 2162 | 33.5 2163 | 36.5 2164 | 33.5 2165 | 36.5 2166 | 33.5 2167 | 36.5 2168 | 23.5 2169 | 26.5 2170 | 80.6 2171 | 88.9 2172 | 94.5 2173 | 96.6 2174 | 84.1 2175 | 86.4 2176 | 92.9 2177 | 97.6 2178 | 32.3 2179 | 26.5 2180 | 33.5 2181 | 36.5 2182 | 33.5 2183 | 36.5 2184 | 33.5 2185 | 36.5 2186 | 33.5 2187 | 36.5 2188 | 33.5 2189 | 36.5 2190 | 33.5 2191 | 36.5 2192 | 23.5 2193 | 26.5 2194 | 79.3 2195 | 86.8 2196 | 92.4 2197 | 94.6 2198 | 81.9 2199 | 86.6 2200 | 93.1 2201 | 96.1 2202 | 34.6 2203 | 29.6 2204 | 36.6 2205 | 39.5 2206 | 36.4 2207 | 39.4 2208 | 36.6 2209 | 39.6 2210 | 36.6 2211 | 39.6 2212 | 36.6 2213 | 39.6 2214 | 38.4 2215 | 41.4 2216 | 28.5 2217 | 31.7 2218 | 78.4 2219 | 88.5 2220 | 94.8 2221 | 98.1 2222 | 85.7 2223 | 88.1 2224 | 94.4 2225 | 97.3 2226 | 35.5 2227 | 32.3 2228 | 39.2 2229 | 42.2 2230 | 39.2 2231 | 42.2 2232 | 39.3 2233 | 42.2 2234 | 39.3 2235 | 42.1 2236 | 39.0 2237 | 42.2 2238 | 38.5 2239 | 39.5 2240 | 26.3 2241 | 29.3 2242 | 26.2 2243 | 29.2 2244 | 26.2 2245 | 29.1 2246 | 26.1 2247 | 29.1 2248 | 26.1 2249 | 29.1 2250 | 23.5 2251 | 26.5 2252 | 33.5 2253 | 36.5 2254 | 33.5 2255 | 36.5 2256 | 33.5 2257 | 36.5 2258 | 33.5 2259 | 36.5 2260 | 33.5 2261 | 36.5 2262 | 33.5 2263 | 36.5 2264 | 23.5 2265 | 26.5 2266 | 23.5 2267 | 29.2 2268 | 26.3 2269 | 29.5 2270 | 26.4 2271 | 29.4 2272 | 26.4 2273 | 29.4 2274 | 26.4 2275 | 29.4 2276 | 36.3 2277 | 39.3 2278 | 36.4 2279 | 39.3 2280 | 36.3 2281 | 39.2 2282 | 36.1 2283 | 39.1 2284 | 36.1 2285 | 39.1 2286 | 36.1 2287 | 39.1 2288 | 23.5 2289 | 29.3 2290 | 80.0 2291 | 87.8 2292 | 94.6 2293 | 96.7 2294 | 83.6 2295 | 87.2 2296 | 94.0 2297 | 97.0 2298 | 34.6 2299 | 31.4 2300 | 38.3 2301 | 41.4 2302 | 38.5 2303 | 41.5 2304 | 38.4 2305 | 41.4 2306 | 38.3 2307 | 39.6 2308 | 38.3 2309 | 41.3 2310 | 38.3 2311 | 41.4 2312 | 28.5 2313 | 31.6 2314 | 79.8 2315 | 89.2 2316 | 96.0 2317 | 98.1 2318 | 85.3 2319 | 88.3 2320 | 95.6 2321 | 98.4 2322 | 32.7 2323 | 29.5 2324 | 36.4 2325 | 39.4 2326 | 36.3 2327 | 39.3 2328 | 36.3 2329 | 39.3 2330 | 36.2 2331 | 39.2 2332 | 36.1 2333 | 39.1 2334 | 36.1 2335 | 39.1 2336 | 26.1 2337 | 26.5 2338 | 79.1 2339 | 90.6 2340 | 97.1 2341 | 99.7 2342 | 87.6 2343 | 90.6 2344 | 96.7 2345 | 97.2 2346 | 29.8 2347 | 26.5 2348 | 33.5 2349 | 36.5 2350 | 33.5 2351 | 36.5 2352 | 33.5 2353 | 36.5 2354 | 33.5 2355 | 36.5 2356 | 33.5 2357 | 36.5 2358 | 33.5 2359 | 36.5 2360 | 23.5 2361 | 26.5 2362 | 80.6 2363 | 89.9 2364 | 95.8 2365 | 98.4 2366 | 86.3 2367 | 88.9 2368 | 97.7 2369 | 100.7 2370 | 32.3 2371 | 29.1 2372 | 36.1 2373 | 39.1 2374 | 36.1 2375 | 39.1 2376 | 36.1 2377 | 39.1 2378 | 36.1 2379 | 39.1 2380 | 33.5 2381 | 36.5 2382 | 36.1 2383 | 39.1 2384 | 26.2 2385 | 29.2 2386 | 82.1 2387 | 90.8 2388 | 97.1 2389 | 99.9 2390 | 87.1 2391 | 90.4 2392 | 96.4 2393 | 99.4 2394 | 34.9 2395 | 31.7 2396 | 38.7 2397 | 41.7 2398 | 38.7 2399 | 41.6 2400 | 38.5 2401 | 41.4 2402 | 36.6 2403 | 39.6 2404 | 36.5 2405 | 39.4 2406 | 36.3 2407 | 39.3 2408 | 26.5 2409 | 29.5 2410 | 26.5 2411 | 29.4 2412 | 26.4 2413 | 29.4 2414 | 26.4 2415 | 29.4 2416 | 26.3 2417 | 29.3 2418 | 26.3 2419 | 29.3 2420 | 36.1 2421 | 39.1 2422 | 36.1 2423 | 36.5 2424 | 33.5 2425 | 36.5 2426 | 33.5 2427 | 36.5 2428 | 33.5 2429 | 36.5 2430 | 33.5 2431 | 36.5 2432 | 23.5 2433 | 29.1 2434 | 26.3 2435 | 29.3 2436 | 26.4 2437 | 29.4 2438 | 26.5 2439 | 29.6 2440 | 26.6 2441 | 29.6 2442 | 26.6 2443 | 29.6 2444 | 36.4 2445 | 39.4 2446 | 36.5 2447 | 39.4 2448 | 36.3 2449 | 39.3 2450 | 36.3 2451 | 39.2 2452 | 36.2 2453 | 39.2 2454 | 36.2 2455 | 39.2 2456 | 26.3 2457 | 29.4 2458 | 78.3 2459 | 85.8 2460 | 93.1 2461 | 97.2 2462 | 83.9 2463 | 87.0 2464 | 93.6 2465 | 96.6 2466 | 35.1 2467 | 31.8 2468 | 38.8 2469 | 41.8 2470 | 38.7 2471 | 41.6 2472 | 38.8 2473 | 41.8 2474 | 38.9 2475 | 41.9 2476 | 38.8 2477 | 42.0 2478 | 39.1 2479 | 42.0 2480 | 29.1 2481 | 31.5 2482 | 79.9 2483 | 88.7 2484 | 94.9 2485 | 97.3 2486 | 82.5 2487 | 86.6 2488 | 93.1 2489 | 94.4 2490 | 32.9 2491 | 29.6 2492 | 36.6 2493 | 39.6 2494 | 36.6 2495 | 39.6 2496 | 36.6 2497 | 39.6 2498 | 36.4 2499 | 39.3 2500 | 36.2 2501 | 39.1 2502 | 36.1 2503 | 39.1 2504 | 26.1 2505 | 29.2 2506 | 76.6 2507 | 84.9 2508 | 91.2 2509 | 94.2 2510 | 81.8 2511 | 84.8 2512 | 91.3 2513 | 94.3 2514 | 32.8 2515 | 29.5 2516 | 36.4 2517 | 39.4 2518 | 36.4 2519 | 39.3 2520 | 36.3 2521 | 39.3 2522 | 36.2 2523 | 39.2 2524 | 36.1 2525 | 36.5 2526 | 33.5 2527 | 39.1 2528 | 26.1 2529 | 29.2 2530 | 77.4 2531 | 86.4 2532 | 93.4 2533 | 96.1 2534 | 83.9 2535 | 86.9 2536 | 93.1 2537 | 96.1 2538 | 32.5 2539 | 29.4 2540 | 36.4 2541 | 39.4 2542 | 36.5 2543 | 41.3 2544 | 38.3 2545 | 41.4 2546 | 38.4 2547 | 41.4 2548 | 38.5 2549 | 41.5 2550 | 38.5 2551 | 41.6 2552 | 28.6 2553 | 31.7 2554 | 80.3 2555 | 88.9 2556 | 94.4 2557 | 97.5 2558 | 84.5 2559 | 87.6 2560 | 94.1 2561 | 97.2 2562 | 35.6 2563 | 32.4 2564 | 39.4 2565 | 42.3 2566 | 39.2 2567 | 42.1 2568 | 39.0 2569 | 41.7 2570 | 38.7 2571 | 41.5 2572 | 38.5 2573 | 41.5 2574 | 38.3 2575 | 41.4 2576 | 28.8 2577 | 31.9 2578 | 29.0 2579 | 32.0 2580 | 29.0 2581 | 31.9 2582 | 29.0 2583 | 32.2 2584 | 29.2 2585 | 32.2 2586 | 29.1 2587 | 32.1 2588 | 39.0 2589 | 41.8 2590 | 38.4 2591 | 39.6 2592 | 36.5 2593 | 39.4 2594 | 36.3 2595 | 39.3 2596 | 36.2 2597 | 39.1 2598 | 36.1 2599 | 39.2 2600 | 26.3 2601 | 29.3 2602 | 26.4 2603 | 29.4 2604 | 26.6 2605 | 29.6 2606 | 26.4 2607 | 29.4 2608 | 26.3 2609 | 29.3 2610 | 26.3 2611 | 29.3 2612 | 36.2 2613 | 39.2 2614 | 36.3 2615 | 39.3 2616 | 36.3 2617 | 39.3 2618 | 36.4 2619 | 39.4 2620 | 36.5 2621 | 39.6 2622 | 36.6 2623 | 39.6 2624 | 26.6 2625 | 31.3 2626 | 81.2 2627 | 89.8 2628 | 96.1 2629 | 99.6 2630 | 86.4 2631 | 89.4 2632 | 96.1 2633 | 99.2 2634 | 35.3 2635 | 32.0 2636 | 38.9 2637 | 41.7 2638 | 38.5 2639 | 41.6 2640 | 38.7 2641 | 41.5 2642 | 38.7 2643 | 41.7 2644 | 38.8 2645 | 41.8 2646 | 38.8 2647 | 41.8 2648 | 28.9 2649 | 31.9 2650 | 79.5 2651 | 87.4 2652 | 93.2 2653 | 96.1 2654 | 83.6 2655 | 84.9 2656 | 91.4 2657 | 94.4 2658 | 32.8 2659 | 29.4 2660 | 36.4 2661 | 39.4 2662 | 36.4 2663 | 39.4 2664 | 36.4 2665 | 39.3 2666 | 36.3 2667 | 39.3 2668 | 36.3 2669 | 39.3 2670 | 36.2 2671 | 39.3 2672 | 26.4 2673 | 29.6 2674 | 77.9 2675 | 86.6 2676 | 93.2 2677 | 96.2 2678 | 83.7 2679 | 86.8 2680 | 93.2 2681 | 98.7 2682 | 34.6 2683 | 31.3 2684 | 36.6 2685 | 39.6 2686 | 36.4 2687 | 39.3 2688 | 36.2 2689 | 39.1 2690 | 33.5 2691 | 36.5 2692 | 33.5 2693 | 36.5 2694 | 33.5 2695 | 36.5 2696 | 23.5 2697 | 26.5 2698 | 78.1 2699 | 87.1 2700 | 93.6 2701 | 98.5 2702 | 85.4 2703 | 89.0 2704 | 95.8 2705 | 96.3 2706 | 32.3 2707 | 26.5 2708 | 33.5 2709 | 36.5 2710 | 33.5 2711 | 36.5 2712 | 33.5 2713 | 36.5 2714 | 33.5 2715 | 36.5 2716 | 33.5 2717 | 36.5 2718 | 33.5 2719 | 36.5 2720 | 23.5 2721 | 26.5 2722 | 78.8 2723 | 88.0 2724 | 93.9 2725 | 96.6 2726 | 83.1 2727 | 87.7 2728 | 94.2 2729 | 95.3 2730 | 29.8 2731 | 26.5 2732 | 33.5 2733 | 36.5 2734 | 33.5 2735 | 36.5 2736 | 33.5 2737 | 36.5 2738 | 33.5 2739 | 36.5 2740 | 33.5 2741 | 36.5 2742 | 33.5 2743 | 36.5 2744 | 23.5 2745 | 26.5 2746 | 23.5 2747 | 26.5 2748 | 26.1 2749 | 29.2 2750 | 26.3 2751 | 29.3 2752 | 26.3 2753 | 29.4 2754 | 26.4 2755 | 29.3 2756 | 36.3 2757 | 39.2 2758 | 36.4 2759 | 39.1 2760 | 36.1 2761 | 39.1 2762 | 36.1 2763 | 36.5 2764 | 33.5 2765 | 36.5 2766 | 33.5 2767 | 39.1 2768 | 26.2 2769 | 29.2 2770 | 26.3 2771 | 29.3 2772 | 26.3 2773 | 29.5 2774 | 26.4 2775 | 29.4 2776 | 26.4 2777 | 29.4 2778 | 26.4 2779 | 29.4 2780 | 36.3 2781 | 39.3 2782 | 36.3 2783 | 39.2 2784 | 36.2 2785 | 39.1 2786 | 36.1 2787 | 39.1 2788 | 36.1 2789 | 39.1 2790 | 36.1 2791 | 39.2 2792 | 26.2 2793 | 29.3 2794 | 78.8 2795 | 86.6 2796 | 93.6 2797 | 95.2 2798 | 83.0 2799 | 85.5 2800 | 92.3 2801 | 95.5 2802 | 32.8 2803 | 29.5 2804 | 36.4 2805 | 39.4 2806 | 36.4 2807 | 39.4 2808 | 36.4 2809 | 39.4 2810 | 36.4 2811 | 39.4 2812 | 36.4 2813 | 39.3 2814 | 36.3 2815 | 39.4 2816 | 26.5 2817 | 29.5 2818 | 77.7 2819 | 86.1 2820 | 92.0 2821 | 96.1 2822 | 83.6 2823 | 86.6 2824 | 93.2 2825 | 96.2 2826 | 34.7 2827 | 31.5 2828 | 38.4 2829 | 41.4 2830 | 38.4 2831 | 41.3 2832 | 38.3 2833 | 39.6 2834 | 36.6 2835 | 39.6 2836 | 36.6 2837 | 39.6 2838 | 36.6 2839 | 39.6 2840 | 28.4 2841 | 31.5 2842 | 77.7 2843 | 87.0 2844 | 93.4 2845 | 96.5 2846 | 84.0 2847 | 87.0 2848 | 93.6 2849 | 96.5 2850 | 35.0 2851 | 31.8 2852 | 38.7 2853 | 41.4 2854 | 36.6 2855 | 39.6 2856 | 36.6 2857 | 39.5 2858 | 36.4 2859 | 39.3 2860 | 36.4 2861 | 39.3 2862 | 36.3 2863 | 39.3 2864 | 26.5 2865 | 29.6 2866 | 79.8 2867 | 88.1 2868 | 94.4 2869 | 97.1 2870 | 84.5 2871 | 85.8 2872 | 94.0 2873 | 96.2 2874 | 32.9 2875 | 29.6 2876 | 36.5 2877 | 39.4 2878 | 36.5 2879 | 39.4 2880 | 36.4 2881 | 39.4 2882 | 36.4 2883 | 39.4 2884 | 36.4 2885 | 39.4 2886 | 36.4 2887 | 39.4 2888 | 26.4 2889 | 29.6 2890 | 78.7 2891 | 87.9 2892 | 94.8 2893 | 97.5 2894 | 86.1 2895 | 88.7 2896 | 95.6 2897 | 97.4 2898 | 32.8 2899 | 29.4 2900 | 26.4 2901 | 39.4 2902 | 36.4 2903 | 39.4 2904 | 36.3 2905 | 39.3 2906 | 36.3 2907 | 39.4 2908 | 36.4 2909 | 39.3 2910 | 36.3 2911 | 39.4 2912 | 26.5 2913 | 31.3 2914 | 28.4 2915 | 31.4 2916 | 28.5 2917 | 31.7 2918 | 28.7 2919 | 31.7 2920 | 28.4 2921 | 31.3 2922 | 26.6 2923 | 29.5 2924 | 26.4 2925 | 39.4 2926 | 36.4 2927 | 39.4 2928 | 36.4 2929 | 39.4 2930 | 36.4 2931 | 39.3 2932 | 36.3 2933 | 39.3 2934 | 36.3 2935 | 39.4 2936 | 26.5 2937 | 31.3 2938 | 28.4 2939 | 31.7 2940 | 28.9 2941 | 31.8 2942 | 29.0 2943 | 32.0 2944 | 28.9 2945 | 31.8 2946 | 28.7 2947 | 31.8 2948 | 28.8 2949 | 41.7 2950 | 38.7 2951 | 41.6 2952 | 38.5 2953 | 41.4 2954 | 38.4 2955 | 41.4 2956 | 38.3 2957 | 41.3 2958 | 38.3 2959 | 41.5 2960 | 28.6 2961 | 31.9 2962 | 78.1 2963 | 87.5 2964 | 94.1 2965 | 96.9 2966 | 84.5 2967 | 87.5 2968 | 93.9 2969 | 97.0 2970 | 35.5 2971 | 32.3 2972 | 29.2 2973 | 42.2 2974 | 39.1 2975 | 42.0 2976 | 39.0 2977 | 42.0 2978 | 39.0 2979 | 42.0 2980 | 38.9 2981 | 41.9 2982 | 38.8 2983 | 41.9 2984 | 29.2 2985 | 32.4 2986 | 78.5 2987 | 88.0 2988 | 94.5 2989 | 97.7 2990 | 85.0 2991 | 88.0 2992 | 94.6 2993 | 97.4 2994 | 35.8 2995 | 32.5 2996 | 29.5 2997 | 42.5 2998 | 39.5 2999 | 42.4 3000 | 39.5 3001 | 42.2 3002 | 39.0 3003 | 41.9 3004 | 38.9 3005 | 41.6 3006 | 38.6 3007 | 41.6 3008 | 28.7 3009 | 31.7 3010 | 77.7 3011 | 86.9 3012 | 93.5 3013 | 96.5 3014 | 84.0 3015 | 87.2 3016 | 93.3 3017 | 96.4 3018 | 35.2 3019 | 31.8 3020 | 28.6 3021 | 41.5 3022 | 38.6 3023 | 41.5 3024 | 38.5 3025 | 41.5 3026 | 38.5 3027 | 41.5 3028 | 38.5 3029 | 41.4 3030 | 38.4 3031 | 41.6 3032 | 28.8 3033 | 31.8 3034 | 78.0 3035 | 87.2 3036 | 93.9 3037 | 96.8 3038 | 84.4 3039 | 87.2 3040 | 93.7 3041 | 96.6 3042 | 35.1 3043 | 31.9 3044 | 29.0 3045 | 41.9 3046 | 38.8 3047 | 41.7 3048 | 38.7 3049 | 41.7 3050 | 38.7 3051 | 41.8 3052 | 38.8 3053 | 41.7 3054 | 38.5 3055 | 41.6 3056 | 28.9 3057 | 32.2 3058 | 78.5 3059 | 87.9 3060 | 94.5 3061 | 97.4 3062 | 85.0 3063 | 88.0 3064 | 94.5 3065 | 97.4 3066 | 35.8 3067 | 32.5 3068 | 29.2 3069 | 42.2 3070 | 39.2 3071 | 42.1 3072 | 39.1 3073 | 42.1 3074 | 39.1 3075 | 42.1 3076 | 39.2 3077 | 42.3 3078 | 39.3 3079 | 42.2 3080 | 29.2 3081 | 32.2 3082 | 29.2 3083 | 32.2 3084 | 29.3 3085 | 32.3 3086 | 29.4 3087 | 32.4 3088 | 29.5 3089 | 32.4 3090 | 29.3 3091 | 32.1 3092 | 29.0 3093 | 42.1 3094 | 39.1 3095 | 42.2 3096 | 39.3 3097 | 42.2 3098 | 39.2 3099 | 42.3 3100 | 39.3 3101 | 42.3 3102 | 39.4 3103 | 42.3 3104 | 29.5 3105 | 32.6 3106 | 29.8 3107 | 33.0 3108 | 30.1 3109 | 33.2 3110 | 30.3 3111 | 33.3 3112 | 30.3 3113 | 33.3 3114 | 30.1 3115 | 33.2 3116 | 30.3 3117 | 43.2 3118 | 40.1 3119 | 43.0 3120 | 40.0 3121 | 43.1 3122 | 40.0 3123 | 43.1 3124 | 40.0 3125 | 43.1 3126 | 40.0 3127 | 43.0 3128 | 30.1 3129 | 33.1 3130 | 79.3 3131 | 88.5 3132 | 95.0 3133 | 98.1 3134 | 85.6 3135 | 88.6 3136 | 95.1 3137 | 98.2 3138 | 36.5 3139 | 33.1 3140 | 29.9 3141 | 42.8 3142 | 39.7 3143 | 42.8 3144 | 39.7 3145 | 42.7 3146 | 39.7 3147 | 42.7 3148 | 39.8 3149 | 42.8 3150 | 39.8 3151 | 42.9 3152 | 29.9 3153 | 33.0 3154 | 79.1 3155 | 88.6 3156 | 95.1 3157 | 98.1 3158 | 85.6 3159 | 88.3 3160 | 94.9 3161 | 97.5 3162 | 36.0 3163 | 32.6 3164 | 29.5 3165 | 42.4 3166 | 39.3 3167 | 42.3 3168 | 38.7 3169 | 41.6 3170 | 38.5 3171 | 39.6 3172 | 36.6 3173 | 39.6 3174 | 36.6 3175 | 39.6 3176 | 26.6 3177 | 31.4 3178 | 77.7 3179 | 86.6 3180 | 93.1 3181 | 96.2 3182 | 83.7 3183 | 87.0 3184 | 93.4 3185 | 96.2 3186 | 34.6 3187 | 29.6 3188 | 26.6 3189 | 39.4 3190 | 36.4 3191 | 39.4 3192 | 36.4 3193 | 39.4 3194 | 36.4 3195 | 39.4 3196 | 36.3 3197 | 39.3 3198 | 36.3 3199 | 39.3 3200 | 26.4 3201 | 29.5 3202 | 76.3 3203 | 84.9 3204 | 91.4 3205 | 96.1 3206 | 83.6 3207 | 86.6 3208 | 93.1 3209 | 96.1 3210 | 34.7 3211 | 31.4 3212 | 28.3 3213 | 39.6 3214 | 36.6 3215 | 39.6 3216 | 36.5 3217 | 39.4 3218 | 36.4 3219 | 39.4 3220 | 36.4 3221 | 39.4 3222 | 36.4 3223 | 39.4 3224 | 26.6 3225 | 31.4 3226 | 77.8 3227 | 86.8 3228 | 93.3 3229 | 96.6 3230 | 84.2 3231 | 87.1 3232 | 93.6 3233 | 96.6 3234 | 35.0 3235 | 31.6 3236 | 28.5 3237 | 41.5 3238 | 38.3 3239 | 39.6 3240 | 38.4 3241 | 41.5 3242 | 38.6 3243 | 41.7 3244 | 38.7 3245 | 41.8 3246 | 38.8 3247 | 41.9 3248 | 29.0 3249 | 32.1 3250 | 29.3 3251 | 32.5 3252 | 29.7 3253 | 32.8 3254 | 29.8 3255 | 32.9 3256 | 30.0 3257 | 32.9 3258 | 29.8 3259 | 32.8 3260 | 29.9 3261 | 42.6 3262 | 39.5 3263 | 42.5 3264 | 39.9 3265 | 42.9 3266 | 39.9 3267 | 43.0 3268 | 39.9 3269 | 42.8 3270 | 39.8 3271 | 42.9 3272 | 30.0 3273 | 33.1 3274 | 30.1 3275 | 33.3 3276 | 30.4 3277 | 33.3 3278 | 30.3 3279 | 33.3 3280 | 30.3 3281 | 33.2 3282 | 30.3 3283 | 33.2 3284 | 30.1 3285 | 43.1 3286 | 40.1 3287 | 43.1 3288 | 40.2 3289 | 43.1 3290 | 40.1 3291 | 43.0 3292 | 40.0 3293 | 42.9 3294 | 40.0 3295 | 43.0 3296 | 30.0 3297 | 32.5 3298 | 78.5 3299 | 87.9 3300 | 94.4 3301 | 97.3 3302 | 84.9 3303 | 87.9 3304 | 94.1 3305 | 97.3 3306 | 35.2 3307 | 31.9 3308 | 29.0 3309 | 42.0 3310 | 38.9 3311 | 41.9 3312 | 38.8 3313 | 41.8 3314 | 38.9 3315 | 41.9 3316 | 38.9 3317 | 42.1 3318 | 39.1 3319 | 42.1 3320 | 29.2 3321 | 32.3 3322 | 79.5 3323 | 87.9 3324 | 94.3 3325 | 97.3 3326 | 85.1 3327 | 88.3 3328 | 95.0 3329 | 98.1 3330 | 36.6 3331 | 33.0 3332 | 29.9 3333 | 43.0 3334 | 40.0 3335 | 43.0 3336 | 39.9 3337 | 42.2 3338 | 38.9 3339 | 41.5 3340 | 38.4 3341 | 41.3 3342 | 38.3 3343 | 41.4 3344 | 28.4 3345 | 31.5 3346 | 78.6 3347 | 87.6 3348 | 94.6 3349 | 97.1 3350 | 84.2 3351 | 87.0 3352 | 92.3 3353 | 96.7 3354 | 32.9 3355 | 29.6 3356 | 26.5 3357 | 39.5 3358 | 36.4 3359 | 39.4 3360 | 36.4 3361 | 39.4 3362 | 36.4 3363 | 39.3 3364 | 36.3 3365 | 39.3 3366 | 36.3 3367 | 39.4 3368 | 26.4 3369 | 29.4 3370 | 77.6 3371 | 86.4 3372 | 92.8 3373 | 95.8 3374 | 83.4 3375 | 88.4 3376 | 95.0 3377 | 98.3 3378 | 34.6 3379 | 31.4 3380 | 28.3 3381 | 39.6 3382 | 38.3 3383 | 41.3 3384 | 38.4 3385 | 41.4 3386 | 38.3 3387 | 41.3 3388 | 38.3 3389 | 41.3 3390 | 36.6 3391 | 41.3 3392 | 28.4 3393 | 31.5 3394 | 77.7 3395 | 87.0 3396 | 93.6 3397 | 96.6 3398 | 84.1 3399 | 87.1 3400 | 93.6 3401 | 96.6 3402 | 35.1 3403 | 31.8 3404 | 28.7 3405 | 41.7 3406 | 38.5 3407 | 39.6 3408 | 36.6 3409 | 39.5 3410 | 36.3 3411 | 39.2 3412 | 36.1 3413 | 39.1 3414 | 36.1 3415 | 39.1 3416 | 26.2 3417 | 29.3 3418 | 26.3 3419 | 29.3 3420 | 26.4 3421 | 29.5 3422 | 26.6 3423 | 29.6 3424 | 28.3 3425 | 31.3 3426 | 28.3 3427 | 31.4 3428 | 26.6 3429 | 39.6 3430 | 38.3 3431 | 41.4 3432 | 38.3 3433 | 39.6 3434 | 36.5 3435 | 39.4 3436 | 36.4 3437 | 39.4 3438 | 36.4 3439 | 41.3 3440 | 28.4 3441 | 31.7 3442 | 28.9 3443 | 32.1 3444 | 29.1 3445 | 32.1 3446 | 29.2 3447 | 32.1 3448 | 29.1 3449 | 32.0 3450 | 29.1 3451 | 32.1 3452 | 29.1 3453 | 42.0 3454 | 39.3 3455 | 42.1 3456 | 39.2 3457 | 42.0 3458 | 38.9 3459 | 41.9 3460 | 39.0 3461 | 41.9 3462 | 39.1 3463 | 42.2 3464 | 29.2 3465 | 32.5 3466 | 78.7 3467 | 88.1 3468 | 94.7 3469 | 97.7 3470 | 85.2 3471 | 88.2 3472 | 94.6 3473 | 97.7 3474 | 36.2 3475 | 32.8 3476 | 29.8 3477 | 42.7 3478 | 39.7 3479 | 42.6 3480 | 39.6 3481 | 42.5 3482 | 39.4 3483 | 42.2 3484 | 39.3 3485 | 42.3 3486 | 39.3 3487 | 42.4 3488 | 29.5 3489 | 32.7 3490 | 78.8 3491 | 88.3 3492 | 94.9 3493 | 98.0 3494 | 85.5 3495 | 88.5 3496 | 95.0 3497 | 97.9 3498 | 36.4 3499 | 33.2 3500 | 30.2 3501 | 43.1 3502 | 39.9 3503 | 42.9 3504 | 39.9 3505 | 42.8 3506 | 39.8 3507 | 42.8 3508 | 39.8 3509 | 42.8 3510 | 39.9 3511 | 42.8 3512 | 30.1 3513 | 33.2 3514 | 79.2 3515 | 88.6 3516 | 95.3 3517 | 98.4 3518 | 85.7 3519 | 88.8 3520 | 95.2 3521 | 98.4 3522 | 36.8 3523 | 33.5 3524 | 30.5 3525 | 43.2 3526 | 40.3 3527 | 43.3 3528 | 40.1 3529 | 43.0 3530 | 40.0 3531 | 43.0 3532 | 40.0 3533 | 42.9 3534 | 39.9 3535 | 43.0 3536 | 30.1 3537 | 33.1 3538 | 79.2 3539 | 88.7 3540 | 95.3 3541 | 98.3 3542 | 85.9 3543 | 88.8 3544 | 95.3 3545 | 98.3 3546 | 36.7 3547 | 33.3 3548 | 29.8 3549 | 42.6 3550 | 39.5 3551 | 42.5 3552 | 39.5 3553 | 42.5 3554 | 39.4 3555 | 42.3 3556 | 39.2 3557 | 42.1 3558 | 39.1 3559 | 42.3 3560 | 29.5 3561 | 32.5 3562 | 78.6 3563 | 87.8 3564 | 94.4 3565 | 97.4 3566 | 85.0 3567 | 88.0 3568 | 94.6 3569 | 97.5 3570 | 35.8 3571 | 32.5 3572 | 29.5 3573 | 42.5 3574 | 39.6 3575 | 42.7 3576 | 39.6 3577 | 42.5 3578 | 39.6 3579 | 42.6 3580 | 39.6 3581 | 42.7 3582 | 39.7 3583 | 42.8 3584 | 30.0 3585 | 33.1 3586 | 30.2 3587 | 33.3 3588 | 30.3 3589 | 33.4 3590 | 30.4 3591 | 33.4 3592 | 30.3 3593 | 33.3 3594 | 30.3 3595 | 33.3 3596 | 30.2 3597 | 43.1 3598 | 40.0 3599 | 42.9 3600 | 39.8 3601 | 42.8 3602 | 39.7 3603 | 42.8 3604 | 39.8 3605 | 42.8 3606 | 39.7 3607 | 42.9 3608 | 29.9 3609 | 33.1 3610 | 30.2 3611 | 33.3 3612 | 30.4 3613 | 33.5 3614 | 30.3 3615 | 33.4 3616 | 30.5 3617 | 33.3 3618 | 30.3 3619 | 33.1 3620 | 30.0 3621 | 42.8 3622 | 39.7 3623 | 42.6 3624 | 39.5 3625 | 42.3 3626 | 39.2 3627 | 42.2 3628 | 39.1 3629 | 42.0 3630 | 39.0 3631 | 32.0 3632 | 28.9 3633 | 32.0 3634 | 77.9 3635 | 87.1 3636 | 93.5 3637 | 96.6 3638 | 84.2 3639 | 87.1 3640 | 93.5 3641 | 96.5 3642 | 35.0 3643 | 31.8 3644 | 28.7 3645 | 31.7 3646 | 28.7 3647 | 41.6 3648 | 38.5 3649 | 41.4 3650 | 38.3 3651 | 39.6 3652 | 36.6 3653 | 39.6 3654 | 38.3 3655 | 31.3 3656 | 28.3 3657 | 31.4 3658 | 77.4 3659 | 86.6 3660 | 93.6 3661 | 96.3 3662 | 83.8 3663 | 87.0 3664 | 93.5 3665 | 96.5 3666 | 34.8 3667 | 31.8 3668 | 28.7 3669 | 31.7 3670 | 28.7 3671 | 41.7 3672 | 38.7 3673 | 41.6 3674 | 38.5 3675 | 41.6 3676 | 38.6 3677 | 41.5 3678 | 38.5 3679 | 31.5 3680 | 28.5 3681 | 31.6 3682 | 77.8 3683 | 87.2 3684 | 93.6 3685 | 98.0 3686 | 84.1 3687 | 87.1 3688 | 93.4 3689 | 96.4 3690 | 35.1 3691 | 31.8 3692 | 28.7 3693 | 31.6 3694 | 28.6 3695 | 41.6 3696 | 38.7 3697 | 41.6 3698 | 38.6 3699 | 41.6 3700 | 38.6 3701 | 41.6 3702 | 38.6 3703 | 31.5 3704 | 28.5 3705 | 31.6 3706 | 77.6 3707 | 86.9 3708 | 93.5 3709 | 96.5 3710 | 84.8 3711 | 87.1 3712 | 93.5 3713 | 96.5 3714 | 34.9 3715 | 31.7 3716 | 28.7 3717 | 31.6 3718 | 28.6 3719 | 41.6 3720 | 38.7 3721 | 41.7 3722 | 38.6 3723 | 41.7 3724 | 38.6 3725 | 41.6 3726 | 38.6 3727 | 31.7 3728 | 28.7 3729 | 31.7 3730 | 77.8 3731 | 87.2 3732 | 93.5 3733 | 96.8 3734 | 84.7 3735 | 87.5 3736 | 97.3 3737 | 100.2 3738 | 35.6 3739 | 32.3 3740 | 29.1 3741 | 32.2 3742 | 29.3 3743 | 42.4 3744 | 39.3 3745 | 42.4 3746 | 39.4 3747 | 42.3 3748 | 39.3 3749 | 42.4 3750 | 39.5 3751 | 32.5 3752 | 29.5 3753 | 32.8 3754 | 29.8 3755 | 32.7 3756 | 29.7 3757 | 32.6 3758 | 29.5 3759 | 32.5 3760 | 29.5 3761 | 32.4 3762 | 29.0 3763 | 31.6 3764 | 28.6 3765 | 31.4 3766 | 28.4 3767 | 42.0 3768 | 39.1 3769 | 42.1 3770 | 38.9 3771 | 41.3 3772 | 36.5 3773 | 39.5 3774 | 36.5 3775 | 31.3 3776 | 28.4 3777 | 31.6 3778 | 28.9 3779 | 32.1 3780 | 29.2 3781 | 32.3 3782 | 29.1 3783 | 32.0 3784 | 29.1 3785 | 32.1 3786 | 29.1 3787 | 32.2 3788 | 29.1 3789 | 32.1 3790 | 28.9 3791 | 41.8 3792 | 39.0 3793 | 42.1 3794 | 39.1 3795 | 42.1 3796 | 39.1 3797 | 42.1 3798 | 39.1 3799 | 32.2 3800 | 29.3 3801 | 32.4 3802 | 79.6 3803 | 90.2 3804 | 101.3 3805 | 105.1 3806 | 94.5 3807 | 98.2 3808 | 106.0 3809 | 107.8 3810 | 36.7 3811 | 33.2 3812 | 30.1 3813 | 33.2 3814 | 30.0 3815 | 43.0 3816 | 39.9 3817 | 43.0 3818 | 39.9 3819 | 42.9 3820 | 39.9 3821 | 42.9 3822 | 39.9 3823 | 32.9 3824 | 29.9 3825 | 33.0 3826 | 83.4 3827 | 94.5 3828 | 103.5 3829 | 108.4 3830 | 95.9 3831 | 100.6 3832 | 107.6 3833 | 109.2 3834 | 36.1 3835 | 32.8 3836 | 29.7 3837 | 32.6 3838 | 29.5 3839 | 42.5 3840 | 39.5 3841 | 42.5 3842 | 39.5 3843 | 42.4 3844 | 39.5 3845 | 42.4 3846 | 39.4 3847 | 32.5 3848 | 29.6 3849 | 32.6 3850 | 85.4 3851 | 94.7 3852 | 103.6 3853 | 106.7 3854 | 96.0 3855 | 99.0 3856 | 104.4 3857 | 109.8 3858 | 36.2 3859 | 32.8 3860 | 29.9 3861 | 32.8 3862 | 29.8 3863 | 42.8 3864 | 39.8 3865 | 42.8 3866 | 39.7 3867 | 42.8 3868 | 39.7 3869 | 42.7 3870 | 39.7 3871 | 32.8 3872 | 30.0 3873 | 33.1 3874 | 87.1 3875 | 100.2 3876 | 108.6 3877 | 113.5 3878 | 100.4 3879 | 106.5 3880 | 113.6 3881 | 116.6 3882 | 38.8 3883 | 35.5 3884 | 32.5 3885 | 35.5 3886 | 32.5 3887 | 43.6 3888 | 40.6 3889 | 43.5 3890 | 40.5 3891 | 43.4 3892 | 40.3 3893 | 43.1 3894 | 40.0 3895 | 33.0 3896 | 30.0 3897 | 32.9 3898 | 89.4 3899 | 99.9 3900 | 106.4 3901 | 110.2 3902 | 99.2 3903 | 102.9 3904 | 108.8 3905 | 113.0 3906 | 38.8 3907 | 35.6 3908 | 32.6 3909 | 35.5 3910 | 30.6 3911 | 43.6 3912 | 40.6 3913 | 45.5 3914 | 40.6 3915 | 43.4 3916 | 40.3 3917 | 43.2 3918 | 40.2 3919 | 33.2 3920 | 30.2 3921 | 32.9 3922 | 30.1 3923 | 33.0 3924 | 30.1 3925 | 33.0 3926 | 30.0 3927 | 32.8 3928 | 29.7 3929 | 32.6 3930 | 29.5 3931 | 32.4 3932 | 29.5 3933 | 32.4 3934 | 29.3 3935 | 42.5 3936 | 39.8 3937 | 42.8 3938 | 39.7 3939 | 42.7 3940 | 39.7 3941 | 42.7 3942 | 39.6 3943 | 32.7 3944 | 29.8 3945 | 32.9 3946 | 29.8 3947 | 33.0 3948 | 29.9 3949 | 33.1 3950 | 30.1 3951 | 33.2 3952 | 30.0 3953 | 33.0 3954 | 30.0 3955 | 33.0 3956 | 29.9 3957 | 32.9 3958 | 29.9 3959 | 42.8 3960 | 39.7 3961 | 42.8 3962 | 39.9 3963 | 42.9 3964 | 39.9 3965 | 42.9 3966 | 40.0 3967 | 33.1 3968 | 30.2 3969 | 33.2 3970 | 83.6 3971 | 94.8 3972 | 105.7 3973 | 110.7 3974 | 98.2 3975 | 100.0 3976 | 105.1 3977 | 105.6 3978 | 36.7 3979 | 33.0 3980 | 29.8 3981 | 32.7 3982 | 29.7 3983 | 42.7 3984 | 39.6 3985 | 42.6 3986 | 39.6 3987 | 42.6 3988 | 39.7 3989 | 42.7 3990 | 39.7 3991 | 32.8 3992 | 29.8 3993 | 32.8 3994 | 81.3 3995 | 90.5 3996 | 99.1 3997 | 102.7 3998 | 90.8 3999 | 94.4 4000 | 101.8 4001 | 104.7 4002 | 36.7 4003 | 33.4 4004 | 30.6 4005 | 33.3 4006 | 29.9 4007 | 42.8 4008 | 39.8 4009 | 42.8 4010 | 39.7 4011 | 42.6 4012 | 39.6 4013 | 42.6 4014 | 39.6 4015 | 32.7 4016 | 29.8 4017 | 32.7 4018 | 86.0 4019 | 95.9 4020 | 102.4 4021 | 106.0 4022 | 93.0 4023 | 94.6 4024 | 99.8 4025 | 102.8 4026 | 35.8 4027 | 32.5 4028 | 29.5 4029 | 32.5 4030 | 29.5 4031 | 42.5 4032 | 39.5 4033 | 42.5 4034 | 39.5 4035 | 42.5 4036 | 39.4 4037 | 42.5 4038 | 39.5 4039 | 32.5 4040 | 29.5 4041 | 32.5 4042 | 79.3 4043 | 89.1 4044 | 96.2 4045 | 100.5 4046 | 88.0 4047 | 89.8 4048 | 95.7 4049 | 98.0 4050 | 36.0 4051 | 32.7 4052 | 29.7 4053 | 32.7 4054 | 29.7 4055 | 42.7 4056 | 39.7 4057 | 42.7 4058 | 39.6 4059 | 42.7 4060 | 39.8 4061 | 42.8 4062 | 39.8 4063 | 32.8 4064 | 29.9 4065 | 33.1 4066 | 85.9 4067 | 99.1 4068 | 106.1 4069 | 109.6 4070 | 96.5 4071 | 101.3 4072 | 107.1 4073 | 110.7 4074 | 36.5 4075 | 33.2 4076 | 30.1 4077 | 33.0 4078 | 30.0 4079 | 43.0 4080 | 39.9 4081 | 42.7 4082 | 39.7 4083 | 42.6 4084 | 39.5 4085 | 42.5 4086 | 39.4 4087 | 32.3 4088 | 29.4 4089 | 32.5 4090 | 29.5 4091 | 32.6 4092 | 29.6 4093 | 32.6 4094 | 29.6 4095 | 32.7 4096 | 29.8 4097 | 32.9 4098 | 29.9 4099 | 33.1 4100 | 30.1 4101 | 33.1 4102 | 30.1 4103 | 43.2 4104 | 40.2 4105 | 43.2 4106 | 40.3 4107 | 43.3 4108 | 40.3 4109 | 43.4 4110 | 40.4 4111 | 33.4 4112 | 30.4 4113 | 33.5 4114 | 30.5 4115 | 35.6 4116 | 30.6 4117 | 33.6 4118 | 30.5 4119 | 33.6 4120 | 30.6 4121 | 35.5 4122 | 30.6 4123 | 33.6 4124 | 30.6 4125 | 33.5 4126 | 30.5 4127 | 43.4 4128 | 40.4 4129 | 43.3 4130 | 40.2 4131 | 43.1 4132 | 40.0 4133 | 42.9 4134 | 39.8 4135 | 32.9 4136 | 29.9 4137 | 32.9 4138 | 88.7 4139 | 99.1 4140 | 105.0 4141 | 110.7 4142 | 99.4 4143 | 102.5 4144 | 109.6 4145 | 112.6 4146 | 36.6 4147 | 33.3 4148 | 30.3 4149 | 33.3 4150 | 30.2 4151 | 43.1 4152 | 40.0 4153 | 43.0 4154 | 40.1 4155 | 43.1 4156 | 40.1 4157 | 43.2 4158 | 40.3 4159 | 33.4 4160 | 32.5 4161 | 35.5 4162 | 93.1 4163 | 104.9 4164 | 113.1 4165 | 114.8 4166 | 102.7 4167 | 106.9 4168 | 112.6 4169 | 117.0 4170 | 39.1 4171 | 35.9 4172 | 32.6 4173 | 35.6 4174 | 30.3 4175 | 43.3 4176 | 40.3 4177 | 43.1 4178 | 39.9 4179 | 42.6 4180 | 39.5 4181 | 42.4 4182 | 39.4 4183 | 32.5 4184 | 29.5 4185 | 32.7 4186 | 86.0 4187 | 96.6 4188 | 104.4 4189 | 107.9 4190 | 96.1 4191 | 100.3 4192 | 106.1 4193 | 109.8 4194 | 36.1 4195 | 32.7 4196 | 29.7 4197 | 32.6 4198 | 29.5 4199 | 42.5 4200 | 39.3 4201 | 42.2 4202 | 39.1 4203 | 42.1 4204 | 39.1 4205 | 42.1 4206 | 39.1 4207 | 32.2 4208 | 29.3 4209 | 32.4 4210 | 85.7 4211 | 97.5 4212 | 104.0 4213 | 108.9 4214 | 95.8 4215 | 97.6 4216 | 104.1 4217 | 106.5 4218 | 35.9 4219 | 32.7 4220 | 29.7 4221 | 32.9 4222 | 29.8 4223 | 42.8 4224 | 39.7 4225 | 42.7 4226 | 39.7 4227 | 42.7 4228 | 39.6 4229 | 42.6 4230 | 39.5 4231 | 32.5 4232 | 29.6 4233 | 32.7 4234 | 84.3 4235 | 94.1 4236 | 100.6 4237 | 104.8 4238 | 93.6 4239 | 97.2 4240 | 103.7 4241 | 105.1 4242 | 36.3 4243 | 32.9 4244 | 29.7 4245 | 32.8 4246 | 29.8 4247 | 42.7 4248 | 39.7 4249 | 42.7 4250 | 39.7 4251 | 42.7 4252 | 39.6 4253 | 42.7 4254 | 39.6 4255 | 32.6 4256 | 29.5 4257 | 32.5 4258 | 29.5 4259 | 32.5 4260 | 29.3 4261 | 32.3 4262 | 29.5 4263 | 32.3 4264 | 29.2 4265 | 32.1 4266 | 29.1 4267 | 32.1 4268 | 29.3 4269 | 32.2 4270 | 29.2 4271 | 42.2 4272 | 39.3 4273 | 42.5 4274 | 39.5 4275 | 42.5 4276 | 39.5 4277 | 42.6 4278 | 39.6 4279 | 32.5 4280 | 29.5 4281 | 32.5 4282 | 29.5 4283 | 32.5 4284 | 29.5 4285 | 32.6 4286 | 29.8 4287 | 32.8 4288 | 29.8 4289 | 32.8 4290 | 29.7 4291 | 32.8 4292 | 29.6 4293 | 32.7 4294 | 29.6 4295 | 42.6 4296 | 39.6 4297 | 42.5 4298 | 39.4 4299 | 42.2 4300 | 39.2 4301 | 42.1 4302 | 39.1 4303 | 32.2 4304 | 29.3 4305 | 32.5 4306 | 82.1 4307 | 93.3 4308 | 99.8 4309 | 104.7 4310 | 92.3 4311 | 95.8 4312 | 101.7 4313 | 105.4 4314 | 36.0 4315 | 32.6 4316 | 29.6 4317 | 32.6 4318 | 29.5 4319 | 42.6 4320 | 39.6 4321 | 42.5 4322 | 39.5 4323 | 42.5 4324 | 39.4 4325 | 42.5 4326 | 39.5 4327 | 32.6 4328 | 29.7 4329 | 32.6 4330 | 86.0 4331 | 97.5 4332 | 105.0 4333 | 108.0 4334 | 96.1 4335 | 98.7 4336 | 104.6 4337 | 105.1 4338 | 36.6 4339 | 33.3 4340 | 30.2 4341 | 33.2 4342 | 30.3 4343 | 43.3 4344 | 40.3 4345 | 43.3 4346 | 40.3 4347 | 43.4 4348 | 40.3 4349 | 43.4 4350 | 40.1 4351 | 32.9 4352 | 30.0 4353 | 33.0 4354 | 84.6 4355 | 94.3 4356 | 103.4 4357 | 107.6 4358 | 96.5 4359 | 98.8 4360 | 107.0 4361 | 109.5 4362 | 36.4 4363 | 33.1 4364 | 29.9 4365 | 32.8 4366 | 29.9 4367 | 42.8 4368 | 39.8 4369 | 42.7 4370 | 39.6 4371 | 42.6 4372 | 39.6 4373 | 42.6 4374 | 39.5 4375 | 32.6 4376 | 29.5 4377 | 32.5 4378 | 85.4 4379 | 95.4 4380 | 103.1 4381 | 106.7 4382 | 94.9 4383 | 96.7 4384 | 101.9 4385 | 104.8 4386 | 36.2 4387 | 32.7 4388 | 29.7 4389 | 32.8 4390 | 29.9 4391 | 42.8 4392 | 39.8 4393 | 42.8 4394 | 39.8 4395 | 42.5 4396 | 39.3 4397 | 42.2 