├── INTEGRATION.md
├── LICENSE
├── README.md
├── dsketch
├── variant_1
│ └── dsketch.p4
└── variant_2
│ └── dsketch.p4
└── misc
├── cms
└── cms.p4
├── conquest
└── conquest.p4
├── fcm
└── fcm.p4
└── precision
├── entries_better_32.p4inc
└── precision.p4
/INTEGRATION.md:
--------------------------------------------------------------------------------
1 | # Integrating/ Using `dSketch`
2 |
3 | Here, we discuss the steps to integrate `dSketch` in to existing P4_16 programs for the Intel Tofino-based switches.
4 | We use the commodity programmable switch, `switch.p4` as the example in this case. The same applies for other programs.
5 |
6 | > Note: Due to confidentiality reasons, the program, `switch.p4` and it's derivatives are not publicly shared..
7 |
8 | ## Overview
9 | We provide two functional equivalent variants of the `dSketch` module. One in in-line style while the other in match-action-table style. However, both of them have slight differences in terms of memory consumption with the latter requiring more memory to maintain the table entries.
10 |
11 | The `dSketch` module is wrapped in the form of a control block. It requires 5 parameters.
12 | ```c
13 | control DSketch (
14 | inout switch_header_t hdr,
15 | in bit<8> ts,
16 | in bit<32> index,
17 | inout bit<32> flow_count,
18 | inout bit<9> egress_port
19 | )
20 | {
21 | ...
22 | }
23 | ```
24 |
25 | - `inout switch_header_t hdr` : headers used in the main program.
26 | - `in bit<8> ts` : sliced from the 48-bit timestamp.
27 | - `in bit<32> index` : output from hash functions.
28 | - `inout bit<32> flow_count` : metadata/ variable to store the flow count output from `dSketch`
29 | - `inout bit<9> egress_port` : egress port field for traffic manager
30 |
31 | ## Headers & Constants
32 | As we rely on (cloned) recirculated packets to update `dSketch` with the decayed counts, we require a special header to carry the necessary information (i.e., decayed counts). To ease the packet parsing process, we define a header formatted similarly as a VLAN which contains an ethernet type field to store the original ethernet type.
33 |
34 | Recirculated packets carrying the decay update header will be set with ethernet type `0xDECA`.
35 | The decay update header should be declared right after the ethernet header.
36 |
37 | ```c
38 | #define ETHERTYPE_DECAY_UPDATE 0xDECA
39 |
40 | header decay_update_h {
41 | bit<32> count_r0;
42 | bit<32> count_r1;
43 | bit<16> ether_type;
44 | }
45 |
46 | struct switch_header_t {
47 | ...
48 | ethernet_h ethernet;
49 | decay_update_h decay_update;
50 | ...
51 | }
52 | ```
53 |
54 | ## Parsers
55 | To parse the (cloned and) recirculated packets, we look for the special ethernet type `0xDECA` when parsing the ethernet frame. This requires modifications to the existing parsers (see below). Then, we extract the information from the decay update header before continuing to parse the remaining headers as usual using the carried ethernet type in the header.
56 |
57 | ```c
58 | state parse_ethernet {
59 | pkt.extract(hdr.ethernet);
60 | transition select(hdr.ethernet.ether_type, ig_intr_md.ingress_port) {
61 | ...
62 | (ETHERTYPE_DECAY_UPDATE, _) : parse_decay_update;
63 | ...
64 | }
65 | }
66 |
67 | state parse_decay_update {
68 | pkt.extract(hdr.decay_update);
69 | transition select(hdr.decay_update.ether_type) {
70 | ...
71 | }
72 | }
73 | ```
74 |
75 | ## Integrating `dSketch`
76 | To integrate `dSketch`, we include `dsketch.p4` into the main program. Then, we initialize an instance of `dSketch` in the Ingress control block before applying it in the `apply` block with the necessary parameters.
77 | This completes the integration.
78 |
79 | > Note: `dSketch` can only work in the Ingress control block.
80 |
81 | ```c
82 | #include "dsketch.p4"
83 | ...
84 |
85 | SwitchIngress(...) {
86 | ...
87 | DSketch() dsketch;
88 | ...
89 |
90 | apply {
91 | ...
92 | dsketch.apply(
93 | hdr, // switch headers
94 | ig_md.timestamp[40:33], // timestamp (from metadata)
95 | ig_md.hash[31:0], // hash (from metadata)
96 | ig_md.flow_count, // flow count (to write to metadata)
97 | ig_intr_md_for_tm.ucast_egress_port // egress port (for traffic manager)
98 | );
99 | ...
100 | }
101 | }
102 |
103 | ```
104 |
105 | ## Optimizations
106 | Instead of recirculating the original packet, in the paper, we recommend to clone the packet and then recirculate only the cloned packet to update the `dSketch` (which will subsequently then be dropped).
107 |
108 | To do this, you will need to replace the few lines of code in `dSketch` to set the `mirror_type` in place of setting the egress ports to the recirculation port.
109 |
110 | Then, you will need to specify the `mirror_type` used, as well as the ports belonging to the mirror `session` (in the following example, we use `mirror_type` 1 and `session` 123).
111 | ```c
112 | SwitchIngressDeparser (...) {
113 | apply {
114 | ...
115 | if(ig_dprsr_md.mirror_type == 1) {
116 | // session 123, where it points to the recirculation port
117 | mirror.emit< /*mirror header here*/ >(10w123, { /*mirror header fields*/ });
118 | }
119 | ...
120 | }
121 | }
122 | ```
123 | On top of that, you will have to manually invalidate the `decay_update` header in the *Egress control block* in order to restore the original packet structure before being forwarded out.
124 |
125 | > Note: There exists multiple ways to clone and recirculate, e.g., by defining custom mirror headers.
126 | By doing that, one does not need the `decay_update` header as long as the custom mirror headers can carry the information in `decay_update`.
127 | However, this is subjected to the number of `mirror_types` that are already in use.
128 | If fully utilized by other applications, then this method may not be feasible.
129 | More examples on mirroring can be found on Intel's Open-Tofino [repository](https://github.com/barefootnetworks/Open-Tofino).
130 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | GNU AFFERO GENERAL PUBLIC LICENSE
2 | Version 3, 19 November 2007
3 |
4 | Copyright (C) 2007 Free Software Foundation, Inc.
5 | Everyone is permitted to copy and distribute verbatim copies
6 | of this license document, but changing it is not allowed.
7 |
8 | Preamble
9 |
10 | The GNU Affero General Public License is a free, copyleft license for
11 | software and other kinds of works, specifically designed to ensure
12 | cooperation with the community in the case of network server software.
13 |
14 | The licenses for most software and other practical works are designed
15 | to take away your freedom to share and change the works. By contrast,
16 | our General Public Licenses are intended to guarantee your freedom to
17 | share and change all versions of a program--to make sure it remains free
18 | software for all its users.
19 |
20 | When we speak of free software, we are referring to freedom, not
21 | price. Our General Public Licenses are designed to make sure that you
22 | have the freedom to distribute copies of free software (and charge for
23 | them if you wish), that you receive source code or can get it if you
24 | want it, that you can change the software or use pieces of it in new
25 | free programs, and that you know you can do these things.
26 |
27 | Developers that use our General Public Licenses protect your rights
28 | with two steps: (1) assert copyright on the software, and (2) offer
29 | you this License which gives you legal permission to copy, distribute
30 | and/or modify the software.
31 |
32 | A secondary benefit of defending all users' freedom is that
33 | improvements made in alternate versions of the program, if they
34 | receive widespread use, become available for other developers to
35 | incorporate. Many developers of free software are heartened and
36 | encouraged by the resulting cooperation. However, in the case of
37 | software used on network servers, this result may fail to come about.
38 | The GNU General Public License permits making a modified version and
39 | letting the public access it on a server without ever releasing its
40 | source code to the public.
41 |
42 | The GNU Affero General Public License is designed specifically to
43 | ensure that, in such cases, the modified source code becomes available
44 | to the community. It requires the operator of a network server to
45 | provide the source code of the modified version running there to the
46 | users of that server. Therefore, public use of a modified version, on
47 | a publicly accessible server, gives the public access to the source
48 | code of the modified version.
49 |
50 | An older license, called the Affero General Public License and
51 | published by Affero, was designed to accomplish similar goals. This is
52 | a different license, not a version of the Affero GPL, but Affero has
53 | released a new version of the Affero GPL which permits relicensing under
54 | this license.
55 |
56 | The precise terms and conditions for copying, distribution and
57 | modification follow.
58 |
59 | TERMS AND CONDITIONS
60 |
61 | 0. Definitions.
62 |
63 | "This License" refers to version 3 of the GNU Affero General Public License.
64 |
65 | "Copyright" also means copyright-like laws that apply to other kinds of
66 | works, such as semiconductor masks.
67 |
68 | "The Program" refers to any copyrightable work licensed under this
69 | License. Each licensee is addressed as "you". "Licensees" and
70 | "recipients" may be individuals or organizations.
71 |
72 | To "modify" a work means to copy from or adapt all or part of the work
73 | in a fashion requiring copyright permission, other than the making of an
74 | exact copy. The resulting work is called a "modified version" of the
75 | earlier work or a work "based on" the earlier work.
76 |
77 | A "covered work" means either the unmodified Program or a work based
78 | on the Program.
79 |
80 | To "propagate" a work means to do anything with it that, without
81 | permission, would make you directly or secondarily liable for
82 | infringement under applicable copyright law, except executing it on a
83 | computer or modifying a private copy. Propagation includes copying,
84 | distribution (with or without modification), making available to the
85 | public, and in some countries other activities as well.
86 |
87 | To "convey" a work means any kind of propagation that enables other
88 | parties to make or receive copies. Mere interaction with a user through
89 | a computer network, with no transfer of a copy, is not conveying.
90 |
91 | An interactive user interface displays "Appropriate Legal Notices"
92 | to the extent that it includes a convenient and prominently visible
93 | feature that (1) displays an appropriate copyright notice, and (2)
94 | tells the user that there is no warranty for the work (except to the
95 | extent that warranties are provided), that licensees may convey the
96 | work under this License, and how to view a copy of this License. If
97 | the interface presents a list of user commands or options, such as a
98 | menu, a prominent item in the list meets this criterion.
99 |
100 | 1. Source Code.
101 |
102 | The "source code" for a work means the preferred form of the work
103 | for making modifications to it. "Object code" means any non-source
104 | form of a work.
105 |
106 | A "Standard Interface" means an interface that either is an official
107 | standard defined by a recognized standards body, or, in the case of
108 | interfaces specified for a particular programming language, one that
109 | is widely used among developers working in that language.
110 |
111 | The "System Libraries" of an executable work include anything, other
112 | than the work as a whole, that (a) is included in the normal form of
113 | packaging a Major Component, but which is not part of that Major
114 | Component, and (b) serves only to enable use of the work with that
115 | Major Component, or to implement a Standard Interface for which an
116 | implementation is available to the public in source code form. A
117 | "Major Component", in this context, means a major essential component
118 | (kernel, window system, and so on) of the specific operating system
119 | (if any) on which the executable work runs, or a compiler used to
120 | produce the work, or an object code interpreter used to run it.
