├── CODE_OF_CONDUCT.md
├── LICENSE
├── README.md
└── notebooks
├── ContosoFruitSales2016.xlsx
├── ContosoFruitSales2017.xlsx
├── ContosoFruitSales2018.xlsx
├── ContosoFruitSales2019.xlsx
├── ContosoFruitSales2020.xlsx
└── Python 101 for MVPs.ipynb
/CODE_OF_CONDUCT.md:
--------------------------------------------------------------------------------
1 | # Contributor Covenant Code of Conduct
2 |
3 | ## Our Pledge
4 |
5 | We as members, contributors, and leaders pledge to make participation in our
6 | community a harassment-free experience for everyone, regardless of age, body
7 | size, visible or invisible disability, ethnicity, sex characteristics, gender
8 | identity and expression, level of experience, education, socio-economic status,
9 | nationality, personal appearance, race, religion, or sexual identity
10 | and orientation.
11 |
12 | We pledge to act and interact in ways that contribute to an open, welcoming,
13 | diverse, inclusive, and healthy community.
14 |
15 | ## Our Standards
16 |
17 | Examples of behavior that contributes to a positive environment for our
18 | community include:
19 |
20 | * Demonstrating empathy and kindness toward other people
21 | * Being respectful of differing opinions, viewpoints, and experiences
22 | * Giving and gracefully accepting constructive feedback
23 | * Accepting responsibility and apologizing to those affected by our mistakes,
24 | and learning from the experience
25 | * Focusing on what is best not just for us as individuals, but for the
26 | overall community
27 |
28 | Examples of unacceptable behavior include:
29 |
30 | * The use of sexualized language or imagery, and sexual attention or
31 | advances of any kind
32 | * Trolling, insulting or derogatory comments, and personal or political attacks
33 | * Public or private harassment
34 | * Publishing others' private information, such as a physical or email
35 | address, without their explicit permission
36 | * Other conduct which could reasonably be considered inappropriate in a
37 | professional setting
38 |
39 | ## Enforcement Responsibilities
40 |
41 | Community leaders are responsible for clarifying and enforcing our standards of
42 | acceptable behavior and will take appropriate and fair corrective action in
43 | response to any behavior that they deem inappropriate, threatening, offensive,
44 | or harmful.
45 |
46 | Community leaders have the right and responsibility to remove, edit, or reject
47 | comments, commits, code, wiki edits, issues, and other contributions that are
48 | not aligned to this Code of Conduct, and will communicate reasons for moderation
49 | decisions when appropriate.
50 |
51 | ## Scope
52 |
53 | This Code of Conduct applies within all community spaces, and also applies when
54 | an individual is officially representing the community in public spaces.
55 | Examples of representing our community include using an official e-mail address,
56 | posting via an official social media account, or acting as an appointed
57 | representative at an online or offline event.
58 |
59 | ## Enforcement
60 |
61 | Instances of abusive, harassing, or otherwise unacceptable behavior may be
62 | reported to the community leaders responsible for enforcement at
63 | email.
64 | All complaints will be reviewed and investigated promptly and fairly.
65 |
66 | All community leaders are obligated to respect the privacy and security of the
67 | reporter of any incident.
68 |
69 | ## Enforcement Guidelines
70 |
71 | Community leaders will follow these Community Impact Guidelines in determining
72 | the consequences for any action they deem in violation of this Code of Conduct:
73 |
74 | ### 1. Correction
75 |
76 | **Community Impact**: Use of inappropriate language or other behavior deemed
77 | unprofessional or unwelcome in the community.
78 |
79 | **Consequence**: A private, written warning from community leaders, providing
80 | clarity around the nature of the violation and an explanation of why the
81 | behavior was inappropriate. A public apology may be requested.
82 |
83 | ### 2. Warning
84 |
85 | **Community Impact**: A violation through a single incident or series
86 | of actions.
87 |
88 | **Consequence**: A warning with consequences for continued behavior. No
89 | interaction with the people involved, including unsolicited interaction with
90 | those enforcing the Code of Conduct, for a specified period of time. This
91 | includes avoiding interactions in community spaces as well as external channels
92 | like social media. Violating these terms may lead to a temporary or
93 | permanent ban.
94 |
95 | ### 3. Temporary Ban
96 |
97 | **Community Impact**: A serious violation of community standards, including
98 | sustained inappropriate behavior.
99 |
100 | **Consequence**: A temporary ban from any sort of interaction or public
101 | communication with the community for a specified period of time. No public or
102 | private interaction with the people involved, including unsolicited interaction
103 | with those enforcing the Code of Conduct, is allowed during this period.
104 | Violating these terms may lead to a permanent ban.
105 |
106 | ### 4. Permanent Ban
107 |
108 | **Community Impact**: Demonstrating a pattern of violation of community
109 | standards, including sustained inappropriate behavior, harassment of an
110 | individual, or aggression toward or disparagement of classes of individuals.
111 |
112 | **Consequence**: A permanent ban from any sort of public interaction within
113 | the community.
114 |
115 | ## Attribution
116 |
117 | This Code of Conduct is adapted from the [Contributor Covenant][homepage],
118 | version 2.0, available at
119 | https://www.contributor-covenant.org/version/2/0/code_of_conduct.html.
120 |
121 | Community Impact Guidelines were inspired by [Mozilla's code of conduct
122 | enforcement ladder](https://github.com/mozilla/diversity).
123 |
124 | [homepage]: https://www.contributor-covenant.org
125 |
126 | For answers to common questions about this code of conduct, see the FAQ at
127 | https://www.contributor-covenant.org/faq. Translations are available at
128 | https://www.contributor-covenant.org/translations.
129 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | MIT License
2 |
3 | Copyright (c) 2020 Keyur Patel - MSFT
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Python Intro For MVPs
2 |
3 | Hi folks, welcome to this repro for resources on MVPs to learn and explore Python and Notebooks. Here you'll find a simple notebook to help you get started and additional examples.
4 |
5 |
6 | ## Setup
7 | To get setup, we recommend you start with the [Anconda Distribution](https://www.anaconda.com/). This will install Python, Jupyter Notebooks and a set of popular third party libaries.
8 |
9 | After running setup, clone this repo, navigate to the folder and run the command `jupyter notebook`. You can then select one of the notebooks and try running them on your own.
10 |
11 | ## Tutorials
12 | - [Python LinkedIn Learning](https://www.linkedin.com/learning/topics/python?u=3322)
13 | - [Practical Business Python](https://pbpython.com/excel-pandas-comp.html) - great blog on how to use Python in business scenarios, and examples comparing Pandas to common Excel operations
14 | - [Excel and Python LinkedIn Learning](https://www.linkedin.com/learning/using-python-with-excel/managing-excel-with-python?u=3322)
15 | - [Monte Carlo Simulations](https://pbpython.com/monte-carlo.html)
16 | - [Matplotlib examples](https://matplotlib.org/3.2.0/gallery/index.html)
17 | - [Automate the boring stuff](https://automatetheboringstuff.com/)
18 |
19 | ## Python in Excel
20 | Today, you can try a various 3rd party libraries to work with Excel data in Python. Here are a couple that we found are being used by companies today:
21 |
22 | ### XLWings
23 | https://www.xlwings.org
24 |
25 | ### PyXLL
26 | https://www.pyxll.com
27 |
28 |
29 | ## Feedback/Questions
30 | Please send feedback directly to Keyur Patel (you should have my email :))
31 |
--------------------------------------------------------------------------------
/notebooks/ContosoFruitSales2016.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/keyur32/PythonIntroForMVPs/c5b935d30b454826232a6c2aa52e4b9fdd423d5e/notebooks/ContosoFruitSales2016.xlsx
--------------------------------------------------------------------------------
/notebooks/ContosoFruitSales2017.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/keyur32/PythonIntroForMVPs/c5b935d30b454826232a6c2aa52e4b9fdd423d5e/notebooks/ContosoFruitSales2017.xlsx
--------------------------------------------------------------------------------
/notebooks/ContosoFruitSales2018.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/keyur32/PythonIntroForMVPs/c5b935d30b454826232a6c2aa52e4b9fdd423d5e/notebooks/ContosoFruitSales2018.xlsx