4398 | 39.2 4399 | 32.3 4400 | 29.4 4401 | 32.4 4402 | 83.8 4403 | 94.9 4404 | 102.0 4405 | 107.1 4406 | 95.3 4407 | 98.9 4408 | 104.8 4409 | 107.8 4410 | 36.2 4411 | 32.9 4412 | 29.9 4413 | 32.8 4414 | 29.8 4415 | 42.7 4416 | 39.8 4417 | 42.7 4418 | 39.7 4419 | 42.7 4420 | 39.7 4421 | 42.7 4422 | 39.7 4423 | 32.6 4424 | 29.6 4425 | 32.6 4426 | 29.6 4427 | 32.7 4428 | 29.8 4429 | 32.8 4430 | 29.8 4431 | 32.9 4432 | 29.6 4433 | 32.8 4434 | 29.7 4435 | 32.7 4436 | 29.6 4437 | 32.5 4438 | 29.5 4439 | 42.6 4440 | 39.5 4441 | 42.5 4442 | 39.5 4443 | 42.5 4444 | 39.5 4445 | 42.6 4446 | 39.5 4447 | 32.7 4448 | 29.7 4449 | 32.8 4450 | 29.9 4451 | 33.0 4452 | 30.0 4453 | 33.1 4454 | 30.2 4455 | 33.1 4456 | 30.1 4457 | 33.1 4458 | 30.0 4459 | 33.0 4460 | 30.1 4461 | 33.2 4462 | 30.2 4463 | 43.2 4464 | 40.1 4465 | 43.1 4466 | 40.1 4467 | 43.0 4468 | 40.0 4469 | 43.0 4470 | 40.0 4471 | 33.1 4472 | 30.2 4473 | 33.3 4474 | 87.8 4475 | 98.3 4476 | 105.5 4477 | 107.8 4478 | 95.3 4479 | 99.0 4480 | 104.9 4481 | 106.5 4482 | 36.4 4483 | 33.1 4484 | 30.0 4485 | 33.0 4486 | 30.1 4487 | 43.2 4488 | 40.3 4489 | 43.4 4490 | 40.4 4491 | 43.4 4492 | 40.4 4493 | 43.5 4494 | 40.5 4495 | 33.6 4496 | 32.5 4497 | 35.5 4498 | 91.2 4499 | 102.4 4500 | 109.4 4501 | 114.3 4502 | 99.8 4503 | 104.8 4504 | 110.1 4505 | 113.1 4506 | 38.8 4507 | 33.6 4508 | 30.6 4509 | 33.6 4510 | 30.5 4511 | 43.6 4512 | 40.6 4513 | 43.5 4514 | 40.5 4515 | 43.5 4516 | 40.4 4517 | 43.4 4518 | 40.4 4519 | 33.5 4520 | 30.5 4521 | 33.5 4522 | 89.9 4523 | 99.8 4524 | 110.7 4525 | 113.6 4526 | 101.1 4527 | 105.3 4528 | 111.3 4529 | 109.9 4530 | 36.9 4531 | 35.5 4532 | 30.6 4533 | 33.6 4534 | 30.6 4535 | 45.5 4536 | 40.6 4537 | 43.6 4538 | 40.5 4539 | 43.4 4540 | 40.2 4541 | 42.8 4542 | 39.9 4543 | 32.8 4544 | 29.8 4545 | 32.8 4546 | 80.7 4547 | 91.1 4548 | 100.2 4549 | 102.5 4550 | 91.3 4551 | 96.9 4552 | 103.6 4553 | 105.8 4554 | 36.4 4555 | 33.1 4556 | 30.1 4557 | 33.1 4558 | 30.3 4559 | 43.3 4560 | 40.4 4561 | 43.5 4562 | 40.5 4563 | 43.4 4564 | 40.2 4565 | 43.0 4566 | 40.0 4567 | 32.9 4568 | 29.9 4569 | 32.9 4570 | 86.1 4571 | 96.7 4572 | 103.2 4573 | 108.0 4574 | 96.1 4575 | 100.3 4576 | 106.8 4577 | 109.9 4578 | 36.2 4579 | 32.8 4580 | 29.8 4581 | 32.7 4582 | 29.7 4583 | 42.7 4584 | 39.6 4585 | 42.6 4586 | 39.5 4587 | 42.5 4588 | 39.5 4589 | 42.4 4590 | 39.5 4591 | 32.5 4592 | 29.7 4593 | 32.8 4594 | 29.9 4595 | 32.8 4596 | 29.9 4597 | 32.9 4598 | 29.8 4599 | 32.7 4600 | 29.9 4601 | 32.9 4602 | 29.9 4603 | 32.9 4604 | 29.9 4605 | 33.0 4606 | 30.0 4607 | 43.0 4608 | 39.9 4609 | 42.9 4610 | 39.8 4611 | 42.9 4612 | 39.9 4613 | 42.9 4614 | 39.8 4615 | 32.9 4616 | 29.9 4617 | 32.9 4618 | 30.0 4619 | 33.1 4620 | 30.1 4621 | 33.0 4622 | 30.2 4623 | 33.1 4624 | 30.2 4625 | 33.2 4626 | 30.1 4627 | 33.1 4628 | 30.1 4629 | 33.1 4630 | 30.1 4631 | 43.0 4632 | 39.9 4633 | 42.9 4634 | 39.9 4635 | 42.9 4636 | 39.9 4637 | 42.8 4638 | 39.8 4639 | 33.0 4640 | 30.0 4641 | 33.1 4642 | 87.6 4643 | 99.5 4644 | 106.0 4645 | 110.2 4646 | 97.1 4647 | 100.1 4648 | 106.2 4649 | 108.4 4650 | 35.9 4651 | 32.9 4652 | 30.0 4653 | 32.9 4654 | 29.9 4655 | 42.9 4656 | 39.9 4657 | 42.9 4658 | 40.0 4659 | 43.0 4660 | 39.9 4661 | 43.0 4662 | 40.0 4663 | 33.1 4664 | 30.2 4665 | 33.3 4666 | 85.9 4667 | 95.7 4668 | 102.4 4669 | 105.5 4670 | 94.3 4671 | 95.4 4672 | 103.1 4673 | 109.3 4674 | 36.9 4675 | 33.6 4676 | 32.5 4677 | 35.5 4678 | 32.5 4679 | 45.5 4680 | 40.6 4681 | 43.6 4682 | 40.5 4683 | 43.5 4684 | 40.5 4685 | 43.4 4686 | 40.6 4687 | 33.6 4688 | 32.5 4689 | 33.6 4690 | 88.1 4691 | 99.2 4692 | 106.9 4693 | 104.3 4694 | 94.3 4695 | 97.8 4696 | 105.6 4697 | 108.6 4698 | 36.6 4699 | 33.2 4700 | 30.0 4701 | 32.9 4702 | 29.8 4703 | 42.6 4704 | 39.5 4705 | 42.3 4706 | 39.2 4707 | 42.1 4708 | 38.9 4709 | 41.8 4710 | 38.8 4711 | 31.9 4712 | 29.0 4713 | 32.1 4714 | 81.9 4715 | 92.5 4716 | 100.3 4717 | 104.6 4718 | 93.2 4719 | 96.1 4720 | 103.3 4721 | 106.5 4722 | 35.9 4723 | 32.6 4724 | 29.7 4725 | 32.7 4726 | 29.6 4727 | 42.5 4728 | 39.5 4729 | 42.5 4730 | 39.5 4731 | 42.4 4732 | 39.4 4733 | 42.5 4734 | 39.4 4735 | 32.5 4736 | 29.6 4737 | 32.8 4738 | 83.8 4739 | 94.2 4740 | 103.3 4741 | 106.3 4742 | 94.3 4743 | 96.7 4744 | 103.8 4745 | 106.8 4746 | 36.2 4747 | 32.8 4748 | 29.8 4749 | 32.8 4750 | 29.8 4751 | 42.8 4752 | 39.8 4753 | 42.8 4754 | 39.8 4755 | 42.8 4756 | 39.9 4757 | 42.9 4758 | 39.9 4759 | 32.9 4760 | 30.1 4761 | 33.1 4762 | 30.1 4763 | 33.4 4764 | 30.5 4765 | 33.6 4766 | 32.5 4767 | 35.6 4768 | 32.7 4769 | 35.7 4770 | 32.7 4771 | 35.6 4772 | 32.6 4773 | 35.5 4774 | 32.6 4775 | 45.5 4776 | 40.6 4777 | 43.6 4778 | 40.6 4779 | 43.5 4780 | 40.5 4781 | 43.5 4782 | 40.4 4783 | 33.6 4784 | 30.6 4785 | 35.6 4786 | 32.6 4787 | 35.7 4788 | 32.9 4789 | 36.0 4790 | 32.6 4791 | 35.7 4792 | 32.6 4793 | 35.7 4794 | 32.7 4795 | 35.7 4796 | 32.9 4797 | 35.7 4798 | 32.7 4799 | 45.7 4800 | 42.7 4801 | 45.9 4802 | 42.7 4803 | 45.7 4804 | 42.7 4805 | 45.6 4806 | 40.6 4807 | 33.5 4808 | 30.4 4809 | 33.6 4810 | 94.7 4811 | 107.1 4812 | 114.2 4813 | 118.4 4814 | 106.8 4815 | 109.2 4816 | 116.3 4817 | 118.6 4818 | 38.9 4819 | 35.6 4820 | 32.5 4821 | 33.6 4822 | 32.5 4823 | 43.6 4824 | 40.6 4825 | 43.5 4826 | 40.4 4827 | 43.4 4828 | 40.6 4829 | 43.6 4830 | 40.5 4831 | 33.5 4832 | 30.4 4833 | 33.4 4834 | 92.1 4835 | 101.4 4836 | 108.4 4837 | 110.6 4838 | 98.2 4839 | 104.4 4840 | 111.5 4841 | 112.7 4842 | 36.8 4843 | 33.5 4844 | 30.2 4845 | 33.1 4846 | 30.1 4847 | 43.0 4848 | 39.9 4849 | 42.8 4850 | 39.6 4851 | 42.5 4852 | 39.5 4853 | 42.3 4854 | 39.2 4855 | 32.3 4856 | 29.3 4857 | 32.5 4858 | 86.4 4859 | 97.5 4860 | 105.8 4861 | 109.6 4862 | 97.8 4863 | 100.0 4864 | 105.9 4865 | 109.6 4866 | 36.0 4867 | 32.6 4868 | 29.5 4869 | 32.4 4870 | 29.4 4871 | 42.3 4872 | 39.3 4873 | 42.3 4874 | 39.3 4875 | 42.3 4876 | 39.2 4877 | 42.2 4878 | 39.2 4879 | 32.3 4880 | 29.4 4881 | 32.5 4882 | 86.4 4883 | 97.5 4884 | 105.1 4885 | 108.8 4886 | 96.4 4887 | 100.6 4888 | 105.9 4889 | 109.5 4890 | 35.7 4891 | 32.5 4892 | 29.5 4893 | 32.4 4894 | 29.4 4895 | 42.4 4896 | 39.3 4897 | 42.3 4898 | 39.3 4899 | 42.3 4900 | 39.3 4901 | 42.3 4902 | 39.2 4903 | 32.4 4904 | 29.5 4905 | 32.4 4906 | 86.9 4907 | 96.7 4908 | 105.2 4909 | 108.1 4910 | 97.4 4911 | 98.6 4912 | 108.2 4913 | 110.0 4914 | 35.9 4915 | 32.6 4916 | 29.5 4917 | 32.5 4918 | 29.5 4919 | 42.6 4920 | 39.5 4921 | 42.3 4922 | 39.5 4923 | 42.5 4924 | 39.4 4925 | 42.4 4926 | 39.3 4927 | 32.5 4928 | 29.5 4929 | 32.6 4930 | 29.7 4931 | 32.7 4932 | 29.6 4933 | 32.9 4934 | 29.9 4935 | 32.9 4936 | 29.9 4937 | 32.8 4938 | 29.8 4939 | 32.9 4940 | 29.9 4941 | 32.9 4942 | 30.0 4943 | 43.0 4944 | 39.9 4945 | 42.8 4946 | 39.7 4947 | 42.7 4948 | 39.7 4949 | 42.7 4950 | 39.8 4951 | 32.9 4952 | 29.8 4953 | 33.0 4954 | 30.1 4955 | 33.3 4956 | 30.4 4957 | 33.4 4958 | 30.4 4959 | 33.4 4960 | 30.4 4961 | 33.4 4962 | 30.4 4963 | 33.3 4964 | 30.3 4965 | 33.2 4966 | 30.1 4967 | 42.9 4968 | 39.9 4969 | 43.0 4970 | 40.1 4971 | 43.1 4972 | 40.2 4973 | 43.1 4974 | 40.1 4975 | 33.0 4976 | 30.1 4977 | 33.2 4978 | 87.8 4979 | 98.3 4980 | 107.3 4981 | 109.8 4982 | 97.3 4983 | 99.8 4984 | 107.5 4985 | 109.9 4986 | 36.9 4987 | 33.6 4988 | 30.5 4989 | 33.4 4990 | 30.4 4991 | 43.4 4992 | 40.3 4993 | 43.3 4994 | 40.3 4995 | 43.3 4996 | 40.3 4997 | 43.3 4998 | 40.2 4999 | 33.4 5000 | 30.6 5001 | 33.6 5002 | 90.5 5003 | 102.2 5004 | 109.7 5005 | 113.9 5006 | 101.3 5007 | 105.7 5008 | 111.5 5009 | 113.9 5010 | 36.9 5011 | 35.5 5012 | 32.5 5013 | 35.5 5014 | 32.5 5015 | 45.5 5016 | 42.5 5017 | 43.5 5018 | 40.5 5019 | 43.4 5020 | 40.3 5021 | 43.3 5022 | 40.2 5023 | 33.3 5024 | 30.4 5025 | 33.4 5026 | 93.4 5027 | 105.1 5028 | 112.2 5029 | 116.4 5030 | 103.2 5031 | 106.2 5032 | 113.4 5033 | 115.2 5034 | 38.8 5035 | 33.6 5036 | 32.7 5037 | 35.7 5038 | 32.6 5039 | 45.6 5040 | 42.5 5041 | 45.5 5042 | 42.5 5043 | 43.6 5044 | 40.6 5045 | 45.5 5046 | 40.6 5047 | 35.5 5048 | 32.5 5049 | 33.6 5050 | 91.2 5051 | 101.9 5052 | 110.3 5053 | 115.2 5054 | 101.9 5055 | 103.8 5056 | 110.3 5057 | 110.2 5058 | 38.9 5059 | 35.5 5060 | 32.5 5061 | 33.6 5062 | 30.6 5063 | 43.6 5064 | 40.6 5065 | 43.6 5066 | 40.6 5067 | 43.5 5068 | 40.1 5069 | 42.9 5070 | 39.8 5071 | 32.9 5072 | 29.9 5073 | 33.0 5074 | 89.9 5075 | 101.7 5076 | 109.4 5077 | 112.9 5078 | 101.1 5079 | 104.7 5080 | 110.0 5081 | 113.5 5082 | 36.1 5083 | 32.7 5084 | 29.8 5085 | 32.9 5086 | 29.9 5087 | 42.9 5088 | 39.8 5089 | 42.8 5090 | 39.8 5091 | 42.8 5092 | 39.8 5093 | 42.7 5094 | 39.8 5095 | 32.8 5096 | 30.0 5097 | 33.1 5098 | 30.1 5099 | 33.1 5100 | 30.2 5101 | 33.1 5102 | 29.9 5103 | 32.9 5104 | 30.0 5105 | 32.9 5106 | 30.0 5107 | 33.0 5108 | 29.9 5109 | 42.9 5110 | 39.9 5111 | 42.7 5112 | 39.7 5113 | 42.7 5114 | 39.7 5115 | 42.6 5116 | 39.6 5117 | 42.5 5118 | 39.5 5119 | 32.5 5120 | 29.7 5121 | 32.8 5122 | 29.8 5123 | 32.8 5124 | 29.7 5125 | 32.7 5126 | 29.7 5127 | 32.8 5128 | 30.2 5129 | 33.1 5130 | 30.2 5131 | 32.7 5132 | 29.7 5133 | 42.7 5134 | 39.7 5135 | 42.7 5136 | 39.8 5137 | 42.7 5138 | 39.7 5139 | 42.7 5140 | 39.7 5141 | 42.8 5142 | 39.7 5143 | 32.9 5144 | 30.1 5145 | 33.2 5146 | 90.7 5147 | 100.6 5148 | 109.7 5149 | 111.9 5150 | 101.9 5151 | 104.9 5152 | 111.3 5153 | 114.4 5154 | 36.5 5155 | 33.1 5156 | 30.1 5157 | 43.0 5158 | 40.0 5159 | 43.0 5160 | 40.1 5161 | 43.1 5162 | 40.3 5163 | 43.4 5164 | 40.4 5165 | 42.9 5166 | 40.0 5167 | 32.9 5168 | 30.0 5169 | 33.2 5170 | 88.4 5171 | 99.6 5172 | 107.9 5173 | 112.7 5174 | 100.1 5175 | 104.2 5176 | 111.2 5177 | 114.2 5178 | 36.1 5179 | 32.8 5180 | 29.8 5181 | 42.7 5182 | 39.7 5183 | 42.6 5184 | 39.7 5185 | 42.8 5186 | 39.7 5187 | 42.7 5188 | 39.6 5189 | 42.6 5190 | 39.6 5191 | 32.6 5192 | 29.8 5193 | 32.7 5194 | 89.2 5195 | 98.5 5196 | 106.8 5197 | 111.0 5198 | 99.7 5199 | 102.7 5200 | 109.3 5201 | 111.6 5202 | 36.1 5203 | 32.8 5204 | 29.7 5205 | 42.7 5206 | 39.7 5207 | 42.7 5208 | 39.5 5209 | 42.5 5210 | 39.4 5211 | 42.4 5212 | 39.4 5213 | 42.3 5214 | 39.3 5215 | 32.3 5216 | 29.5 5217 | 32.5 5218 | 85.7 5219 | 95.6 5220 | 104.1 5221 | 107.8 5222 | 96.4 5223 | 99.4 5224 | 106.5 5225 | 108.3 5226 | 35.8 5227 | 32.5 5228 | 29.5 5229 | 42.6 5230 | 39.5 5231 | 42.5 5232 | 39.5 5233 | 42.5 5234 | 39.5 5235 | 42.4 5236 | 39.4 5237 | 42.5 5238 | 39.5 5239 | 32.5 5240 | 29.5 5241 | 32.6 5242 | 86.6 5243 | 97.2 5244 | 104.2 5245 | 107.8 5246 | 96.5 5247 | 98.8 5248 | 105.4 5249 | 106.6 5250 | 36.0 5251 | 32.8 5252 | 29.7 5253 | 42.7 5254 | 39.7 5255 | 42.6 5256 | 39.6 5257 | 42.5 5258 | 39.5 5259 | 42.5 5260 | 39.5 5261 | 42.3 5262 | 39.5 5263 | 32.7 5264 | 29.8 5265 | 32.7 5266 | 29.5 5267 | 32.6 5268 | 29.7 5269 | 32.7 5270 | 29.7 5271 | 32.7 5272 | 29.8 5273 | 32.8 5274 | 29.7 5275 | 32.8 5276 | 29.7 5277 | 42.7 5278 | 39.7 5279 | 42.7 5280 | 39.8 5281 | 42.7 5282 | 39.6 5283 | 42.5 5284 | 39.6 5285 | 42.6 5286 | 39.6 5287 | 32.6 5288 | 29.7 5289 | 32.8 5290 | 29.9 5291 | 32.9 5292 | 29.9 5293 | 32.7 5294 | 29.8 5295 | 32.8 5296 | 29.7 5297 | 32.8 5298 | 29.8 5299 | 32.8 5300 | 29.9 5301 | 42.9 5302 | 39.9 5303 | 42.9 5304 | 39.9 5305 | 42.8 5306 | 39.9 5307 | 42.9 5308 | 39.9 5309 | 42.9 5310 | 39.9 5311 | 33.0 5312 | 29.9 5313 | 33.0 5314 | 85.0 5315 | 95.8 5316 | 103.1 5317 | 107.3 5318 | 94.9 5319 | 97.3 5320 | 103.2 5321 | 105.0 5322 | 36.2 5323 | 33.0 5324 | 29.9 5325 | 42.8 5326 | 39.9 5327 | 42.9 5328 | 40.0 5329 | 43.1 5330 | 40.1 5331 | 43.0 5332 | 39.9 5333 | 43.0 5334 | 40.2 5335 | 33.1 5336 | 30.3 5337 | 33.3 5338 | 83.6 5339 | 92.8 5340 | 100.6 5341 | 104.9 5342 | 93.6 5343 | 96.6 5344 | 106.9 5345 | 108.1 5346 | 36.7 5347 | 33.3 5348 | 30.3 5349 | 43.3 5350 | 40.3 5351 | 43.4 5352 | 40.3 5353 | 43.1 5354 | 40.1 5355 | 43.0 5356 | 39.8 5357 | 42.7 5358 | 39.6 5359 | 32.7 5360 | 29.8 5361 | 32.8 5362 | 86.7 5363 | 97.2 5364 | 105.1 5365 | 110.0 5366 | 97.4 5367 | 100.9 5368 | 108.1 5369 | 110.4 5370 | 36.2 5371 | 32.9 5372 | 29.8 5373 | 42.8 5374 | 39.7 5375 | 42.6 5376 | 39.6 5377 | 42.6 5378 | 39.5 5379 | 42.5 5380 | 39.5 5381 | 42.5 5382 | 39.5 5383 | 32.5 5384 | 29.5 5385 | 32.5 5386 | 85.9 5387 | 96.5 5388 | 104.2 5389 | 108.4 5390 | 96.4 5391 | 99.4 5392 | 105.2 5393 | 108.8 5394 | 35.8 5395 | 32.5 5396 | 29.4 5397 | 42.4 5398 | 39.4 5399 | 42.4 5400 | 39.4 5401 | 42.4 5402 | 39.2 5403 | 42.2 5404 | 39.3 5405 | 42.2 5406 | 39.2 5407 | 32.4 5408 | 29.5 5409 | 32.5 5410 | 87.7 5411 | 99.5 5412 | 106.7 5413 | 110.4 5414 | 99.3 5415 | 101.6 5416 | 109.5 5417 | 112.5 5418 | 36.5 5419 | 33.1 5420 | 30.0 5421 | 43.0 5422 | 39.9 5423 | 42.9 5424 | 39.9 5425 | 42.8 5426 | 39.8 5427 | 42.7 5428 | 39.7 5429 | 42.7 5430 | 39.7 5431 | 32.8 5432 | 30.0 5433 | 33.0 5434 | 30.2 5435 | 33.2 5436 | 30.2 5437 | 33.2 5438 | 30.4 5439 | 33.3 5440 | 30.2 5441 | 33.4 5442 | 30.5 5443 | 33.2 5444 | 30.2 5445 | 43.2 5446 | 40.4 5447 | 43.2 5448 | 40.2 5449 | 43.2 5450 | 40.1 5451 | 43.0 5452 | 40.0 5453 | 42.9 5454 | 39.9 5455 | 32.9 5456 | 30.0 5457 | 33.1 5458 | 30.4 5459 | 33.4 5460 | 30.5 5461 | 33.5 5462 | 30.6 5463 | 33.6 5464 | 30.5 5465 | 33.4 5466 | 30.5 5467 | 33.5 5468 | 30.5 5469 | 43.4 5470 | 40.5 5471 | 43.3 5472 | 40.3 5473 | 43.3 5474 | 40.2 5475 | 43.2 5476 | 40.1 5477 | 43.0 5478 | 40.0 5479 | 33.0 5480 | 30.2 5481 | 33.3 5482 | 91.5 5483 | 103.3 5484 | 114.2 5485 | 115.9 5486 | 102.7 5487 | 107.5 5488 | 113.9 5489 | 117.6 5490 | 36.7 5491 | 33.5 5492 | 30.5 5493 | 43.3 5494 | 40.4 5495 | 43.4 5496 | 40.3 5497 | 43.3 5498 | 40.2 5499 | 43.2 5500 | 40.2 5501 | 43.3 5502 | 40.3 5503 | 33.3 5504 | 30.3 5505 | 