121 |
122 | The "Corresponding Source" for a work in object code form means all
123 | the source code needed to generate, install, and (for an executable
124 | work) run the object code and to modify the work, including scripts to
125 | control those activities. However, it does not include the work's
126 | System Libraries, or general-purpose tools or generally available free
127 | programs which are used unmodified in performing those activities but
128 | which are not part of the work. For example, Corresponding Source
129 | includes interface definition files associated with source files for
130 | the work, and the source code for shared libraries and dynamically
131 | linked subprograms that the work is specifically designed to require,
132 | such as by intimate data communication or control flow between those
133 | subprograms and other parts of the work.
134 |
135 | The Corresponding Source need not include anything that users
136 | can regenerate automatically from other parts of the Corresponding
137 | Source.
138 |
139 | The Corresponding Source for a work in source code form is that
140 | same work.
141 |
142 | 2. Basic Permissions.
143 |
144 | All rights granted under this License are granted for the term of
145 | copyright on the Program, and are irrevocable provided the stated
146 | conditions are met. This License explicitly affirms your unlimited
147 | permission to run the unmodified Program. The output from running a
148 | covered work is covered by this License only if the output, given its
149 | content, constitutes a covered work. This License acknowledges your
150 | rights of fair use or other equivalent, as provided by copyright law.
151 |
152 | You may make, run and propagate covered works that you do not
153 | convey, without conditions so long as your license otherwise remains
154 | in force. You may convey covered works to others for the sole purpose
155 | of having them make modifications exclusively for you, or provide you
156 | with facilities for running those works, provided that you comply with
157 | the terms of this License in conveying all material for which you do
158 | not control copyright. Those thus making or running the covered works
159 | for you must do so exclusively on your behalf, under your direction
160 | and control, on terms that prohibit them from making any copies of
161 | your copyrighted material outside their relationship with you.
162 |
163 | Conveying under any other circumstances is permitted solely under
164 | the conditions stated below. Sublicensing is not allowed; section 10
165 | makes it unnecessary.
166 |
167 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
168 |
169 | No covered work shall be deemed part of an effective technological
170 | measure under any applicable law fulfilling obligations under article
171 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or
172 | similar laws prohibiting or restricting circumvention of such
173 | measures.
174 |
175 | When you convey a covered work, you waive any legal power to forbid
176 | circumvention of technological measures to the extent such circumvention
177 | is effected by exercising rights under this License with respect to
178 | the covered work, and you disclaim any intention to limit operation or
179 | modification of the work as a means of enforcing, against the work's
180 | users, your or third parties' legal rights to forbid circumvention of
181 | technological measures.
182 |
183 | 4. Conveying Verbatim Copies.
184 |
185 | You may convey verbatim copies of the Program's source code as you
186 | receive it, in any medium, provided that you conspicuously and
187 | appropriately publish on each copy an appropriate copyright notice;
188 | keep intact all notices stating that this License and any
189 | non-permissive terms added in accord with section 7 apply to the code;
190 | keep intact all notices of the absence of any warranty; and give all
191 | recipients a copy of this License along with the Program.
192 |
193 | You may charge any price or no price for each copy that you convey,
194 | and you may offer support or warranty protection for a fee.
195 |
196 | 5. Conveying Modified Source Versions.
197 |
198 | You may convey a work based on the Program, or the modifications to
199 | produce it from the Program, in the form of source code under the
200 | terms of section 4, provided that you also meet all of these conditions:
201 |
202 | a) The work must carry prominent notices stating that you modified
203 | it, and giving a relevant date.
204 |
205 | b) The work must carry prominent notices stating that it is
206 | released under this License and any conditions added under section
207 | 7. This requirement modifies the requirement in section 4 to
208 | "keep intact all notices".
209 |
210 | c) You must license the entire work, as a whole, under this
211 | License to anyone who comes into possession of a copy. This
212 | License will therefore apply, along with any applicable section 7
213 | additional terms, to the whole of the work, and all its parts,
214 | regardless of how they are packaged. This License gives no
215 | permission to license the work in any other way, but it does not
216 | invalidate such permission if you have separately received it.
217 |
218 | d) If the work has interactive user interfaces, each must display
219 | Appropriate Legal Notices; however, if the Program has interactive
220 | interfaces that do not display Appropriate Legal Notices, your
221 | work need not make them do so.
222 |
223 | A compilation of a covered work with other separate and independent
224 | works, which are not by their nature extensions of the covered work,
225 | and which are not combined with it such as to form a larger program,
226 | in or on a volume of a storage or distribution medium, is called an
227 | "aggregate" if the compilation and its resulting copyright are not
228 | used to limit the access or legal rights of the compilation's users
229 | beyond what the individual works permit. Inclusion of a covered work
230 | in an aggregate does not cause this License to apply to the other
231 | parts of the aggregate.
232 |
233 | 6. Conveying Non-Source Forms.
234 |
235 | You may convey a covered work in object code form under the terms
236 | of sections 4 and 5, provided that you also convey the
237 | machine-readable Corresponding Source under the terms of this License,
238 | in one of these ways:
239 |
240 | a) Convey the object code in, or embodied in, a physical product
241 | (including a physical distribution medium), accompanied by the
242 | Corresponding Source fixed on a durable physical medium
243 | customarily used for software interchange.
244 |
245 | b) Convey the object code in, or embodied in, a physical product
246 | (including a physical distribution medium), accompanied by a
247 | written offer, valid for at least three years and valid for as
248 | long as you offer spare parts or customer support for that product
249 | model, to give anyone who possesses the object code either (1) a
250 | copy of the Corresponding Source for all the software in the
251 | product that is covered by this License, on a durable physical
252 | medium customarily used for software interchange, for a price no
253 | more than your reasonable cost of physically performing this
254 | conveying of source, or (2) access to copy the
255 | Corresponding Source from a network server at no charge.
256 |
257 | c) Convey individual copies of the object code with a copy of the
258 | written offer to provide the Corresponding Source. This
259 | alternative is allowed only occasionally and noncommercially, and
260 | only if you received the object code with such an offer, in accord
261 | with subsection 6b.
262 |
263 | d) Convey the object code by offering access from a designated
264 | place (gratis or for a charge), and offer equivalent access to the
265 | Corresponding Source in the same way through the same place at no
266 | further charge. You need not require recipients to copy the
267 | Corresponding Source along with the object code. If the place to
268 | copy the object code is a network server, the Corresponding Source
269 | may be on a different server (operated by you or a third party)
270 | that supports equivalent copying facilities, provided you maintain
271 | clear directions next to the object code saying where to find the
272 | Corresponding Source. Regardless of what server hosts the
273 | Corresponding Source, you remain obligated to ensure that it is
274 | available for as long as needed to satisfy these requirements.
275 |
276 | e) Convey the object code using peer-to-peer transmission, provided
277 | you inform other peers where the object code and Corresponding
278 | Source of the work are being offered to the general public at no
279 | charge under subsection 6d.
280 |
281 | A separable portion of the object code, whose source code is excluded
282 | from the Corresponding Source as a System Library, need not be
283 | included in conveying the object code work.
284 |
285 | A "User Product" is either (1) a "consumer product", which means any
286 | tangible personal property which is normally used for personal, family,
287 | or household purposes, or (2) anything designed or sold for incorporation
288 | into a dwelling. In determining whether a product is a consumer product,
289 | doubtful cases shall be resolved in favor of coverage. For a particular
290 | product received by a particular user, "normally used" refers to a
291 | typical or common use of that class of product, regardless of the status
292 | of the particular user or of the way in which the particular user
293 | actually uses, or expects or is expected to use, the product. A product
294 | is a consumer product regardless of whether the product has substantial
295 | commercial, industrial or non-consumer uses, unless such uses represent
296 | the only significant mode of use of the product.
297 |
298 | "Installation Information" for a User Product means any methods,
299 | procedures, authorization keys, or other information required to install
300 | and execute modified versions of a covered work in that User Product from
301 | a modified version of its Corresponding Source. The information must
302 | suffice to ensure that the continued functioning of the modified object
303 | code is in no case prevented or interfered with solely because
304 | modification has been made.
305 |
306 | If you convey an object code work under this section in, or with, or
307 | specifically for use in, a User Product, and the conveying occurs as
308 | part of a transaction in which the right of possession and use of the
309 | User Product is transferred to the recipient in perpetuity or for a
310 | fixed term (regardless of how the transaction is characterized), the
311 | Corresponding Source conveyed under this section must be accompanied
312 | by the Installation Information. But this requirement does not apply
313 | if neither you nor any third party retains the ability to install
314 | modified object code on the User Product (for example, the work has
315 | been installed in ROM).
316 |
317 | The requirement to provide Installation Information does not include a
318 | requirement to continue to provide support service, warranty, or updates
319 | for a work that has been modified or installed by the recipient, or for
320 | the User Product in which it has been modified or installed. Access to a
321 | network may be denied when the modification itself materially and
322 | adversely affects the operation of the network or violates the rules and
323 | protocols for communication across the network.
324 |
325 | Corresponding Source conveyed, and Installation Information provided,
326 | in accord with this section must be in a format that is publicly
327 | documented (and with an implementation available to the public in
328 | source code form), and must require no special password or key for
329 | unpacking, reading or copying.
330 |
331 | 7. Additional Terms.
332 |
333 | "Additional permissions" are terms that supplement the terms of this
334 | License by making exceptions from one or more of its conditions.
335 | Additional permissions that are applicable to the entire Program shall
336 | be treated as though they were included in this License, to the extent
337 | that they are valid under applicable law. If additional permissions
338 | apply only to part of the Program, that part may be used separately
339 | under those permissions, but the entire Program remains governed by
340 | this License without regard to the additional permissions.
341 |
342 | When you convey a copy of a covered work, you may at your option
343 | remove any additional permissions from that copy, or from any part of
344 | it. (Additional permissions may be written to require their own
345 | removal in certain cases when you modify the work.) You may place
346 | additional permissions on material, added by you to a covered work,
347 | for which you have or can give appropriate copyright permission.
348 |
349 | Notwithstanding any other provision of this License, for material you
350 | add to a covered work, you may (if authorized by the copyright holders of
351 | that material) supplement the terms of this License with terms:
352 |
353 | a) Disclaiming warranty or limiting liability differently from the
354 | terms of sections 15 and 16 of this License; or
355 |
356 | b) Requiring preservation of specified reasonable legal notices or
357 | author attributions in that material or in the Appropriate Legal
358 | Notices displayed by works containing it; or
359 |
360 | c) Prohibiting misrepresentation of the origin of that material, or
361 | requiring that modified versions of such material be marked in
362 | reasonable ways as different from the original version; or
363 |
364 | d) Limiting the use for publicity purposes of names of licensors or
365 | authors of the material; or
366 |
367 | e) Declining to grant rights under trademark law for use of some
368 | trade names, trademarks, or service marks; or
369 |
370 | f) Requiring indemnification of licensors and authors of that
371 | material by anyone who conveys the material (or modified versions of
372 | it) with contractual assumptions of liability to the recipient, for
373 | any liability that these contractual assumptions directly impose on
374 | those licensors and authors.