--------------------------------------------------------------------------------
/notebooks/ContosoFruitSales2019.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/keyur32/PythonIntroForMVPs/c5b935d30b454826232a6c2aa52e4b9fdd423d5e/notebooks/ContosoFruitSales2019.xlsx
--------------------------------------------------------------------------------
/notebooks/ContosoFruitSales2020.xlsx:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/keyur32/PythonIntroForMVPs/c5b935d30b454826232a6c2aa52e4b9fdd423d5e/notebooks/ContosoFruitSales2020.xlsx
--------------------------------------------------------------------------------
/notebooks/Python 101 for MVPs.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "# Python 101 for MVPs \n",
8 | "Hello everyone. *Welcome to the Python tour at the Excel MVP Virtual summit*. \n",
9 | "\n",
10 | "First, this is a [juptyer](https://jupyter.org) notebook: \n",
11 | "\n",
12 | "The Jupyter Notebook is an open-source web application that allows you to create and share documents that contain live code, equations, visualizations and narrative text. Uses include: data cleaning and transformation, numerical simulation, statistical modeling, data visualization, machine learning, and much more.\n",
13 | "\n",
14 | "\n",
15 | "Let's explore some basics. Let's go!!\n"
16 | ]
17 | },
18 | {
19 | "cell_type": "code",
20 | "execution_count": 1,
21 | "metadata": {},
22 | "outputs": [
23 | {
24 | "name": "stdout",
25 | "output_type": "stream",
26 | "text": [
27 | "hello world\n"
28 | ]
29 | }
30 | ],
31 | "source": [
32 | "print(\"hello world\")"
33 | ]
34 | },
35 | {
36 | "cell_type": "code",
37 | "execution_count": 3,
38 | "metadata": {},
39 | "outputs": [
40 | {
41 | "data": {
42 | "text/plain": [
43 | "'Hello, Excel MVPS!!'"
44 | ]
45 | },
46 | "execution_count": 3,
47 | "metadata": {},
48 | "output_type": "execute_result"
49 | }
50 | ],
51 | "source": [
52 | "#create a function with input and call it\n",
53 | "def say_hello(recipient):\n",
54 | " s = 'Hello, {}!'.format(recipient)\n",
55 | " return s\n",
56 | "\n",
57 | "#call the function\n",
58 | "say_hello('Excel MVPS!')\n"
59 | ]
60 | },
61 | {
62 | "cell_type": "code",
63 | "execution_count": 4,
64 | "metadata": {},
65 | "outputs": [
66 | {
67 | "name": "stdout",
68 | "output_type": "stream",
69 | "text": [
70 | "We're on time 0\n",
71 | "We're on time 1\n",
72 | "We're on time 2\n"
73 | ]
74 | }
75 | ],
76 | "source": [
77 | "#loops\n",
78 | "for x in range(0, 3):\n",
79 | " print(\"We're on time %d\" % (x))"
80 | ]
81 | },
82 | {
83 | "cell_type": "markdown",
84 | "metadata": {},
85 | "source": [
86 | "# Data wrangling \n",
87 | "\n",
88 | "Python is the most \"typical\" language for data analysis (of course we know Excel's formula language is the worlds most popular programming language). One of the reasons is due to it's awesome set of libaries. One of the most common for working with data is called *Pandas*.\n",
89 | "\n",
90 | "[Pandas](https://pandas.org) is a open source, fast and powerful library at handling data. Pandas lets you work with data across a variety of artifacts, in Excel like fashions. At core is a datastructre called the data frame, which even looks like a grid!\n",
91 | "\n",
92 | ""
93 | ]
94 | },
95 | {
96 | "cell_type": "code",
97 | "execution_count": 5,
98 | "metadata": {},
99 | "outputs": [
100 | {
101 | "data": {
102 | "text/html": [
103 | "
\n",
104 | "\n",
117 | "
\n",
118 | " \n",
119 | " \n",
120 | " \n",
121 | " Name \n",
122 | " Age \n",
123 | " Sex \n",
124 | " \n",
125 | " \n",
126 | " \n",
127 | " \n",
128 | " 0 \n",
129 | " Braund, Mr. Owen Harris \n",
130 | " 22 \n",
131 | " male \n",
132 | " \n",
133 | " \n",
134 | " 1 \n",
135 | " Allen, Mr. William Henry \n",
136 | " 35 \n",
137 | " male \n",
138 | " \n",
139 | " \n",
140 | " 2 \n",
141 | " Bonnell, Miss. Elizabeth \n",
142 | " 58 \n",
143 | " female \n",
144 | " \n",
145 | " \n",
146 | "
\n",
147 | "
"
148 | ],
149 | "text/plain": [
150 | " Name Age Sex\n",
151 | "0 Braund, Mr. Owen Harris 22 male\n",
152 | "1 Allen, Mr. William Henry 35 male\n",
153 | "2 Bonnell, Miss. Elizabeth 58 female"
154 | ]
155 | },
156 | "execution_count": 5,
157 | "metadata": {},
158 | "output_type": "execute_result"
159 | }
160 | ],
161 | "source": [
162 | "#import the library into jupyter. Assumes libary has been pre-installled.\n",
163 | "import pandas as pd\n",
164 | "\n",
165 | "#pandas - simple example of creating a data frame from an array\n",
166 | "df = pd.DataFrame({\n",
167 | " \"Name\": [\"Braund, Mr. Owen Harris\",\n",
168 | " \"Allen, Mr. William Henry\",\n",
169 | " \"Bonnell, Miss. Elizabeth\"],\n",
170 | " \"Age\": [22, 35, 58],\n",
171 | " \"Sex\": [\"male\", \"male\", \"female\"]}\n",
172 | " )\n",
173 | "\n",
174 | "df.head()"
175 | ]
176 | },
177 | {
178 | "cell_type": "code",
179 | "execution_count": 8,
180 | "metadata": {},
181 | "outputs": [
182 | {
183 | "data": {
184 | "text/html": [
185 | "\n",
186 | "\n",
199 | "
\n",
200 | " \n",
201 | " \n",
202 | " \n",
203 | " account \n",
204 | " Product \n",
205 | " Sold \n",
206 | " Month \n",
207 | " \n",
208 | " \n",
209 | " \n",
210 | " \n",
211 | " 0 \n",
212 | " Contoso \n",
213 | " Apples \n",
214 | " 42438 \n",
215 | " October \n",
216 | " \n",
217 | " \n",
218 | " 1 \n",
219 | " Contoso \n",
220 | " Oranges \n",
221 | " 17318 \n",
222 | " October \n",
223 | " \n",
224 | " \n",
225 | " 2 \n",
226 | " Contoso \n",
227 | " Bananas \n",
228 | " 4684 \n",
229 | " October \n",
230 | " \n",
231 | " \n",
232 | " 3 \n",
233 | " Contoso \n",
234 | " Grapes \n",
235 | " 68786 \n",
236 | " October \n",
237 | " \n",
238 | " \n",
239 | " 4 \n",
240 | " Contoso \n",
241 | " Apples \n",
242 | " 84121 \n",
243 | " November \n",
244 | " \n",
245 | " \n",
246 | "
\n",
247 | "
"
248 | ],
249 | "text/plain": [
250 | " account Product Sold Month\n",
251 | "0 Contoso Apples 42438 October\n",
252 | "1 Contoso Oranges 17318 October\n",
253 | "2 Contoso Bananas 4684 October\n",
254 | "3 Contoso Grapes 68786 October\n",
255 | "4 Contoso Apples 84121 November"
256 | ]
257 | },
258 | "execution_count": 8,
259 | "metadata": {},
260 | "output_type": "execute_result"
261 | }
262 | ],
263 | "source": [
264 | "#get contoso sales from 2018, Q3\n",
265 | "df = pd.read_excel(\"ContosoFruitSales2018.xlsx\", sheet_name=\"Q4\")\n",
266 | "\n",
267 | "#return top 10 results\n",
268 | "df.head(5)\n",
269 | "\n"
270 | ]
271 | },
272 | {
273 | "cell_type": "code",
274 | "execution_count": 9,
275 | "metadata": {},
276 | "outputs": [
277 | {
278 | "data": {
279 | "text/html": [
280 | "\n",
281 | "\n",
294 | "
\n",
295 | " \n",
296 | " \n",
297 | " \n",
298 | " account \n",
299 | " Product \n",
300 | " Sold \n",
301 | " Month \n",
302 | " \n",
303 | " \n",
304 | " \n",
305 | " \n",
306 | " 0 \n",
307 | " Contoso \n",
308 | " Apples \n",
309 | " 71865 \n",
310 | " January \n",
311 | " \n",
312 | " \n",
313 | " 1 \n",
314 | " Contoso \n",
315 | " Oranges \n",
316 | " 92297 \n",
317 | " January \n",
318 | " \n",
319 | " \n",
320 | " 2 \n",
321 | " Contoso \n",
322 | " Bananas \n",
323 | " 23616 \n",
324 | " January \n",
325 | " \n",
326 | " \n",
327 | " 3 \n",
328 | " Contoso \n",
329 | " Grapes \n",
330 | " 15358 \n",
331 | " January \n",
332 | " \n",
333 | " \n",
334 | " 4 \n",
335 | " Contoso \n",
336 | " Apples \n",
337 | " 24189 \n",
338 | " February \n",
339 | " \n",
340 | " \n",
341 | " 5 \n",
342 | " Contoso \n",
343 | " Oranges \n",
344 | " 63779 \n",
345 | " February \n",
346 | " \n",
347 | " \n",
348 | " 6 \n",
349 | " Contoso \n",
350 | " Bananas \n",
351 | " 69531 \n",
352 | " February \n",
353 | " \n",
354 | " \n",
355 | " 7 \n",
356 | " Contoso \n",
357 | " Grapes \n",
358 | " 35509 \n",
359 | " February \n",
360 | " \n",
361 | " \n",
362 | " 8 \n",
363 | " Contoso \n",
364 | " Apples \n",
365 | " 76239 \n",
366 | " March \n",
367 | " \n",
368 | " \n",
369 | " 9 \n",
370 | " Contoso \n",
371 | " Oranges \n",
372 | " 72733 \n",
373 | " March \n",
374 | " \n",
375 | " \n",
376 | " 10 \n",
377 | " Contoso \n",
378 | " Bananas \n",
379 | " 81046 \n",
380 | " March \n",
381 | " \n",
382 | " \n",
383 | " 11 \n",
384 | " Contoso \n",
385 | " Grapes \n",
386 | " 78507 \n",
387 | " March \n",
388 | " \n",
389 | " \n",
390 | " 12 \n",
391 | " Contoso \n",
392 | " Apples \n",
393 | " 88487 \n",
394 | " April \n",
395 | " \n",
396 | " \n",
397 | " 13 \n",
398 | " Contoso \n",
399 | " Oranges \n",
400 | " 21380 \n",
401 | " April \n",
402 | " \n",
403 | " \n",
404 | " 14 \n",
405 | " Contoso \n",
406 | " Bananas \n",
407 | " 89342 \n",
408 | " April \n",
409 | " \n",
410 | " \n",
411 | "
\n",
412 | "
"
413 | ],
414 | "text/plain": [
415 | " account Product Sold Month\n",
416 | "0 Contoso Apples 71865 January\n",
417 | "1 Contoso Oranges 92297 January\n",
418 | "2 Contoso Bananas 23616 January\n",
419 | "3 Contoso Grapes 15358 January\n",