33.5 5506 | 89.9 5507 | 102.2 5508 | 109.2 5509 | 112.8 5510 | 101.0 5511 | 103.4 5512 | 109.9 5513 | 114.2 5514 | 38.9 5515 | 35.5 5516 | 30.6 5517 | 43.5 5518 | 40.5 5519 | 43.5 5520 | 40.5 5521 | 43.6 5522 | 40.5 5523 | 43.5 5524 | 40.5 5525 | 43.6 5526 | 40.6 5527 | 33.6 5528 | 32.5 5529 | 35.5 5530 | 91.9 5531 | 102.4 5532 | 108.9 5533 | 113.1 5534 | 99.9 5535 | 101.7 5536 | 106.9 5537 | 109.9 5538 | 38.8 5539 | 35.5 5540 | 32.5 5541 | 45.5 5542 | 42.5 5543 | 43.6 5544 | 40.6 5545 | 45.5 5546 | 42.5 5547 | 43.6 5548 | 40.6 5549 | 43.6 5550 | 42.5 5551 | 33.6 5552 | 32.5 5553 | 35.5 5554 | 91.9 5555 | 101.2 5556 | 108.9 5557 | 111.9 5558 | 99.4 5559 | 102.4 5560 | 108.8 5561 | 111.2 5562 | 38.8 5563 | 35.5 5564 | 32.5 5565 | 45.6 5566 | 42.6 5567 | 45.5 5568 | 42.5 5569 | 45.5 5570 | 42.5 5571 | 45.6 5572 | 42.6 5573 | 43.5 5574 | 40.4 5575 | 33.3 5576 | 30.0 5577 | 33.0 5578 | 85.7 5579 | 97.5 5580 | 105.1 5581 | 109.3 5582 | 97.4 5583 | 102.3 5584 | 109.4 5585 | 112.3 5586 | 36.3 5587 | 33.0 5588 | 29.9 5589 | 42.8 5590 | 39.7 5591 | 42.5 5592 | 39.5 5593 | 42.5 5594 | 39.5 5595 | 42.5 5596 | 39.5 5597 | 42.4 5598 | 39.4 5599 | 32.3 5600 | 29.4 5601 | 32.5 5602 | 29.5 5603 | 32.7 5604 | 29.6 5605 | 32.8 5606 | 29.7 5607 | 32.7 5608 | 29.8 5609 | 32.8 5610 | 29.7 5611 | 32.5 5612 | 29.5 5613 | 42.4 5614 | 39.5 5615 | 42.4 5616 | 39.4 5617 | 42.4 5618 | 39.5 5619 | 42.4 5620 | 39.5 5621 | 42.5 5622 | 39.6 5623 | 32.6 5624 | 29.9 5625 | 33.0 5626 | 30.1 5627 | 33.1 5628 | 30.2 5629 | 33.2 5630 | 30.2 5631 | 33.3 5632 | 30.3 5633 | 33.3 5634 | 30.3 5635 | 33.2 5636 | 30.3 5637 | 43.3 5638 | 40.3 5639 | 43.3 5640 | 40.2 5641 | 43.3 5642 | 40.3 5643 | 43.2 5644 | 40.2 5645 | 43.2 5646 | 40.3 5647 | 33.3 5648 | 30.1 5649 | 33.2 5650 | 88.0 5651 | 98.0 5652 | 105.7 5653 | 110.0 5654 | 98.2 5655 | 100.7 5656 | 106.5 5657 | 109.5 5658 | 36.5 5659 | 33.1 5660 | 30.2 5661 | 43.1 5662 | 40.1 5663 | 43.1 5664 | 40.1 5665 | 43.1 5666 | 40.2 5667 | 43.2 5668 | 40.3 5669 | 43.3 5670 | 40.2 5671 | 33.2 5672 | 30.3 5673 | 33.4 5674 | 89.6 5675 | 101.7 5676 | 108.2 5677 | 112.1 5678 | 99.7 5679 | 101.6 5680 | 109.2 5681 | 113.5 5682 | 36.2 5683 | 32.9 5684 | 29.7 5685 | 42.6 5686 | 39.5 5687 | 42.5 5688 | 39.3 5689 | 42.3 5690 | 39.2 5691 | 42.2 5692 | 39.2 5693 | 42.3 5694 | 39.3 5695 | 32.3 5696 | 29.4 5697 | 32.4 5698 | 85.7 5699 | 95.7 5700 | 104.0 5701 | 108.3 5702 | 96.4 5703 | 98.1 5704 | 104.0 5705 | 108.2 5706 | 35.8 5707 | 32.6 5708 | 29.5 5709 | 42.5 5710 | 39.5 5711 | 42.5 5712 | 39.5 5713 | 42.4 5714 | 39.4 5715 | 42.4 5716 | 39.4 5717 | 42.3 5718 | 39.2 5719 | 32.3 5720 | 29.5 5721 | 32.5 5722 | 84.6 5723 | 95.7 5724 | 103.5 5725 | 105.8 5726 | 94.6 5727 | 98.2 5728 | 104.1 5729 | 107.1 5730 | 35.7 5731 | 32.5 5732 | 29.5 5733 | 42.4 5734 | 39.4 5735 | 42.4 5736 | 39.3 5737 | 42.3 5738 | 39.3 5739 | 42.2 5740 | 39.1 5741 | 42.1 5742 | 39.0 5743 | 32.1 5744 | 29.2 5745 | 32.4 5746 | 83.8 5747 | 95.0 5748 | 102.7 5749 | 106.3 5750 | 94.5 5751 | 98.1 5752 | 104.7 5753 | 108.3 5754 | 35.8 5755 | 32.5 5756 | 29.5 5757 | 42.5 5758 | 39.4 5759 | 42.4 5760 | 39.5 5761 | 42.3 5762 | 39.6 5763 | 42.3 5764 | 39.1 5765 | 42.2 5766 | 39.2 5767 | 32.3 5768 | 29.5 5769 | 32.5 5770 | 29.6 5771 | 32.7 5772 | 29.7 5773 | 32.8 5774 | 29.8 5775 | 33.1 5776 | 30.0 5777 | 33.0 5778 | 30.0 5779 | 32.9 5780 | 29.9 5781 | 42.8 5782 | 39.8 5783 | 42.8 5784 | 39.8 5785 | 42.7 5786 | 39.7 5787 | 42.7 5788 | 39.6 5789 | 42.7 5790 | 39.6 5791 | 32.6 5792 | 29.8 5793 | 33.0 5794 | 30.2 5795 | 33.2 5796 | 30.4 5797 | 33.4 5798 | 30.4 5799 | 33.6 5800 | 30.5 5801 | 33.5 5802 | 30.6 5803 | 33.3 5804 | 30.3 5805 | 43.4 5806 | 40.4 5807 | 43.3 5808 | 40.3 5809 | 43.3 5810 | 40.3 5811 | 43.2 5812 | 40.2 5813 | 43.2 5814 | 40.3 5815 | 33.2 5816 | 30.3 5817 | 33.4 5818 | 89.1 5819 | 99.7 5820 | 107.4 5821 | 111.7 5822 | 102.2 5823 | 105.1 5824 | 111.6 5825 | 115.2 5826 | 36.8 5827 | 33.4 5828 | 30.4 5829 | 43.4 5830 | 40.4 5831 | 43.5 5832 | 40.5 5833 | 43.4 5834 | 40.5 5835 | 43.5 5836 | 40.4 5837 | 43.4 5838 | 40.2 5839 | 43.2 5840 | 30.3 5841 | 33.3 5842 | 90.3 5843 | 100.1 5844 | 107.2 5845 | 110.1 5846 | 98.9 5847 | 101.9 5848 | 108.5 5849 | 110.3 5850 | 36.6 5851 | 33.3 5852 | 40.3 5853 | 43.3 5854 | 40.3 5855 | 43.2 5856 | 40.2 5857 | 43.2 5858 | 40.1 5859 | 43.0 5860 | 40.1 5861 | 43.0 5862 | 40.1 5863 | 43.1 5864 | 30.4 5865 | 33.5 5866 | 89.3 5867 | 100.4 5868 | 109.3 5869 | 114.8 5870 | 101.8 5871 | 105.3 5872 | 111.8 5873 | 111.7 5874 | 36.9 5875 | 33.6 5876 | 40.5 5877 | 43.5 5878 | 40.5 5879 | 43.6 5880 | 40.5 5881 | 43.5 5882 | 40.4 5883 | 43.2 5884 | 40.2 5885 | 43.2 5886 | 40.1 5887 | 43.1 5888 | 30.2 5889 | 33.3 5890 | 90.9 5891 | 101.3 5892 | 109.6 5893 | 113.9 5894 | 102.6 5895 | 105.6 5896 | 112.0 5897 | 115.0 5898 | 36.7 5899 | 33.4 5900 | 40.4 5901 | 43.4 5902 | 40.5 5903 | 43.4 5904 | 40.4 5905 | 43.3 5906 | 40.3 5907 | 43.3 5908 | 40.3 5909 | 43.2 5910 | 40.2 5911 | 43.2 5912 | 30.3 5913 | 33.4 5914 | 89.8 5915 | 99.1 5916 | 105.6 5917 | 108.6 5918 | 96.2 5919 | 99.1 5920 | 105.4 5921 | 108.0 5922 | 36.7 5923 | 33.3 5924 | 40.1 5925 | 42.9 5926 | 39.9 5927 | 42.9 5928 | 39.9 5929 | 42.8 5930 | 39.8 5931 | 42.7 5932 | 39.7 5933 | 42.7 5934 | 39.6 5935 | 42.6 5936 | 29.6 5937 | 32.7 5938 | 29.6 5939 | 32.6 5940 | 29.5 5941 | 32.5 5942 | 29.4 5943 | 32.8 5944 | 29.9 5945 | 32.8 5946 | 29.9 5947 | 32.8 5948 | 39.7 5949 | 42.6 5950 | 39.6 5951 | 42.6 5952 | 39.5 5953 | 42.5 5954 | 39.5 5955 | 42.5 5956 | 39.5 5957 | 42.4 5958 | 39.3 5959 | 42.2 5960 | 29.5 5961 | 32.7 5962 | 29.8 5963 | 32.7 5964 | 29.8 5965 | 32.8 5966 | 29.7 5967 | 32.8 5968 | 29.8 5969 | 32.7 5970 | 29.7 5971 | 32.5 5972 | 39.6 5973 | 42.7 5974 | 39.6 5975 | 42.6 5976 | 39.6 5977 | 42.6 5978 | 39.8 5979 | 42.8 5980 | 39.7 5981 | 42.6 5982 | 39.7 5983 | 42.7 5984 | 29.9 5985 | 33.0 5986 | 88.7 5987 | 99.8 5988 | 108.7 5989 | 113.0 5990 | 101.2 5991 | 105.5 5992 | 112.7 5993 | 115.1 5994 | 36.7 5995 | 33.3 5996 | 40.3 5997 | 43.2 5998 | 40.2 5999 | 43.2 6000 | 40.1 6001 | 43.0 6002 | 40.0 6003 | 43.0 6004 | 40.0 6005 | 43.1 6006 | 40.1 6007 | 43.1 6008 | 30.2 6009 | 33.4 6010 | 91.0 6011 | 103.3 6012 | 111.1 6013 | 116.5 6014 | 105.2 6015 | 106.9 6016 | 113.5 6017 | 116.5 6018 | 36.8 6019 | 33.4 6020 | 42.6 6021 | 45.5 6022 | 40.5 6023 | 43.4 6024 | 40.3 6025 | 43.3 6026 | 40.4 6027 | 43.3 6028 | 40.4 6029 | 43.4 6030 | 40.5 6031 | 43.5 6032 | 30.6 6033 | 33.6 6034 | 93.1 6035 | 103.0 6036 | 110.7 6037 | 114.3 6038 | 102.4 6039 | 104.3 6040 | 107.6 6041 | 110.7 6042 | 36.9 6043 | 33.6 6044 | 40.6 6045 | 45.6 6046 | 42.5 6047 | 45.5 6048 | 42.5 6049 | 45.5 6050 | 40.3 6051 | 43.3 6052 | 40.3 6053 | 43.4 6054 | 40.4 6055 | 43.3 6056 | 30.1 6057 | 33.3 6058 | 84.2 6059 | 93.5 6060 | 100.0 6061 | 104.9 6062 | 91.8 6063 | 94.7 6064 | 100.0 6065 | 104.3 6066 | 36.8 6067 | 33.4 6068 | 40.4 6069 | 43.3 6070 | 40.3 6071 | 43.1 6072 | 40.0 6073 | 43.0 6074 | 39.9 6075 | 42.9 6076 | 39.9 6077 | 42.8 6078 | 39.6 6079 | 42.6 6080 | 29.6 6081 | 32.7 6082 | 81.7 6083 | 92.2 6084 | 100.0 6085 | 103.6 6086 | 93.8 6087 | 96.7 6088 | 103.8 6089 | 108.6 6090 | 36.3 6091 | 32.9 6092 | 39.9 6093 | 43.0 6094 | 39.9 6095 | 43.1 6096 | 40.1 6097 | 42.9 6098 | 39.9 6099 | 42.8 6100 | 39.8 6101 | 42.7 6102 | 39.6 6103 | 42.7 6104 | 29.9 6105 | 33.1 6106 | 30.2 6107 | 33.1 6108 | 30.1 6109 | 33.1 6110 | 30.1 6111 | 33.1 6112 | 30.1 6113 | 33.1 6114 | 30.1 6115 | 33.2 6116 | 40.3 6117 | 43.2 6118 | 40.2 6119 | 43.1 6120 | 40.2 6121 | 43.2 6122 | 40.2 6123 | 43.1 6124 | 40.0 6125 | 42.8 6126 | 39.8 6127 | 42.7 6128 | 29.7 6129 | 32.7 6130 | 29.8 6131 | 32.7 6132 | 29.8 6133 | 32.7 6134 | 29.7 6135 | 32.5 6136 | 29.6 6137 | 32.7 6138 | 29.5 6139 | 32.4 6140 | 39.1 6141 | 42.1 6142 | 39.1 6143 | 41.9 6144 | 38.8 6145 | 41.7 6146 | 38.6 6147 | 41.6 6148 | 38.5 6149 | 41.5 6150 | 38.5 6151 | 41.5 6152 | 28.7 6153 | 31.8 6154 | 78.6 6155 | 91.0 6156 | 98.8 6157 | 103.0 6158 | 91.8 6159 | 94.8 6160 | 101.3 6161 | 104.3 6162 | 35.4 6163 | 32.1 6164 | 39.0 6165 | 42.0 6166 | 38.9 6167 | 41.8 6168 | 38.9 6169 | 41.9 6170 | 38.8 6171 | 41.8 6172 | 38.7 6173 | 41.7 6174 | 38.8 6175 | 41.7 6176 | 28.9 6177 | 32.1 6178 | 83.1 6179 | 95.0 6180 | 102.7 6181 | 107.6 6182 | 96.4 6183 | 99.3 6184 | 106.5 6185 | 108.7 6186 | 35.7 6187 | 32.5 6188 | 39.5 6189 | 42.5 6190 | 39.5 6191 | 42.4 6192 | 39.4 6193 | 42.3 6194 | 39.3 6195 | 42.2 6196 | 39.2 6197 | 42.2 6198 | 39.2 6199 | 42.1 6200 | 29.5 6201 | 32.5 6202 | 85.9 6203 | 97.7 6204 | 105.4 6205 | 110.3 6206 | 98.4 6207 | 100.9 6208 | 107.4 6209 | 109.8 6210 | 36.2 6211 | 32.8 6212 | 39.9 6213 | 42.7 6214 | 39.7 6215 | 42.6 6216 | 39.6 6217 | 42.5 6218 | 39.5 6219 | 42.5 6220 | 39.5 6221 | 42.4 6222 | 39.4 6223 | 42.3 6224 | 29.6 6225 | 32.8 6226 | 88.0 6227 | 99.7 6228 | 106.7 6229 | 111.6 6230 | 98.4 6231 | 102.1 6232 | 107.4 6233 | 109.2 6234 | 36.2 6235 | 32.8 6236 | 39.7 6237 | 42.6 6238 | 39.6 6239 | 42.5 6240 | 39.5 6241 | 42.4 6242 | 39.3 6243 | 42.2 6244 | 39.3 6245 | 42.2 6246 | 39.3 6247 | 42.3 6248 | 29.6 6249 | 32.7 6250 | 86.0 6251 | 96.6 6252 | 105.4 6253 | 109.1 6254 | 96.6 6255 | 99.5 6256 | 105.5 6257 | 107.8 6258 | 35.9 6259 | 32.6 6260 | 39.8 6261 | 42.7 6262 | 39.8 6263 | 42.8 6264 | 39.7 6265 | 42.7 6266 | 39.6 6267 | 42.6 6268 | 39.6 6269 | 42.7 6270 | 39.7 6271 | 42.6 6272 | 29.7 6273 | 32.8 6274 | 29.8 6275 | 33.1 6276 | 30.1 6277 | 33.1 6278 | 30.1 6279 | 33.1 6280 | 30.3 6281 | 33.3 6282 | 30.3 6283 | 33.3 6284 | 40.3 6285 | 43.3 6286 | 40.3 6287 | 43.1 6288 | 40.1 6289 | 43.1 6290 | 40.1 6291 | 43.1 6292 | 40.1 6293 | 43.1 6294 | 40.0 6295 | 42.5 6296 | 29.4 6297 | 32.3 6298 | 29.2 6299 | 32.3 6300 | 29.5 6301 | 32.5 6302 | 29.5 6303 | 32.5 6304 | 29.4 6305 | 32.1 6306 | 29.0 6307 | 31.9 6308 | 38.8 6309 | 41.8 6310 | 38.8 6311 | 41.8 6312 | 38.7 6313 | 41.6 6314 | 38.6 6315 | 41.5 6316 | 38.5 6317 | 41.4 6318 | 38.4 6319 | 41.4 6320 | 28.5 6321 | 31.6 6322 | 77.8 6323 | 87.7 6324 | 96.2 6325 | 99.2 6326 | 87.3 6327 | 90.9 6328 | 97.8 6329 | 100.1 6330 | 35.0 6331 | 31.8 6332 | 38.9 6333 | 42.0 6334 | 39.1 6335 | 42.0 6336 | 38.9 6337 | 41.8 6338 | 38.8 6339 | 41.8 6340 | 38.7 6341 | 41.5 6342 | 38.5 6343 | 41.7 6344 | 28.8 6345 | 31.9 6346 | 78.0 6347 | 88.6 6348 | 97.0 6349 | 99.4 6350 | 87.6 6351 | 90.6 6352 | 97.8 6353 | 100.8 6354 | 35.6 6355 | 32.3 6356 | 39.5 6357 | 42.5 6358 | 39.4 6359 | 42.2 6360 | 39.1 6361 | 42.1 6362 | 39.1 6363 | 42.0 6364 | 38.9 6365 | 41.9 6366 | 38.8 6367 | 41.7 6368 | 28.8 6369 | 32.0 6370 | 78.0 6371 | 90.2 6372 | 98.1 6373 | 103.7 6374 | 91.1 6375 | 95.2 6376 | 102.3 6377 | 106.0 6378 | 35.6 6379 | 32.4 6380 | 39.4 6381 | 42.5 6382 | 39.3 6383 | 42.2 6384 | 39.3 6385 | 42.2 6386 | 39.1 6387 | 42.0 6388 | 38.5 6389 | 41.4 6390 | 38.4 6391 | 41.5 6392 | 28.9 6393 | 32.1 6394 | 82.0 6395 | 93.8 6396 | 102.2 6397 | 105.8 6398 | 93.8 6399 | 96.8 6400 | 103.4 6401 | 107.1 6402 | 36.0 6403 | 32.5 6404 | 39.6 6405 | 42.6 6406 | 39.5 6407 | 42.6 6408 | 39.5 6409 | 42.5 6410 | 39.5 6411 | 42.4 6412 | 39.3 6413 | 42.1 6414 | 39.3 6415 | 42.2 6416 | 29.2 6417 | 32.2 6418 | 80.7 6419 | 90.6 6420 | 99.1 6421 | 102.7 6422 | 91.5 6423 | 93.2 6424 | 99.1 6425 | 101.4 6426 | 35.7 6427 | 32.5 6428 | 39.4 6429 | 42.3 6430 | 39.3 6431 | 42.3 6432 | 39.3 6433 | 42.2 6434 | 39.2 6435 | 42.1 6436 | 39.1 6437 | 42.0 6438 | 39.0 6439 | 42.0 6440 | 29.1 6441 | 32.2 6442 | 29.2 6443 | 32.2 6444 | 29.2 6445 | 32.2 6446 | 29.3 6447 | 32.1 6448 | 29.0 6449 | 32.3 6450 | 29.2 6451 | 32.2 6452 | 39.1 6453 | 42.0 6454 | 39.0 6455 | 41.9 6456 | 38.8 6457 | 41.9 6458 | 38.8 6459 | 41.8 6460 | 38.8 6461 | 41.7 6462 | 38.8 6463 | 41.5 6464 | 28.5 6465 | 31.7 6466 | 28.8 6467 | 31.9 6468 | 29.0 6469 | 32.2 6470 | 29.3 6471 | 32.3 6472 | 29.4 6473 | 32.4 6474 | 29.4 6475 | 32.5 6476 | 39.5 6477 | 42.5 6478 | 39.5 6479 | 42.5 6480 | 39.5 6481 | 42.5 6482 | 39.5 6483 | 42.5 6484 | 39.5 6485 | 42.5 6486 | 39.5 6487 | 42.6 6488 | 29.6 6489 | 32.6 6490 | 81.2 6491 | 92.3 6492 | 100.8 6493 | 103.7 6494 | 92.6 6495 | 95.1 6496 | 102.8 6497 | 105.8 6498 | 36.5 6499 | 33.1 6500 | 40.1 6501 | 43.1 6502 | 40.1 6503 | 43.1 6504 | 40.1 6505 | 43.1 6506 | 40.1 6507 | 43.2 6508 | 40.3 6509 | 43.3 6510 | 40.2 6511 | 43.2 6512 | 30.3 6513 | 33.3 6514 | 87.3 6515 | 97.2 6516 | 104.3 6517 | 108.1 6518 | 94.8 6519 | 97.2 6520 | 103.1 6521 | 104.2 6522 | 36.6 6523 | 33.3 6524 | 40.3 6525 | 43.3 6526 | 40.5 6527 | 43.5 6528 | 40.3 6529 | 43.3 6530 | 40.5 6531 | 43.6 6532 | 40.4 6533 | 43.5 6534 | 40.6 6535 | 43.6 6536 | 32.5 6537 | 33.6 6538 | 86.9 6539 | 96.1 6540 | 103.8 6541 | 107.3 6542 | 93.5 6543 | 92.4 6544 | 98.7 6545 | 101.7 6546 | 35.8 6547 | 32.5 6548 | 39.5 6549 | 42.3 6550 | 39.1 6551 | 42.0 6552 | 38.9 6553 | 41.8 6554 | 38.6 6555 | 41.5 6556 | 38.5 6557 | 41.4 6558 | 38.3 6559 | 41.3 6560 | 28.3 6561 | 31.4 6562 | 80.0 6563 | 88.9 6564 | 95.1 6565 | 98.0 6566 | 85.0 6567 | 87.8 6568 | 94.0 6569 | 97.9 6570 | 35.1 6571 | 41.7 6572 | 38.7 6573 | 41.7 6574 | 38.7 6575 | 41.6 6576 | 38.6 6577 | 41.5 6578 | 38.4 6579 | 41.4 6580 | 38.3 6581 | 41.3 6582 | 36.6 6583 | 39.6 6584 | 26.6 6585 | 29.6 6586 | 80.0 6587 | 88.9 6588 | 95.8 6589 | 98.4 6590 | 86.3 6591 | 88.9 6592 | 96.0 6593 | 99.0 6594 | 32.8 6595 | 39.5 6596 | 36.5 6597 | 39.5 6598 | 36.5 6599 | 39.5 6600 | 36.5 6601 | 39.6 6602 | 36.5 6603 | 39.5 6604 | 36.6 6605 | 39.5 6606 | 36.6 6607 | 39.5 6608 | 26.6 6609 | 29.6 6610 | 26.6 6611 | 29.6 6612 | 26.6 6613 | 29.6 6614 | 