375 |
376 | All other non-permissive additional terms are considered "further
377 | restrictions" within the meaning of section 10. If the Program as you
378 | received it, or any part of it, contains a notice stating that it is
379 | governed by this License along with a term that is a further
380 | restriction, you may remove that term. If a license document contains
381 | a further restriction but permits relicensing or conveying under this
382 | License, you may add to a covered work material governed by the terms
383 | of that license document, provided that the further restriction does
384 | not survive such relicensing or conveying.
385 |
386 | If you add terms to a covered work in accord with this section, you
387 | must place, in the relevant source files, a statement of the
388 | additional terms that apply to those files, or a notice indicating
389 | where to find the applicable terms.
390 |
391 | Additional terms, permissive or non-permissive, may be stated in the
392 | form of a separately written license, or stated as exceptions;
393 | the above requirements apply either way.
394 |
395 | 8. Termination.
396 |
397 | You may not propagate or modify a covered work except as expressly
398 | provided under this License. Any attempt otherwise to propagate or
399 | modify it is void, and will automatically terminate your rights under
400 | this License (including any patent licenses granted under the third
401 | paragraph of section 11).
402 |
403 | However, if you cease all violation of this License, then your
404 | license from a particular copyright holder is reinstated (a)
405 | provisionally, unless and until the copyright holder explicitly and
406 | finally terminates your license, and (b) permanently, if the copyright
407 | holder fails to notify you of the violation by some reasonable means
408 | prior to 60 days after the cessation.
409 |
410 | Moreover, your license from a particular copyright holder is
411 | reinstated permanently if the copyright holder notifies you of the
412 | violation by some reasonable means, this is the first time you have
413 | received notice of violation of this License (for any work) from that
414 | copyright holder, and you cure the violation prior to 30 days after
415 | your receipt of the notice.
416 |
417 | Termination of your rights under this section does not terminate the
418 | licenses of parties who have received copies or rights from you under
419 | this License. If your rights have been terminated and not permanently
420 | reinstated, you do not qualify to receive new licenses for the same
421 | material under section 10.
422 |
423 | 9. Acceptance Not Required for Having Copies.
424 |
425 | You are not required to accept this License in order to receive or
426 | run a copy of the Program. Ancillary propagation of a covered work
427 | occurring solely as a consequence of using peer-to-peer transmission
428 | to receive a copy likewise does not require acceptance. However,
429 | nothing other than this License grants you permission to propagate or
430 | modify any covered work. These actions infringe copyright if you do
431 | not accept this License. Therefore, by modifying or propagating a
432 | covered work, you indicate your acceptance of this License to do so.
433 |
434 | 10. Automatic Licensing of Downstream Recipients.
435 |
436 | Each time you convey a covered work, the recipient automatically
437 | receives a license from the original licensors, to run, modify and
438 | propagate that work, subject to this License. You are not responsible
439 | for enforcing compliance by third parties with this License.
440 |
441 | An "entity transaction" is a transaction transferring control of an
442 | organization, or substantially all assets of one, or subdividing an
443 | organization, or merging organizations. If propagation of a covered
444 | work results from an entity transaction, each party to that
445 | transaction who receives a copy of the work also receives whatever
446 | licenses to the work the party's predecessor in interest had or could
447 | give under the previous paragraph, plus a right to possession of the
448 | Corresponding Source of the work from the predecessor in interest, if
449 | the predecessor has it or can get it with reasonable efforts.
450 |
451 | You may not impose any further restrictions on the exercise of the
452 | rights granted or affirmed under this License. For example, you may
453 | not impose a license fee, royalty, or other charge for exercise of
454 | rights granted under this License, and you may not initiate litigation
455 | (including a cross-claim or counterclaim in a lawsuit) alleging that
456 | any patent claim is infringed by making, using, selling, offering for
457 | sale, or importing the Program or any portion of it.
458 |
459 | 11. Patents.
460 |
461 | A "contributor" is a copyright holder who authorizes use under this
462 | License of the Program or a work on which the Program is based. The
463 | work thus licensed is called the contributor's "contributor version".
464 |
465 | A contributor's "essential patent claims" are all patent claims
466 | owned or controlled by the contributor, whether already acquired or
467 | hereafter acquired, that would be infringed by some manner, permitted
468 | by this License, of making, using, or selling its contributor version,
469 | but do not include claims that would be infringed only as a
470 | consequence of further modification of the contributor version. For
471 | purposes of this definition, "control" includes the right to grant
472 | patent sublicenses in a manner consistent with the requirements of
473 | this License.
474 |
475 | Each contributor grants you a non-exclusive, worldwide, royalty-free
476 | patent license under the contributor's essential patent claims, to
477 | make, use, sell, offer for sale, import and otherwise run, modify and
478 | propagate the contents of its contributor version.
479 |
480 | In the following three paragraphs, a "patent license" is any express
481 | agreement or commitment, however denominated, not to enforce a patent
482 | (such as an express permission to practice a patent or covenant not to
483 | sue for patent infringement). To "grant" such a patent license to a
484 | party means to make such an agreement or commitment not to enforce a
485 | patent against the party.
486 |
487 | If you convey a covered work, knowingly relying on a patent license,
488 | and the Corresponding Source of the work is not available for anyone
489 | to copy, free of charge and under the terms of this License, through a
490 | publicly available network server or other readily accessible means,
491 | then you must either (1) cause the Corresponding Source to be so
492 | available, or (2) arrange to deprive yourself of the benefit of the
493 | patent license for this particular work, or (3) arrange, in a manner
494 | consistent with the requirements of this License, to extend the patent
495 | license to downstream recipients. "Knowingly relying" means you have
496 | actual knowledge that, but for the patent license, your conveying the
497 | covered work in a country, or your recipient's use of the covered work
498 | in a country, would infringe one or more identifiable patents in that
499 | country that you have reason to believe are valid.
500 |
501 | If, pursuant to or in connection with a single transaction or
502 | arrangement, you convey, or propagate by procuring conveyance of, a
503 | covered work, and grant a patent license to some of the parties
504 | receiving the covered work authorizing them to use, propagate, modify
505 | or convey a specific copy of the covered work, then the patent license
506 | you grant is automatically extended to all recipients of the covered
507 | work and works based on it.
508 |
509 | A patent license is "discriminatory" if it does not include within
510 | the scope of its coverage, prohibits the exercise of, or is
511 | conditioned on the non-exercise of one or more of the rights that are
512 | specifically granted under this License. You may not convey a covered
513 | work if you are a party to an arrangement with a third party that is
514 | in the business of distributing software, under which you make payment
515 | to the third party based on the extent of your activity of conveying
516 | the work, and under which the third party grants, to any of the
517 | parties who would receive the covered work from you, a discriminatory
518 | patent license (a) in connection with copies of the covered work
519 | conveyed by you (or copies made from those copies), or (b) primarily
520 | for and in connection with specific products or compilations that
521 | contain the covered work, unless you entered into that arrangement,
522 | or that patent license was granted, prior to 28 March 2007.
523 |
524 | Nothing in this License shall be construed as excluding or limiting
525 | any implied license or other defenses to infringement that may
526 | otherwise be available to you under applicable patent law.
527 |
528 | 12. No Surrender of Others' Freedom.
529 |
530 | If conditions are imposed on you (whether by court order, agreement or
531 | otherwise) that contradict the conditions of this License, they do not
532 | excuse you from the conditions of this License. If you cannot convey a
533 | covered work so as to satisfy simultaneously your obligations under this
534 | License and any other pertinent obligations, then as a consequence you may
535 | not convey it at all. For example, if you agree to terms that obligate you
536 | to collect a royalty for further conveying from those to whom you convey
537 | the Program, the only way you could satisfy both those terms and this
538 | License would be to refrain entirely from conveying the Program.
539 |
540 | 13. Remote Network Interaction; Use with the GNU General Public License.
541 |
542 | Notwithstanding any other provision of this License, if you modify the
543 | Program, your modified version must prominently offer all users
544 | interacting with it remotely through a computer network (if your version
545 | supports such interaction) an opportunity to receive the Corresponding
546 | Source of your version by providing access to the Corresponding Source
547 | from a network server at no charge, through some standard or customary
548 | means of facilitating copying of software. This Corresponding Source
549 | shall include the Corresponding Source for any work covered by version 3
550 | of the GNU General Public License that is incorporated pursuant to the
551 | following paragraph.
552 |
553 | Notwithstanding any other provision of this License, you have
554 | permission to link or combine any covered work with a work licensed
555 | under version 3 of the GNU General Public License into a single
556 | combined work, and to convey the resulting work. The terms of this
557 | License will continue to apply to the part which is the covered work,
558 | but the work with which it is combined will remain governed by version
559 | 3 of the GNU General Public License.
560 |
561 | 14. Revised Versions of this License.
562 |
563 | The Free Software Foundation may publish revised and/or new versions of
564 | the GNU Affero General Public License from time to time. Such new versions
565 | will be similar in spirit to the present version, but may differ in detail to
566 | address new problems or concerns.
567 |
568 | Each version is given a distinguishing version number. If the
569 | Program specifies that a certain numbered version of the GNU Affero General
570 | Public License "or any later version" applies to it, you have the
571 | option of following the terms and conditions either of that numbered
572 | version or of any later version published by the Free Software
573 | Foundation. If the Program does not specify a version number of the
574 | GNU Affero General Public License, you may choose any version ever published
575 | by the Free Software Foundation.
576 |
577 | If the Program specifies that a proxy can decide which future
578 | versions of the GNU Affero General Public License can be used, that proxy's
579 | public statement of acceptance of a version permanently authorizes you
580 | to choose that version for the Program.
581 |
582 | Later license versions may give you additional or different
583 | permissions. However, no additional obligations are imposed on any
584 | author or copyright holder as a result of your choosing to follow a
585 | later version.
586 |
587 | 15. Disclaimer of Warranty.
588 |
589 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
590 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
591 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
592 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
593 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
594 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
595 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
596 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
597 |
598 | 16. Limitation of Liability.
599 |
600 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
601 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
602 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
603 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
604 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
605 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
606 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
607 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
608 | SUCH DAMAGES.
609 |
610 | 17. Interpretation of Sections 15 and 16.
611 |
612 | If the disclaimer of warranty and limitation of liability provided
613 | above cannot be given local legal effect according to their terms,
614 | reviewing courts shall apply local law that most closely approximates
615 | an absolute waiver of all civil liability in connection with the
616 | Program, unless a warranty or assumption of liability accompanies a
617 | copy of the Program in return for a fee.