420 | "4 Contoso Apples 24189 February\n",
421 | "5 Contoso Oranges 63779 February\n",
422 | "6 Contoso Bananas 69531 February\n",
423 | "7 Contoso Grapes 35509 February\n",
424 | "8 Contoso Apples 76239 March\n",
425 | "9 Contoso Oranges 72733 March\n",
426 | "10 Contoso Bananas 81046 March\n",
427 | "11 Contoso Grapes 78507 March\n",
428 | "12 Contoso Apples 88487 April\n",
429 | "13 Contoso Oranges 21380 April\n",
430 | "14 Contoso Bananas 89342 April"
431 | ]
432 | },
433 | "execution_count": 9,
434 | "metadata": {},
435 | "output_type": "execute_result"
436 | }
437 | ],
438 | "source": [
439 | "#read excel file and combine all sheets into one frame\n",
440 | "df19 = pd.concat(pd.read_excel(\"ContosoFruitSales2019.xlsx\", sheet_name=None), ignore_index=True)\n",
441 | "\n",
442 | "#Get top 10\n",
443 | "df19.head(15)"
444 | ]
445 | },
446 | {
447 | "cell_type": "code",
448 | "execution_count": 12,
449 | "metadata": {},
450 | "outputs": [
451 | {
452 | "data": {
453 | "text/html": [
454 | "\n",
455 | "\n",
468 | "
\n",
469 | " \n",
470 | " \n",
471 | " \n",
472 | " Product \n",
473 | " Sold \n",
474 | " Month \n",
475 | " year \n",
476 | " \n",
477 | " \n",
478 | " \n",
479 | " \n",
480 | " 0 \n",
481 | " Apples \n",
482 | " 99570 \n",
483 | " January \n",
484 | " 2016 \n",
485 | " \n",
486 | " \n",
487 | " 1 \n",
488 | " Oranges \n",
489 | " 84034 \n",
490 | " January \n",
491 | " 2016 \n",
492 | " \n",
493 | " \n",
494 | " 2 \n",
495 | " Bananas \n",
496 | " 15058 \n",
497 | " January \n",
498 | " 2016 \n",
499 | " \n",
500 | " \n",
501 | " 3 \n",
502 | " Grapes \n",
503 | " 27598 \n",
504 | " January \n",
505 | " 2016 \n",
506 | " \n",
507 | " \n",
508 | " 4 \n",
509 | " Apples \n",
510 | " 70748 \n",
511 | " February \n",
512 | " 2016 \n",
513 | " \n",
514 | " \n",
515 | " 5 \n",
516 | " Oranges \n",
517 | " 1841 \n",
518 | " February \n",
519 | " 2016 \n",
520 | " \n",
521 | " \n",
522 | " 6 \n",
523 | " Bananas \n",
524 | " 8901 \n",
525 | " February \n",
526 | " 2016 \n",
527 | " \n",
528 | " \n",
529 | " 7 \n",
530 | " Grapes \n",
531 | " 62200 \n",
532 | " February \n",
533 | " 2016 \n",
534 | " \n",
535 | " \n",
536 | " 8 \n",
537 | " Apples \n",
538 | " 79989 \n",
539 | " March \n",
540 | " 2016 \n",
541 | " \n",
542 | " \n",
543 | " 9 \n",
544 | " Oranges \n",
545 | " 70740 \n",
546 | " March \n",
547 | " 2016 \n",
548 | " \n",
549 | " \n",
550 | " 10 \n",
551 | " Bananas \n",
552 | " 71115 \n",
553 | " March \n",
554 | " 2016 \n",
555 | " \n",
556 | " \n",
557 | " 11 \n",
558 | " Grapes \n",
559 | " 46715 \n",
560 | " March \n",
561 | " 2016 \n",
562 | " \n",
563 | " \n",
564 | " 12 \n",
565 | " Apples \n",
566 | " 23334 \n",
567 | " April \n",
568 | " 2016 \n",
569 | " \n",
570 | " \n",
571 | " 13 \n",
572 | " Oranges \n",
573 | " 41950 \n",
574 | " April \n",
575 | " 2016 \n",
576 | " \n",
577 | " \n",
578 | " 14 \n",
579 | " Bananas \n",
580 | " 39434 \n",
581 | " April \n",
582 | " 2016 \n",
583 | " \n",
584 | " \n",
585 | " 15 \n",
586 | " Grapes \n",
587 | " 92935 \n",
588 | " April \n",
589 | " 2016 \n",
590 | " \n",
591 | " \n",
592 | " 16 \n",
593 | " Apples \n",
594 | " 78823 \n",
595 | " May \n",
596 | " 2016 \n",
597 | " \n",
598 | " \n",
599 | " 17 \n",
600 | " Oranges \n",
601 | " 2032 \n",
602 | " May \n",
603 | " 2016 \n",
604 | " \n",
605 | " \n",
606 | " 18 \n",
607 | " Bananas \n",
608 | " 62869 \n",
609 | " May \n",
610 | " 2016 \n",
611 | " \n",
612 | " \n",
613 | " 19 \n",
614 | " Grapes \n",
615 | " 50047 \n",
616 | " May \n",
617 | " 2016 \n",
618 | " \n",
619 | " \n",
620 | " 20 \n",
621 | " Apples \n",
622 | " 6203 \n",
623 | " June \n",
624 | " 2016 \n",
625 | " \n",
626 | " \n",
627 | " 21 \n",
628 | " Oranges \n",
629 | " 4222 \n",
630 | " June \n",
631 | " 2016 \n",
632 | " \n",
633 | " \n",
634 | " 22 \n",
635 | " Bananas \n",
636 | " 65264 \n",
637 | " June \n",
638 | " 2016 \n",
639 | " \n",
640 | " \n",
641 | " 23 \n",
642 | " Grapes \n",
643 | " 44017 \n",
644 | " June \n",
645 | " 2016 \n",
646 | " \n",
647 | " \n",
648 | " 24 \n",
649 | " Apples \n",
650 | " 79551 \n",
651 | " July \n",
652 | " 2016 \n",
653 | " \n",
654 | " \n",
655 | " 25 \n",
656 | " Oranges \n",
657 | " 80975 \n",
658 | " July \n",
659 | " 2016 \n",
660 | " \n",
661 | " \n",
662 | " 26 \n",
663 | " Bananas \n",
664 | " 1135 \n",
665 | " July \n",
666 | " 2016 \n",
667 | " \n",
668 | " \n",
669 | " 27 \n",
670 | " Grapes \n",
671 | " 68736 \n",
672 | " July \n",
673 | " 2016 \n",
674 | " \n",
675 | " \n",
676 | " 28 \n",
677 | " Apples \n",
678 | " 35040 \n",
679 | " August \n",
680 | " 2016 \n",
681 | " \n",
682 | " \n",
683 | " 29 \n",
684 | " Oranges \n",
685 | " 69935 \n",
686 | " August \n",
687 | " 2016 \n",
688 | " \n",
689 | " \n",
690 | " ... \n",
691 | " ... \n",
692 | " ... \n",
693 | " ... \n",
694 | " ... \n",
695 | " \n",
696 | " \n",
697 | " 162 \n",
698 | " Bananas \n",
699 | " 81464 \n",
700 | " May \n",
701 | " 2019 \n",
702 | " \n",
703 | " \n",
704 | " 163 \n",
705 | " Grapes \n",
706 | " 51971 \n",
707 | " May \n",
708 | " 2019 \n",
709 | " \n",
710 | " \n",
711 | " 164 \n",
712 | " Apples \n",
713 | " 23855 \n",
714 | " June \n",
715 | " 2019 \n",
716 | " \n",
717 | " \n",
718 | " 165 \n",
719 | " Oranges \n",
720 | " 39505 \n",
721 | " June \n",
722 | " 2019 \n",
723 | " \n",
724 | " \n",
725 | " 166 \n",
726 | " Bananas \n",
727 | " 35115 \n",
728 | " June \n",
729 | " 2019 \n",
730 | " \n",
731 | " \n",
732 | " 167 \n",
733 | " Grapes \n",
734 | " 91640 \n",
735 | " June \n",
736 | " 2019 \n",
737 | " \n",
738 | " \n",
739 | " 168 \n",
740 | " Apples \n",
741 | " 70437 \n",
742 | " July \n",
743 | " 2019 \n",
744 | " \n",
745 | " \n",
746 | " 169 \n",
747 | " Oranges \n",
748 | " 54404 \n",
749 | " July \n",
750 | " 2019 \n",
751 | " \n",
752 | " \n",
753 | " 170 \n",
754 | " Bananas \n",
755 | " 29828 \n",
756 | " July \n",
757 | " 2019 \n",
758 | " \n",
759 | " \n",
760 | " 171 \n",
761 | " Grapes \n",
762 | " 40243 \n",
763 | " July \n",
764 | " 2019 \n",
765 | " \n",
766 | " \n",
767 | " 172 \n",
768 | " Apples \n",
769 | " 98316 \n",
770 | " August \n",
771 | " 2019 \n",
772 | " \n",
773 | " \n",
774 | " 173 \n",
775 | " Oranges \n",
776 | " 25846 \n",
777 | " August \n",
778 | " 2019 \n",
779 | " \n",
780 | " \n",
781 | " 174 \n",
782 | " Bananas \n",
783 | " 83626 \n",
784 | " August \n",
785 | " 2019 \n",
786 | " \n",
787 | " \n",
788 | " 175 \n",
789 | " Grapes \n",
790 | " 17399 \n",
791 | " August \n",
792 | " 2019 \n",
793 | " \n",
794 | " \n",
795 | " 176 \n",
796 | " Apples \n",
797 | " 15681 \n",
798 | " September \n",
799 | " 2019 \n",
800 | " \n",
801 | " \n",
802 | " 177 \n",
803 | " Oranges \n",
804 | " 78789 \n",
805 | " September \n",
806 | " 2019 \n",
807 | " \n",
808 | " \n",
809 | " 178 \n",
810 | " Bananas \n",
811 | " 35906 \n",
812 | " September \n",
813 | " 2019 \n",
814 | " \n",
815 | " \n",
816 | " 179 \n",
817 | " Grapes \n",
818 | " 93161 \n",
819 | " September \n",
820 | " 2019 \n",
821 | " \n",
822 | " \n",
823 | " 180 \n",
824 | " Apples \n",
825 | " 82440 \n",
826 | " October \n",
827 | " 2019 \n",
828 | " \n",
829 | " \n",
830 | " 181 \n",
831 | " Oranges \n",
832 | " 35805 \n",
833 | " October \n",
834 | " 2019 \n",
835 | " \n",
836 | " \n",
837 | " 182 \n",
838 | " Bananas \n",
839 | " 31209 \n",
840 | " October \n",
841 | " 2019 \n",
842 | " \n",
843 | " \n",
844 | " 183 \n",
845 | " Grapes \n",
846 | " 90637 \n",
847 | " October \n",
848 | " 2019 \n",
849 | " \n",
850 | " \n",
851 | " 184 \n",
852 | " Apples \n",
853 | " 1686 \n",
854 | " November \n",
855 | " 2019 \n",
856 | " \n",
857 | " \n",
858 | " 185 \n",
859 | " Oranges \n",
860 | " 62390 \n",
861 | " November \n",
862 | " 2019 \n",
863 | " \n",
864 | " \n",
865 | " 186 \n",
866 | " Bananas \n",
867 | " 18912 \n",
868 | " November \n",
869 | " 2019 \n",
870 | " \n",
871 | " \n",
872 | " 187 \n",
873 | " Grapes \n",
874 | " 74282 \n",
875 | " November \n",
876 | " 2019 \n",
877 | " \n",
878 | " \n",
879 | " 188 \n",
880 | " Apples \n",
881 | " 88092 \n",
882 | " December \n",
883 | " 2019 \n",
884 | " \n",
885 | " \n",
886 | " 189 \n",
887 | " Oranges \n",
888 | " 87054 \n",
889 | " December \n",
890 | " 2019 \n",
891 | " \n",
892 | " \n",
893 | " 190 \n",
894 | " Bananas \n",
895 | " 34707 \n",
896 | " December \n",
897 | " 2019 \n",
898 | " \n",
899 | " \n",
900 | " 191 \n",
901 | " Grapes \n",
902 | " 32648 \n",
903 | " December \n",
904 | " 2019 \n",
905 | " \n",
906 | " \n",
907 | "
\n",
908 | "
192 rows × 4 columns
\n",
909 | "
"
910 | ],
911 | "text/plain": [
912 | " Product Sold Month year\n",
913 | "0 Apples 99570 January 2016\n",
914 | "1 Oranges 84034 January 2016\n",
915 | "2 Bananas 15058 January 2016\n",
916 | "3 Grapes 27598 January 2016\n",
917 | "4 Apples 70748 February 2016\n",
918 | ".. ... ... ... ...\n",
919 | "187 Grapes 74282 November 2019\n",