26.6 6615 | 29.6 6616 | 26.6 6617 | 29.6 6618 | 26.6 6619 | 39.6 6620 | 36.6 6621 | 39.6 6622 | 36.6 6623 | 41.3 6624 | 36.6 6625 | 39.6 6626 | 38.3 6627 | 41.3 6628 | 36.6 6629 | 39.6 6630 | 36.6 6631 | 39.6 6632 | 26.6 6633 | 29.6 6634 | 26.6 6635 | 29.6 6636 | 28.3 6637 | 31.4 6638 | 28.5 6639 | 31.5 6640 | 28.5 6641 | 31.5 6642 | 28.5 6643 | 41.5 6644 | 38.5 6645 | 41.4 6646 | 38.3 6647 | 39.6 6648 | 36.6 6649 | 39.5 6650 | 36.5 6651 | 39.5 6652 | 36.5 6653 | 39.6 6654 | 36.6 6655 | 39.6 6656 | 26.6 6657 | 29.6 6658 | 80.2 6659 | 89.1 6660 | 94.4 6661 | 97.2 6662 | 84.3 6663 | 87.2 6664 | 93.6 6665 | 96.8 6666 | 35.0 6667 | 41.6 6668 | 38.5 6669 | 41.4 6670 | 38.3 6671 | 41.4 6672 | 36.6 6673 | 39.6 6674 | 36.6 6675 | 39.6 6676 | 36.6 6677 | 39.6 6678 | 36.6 6679 | 39.6 6680 | 28.4 6681 | 31.6 6682 | 78.3 6683 | 86.9 6684 | 93.5 6685 | 96.5 6686 | 84.0 6687 | 87.3 6688 | 94.0 6689 | 97.0 6690 | 35.5 6691 | 42.3 6692 | 39.2 6693 | 42.2 6694 | 39.1 6695 | 42.0 6696 | 38.9 6697 | 42.0 6698 | 38.8 6699 | 41.7 6700 | 38.8 6701 | 41.7 6702 | 38.6 6703 | 41.6 6704 | 28.8 6705 | 31.9 6706 | 79.1 6707 | 87.4 6708 | 93.8 6709 | 96.9 6710 | 84.5 6711 | 87.5 6712 | 94.1 6713 | 97.0 6714 | 35.4 6715 | 42.1 6716 | 39.1 6717 | 42.0 6718 | 39.1 6719 | 41.9 6720 | 38.9 6721 | 41.8 6722 | 38.8 6723 | 41.7 6724 | 38.8 6725 | 41.9 6726 | 38.7 6727 | 41.7 6728 | 28.9 6729 | 32.0 6730 | 78.1 6731 | 87.3 6732 | 93.8 6733 | 96.8 6734 | 84.3 6735 | 87.3 6736 | 93.9 6737 | 96.9 6738 | 35.4 6739 | 42.1 6740 | 39.2 6741 | 42.2 6742 | 39.2 6743 | 42.2 6744 | 39.2 6745 | 42.1 6746 | 39.2 6747 | 42.3 6748 | 39.3 6749 | 42.3 6750 | 39.3 6751 | 42.3 6752 | 29.3 6753 | 32.4 6754 | 78.4 6755 | 88.0 6756 | 94.6 6757 | 97.6 6758 | 85.3 6759 | 88.4 6760 | 94.8 6761 | 97.8 6762 | 36.1 6763 | 42.6 6764 | 39.6 6765 | 42.6 6766 | 39.5 6767 | 42.4 6768 | 39.0 6769 | 41.9 6770 | 38.7 6771 | 41.3 6772 | 36.6 6773 | 39.5 6774 | 36.4 6775 | 39.3 6776 | 26.4 6777 | 29.5 6778 | 26.6 6779 | 29.6 6780 | 28.3 6781 | 31.3 6782 | 28.3 6783 | 31.4 6784 | 28.4 6785 | 31.4 6786 | 28.3 6787 | 41.4 6788 | 38.3 6789 | 41.3 6790 | 38.3 6791 | 39.6 6792 | 36.6 6793 | 39.4 6794 | 36.5 6795 | 39.5 6796 | 36.4 6797 | 39.4 6798 | 36.4 6799 | 39.4 6800 | 26.5 6801 | 29.6 6802 | 28.4 6803 | 31.6 6804 | 28.7 6805 | 31.7 6806 | 28.9 6807 | 31.9 6808 | 28.9 6809 | 31.9 6810 | 28.8 6811 | 41.7 6812 | 38.7 6813 | 41.6 6814 | 38.6 6815 | 41.5 6816 | 38.5 6817 | 41.5 6818 | 38.3 6819 | 41.3 6820 | 36.6 6821 | 39.6 6822 | 36.6 6823 | 39.6 6824 | 28.3 6825 | 31.6 6826 | 77.9 6827 | 87.4 6828 | 93.9 6829 | 97.0 6830 | 84.5 6831 | 87.4 6832 | 94.1 6833 | 97.2 6834 | 35.6 6835 | 42.2 6836 | 39.2 6837 | 42.1 6838 | 39.0 6839 | 42.0 6840 | 38.7 6841 | 41.9 6842 | 39.0 6843 | 42.1 6844 | 39.0 6845 | 42.1 6846 | 39.2 6847 | 42.2 6848 | 29.3 6849 | 32.3 6850 | 78.5 6851 | 87.9 6852 | 94.3 6853 | 97.3 6854 | 84.7 6855 | 87.8 6856 | 94.3 6857 | 97.3 6858 | 35.7 6859 | 42.5 6860 | 39.5 6861 | 42.4 6862 | 39.1 6863 | 42.1 6864 | 39.0 6865 | 42.0 6866 | 38.9 6867 | 41.9 6868 | 38.8 6869 | 41.6 6870 | 38.6 6871 | 41.5 6872 | 28.6 6873 | 31.7 6874 | 78.9 6875 | 87.4 6876 | 93.7 6877 | 96.7 6878 | 84.2 6879 | 87.1 6880 | 93.6 6881 | 96.5 6882 | 34.9 6883 | 41.7 6884 | 38.7 6885 | 41.7 6886 | 38.6 6887 | 41.6 6888 | 38.5 6889 | 41.4 6890 | 38.3 6891 | 39.6 6892 | 36.6 6893 | 39.6 6894 | 36.5 6895 | 39.4 6896 | 26.5 6897 | 29.6 6898 | 78.1 6899 | 87.1 6900 | 94.4 6901 | 97.1 6902 | 83.7 6903 | 87.1 6904 | 93.5 6905 | 96.5 6906 | 34.6 6907 | 41.3 6908 | 36.6 6909 | 39.6 6910 | 36.6 6911 | 39.6 6912 | 36.5 6913 | 39.5 6914 | 36.6 6915 | 39.6 6916 | 36.5 6917 | 39.5 6918 | 36.6 6919 | 39.6 6920 | 26.6 6921 | 31.3 6922 | 79.5 6923 | 87.9 6924 | 93.9 6925 | 96.2 6926 | 84.2 6927 | 86.6 6928 | 93.4 6929 | 96.7 6930 | 32.9 6931 | 39.6 6932 | 36.6 6933 | 39.6 6934 | 36.5 6935 | 39.4 6936 | 36.4 6937 | 39.4 6938 | 36.3 6939 | 39.3 6940 | 36.3 6941 | 39.3 6942 | 36.3 6943 | 39.3 6944 | 26.3 6945 | 29.4 6946 | 26.3 6947 | 29.3 6948 | 26.3 6949 | 29.3 6950 | 26.2 6951 | 29.3 6952 | 26.1 6953 | 29.1 6954 | 26.1 6955 | 36.5 6956 | 33.5 6957 | 36.5 6958 | 33.5 6959 | 36.5 6960 | 33.5 6961 | 36.5 6962 | 33.5 6963 | 36.5 6964 | 33.5 6965 | 36.5 6966 | 33.5 6967 | 36.5 6968 | 23.5 6969 | 26.5 6970 | 23.5 6971 | 26.5 6972 | 23.5 6973 | 26.5 6974 | 23.5 6975 | 26.5 6976 | 23.5 6977 | 26.5 6978 | 23.5 6979 | 36.5 6980 | 33.5 6981 | 36.5 6982 | 33.5 6983 | 36.5 6984 | 33.5 6985 | 36.5 6986 | 33.5 6987 | 36.5 6988 | 33.5 6989 | 36.5 6990 | 33.5 6991 | 36.5 6992 | 23.5 6993 | 26.5 6994 | 79.4 6995 | 87.7 6996 | 93.9 6997 | 98.5 6998 | 86.0 6999 | 88.1 7000 | 94.6 7001 | 97.6 7002 | 32.3 7003 | 39.1 7004 | 36.1 7005 | 39.1 7006 | 36.1 7007 | 39.1 7008 | 36.1 7009 | 39.1 7010 | 36.1 7011 | 39.1 7012 | 36.1 7013 | 39.2 7014 | 36.2 7015 | 39.2 7016 | 26.2 7017 | 29.3 7018 | 79.1 7019 | 87.5 7020 | 92.6 7021 | 96.1 7022 | 83.8 7023 | 86.8 7024 | 93.4 7025 | 96.4 7026 | 34.8 7027 | 41.6 7028 | 38.5 7029 | 41.5 7030 | 38.4 7031 | 41.4 7032 | 38.3 7033 | 41.3 7034 | 36.6 7035 | 39.6 7036 | 36.6 7037 | 39.4 7038 | 36.6 7039 | 39.5 7040 | 26.6 7041 | 31.4 7042 | 79.2 7043 | 87.0 7044 | 93.6 7045 | 96.7 7046 | 84.4 7047 | 87.3 7048 | 93.9 7049 | 96.8 7050 | 35.3 7051 | 42.1 7052 | 39.1 7053 | 42.1 7054 | 38.9 7055 | 41.9 7056 | 38.5 7057 | 41.6 7058 | 38.5 7059 | 41.3 7060 | 38.4 7061 | 41.3 7062 | 36.6 7063 | 39.6 7064 | 26.6 7065 | 31.5 7066 | 79.3 7067 | 87.1 7068 | 93.8 7069 | 96.9 7070 | 84.5 7071 | 87.5 7072 | 94.0 7073 | 97.0 7074 | 35.5 7075 | 42.3 7076 | 39.2 7077 | 42.2 7078 | 39.1 7079 | 42.1 7080 | 39.1 7081 | 42.0 7082 | 38.7 7083 | 41.5 7084 | 36.6 7085 | 39.6 7086 | 36.4 7087 | 39.4 7088 | 26.4 7089 | 29.5 7090 | 77.9 7091 | 86.6 7092 | 93.1 7093 | 96.0 7094 | 82.9 7095 | 85.9 7096 | 92.4 7097 | 95.7 7098 | 32.6 7099 | 39.3 7100 | 36.3 7101 | 39.2 7102 | 36.1 7103 | 36.5 7104 | 33.5 7105 | 36.5 7106 | 33.5 7107 | 36.5 7108 | 33.5 7109 | 36.5 7110 | 33.5 7111 | 36.5 7112 | 23.5 7113 | 26.5 7114 | 26.1 7115 | 29.4 7116 | 26.4 7117 | 29.4 7118 | 26.5 7119 | 29.6 7120 | 28.3 7121 | 31.3 7122 | 28.3 7123 | 41.3 7124 | 38.3 7125 | 41.3 7126 | 38.4 7127 | 41.4 7128 | 38.5 7129 | 41.5 7130 | 38.6 7131 | 41.6 7132 | 38.7 7133 | 41.6 7134 | 38.7 7135 | 41.7 7136 | 28.7 7137 | 31.8 7138 | 28.7 7139 | 31.9 7140 | 29.1 7141 | 32.1 7142 | 29.3 7143 | 32.4 7144 | 29.0 7145 | 32.0 7146 | 28.8 7147 | 41.4 7148 | 36.6 7149 | 39.5 7150 | 36.4 7151 | 39.3 7152 | 36.3 7153 | 39.3 7154 | 36.3 7155 | 39.2 7156 | 36.2 7157 | 39.1 7158 | 36.2 7159 | 39.1 7160 | 26.2 7161 | 29.3 7162 | 79.8 7163 | 88.4 7164 | 94.3 7165 | 97.0 7166 | 83.9 7167 | 86.1 7168 | 92.5 7169 | 96.1 7170 | 32.6 7171 | 39.5 7172 | 36.3 7173 | 39.2 7174 | 36.1 7175 | 39.2 7176 | 36.2 7177 | 39.1 7178 | 33.5 7179 | 36.5 7180 | 33.5 7181 | 36.5 7182 | 33.5 7183 | 36.5 7184 | 23.5 7185 | 29.2 7186 | 80.1 7187 | 88.5 7188 | 93.9 7189 | 98.2 7190 | 84.1 7191 | 87.1 7192 | 93.6 7193 | 96.9 7194 | 32.8 7195 | 39.6 7196 | 36.6 7197 | 39.6 7198 | 36.6 7199 | 39.6 7200 | 36.6 7201 | 41.3 7202 | 38.3 7203 | 41.3 7204 | 38.3 7205 | 41.5 7206 | 38.5 7207 | 41.6 7208 | 28.6 7209 | 31.8 7210 | 79.5 7211 | 88.5 7212 | 95.1 7213 | 98.2 7214 | 85.8 7215 | 88.5 7216 | 94.8 7217 | 97.4 7218 | 35.9 7219 | 42.7 7220 | 39.8 7221 | 42.9 7222 | 39.9 7223 | 42.9 7224 | 39.9 7225 | 42.9 7226 | 40.0 7227 | 43.0 7228 | 39.7 7229 | 42.5 7230 | 39.5 7231 | 42.5 7232 | 29.5 7233 | 32.5 7234 | 78.6 7235 | 87.9 7236 | 94.2 7237 | 96.5 7238 | 84.0 7239 | 87.1 7240 | 93.5 7241 | 96.3 7242 | 32.9 7243 | 39.6 7244 | 36.6 7245 | 39.6 7246 | 36.6 7247 | 39.6 7248 | 36.5 7249 | 39.4 7250 | 36.4 7251 | 39.3 7252 | 36.3 7253 | 39.2 7254 | 36.2 7255 | 39.1 7256 | 26.1 7257 | 29.3 7258 | 78.6 7259 | 86.9 7260 | 92.9 7261 | 95.6 7262 | 83.1 7263 | 86.4 7264 | 92.5 7265 | 96.3 7266 | 32.6 7267 | 39.3 7268 | 36.3 7269 | 39.3 7270 | 36.2 7271 | 39.2 7272 | 36.1 7273 | 39.1 7274 | 33.5 7275 | 36.5 7276 | 33.5 7277 | 36.5 7278 | 33.5 7279 | 36.5 7280 | 23.5 7281 | 29.1 7282 | 26.1 7283 | 29.2 7284 | 26.2 7285 | 29.3 7286 | 26.3 7287 | 29.4 7288 | 26.4 7289 | 29.4 7290 | 26.5 7291 | 39.6 7292 | 36.5 7293 | 39.5 7294 | 36.4 7295 | 39.4 7296 | 36.4 7297 | 39.5 7298 | 36.4 7299 | 39.5 7300 | 36.5 7301 | 39.6 7302 | 36.6 7303 | 41.3 7304 | 28.3 7305 | 31.5 7306 | 28.6 7307 | 31.7 7308 | 28.7 7309 | 31.8 7310 | 28.9 7311 | 32.0 7312 | 29.1 7313 | 32.0 7314 | 28.9 7315 | 41.8 7316 | 38.9 7317 | 41.9 7318 | 38.9 7319 | 41.8 7320 | 38.8 7321 | 41.7 7322 | 38.6 7323 | 41.5 7324 | 36.6 7325 | 41.3 7326 | 36.6 7327 | 41.3 7328 | 28.3 7329 | 31.4 7330 | 79.3 7331 | 88.0 7332 | 93.9 7333 | 96.9 7334 | 84.2 7335 | 87.5 7336 | 93.4 7337 | 96.7 7338 | 34.8 7339 | 41.5 7340 | 38.5 7341 | 41.4 7342 | 38.3 7343 | 39.6 7344 | 36.6 7345 | 39.6 7346 | 36.6 7347 | 39.4 7348 | 36.4 7349 | 39.4 7350 | 36.4 7351 | 39.3 7352 | 26.3 7353 | 29.6 7354 | 80.0 7355 | 88.2 7356 | 93.5 7357 | 96.6 7358 | 84.3 7359 | 87.2 7360 | 93.8 7361 | 96.7 7362 | 35.0 7363 | 41.8 7364 | 38.9 7365 | 41.7 7366 | 38.6 7367 | 41.7 7368 | 38.6 7369 | 41.5 7370 | 38.4 7371 | 41.4 7372 | 36.6 7373 | 39.6 7374 | 36.6 7375 | 41.3 7376 | 26.5 7377 | 31.5 7378 | 79.0 7379 | 87.1 7380 | 93.7 7381 | 96.7 7382 | 84.2 7383 | 87.2 7384 | 93.7 7385 | 97.0 7386 | 35.2 7387 | 42.0 7388 | 39.0 7389 | 42.0 7390 | 38.9 7391 | 42.0 7392 | 39.1 7393 | 42.1 7394 | 39.0 7395 | 41.9 7396 | 38.8 7397 | 41.8 7398 | 38.7 7399 | 41.8 7400 | 28.8 7401 | 32.0 7402 | 79.1 7403 | 88.2 7404 | 94.7 7405 | 97.5 7406 | 85.0 7407 | 88.0 7408 | 94.6 7409 | 97.3 7410 | 35.8 7411 | 42.5 7412 | 39.6 7413 | 42.8 7414 | 39.7 7415 | 42.7 7416 | 39.7 7417 | 42.7 7418 | 39.7 7419 | 42.7 7420 | 39.7 7421 | 42.7 7422 | 39.6 7423 | 42.7 7424 | 29.7 7425 | 32.7 7426 | 78.8 7427 | 88.2 7428 | 94.7 7429 | 97.6 7430 | 85.2 7431 | 88.2 7432 | 94.7 7433 | 97.7 7434 | 36.1 7435 | 42.8 7436 | 39.8 7437 | 42.8 7438 | 39.9 7439 | 42.9 7440 | 39.6 7441 | 42.5 7442 | 39.4 7443 | 42.3 7444 | 39.0 7445 | 41.9 7446 | 38.9 7447 | 41.8 7448 | 28.8 7449 | 31.9 7450 | 28.9 7451 | 31.8 7452 | 28.7 7453 | 31.7 7454 | 28.8 7455 | 31.6 7456 | 28.6 7457 | 31.5 7458 | 28.3 7459 | 39.6 7460 | 36.6 7461 | 39.5 7462 | 36.5 7463 | 39.4 7464 | 36.4 7465 | 39.3 7466 | 36.3 7467 | 39.2 7468 | 36.2 7469 | 39.2 7470 | 36.2 7471 | 39.1 7472 | 26.1 7473 | 29.2 7474 | 26.3 7475 | 29.3 7476 | 26.4 7477 | 29.4 7478 | 26.4 7479 | 29.4 7480 | 26.4 7481 | 29.3 7482 | 26.3 7483 | 39.3 7484 | 36.3 7485 | 39.2 7486 | 36.3 7487 | 39.2 7488 | 36.2 7489 | 39.1 7490 | 33.5 7491 | 36.5 7492 | 33.5 7493 | 36.5 7494 | 33.5 7495 | 36.5 7496 | 23.5 7497 | 29.1 7498 | 80.3 7499 | 88.6 7500 | 94.3 7501 | 96.4 7502 | 83.8 7503 | 86.3 7504 | 93.7 7505 | 96.8 7506 | 32.8 7507 | 39.6 7508 | 36.6 7509 | 39.6 7510 | 36.6 7511 | 39.6 7512 | 36.6 7513 | 39.6 7514 | 36.5 7515 | 39.5 7516 | 36.6 7517 | 39.6 7518 | 36.6 7519 | 41.3 7520 | 28.3 7521 | 31.6 7522 | 80.1 7523 | 89.1 7524 | 95.6 7525 | 98.6 7526 | 86.6 7527 | 89.6 7528 | 96.1 7529 | 99.3 7530 | 35.0 7531 | 41.7 7532 | 38.7 7533 | 41.6 7534 | 38.5 7535 | 41.6 7536 | 38.4 7537 | 41.5 7538 | 38.3 7539 | 41.3 7540 | 38.3 7541 | 41.3 7542 | 38.3 7543 | 41.3 7544 | 28.3 7545 | 31.3 7546 | 81.4 7547 | 90.1 7548 | 96.3 7549 | 99.1 7550 | 86.9 7551 | 89.3 7552 | 94.8 7553 | 97.8 7554 | 35.0 7555 | 41.6 7556 | 38.6 7557 | 41.4 7558 | 38.5 7559 | 41.4 7560 | 38.4 7561 | 41.3 7562 | 38.4 7563 | 41.4 7564 | 38.5 7565 | 41.5 7566 | 38.4 7567 | 41.4 7568 | 28.5 7569 | 31.6 7570 | 80.7 7571 | 89.4 7572 | 95.9 7573 | 98.7 7574 | 86.5 7575 | 89.5 7576 | 96.0 7577 | 98.5 7578 | 35.1 7579 | 42.0 7580 | 38.9 7581 | 41.9 7582 | 38.9 7583 | 41.8 7584 | 38.5 7585 | 39.6 7586 | 36.6 7587 | 39.5 7588 | 36.5 7589 | 39.6 7590 | 36.5 7591 | 39.5 7592 | 26.5 7593 | 29.4 7594 | 77.7 7595 | 86.9 7596 | 93.1 7597 | 95.8 7598 | 83.8 7599 | 86.8 7600 | 93.8 7601 | 97.4 7602 | 32.4 7603 | 39.1 7604 | 36.1 7605 | 39.1 7606 | 33.5 7607 | 36.5 7608 | 33.5 7609 | 36.5 7610 | 33.5 7611 | 36.5 7612 | 33.5 7613 | 36.5 7614 | 33.5 7615 | 36.5 7616 | 23.5 7617 | 26.5 7618 | 23.5 7619 | 26.5 7620 | 23.5 7621 | 29.1 7622 | 26.1 7623 | 29.1 7624 | 23.5 7625 | 26.5 7626 | 23.5 7627 | 36.5 7628 | 33.5 7629 | 36.5 7630 | 33.5 7631 | 36.5 7632 | 33.5 7633 | 36.5 7634 | 33.5 7635 | 36.5 7636 | 33.5 7637 | 36.5 7638 | 33.5 7639 | 36.5 7640 | 23.5 7641 | 26.5 7642 | 23.5 7643 | 29.1 7644 | 26.1 7645 | 29.3 7646 | 26.4 7647 | 29.4 7648 | 26.5 7649 | 29.4 7650 | 26.4 7651 | 39.4 7652 | 36.3 7653 | 39.3 7654 | 36.3 7655 | 39.3 7656 | 36.2 7657 | 39.2 7658 | 36.3 7659 | 39.2 7660 | 36.1 7661 | 39.1 7662 | 36.1 7663 | 39.1 7664 | 26.2 7665 | 29.4 7666 | 78.6 7667 | 86.4 7668 | 93.7 7669 | 96.2 7670 | 83.7 7671 | 86.7 7672 | 93.2 7673 | 96.1 7674 | 34.6 7675 | 41.3 7676 | 38.3 7677 | 41.3 7678 | 36.5 7679 | 39.5 7680 | 36.5 7681 | 39.2 7682 | 36.1 7683 | 36.5 7684 | 33.5 7685 | 36.5 7686 | 33.5 7687 | 36.5 7688 | 23.5 7689 | 26.5 7690 | 79.1 7691 | 87.7 7692 | 96.1 7693 | 98.6 7694 | 85.8 7695 | 88.6 7696 | 95.4 7697 | 98.7 7698 | 32.4 7699 | 39.2 7700 | 36.2 7701 | 39.2 7702 | 36.2 7703 | 39.2 7704 | 36.3 7705 | 39.3 7706 | 36.1 7707 | 36.5 7708 | 36.3 7709 | 39.3 7710 | 36.3 7711 | 39.1 7712 | 26.1 7713 | 29.3 7714 | 79.0 7715 | 89.4 7716 | 95.6 7717 | 98.6 7718 | 86.1 7719 | 89.1 7720 | 95.4 7721 | 98.4 7722 | 34.7 7723 | 41.6 7724 | 38.6 7725 | 41.6 7726 | 38.7 7727 | 41.8 7728 | 38.8 7729 | 41.8 7730 | 38.8 7731 | 41.9 7732 | 38.9 7733 | 42.0 7734 | 39.0 7735 | 42.0 7736 | 29.1 7737 | 32.1 7738 | 79.3 7739 | 88.6 7740 | 95.2 7741 | 98.2 7742 | 85.7 7743 | 88.8 7744 | 94.7 7745 | 97.9 7746 | 35.5 7747 | 42.4 7748 | 39.5 7749 | 42.4 7750 | 39.5 7751 | 42.5 7752 | 39.5 7753 | 42.5 7754 | 39.5 7755 | 42.4 7756 | 39.2 7757 | 41.8 7758 | 38.5 7759 | 41.3 7760 | 26.6 7761 | 29.6 7762 | 78.9 7763 | 87.6 7764 | 93.6 7765 | 96.6 7766 | 83.4 7767 | 86.4 7768 | 93.1 7769 | 96.7 7770 | 32.3 7771 | 36.5 7772 | 33.5 7773 | 36.5 7774 | 33.5 7775 | 36.5 7776 | 33.5 7777 | 36.5 7778 | 33.5 7779 | 36.5 7780 | 33.5 7781 | 36.5 7782 | 33.5 7783 | 36.5 7784 | 23.5 7785 | 26.5 7786 | 23.5 7787 | 26.5 7788 | 26.1 7789 | 26.5 7790 | 26.1 7791 | 29.1 7792 | 26.1 7793 | 29.2 7794 | 26.3 7795 | 39.3 7796 | 36.3 7797 | 39.3 7798 | 36.3 7799 | 39.3 7800 | 36.4 7801 | 39.5 7802 | 38.3 7803 | 41.5 7804 | 38.4 7805 | 41.3 7806 | 36.6 7807 | 39.6 7808 | 26.6 7809 | 29.6 7810 | 26.4 7811 | 29.3 7812 | 26.1 7813 | 29.1 7814 | 26.1 7815 | 29.1 7816 | 26.1 7817 | 29.1 7818 | 26.1 7819 | 36.5 7820 | 33.5 7821 | 36.5 7822 | 33.5 7823 | 36.5 7824 | 33.5 7825 | 36.5 7826 | 33.5 7827 | 36.5 7828 | 33.5 7829 | 36.5 7830 | 33.5 7831 | 36.5 7832 | 23.5 7833 | 26.5 7834 | 80.9 7835 | 89.6 7836 | 95.4 7837 | 97.8 7838 | 85.3 7839 | 88.6 7840 | 94.8 7841 | 98.8 7842 | 29.8 7843 | 36.5 7844 | 33.5 7845 | 36.5 7846 | 33.5 7847 | 36.5 7848 | 33.5 7849 | 36.5 7850 | 33.5 7851 | 36.5 7852 | 33.5 7853 | 36.5 7854 | 33.5 7855 | 36.5 7856 | 23.5 7857 | 26.5 7858 | 81.6 7859 | 90.2 7860 | 95.8 7861 | 97.8 7862 | 84.4 7863 | 87.1 7864 | 93.6 7865 | 96.9 7866 | 29.8 7867 | 36.5 7868 | 33.5 7869 | 36.5 7870 | 33.5 7871 | 36.5 7872 | 33.5 7873 | 36.5 7874 | 33.5 7875 | 36.5 7876 | 33.5 7877 | 36.5 7878 | 33.5 7879 | 36.5 7880 | 23.5 7881 | 26.5 7882 | 80.3 7883 | 88.0 7884 | 93.9 7885 | 98.5 7886 | 83.4 7887 | 88.7 7888 | 95.5 7889 | 98.8 7890 | 32.3 7891 | 36.5 7892 | 33.5 7893 | 36.5 7894 | 33.5 7895 | 36.5 7896 | 33.5 7897 | 36.5 7898 | 33.5 7899 | 36.5 7900 | 33.5 7901 | 36.5 7902 | 33.5 7903 | 36.5 7904 | 23.5 7905 | 26.5 7906 | 81.9 7907 | 89.8 7908 | 95.0 7909 | 98.9 7910 | 85.7 7911 | 88.5 7912 | 95.0 7913 | 98.3 7914 | 34.8 7915 | 41.5 7916 | 38.3 7917 | 41.4 7918 | 38.4 7919 | 41.4 7920 | 36.6 7921 | 39.6 7922 | 36.4 7923 | 39.6 7924 | 36.4 7925 | 39.4 7926 | 36.3 7927 | 39.3 7928 | 26.3 7929 | 29.4 7930 | 81.6 7931 | 90.6 7932 | 95.5 7933 | 98.0 7934 | 84.4 7935 | 87.0 7936 | 93.5 7937 | 96.8 7938 | 34.9 7939 | 41.6 7940 | 38.5 7941 | 41.3 7942 | 38.3 7943 | 41.3 7944 | 38.3 7945 | 41.3 7946 | 38.3 7947 | 41.3 7948 | 36.6 7949 | 39.6 7950 | 36.6 7951 | 39.6 7952 | 26.6 7953 | 29.6 7954 | 28.5 7955 | 31.7 7956 | 28.7 7957 | 31.8 7958 | 28.9 7959 | 31.8 7960 | 28.7 7961 | 31.6 7962 | 28.3 7963 | 39.6 7964 | 36.5 7965 | 39.4 7966 | 36.3 7967 | 39.3 7968 | 36.2 7969 | 39.1 7970 | 36.1 7971 | 39.1 7972 | 36.1 7973 | 36.5 7974 | 33.5 7975 | 36.5 7976 | 23.5 7977 | 26.5 7978 | 23.5 7979 | 26.5 7980 | 23.5 7981 | 26.5 7982 | 23.5 7983 | 26.5 7984 | 23.5 7985 | 26.5 7986 | 23.5 7987 | 36.5 7988 | 33.5 7989 | 36.5 7990 | 33.5 7991 | 36.5 7992 | 33.5 7993 | 36.5 7994 | 33.5 7995 | 36.5 7996 | 33.5 7997 | 36.5 7998 | 33.5 7999 | 36.5 8000 | 23.5 8001 | 26.5 8002 | 81.6 8003 | 89.9 8004 | 95.8 8005 | 98.1 8006 | 85.6 8007 | 90.2 8008 | 96.8 8009 | 98.1 8010 | 32.3 8011 | 39.1 8012 | 36.1 8013 | 39.1 8014 | 36.1 8015 | 39.1 8016 | 36.1 8017 | 39.2 8018 | 36.1 8019 | 39.2 8020 | 36.1 8021 | 39.2 8022 | 36.3 8023 | 39.4 8024 | 36.5 8025 | 29.5 8026 | 80.8 8027 | 90.1 8028 | 96.1 8029 | 100.1 8030 | 87.6 8031 | 90.6 8032 | 97.1 8033 | 99.6 8034 | 32.8 8035 | 39.6 8036 | 36.5 8037 | 39.5 8038 | 36.5 8039 | 39.5 8040 | 36.6 8041 | 39.5 8042 | 36.4 8043 | 39.4 8044 | 36.4 8045 | 39.4 8046 | 36.4 8047 | 39.4 8048 | 36.4 8049 | 29.5 8050 | 81.1 8051 | 90.1 8052 | 96.6 8053 | 99.1 8054 | 87.9 8055 | 90.7 8056 | 97.0 8057 | 99.8 8058 | 34.8 8059 | 41.8 8060 | 38.8 8061 | 41.7 8062 | 38.8 8063 | 41.8 8064 | 38.6 8065 | 41.5 8066 | 38.3 8067 | 39.6 8068 | 36.5 8069 | 39.4 8070 | 36.3 8071 | 39.3 8072 | 36.2 8073 | 29.2 8074 | 80.6 8075 | 89.6 8076 | 96.0 8077 | 98.7 8078 | 86.1 8079 | 89.4 8080 | 95.6 8081 | 98.9 8082 | 32.4 8083 | 39.1 8084 | 36.1 8085 | 39.1 8086 | 36.1 8087 | 39.1 8088 | 36.1 8089 | 36.5 8090 | 33.5 8091 | 36.5 8092 | 33.5 8093 | 36.5 8094 | 33.5 8095 | 36.5 8096 | 33.5 8097 | 26.5 8098 | 80.7 8099 | 89.4 8100 | 95.6 8101 | 98.3 8102 | 85.6 8103 | 88.6 8104 | 95.1 8105 | 98.3 8106 | 32.4 8107 | 39.1 8108 | 36.1 8109 | 39.1 8110 | 33.5 8111 | 36.5 8112 | 33.5 8113 | 36.5 8114 | 33.5 8115 | 36.5 8116 | 33.5 8117 | 36.5 8118 | 33.5 8119 | 36.5 8120 | 33.5 8121 | 26.5 8122 | 23.5 8123 | 29.1 8124 | 26.1 8125 | 29.3 8126 | 26.3 8127 | 29.3 8128 | 26.3 8129 | 29.3 8130 | 26.2 8131 | 39.1 8132 | 33.5 8133 | 39.1 8134 | 36.1 8135 | 36.5 8136 | 33.5 8137 | 36.5 8138 | 33.5 8139 | 36.5 8140 | 33.5 8141 | 36.5 8142 | 33.5 8143 | 36.5 8144 | 33.5 8145 | 26.5 8146 | 23.5 8147 | 29.1 8148 | 26.3 8149 | 29.3 8150 | 26.3 8151 | 29.3 8152 | 26.3 8153 | 29.3 8154 | 26.2 8155 | 39.1 8156 | 36.2 8157 | 39.2 8158 | 33.5 8159 | 36.5 8160 | 33.5 8161 | 36.5 8162 | 33.5 8163 | 36.5 8164 | 33.5 8165 | 36.5 8166 | 33.5 8167 | 36.5 8168 | 33.5 8169 | 26.5 8170 | 80.0 8171 | 90.4 8172 | 95.9 8173 | 98.1 8174 | 85.0 8175 | 87.1 8176 | 93.3 8177 | 97.2 8178 | 32.5 8179 | 39.1 8180 | 36.2 8181 | 39.1 8182 | 36.1 8183 | 39.1 8184 | 36.1 8185 | 36.5 8186 | 33.5 8187 | 36.5 8188 | 33.5 8189 | 36.5 8190 | 33.5 8191 | 36.5 8192 | 33.5 8193 | 26.5 8194 | 79.4 8195 | 88.3 8196 | 96.8 8197 | 99.8 8198 | 86.4 8199 | 89.8 8200 | 96.5 8201 | 99.8 8202 | 29.8 8203 | 36.5 8204 | 33.5 8205 | 36.5 8206 | 33.5 8207 | 36.5 8208 | 33.5 8209 | 36.5 8210 | 33.5 8211 | 36.5 8212 | 33.5 8213 | 36.5 8214 | 33.5 8215 | 36.5 8216 | 33.5 8217 | 29.1 8218 | 81.6 8219 | 90.6 8220 | 96.6 8221 | 99.3 8222 | 86.5 8223 | 89.3 8224 | 95.1 8225 | 98.1 8226 | 32.8 8227 | 39.6 8228 | 36.6 8229 | 39.6 8230 | 36.6 8231 | 41.3 8232 | 38.3 8233 | 41.3 8234 | 38.3 8235 | 39.6 8236 | 36.6 8237 | 39.6 8238 | 36.6 8239 | 39.6 8240 | 36.5 8241 | 29.6 8242 | 79.7 8243 | 90.0 8244 | 96.3 8245 | 98.1 8246 | 85.1 8247 | 88.0 8248 | 94.7 8249 | 98.0 8250 | 32.8 8251 | 39.6 8252 | 38.3 8253 | 39.6 8254 | 36.6 8255 | 39.6 8256 | 36.6 8257 | 39.6 8258 | 36.5 8259 | 39.5 8260 | 36.5 8261 | 39.5 8262 | 36.5 8263 | 39.4 8264 | 36.4 8265 | 29.4 8266 | 80.0 8267 | 88.9 8268 | 96.5 8269 | 99.0 8270 | 85.7 8271 | 88.4 8272 | 94.9 8273 | 98.2 8274 | 34.7 8275 | 41.5 8276 | 38.5 8277 | 41.4 8278 | 38.4 8279 | 41.3 8280 | 36.6 8281 | 41.3 8282 | 38.3 8283 | 41.3 8284 | 36.6 8285 | 39.6 8286 | 36.6 8287 | 39.6 8288 | 36.6 8289 | 31.3 8290 | 28.4 8291 | 31.6 8292 | 28.8 8293 | 31.9 8294 | 28.9 8295 | 31.9 8296 | 28.8 8297 | 31.7 8298 | 28.7 8299 | 41.7 8300 | 38.6 8301 | 41.6 8302 | 38.7 8303 | 41.6 8304 | 38.6 8305 | 41.6 8306 | 38.7 8307 | 41.7 8308 | 38.6 8309 | 41.7 8310 | 38.7 8311 | 41.6 8312 | 38.5 8313 | 31.6 8314 | 28.8 8315 | 32.0 8316 | 29.0 8317 | 32.2 8318 | 29.2 8319 | 32.2 8320 | 29.1 8321 | 31.9 8322 | 28.8 8323 | 41.5 8324 | 38.5 8325 | 41.4 8326 | 38.4 8327 | 41.4 8328 | 38.4 8329 | 41.4 8330 | 38.4 8331 | 41.4 8332 | 38.5 8333 | 41.5 8334 | 38.6 8335 | 41.6 8336 | 38.5 8337 | 31.6 8338 | 81.3 8339 | 90.4 8340 | 96.7 8341 | 99.1 8342 | 86.4 8343 | 88.7 8344 | 94.3 8345 | 97.6 8346 | 35.3 8347 | 42.3 8348 | 39.3 8349 | 42.5 8350 | 39.5 8351 | 42.5 8352 | 39.6 8353 | 42.7 8354 | 39.8 8355 | 42.8 8356 | 39.5 8357 | 42.0 8358 | 38.9 8359 | 41.7 8360 | 38.5 8361 | 31.4 8362 | 79.5 8363 | 86.8 8364 | 92.9 8365 | 95.6 8366 | 84.5 8367 | 87.8 8368 | 93.3 8369 | 96.3 8370 | 32.8 8371 | 39.5 8372 | 36.5 8373 | 39.5 8374 | 36.5 8375 | 39.5 8376 | 36.4 8377 | 39.4 8378 | 36.4 8379 | 39.3 8380 | 36.3 8381 | 39.3 8382 | 36.2 8383 | 39.2 8384 | 36.1 8385 | 29.1 8386 | 80.5 8387 | 89.5 8388 | 95.4 8389 | 98.4 8390 | 85.9 8391 | 88.4 8392 | 95.4 8393 | 99.0 8394 | 32.5 8395 | 39.3 8396 | 36.4 8397 | 39.4 8398 | 36.4 8399 | 39.4 8400 | 36.4 8401 | 39.6 8402 | 36.5 8403 | 39.5 8404 | 36.6 8405 | 39.6 8406 | 38.4 8407 | 41.4 8408 | 38.5 8409 | 31.6 8410 | 80.7 8411 | 90.1 8412 | 96.0 8413 | 99.1 8414 | 86.6 8415 | 89.6 8416 | 96.1 8417 | 99.1 8418 | 35.2 8419 | 42.0 8420 | 39.1 8421 | 42.0 8422 | 39.0 8423 | 41.9 8424 | 38.7 8425 | 41.7 8426 | 38.7 8427 | 41.6 8428 | 38.6 8429 | 41.5 8430 | 38.4 8431 | 41.4 8432 | 36.4 8433 | 29.2 8434 | 81.1 8435 | 90.3 8436 | 96.7 8437 | 99.7 8438 | 86.9 8439 | 89.9 8440 | 96.2 8441 | 96.9 8442 | 29.8 8443 | 36.5 8444 | 33.5 8445 | 36.5 8446 | 33.5 8447 | 36.5 8448 | 33.5 8449 | 36.5 8450 | 33.5 8451 | 36.5 8452 | 33.5 8453 | 36.5 8454 | 33.5 8455 | 36.5 8456 | 33.5 8457 | 26.5 8458 | 23.5 8459 | 26.5 8460 | 23.5 8461 | 26.5 8462 | 23.5 8463 | 26.5 8464 | 23.5 8465 | 26.5 8466 | 23.5 8467 | 36.5 8468 | 33.5 8469 | 36.5 8470 | 33.5 8471 | 36.5 8472 | 33.5 8473 | 36.5 8474 | 33.5 8475 | 36.5 8476 | 33.5 8477 | 36.5 8478 | 33.5 8479 | 36.5 8480 | 33.5 8481 | 26.5 8482 | 23.5 8483 | 26.5 8484 | 23.5 8485 | 26.5 8486 | 23.5 8487 | 26.5 8488 | 23.5 8489 | 26.5 8490 | 23.5 8491 | 36.5 8492 | 33.5 8493 | 36.5 8494 | 33.5 8495 | 36.5 8496 | 33.5 8497 | 36.5 8498 | 33.5 8499 | 36.5 8500 | 33.5 8501 | 36.5 8502 | 33.5 8503 | 36.5 8504 | 33.5 8505 | 26.5 8506 | 80.6 8507 | 89.3 8508 | 97.4 8509 | 98.9 8510 | 85.9 8511 | 88.9 8512 | 94.8 8513 | 97.8 8514 | 32.6 8515 | 39.3 8516 | 36.3 8517 | 39.4 8518 | 36.4 8519 | 39.6 8520 | 36.4 8521 | 39.6 8522 | 38.4 8523 | 41.3 8524 | 36.6 8525 | 39.6 8526 | 38.4 8527 | 41.5 8528 | 38.5 8529 | 31.5 8530 | 80.2 8531 | 90.0 8532 | 96.1 8533 | 99.1 8534 | 86.4 8535 | 89.2 8536 | 95.2 8537 | 98.2 8538 | 35.4 8539 | 42.2 8540 | 39.1 8541 | 42.1 8542 | 39.0 8543 | 41.7 8544 | 38.6 8545 | 41.7 8546 | 38.6 8547 | 41.5 8548 | 38.5 8549 | 41.3 8550 | 38.4 8551 | 41.3 8552 | 38.3 8553 | 31.4 8554 | 81.5 8555 | 90.8 8556 | 97.3 8557 | 99.8 8558 | 86.6 8559 | 89.6 8560 | 95.9 8561 | 99.2 8562 | 35.2 8563 | 42.1 8564 | 39.1 8565 | 42.1 8566 | 39.1 8567 | 42.4 8568 | 39.5 8569 | 42.5 8570 | 39.9 8571 | 42.8 8572 | 39.9 8573 | 42.8 8574 | 39.8 8575 | 42.8 8576 | 39.8 8577 | 32.8 8578 | 78.8 8579 | 88.1 8580 | 94.7 8581 | 97.7 8582 | 85.2 8583 | 88.1 8584 | 94.7 8585 | 97.5 8586 | 35.8 8587 | 42.6 8588 | 39.4 8589 | 42.4 8590 | 39.2 8591 | 42.1 8592 | 39.1 8593 | 42.1 8594 | 39.1 8595 | 42.0 8596 | 38.9 8597 | 41.9 8598 | 38.8 8599 | 41.8 8600 | 38.6 8601 | 31.7 8602 | 80.9 8603 | 89.7 8604 | 96.7 8605 | 98.1 8606 | 85.7 8607 | 88.1 8608 | 94.6 8609 | 97.6 8610 | 35.4 8611 | 42.3 8612 | 39.4 8613 | 42.5 8614 | 39.2 8615 | 42.2 8616 | 39.3 8617 | 42.3 8618 | 38.5 8619 | 39.5 8620 | 36.4 8621 | 39.4 8622 | 36.3 8623 | 39.3 8624 | 36.2 8625 | 29.2 8626 | 26.3 8627 | 29.3 8628 | 26.3 8629 | 29.3 8630 | 26.3 8631 | 29.3 8632 | 26.4 8633 | 29.4 8634 | 26.3 8635 | 39.3 8636 | 36.4 8637 | 39.4 8638 | 36.4 8639 | 39.4 8640 | 36.4 8641 | 39.5 8642 | 36.4 8643 | 39.4 8644 | 36.5 8645 | 39.5 8646 | 36.6 8647 | 39.5 8648 | 36.6 8649 | 29.6 8650 | 28.3 8651 | 31.5 8652 | 28.6 8653 | 31.7 8654 | 28.9 8655 | 32.0 8656 | 29.1 8657 | 32.1 8658 | 29.2 8659 | 42.2 8660 | 39.2 8661 | 42.0 8662 | 36.6 8663 | 39.5 8664 | 36.3 8665 | 39.1 8666 | 33.5 8667 | 36.5 8668 | 33.5 8669 | 36.5 8670 | 33.5 8671 | 36.5 8672 | 33.5 8673 | 26.5 8674 | 80.3 8675 | 88.9 8676 | 95.4 8677 | 98.4 8678 | 86.3 8679 | 89.3 8680 | 95.8 8681 | 98.4 8682 | 29.8 8683 | 36.5 8684 | 33.5 8685 | 36.5 8686 | 33.5 8687 | 36.5 8688 | 33.5 8689 | 36.5 8690 | 33.5 8691 | 36.5 8692 | 33.5 8693 | 36.5 8694 | 33.5 8695 | 39.1 8696 | 36.1 8697 | 29.2 8698 | 81.8 8699 | 90.8 8700 | 97.4 8701 | 100.4 8702 | 88.6 8703 | 91.9 8704 | 98.3 8705 | 101.3 8706 | 32.3 8707 | 39.1 8708 | 36.1 8709 | 39.1 8710 | 36.1 8711 | 39.1 8712 | 33.5 8713 | 36.5 8714 | 36.1 8715 | 36.5 8716 | 33.5 8717 | 36.5 8718 | 33.5 8719 | 39.1 8720 | 36.1 8721 | 29.1 8722 | 82.1 8723 | 91.1 8724 | 97.3 8725 | 100.3 8726 | 87.8 8727 | 90.5 8728 | 97.1 8729 | 100.1 8730 | 32.6 8731 | 39.4 8732 | 36.4 8733 | 39.5 8734 | 36.5 8735 | 39.5 8736 | 36.5 8737 | 39.4 8738 | 36.4 8739 | 39.4 8740 | 36.4 8741 | 39.4 8742 | 36.3 8743 | 39.3 8744 | 36.4 8745 | 29.4 8746 | 81.4 8747 | 90.2 8748 | 96.9 8749 | 99.4 8750 | 86.8 8751 | 89.8 8752 | 96.3 8753 | 99.3 8754 | 32.4 8755 | 39.1 8756 | 36.1 8757 | 39.1 8758 | 33.5 8759 | 36.5 8760 | 33.5 8761 | 36.5 8762 | -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | MIT License 2 | 3 | Copyright (c) 2021 Kevin Moy 4 | 5 | Permission is hereby granted, free of charge, to any person obtaining a copy 6 | of this software and associated documentation files (the "Software"), to deal 7 | in the Software without restriction, including without limitation the rights 8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell 9 | copies of the Software, and to permit persons to whom the Software is 10 | furnished to do so, subject to the following conditions: 11 | 12 | The above copyright notice and this permission notice shall be included in all 13 | copies or substantial portions of the Software. 14 | 15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR 16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, 17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE 18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER 19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, 20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE 21 | SOFTWARE. 