618 |
619 | END OF TERMS AND CONDITIONS
620 |
621 | How to Apply These Terms to Your New Programs
622 |
623 | If you develop a new program, and you want it to be of the greatest
624 | possible use to the public, the best way to achieve this is to make it
625 | free software which everyone can redistribute and change under these terms.
626 |
627 | To do so, attach the following notices to the program. It is safest
628 | to attach them to the start of each source file to most effectively
629 | state the exclusion of warranty; and each file should have at least
630 | the "copyright" line and a pointer to where the full notice is found.
631 |
632 |
633 | Copyright (C)
634 |
635 | This program is free software: you can redistribute it and/or modify
636 | it under the terms of the GNU Affero General Public License as published
637 | by the Free Software Foundation, either version 3 of the License, or
638 | (at your option) any later version.
639 |
640 | This program is distributed in the hope that it will be useful,
641 | but WITHOUT ANY WARRANTY; without even the implied warranty of
642 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
643 | GNU Affero General Public License for more details.
644 |
645 | You should have received a copy of the GNU Affero General Public License
646 | along with this program. If not, see .
647 |
648 | Also add information on how to contact you by electronic and paper mail.
649 |
650 | If your software can interact with users remotely through a computer
651 | network, you should also make sure that it provides a way for users to
652 | get its source. For example, if your program is a web application, its
653 | interface could display a "Source" link that leads users to an archive
654 | of the code. There are many ways you could offer source, and different
655 | solutions will be better for different programs; see section 13 for the
656 | specific requirements.
657 |
658 | You should also get your employer (if you work as a programmer) or school,
659 | if any, to sign a "copyright disclaimer" for the program, if necessary.
660 | For more information on this, and how to apply and follow the GNU AGPL, see
661 | .
662 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # dSketch
2 |
3 | This repository holds the implementation for the time-decaying in-network heavy-hitter detection algorithm, `dSketch`, proposed in the paper `Revisiting Heavy-Hitter Detection on Commodity Programmable Switches` accepted (and to be presented) at [IEEE NetSoft 2021](https://netsoft2021.ieee-netsoft.org/).
4 |
5 | You can find the paper [here](https://ieeexplore.ieee.org/document/9492531).
6 |
7 | ## Usage/ Integration
8 | Please see [INTEGRATION.md](INTEGRATION.md) for more detail.
9 |
10 | The implementation for `dSketch` can be found under the folder `dsketch/`.
11 |
12 | ## Miscellaneous
13 | The folder `misc/` holds the reference implementation for the other algorithms' evaluated in the paper.
14 |
15 | ## Citation
16 |
17 | If you find this work useful for your research, please cite:
18 |
19 | ```
20 | @INPROCEEDINGS{9492531,
21 | author={Khooi, Xin Zhe and Csikor, Levente and Li, Jialin and Kang, Min Suk and Divakaran, Dinil Mon},
22 | booktitle={2021 IEEE 7th International Conference on Network Softwarization (NetSoft)},
23 | title={Revisiting Heavy-Hitter Detection on Commodity Programmable Switches},
24 | year={2021},
25 | volume={},
26 | number={},
27 | pages={79-87},
28 | doi={10.1109/NetSoft51509.2021.9492531}
29 | }
30 | ```
31 |
32 | ## Feedback/ Questions
33 | We welcome questions/ comments/ feedback.
34 |
35 | Please do not hesitate reach out the authors via email.
36 |
37 | ## License
38 | Copyright 2021 Xin Zhe Khooi, National University of Singapore.
39 |
40 | The project's source code are released here under the [GNU Affero General Public License v3](https://www.gnu.org/licenses/agpl-3.0.html).
41 |
--------------------------------------------------------------------------------
/dsketch/variant_1/dsketch.p4:
--------------------------------------------------------------------------------
1 | /*
2 | dSketch: Time-Decaying Sketches
3 |
4 | Copyright (C) 2021 Xin Zhe Khooi, National University of Singapore
5 |
6 | This program is free software: you can redistribute it and/or modify
7 | it under the terms of the GNU Affero General Public License as published by
8 | the Free Software Foundation, either version 3 of the License, or
9 | (at your option) any later version.
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU Affero General Public License for more details.
14 | You should have received a copy of the GNU Affero General Public License
15 | along with this program. If not, see .
16 | */
17 |
18 | typedef bit<32> count_t;
19 | typedef bit<8> window_t;
20 |
21 | // Use packet length as the unit
22 | // #define INCREMENT ((bit<32>)hdr.ipv4.total_len)
23 |
24 | // Use packet counts as the unit
25 | #define INCREMENT 1
26 | #define SKETCH_CTR_PER_ROW 63356
27 |
28 | control DSketch (
29 | inout switch_header_t hdr,
30 | in bit<8> ts,
31 | in bit<32> index,
32 | inout bit<32> flow_count,
33 | inout bit<9> egress_port
34 | )
35 | {
36 | count_t count_r0 = 0;
37 | window_t diff_r0 = 0;
38 | count_t count_r1 = 0;
39 | window_t diff_r1 = 0;
40 |
41 | Register(SKETCH_CTR_PER_ROW) sketch0;
42 | Register(SKETCH_CTR_PER_ROW) window0;
43 |
44 | Register(SKETCH_CTR_PER_ROW) sketch1;
45 | Register(SKETCH_CTR_PER_ROW) window1;
46 |
47 | RegisterAction (sketch0) sketch0_count = {
48 | void apply(inout count_t val, out count_t rv) {
49 | val = val |+| INCREMENT;
50 | rv = val;
51 | }
52 | };
53 |
54 | RegisterAction (sketch0) sketch0_decay = {
55 | void apply(inout count_t val, out count_t rv) {
56 | val = hdr.decay_update.count_r0;
57 | rv = val;
58 | }
59 | };
60 |
61 | RegisterAction (window0) window0_update = {
62 | void apply(inout window_t val, out window_t rv) {
63 | val = ts;
64 | rv = 0;
65 | }
66 | };
67 |
68 | RegisterAction (window0) window0_diff = {
69 | void apply(inout window_t val, out window_t rv) {
70 | rv = ts - val;
71 | }
72 | };
73 |
74 | RegisterAction (sketch1) sketch1_count = {
75 | void apply(inout count_t val, out count_t rv) {
76 | val = val |+| INCREMENT;
77 | rv = val;
78 | }
79 | };
80 |
81 | RegisterAction (sketch1) sketch1_decay = {
82 | void apply(inout count_t val, out count_t rv) {
83 | val = hdr.decay_update.count_r1;
84 | rv = val;
85 | }
86 | };
87 |
88 | RegisterAction (window1) window1_update = {
89 | void apply(inout window_t val, out window_t rv) {
90 | val = ts;
91 | rv = 0;
92 | }
93 | };
94 |
95 | RegisterAction (window1) window1_diff = {
96 | void apply(inout window_t val, out window_t rv) {
97 | rv = ts - val;
98 | }
99 | };
100 |
101 | action update_sketch0() {
102 | count_r0 = sketch0_count.execute(index[31:16]);
103 | }
104 |
105 | action decay_sketch0() {
106 | count_r0 = sketch0_decay.execute(index[31:16]);
107 | }
108 |
109 | action update_sketch1() {
110 | count_r1 = sketch1_count.execute(index[15:0]);
111 | }
112 |
113 | action decay_sketch1() {
114 | count_r1 = sketch1_decay.execute(index[15:0]);
115 | }
116 |
117 | action diff_window0() {
118 | diff_r0 = window0_diff.execute(index[31:16]);
119 | }
120 |
121 | action update_window0() {
122 | diff_r0 = window0_update.execute(index[31:16]);
123 | }
124 |
125 | action diff_window1() {
126 | diff_r1 = window1_diff.execute(index[15:0]);
127 | }
128 |
129 | action update_window1() {
130 | diff_r1 = window1_update.execute(index[15:0]);
131 | }
132 |
133 | action zero0 (bit<9> recirc_port) {
134 | hdr.decay_update.setValid();
135 | egress_port = recirc_port;
136 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
137 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
138 | hdr.decay_update.count_r0 = count_r0;
139 | }
140 |
141 | action shift0(bit<9> recirc_port) {
142 | hdr.decay_update.setValid();
143 | egress_port = recirc_port;
144 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
145 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
146 | hdr.decay_update.count_r0 = count_r0 >> 1;
147 | }
148 |
149 | action zero1 (bit<9> recirc_port) {
150 | hdr.decay_update.setValid();
151 | egress_port = recirc_port;
152 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
153 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
154 | hdr.decay_update.count_r1 = count_r1;
155 | }
156 |
157 | action shift1(bit<9> recirc_port) {
158 | hdr.decay_update.setValid();
159 | egress_port = recirc_port;
160 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
161 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
162 | hdr.decay_update.count_r1 = count_r1 >> 1;
163 | }
164 |
165 | apply {
166 | if (!hdr.decay_update.isValid()) {
167 | update_sketch0();
168 | update_sketch1();
169 | diff_window0();
170 | diff_window1();
171 | } else {
172 | decay_sketch0();
173 | decay_sketch1();
174 | update_window0();
175 | update_window1();
176 | hdr.decay_update.setInvalid();
177 | }
178 |
179 | flow_count = min(count_r1, count_r0);
180 |
181 | if (diff_r0 == 0) {
182 | NoAction();
183 | } else if (diff_r0 == 1) {
184 | shift0(192); // specify your recirculation port
185 | } else {
186 | zero0(192); // specify your recirculation port
187 | }
188 |
189 | if (diff_r1 == 0) {
190 | NoAction();
191 | } else if (diff_r1 == 1) {
192 | shift1(192); // specify your recirculation port
193 | } else {
194 | zero1(192); // specify your recirculation port
195 | }
196 | }
197 | }
--------------------------------------------------------------------------------
/dsketch/variant_2/dsketch.p4:
--------------------------------------------------------------------------------
1 | /*
2 | dSketch: Time-Decaying Sketches
3 |
4 | Copyright (C) 2021 Xin Zhe Khooi, National University of Singapore
5 |
6 | This program is free software: you can redistribute it and/or modify
7 | it under the terms of the GNU Affero General Public License as published by
8 | the Free Software Foundation, either version 3 of the License, or
9 | (at your option) any later version.
10 | This program is distributed in the hope that it will be useful,
11 | but WITHOUT ANY WARRANTY; without even the implied warranty of
12 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 | GNU Affero General Public License for more details.
14 | You should have received a copy of the GNU Affero General Public License
15 | along with this program. If not, see .