920 | "188 Apples 88092 December 2019\n",
921 | "189 Oranges 87054 December 2019\n",
922 | "190 Bananas 34707 December 2019\n",
923 | "191 Grapes 32648 December 2019\n",
924 | "\n",
925 | "[192 rows x 4 columns]"
926 | ]
927 | },
928 | "execution_count": 12,
929 | "metadata": {},
930 | "output_type": "execute_result"
931 | }
932 | ],
933 | "source": [
934 | "#Get Contoso Sales for past 4 years\n",
935 | "all_data = pd.DataFrame()\n",
936 | "years = [\"2016\", \"2017\", \"2018\", \"2019\"]\n",
937 | "\n",
938 | "for year in years:\n",
939 | " #get sales by year\n",
940 | " df = pd.concat(pd.read_excel(\"ContosoFruitSales\" + year + \".xlsx\", sheet_name=None), ignore_index=True)\n",
941 | "\n",
942 | " #add a year column, and set it's value\n",
943 | " df[\"year\"] = year\n",
944 | " \n",
945 | " #append the year sales to master data frame\n",
946 | " all_data = all_data.append(df,ignore_index=True)\n",
947 | " \n",
948 | "#drop the account column\n",
949 | "all_data = all_data.drop(columns=[\"account\"])\n",
950 | "all_data"
951 | ]
952 | },
953 | {
954 | "cell_type": "markdown",
955 | "metadata": {},
956 | "source": [
957 | "# Data Visualizations\n",
958 | "You can use libraries to create custom data visualizations. Here we'll use a couple of popular libraries - matplotlib for basic charting and seaborn"
959 | ]
960 | },
961 | {
962 | "cell_type": "code",
963 | "execution_count": 13,
964 | "metadata": {},
965 | "outputs": [],
966 | "source": [
967 | "#import the libraries. Note: you many need to \"pip install \"\n",
968 | "%matplotlib inline \n",
969 | "\n",
970 | "#import matplotlib.pyplot as plt\n",
971 | "import seaborn as sns"
972 | ]
973 | },
974 | {
975 | "cell_type": "code",
976 | "execution_count": 14,
977 | "metadata": {},
978 | "outputs": [
979 | {
980 | "data": {
981 | "text/plain": [
982 | ""
983 | ]
984 | },
985 | "execution_count": 14,
986 | "metadata": {},
987 | "output_type": "execute_result"
988 | },
989 | {
990 | "data": {
991 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWIAAAFgCAYAAACBlHNxAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3de5gcd3ng++9b1d1zbY1G0oxlJDnWxCPGl+BgK4ATHUUBL8ghD2afo2xQsoth8bFCSESywcHJ4XLWSXbtB3II2gUiYQj2JgshSgLaDbbxBaH4xAKEfMFGgyRGBkm2NCNppLlPd1e954+q1vSMR5euqe7qnnk/zzNP9/y6uvs3pdbbv/pd3p+oKsYYY5LjJF0BY4xZ6CwQG2NMwiwQG2NMwiwQG2NMwiwQG2NMwlJJV6BWbNy4UR955JGkq2GMmX/kUgdYizh06tSppKtgjFmgLBAbY0zCLBAbY0zCLBAbY0zCLBAbY0zCLBAbY0zCLBAbY0zCLBAbY0zCLBAbY0zCKhaIReSLItIvIi+UlC0RkcdE5FB42x6Wi4hsE5HDIvK8iNxU8pw7wuMPicgdJeU3i8gPwudsExG52HsYY0ytqmSL+EvAxhll9wBPqGo38ET4O8BtQHf4cxfwOQiCKvBx4I3AG4CPlwTWz4XHFp+38RLvEbvdvf1s3rGXdfc/yeYde9nd21+ptzLGzGMVC8Squgc4M6P4duDB8P6DwDtLyh/SwF5gsYhcCbwNeExVz6jqIPAYsDF8bJGqPq3BFiMPzXit2d4jVrt7+/nYrhfpH55gcVOa/uEJPrbrRQvGJnHWQKg/1e4jvkJVXwEIbzvD8hXA0ZLjjoVlFys/Nkv5xd7jVUTkLhHZJyL7BgYGyvpDtu/pI+0KzZkUIsFt2hW27+kr63VMwIJHPKyBUJ9qZbButuxEGqG8LKq6Q1XXqurajo6Osp57dHCMprQ7rawp7XJscKzcaix4FjziYw2E+FSzcVDtQHwy7FYgvC3+ZceAVSXHrQRevkT5ylnKL/YesVrV3sypkUn6BkboPTFE38AIp0YmWdneXIm3m9cseMTHGgjxqHbjoNqBeBdQnPlwB/D1kvJ3h7Mn3gScC7sVHgXeKiLt4SDdW4FHw8eGReRN4WyJd894rdneI1a3dC1hYCRHzvNxBHKez8BIjlu6llTi7eY1Cx7xWdXezHjem1Y2nvesgVCmajcOKjl97cvA08BrReSYiLwPuA/4NyJyCPg34e8A3wD6gMPA54HfAVDVM8CfAt8Lf+4NywDeDzwQPufHwMNh+YXeI1ZP952hM5sh4zr4ChnXoTOb4em+meOT5lIseMRny/ou8p4yliugGtzmPWXL+q6kq1ZXqt04qNgOHaq6+QIPvWWWYxX4wAVe54vAF2cp3wfcMEv56dneI25HB8dY2tLAstbG0ve2VlwEW9Z38bFdLzKWK9CUdhnPexY8ItrQ08mmY2d54KkjjOY8WjIud65bzYaeC45Zm1msam+mf3iC5sxUiKxk46BWBuvqjrXi4rOhp5N733E9ndlGzo3n6cw2cu87rrfgEcHu3n527j9OR7aBa5dn6cg2sHP/cRv4LFO1ryxsz7qItqzv4u6dz3F8cJyC75NyHLKNKT769uuSrlpd2tDTaYE3BqV9mwDNmRRjuQLb9/TZ+S3Dhp5Obn72GLueP4HnK64jvON1yyt2Dq1FPAcKICAiIBHmzxkTMxv4jMe2xw/ytWdfwfOD/9Wer3zt2VfY9vjBiryfBeKItu/po60pTXdnlp7li+juzNLWlLYpVyZR1mUWj8986/CrGlYalleCBeKIjg6OUfD8afOIC55vLQ+TKJs1EY9Jb/br2wuVz5X1EUeUbUhxqH8E1xFcRyj4yvGzE3R3tiZdtbq0u7ef7Xv6ODo4xqr2Zras77I+zQg29HRyL8EV27HBMVbauawLFogjCmbcMdUxrDPKzWUrrmJKuzJtFdO9YAEkAhv4nLuMK+Rmaf1m3NmyK8yddU1ENJLzWLG4kZQreKqkXGHF4kZGc96ln2ymsSXOpta8/eeWl1U+V9Yijqg44burY6orYixXoDPbeJFnmdkcHRxjcVN6WpmN9JsknRjK0d6c4tx4AV/BEWhrSnFiKFeR97NAHNGW9V18aOdzHD87fn6eYWuDzSOOotqrmIy5lKODY6xY3MzK9qmuiEqunLWuiTnIez6TeZ+8p+Gtn3SV6pKN9JtaU+3sihaII7r/kV5GJz0yKYfGtEMm5TA66XH/I71JV63u2BJnU2tu6VrCyaFJRnNB3pPRnMfJocmKZVe0romI+k6N4gg4wZ6liICK0ndqNOGa1Scb6Te15O+/f2zWBR1///1jbL11TezvZ4HY1ASbR2xqybHBcSBoYBWpTpXHzbomIlq9tBlfwfcVVcX3FV+DclMe2yrJ1JoLrQao1CoBC8QR3XPbtSxuTiMOeKqIA4ub09xz27VJV63u2DxiU2ua0kFoVJ36KS2Pm3VNRLShp5NPbrrRlpLGwOYRx8u6eeZu4/VX8E/PvjJreSVYIJ4DG2CKh80jjo8tF4/HiaEcS5rTnB3Pn1/QsbgpXbEFHdY1YRJn84jjY9088Tg6OEa2MUVT2iXtCk1pl2xjyhZ0mPnL5hHHxxLDx6M143L87AQFT3FFKHhBdsWWjHvpJ0dgXROmJlg3TzysmyceUpy3JuEPgJaUx8xaxMbMI1vWd3FuPM+h/mF6TwxxqH+Yc+N56+Yp0/BkIciu6Aier6ScILviyGShIu9nLWJj5hkB0DA3tgqVacPNb9XOrmiB2NQEm3IVj+17+ljUlGZ5W9P5MtvFuXxb1nfxsV0vMpYr0JR2Gc97FR1AtkA8BxY84mFTruJzdHAMV6BvYISc55NxHZa1ZmywrkzV3nLKAnFEu3v72frl/YzkPHyFl8+O8+Lxs2zbfJMFjzKVTrkCaM6krBUXke2lGJ9qDiDbYF1EH/naDxiaDIIwgK8wNOnxka/9INmK1SGbchWfaXspFn+wvRRrnQXiiI6fmwCC7EzFn9Jyc/lWtTcznp++159NuYrG9lKsT9Y1EdGFGhjW8CifbTsVH9tLsT5Zizii5uKl9IxLwOZ0ZVbezHfTp1xhU64isuXi9ckCcUS//ctdODI9DjsSlJvyFKdcdV+R5dor2+i+IsuiprTlR4jAlovXJ+uaiKi4XcoDTx1hNOfRknG5c93qimyjMt9ZGsx42XLx+mOBeA623rrGAm8MLD+CWeisa8Ikzvo1zUJngdgkzvo1zUJngdjUFJv9ZxYi6yOeA8s1EY/dvf3cvfM5hicKFHyfU8OT3L3zOT6x6UY7n2ZBsEAckQWP+Nz/SC+DY3lcR0i5DqowOJbn/kd67VxGYA2E+mNdExEVg4dCEDyYCh6mPH2nRnEEHBEEwRHBkaDclKeYya5/eGJaJrvdvf1JV81chAXiiPpOjaKq5D2fybxP3vNRVQseJlG2eWh9skAckecrnk7lllAFT8H3bbipXKuXNuP5ykTeYzzvMZH38Hxl9VKbR1wuy2RXnywQR5R2g2wIM1JNkHItS0K5fvXnrmTm95evQbkpj2Wyq08WiCNKObMH3AuVmwt7uu8My9saaM644WW1y/K2Bp7uO5N01eqOLY6pTzZrIiIRwXWCLgnV0rzEFojLdXRwjKUtDSxrnUrVqKp2OR1Btbf4mc+qOfvEWsQRZVIODkLadWhIO6Td4PdMyk5puexyujJstCK6as8+sagRUXdnlmXZDClH8Hwl5QjLshm6O7NJV63ubFnfxdB4nkMnhznwyjkOnRxmaDxvl9MRFOe3P/PTQU6cG+eZnw5y987nbPpamao9+8QCcURb1neRdl2WtzXy2iuyLG9rJO26FjwiUoBi145Yay4qm98ej2rPPkkkEIvIH4jIiyLygoh8WUQaRWS1iHxHRA6JyN+JSCY8tiH8/XD4+NUlr/PHYfmPRORtJeUbw7LDInJPJf4GS1QTn+17+mhrStPdmaVn+SK6O7O0WWL4SGxxTDyq3V1W9UAsIiuArcBaVb0BcIF3AfcDn1LVbmAQeF/4lPcBg6p6DfCp8DhE5LrwedcDG4HPiogrIi7wGeA24Dpgc3hsxVjrbW5s7qupNdWefZJU10QKaBKRFNAMvAK8GdgZPv4g8M7w/u3h74SPv0WCqQm3A19R1UlVPQIcBt4Q/hxW1T5VzQFfCY+N1e7efj608zmeOTrIyaEJnjk6yIesLy4SG6yLz+qlzfjhwiJVxfcVX7HFMWWq9hVv1QOxqh4HPgn8lCAAnwO+D5xV1UJ42DFgRXh/BXA0fG4hPH5pafmM51yoPFb3PXyAs2N51AdXBPXh7Fie+x4+EPdbzXs29zU+99x2LYub04gDniriwOLmNPfcdm3SVatb1bjiTaJrop2ghboaeA3QQtCNMFPx759tYq5GKJ+tLneJyD4R2TcwMHCpqk9z5PQYoOR9n8mCT973AQ3LTTk29HSy6aYVDAxPcuDEMAPDk2y6aYX1t0ewoaeTT266kdevamf5okZev6qdT1pGwLJVe/paEgs6bgWOqOoAgIj8I/CLwGIRSYWt3pXAy+Hxx4BVwLGwK6MNOFNSXlT6nAuVT6OqO4AdAGvXri3ri8/3lYI/FfVVoaAg1mNctt29/ezcf5yObANXpV3G8x479x/ndSsXWwCJwDYPnbvte/rIFTxOjxTIeT4Z1yHbmGL7nr6KnNsk+oh/CrxJRJrDvt63AD8EvgVsCo+5A/h6eH9X+Dvh40+qqobl7wpnVawGuoHvAt8DusNZGBmCAb1dcf8R6dKFG3KBcnNZLGOYqTUHTw5xejRHwVNcEQqecno0x6GTQxV5v6q3iFX1OyKyE9gPFIBnCFql/wx8RUT+LCz7QviULwD/Q0QOE7SE3xW+zosi8lWCIF4APqCqHoCI/C7wKMGMjC+q6otx/x1NaYfJgofvh0ucAdeB5rQF4nIdHRxjcVN6WpnNmjBJynvBla0T5o4RCa6Cc15lrngTyTWhqh8HPj6juI9gxsPMYyeAX7/A6/w58OezlH8D+Mbca3pha65YxJFTIwxPTL90Wb2stZJvOy+tam+mf3iC5szUx9FmTZgkZVIO4zkPXxWRMN2tUrEUBtZ8i2jL+i4yqekr6zIpW1kXhc2aMLWm2ikMLBBHZCvr4mPn0tSaaqcwsEAcA5snER87l6YWVLtxIKr20Ydg+tq+ffsu+/jiPMO0KzSFU67ynlpLLgI7l2aeu2SScmsRR2RTruJj59IsdBaII7JENfGxc2kWOgvEEVmimvjYuTQLnQXiiGzKVXzsXJqFzjYPjcg2aYyPnUtTi7Y9fpAHnjrCaM6jJeNy57rVbL11TUXey2ZNhMqdNWGMmb+2PX6Qv3ziEH5JeHQEfv8t3VGCsc2aMMaYcv3Vnj78MIdMuI0ivgbllWCB2BhjZhjLhYPHxbaszCiPmfURm5qwu7ef7Xv6ODo4xirrIzYJKyb6mdlzK5fsZIjGWsQmcdXeDcGYS1nSNHsb9ULlc2Ut4jmwVlw8SlfWATRnUozlChXbDcGYS+lc1MSZseFpuU8kLK8EaxFHZLs4x8dW1plaMzxZ4KolTbRkXNKu0JJxuWpJEyOThUs/OQILxBHd9/ABBkdzTOZ98p4ymfcZHM3ZLs4R2Mo6U2tWtTeTch26OlrpWb6Iro5WUq5Tsc+kBeKIfnxqlOKuKcUOfE+DclMeW1kXr929/WzesZd19z/J5h177Sotgi3ruxgaz3Po5DAHXjnHoZPDDI3nLR9xrSmEUVgJR1dnlJvLt6Gnk5uvauOl02O88PIQL50e4+ar2qx/OAIb+IyPAghIOJG4kv+zLRBH5FxgGsuFys2FbXv8ILueP4Ej0JASHIFdz59g2+MHk65a3bGUovHYvqePtqY03Z1ZepYvorszS1tTumLn0QJxRBaI4/PAU0dAFc9XcoXgFtWg3JTFBj7jUe3zaNPXIlKE2S9WLBKXa2SycH45KQRdPX5Ybsqzqr3ZdhePQbV3FrcWcUSuI7gStICF4NYVcKxJXDYpjnZKyU9publst3QtYWAkR87zcQRyns/ASI5bupYkXbW6Uu0BZAvEEXUta0FESLsODWmHtOsgInQta0m6anWnOR18DItLSovLSovl5vI93XeGzmyGjOvgK2Rch85shqf7ziRdtbpS7QFk+6RH9OGNPbQ3pxGg4PkI0N6c5sMbe5KuWt25YcVi2ptT5/vXHYH25hQ3rFicbMXq0NHBMZa2NEyb/7q0pcH6iMtU7QFkC8QRbejp5BObbuT1V7VzZVsTr7+qnU9sutGmXEWwZX0X2cYMq5e1cMNrFrF6WQvZxozNI47AFsfE44GnjuAIpBwHR5zwlooNINtg3Rxs6Om0wBsD26EjPlvWd/GxXS8ylivQlHYZz3u2OCaC0ZxHakYz1ZGgvBKsRWxqii2HmZsNPZ3c+47r6cw2cm48T2e2kXvfcb19qZWpJeNO250DgsTwLRl39ifMkbWITeKKq8HSrkxbDXYvWACJwK7U5u7Odav59JOHKfjB7BNfg587162uyPtZIDaJszSY8bL0rHNX3JeuWpuHWiA2iTs6OMbipvS0MlsNFo1dXcRn661rKhZ4Z7JAbBJX7VVM89n2PX3kCh6nR6avrLOri/JV88rCButM4iwNZnwOnhzi9GiOgqe4IhQ85fRojkMnh5KuWl2pdhY7C8QmcTbSH5+8p/iq5H2fyYJP3vfxVclZetayVDuLnXVNmJpgI/3x8fwZCZQsBpet2uMW1iI2Zp5xZWrXGAmTUZnyVHuFogViY+aRtCs4jpB2HBpSDmnHwXGEjEXjslR73MK6JkxNsLmv8VhzxaJZ8hGnLR9xmaq97F5UrQMJYO3atbpv376kq7Eglc59Lc2PYAN25bNzWZMueTliXRMmcbbPWnxsBkp9sq6JObDL6XjYyrrKsGvd+mEt4ohs2/L4rGpv5tTIJH0DI/SeGKJvYIRTI5O2si4C+1zWJwvEEdnldHxsn7X4FJc4nzg3wY9ODnPi3AS5gmefywh29/azecde1t3/JJt37K3ol5kF4ohs2/L42D5r8bElzvGo9pWF9RFHZIlq4lPcZ21Za+P5MlW1L7UI8p7i+YqHojq1sMOWOJen2qlZrUUckSWqiY/tsxYfVT2fxFyZSmhu01TLU+0rXgvEEW3o6WTTTSsYGJ7kwIlhBoYn2XTTCps1EYF9qcVHRHCdYH81Ibh1naDcXD5b4lwndvf2s3P/cTqyDVy7PEtHtoGd+4/b6HQENvc1PpmUg4OQdh0a0g5pN/g9M3MnTHNRC2KJs4gsBh4AbiC4gvqPwI+AvwOuBl4C/p2qDkrwVf5p4FeBMeA9qro/fJ07gI+EL/tnqvpgWH4z8CWgCfgG8EGN+drMtveJl2Vfi0d3Z5aXTo8wND61xHlRS5qrl9oS53JUe4lzUoN1nwYeUdVNIpIBmoE/AZ5Q1ftE5B7gHuDDwG1Ad/jzRuBzwBtFZAnwcWAtQTD/vojsUtXB8Ji7gL0EgXgj8HCcf4AtQjC1aMv6Lj6260WWt6WmLXG2bp7yVbNxUPXrFRFZBKwHvgCgqjlVPQvcDjwYHvYg8M7w/u3AQxrYCywWkSuBtwGPqeqZMPg+BmwMH1ukqk+HreCHSl4rNjbAZGqRdfPUpyRaxF3AAPDXInIj8H3gg8AVqvoKgKq+IiLFT84K4GjJ84+FZRcrPzZL+auIyF0ELWeuuuqqsv6IYstjLFewloepKdbNU3+S6MFPATcBn1PV1wOjBN0QFzLbcK9GKH91oeoOVV2rqms7OjouXusZrOVhjIlLEi3iY8AxVf1O+PtOgkB8UkSuDFvDVwL9JcevKnn+SuDlsHzDjPLdYfnKWY6PnbU8TC2yZFTxmNe7OKvqCeCoiLw2LHoL8ENgF3BHWHYH8PXw/i7g3RJ4E3Au7MJ4FHiriLSLSDvwVuDR8LFhEXlTOOPi3SWvZcy8Zkl/4rFQljj/HvC34YyJPuC9BF8KXxWR9wE/BX49PPYbBFPXDhNMX3svgKqeEZE/Bb4XHnevqhaTE7yfqelrDxPzjIkia3mYWmPTKuNR7fOYSCBW1WcJpp3N9JZZjlXgAxd4nS8CX5ylfB/BHOWKKd0JofQb816wD7xJjE2rjIft4lwnLA2mqUU2rTIetsS5TlgazHhVM/frfGZ5O+JR7fNogTgia3nExwaY4mPTKuNR7fNo+YgjsgUd8SnuKnF6pHQL+JQNMM2RJb6cm3m9xHm+sJZHfGxXifjY1UV9shbxHNiCjnjkw90jHCdYFCkCvq+2q0QENn2tPlmL2CQuk3JAwVdFUXwNtpewHLrls0Hk+mSfdJO47s4srY0uec9nIu+T93xaG126O7NJV63u2CByfbJAbBJ3S9cShiY8XEdoSAmuIwxNeNzStSTpqtWdLeu7GBrPc+jkMAdeOcehk8MMjedtELnGWSA2iXu67wyd2QwZ18FXyLgOndkMT/edufSTzasogIT71InNnqgHNlg3B9seP8gDTx1hNOfRknG5c91qtt66Julq1Z2jg2MsbWlgWWvj+TJVtX7NCLbv6aOtKc2VbU3ny2ywrvZZiziibY8f5NNPHmY875Fygn64Tz95mG2PH0y6anXH+jXjY4N19ckCcUQPPHUERyDlODjihLdBuSmPLcuNj32p1ScLxBGN5jycGXuBOBKUm/LY4pj42JdafbI+4ohaMsGy5tJg7GtQbspni2PiUe1t4OezauYbv2ggFpH/xkUGXVV1a+w1qhN3rlvNp588TMH3cSQIwr4G5cYkyb7U5q7a+cYv1TWxj2CX5UaCDT8PhT8/Dyzoa/Ctt67hg2++hqa0S8EPBkQ++OZrbNaEMfNAtfONX7RFrKoPAojIe4BfUdV8+PtfAd+sSI3qyNZb11jgNTXHtvCau1rdoeM1QOl609awzBhTQyz7WjxqdYeO+4BnRORLIvIlYD/wXypSI2NMZLaFVzyqvVT8smZNqOpfi8jDwBvDontU9URFamSMiezo4BiuQN/AyPkk+8taM7agI4JqLhW/1KyJm2YUHQ1vXyMir1HV/ZWpljEmimxDikP9I7hOkDyp4CvHz07Q3dmadNXqSrWXil+qRfwXF3lMgTfHWBdjzByphu22YvNNZ5Sby1LtwbpLzZr4lYq8qzGmIkZyHisWN3JqJHe+a2J5a4Ot+CzTqvZm+ocnzu90ApUdrLusPmIRSQPvB9aHRbuB7cXpbMbMlU25ikcxgHR1THVFjOUKdGYbL/IsM1O1Nwe+3FkTnwNuBj4b/twclhkzZzblKj6WGD4e1c5/crm5Jn5BVW8s+f1JEXmuEhUyC8/2PX3kPY/TI4Xzl9OLmlKWQzciSwwfr2qcv8ttEXsi8rPFX0SkiwW+xNnE51D/MKeGcxR8PT/Sf2o4x6H+4aSrVneKo/3dnVl6li+iuzNLW1Pa5hGXqdpXaZfbIr4b+JaIFP81rwbeW5EamQUnV/BBwJEglZ0I+KJBuSlLtUf756vShTEAzZlURaevXbRFLCK/ICLLVfUJoBv4R2CIIM+EdU2YWKTdIAD7vqKq+H5wMZhx5WJPM7OwxPDxODo4RsHz6RsYoffEEH0DIxQ8P7FcE9uBXHj/jcA9wIPASWBHRWpkFpw1VyxiaUuGlCt4qqRcYWlLhu4rFiVdtbpjieHjkW1IcfzsxLTusuNnJ2htqEwK90sFYldVi1vp/gawQ1X/QVU/ClxTkRqZBWfL+i4yKZflbY289oosy9sayaRcCx4R2G4n8Zi2MKb4Q+UWxlwqvLsiklLVAvAW4K4ynmvMZbFdJeJlieHnrtoLYy4VTL8MfFtETgHjwL8AiMg1wLmK1MgsaDbVytSCai+MuWjXhKr+OfCHwJeAdTrVLneA36tIjcyCYws6TK3Zsr6Lc+N5DvUP03tiiEP9w5xLMg2mqu6dpexgRWpjFqRqTxUy5nIIgIb9wipUcg7P5S7oMKZijg6O0ZSevvu1zX01Sdq+p4+UG6QSFQluU0ntWWdMNaxqb+bIqRGGJ6aWOGcbU6xeZjl0TTIO9Q9zbiyPU5LX+dRwjrxXmdWeFohN4m7pWsJ3XzqDI+AI5DyfgZEcv/mGJUlXrS5ZJru5q/ZqT+uaMIl7uu8MndkMGdfBV8i4Dp3ZDE/3nbn0k800NvAZj7QreL4ykfcYz3tM5D08Xyu22tNaxCZxRwfHWNrSwLLWqalBqmp9xBHYwGc8OlobODuWnzadUoBlrQ0VeT8LxHNgl4DxsD7i+FjSn3iIBIN0GVcQAVXwfA1Si1aAdU1EZJeA8bmlawn9w5OM5oJdEEZzHv3Dk9zSZX3E5bKkP/EYniywYnEjKSfookg5worFjYxMFiryfhaIIyq9BBQJbtMVnN4ynz38wgmEYECk9PbhF04kXLP6Y0l/4rGqvZmU69DV0UrP8kV0dbSScp2KfaFZII7I5r7Gp+/UKK4jNKZcGtMujSkX1xH6To0mXbW6Y0l/4lHtLzTrI46o2ru8GnO5LOnP3FU7EZUF4oi2rO/i7p3PcXxwnILvk3KCAaaPvv26pKtWd1YvbebwwCji6/mBEV/hmmX2pWaSU80vtMS6JkTEFZFnROR/h7+vFpHviMghEfk7EcmE5Q3h74fDx68ueY0/Dst/JCJvKynfGJYdFpF7KvU32CaN8bjntmtpSjvkfZ+Jgk/e92lKO9xz27VJV80sYLt7+9m8Yy/r7n+SzTv2VnQgPsk+4g8CB0p+vx/4lKp2A4PA+8Ly9wGDqnoN8KnwOETkOuBdwPXARuCzYXB3gc8AtwHXAZvDY2O1fU8fKUdww+ksrggpxwbrompMu2Rch5QTLOhonNH/bkw1VXtWVCKBWERWAm8HHgh/F+DNwM7wkAeBd4b3bw9/J3z8LeHxtwNfUdVJVT0CHAbeEP4cVtU+Vc0BXwmPjdXBk0OcHs1R8BRXhIKnnB7NcejkUNxvNe9t39OH60xPsOLal1pk1WzJzVfVnhWVVIv4L4E/AooLt5cCZ8OdQACOASvC+yuAowDh4+fC48+Xz3jOhcpjlfeCjggnDB6OE7SMc551UJTLvtTiY/Pb41HtWZrCXZYAABtvSURBVFFVD8Qi8mtAv6p+v7R4lkP1Eo+VWz5bXe4SkX0ism9gYOAitX61TMoBBV8VRfFVQcNyUxb7UouPzW+PR7UXxiQRNX4JeIeIvETQbfBmghbyYhEpzuJYCbwc3j8GrAIIH28DzpSWz3jOhcpfRVV3qOpaVV3b0dFR1h/R3ZllWTYzbeXNsmyG7s5sWa9j7EstTja/PR7Vnkdc9U+6qv6xqq5U1asJBtueVNXfAr4FbAoPuwP4enh/V/g74eNPhls27QLeFc6qWA10A98Fvgd0h7MwMuF77Ir779iyvou0O33n4bRrOw9HYV9q8bElzvHY0NPJpptWMDA8yYETwwwMT7LpphUVm85WS02ODwP/SUQOE/QBfyEs/wKwNCz/T8A9AKr6IvBV4IfAI8AHVNUL+5F/F3iUYFbGV8NjY1Xtf6j5zL7U4mNLnOOxu7efnfuP05Ft4NrlWTqyDezcf7xife0ytR/owrZ27Vrdt2/fZR9fHBRJu0JT2mU8HySsseWk0RQz2VVjFdN8Z+dy7jbv2PuqlbPFXZy/fNebyn25S6Zss5V1EVne13jZstz42Lmcu2qnE62lrom6YoMixsxfC2HWxLxggyLGzF+Wfa1ObFnfxcd2vchYrjCtj9gGRaKx3U7iY+dy7jb0dLLp2FkeeOoIozmPlozLnetWL4hZE3VlQ08nN1/Vxkunx3jh5SFeOj3GzVe12Qc+gt29/Wz98n6+c+Q0xwbH+c6R02z98n5bDRaBrayLx+7efh7a+xNynn9+Z/GH9v5kfuWamA+2PX6QXc+fwBFoSAmOwK7nT7Dt8YNJV63ufORrP2Bo0sMPJ/D4CkOTHh/52g+SrVgd2r6nj7znceLcBD86OcyJcxPkPc9W1pXpvocPBJuH+kFCL/Xh7Fie+x4+cOknR2CBOKIHnjoCKJ6v5ArBLWhYbspx/NwEEG6RFP6UlpvLd6h/mFPDOQq+4jpCwVdODec41D+cdNXqypHTYzgyfdm9I0F5JVgfcUQjkwV8DScIliQzr9TmgvPZhaay2xT38uUKPp4qnqeoTn2p5Qr+xZ9oEmUt4ojOb6tdnKotM8rNZWsuTgPUkp/ScnPZfPXxw0aBwtR9tUBcjq5lLeG5m8p/4mtQXgkWiCNqSgcBV3XqB6A5bYG4XL/9y104Mj0OOxKUm/I44uBKcP6E4NYVELH/6uX48MYeWhpccgWfibxPruDT0uDy4Y09FXk/+9eJ6OdWtLO4KUWYsRFHYHFTihtWtCdbsTq09dY13H7jlbjhyXQd4fYbr2TrrWsSrln9yaScWVvElsmufGnXoSHtkHYlvK3cObR/nYi2rO9iUVOG1ctauOE1i1i9rIVFTRmbRxzB7t5+njjQTzHviaryxIF+m3IV0cyudetqL9/2PX20NaXp7szSs3wR3Z1Z2prS826Hjrq3oaeTe99xPZ3ZRs6N5+nMNlrCn4hs+lp8To/kyio3szs6OEbB8+kbGKH3xBB9AyMUPL9iKQxs1sQcWHKVeJROXytStelrUVyo9Wut4vK0ZlwOD4ziipzfvuv42Qmu6bDBOjNP2fS1+BT72WfOyS6Wm8szbVZU8YfKzYqyQGwSZ9PX4vOO1y0HXj2bp1huLs/wZIEVixun7RqzYnFjxdYJWCA2ibPpa/H51Ltu4pbV02fu3LK6nU+966aEalSfVrU3k3Idujpa6Vm+iK6OVlKuY2kwzfy19dY1/P5bulnUmMJ1hEWNKX7/Ld02fS2C3b39HD83yc92BLN5frajhePnJm0GSpmqnQbTtkoKlbtVkjG1KOYtfha0GLecsq2SjFlIjg6O4Qr0DYyQ83wyrsOy1oztHBNBNWdFWSA2NcGSmccj25Di4MlhfACFgu9xbHCcNVdkk66auQjrIzaJ293bz4d2PsczRwc5OTTBM0cH+dDO56xfM4Lh8RxeccYEwa2nQbmpXRaITeKqnYR7PhsYzc+a9GdgNJ901cxFWNeESVxpEm4IFiGorxVLwm3M5ahmd5kF4jmwfk1TazqzDRwdHD8/TK8KPvCabEOS1ao7xb3/0q5M2/vvXqjI/3HrmojINmmMT7WTcM9nLRl31sUxLRlbpViOau/9Z4E4ou17+ki7QnMmhUhwm3bFNmmM4MMbe2hvTiNAwfMRoL05XbEk3PPZqdEclGyRJAJoWG4uW7X3/rOuiYiODo6xuCk9rawp7dp8zQg29HTyiU03xjV5fkHLFXxcV0g5U22sgu/bnnVlyhV8fKbv/SdSub3/LBBHtKq9+VUrmMbzXsXWos93llI0HmlXGM+D72sw6BkunM24ln2tHKqK55f+DihUaiWydU1EVO216MZcjjVXLGJpS4aUK3iqpFxhaUuG7isWJV21uiIiwUyekmmAjlgazJpjO3SYWrRlfReZlMvytkZee0WW5W2NZFKuNRDKlHYF1xHSjkNDyiHtOLiOVOzKwrom5sAup02t2dDTyb1g/e1ztOaKRRw5NcLwROF8zo5sY5rVy1or8n4WiE1NsDnZ8bEGwtxtWd/Fx3a9yPK2FE1pl/G8V9GuR+uaMImzOdmm1lS769FaxCZxpXOyAZozKcZyBbbv6bOWnUlMNa8srEVsEnd0cIymGfvT2Zxss5BYi3gOtj1+kAeeOsJozqMl43LnutW2vU8ENifb1KJqjltYiziibY8f5FOPH2J4ooDnK8MTBT71+CG2PX4w6arVHZuTbWpNtcctLBBH9Llv/7h05/fz9z/37R8nV6k6ZXOy47W7t5/NO/ay7v4n2bxjrw16RlDtXDLWNRHReH72NecXKjcXZ1Ou4lHt9I3zVbVzyVggNjXB5hHHw2agxKPa4xbWNRHRhRY6WmqV8tk84vjYDJR4VHvcwgKxSZzldo7PqvZmxvPetDKbgVI+W9BRJ7KNKUYmCwDn85UCtDbYKS2X5XaOz5b1Xdy98zmOD45T8H1SjkO2McVH335d0lWrO7agow7cuW41IkGGpkwquBUR7ly3Oumq1Z1V7c2cGpmkb2CE3hND9A2McGpk0lpxEU3mPXKeT8GHnOczOaOFbGqPBeKItt66hg+++Rqa0i4FP2jBffDN19iCjghu6VrCwEiOnOfjSBA8BkZy3NK1JOmq1Z37H+llLO+Tdh0a0w5p12Es73P/I71JV81chF1Hz8HWW9dY4I3B031n6MxmGBqfSjm4qCnF031n2Jp05epM36nRMIl50FcmAipK36nRhGtmLsYCsUnc0cExlrY0sKy18XyZqlofsVkwqt41ISKrRORbInJARF4UkQ+G5UtE5DERORTetoflIiLbROSwiDwvIjeVvNYd4fGHROSOkvKbReQH4XO2SaX2NzGxsJH++Kxe2oyvwZ51qorvK74G5aZ2JdFHXAD+UFWvBd4EfEBErgPuAZ5Q1W7gifB3gNuA7vDnLuBzEARu4OPAG4E3AB8vBu/wmLtKnrexCn+XichyTcTnntuuZXFzGnHAU0UcWNyc5p7brk26auYiqh6IVfUVVd0f3h8GDgArgNuBB8PDHgTeGd6/HXhIA3uBxSJyJfA24DFVPaOqg8BjwMbwsUWq+rQGW64+VPJapgZZron4bOjp5JObbuT1q9pZvqiR169q55ObbrRzWeMS7SMWkauB1wPfAa5Q1VcgCNYiUvzkrACOljztWFh2sfJjs5TP9v53EbScueqqq+b2x5g5sVwT8avMxu+mEhKbviYircA/AL+vqkMXO3SWMo1Q/upC1R2qulZV13Z0dFyqysbUPFsuXp8SCcQikiYIwn+rqv8YFp8MuxUIb4ufnGPAqpKnrwRevkT5ylnKjZn3bLl4fUpi1oQAXwAOqOr/W/LQLqA48+EO4Osl5e8OZ0+8CTgXdmE8CrxVRNrDQbq3Ao+Gjw2LyJvC93p3yWsZM69Z0p/6lEQf8S8B/wH4gYg8G5b9CXAf8FUReR/wU+DXw8e+AfwqcBgYA94LoKpnRORPge+Fx92rqmfC++8HvgQ0AQ+HP8bMe7btVH2SYGKBWbt2re7bty/paixYlo84HqWJ4ZvSLuN5j7ynNgslghg/k5dcx2C5JkzibIApPht6Orn5qjZeOj3GCy8P8dLpMW6+qs2CcJl29/Zz987neOang5w4N84zPx3k7p3P2Z51Zv6yAab4bHv8ILueP4Ej0JASHIFdz5+wTW3LdP8jvZwZzTFZCLLYTRZ8zozmKpY8yQKxSZwNMMXngaeO4AikHAdHnPA2KDeX73D/CF7Ya1tMkOBpUF4JlvRnDrY9fpAHnjrCaM6jJeNy57rVlo0tAhtgis9oziM1o3nlSFBuLl+hOHZW7N0VQEvKY2Yt4oi2PX6QTz95mPF88MEfz3t8+snDdgkYgeWaiE9LxsWfESt8DcrN5XPDAKw69VNaHjcLxBHZJWB8LNdEfO5ctxrPV8bz3vkfz1fbOaZMy7MNZZXPlXVNRGSXgPGyXBPxeN3KxbRkXEZzHr4Gn8mWjMvrVi5Oump1JduUwR2axIfziROcsLwSLBBH1JIJ5mg6JZcqdglokrZ9Tx+dixqn9beP5Qps39NnX3RlGJ4ssLK9iVPhFl4Z12FZa+b8hsFxs66JiO5ctxpfoeD7+OqHt9gloEmUzUCJx6r2ZlKuQ1dHKz3LF9HV0UrKdSo2gGyBOCLbPNTUItvtJB7VHkC2Jc4hW+Js5gNb4hyf4hLnY4NjrLQlzsaYy2UzUOJXjaaqtYhD1iI2xhTFfGVxyRaxzZowZp6xTHZzV5r/BKA5k6ro7BMLxKYmWPCIR2lLrjST3b1g57MMRwfHWNyUnlZWydkn1kdsEmdpMONjmeziUe3ZJxaI52B3bz+bd+xl3f1PsnnHXgscEVnwiI/NI45HtaevWSCOyFpx8bHgER+bRxyPDT2dbLppBQPDkxw4MczA8CSbblpRse4dC8QRWSsuPhY84mOZ7OKxu7efnfuP05Ft4NrlWTqyDezcf9x26Kg11oqLz5b1XQyN5zl0cpgDr5zj0MlhhsbzFjwisHnE8ah2Q8tmTURkyczjpQACIgJSnUn085Vlspu7o4NjuAJ9AyPTkv7YrIkaY5eA8dm+p4+2pjTdnVl6li+iuzNLW1PaunlMYrINKY6fnaDgK64jFHzl+NkJWhsq03a1QByRXQLGx7p5TK05v+JYS35Ky2NmXRNzYJeA8bBunnjZ4pi5G8l5rFjcOC0f8fLWhopt/GAtYpM46+aJj02rjIflIzYLjnXzxMemVcaj2o0D65owNcG6eeJR7RwJ89WGnk7uhbjyEV+SBWJj5hHrb49PNRsH1jVhzDxi/e31yQKxMfOI9bfXJ+uamAObJmRqkfW31x9rEUdk04SMMXGxQByRTRMyxsTFAnFEtizXGBMX6yOOyKYJmVplYxf1x1rEEdk0IVOLbOyiPlmLOKINPZ1sOnaWB546wmjOoyXjcue61dbyiMhacfGo9jbwJh7WIo6o2lupzGfWiouPjV3UJwvEEdmsifhs39NHruBx4twEPzo5zIlzE+QKnp3LCGz/v/pkgTiio4NjFDyfvoERek8M0TcwQsHzreURwcGTQ5wezVHwFFeEgqecHs1x6ORQ0lWrOzZ2UZ8sEEdU7a1U5rO8F+x64DiCiOA4AkDOs53rymVLnOuTRY2Ipm2lUnJbqa1U5rNMymFkokDB91AFERCFTJO1E6KwJc71xz7pEY3kPNqbU+R9n4mCT973aW9OVWwrlflsWUsm2Bbs/JdZ8L22rCWTZLWMqRprEUeUbUjx8uA4GlxFo8DpkTyvXd6YaL3q0anRHDOvIzQsN+WzqYD1x1rEEQ2P5/CZ3orzw3JTntMjs5+zC5WbC9vd28/dO5/jmZ8OcuLcOM/8dJC7dz5nUwFrnAXiiAZG86QccASE4DblBOWmPMXWsMjUT2m5uXz3P9LL4FgeBVKugwKDY3nuf6Q36aqZi7CuiTlwREi7U99lnu8nWJv61ZR2GM/7zBznbEpbO6FcfadGUVXynk4NfIblpnbN20+6iGwUkR+JyGERuSfu1+9a1oKv4KuiKL4qvgblpjzv/+WfRQgCBuGthOWmPJ6veDq9y8xT8H27vqhl8zIQi4gLfAa4DbgO2Cwi18X5Hh/e2EN7cxoBCp6PAO3NaT68sSfOt1kQtt66hj+4tZtsYwrXEbKNKf7g1m623rom6arVnbQbfJ1pyQ9AypULPcXUgPnaNfEG4LCq9gGIyFeA24EfxvUGG3o6+cSmG6u23fZ8t/XWNRZ4Y9DSkGIyn0OFaXOyW2yhUU2br/86K4CjJb8fA94Y95vYxHlTa7o7s7zkjjA0XiDn+WRch0VNKa5e2pp01cxFzMuuCaa6G0u9qpNMRO4SkX0ism9gYKAK1TKmsras7yLtuixva+S1V2RZ3tZI2nUt10SNm6+B+BiwquT3lcDLMw9S1R2qulZV13Z0dFStcsZUiuWaqE/ztWvie0C3iKwGjgPvAn4z2SoZUx3WZVZ/5mUgVtWCiPwu8CjgAl9U1RcTrpYxxsxqXgZiAFX9BvCNpOthjDGXMl/7iI0xpm5YIDbGmIRZIDbGmIRZIDbGmIRZIDbGmIRZIDbGmIRZIDbGmISJ7TocEJEB4CcRn74MOBVjdRYyO5fxsXMZj7mex1OquvFiB1ggjoGI7FPVtUnXYz6wcxkfO5fxqMZ5tK4JY4xJmAViY4xJmAXieOxIugLziJ3L+Ni5jEfFz6P1ERtjTMKsRWyMMQmzQGyMMQmzQBwSkX8rIioiPXN4jS+JyKY461XrRGSliHxdRA6JyI9F5NMikkm6XvVGRDwReVZEnhOR/SLyi0nXab4QkStE5H+KSJ+IfF9EnhaRf5t0vUpZIJ6yGXiKYFslcxlERIB/BL6mqt3AGqAV+PMZx83bDQhiNK6qP6+qNwJ/DPzXpCs0H4Sf0a8Be1S1S1VvJvg/vnLGcYl+Ri0QAyLSCvwS8D7CQCwiG0Rkj4j8k4j8UET+SkSc8LEREfmLsOXyhIi8audREblZRL4dfgM/KiJXhuVbw9d7XkS+UsU/sxLeDEyo6l8DqKoH/AHwH0Xkd0Tk70XkfwHfFJHW8FztF5EfiMjtACJytYgcEJHPi8iLIvJNEWkKH/uF8Dw9LSKfEJEXwnI3/P174eNbwvIrw3+zZ0XkBRH5P5I4KTFYBAxC8NmMcN7+r/DcPCci/yAizWH5l0Rkm4j8a9g63HSJ92gRkX8OX+cFEfmNRM7G3LwZyKnqXxULVPUnqvrfROQ9ZXxGe0XkwfDztrPknMbz/1xVF/wP8O+BL4T3/xW4CdgATABdBPvePQZsCo9R4LfC+x8D/nt4/0vAJiAdvk5HWP4bBPvmQbCbdEN4f3HSf/scz9tW4FOzlD8TPnYMWBKWpYBF4f1lwGFAgKuBAvDz4WNfBf59eP8F4BfD+/cBL4T37wI+Et5vAPYBq4E/BP7vsNwFskmfozLOpQc8C/QC54Cb53Delpa87p8Bv1fy+fx7ggbYdcDhS7zH/wl8vuS12pI+T3F9RsPH3lPGZ1SBXwof+yLwoTj/n9slY2Az8Jfh/a+Ev/8z8F1V7QMQkS8D64CdgA/8XXj83xBcnpd6LXAD8FhwZYQLvBI+9jzwtyLyNYJLpnomBB/QC5U/pqpnSsr+i4isJzh/K4ArwseOqOqz4f3vA1eLyGKCQPqvYfn/BH4tvP9W4HUy1R/fBnQT7N79RRFJE3SXFF+zHoyr6s8DiMgtwEMicgNlnrfw/g0i8mfAYoKuokdL3udrquoDPxSR4utc6D1+AHxSRO4H/req/kvcf3S1ichnCP4f54DPcPmf0aOq+v+F9/+GIMA/Qkz/zxd8IBaRpQSXLzeIiBKcTCXYeHRmkLnQpOuZ5QK8qKq3zHLs24H1wDuAj4rI9apaiFr/hL1I0Go6T0QWAasIWnijJQ/9FtBB0NLLi8hLQGP42GTJcR7QRHAOL0QIWnmPvuqB4D/R24H/ISKfUNWHyvqLaoCqPi0iywjO169S3nmDoOX7TlV9TkTeQ3B1xyzPKZ7jWf9tVPWgiNwc1uG/isg3VfXeeP7Kqpn2GVXVD4Tndl9YdLmf0dliQWz/z62POOhKeEhVf0ZVr1bVVcARgm/NN4jIagn6hn+DYDAPgvNWbI39Zkl50Y+AjrBlg4ikReT68HVWqeq3gD9iqsVSr54AmkXk3RD03QJ/QRAIxmYc2wb0hx/wXwF+5mIvrKqDwLCIvCksKh1EfRR4f9jyRUTWhP2ZPxO+x+eBLxB0MdUdCWbuuMBpyjxvoSzwSnh+fusyjp/1PUTkNcCYqv4N8Enq83w+CTSKyPtLypovcOzFzvVVxf/PTA3sx/b/fMG3iAlO6n0zyv4BeD/wdPjYzwF7gH8KHx8FrheR7xP0500bxFDVXHjZvE1E2gjO818CB4G/CcuEoO/qbEX+qipQVZVgGtBnReSjBF9Q3wD+hOC8lvpb4H+JyD6m+kIv5X3A50VkFNhNcK4BHiC4DN8vwTXhAPBOgpbf3SKSB0aAd0f+46qvSUSK3QwC3KGqnohEOW8fBb5DkNb1BwSB+WIu9B4/B3xCRHwgT/B/oq6En9F3Ap8SkT8i+KyMAh9m6gqi6GLn+gBwh4hsBw4Bn4vz/7ktcb4AEdkAfEhVf22Wx0ZUtZ5bsnVBRFpVdSS8fw9wpap+MOFqmQVGRK4m6CO/oVLvYS1iU8veLiJ/TPA5/QnBKLcx8461iI0xJmE2WGeMMQmzQGyMMQmzQGyMMQmzQGwWDJnKcPZCmGPgQvNJL+e13iMi/30Oz31N1Pc2848FYrOQFDOc3UCwxPW3Sx+UQDX+T7wHsEBszrNAbBaqfwGukaksZp8F9gOrRGRzmH3rhTDPAgAi8l4ROSgi3ybI1lcsn5aHWkRGSu7/Ufhaz4nIfeFxawnyEDwrYcY0s7DZPGKz4EiQe/Y2gqQtECRpeq+q/k7YZXA/cDNBKspvhiuzvgP857D8HPAtgixzF3uf2whW/L1RVcdEZImqnhGR3yVYLLTvYs83C4cFYrOQlC4j/heCfBSvAX6iqnvD8l8AdqvqAEC4xHh9+Fhp+d8RJMK/mFuBv1bVMYCSLF/GTGOB2Cwk51NNFoXpC0szcF0s69uFVj8VCLv5wtwXxa2iLpQm1JhprI/YmOm+A/yyiCwLs8ltBr4dlm8QkaVhVrNfL3nOSwRdFgC3EyQMB/gmwW4lxd0cloTlw1w6EY9ZQKxFbEwJVX0lzG/xLYIW7TdU9esAIvL/EGTke4VgYM8Nn/Z54Osi8l2C1KCj4Ws9IiI/D+wTkRxTmem+BPyViIwDt6jqeJX+PFOjLNeEMcYkzLomjDEmYRaIjTEmYRaIjTEmYRaIjTEmYRaIjTEmYRaIjTEmYRaIjTEmYf8/+JfVfu5uS2QAAAAASUVORK5CYII=\n",
992 | "text/plain": [
993 | ""
994 | ]
995 | },
996 | "metadata": {
997 | "needs_background": "light"
998 | },
999 | "output_type": "display_data"
1000 | }
1001 | ],
1002 | "source": [
1003 | "#create x-y scatterhttps://localhost:8888/notebooks/notebooks/Python%20101%20for%20MVPs.ipynb#\n",
1004 | "sns.lmplot('Product', 'Sold', data=all_data, fit_reg=False)"
1005 | ]
1006 | },
1007 | {
1008 | "cell_type": "code",
1009 | "execution_count": 16,
1010 | "metadata": {},
1011 | "outputs": [
1012 | {
1013 | "data": {
1014 | "text/html": [
1015 | "\n",
1016 | "\n",
1029 | "
\n",
1030 | " \n",
1031 | " \n",
1032 | " \n",
1033 | " x \n",
1034 | " y \n",
1035 | " \n",
1036 | " \n",
1037 | " \n",
1038 | " \n",
1039 | " 0 \n",
1040 | " 32 \n",
1041 | " 33 \n",
1042 | " \n",
1043 | " \n",
1044 | " 1 \n",
1045 | " 77 \n",
1046 | " 93 \n",
1047 | " \n",
1048 | " \n",
1049 | " 2 \n",
1050 | " 61 \n",
1051 | " 98 \n",
1052 | " \n",
1053 | " \n",
1054 | " 3 \n",
1055 | " 3 \n",
1056 | " 69 \n",
1057 | " \n",
1058 | " \n",
1059 | " 4 \n",
1060 | " 81 \n",
1061 | " 89 \n",
1062 | " \n",
1063 | " \n",
1064 | "
\n",
1065 | "
"
1066 | ],
1067 | "text/plain": [
1068 | " x y\n",
1069 | "0 32 33\n",
1070 | "1 77 93\n",
1071 | "2 61 98\n",
1072 | "3 3 69\n",
1073 | "4 81 89"
1074 | ]
1075 | },
1076 | "execution_count": 16,
1077 | "metadata": {},
1078 | "output_type": "execute_result"
1079 | }
1080 | ],
1081 | "source": [
1082 | "import random as random\n",
1083 | "\n",
1084 | "#create a dataframe with random numbers\n",
1085 | "df = pd.DataFrame()\n",
1086 | "df['x'] = random.sample(range(1, 100), 25)\n",
1087 | "df['y'] = random.sample(range(1, 100), 25)\n",
1088 | "df.head()"
1089 | ]
1090 | },
1091 | {
1092 | "cell_type": "code",
1093 | "execution_count": 19,
1094 | "metadata": {},
1095 | "outputs": [
1096 | {
1097 | "data": {
1098 | "text/plain": [
1099 | ""
1100 | ]
1101 | },
1102 | "execution_count": 19,
1103 | "metadata": {},
1104 | "output_type": "execute_result"
1105 | },
1106 | {
1107 | "data": {
1108 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAVoAAAEACAYAAADyRL7nAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4xLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy8QZhcZAAAgAElEQVR4nO3dd5wTRf/A8c8kuQYHHAcc7UTqLgoqTQQ7RUUsqIgdu/joT0BsKDbsgAUrKoiKoiCKiAVQpFiRXgVWeu+93B2XZH5/7N6RyyWXnA+LmOf7fr32dcnuZHZ2duebyWQ2p7TWCCGEcI/nny6AEEIkOgm0QgjhMgm0QgjhMgm0QgjhMgm0QgjhMgm0QgjhMt9R2Ecq8DOQ4uzvC+BJ4BOgBZAPzADuNE2zLvBZyGvrAk8ArQHTWZcB7LYs61zgPaAxoIFbgWygL3AC0BKYFWdZCpmm2Qu43clzIXCL8/xeoB5QxbKs7WH5vg9cDGx1yhPqOOAjoBoQBAYDrznlvAPY5qTrA4wDVgP7gADgd+oo06mX2s72q4BdUcp6OvASkAzMnjZtWv/MzMxPQ8pTUKcZUfafQfF6nQZ0B+5xyvQd8FCUshIh7fMR8jwIvAOkO/lcD+w1TbOnUy4FDLEs61XTNE8JT2tZ1t4ox58HPAt0ccr1tmVZY6Kcg2L5AnsBL/a1swH7vN5DyPkHtgNEKquzvsjxW5ZVmcjXR6Q6jXaN/gKUc16Xhd1mdkbIty/Fz+vkKHkWeMOpu3SKW03kcxxr2wPAiwX1Fa2unPoqTBuhbSUEdRTm0SqgLLAfSAJ+BXpiB4/xTppPsS+EtwteZJqmF/tCP82yrDUh618G9liWVQ/74nsPO6iUAapjN6R3sU90eKCNVpY/nLxrOutOtCwrxzTNUdjBZz6wC5gKtIhwMZzt5PkRxQNtdWeZg91QZgOXYQfL/dhBMdRq7As2dB8DsBtVP+BhoKJpmq9HKOsE4CmgnWVZf5mm+TSwxrKsoU4+hXWK3bAi7X8Yxeu1KfAocBF2IMvCbtyRytomQtoXI+Q5Efsc/YQdeOuYpvkZMBL7TfKQczx3YV8fD1iW9ZNpmrcCdbADZKRzpZwy3GxZVtA0zSzLsrxRzsGw8DIAjwP3OcdVHjuQNSXk/GMHjsZRyppdcPyWZeU5+29I8esjUj1tJcY16hgNjHXqPzzfvhQ/ryXl2cJ5fDnRA234OY617Tjsc90QaG6aZrVIdWVZ1jLTNIukTdRAG3PoQCnVUCnVWyn1ulLqNefxCaXYh8Y+wWCf5CRn3Tjnr8Z+d84Oe107YEVYkFXAVWefffbX2MGtIIAcAnYDSwDrb5QllA9IM03Thx0QNlqWNdeyrNUl5PszdiCMZBN2Awf73X8JULOEvCLphB0UcP5eFqWsB4A8y7L+crZPBDqH5NMOWAGsIbLyRK7Xu7CDfJ6zfmsJZQ1PmxslTxO73kLLeQLwh2VZBy3L8mMHwMujpI10/Bud/T9tWVYQwLKsrUQ/B5HyzcYOfu+FHNNc7KASKlpZ7wL6WZaVF7L/SNdHtDqNdY2WA9oCX0XJN5JoeXqx3wQfiiOP0hjo5FlQ7mh1FSltQiox0CqlemO/EynsYDjTeTxCKfVwKfbjBeZhX0wTgekh25KArtjvcqGuAUaErTsL2DJkyBCwPxp9gN0I3sN+x/6vymJZ1gbsnsBa7Ma5x7KsH+LMNx61sXtHBfu8B1iAPfRQ0VmngR+we13dnHVVnfLg/M2KVFZgFJBkmmbBR7grsXsXBcLrNHz/dYlcrwZ23U/HbiSnllDW8LSXRMlzEXCp85ouTjkXAWebplnJNM0yQMeQ9UXSlnCu6gFXm6Y5yzTN8aZpNqCo2hw+B5HK8Cp2ww9SsmhlNYCzTNOcbprmT6Zpnhrl9dHqFEpuL5cDk7CHOKKJdF1FyvMe4GsOX1uRRDrHJW27FPtT0/yQdBHryjTNS4ENlmWFpk1IsXq0twGnaq37aa2HO0s/7I8At5ViPwGgCXZvoSVFP14Pwn5n/qVghWmaydgn7POwfK7FDhQ+oBn2UENT7J5cvIE/allM06yI3XusA9QAypqmeUOc+caSjv2R717sRvI2dlBogn2hv+ykOwP72C4E/g+7N1hMpLJijzFeAww