22 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Multi-Objective Optimization for Sizing and Control of Microgrid Energy Storage 2 | Final Project for AA 222: Engineering Design Optimization 3 | 4 | Abstract: Microgrids, electrical power systems that are able to isolate (island) from the larger electric grid and self-sustain for extended periods of time, serve multiple purposes to a wide variety of stakeholders. To the communities that microgrids directly serve, microgrids supply reliable electricity in the face an unstable macrogrid, increasingly driven by the effects of anthropogenic climate change. Lithium-ion battery energy storage systems (ESS) currently are the dominant energy storage system for macrogrid usage, and therefore are used in microgrids as well. For microgrids, energy storage is not just a financial asset, but a lifeline during islanding periods when stable grid power is not available, yet lithium-ion ESSs degrade with usage and time. Key to addressing this problem is determining the sizing and control of the microgrid ESS in order to sustain the customer load during islanding periods. This paper presents a multi-objective optimization to address this problem, including a cost function penalty that ensures operation of the ESS that avoids degradation-inducing behaviour. This optimization is implemented in Gurobi and solved for several cases, demonstrating the flexibility of optimization framework as well as the effectiveness of the degradation penalty. 5 | 6 | ![Power flow summary with degradation](https://raw.githubusercontent.com/kmoy14-stanford/AA222FinalProject/main/pf_summary_4H_wk1_deg.png) 7 | -------------------------------------------------------------------------------- /building_data.py: -------------------------------------------------------------------------------- 1 | """ 2 | Some data cleansing for the building data. 3 | """ 4 | 5 | #%% 6 | import numpy as np 7 | import pandas as pd 8 | 9 | hospdata = pd.read_csv("Reference-Hospital.csv", names=['load'], header=0) 10 | hospdata.set_index(pd.date_range(start='2021-01-01 00:00', periods=8760, freq='H'), inplace=True) 11 | rs = pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T') 12 | hospdata = hospdata.reindex(rs) 13 | hospdata.load.interpolate(inplace=True) 14 | 15 | schooldata = pd.read_csv("Reference-Secondary School.csv", names=['load'], header=0) 16 | schooldata.set_index(pd.date_range(start='2021-01-01 00:00', periods=8760, freq='H'), inplace=True) 17 | rs = pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T') 18 | schooldata = schooldata.reindex(rs) 19 | schooldata.load.interpolate(inplace=True) 20 | 21 | marketdata = pd.read_csv("Reference-Supermarket.csv", names=['load'], header=0) 22 | marketdata.set_index(pd.date_range(start='2021-01-01 00:00', periods=8760, freq='H'), inplace=True) 23 | rs = pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T') 24 | marketdata = marketdata.reindex(rs) 25 | marketdata.load.interpolate(inplace=True) 26 | 27 | # %% 28 | bldg_load = pd.DataFrame(index=pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T')) 29 | 30 | bldg_load['hospital'] = hospdata.load 31 | bldg_load['school'] = schooldata.load 32 | bldg_load['supermarket'] = marketdata.load 33 | 34 | #%% Save to CSV 35 | bldg_load.to_csv("bldg_load.csv") 36 | # %% 37 | -------------------------------------------------------------------------------- /dataviz.py: -------------------------------------------------------------------------------- 1 | """ 2 | Data visualization for 3 | 4 | """ 5 | #%% 6 | import numpy as np 7 | import pandas as pd 8 | import matplotlib.pyplot as plt 9 | import os 10 | from copy import deepcopy 11 | my_path = os.path.dirname(os.path.realpath(__file__)) 12 | 13 | -------------------------------------------------------------------------------- /ess_E_summary_4H_wk1_deg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/ess_E_summary_4H_wk1_deg.png -------------------------------------------------------------------------------- /ess_E_summary_4H_wk1_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/ess_E_summary_4H_wk1_nodeg.png -------------------------------------------------------------------------------- /ess_E_summary_4H_wk30_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/ess_E_summary_4H_wk30_nodeg.png -------------------------------------------------------------------------------- /ess_E_summary_8H_wk1_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/ess_E_summary_8H_wk1_nodeg.png -------------------------------------------------------------------------------- /ess_summary_4H_wk1_deg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/ess_summary_4H_wk1_deg.png -------------------------------------------------------------------------------- /gurobitest.py: -------------------------------------------------------------------------------- 1 | #!/usr/bin/env python3.7 2 | 3 | # Copyright 2021, Gurobi Optimization, LLC 4 | 5 | # This example formulates and solves the following simple MIP model: 6 | # maximize 7 | # x + y + 2 z 8 | # subject to 9 | # x + 2 y + 3 z <= 4 10 | # x + y >= 1 11 | # x, y, z binary 12 | 13 | import gurobipy as gp 14 | from gurobipy import GRB 15 | 16 | try: 17 | 18 | # Create a new model 19 | m = gp.Model("mip1") 20 | 21 | # Create variables 22 | x = m.addVar(vtype=GRB.BINARY, name="x") 23 | y = m.addVar(vtype=GRB.BINARY, name="y") 24 | z = m.addVar(vtype=GRB.BINARY, name="z") 25 | 26 | # Set objective 27 | m.setObjective(x + y + 2 * z, GRB.MAXIMIZE) 28 | 29 | # Add constraint: x + 2 y + 3 z <= 4 30 | m.addConstr(x + 2 * y + 3 * z <= 4, "c0") 31 | 32 | # Add constraint: x + y >= 1 33 | m.addConstr(x + y >= 1, "c1") 34 | 35 | # Optimize model 36 | m.optimize() 37 | 38 | for v in m.getVars(): 39 | print('%s %g' % (v.varName, v.x)) 40 | 41 | print('Obj: %g' % m.objVal) 42 | 43 | except gp.GurobiError as e: 44 | print('Error code ' + str(e.errno) + ': ' + str(e)) 45 | 46 | except AttributeError: 47 | print('Encountered an attribute error') 48 | 49 | -------------------------------------------------------------------------------- /mg_pf.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/mg_pf.png -------------------------------------------------------------------------------- /optim.py: -------------------------------------------------------------------------------- 1 | #%% 2 | import numpy as np 3 | import pandas as pd 4 | import cvxpy as cvx 5 | import matplotlib.pyplot as plt 6 | 7 | # Global vartiables(sizes): 8 | PV_ARRAY_SIZE_KW = 420 # kWAC rating of the PV array 9 | DIESEL_GEN_SIZE_KW = 1000 # kWAC rating of the diesel generator 10 | # Diesel fuel consumption coefficients from https://ieeexplore.ieee.org/document/8494571 11 | DIESEL_FUEL_CONS_A = 0.246 # Liters per kWh 12 | DIESEL_FUEL_CONS_B = 0.08415 # Liters per kW (rating) 13 | 14 | #%% Obtain aggregate load 15 | # NOTE: Must run resi_data.py, building_data.py to obtain the following CSV files! 16 | residf = pd.read_csv('resi_load.csv', index_col=0) 17 | bldgdf = pd.read_csv('bldg_load.csv', index_col=0) 18 | 19 | loaddf = pd.concat([residf, bldgdf], axis=1) 20 | 21 | #Downscale hospital, school, market by 0.25 22 | loaddf.hospital = loaddf.hospital * 0.25 23 | loaddf.school = loaddf.school * 0.25 24 | loaddf.supermarket = loaddf.supermarket * 0.25 25 | 26 | agg_load = loaddf.sum(axis=1) 27 | 28 | ## Agg load stats: 29 | # count 35040.000000 30 | # mean 249.675353 31 | # std 163.964776 32 | # min 39.648000 33 | # 25% 98.862156 34 | # 50% 211.096125 35 | # 75% 398.983500 36 | # max 747.593000 37 | 38 | #%% Obtain aggregate PV 39 | # NOTE: Must run pv_data.py to obtain the following CSV file! 40 | pvdf = pd.read_csv('pv_gen.csv', index_col=0) 41 | 42 | # Upscale to PV array kWAC rating 43 | pvdf = pvdf * PV_ARRAY_SIZE_KW/pvdf.gen.max() 44 | 45 | # Agg pv stats: 46 | # count 35040.000000 47 | # mean 80.878783 48 | # std 119.749443 49 | # min 0.000000 50 | # 25% 0.000000 51 | # 50% 0.514689 52 | # 75% 146.658497 53 | # max 420.000000 54 | 55 | #%% TODO: Rest of the fucking optimization 56 | 57 | # randomly (or not so randomly) select 7-day intervals to optimize the dispatch 58 | # first do for a set ESS size (500 kW, 950 kWh as in BLR Microgrid) 59 | 60 | # then make the ESS size a part of the function! 61 | 62 | # then add in degradation penalty 63 | 64 | load = agg_load.to_numpy() 65 | pv = pvdf.to_numpy() 66 | 67 | week1 = 4*24*7 68 | 69 | ld_wk1 = load[:week1] 70 | pv_wk1 = pv[:week1] 71 | 72 | # Create variables for: 73 | 74 | # each power flow 75 | # format: to_from 76 | pv_ess = cvx.Variable(week1) 77 | pv_load = cvx.Variable(week1) 78 | pv_curtail = cvx.Variable(week1) 79 | ess_load = cvx.Variable(week1) 80 | dg_ess = cvx.Variable(week1) 81 | dg_load = cvx.Variable(week1) 82 | load_curtail = cvx.Variable(week1) 83 | 84 | # ESS charge and discharge 85 | ess_C = cvx.Variable(week1) 86 | ess_D = cvx.Variable(week1) 87 | 88 | # Total ESS dispatch (positive discharge, negative charge) 89 | ess_disp = cvx.Variable(week1) 90 | 91 | # Total diesel genset power production 92 | dg = cvx.Variable(week1) 93 | 94 | # energy stored in the ESS 95 | E = cvx.Variable(week1) 96 | # nominal energy and power 97 | E_nom = 2000 # kWh 98 | P_nom = 500 # kW 99 | 100 | # Fraction of the hour 101 | h = 15/60 102 | 103 | # Initialize cost, constraint forms 104 | cost = [] 105 | constraints = [] 106 | 107 | constraints.append(E[0] == E_nom) # assume start with full ESS 108 | constraints.append(E[week1-1] == 0.5*E_nom) # assume end half-charged 109 | 110 | ##### 111 | ##### TODO: Convert power into -P_nom <= P[t] <= P_nom 112 | ##### with discharging as max(P[t], 0) and charging as -min(P[t], 0) 113 | ##### May need to turn to Gurobi for MILP??? 114 | 115 | for t in range(week1): 116 | # Power flow constraints 117 | constraints.append(pv_wk1[t] == pv_ess[t] + pv_load[t] + pv_curtail[t]) 118 | constraints.append(ld_wk1[t] == ess_load[t] + pv_load[t] + dg_load[t]) 119 | # constraints.append(dg[t] == dg_load[t]) 120 | constraints.append(dg[t] == dg_ess[t] + dg_load[t]) 121 | constraints.append(ess_C[t] == pv_ess[t]) 122 | constraints.append(ess_D[t] == ess_load[t]) 123 | constraints.append(ess_disp[t] == ess_D[t] - ess_C[t]) 124 | 125 | # Prevent underdischarging from overdischarging 126 | constraints.append(E[t] >= h * ess_D[t]) 127 | 128 | # Time evolution of stored energy 129 | if t > 0: 130 | constraints.append(E[t] == E[t-1] + h*(ess_C[t-1] - ess_D[t-1])) 131 | 132 | # Cost of fuel 133 | cost.append(h*dg[t]*DIESEL_FUEL_CONS_A + DIESEL_GEN_SIZE_KW * DIESEL_FUEL_CONS_B) 134 | 135 | # Stored energy constraints 136 | constraints.append(E <= E_nom) 137 | constraints.append(E >= 0) 138 | 139 | 140 | # ESS power constraints 141 | constraints.append(ess_D <= P_nom) 142 | constraints.append(ess_D >= 0) 143 | constraints.append(ess_C <= P_nom) 144 | constraints.append(ess_C >= 0) 145 | 146 | # DG, PV, load power constraints 147 | constraints.append(dg_ess >= 0) 148 | constraints.append(dg_load >= 0) 149 | constraints.append(pv_curtail >= 0) 150 | constraints.append(pv_ess >= 0) 151 | constraints.append(pv_load >= 0) 152 | constraints.append(ess_load >= 0) 153 | 154 | #%% 155 | objective = cvx.Minimize(cvx.sum(cost)) 156 | prob = cvx.Problem(objective, constraints) 157 | prob.solve() 158 | 159 | # %% plot all relevant quantities on one plot! 160 | plt.plot(dg.value) 161 | plt.plot(pv_wk1) 162 | plt.plot(ld_wk1) 163 | plt.plot(ess_D.value - ess_C.value) 164 | 165 | #%% 166 | plt.plot(ess_D.value) 167 | plt.plot(ess_C.value) 168 | 169 | 170 | # %% Examples 171 | 172 | # x = cp.Variable() 173 | 174 | # # An infeasible problem. 175 | # prob = cp.Problem(cp.Minimize(x), [x >= 1, x <= 0]) 176 | # prob.solve() 177 | # print("status:", prob.status) 178 | # print("optimal value", prob.value) 179 | # # %% Implement one step of MPC using cvxpy 180 | # # Input: x(t), A, B, Q, R, P, N, x_bar, u_bar, x0, X_f 181 | # # Output: u(t) 182 | 183 | # def opt_finite_traj(A, B, Q, R, P, N, x_bar, u_bar, x0, X_f0=False): 184 | # converged = False 185 | # n = Q.shape[0] # state dimension 186 | # m = R.shape[0] # control dimension 187 | # # Initialize variables 188 | # x = cvx.Variable((N+1, n)) 189 | # u = cvx.Variable((N, m)) 190 | # # Initialize cost, constraint forms 191 | # cost = [] 192 | # cost.append(cvx.quad_form(x[N],P)) 193 | # constraints = [] 194 | # constraints.append(x[0] == x0) 195 | # for k in range(N): 196 | # cost.append(cvx.quad_form(x[k], Q)) 197 | # cost.append(cvx.quad_form(u[k], R)) 198 | # constraints.append(x[k+1] == (A @ (x[k]) + B @ (u[k]))) 199 | # constraints.append(u <= u_bar) 200 | # constraints.append(u >= -u_bar) 201 | # constraints.append(x <= x_bar) 202 | # constraints.append(x >= -x_bar) 203 | # if X_f0: 204 | # constraints.append(x[N] == np.array([0, 0])) 205 | # objective = cvx.Minimize(cvx.sum(cost)) 206 | # prob = cvx.Problem(objective, constraints) 207 | # prob.solve() 208 | # u_new = u.value 209 | # if prob.status == cvx.OPTIMAL: 210 | # converged = True 211 | # # Note this is either -Inf or Inf if infeasible or unbounded 212 | # return converged, u_new 213 | 214 | # %% 215 | -------------------------------------------------------------------------------- /optim_grb.py: -------------------------------------------------------------------------------- 1 | # %% 2 | import numpy as np 3 | import pandas as pd 4 | import gurobipy as gp 5 | from gurobipy import GRB 6 | import matplotlib.pyplot as plt 7 | 8 | # Global vartiables(sizes): 9 | PV_ARRAY_SIZE_KW = 660 # kWAC rating of the PV array 10 | DIESEL_GEN_SIZE_KW = 1000 # kWAC rating of the diesel generator 11 | # Diesel fuel consumption coefficients from https://ieeexplore.ieee.org/document/8494571 12 | DIESEL_FUEL_CONS_A = 0.246 # Liters per kWh 13 | DIESEL_FUEL_CONS_B = 0.08415 # Liters per kW (rating) 14 | 15 | STORAGE_DURATION = 8 # Hours of storage duration at maximum power 16 | 17 | ESS_EFF_DISCHG = 0.95 # Efficiency of discharging ESS 18 | ESS_EFF_CHG = 0.95 # Efficiency of charging ESS 19 | #%% Obtain aggregate load 20 | # NOTE: Must run resi_data.py, building_data.py to obtain the following CSV files! 