16 | */
17 |
18 | typedef bit<32> count_t;
19 | typedef bit<8> window_t;
20 |
21 | // Use packet length as the unit
22 | // #define INCREMENT ((bit<32>)hdr.ipv4.total_len)
23 |
24 | // Use packet counts as the unit
25 | #define INCREMENT 1
26 | #define SKETCH_CTR_PER_ROW 65536
27 |
28 | control DSketch (
29 | inout switch_header_t hdr,
30 | in bit<8> ts,
31 | in bit<32> index,
32 | inout bit<32> flow_count,
33 | inout bit<9> egress_port
34 | )
35 | {
36 | count_t count_r0 = 0;
37 | window_t diff_r0 = 0;
38 | count_t count_r1 = 0;
39 | window_t diff_r1 = 0;
40 |
41 | Register(SKETCH_CTR_PER_ROW) sketch0;
42 | Register(SKETCH_CTR_PER_ROW) window0;
43 |
44 | Register(SKETCH_CTR_PER_ROW) sketch1;
45 | Register(SKETCH_CTR_PER_ROW) window1;
46 |
47 | RegisterAction (sketch0) sketch0_count = {
48 | void apply(inout count_t val, out count_t rv) {
49 | val = val |+| INCREMENT;
50 | rv = val;
51 | }
52 | };
53 |
54 | RegisterAction (sketch0) sketch0_decay = {
55 | void apply(inout count_t val, out count_t rv) {
56 | val = hdr.decay_update.count_r0;
57 | rv = val;
58 | }
59 | };
60 |
61 | RegisterAction (window0) window0_update = {
62 | void apply(inout window_t val, out window_t rv) {
63 | val = ts;
64 | rv = 0;
65 | }
66 | };
67 |
68 | RegisterAction (window0) window0_diff = {
69 | void apply(inout window_t val, out window_t rv) {
70 | rv = ts - val;
71 | }
72 | };
73 |
74 | RegisterAction (sketch1) sketch1_count = {
75 | void apply(inout count_t val, out count_t rv) {
76 | val = val |+| INCREMENT;
77 | rv = val;
78 | }
79 | };
80 |
81 | RegisterAction (sketch1) sketch1_decay = {
82 | void apply(inout count_t val, out count_t rv) {
83 | val = hdr.decay_update.count_r1;
84 | rv = val;
85 | }
86 | };
87 |
88 | RegisterAction (window1) window1_update = {
89 | void apply(inout window_t val, out window_t rv) {
90 | val = ts;
91 | rv = 0;
92 | }
93 | };
94 |
95 | RegisterAction (window1) window1_diff = {
96 | void apply(inout window_t val, out window_t rv) {
97 | rv = ts - val;
98 | }
99 | };
100 |
101 | action update_sketch0() {
102 | count_r0 = sketch0_count.execute(index[31:16]);
103 | }
104 |
105 | action decay_sketch0() {
106 | hdr.decay_update.setInvalid();
107 | count_r0 = sketch0_decay.execute(index[31:16]);
108 | }
109 |
110 | action update_sketch1() {
111 | count_r1 = sketch1_count.execute(index[15:0]);
112 | }
113 |
114 | action decay_sketch1() {
115 | hdr.decay_update.setInvalid();
116 | count_r1 = sketch1_decay.execute(index[15:0]);
117 | }
118 |
119 | action diff_window0() {
120 | diff_r0 = window0_diff.execute(index[31:16]);
121 | }
122 |
123 | action update_window0() {
124 | diff_r0 = window0_update.execute(index[31:16]);
125 | }
126 |
127 | action diff_window1() {
128 | diff_r1 = window1_diff.execute(index[15:0]);
129 | }
130 |
131 | action update_window1() {
132 | diff_r1 = window1_update.execute(index[15:0]);
133 | }
134 |
135 | action zero0 (bit<9> recirc_port) {
136 | hdr.decay_update.setValid();
137 | egress_port = recirc_port;
138 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
139 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
140 | hdr.decay_update.count_r0 = count_r0;
141 | }
142 |
143 | action shift0(bit<9> recirc_port) {
144 | hdr.decay_update.setValid();
145 | egress_port = recirc_port;
146 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
147 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
148 | hdr.decay_update.count_r0 = count_r0 >> 1;
149 | }
150 |
151 | action zero1 (bit<9> recirc_port) {
152 | hdr.decay_update.setValid();
153 | egress_port = recirc_port;
154 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
155 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
156 | hdr.decay_update.count_r1 = count_r1;
157 | }
158 |
159 | action shift1(bit<9> recirc_port) {
160 | hdr.decay_update.setValid();
161 | egress_port = recirc_port;
162 | hdr.ethernet.ether_type = ETHERTYPE_DECAY_UPDATE;
163 | hdr.decay_update.ether_type = ETHERTYPE_IPV4;
164 | hdr.decay_update.count_r1 = count_r1 >> 1;
165 | }
166 |
167 | table sketch00 {
168 | key = {
169 | hdr.decay_update.isValid() : exact;
170 | }
171 | actions = {
172 | update_sketch0;
173 | decay_sketch0;
174 | }
175 | const entries = {
176 | false : update_sketch0();
177 | true : decay_sketch0();
178 | }
179 | }
180 |
181 | table sketch11 {
182 | key = {
183 | hdr.decay_update.isValid() : exact;
184 | }
185 | actions = {
186 | update_sketch1;
187 | decay_sketch1;
188 | }
189 | const entries = {
190 | false : update_sketch1();
191 | true : decay_sketch1();
192 | }
193 | }
194 |
195 | table window00 {
196 | key = {
197 | hdr.decay_update.isValid() : exact;
198 | }
199 | actions = {
200 | diff_window0;
201 | update_window0;
202 | }
203 | const entries = {
204 | false : diff_window0();
205 | true : update_window0();
206 | }
207 | }
208 |
209 | table window11 {
210 | key = {
211 | hdr.decay_update.isValid() : exact;
212 | }
213 | actions = {
214 | diff_window1;
215 | update_window1;
216 | }
217 | const entries = {
218 | false : diff_window1();
219 | true : update_window1();
220 | }
221 | }
222 |
223 | table decay0 {
224 | key = {
225 | diff_r0 : exact;
226 | }
227 | actions = {
228 | zero0;
229 | shift0;
230 | NoAction;
231 | }
232 | // specify your recirculation port
233 | // const entries = {
234 | // 0 : NoAction();
235 | // 1 : shift0(192);
236 | // }
237 | // default_action = zero0(192);
238 | }
239 |
240 | table decay1 {
241 | key = {
242 | diff_r1 : exact;
243 | }
244 | actions = {
245 | zero1;
246 | shift1;
247 | NoAction;
248 | }
249 | // specify your recirculation port
250 | // const entries = {
251 | // 0 : NoAction();
252 | // 1 : shift1(192);
253 | // }
254 | // default_action = zero1(192);
255 | }
256 |
257 | apply {
258 | sketch00.apply();
259 | sketch11.apply();
260 | window00.apply();
261 | window11.apply();
262 | flow_count = min(count_r1, count_r0);
263 | decay0.apply();
264 | decay1.apply();
265 | }
266 | }
--------------------------------------------------------------------------------
/misc/cms/cms.p4:
--------------------------------------------------------------------------------
1 | /* -*- P4_16 -*- */
2 |
3 | #include
4 | #include
5 |
6 | /*************************************************************************
7 | ************* C O N S T A N T S A N D T Y P E S *******************
8 | **************************************************************************/
9 | typedef bit<48> mac_addr_t;
10 | typedef bit<32> ipv4_addr_t;
11 | typedef bit<16> l4_port_t;
12 |
13 | typedef bit<16> ether_type_t;
14 | const ether_type_t ETHERTYPE_IPV4 = 16w0x0800;
15 | const ether_type_t ETHERTYPE_ARP = 16w0x0806;
16 | const ether_type_t ETHERTYPE_DECAY_UPDATE = 16w0x8888;
17 |
18 | typedef bit<8> ip_proto_t;
19 | const ip_proto_t IP_PROTO_ICMP = 1;
20 | const ip_proto_t IP_PROTO_TCP = 6;
21 | const ip_proto_t IP_PROTO_UDP = 17;
22 |
23 | typedef bit<32> count_t;
24 |
25 | const bit<3> HH_DIGEST = 0x03;
26 | struct hh_digest_t {
27 | ipv4_addr_t src_addr;
28 | ipv4_addr_t dst_addr;
29 | bit<8> protocol;
30 | l4_port_t src_port;
31 | l4_port_t dst_port;
32 | }
33 |
34 | /*************************************************************************
35 | *********************** H E A D E R S *********************************
36 | *************************************************************************/
37 |
38 | /* Define all the headers the program will recognize */
39 | /* The actual sets of headers processed by each gress can differ */
40 |
41 | /* Standard ethernet header */
42 | header ethernet_h {
43 | mac_addr_t dst_addr;
44 | mac_addr_t src_addr;
45 | ether_type_t ether_type;
46 | }
47 |
48 | header ipv4_h {
49 | bit<4> version;
50 | bit<4> ihl;
51 | bit<8> diffserv;
52 | bit<16> total_len;
53 | bit<16> identification;
54 | bit<3> flags;
55 | bit<13> frag_offset;
56 | bit<8> ttl;
57 | ip_proto_t protocol;
58 | bit<16> hdr_checksum;
59 | ipv4_addr_t src_addr;
60 | ipv4_addr_t dst_addr;
61 | }
62 |
63 | header icmp_h {
64 | bit<8> type_;
65 | bit<8> code;
66 | bit<16> hdr_checksum;
67 | }
68 |
69 | header tcp_h {
70 | l4_port_t src_port;
71 | l4_port_t dst_port;
72 | bit<32> seq_no;
73 | bit<32> ack_no;
74 | bit<4> data_offset;
75 | bit<4> res;
76 | bit<8> flag;
77 | bit<16> window;
78 | bit<16> checksum;
79 | bit<16> urgent_ptr;
80 | }
81 |
82 | header udp_h {
83 | l4_port_t src_port;
84 | l4_port_t dst_port;
85 | bit<16> hdr_length;
86 | bit<16> checksum;
87 | }
88 |