0TXMGdu/N77wkvE4j7T9avfqwG2wr4EHsgK6ilDU87YAoed7qvGY2di/tkGVZS4D+2IFgAnZj9RekNU2zMG0J5yoFyLUsqwUwBDvYRDsH4WXQ2IFodqQ6D1VCWYvVlfNJLFy0OoWS20tBG4gm2nUVnufZ2G8ub8Q41JKux0jbHsX+DqBQCXVVLG2iKnGMVim1FLhAa70mbP3xwA9aazPK67rhvMNdmHlq82bl6hdua9PzCg4dzOO3Id/RpucVVG9UmxF3DuSR+yoUppmychujFq7n7U5NC9f5g0Eu+OBXPr26JeXm7qLi64PY2fUaAJIan0zaNdex9zE71lZ46VUODH4b/18WtX5dHfX4+vTpycGDObz66mAARvY6l99XbKbvJXaH8Jv5a1iwYQePdmwGwIWvj+PT29tR657i1/nxx2cz9qthNGnarsj662u0wuvz0uv9Piz8aR7fD/2m2GsrZ1eh19A+bG7Xo8j6GvddQ+BADlWuOx+ry2Pkb91FUlZFTvrtNb59tz+/LVzOU7faHbJvfpvPgpUbeLRrx8LX/75oBV+OmcCAdg3x1m+Cr2lb8j5/pdj+VflKpFzRk/3P3Ev642+y74HrAfAaJ5Fy0TXg8ZD33UgCS+2OR/qLH7P+qh4Ed+0pzCPjP10JHswhrVUz9rw/ktxZC+x6mTwcPB4OPHmLnWfdRiSfdyU57z51eP9VapB24wMEyxb9bvbVdz6kWlZlrrni4sJ1q9eu5+GnX+TG1vX5ffFq+l5/nn3805ewYPUmZv61nrfuvoyalcqjtebU7m9y/qFT8Pi83PH+Qyz9aT4/DR1XrA6q1KnOvSOegKAmGAjgTUkiqVwa68bN4vfu9lcHnaYPZMKFj5O3cz9dpt1X5PWvvT+SqpUzmfrHbG67uhOnnnIiABfe1JODyzzUyK7Bi8Oep2s7u3/y8vB+DH9rBHOn2XU66rfhjO/0DLk79xXJ99R7L8efk8fcd8eRmpHODT+/yAen9uCDgysBqJ5djVc+eoFr295S7JgKto26oGgsO7On/am96Q3t8OflA1ChZiVWrVpH81PaFcunQO8+PTiw/wBvvj6UP7KLflCodM/1EAiSccOl6Fx7NMRXtTL+rTsIHlgOgfzDdfXxGCpllGfI5+NIS0kGYMv2XVTJrMDm7buqW5a1OWoh4pC/fWXcwxBJletGehM84mL1aO8FJimlxiulBjvLBOyPLj2jvUhrPVhr3UJr3eLM45uSWr4MAL6UJOqd0ZjtKzbS/OpzaXD2yYzq/gbhwX7Css10aFC1yLrp63ZRu2JZqqanonftJLhtG95s+1NxUtNmBNasjnmwlStnUqFCeQBSU1No2/ZMLGt54fbqFdJYsH4nOfl+tNZMX72VupXLx8w3ltv6383G5euLBNkKVTIKHze/4DTW/7UWT1oKnrKpAHjSUih/dhNyrLXsnjiDSl3aAFCpSxuCO9ZTLbM8C1ZuICcv3y7rklXUqV6ZHXsPAHAo388H43/jyhOqAeBteBr+JTMOF6rs4Tc2b4NmBLdvQO/ZRXDnNjzV7OFy34lNCW5cg3/Ob/hOsN/0PFWzUV4fOjcPVSYNAJWWSlrr5uQvX83BKb+T2tJO6zu+Jng8BHduRWXZw9Je8xSCm9ei0p39K0XKBddw6Df7e9Edu3YDsGnzVib99BsXtj+ncF0wGOTdYSO56rKOVK9YjgWrN5NzyDn+v9ZRt1ombU6uy8y/1gEwa/kGymq7Pq/pfydblm8oEmTTK5V3iqA4757LmT/gc8a06MHY03rx611vseXXxYVBNpIdzhvNpq3b+fHXmVzY5nTant6C6fP+BGD1+k3k5/tREZrZL9//RvMz7Ho6rm42vmQfuTv3kZpZjmSnvXhTkzjurMbsWr4RgHoXt2T1j/MI5OUXy69ApazMwsfnXngWK6xVpGWWIyWkDdY+szGbF67ijVPv4e0ze/H2mb3IzzlULMiWKZNGenrZwsdt257JksXL7DpLS0GVTSt8XPaMZuQs/IsVZ1zLynY3s7Ldzfi3bGfNFd0hkM+O3fZIx6ZtO5g0bQ6XtmnFTx+9zIQhLzBhyAtUrVyRzwY+xn8bZAEIBuJfjpISp3dprScopQzsjxo1sT/arAdmaq3jKmW5rAw6v3wXHo8H5VEs+u4PrMlzeWr5x+zZsJ07x9g9G9/ehfhnjicnP8D0tTt57Nyi37d9v2wLHYzDwXffW69R7pHHUL4kAps2su+lfiSfcRbp/9cDT4UMKjzbD/+K5XBWl8LXVKuWxZAhr+D1evB4PIwe/S3jx08u3H5SzUq0P6Em1w6ZhNejaFgtg87N6vDpjGV8+Ptf7Nify1XvTqRK5RS2bc8rfN3wj9/inLNbU7lyJqtXzuKpp1/igw9HAtCgRUPO6Hwu65as4elx9hfBXwz4lFaXnkmtE2uDhu3rt/JBn3e4vUoG9d+ze+XK62XnVz+zd+pcDsxbTr13HqTyNe05tGE7/g1/cnK9bM5rcQLXPDUYr9dDw1rVuPKcZrw5Zgo/z19GMKi5qk1zWqYfAF8y3tqNOPTDR4VlTj6nC56sWoAmuGd74bac4W+Q9p8+KF8Swa2bOPjeAMjLJe32B0l/7j3w+zk4pD/ezAyyBva1y+rzsn/cFHJ+nwU+H1Wevp+aowej8/3kDh+IPriPtBsfAK+P4I7N5H7yKkkt25F81kUA5M//Hf8fE/Gdfwm9+jzL7r178fl8PHr/3VQoX46PR33FyC+/BaD9Oadz+UXnE5j7Pe2b1Ofa/iPs48+uQufTG5ObH6DPsAkMnzKXMilJnOQ/jjotTE7tfDYbl6zhgXH9APhuwEiq1KnOGV3PB2Dh9zPYPPJnIjFvO58T77qY1KwKdPzxBTZOtnuh9z0zkN179+PzeXm0+y1UKJfO5Re04fGX3+HyOx4kKcnHcw/eRS7ZNG19ChmZFRgz6zOGvvQh344cT5+XH+TjSUPJz/fz7L39MYGyWRm0H3gnymu3l+XfTGf1pHkAGJe2Zvagw2/Wzwx6guatm5CRWYFvZn3OkJc/oFnrphiN6qO1ZtP6zbzw0Et0rtqQi1+5s7ANLvl2Ossnz4t4rKGqZFVm+IhBAHh9PkaP+ppJP9p15KtUkRpvPl54re79dioHf40+4nJf/3fYs/cAPp+XPndeR/n0eL9S+Rt0rOH1o8/16V2P1b4urh30uT8jdiLHga//jDttSUMH4XYOiW84ttytH8ad5/U1WsWdtrs/vnfYxp91iZ3IEfx9Utxp8xdFm4xQ3M558d3rUvmclLjzTH3i9bjT+ueEf3caWZ9ukYNnJC0OxT+tPHzooCRtTn8grnTXemrEnedHgXVxp7086bjYiYABO/6IncgRPnRQktpfxf+9eUrDc/7rj/L5m5bEP3RQ/YSjMnRwNG5YEEKIo0YH/LETHWUSaIUQieUYHDqQQCuESCxH8UuueEmgFUIkFunRCiGEy4ISaIUQwlXyZZgQQrhNhg6EEMJl8mWYEEK4THq0QgjhMvkyTAghXCY9WiGEcJcORP91s3+KBFohRGKRHq0QQrhMxmiFEMJl0qMVQgiXyTxaIYRwmdyCK4QQLpOhAyGEcJl8GSaEEC6TQCuEEO6K8x90H1USaIUQiUV6tEII4TKZdSCEEC6TWQdCCOEyGToQQgiXSY9WCCFcJj1aIYRwmQRaIYRwmcw6EEIIl8kYrRBCuEyGDoQQwmXSoxVCCJdJj1YIIVwWOPZ+VMbzTxdACCGOqGAw/iUGpVQvpdSfSqlFSqkRSqlUpVQdpdR0pdQypdRnSqnkWPlIoBVCJJYjFGiVUjWBHkALrXVjwAtcA/QHBmqtGwC7gNtiFUkCrRAisehg/EtsPiBNKeUDygCbgLbAF872YcBlsTKRQCuESCxHqEertd4AvASsxQ6we4DZwG6tdcFdEeuBmrGKJIFWCJFYtI57UUp1U0rNClm6FWSjlKoIdALqADWAssCFkfYYq0gy60AIkVj88d+Cq7UeDAyOsrk9sEprvQ1AKfUlcDqQoZTyOb3abGBjrP1Ij1YIkViO3BjtWqCVUqqMUkoB7YDFwBTgSifNTcDYWBlJoBVCJBQd1HEvJeaj9XTsL73mAAux4+VgoDdwn1JqOVAJGBqrTDJ0IIRILEfwzjCt9ZPAk2GrVwItS5OPBFohRGKR3zoQQgiXxRgS+CdIoBVCJJZSzDo4WiTQCiESi5YerRBCuEt+JlEIIVwmY7RCCOEymXUghBDu0v5j74e/JdAKIRKLDB0IIYTLZOhACCFcJj1aIYRwmUzvEkIIl0mPVgghXHYM/rtxCbRCiISiZehACCFcJkMHQgjhMgm0QgjhMplHK4QQLpMerRBCuEv7pUcrhBDuklkHQgjhMhk6EEIIl0mgFUIId2n5n2FCCOEy+TJMCCHcpWXoQAghXCaBVgghXHbsjRxIoBVCJBYZOhBCCLdJoBVCCHdpvwRaIYRwl4zRCiGEu2SMVggh3CY9WiGEcNcx+LvfEmiFEIlF+//pEhTn+acLIIQQR1SwFEsMSqkMpdQXSqmlSqklSqnWSqlMpdREpdQy52/FWPlIoBVCJBQdjH+Jw2vABK11Q+AUYAnwMDBJa90AmOQ8L5EEWiFEQjlSgVYpVR44GxgKoLU+pLXeDXQChjnJhgGXxSqTBFohREIpTaBVSnVTSs0KWbqFZFUX2AZ8oJSaq5R6TylVFqiqtd4E4PzNilUm+TJMCJFYtIo/qdaDgcFRNvuAZkB3rfV0pdRrxDFMEIn0aIUQCSXoV3EvMawH1mutpzvPv8AOvFuUUtUBnL9bY2UkgVYIkVCO1Bit1nozsE4pZTqr2gGLga+Bm5x1NwFjY5VJhg6EEAlFl2LoIA7dgU+UUsnASuAW7A7qKKXUbcBaoEusTCTQCiESypG8M0xrPQ9oEWFTu9LkI4FWCJFQdPCI9miPCAm0QoiEcgz+t3EJtEKIxBL0H3vf8UugFUIkFOnRCiGEy2SMVgghXHaEp3cdERJohRAJRX74WwghXBYIypdhQgjhKhmjFUIIl8msAyGEcJn0aIUQwmVBmXUghBDukuldQgjhsoAMHQghhLukRyuEEC77n5x1kBznu4u3bee488y4qmfcabc+d3/caVWdE+NKt/e5C+LOM/fXFXGn7TI7Ja503y5fGHeexgsz4k677O2YPxRf6LvJy+JKV/GLuLPk8gYvxZ225iM/xJXuj+wGcefZ9dDB+Pff8oW400586qS40qnqNePOs8ad8d/+1PHr6+JK12Ns/BHq4yHx9xobnftG3GnP2nxO3GmjkS/DhBDCZTJ0IIQQLpMerRBCuCwggVYIIdwlQwdCCOGyY/BXEiXQCiESi0Z6tEII4arg/+I8WiGEOJoCyA9/CyGEq2SMVgghXCZjtEII4TLp0QohhMsk0AohhMtk6EAIIVzmVxJohRDCVcfgNFoJtEKIxCJjtEII4bKgDB0IIYS7jsWhg2PvXjUhhPgvBEuxxEMp5VVKzVVKfes8r6OUmq6UWqaU+kwplRwrDwm0QoiE4lcq7iVOPYElIc/7AwO11g2AXcBtsTKQQCuESCi6FEssSqls4CLgPee5AtoCBf92dBhwWax8ZIxWCJFQgkf2u7BXgYeAcs7zSsBurbXfeb4eiPnvi6VHK4RIKKUZo1VKdVNKzQpZuhXko5S6GNiqtZ4dkn2kMB6zcyw9WiFEQinNrAOt9WBgcJTNZwCXKqU6AqlAeeweboZSyuf0arOBjbH2Iz1aIURC8av4l5JorR/RWmdrrWsD1wCTtdbXA1OAK51kNwFjY5VJAq0QIqEc6eldEfQG7lNKLccesx0a6wUydCCESChu/LdxrfVUYKrzeCXQsjSvl0ArhEgo8lsHQgjhMgm0QgjhsmPxtw4k0AohEkqs2QT/BAm0QoiEIkMHQgjhMhk6EEIIlx3h3zo4IiTQCiESigwdCCGEy2ToQAghXOY/BkOtBFohREI59sKsBFohRIKRMVohhHCZzDoQQgiXBY/BwQMJtEKIhBL4pwsQgQRaIURCkR6tEEK47NgLsxJohRAJRmYdCCGEy2ToQAghXHbshVkJtEKIBBM4BkOtBFohREKRMVohhHCZjNEKIYTLjr0wK4FWCJFgpEcrhBAuky/DhBDCZfJlmBBCuExLj1YIIdwlPVohhHBZUEuPVgghXHXshVkJtEKIBBM4BgcPJNAKIRLKsRdmJdAKIRKM3LAghBAuOxand3n+6QIIIcSRFCzFUhKl1HFKqSlKqSVKqT+VUj2d9ZlKqYlKqWXO34qxyiSBVgiRULTWcS8x+IH7tdYnAK2A/1NKnQg8DEzSWjcAJjnPSyRDB0KIhOI/QkMHWutNwCbn8T6l1BKgJtAJONdJNgyYCvQuKS8JtEKIhOLGGK1SqjbQFJgOVHWCMFrrTUqprFivl6EDIURCCaLjXpRS3ZRSs0KWbuH5KaXSgdHAvVrrvX+nTNKjFUIklDjGXkPTDgYGR9uulErCDrKfaK2/dFZvUUpVd3qz1YGtsfYjPVohREI5grMOFDAUWKK1fiVk09fATc7jm4CxscokPVohREI5grfgngF0BRYqpeY56/oA/YBRSqnbgLVAl1gZSaAVQiSU0gwdxMjnV0BF2dyuNHlJoBVCJBS5BVcIIVx2LN6CK4FWCJFQ5Ie/hRDCZcdemJVAK4RIMP5j8BdpJdAKIRLKkZp1cCRJoBVCJBSZdSCEEC6TWQdCCOEyGToQQgiXydCBEEK4LKBl1oEQQrhKxmiFEMJlcmeYEEK4THq0QgjhMunRCiGEy+TLMCGEcJkMHQghhMtk6EAIIVwmPVohhHCZljFaIYRwl9yCK4QQLpNZB0II4TL59S4hhHCZzDoQQgiXyawDIYRwmQwdCCGEy2TWgRBCuCwQlFkHQgjhKhk6EEIIl8nQgRBCuEx6tEII4TKZRyuEEC77n7wF15uSxM2jHseb7MPj87Jk3Ax+GjiaSwbcQfWT6qCUYseqzeA5CMEAw7+dzOiJvwFwRfsz6HpJW9789BumzJyPR3nIrJDOc0/25vspvzH62x/QWnPlxefT9apOLF22kqdfHkTeoXy8Xi+P9/oPDQDSypJ6bQ881WuBhtxPX4NDeaRe/X+QkoreuZWcj14E4OMf/uDLn+eiFDSomcXTt3Vi3vJ1vPLZRPIDAU48vjpPNEwnqVJ1Ui79T+FxqgpVyP/tK1RKGbwnnw05+wAI5LyJf+mflL3nQby16oCGA2/0J6n5aSSddiYEg+g9u9n/+gs88FI3WrVvxe7tu7m9fTcA6p1Yl3v79SQ5JZmAP8Brj75RuM+PZyxnzLzVKKBBVgWeurgZ2/fn0vurmezJOcQJ1TIADajC19x+V1eu7doZrTVLFy/j/nseIy/v0OE8f1/KmNkr7OOvmsFTl7Wi79g/WLxhJz6vh8Y1K/HYpS3xpiRxxReP4U32obxeVoybwYxXvuSK0Y+TVDYVgDKVy7Nz7gp+vvVVlEfRYcIz5GzaxdSbXsa45Twa3t6BcnWq8kXj/5C3cz+rdx2g9/eLCsuyYU8Od51WlwWb97B690EA9uX5KZdS/LKd/+dU9u8/QCAQwO8P0Pbsy4tsrzvpQ4IHDqIDQQgEWHNlz8JtFW/tTNZDt1Oh8aV0f+w/nNm+Nbu27+LatrcAcMf9N9PpuovZvXM3AINeGAITV9kv9nho/kM/Dm3eycIb+tFk7NP40tMASKpcnn1zl7N67rv0Hjc/5LgOclfrBrTIzuS5SX+SFwjiVYo+V53LvNVbGDPTss9ptUyeuuosUpLs4+331TTGzvqLac/edPjAPIq23z9HzuadTOv6Es1euYOMU+qilGL/yk3M6vEOAJ+M+4nRk/5Aa03ndq254aJzeOXjr/lp9p8k+bxkV61M39peylc/jpTO3Q9nXzGLQ1O/QKWl4zOb2x/LD+wlfcJQzh/UHU+yD4/Xy8pxM5j1ypfUPKMRrR69FuVR5B/IZcr9g2HZmsK6avp9f/I272Rx1xfIOPMk6jzRFTyKwIFc/ur5VrHz+nf8Tw4dBPLy+eja58g/mIfH5+WWL55g+dT5fP/0cA7tzwHg/Mevx9vcYOnsaYye+BufDuhNks/LXc+8ydnNG3PzZe2557pLAPjkuyn0e/09Vq5Zx4h3XybJ5+M/D/bl7Nan8vLbH3LXzddyVqvm/DxtFi+/8yHvVIXUK7oRWDKb3PdfAK8PklMoc/cz5I19n8DyRfhanUdy285s3rWLT3+cwZhn7yI1OYkHB33BuD8W8vZXPzH4wa7UrlaJt8ZM4Ztlm7jco8gd1tc+SKVIu+sVAsvm4Gt8Jv7ZP+Cf+T0A+bNXULbnI+TPmcH+/k+Cz4dKScW/dhU5n74PQMrFnUm7+ia+HzKRsR9+Te9XHyqsv26P3sHHA4czY8pMWrY9lW6P3g5/jWDLvhxGzFzBl93ak5rk5cEvZzBh8Xp+Xb6FG06tT4dG2Tw7fi6+1CD+XC8A1apncWu362nbuhO5uXm8/f5LXHrFhXw+YiwAW/YeZMQfFl92v4jUJB8PfvYrExatoePJtXm+8+kAPPLF74yZvYJAHnx19fOF5/WKLx9nzZT5fNn5mcKyX/huD7ZMmAOAeXsH9i7bSJIThLbN/IsNE+fSfvSjhelrVyzLZ9ecZl83Qc0FH/5Km7pVuL5JrcI0L/+6jPRkL7/O31PsWruk4w3s3LEr6rW47saHCezeW2Sdr1plyp7elPwNWwD47rPxfP7Bl/R9rU+RdCOGfM4n73xW+PwysgDIvqMjB5dtwFfOPq55nZ4oTNNo6P1snzCT2o3T+eyGMw4f15AptKlflWcmLqJbq/qcWacKv6zaxoCvp7FjXw5fPtDZrv/hk5kwfyWdWhj