21 | residf = pd.read_csv('resi_load.csv', index_col=0) 22 | bldgdf = pd.read_csv('bldg_load.csv', index_col=0) 23 | 24 | residf = residf * 10 # 18 * 10 = 180 homes! 25 | residf_total = residf.sum(axis=1) 26 | loaddf = pd.concat([residf, bldgdf], axis=1) 27 | 28 | #Downscale hospital, school, market by 0.25 29 | loaddf.hospital = loaddf.hospital * 0.25 30 | loaddf.school = loaddf.school * 0.25 31 | loaddf.supermarket = loaddf.supermarket * 0 32 | 33 | agg_load = loaddf.sum(axis=1) 34 | 35 | ## Agg load stats: 36 | # count 35040.000000 37 | # mean 249.675353 38 | # std 163.964776 39 | # min 39.648000 40 | # 25% 98.862156 41 | # 50% 211.096125 42 | # 75% 398.983500 43 | # max 747.593000 44 | 45 | #%% Obtain aggregate PV 46 | # NOTE: Must run pv_data.py to obtain the following CSV file! 47 | pvdf = pd.read_csv('pv_gen.csv', index_col=0) 48 | 49 | # Upscale to PV array kWAC rating 50 | pvdf = pvdf * PV_ARRAY_SIZE_KW/pvdf.gen.max() 51 | 52 | # Agg pv stats: 53 | # count 35040.000000 54 | # mean 80.878783 55 | # std 119.749443 56 | # min 0.000000 57 | # 25% 0.000000 58 | # 50% 0.514689 59 | # 75% 146.658497 60 | # max 420.000000 61 | 62 | #%% 63 | ''' ~.~.~.~ optimization time ~.~.~.~ ''' 64 | # randomly (or not so randomly) select 7-day intervals to optimize the dispatch 65 | # first do for a set ESS size (500 kW, 950 kWh as in BLR Microgrid) 66 | 67 | # then make the ESS size a part of the function! 68 | # Constrain storage size to [min, max] and similarly power 69 | # Then find the optimum, and then find the closest "round" value and present those power flows 70 | # then add in degradation penalty 71 | 72 | load = agg_load.to_numpy() 73 | pv = pvdf.to_numpy() 74 | 75 | 76 | week_len = 4*24*7 77 | # week_start = 0 78 | week_start = 0 * week_len 79 | week_end = week_start + week_len 80 | 81 | # Try a different week in the year?? 82 | 83 | ld_wk1 = load[week_start:week_end] 84 | pv_wk1 = pv[week_start:week_end] 85 | 86 | # Fraction of the hour 87 | h = 15/60 88 | 89 | #%% 90 | plt.plot(ld_wk1) 91 | plt.plot(pv_wk1) 92 | #%% 93 | # Create a new model 94 | m = gp.Model('microgrid') 95 | 96 | # Create variables for: 97 | 98 | # ESS nominal energy and power 99 | # Assume a four-hour system 100 | # E_nom = 1500 # kWh 101 | # P_nom = 500 # kW 102 | P_nom = m.addVar(lb=200, ub=2000, vtype=GRB.CONTINUOUS, name='P_nom') 103 | E_nom = m.addVar(vtype=GRB.CONTINUOUS, name='E_nom') 104 | 105 | # each power flow 106 | # format: to_from 107 | pv_ess = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='pv_ess') 108 | pv_load = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='pv_load') 109 | pv_curtail = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='pv_curtail') 110 | ess_load = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='ess_load') 111 | dg_ess = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='dg_ess') 112 | dg_load = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='dg_load') 113 | load_curtail = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='load_curtail') 114 | 115 | ess_c = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='ess_c') 116 | ess_d = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='ess_d') 117 | 118 | #ESS binary variables for charge and discharge 119 | chg_bin = m.addMVar(week_len, vtype=GRB.BINARY, name='chg_bin') 120 | dch_bin = m.addMVar(week_len, vtype=GRB.BINARY, name='dch_bin') 121 | 122 | dg = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='dg') 123 | 124 | E = m.addMVar(week_len, lb=0, vtype=GRB.CONTINUOUS, name='E') 125 | 126 | m.addConstr(E[0] == 0.5 * E_nom) 127 | 128 | m.addConstr(E_nom == STORAGE_DURATION*P_nom) 129 | 130 | 131 | for t in range(week_len): 132 | # Power flow constraints 133 | m.addConstr(pv_wk1[t] == pv_ess[t] + pv_load[t] + pv_curtail[t]) 134 | m.addConstr(ld_wk1[t] == ess_load[t] + pv_load[t] + load_curtail[t] + dg_load[t]) 135 | m.addConstr(dg[t] == dg_load[t]) 136 | m.addConstr(ess_c[t] == pv_ess[t]) 137 | # m.addConstr(ess_c[t] == pv_ess[t] + dg_ess[t]) # uncomment to allow ESS to charge off of DG 138 | m.addConstr(ess_d[t] == ess_load[t]) 139 | 140 | # ESS power constraints 141 | m.addConstr(ess_c[t] <= P_nom * chg_bin[t]) 142 | m.addConstr(ess_d[t] <= P_nom * dch_bin[t]) 143 | 144 | m.addConstr(E[t] <= E_nom) 145 | 146 | # Time evolution of stored energy 147 | if t > 0: 148 | m.addConstr(E[t] == h*(ESS_EFF_CHG*ess_c[t-1] - ESS_EFF_DISCHG*ess_d[t-1]) + E[t-1]) 149 | 150 | # Ensure non-simultaneous charge and discharge across all time periods 151 | m.addConstr(chg_bin[t] + dch_bin[t] <= 1) 152 | 153 | # TODO: Turn this into an explicit multi-objective problem via setObjectiveN 154 | m.setObjective(h*DIESEL_FUEL_CONS_A*dg.sum() + load_curtail.sum() + P_nom, GRB.MINIMIZE) 155 | 156 | # # Degradation penalty as in AA_222_Final_Project.pdf, Equation 2 157 | # m.setObjective(h*DIESEL_FUEL_CONS_A*dg.sum() + load_curtail.sum() + P_nom + 0.00005*(ess_c@ess_c) + 0.00005*(ess_d@ess_d), GRB.MINIMIZE) 158 | 159 | # m.setObjective(load_curtail.sum(), GRB.MINIMIZE) 160 | 161 | # Maybe cannot use setObjectiveN because it only takes in linear objectives! 162 | # m.setObjectiveN(load_curtail.sum(), 0, 3) 163 | # m.setObjectiveN(h*DIESEL_FUEL_CONS_A*dg.sum(), 1, 2) 164 | # m.setObjectiveN(P_nom, 2, 1) 165 | # m.setObjectiveN((ess_c@ess_c), 3, 0) 166 | 167 | 168 | #%% Solve the optimization 169 | m.optimize() 170 | 171 | # #%% Get objective final value 172 | # m.getObjective().getValue() 173 | 174 | #%% Plot data! 175 | xvals = np.linspace(0,7,week_len) 176 | #%% ESS power flow 177 | plt.plot(xvals, -ess_c.getAttr('x')) 178 | plt.plot(xvals, ess_d.getAttr('x')) 179 | plt.legend(['Charge', 'Discharge'], bbox_to_anchor=(1.3, 0.6)) 180 | plt.xlabel('Time') 181 | plt.ylabel('Power (kW)') 182 | plt.grid() 183 | # plt.title('ESS Power (Discharge positive)') 184 | plt.figure(figsize=(10,10)) 185 | 186 | #%% DG power flow 187 | plt.plot(xvals, dg_ess.getAttr('x')) 188 | plt.plot(xvals, dg_load.getAttr('x')) 189 | plt.legend(['ESS', 'Load'], bbox_to_anchor=(1.35, 0.6)) 190 | plt.xlabel('Time') 191 | plt.ylabel('Power (kW)') 192 | plt.grid() 193 | plt.title('Diesel Power by End User') 194 | plt.figure(figsize=(10,10)) 195 | 196 | #%% PV power flow 197 | plt.plot(xvals, pv_load.getAttr('x')) 198 | plt.plot(xvals, pv_ess.getAttr('x')) 199 | plt.plot(xvals, pv_curtail.getAttr('x')) 200 | plt.legend(['Load', 'ESS', 'Curtailed'], bbox_to_anchor=(1.3, 0.6)) 201 | plt.xlabel('Days') 202 | plt.ylabel('Power (kW)') 203 | plt.grid() 204 | # plt.title('PV Power by End User') 205 | plt.figure(figsize=(10,10)) 206 | #%% Load power flow 207 | plt.plot(xvals, dg_load.getAttr('x')) 208 | plt.plot(xvals, pv_load.getAttr('x')) 209 | plt.plot(xvals, ess_load.getAttr('x')) 210 | plt.legend(['Diesel', 'PV', 'ESS'], bbox_to_anchor=(1.35, 0.6)) 211 | plt.xlabel('Time') 212 | plt.ylabel('Power (kW)') 213 | plt.grid() 214 | plt.title('Load Power by Source') 215 | plt.figure(figsize=(10,10)) 216 | 217 | # %% plot all relevant quantities on one plot! 218 | plt.plot(xvals, ld_wk1) 219 | plt.plot(xvals, pv_wk1) 220 | plt.plot(xvals, dg.getAttr('x')) 221 | plt.plot(xvals, ess_d.getAttr('x') - ess_c.getAttr('x')) 222 | plt.legend(['Load', 'PV', 'DG', 'ESS'], bbox_to_anchor=(1.25, 0.6)) 223 | plt.xlabel('Days') 224 | plt.ylabel('Power (kW)') 225 | plt.grid() 226 | # plt.title('Power Flow Summary') 227 | plt.figure(figsize=(10,10)) 228 | 229 | # %% plot all relevant quantities on one plot! 230 | plt.plot(xvals, pv_wk1) 231 | plt.plot(xvals, dg.getAttr('x')) 232 | plt.plot(xvals, ess_d.getAttr('x') - ess_c.getAttr('x')) 233 | plt.legend(['PV', 'DG', 'ESS'], bbox_to_anchor=(1.35, 0.6)) 234 | plt.xlabel('Time') 235 | plt.ylabel('Power (kW)') 236 | plt.grid() 237 | # plt.title('Power Generation Summary') 238 | plt.figure(figsize=(10,10)) 239 | # %% 240 | plt.plot(xvals , E.getAttr('x')) 241 | plt.xlabel('Days') 242 | plt.ylabel('Energy (kWh)') 243 | plt.grid() 244 | # plt.title('ESS Stored Energy Summary') 245 | plt.figure(figsize=(10,10)) 246 | 247 | # %% 248 | plt.plot(xvals, load_curtail.getAttr('x')) 249 | # %% 250 | -------------------------------------------------------------------------------- /pf_summary_4H_wk1_deg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/pf_summary_4H_wk1_deg.png -------------------------------------------------------------------------------- /pf_summary_4H_wk1_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/pf_summary_4H_wk1_nodeg.png -------------------------------------------------------------------------------- /pf_summary_4H_wk30_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/pf_summary_4H_wk30_nodeg.png -------------------------------------------------------------------------------- /pf_summary_8H_wk1_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/pf_summary_8H_wk1_nodeg.png -------------------------------------------------------------------------------- /pv_data.py: -------------------------------------------------------------------------------- 1 | """ 2 | Some data cleansing for the solar PV data. 3 | """ 4 | 5 | #%% 6 | import numpy as np 7 | import pandas as pd 8 | 9 | # 5 years of PV data 10 | pvdata = pd.read_csv('solar_PV_15min_kWh.csv') 11 | pv = pvdata[:8760*4] 12 | pv.set_index(pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T'), inplace=True) 13 | pv.drop(columns='Period Beginning (UTC -08:00)', inplace=True) 14 | pv.columns = ['gen'] 15 | #%% Save to CSV 16 | pv.to_csv("pv_gen.csv") 17 | # %% 18 | -------------------------------------------------------------------------------- /pv_summary_4H_wk1_nodeg.png: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/kevinrussellmoy/AA222FinalProject/5a8396afbbfe9a8ee9e269eea7f678fe586d02b8/pv_summary_4H_wk1_nodeg.png -------------------------------------------------------------------------------- /resi_data.py: -------------------------------------------------------------------------------- 1 | """ 2 | Some data cleansing for the residential data. 3 | """ 4 | #%% 5 | import numpy as np 6 | import pandas as pd 7 | import matplotlib.pyplot as plt 8 | import os 9 | from copy import deepcopy 10 | my_path = os.path.dirname(os.path.realpath(__file__)) 11 | 12 | #%% Load in data 13 | 14 | metadata= pd.read_csv("15minute_data_california/metadata.csv", date_parser=pd.to_datetime) 15 | 16 | loaddata = pd.read_csv("15minute_data_california/15minute_data_california.csv") 17 | loaddata = loaddata[['dataid', 'local_15min', 'grid']] 18 | # %% Filter for potential residential loads to use 19 | # Drop description row 20 | resi_md = metadata.drop(metadata.index[0]) 21 | 22 | # convert eGauge 1-minute data into datetime 23 | resi_md.egauge_1min_max_time = pd.to_datetime(resi_md.egauge_1min_max_time) 24 | resi_md.egauge_1min_min_time = pd.to_datetime(resi_md.egauge_1min_min_time) 25 | #%% 26 | # Filter out only california, without solar, with grid eGauge data greater than one year: 27 | resi_md = resi_md.loc[(resi_md.state == 'California') & (resi_md.grid == 'yes') & \ 28 | (resi_md.solar != 'yes') & (resi_md.egauge_1min_data_availability.str.strip('%').astype('float') == 100) & \ 29 | ((resi_md.egauge_1min_max_time - resi_md.egauge_1min_min_time).dt.days >= 365)] 30 | 31 | #%% Extract array of dataids for load data 32 | ids = resi_md.dataid.astype('int').to_numpy() 33 | # %% 34 | ld = loaddata[loaddata['dataid'].isin(ids)] 35 | ld_ids = ld.dataid.unique() 36 | # ld.local_15min = pd.to_datetime(ld.local_15min) 37 | # # ld.local_15min = pd.to_datetime(ld.local_15min) 38 | # ld = ld.set_index(['dataid', 'local_15min']) 39 | #%% 40 | 41 | resi_load = pd.DataFrame(index=pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T')) 42 | 43 | #%% Compile load data as 15-minute data for one year 44 | 45 | for loadid in ids: 46 | if loadid in ld_ids: 47 | coln = 'load' + str(loadid) 48 | print(coln) 49 | 50 | ld1 = ld.loc[(ld.dataid == loadid)] 51 | ld1.drop('dataid', axis=1, inplace=True) 52 | ld1['local_15min'] = ld1['local_15min'].astype(str).str[:-6] 53 | ld1['local_15min'] = pd.to_datetime(ld1['local_15min']) 54 | ld1.reset_index(inplace=True, drop=True) 55 | first = ld1.local_15min[0] 56 | 57 | rs = pd.date_range(start=first, periods=35040, freq='15T') 58 | 59 | ld1.set_index('local_15min', inplace=True) 60 | ld1 = ld1.reindex(rs, method='pad') 61 | 62 | ld1.reset_index(inplace=True) 63 | ld1['index'] = ld1['index'].apply(lambda x: x.strftime('%m-%d %H:%M')) 64 | ld1.set_index('index', inplace=True) 65 | 66 | ld1_sorted = ld1.sort_index() 67 | ld1_sorted.set_index(pd.date_range(start='2021-01-01 00:00', periods=35040, freq='15T'), inplace=True) 68 | # plt.plot(ld1_sorted.grid) 69 | # plt.show() 70 | 71 | resi_load[coln] = ld1_sorted.grid 72 | 73 | #%% Save to CSV 74 | resi_load.to_csv("resi_load.csv") 75 | #%% 76 | --------------------------------------------------------------------------------