89 |
90 | /*************************************************************************
91 | ************** I N G R E S S P R O C E S S I N G *******************
92 | *************************************************************************/
93 |
94 | /*********************** H E A D E R S ************************/
95 |
96 | struct my_ingress_headers_t {
97 | ethernet_h ethernet;
98 | ipv4_h ipv4;
99 | tcp_h tcp;
100 | udp_h udp;
101 | }
102 |
103 | /****** G L O B A L I N G R E S S M E T A D A T A *********/
104 |
105 | struct my_ingress_metadata_t {
106 | l4_port_t src_port;
107 | l4_port_t dst_port;
108 | }
109 |
110 | /*********************** P A R S E R **************************/
111 | parser IngressParser(packet_in pkt,
112 | /* User */
113 | out my_ingress_headers_t hdr,
114 | out my_ingress_metadata_t meta,
115 | /* Intrinsic */
116 | out ingress_intrinsic_metadata_t ig_intr_md)
117 | {
118 | /* This is a mandatory state, required by Tofino Architecture */
119 | state start {
120 | pkt.extract(ig_intr_md);
121 | pkt.advance(PORT_METADATA_SIZE);
122 | transition parse_ethernet;
123 | }
124 |
125 | state parse_ethernet {
126 | pkt.extract(hdr.ethernet);
127 | transition select(hdr.ethernet.ether_type) {
128 | ETHERTYPE_IPV4 : parse_ipv4;
129 | }
130 | }
131 |
132 | state parse_ipv4 {
133 | pkt.extract(hdr.ipv4);
134 | meta.src_port = 0;
135 | meta.dst_port = 0;
136 | transition select(hdr.ipv4.protocol) {
137 | IP_PROTO_TCP : parse_tcp;
138 | IP_PROTO_UDP : parse_udp;
139 | default : accept;
140 | }
141 | }
142 |
143 | state parse_tcp {
144 | pkt.extract(hdr.tcp);
145 | meta.src_port = hdr.tcp.src_port;
146 | meta.dst_port = hdr.tcp.dst_port;
147 | transition accept;
148 | }
149 |
150 | state parse_udp {
151 | pkt.extract(hdr.udp);
152 | meta.src_port = hdr.udp.src_port;
153 | meta.dst_port = hdr.udp.dst_port;
154 | transition accept;
155 | }
156 | }
157 |
158 | /***************** M A T C H - A C T I O N *********************/
159 |
160 | control Ingress(
161 | /* User */
162 | inout my_ingress_headers_t hdr,
163 | inout my_ingress_metadata_t meta,
164 | /* Intrinsic */
165 | in ingress_intrinsic_metadata_t ig_intr_md,
166 | in ingress_intrinsic_metadata_from_parser_t ig_prsr_md,
167 | inout ingress_intrinsic_metadata_for_deparser_t ig_dprsr_md,
168 | inout ingress_intrinsic_metadata_for_tm_t ig_tm_md)
169 | {
170 | bit<16> index0 = 0;
171 | bit<16> index1 = 0;
172 | count_t count_r0 = 0;
173 | count_t count_r1 = 0;
174 |
175 | count_t count0 = 0;
176 | count_t count1 = 0;
177 | bit<32> min_count = 0;
178 |
179 | Hash>(HashAlgorithm_t.CRC32) hash_index0;
180 | Hash>(HashAlgorithm_t.CRC16) hash_index1;
181 |
182 | Register(65536) sketch0;
183 | Register(65536) sketch1;
184 |
185 | RegisterAction (sketch0) sketch0_count = {
186 | void apply(inout count_t val, out count_t rv) {
187 | val = val |+| 1;
188 | rv = val;
189 | }
190 | };
191 |
192 | RegisterAction (sketch1) sketch1_count = {
193 | void apply(inout count_t val, out count_t rv) {
194 | val = val |+| 1;
195 | rv = val;
196 | }
197 | };
198 |
199 | action drop() {
200 | ig_dprsr_md.drop_ctl = 0x0; // drop packet
201 | exit;
202 | }
203 |
204 | action forward(PortId_t port) {
205 | ig_tm_md.ucast_egress_port = port;
206 | }
207 |
208 | table ipv4_forward {
209 | key = {
210 | ig_intr_md.ingress_port : exact;
211 | }
212 | actions = {
213 | forward;
214 | NoAction;
215 | }
216 | default_action = NoAction();
217 | }
218 |
219 | action generate_digest() {
220 | ig_dprsr_md.digest_type = HH_DIGEST;
221 | }
222 |
223 | table threshold {
224 | key = {
225 | // TODO: this needs to be slightly readjusted
226 | min_count[19:0] : range;
227 | }
228 | actions = {
229 | generate_digest;
230 | NoAction;
231 | }
232 | default_action = NoAction();
233 | size = 1;
234 | }
235 |
236 | apply {
237 | ipv4_forward.apply();
238 | index0 = hash_index0.get(
239 | {
240 | hdr.ipv4.src_addr,
241 | hdr.ipv4.dst_addr,
242 | hdr.ipv4.protocol,
243 | meta.src_port,
244 | meta.dst_port
245 | }
246 | );
247 | index1 = hash_index1.get(
248 | {
249 | hdr.ipv4.src_addr,
250 | hdr.ipv4.dst_addr,
251 | hdr.ipv4.protocol,
252 | meta.src_port,
253 | meta.dst_port
254 | }
255 | );
256 |
257 | count0 = sketch0_count.execute(index0);
258 | count1 = sketch1_count.execute(index1);
259 | min_count = min(count0, count1);
260 |
261 | threshold.apply();
262 |
263 | // we do not need egress processing for now
264 | ig_tm_md.bypass_egress = 1;
265 | }
266 | }
267 |
268 | /********************* D E P A R S E R ************************/
269 |
270 | control IngressDeparser(packet_out pkt,
271 | /* User */
272 | inout my_ingress_headers_t hdr,
273 | in my_ingress_metadata_t meta,
274 | /* Intrinsic */
275 | in ingress_intrinsic_metadata_for_deparser_t ig_dprsr_md)
276 | {
277 | Digest () hh_digest;
278 |
279 | apply {
280 | if(ig_dprsr_md.digest_type == HH_DIGEST) {
281 | hh_digest.pack({hdr.ipv4.src_addr, hdr.ipv4.dst_addr, hdr.ipv4.protocol, meta.src_port, meta.dst_port});
282 | }
283 |
284 | pkt.emit(hdr);
285 | }
286 | }
287 |
288 |
289 | /*************************************************************************
290 | **************** E G R E S S P R O C E S S I N G *******************
291 | *************************************************************************/
292 |
293 | /*********************** H E A D E R S ************************/
294 |
295 | struct my_egress_headers_t {
296 | }
297 |
298 | /******** G L O B A L E G R E S S M E T A D A T A *********/
299 |
300 | struct my_egress_metadata_t {
301 | }
302 |
303 | /*********************** P A R S E R **************************/
304 |
305 | parser EgressParser(packet_in pkt,
306 | /* User */
307 | out my_egress_headers_t hdr,
308 | out my_egress_metadata_t meta,
309 | /* Intrinsic */
310 | out egress_intrinsic_metadata_t eg_intr_md)
311 | {
312 | /* This is a mandatory state, required by Tofino Architecture */
313 | state start {
314 | pkt.extract(eg_intr_md);
315 | transition accept;
316 | }
317 | }
318 |
319 | /***************** M A T C H - A C T I O N *********************/
320 |
321 | control Egress(
322 | /* User */
323 | inout my_egress_headers_t hdr,
324 | inout my_egress_metadata_t meta,
325 | /* Intrinsic */
326 | in egress_intrinsic_metadata_t eg_intr_md,
327 | in egress_intrinsic_metadata_from_parser_t eg_prsr_md,
328 | inout egress_intrinsic_metadata_for_deparser_t eg_dprsr_md,
329 | inout egress_intrinsic_metadata_for_output_port_t eg_oport_md)
330 | {
331 | apply {
332 | }
333 | }
334 |
335 | /********************* D E P A R S E R ************************/
336 |
337 | control EgressDeparser(packet_out pkt,
338 | /* User */
339 | inout my_egress_headers_t hdr,
340 | in my_egress_metadata_t meta,
341 | /* Intrinsic */
342 | in egress_intrinsic_metadata_for_deparser_t eg_dprsr_md)
343 | {
344 | apply {
345 | pkt.emit(hdr);
346 | }
347 | }
348 |
349 |
350 | /************ F I N A L P A C K A G E ******************************/
351 | Pipeline(
352 | IngressParser(),
353 | Ingress(),
354 | IngressDeparser(),
355 | EgressParser(),
356 | Egress(),
357 | EgressDeparser()
358 | ) pipe;
359 |
360 | Switch(pipe) main;
361 |
--------------------------------------------------------------------------------
/misc/conquest/conquest.p4:
--------------------------------------------------------------------------------
1 | // vim: syntax=P4
2 | /*
3 | ConQuest: Fine-Grained Queue Measurement in the Data Plane
4 |
5 | Copyright (C) 2020 Xiaoqi Chen, Princeton University
6 | xiaoqic [at] cs.princeton.edu / https://doi.org/10.1145/3359989.3365408
7 |
8 | This program is free software: you can redistribute it and/or modify
9 | it under the terms of the GNU Affero General Public License as published by
10 | the Free Software Foundation, either version 3 of the License, or
11 | (at your option) any later version.
12 | This program is distributed in the hope that it will be useful,
13 | but WITHOUT ANY WARRANTY; without even the implied warranty of
14 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 | GNU Affero General Public License for more details.
16 | You should have received a copy of the GNU Affero General Public License
17 | along with this program. If not, see .
18 | */
19 |
20 | /*
21 | Retrieved, and adapted from: https://github.com/Princeton-Cabernet/p4-projects
22 |
23 | Note:
24 | - cleaning is done on the corresponding sketch instance using the control plane whenever the epoch advances.