8uW4b+3Lzih1T/TsuZF/I/hc8MRy/065O6nsD9W49n2VrNzF60h988nwvknxe7n7+Xc5qdiKtTjbocc5Wby4AABM0SURBVN1F+LxeBg7/hvf/XEzPZB+5g51jV4q0Xm8SWDoLnXOA/Klf2HXW8gKa3nUJX1/9PH7n/Hf68nHWTpnPWc/fzITbBrJ7+UYa3die5j06sbX76wDUvKMjB5etx1uuDAD1+t/B4pv7k7NsA9VvvoBavTpHPXelcSzeGeY5GjvJP2hfIB6fF0+SF7QuDLIAvpRkAFZt2MzJRh3SUpLxeb20OLEBk6bPI71MWmHanNw89u0/wMknmqSlpuDzeWnRpBGTfplmv4sfsHs++w8cIKtyJqSm4a3fiPxpP9gZBPyQcwBP1WwCy+3eU2DpXHxN7EASCATJO+THHwiScyiftJRkkpO81K5WCYDWjeoyadWOIsfnOf5Egru3ovcWXQ9AWhl8jU4hb+J39nO/H31gP+QcLEyiUlJBw8LpC9m7e1+Rl2utKZNuX5hly5Vlx5bD+wgENXn+AP5gkFy/nyrpqcxcs432J9QA4JKTauFNKXrR+Xw+UlNT8Hq9pKWlsWXztiLbA0FNXn4AfyBIbr6fKuXSOMuoiVIKpRSNalZiy96Dxc+rz0fo9Z1UNpWapzdi3YTZpFXPpGa7Jiz/dGrh9l2L1nBg/fbi9eWYsX4n2eXTqFH+8LnXWjNx+RY6GNWivq60sh65k20vDi18Pnf6Avbu2lfCKw5LqZ5JpfOasemTScW2ecumknFmY7aPn1lk/Yx1O8iuUIYa5dNQCg4c8gOwPy+fSulpRev/kJ8q5csQCAYZ+N1M7u3YskheadUzqda+Cas/mVK4zh/SrrxpBe1qCyc3OL6wXTU/oT6TZyzg9FMa4vPab8InG8ez9eChIvl76zRG79qK3rMdDh3OVyWlABp/pPOvIdl5M00ul8aBLfangOTqmWS2b87m0LrSGp9zbXvLlSFvc/Q3ydLQWse9HC1/u0erlLpFa/1BXGk9iju+fY7M2lWZ+dFENsxbAcClL3ajfpsmbF++gcCOddSvVZ03Pvma3fv2k5KczC9z/qRRPbs38/onY/lm6nTSy6Tx5MM9efyF19m9Zy8pKSn88sdsGpn16d39du584EleGvQBWgcZPmgAngmj0Pv3knr9vXhq1iGwbjl5owcT3LQG30mn4V84HV/TM/FkVKZqxfLc1KE1Fzz4KqlJSbRuXJcLTj2RVz//kT9XbaRRnRpMnLWELQeK9ix8DVsSWDL98POm7fA1Op3g5tX4d45C79lN2R4P461TH/8Ki4ND3oC8XNJuuJ3kNhegD+xn32P3Rqy7QX3fpt8nL3Dn493weBTdO93L6XdnU7VcGjeeVp8Ob04g1eelVd0sTqiWQbnUJHwe+/2zavk0PJ7DF9PmTVt5980Pmb7gR3Jzc/l5yu/8POX3wu1Vy5fhxjMa0uGVsXae9atxev3qhdvzA0G+m7+Khy5szlz2oDyKq8Y9S4XaVVk4bCJbnPMKULdDC9b/9if+/Tm0fuUO5j47ovAjdTy+X7aFDkbVIuvmbNxNZloyx2eUKZZea82XYz9Ea82H749g2AefFduePfQ5QLP7s/HsGTWesm1Ow79lO3nWqpjl6XLL5XS88gKWLLB47am3YCfUf+YWVjw9HF96arH0lTu2ZPcviwjszwEqHj4uaxMdGtp1+sA5J/B/Y2Yx8GeLoNYM69GJKX+uocPzI0lN8tGqQU1ON7L55NdFnHNiLaqUL3rcJz/TlUXPjCi2/+av3knVdk3Y99d6FvYdToM3z+GNkePYve8AKclJ/Dp3MSfWO67Ia76aPJ3zalQoss7bqBX+RYevj6Q2XfCdfBbkHWTmfc+jPIrOzvlfNGwiW+etYOpD79Hxowfw5+ZzaF8OYzr1xQDqPXMLq575GG/INbDs/ndo9EkfgrmHCOw/yLyOfajV84qY5yKWY3HooFTRP+ydYG0J27oBs5ylW8i2DK31FK1145D1Xq31IK31LVprDMO4zTCMOYZh/GwYxjvZ2dk/huZtGMYjhmE8FZ7OMIyBxx133CTDMDo76a4yDONHrXULrbVfa32ak8drWutnLrvssie01j9orWdrrZ/UWu8wDKOiYRiTDcOoYhhGkmEYX2VlZQ01DKO1YRi/GIYxwzCMZw3DmBtSpmSt9XatdVXnmKo6x+TRWj+ntR4baf9h9fKI1vop53FtrfWikG2vv/jii287j6/SWv/oHF+0si4PqavjDMNYGJJXRa31ZK11lfT09Lu01l9prW8ISV8sT8Mwbigoq2EYQwzDeDXCOc/QWk+5+uqr+4asG6+17qy1vtg5v2itz9Vaf1twjTjrVmutK4ed42TDMLYbhlE1NK1hGG8bhnF/lOuuhtaaJk2a3K+1nq+1PjvSdq11ltZ6fq9evV7UWk/XWleIUI4i56BZs2b3h53T9+M4roLjj3hcQDfDMF4Pu16nRqj/G+vUqbPMMAyfk26/k1+s/ZfYrgzDGBhSr48ahjHGMAxVwnUdWpeh12uRdr148eI5Idf6g1rr96KVNUravx2TjuWl5I2wIMqyEMj7mzt9Umv9ADArZN05BZUfuhiG8XzFihXXhK073jCMReHpDMO4u379+v6Ci8UwDGUYxl6tdTVtN6KC9Gdprb8L27+htZ5hGEYXwzCGhuR7Y7Vq1baG7et8wzBGhazrpO2ATVieBQ12aRz7P14fbthFGrnWeo9SqiCt0lrvdcoRsaxOQy5olK0Nw/g+JK8uWuuhIWW9UR9uABHzNAxjEDDLMIwnnYbviXZen3rqqXXO40pa6x1a61St9Qta6/VOHWzWWh/UWg8POf7Vunig7WQYxg8h1+EswzB8hmFsMQwjO8Y1O0tr3Vdr/UAJ6foOGDBgg9Z6q7P/1dp+M1zrXC9FzkHYuSrYVtJxhR5/xONyjmlP2PV6MEL9r6pXr16+YRirnSXovJnGqtcS25VhGHc7ZbjJMIxphmGUCUtX0nUder2GtusH165dmxuyrpbWenGUsn4XJe3fDmbH8hJrjLYqcCNwSYQlwoBkRFWADOdxGtAesBo1apTirFNOfksBTNPMcv7WAq7Yu3fvTtM0G4TkdymwNDwdMMLv9+cD5zjp2gLLgM3AOsB01rcDFteoUaNg2MQDPAa8A6wFWpmmWcY0TQW0O3ToUG7IvlKA3k7aAtcCI0KeVw95fDkwL9L+GzdunBKS7tKC449gY8eOHcuFHRPRygpMAa500twEjA3Jay3QCiijlCooy5Lw7aF5AksyMjIqAxcA11qWVTB3pth5XbJkSa7zvAvwLZALPAJkA7WBa4DJwA1RjrVAeJ2Cfd0stSxrfYT0ZYFyAOXKlfMA5wOLIm13Hp8/ffr0A0CWU67awHqgGfb1UkStWrWSQp5e7uRd0nGFHn9Jx7WRotfrGorX/ysrVqyYb1lWbcuyagMHLcuqH2X/XeNtV8CI9PT08tjX86WWZR3+0iByWcPb4EqKt+sl6enpXsBw1p+HfX1FKmunKGkTUqxA+y2QrrVeE7asBqbGuY/q2I1/ATATmAh899FHH9XB7hkvdNI87aQfbZrmYuAb4P8CgUAA6Gea5iLTNBdgN6Ke4eksy9q1devWNcDLpmnOB57HHsIA6A584pShCfD8rbfemgn8hX0hbgQ+sCxrOvAFMMcpl2fXrl3bgAdN01zivP4by7ImO/mWwb5Avgw53gHOaxcAbYBekfb/0ksvZWM32NBjGgFMww7K64HbgDv69++fDRQ5phLK2hu4zzTN5UAl4PA3PVD4GsuyGmGf/8EFGyPlCQyuUqXK8dhvutNM05xnmuYTkc7ryJEjC6YCXEPxQFnEo48+muUcY7aTx3sApmlGqtNYeVYFfgXmz5kz5wTgO2BCpO3ADOC70aNH7y2Wi63YOXjttdeyKX5OS1KsrFGO6w6KXq83EKH+Y+wrlIq3XVmWtatKlSq1sN+AJjrntaADEams/Sh6vb5O8Xb9bc+ePdcAo7HruivwYJSy+kuR9t/vn+pKU3zc579K51baf3r//6ay/tP7/zeV9Z/e/7+trP/2RTkHLIQQwiVHZR6tEEL8L5NAK4QQLpNAK4QQLjsqv96llGoIdAJqYt+otxH4Wmv9X03ncPKtCUzXWu8PWd9Baz0h5HlLQGutZyqlTgQ6AEu11uPi2MdHWusb40h3JtASWKS1/iFs22nAEq31XqVUGvAw9lSixcDzWus9TroewBit9bo49peM/e32Rq31j0qp64DTsafIDNZa54elr4c9Nek4wI89TWxEwb6FOJqUUlla663/dDmOFtd7tEqp3sBI7Hl9M7CngihghFLq4VLkc0vY8x7Yc0S7A4uUUp1CNj8fku5J7KkobyulXgDeBNKBh5VSj4a8BqXU12HLN8AVBc/D0s4IeXyHk2854MkIx/U+UDBP8TWgAtDfWRd6G/MzwHSl1C9KqbuVUlVKqJIPgIuAnkqpj7Hnbk4HTsWZKhVWV+8Aqc72NOyAO00pdW4J+/jXUUpluZBnpSOd55GglKqglOqnlFqqlNrhLEucdRmxcwCl1Piw5+WVUi8opT523rxDtw0Ke15NKfW2UuotpVQlpVRfpdRCpdQopVT1kHSZYUslYIZSqqJSKvO/qIJ/D7enNWDPVU2KsD4ZWFaKfNaGPV+IPccX7InQs4CezvO5Yem82HMD9wLlnfVpwIKwPOcAw4FzsSeSnwtsch6fE5Y2dB8zgSrO47LAwrC0S0L3EbZtXmie2G9+52PPf92GPR/0JqBc2OsWOH99wBbA6zxXEY5rYcj2MsBU53Gt0ONw1lXAnjO5FPumlB3YveR+QEYpztf4kMflgReAj4HrwtINCnteDXgbeAt7HnBfp/yjgOphaTPDlkrAauwfF8gMSdch7PiGYs///BSoGpZnP6Cy87gF9sT85dg3E4RfA3Owb3apF0d9tMCedzoc+01uIrDHuXaahqRLx577+qezfRvwB3BzhDy/x543XS2s/noDE0PWNYuyNAc2heU52qmDy4CvnecpUa7dCdgdnYed+uztXFPdgbEh6YLAqrAl3/m78u/ElX/b4v4O7AZ7fIT1xwNW2Lq4b/kFFoc9T3dO/CuEBa9Ij53n88Kee7Ano08EmjjrIl4I2JOsKzqNe1bYtvD9fA7c4jz+AGjhPDaAmSHpwi/kJOy7cEYA28K2LcJ+s6oI7MMJLNi91iVhaReGNJaKwOzQfMLSxtV4nfVxNWA3Gq+TNq4GHLoP7N7+s8711wv4KryuQh5PAU4NOVfh53kV8BL2HXUznPxqhKYJSTsDuBD7jqt1wJXO+nbAtJB0Y4GbsW/kuA94HPuurGHYw0yheVqR9hW+DQhg3401JcKSE6NNPAr8hn2dh5+r0LYV3hEKbYMPOOf1pNC6KyluJNri/g7s8dDlwHjsu1wGO5W+nJCehpN2C/adU8eHLbWxxyJD007GCYYh63zAR0AgZN10oIzz2BOyvkL4hROyLRs7OL4ZfgGFpFmN3dtZ5fyt5qxPj3CxVgA+BFY45cl3XvMTcEqkCzfC/tLCnvdy8lgD9AAmAUOwg+qTYWl7YgetwdhvfAVBvwrwc1jauBqv8zyuBuxG43Wex9WAKRpow/MIf74U8DmP/wjbFv5JJTTfs4BB2LfwTiFsMn6M4wrdNj9s28yCaxf7e4XQbT8ADxHSK8e+C6438GPIukVAgyjndF3Y8yWEtBNn3U3YPew1Yevnhzx+NkZdFbSpV7CH2P4nerKFx39UdmJfJK2Aztj34bfC+Sgblm4ocGaUPD6NcOKqRUl7RsjjlChpKoc20ChpLiKsFxHHsZYB6kTZVg44BbvHVzXCdqOU+6qB04PCvu/8SqBllLSNnO0NY+QZV+N11sfVgN1qvCHXQYkNGPtW2vuA+7HfnFTItvBhlu5OHbTFHrZ4FTgbeAr4OCxtsTdq7GGqDsAHYeunYQ8JdcF+c7zMWX8OIT1l4PeCNoD9WwXfh2wLf6OriD3WvxTYBex06ro/RYdOrgTMKOfpsrDnA4D2EdJ1IGyoD3uIIz1C2vrAF1H2dwn2UMjm0lzr//blHy+ALMfWEtZ4d4Y13ophaeNqwG43Xmd71AYMPBm2FIynVwM+ipD+XOAz7DHzhcA47N+Y8IWlG1mKej0Fe1hmPNAQ+0vR3dhvNqeHpDsZe5hhN/bvMxjO+ipAjwj5NsT+QZf0sPXhnxYbYg9TlJguRtoLS5E26v6xvx9pHG3/ibj84wWQ5d+z4Aw5HMm0RzLPsAZ81Pd/tOsKe8jIAr7CHsrqFLJtTmnTOc+7H+m0pdl/oi7/eAFk+fcslPBj7383rRt5/pv2/9+UldLNvImZzq20pckzURf5d+OiCKXUgmibsMdqS53WjTz/Tft3q6zY33PsB9Bar3bmRH+hlDqe0H99HH86t9KWJs+EJIFWhKuK/SPf4f8pT2F/UfN30rqR579p/26VdbNSqonWeh6A1nq/Uupi7BtkTvob6dxKW5o8E5IEWhGu4Mfe54VvUEpN/Ztp3cjz37R/t8p6I/bt1IW01n7gRqXUu38jnVtpS5NnQpLfoxVCCJfJr3cJIYTLJNAKIYTLJNAKIYTLJNAKIYTLJNAKIYTL/h9LoGMEMriNIAAAAABJRU5ErkJggg==\n",
1109 | "text/plain": [
1110 | ""
1111 | ]
1112 | },
1113 | "metadata": {
1114 | "needs_background": "light"
1115 | },
1116 | "output_type": "display_data"
1117 | }
1118 | ],
1119 | "source": [
1120 | "#create heatmap\n",
1121 | "sns.heatmap([df.x, df.y], annot=True, fmt=\"d\")"
1122 | ]
1123 | },
1124 | {
1125 | "cell_type": "markdown",
1126 | "metadata": {},
1127 | "source": [
1128 | "# Analysis/ML in Python\n",
1129 | "\n",
1130 | "Python has an awesome set of data science libraries. Some popular ones are numpy, scikit-learn, tensorflow, pytorch for data processing and machine learning.\n",
1131 | "\n",
1132 | "Let's use one called Stocker. Stocker is a open source python tool that uses ANN (Artificial Nueral Network) to predict the stock's close price for the next business day: https://github.com/jcamiloangarita/stocker."
1133 | ]
1134 | },
1135 | {
1136 | "cell_type": "code",
1137 | "execution_count": 20,
1138 | "metadata": {},
1139 | "outputs": [
1140 | {
1141 | "name": "stderr",
1142 | "output_type": "stream",
1143 | "text": [
1144 | "Using TensorFlow backend.\n"
1145 | ]
1146 | },
1147 | {
1148 | "data": {
1149 | "text/plain": [
1150 | "[139.1, 5.64, '2020-03-19']"
1151 | ]
1152 | },
1153 | "execution_count": 20,
1154 | "metadata": {},
1155 | "output_type": "execute_result"
1156 | }
1157 | ],
1158 | "source": [
1159 | "import stocker\n",
1160 | "\n",
1161 | "def predict(stock):\n",
1162 | " return stocker.predict.tomorrow(stock)\n",
1163 | "\n",
1164 | "\n",
1165 | "#imagine a UDF in Excel\n",
1166 | "predict(\"MSFT\")"
1167 | ]
1168 | }
1169 | ],
1170 | "metadata": {
1171 | "kernelspec": {
1172 | "display_name": "Python 3",
1173 | "language": "python",
1174 | "name": "python3"
1175 | },
1176 | "language_info": {
1177 | "codemirror_mode": {
1178 | "name": "ipython",
1179 | "version": 3
1180 | },
1181 | "file_extension": ".py",
1182 | "mimetype": "text/x-python",
1183 | "name": "python",
1184 | "nbconvert_exporter": "python",
1185 | "pygments_lexer": "ipython3",
1186 | "version": "3.7.4"
1187 | }
1188 | },
1189 | "nbformat": 4,
1190 | "nbformat_minor": 2
1191 | }
1192 |
--------------------------------------------------------------------------------