25 | */
26 |
27 | #define SKETCH_INC ((bit<32>) hdr.ipv4.total_len)
28 |
29 | //== Preamble: constants, headers
30 | #include
31 | #include
32 |
33 | const bit<32> SKETCH_SIZE = 16384;
34 | typedef bit<14> hash_index_t;
35 |
36 | typedef bit<48> mac_addr_t;
37 | typedef bit<32> ipv4_addr_t;
38 | typedef bit<16> ether_type_t;
39 | const ether_type_t ETHERTYPE_IPV4 = 16w0x0800;
40 | const ether_type_t ETHERTYPE_VLAN = 16w0x0810;
41 |
42 | typedef bit<8> ip_proto_t;
43 | const ip_proto_t IP_PROTO_ICMP = 1;
44 | const ip_proto_t IP_PROTO_TCP = 6;
45 | const ip_proto_t IP_PROTO_UDP = 17;
46 |
47 |
48 | header ethernet_h {
49 | mac_addr_t dst_addr;
50 | mac_addr_t src_addr;
51 | bit<16> ether_type;
52 | }
53 |
54 | header ipv4_h {
55 | bit<4> version;
56 | bit<4> ihl;
57 | bit<6> diffserv;
58 | bit<2> ecn;
59 | bit<16> total_len;
60 | bit<16> identification;
61 | bit<3> flags;
62 | bit<13> frag_offset;
63 | bit<8> ttl;
64 | bit<8> protocol;
65 | bit<16> hdr_checksum;
66 | ipv4_addr_t src_addr;
67 | ipv4_addr_t dst_addr;
68 | }
69 |
70 | header tcp_h {
71 | bit<16> src_port;
72 | bit<16> dst_port;
73 |
74 | bit<32> seq_no;
75 | bit<32> ack_no;
76 | bit<4> data_offset;
77 | bit<4> res;
78 | bit<8> flags;
79 | bit<16> window;
80 | bit<16> checksum;
81 | bit<16> urgent_ptr;
82 | }
83 |
84 | header udp_h {
85 | bit<16> src_port;
86 | bit<16> dst_port;
87 | bit<16> hdr_lenght;
88 | bit<16> checksum;
89 | }
90 |
91 | struct header_t {
92 | ethernet_h ethernet;
93 | ipv4_h ipv4;
94 | tcp_h tcp;
95 | udp_h udp;
96 | }
97 |
98 | struct paired_32bit {
99 | bit<32> hi;
100 | bit<32> lo;
101 | }
102 |
103 |
104 | //== Metadata definition
105 | struct ig_metadata_t {
106 | bit<16> src_port;
107 | bit<16> dst_port;
108 |
109 | bit<2> snap_epoch;
110 |
111 | hash_index_t hashed_index_row_0;
112 | hash_index_t hashed_index_row_1;
113 |
114 | hash_index_t snap_0_row_0_index;
115 | bit<32> snap_0_row_0_read;
116 | hash_index_t snap_0_row_1_index;
117 | bit<32> snap_0_row_1_read;
118 | hash_index_t snap_1_row_0_index;
119 | bit<32> snap_1_row_0_read;
120 | hash_index_t snap_1_row_1_index;
121 | bit<32> snap_1_row_1_read;
122 | hash_index_t snap_2_row_0_index;
123 | bit<32> snap_2_row_0_read;
124 | hash_index_t snap_2_row_1_index;
125 | bit<32> snap_2_row_1_read;
126 | hash_index_t snap_3_row_0_index;
127 | bit<32> snap_3_row_0_read;
128 | hash_index_t snap_3_row_1_index;
129 | bit<32> snap_3_row_1_read;
130 |
131 | bit<32> snap_0_read_min_l0;
132 | bit<32> snap_1_read_min_l0;
133 | bit<32> snap_2_read_min_l0;
134 | bit<32> snap_3_read_min_l0;
135 |
136 | bit<32> snap_0_read_min_l1;
137 | bit<32> snap_2_read_min_l1;
138 | bit<32> snap_0_read_min_l2;
139 |
140 | bit<14> cyclic_index;
141 | }
142 |
143 | struct eg_metadata_t {
144 |
145 | }
146 |
147 | parser SwitchIngressParser(
148 | packet_in pkt,
149 | out header_t hdr,
150 | out ig_metadata_t ig_md,
151 | out ingress_intrinsic_metadata_t ig_intr_md) {
152 |
153 | state start {
154 | pkt.extract(ig_intr_md);
155 | pkt.advance(PORT_METADATA_SIZE);
156 | transition parse_ethernet;
157 | }
158 |
159 | state parse_ethernet {
160 | pkt.extract(hdr.ethernet);
161 | transition select(hdr.ethernet.ether_type) {
162 | ETHERTYPE_IPV4 : parse_ipv4;
163 | }
164 | }
165 |
166 | state parse_ipv4 {
167 | pkt.extract(hdr.ipv4);
168 | ig_md.src_port = 0;
169 | ig_md.dst_port = 0;
170 | transition select(hdr.ipv4.protocol) {
171 | IP_PROTO_TCP : parse_tcp;
172 | IP_PROTO_UDP : parse_udp;
173 | default : accept;
174 | }
175 | }
176 |
177 | state parse_tcp {
178 | pkt.extract(hdr.tcp);
179 | ig_md.src_port = hdr.tcp.src_port;
180 | ig_md.dst_port = hdr.tcp.dst_port;
181 | transition accept;
182 | }
183 |
184 | state parse_udp {
185 | pkt.extract(hdr.udp);
186 | ig_md.src_port = hdr.udp.src_port;
187 | ig_md.dst_port = hdr.udp.dst_port;
188 | transition accept;
189 | }
190 | }
191 |
192 | control SwitchIngressDeparser(
193 | packet_out pkt,
194 | inout header_t hdr,
195 | in ig_metadata_t ig_md,
196 | in ingress_intrinsic_metadata_for_deparser_t ig_intr_dprsr_md) {
197 | apply {
198 | pkt.emit(hdr);
199 | }
200 | }
201 |
202 | parser SwitchEgressParser(
203 | packet_in pkt,
204 | out header_t hdr,
205 | out eg_metadata_t eg_md,
206 | out egress_intrinsic_metadata_t eg_intr_md) {
207 |
208 | state start {
209 | pkt.extract(eg_intr_md);
210 | transition accept;
211 | }
212 | }
213 |
214 | control SwitchEgressDeparser(
215 | packet_out pkt,
216 | inout header_t hdr,
217 | in eg_metadata_t eg_md,
218 | in egress_intrinsic_metadata_for_deparser_t eg_intr_md_for_dprsr) {
219 | apply {
220 | pkt.emit(hdr);
221 | }
222 | }
223 |
224 |
225 | //== Control logic
226 | control SwitchIngress(
227 | inout header_t hdr,
228 | inout ig_metadata_t ig_md,
229 | in ingress_intrinsic_metadata_t ig_intr_md,
230 | in ingress_intrinsic_metadata_from_parser_t ig_intr_prsr_md,
231 | inout ingress_intrinsic_metadata_for_deparser_t ig_intr_dprsr_md,
232 | inout ingress_intrinsic_metadata_for_tm_t ig_intr_tm_md) {
233 |
234 | Hash>(HashAlgorithm_t.CRC32) hash_index;
235 | // Hash>(HashAlgorithm_t.CRC32) hash_0_TCP;
236 | // Hash>(HashAlgorithm_t.CRC32) hash_0_UDP;
237 | // Hash>(HashAlgorithm_t.CRC32) hash_0_Other;
238 | // Hash>(HashAlgorithm_t.CRC32) hash_1_TCP;
239 | // Hash>(HashAlgorithm_t.CRC32) hash_1_UDP;
240 | // Hash>(HashAlgorithm_t.CRC32) hash_1_Other;
241 |
242 | // action calc_hashed_index_TCP(){
243 | // ig_md.hashed_index_row_0 = hash_0_TCP.get({
244 | // 6w27, hdr.ipv4.src_addr,
245 | // 5w8, hdr.ipv4.dst_addr,
246 | // 4w8, hdr.tcp.src_port,
247 | // 6w6, hdr.tcp.dst_port
248 | // });
249 | // ig_md.hashed_index_row_1 = hash_1_TCP.get({
250 | // 4w2, hdr.ipv4.src_addr,
251 | // 4w13, hdr.ipv4.dst_addr,
252 | // 3w1, hdr.tcp.src_port,
253 | // 4w3, hdr.tcp.dst_port
254 | // });
255 | // }
256 | // action calc_hashed_index_UDP(){
257 | // ig_md.hashed_index_row_0 = hash_0_UDP.get({
258 | // 5w20, hdr.ipv4.src_addr,
259 | // 4w2, hdr.ipv4.dst_addr,
260 | // 6w28, hdr.udp.src_port,
261 | // 5w19, hdr.udp.dst_port
262 | // });
263 | // ig_md.hashed_index_row_1 = hash_1_UDP.get({
264 | // 5w11, hdr.ipv4.src_addr,
265 | // 5w3, hdr.ipv4.dst_addr,
266 | // 3w2, hdr.udp.src_port,
267 | // 3w2, hdr.udp.dst_port
268 | // });
269 | // }
270 | // action calc_hashed_index_Other(){
271 | // ig_md.hashed_index_row_0 = hash_0_Other.get({
272 | // 3w0, hdr.ipv4.src_addr,
273 | // 3w3, hdr.ipv4.dst_addr,
274 | // 4w2, hdr.ipv4.protocol
275 | // });
276 | // ig_md.hashed_index_row_1 = hash_1_Other.get({
277 | // 4w0, hdr.ipv4.src_addr,
278 | // 5w6, hdr.ipv4.dst_addr,
279 | // 3w7, hdr.ipv4.protocol
280 | // });
281 | // }
282 |
283 | action prep_reads(){
284 | ig_md.snap_0_row_0_read=0;
285 | ig_md.snap_0_row_1_read=0;
286 | ig_md.snap_1_row_0_read=0;
287 | ig_md.snap_1_row_1_read=0;
288 | ig_md.snap_2_row_0_read=0;
289 | ig_md.snap_2_row_1_read=0;
290 | ig_md.snap_3_row_0_read=0;
291 | ig_md.snap_3_row_1_read=0;
292 | }
293 |
294 | action drop() {
295 | ig_intr_dprsr_md.drop_ctl = 0x1;
296 | exit;
297 | }
298 |
299 | //== Prepare register access index options
300 | Register,_>(1) reg_cleaning_index;
301 | RegisterAction, _, bit<32>>(reg_cleaning_index) reg_cleaning_index_rw = {
302 | void apply(inout bit<32> val, out bit<32> rv) {
303 | rv = val;
304 | val = val + 1;
305 | }
306 | };
307 | action calc_cyclic_index(){
308 | ig_md.cyclic_index = (bit<14>) reg_cleaning_index_rw.execute(0);
309 | }
310 |
311 | // SNAPSHOT 0
312 | action snap_0_select_index_hash(){
313 | // READ or WRITE
314 | ig_md.snap_0_row_0_index=ig_md.hashed_index_row_0;
315 | ig_md.snap_0_row_1_index=ig_md.hashed_index_row_1;
316 | }
317 | action snap_0_select_index_cyclic(){
318 | // CLEAN
319 | ig_md.snap_0_row_0_index=ig_md.cyclic_index;
320 | ig_md.snap_0_row_1_index=ig_md.cyclic_index;
321 | }
322 | table tb_snap_0_select_index {
323 | key = {
324 | ig_md.snap_epoch: exact;
325 | }
326 | actions = {
327 | snap_0_select_index_hash;
328 | snap_0_select_index_cyclic;
329 | }
330 | // size = 2;
331 | default_action = snap_0_select_index_hash();
332 | const entries = {
333 | 1 : snap_0_select_index_cyclic(); // CLEAN
334 | }
335 | }
336 | // SNAPSHOT 1
337 | action snap_1_select_index_hash(){
338 | // READ or WRITE
339 | ig_md.snap_1_row_0_index=ig_md.hashed_index_row_0;
340 | ig_md.snap_1_row_1_index=ig_md.hashed_index_row_1;
341 | }
342 | action snap_1_select_index_cyclic(){
343 | // CLEAN
344 | }
345 | table tb_snap_1_select_index {
346 | key = {
347 | ig_md.snap_epoch: exact;
348 | }
349 | actions = {
350 | snap_1_select_index_hash;
351 | snap_1_select_index_cyclic;
352 | }
353 | // size = 2;
354 | default_action = snap_1_select_index_hash();
355 | const entries = {
356 | 2 : snap_1_select_index_cyclic(); // CLEAN
357 | }
358 | }
359 | // SNAPSHOT 2
360 | action snap_2_select_index_hash(){
361 | // READ or WRITE
362 | ig_md.snap_2_row_0_index=ig_md.hashed_index_row_0;
363 | ig_md.snap_2_row_1_index=ig_md.hashed_index_row_1;
364 | }
365 | action snap_2_select_index_cyclic(){
366 | // CLEAN
367 | ig_md.snap_2_row_0_index=ig_md.cyclic_index;
368 | ig_md.snap_2_row_1_index=ig_md.cyclic_index;
369 | }
370 | table tb_snap_2_select_index {
371 | key = {
372 | ig_md.snap_epoch: exact;
373 | }
374 | actions = {
375 | snap_2_select_index_hash;
376 | snap_2_select_index_cyclic;
377 | }
378 | size = 2;
379 | default_action = snap_2_select_index_hash();
380 | const entries = {
381 | 3 : snap_2_select_index_cyclic(); // CLEAN
382 | }
383 | }
384 | // SNAPSHOT 3
385 | action snap_3_select_index_hash(){
386 | // READ or WRITE
387 | ig_md.snap_3_row_0_index=ig_md.hashed_index_row_0;
388 | ig_md.snap_3_row_1_index=ig_md.hashed_index_row_1;
389 | }
390 | action snap_3_select_index_cyclic(){
391 | // CLEAN
392 | ig_md.snap_3_row_0_index=ig_md.cyclic_index;
393 | ig_md.snap_3_row_1_index=ig_md.cyclic_index;
394 | }
395 | table tb_snap_3_select_index {
396 | key = {
397 | ig_md.snap_epoch: exact;
398 | }
399 | actions = {
400 | snap_3_select_index_hash;
401 | snap_3_select_index_cyclic;
402 | }
403 | // size = 2;
404 | default_action = snap_3_select_index_hash();
405 | const entries = {
406 | 0 : snap_3_select_index_cyclic(); // CLEAN
407 | }
408 | }
409 |
410 | // SNAPSHOT 0
411 | Register,_>(SKETCH_SIZE) snap_0_row_0;
412 | RegisterAction, _, bit<32>> (snap_0_row_0) snap_0_row_0_read = {
413 | void apply(inout bit<32> val, out bit<32> rv) {
414 | rv = val;
415 | }
416 | };
417 | action regexec_snap_0_row_0_read(){
418 | ig_md.snap_0_row_0_read=snap_0_row_0_read.execute(ig_md.snap_0_row_0_index);
419 | }
420 | RegisterAction, _, bit<32>> (snap_0_row_0) snap_0_row_0_inc = {
421 | void apply(inout bit<32> val, out bit<32> rv) {
422 | val = val + SKETCH_INC;
423 | rv = val;
424 | }
425 | };
426 | action regexec_snap_0_row_0_inc(){
427 | ig_md.snap_0_row_0_read=snap_0_row_0_inc.execute(ig_md.snap_0_row_0_index);
428 | }
429 | RegisterAction, _, bit<32>> (snap_0_row_0) snap_0_row_0_clr = {
430 | void apply(inout bit<32> val, out bit<32> rv) {
431 | val = 0;
432 | rv = 0;
433 | }
434 | };
435 | action regexec_snap_0_row_0_clr(){
436 | snap_0_row_0_clr.execute(ig_md.snap_0_row_0_index);
437 | }
438 | table tb_snap_0_row_0_rr {
439 | key = {
440 | ig_md.snap_epoch: exact;
441 | }
442 | actions = {
443 | regexec_snap_0_row_0_read;
444 | regexec_snap_0_row_0_inc;
445 | regexec_snap_0_row_0_clr;
446 | // NoAction;
447 | }
448 | // default_action = NoAction();
449 | //round-robin logic
450 | // const entries = {
451 | // 0 : regexec_snap_0_row_0_inc();
452 | // 1 : regexec_snap_0_row_0_clr();
453 | // 2 : regexec_snap_0_row_0_read();
454 | // 3 : regexec_snap_0_row_0_read();
455 | // }
456 | // size = 4;
457 | }
458 | Register,_>(SKETCH_SIZE) snap_0_row_1;
459 | RegisterAction, _, bit<32>> (snap_0_row_1) snap_0_row_1_read = {
460 | void apply(inout bit<32> val, out bit<32> rv) {
461 | rv = val;
462 | }
463 | };
464 | action regexec_snap_0_row_1_read(){
465 | ig_md.snap_0_row_1_read=snap_0_row_1_read.execute(ig_md.snap_0_row_1_index);
466 | }
467 | RegisterAction, _, bit<32>> (snap_0_row_1) snap_0_row_1_inc = {
468 | void apply(inout bit<32> val, out bit<32> rv) {
469 | val = val + SKETCH_INC;
470 | rv = val;
471 | }
472 | };
473 | action regexec_snap_0_row_1_inc(){
474 | ig_md.snap_0_row_1_read=snap_0_row_1_inc.execute(ig_md.snap_0_row_1_index);
475 | }
476 | RegisterAction, _, bit<32>> (snap_0_row_1) snap_0_row_1_clr = {
477 | void apply(inout bit<32> val, out bit<32> rv) {
478 | val = 0;
479 | rv = 0;
480 | }
481 | };
482 | action regexec_snap_0_row_1_clr(){
483 | snap_0_row_1_clr.execute(ig_md.snap_0_row_1_index);
484 | }
485 | table tb_snap_0_row_1_rr {
486 | key = {
487 | ig_md.snap_epoch: exact;
488 | }
489 | actions = {
490 | regexec_snap_0_row_1_read;
491 | regexec_snap_0_row_1_inc;
492 | regexec_snap_0_row_1_clr;
493 | // NoAction;
494 | }
495 | // default_action = NoAction();
496 | //round-robin logic
497 | // const entries = {
498 | // 0 : regexec_snap_0_row_1_inc();
499 | // 1 : regexec_snap_0_row_1_clr();
500 | // 2 : regexec_snap_0_row_1_read();
501 | // 3 : regexec_snap_0_row_1_read();
502 | // }
503 | // size = 4;
504 | }
505 |
506 | // SNAPSHOT 1
507 | Register,_>(SKETCH_SIZE) snap_1_row_0;
508 | RegisterAction, _, bit<32>> (snap_1_row_0) snap_1_row_0_read = {
509 | void apply(inout bit<32> val, out bit<32> rv) {
510 | rv = val;
511 | }
512 | };
513 | action regexec_snap_1_row_0_read(){
514 | ig_md.snap_1_row_0_read=snap_1_row_0_read.execute(ig_md.snap_1_row_0_index);
515 | }
516 | RegisterAction, _, bit<32>> (snap_1_row_0) snap_1_row_0_inc = {
517 | void apply(inout bit<32> val, out bit<32> rv) {
518 | val = val + SKETCH_INC;
519 | rv = val;
520 | }
521 | };
522 | action regexec_snap_1_row_0_inc(){
523 | ig_md.snap_1_row_0_read=snap_1_row_0_inc.execute(ig_md.snap_1_row_0_index);
524 | }
525 | RegisterAction, _, bit<32>> (snap_1_row_0) snap_1_row_0_clr = {
526 | void apply(inout bit<32> val, out bit<32> rv) {
527 | val = 0;
528 | rv = 0;
529 | }
530 | };
531 | action regexec_snap_1_row_0_clr(){
532 | snap_1_row_0_clr.execute(ig_md.snap_1_row_0_index);
533 | }
534 | table tb_snap_1_row_0_rr {
535 | key = {
536 | ig_md.snap_epoch: exact;
537 | }
538 | actions = {
539 | regexec_snap_1_row_0_read;
540 | regexec_snap_1_row_0_inc;
541 | regexec_snap_1_row_0_clr;
542 | // NoAction;
543 | }
544 | // default_action = NoAction();
545 | //round-robin logic
546 | // const entries = {
547 | // 0 : regexec_snap_1_row_0_read();
548 | // 1 : regexec_snap_1_row_0_inc();
549 | // 2 : regexec_snap_1_row_0_clr();
550 | // 3 : regexec_snap_1_row_0_read();
551 | // }
552 | // size = 4;
553 | }
554 | Register,_>(SKETCH_SIZE) snap_1_row_1;
555 | RegisterAction, _, bit<32>> (snap_1_row_1) snap_1_row_1_read = {
556 | void apply(inout bit<32> val, out bit<32> rv) {
557 | rv = val;
558 | }
559 | };
560 | action regexec_snap_1_row_1_read(){
561 | ig_md.snap_1_row_1_read=snap_1_row_1_read.execute(ig_md.snap_1_row_1_index);
562 | }
563 | RegisterAction, _, bit<32>> (snap_1_row_1) snap_1_row_1_inc = {
564 | void apply(inout bit<32> val, out bit<32> rv) {
565 | val = val + SKETCH_INC;
566 | rv = val;
567 | }
568 | };
569 | action regexec_snap_1_row_1_inc(){
570 | ig_md.snap_1_row_1_read=snap_1_row_1_inc.execute(ig_md.snap_1_row_1_index);
571 | }
572 | RegisterAction, _, bit<32>> (snap_1_row_1) snap_1_row_1_clr = {
573 | void apply(inout bit<32> val, out bit<32> rv) {
574 | val = 0;
575 | rv = 0;
576 | }
577 | };
578 | action regexec_snap_1_row_1_clr(){
579 | snap_1_row_1_clr.execute(ig_md.snap_1_row_1_index);
580 | }
581 | table tb_snap_1_row_1_rr {
582 | key = {
583 | ig_md.snap_epoch: exact;
584 | }
585 | actions = {
586 | regexec_snap_1_row_1_read;
587 | regexec_snap_1_row_1_inc;
588 | regexec_snap_1_row_1_clr;
589 | // NoAction;
590 | }
591 | // default_action = NoAction();
592 | //round-robin logic
593 | // const entries = {
594 | // 0 : regexec_snap_1_row_1_read();
595 | // 1 : regexec_snap_1_row_1_inc();
596 | // 2 : regexec_snap_1_row_1_clr();
597 | // 3 : regexec_snap_1_row_1_read();
598 | // }
599 | // size = 4;
600 | }
601 |
602 | // SNAPSHOT 2
603 | Register,_>(SKETCH_SIZE) snap_2_row_0;
604 | RegisterAction, _, bit<32>> (snap_2_row_0) snap_2_row_0_read = {
605 | void apply(inout bit<32> val, out bit<32> rv) {
606 | rv = val;
607 | }
608 | };
609 | action regexec_snap_2_row_0_read(){
610 | ig_md.snap_2_row_0_read=snap_2_row_0_read.execute(ig_md.snap_2_row_0_index);
611 | }
612 | RegisterAction, _, bit<32>> (snap_2_row_0) snap_2_row_0_inc = {
613 | void apply(inout bit<32> val, out bit<32> rv) {
614 | val = val + SKETCH_INC;
615 | rv = val;
616 | }
617 | };
618 | action regexec_snap_2_row_0_inc(){
619 | ig_md.snap_2_row_0_read=snap_2_row_0_inc.execute(ig_md.snap_2_row_0_index);
620 | }
621 | RegisterAction, _, bit<32>> (snap_2_row_0) snap_2_row_0_clr = {
622 | void apply(inout bit<32> val, out bit<32> rv) {
623 | val = 0;
624 | rv = 0;
625 | }
626 | };
627 | action regexec_snap_2_row_0_clr(){
628 | snap_2_row_0_clr.execute(ig_md.snap_2_row_0_index);
629 | }
630 | table tb_snap_2_row_0_rr {
631 | key = {
632 | ig_md.snap_epoch: exact;
633 | }
634 | actions = {
635 | regexec_snap_2_row_0_read;
636 | regexec_snap_2_row_0_inc;
637 | regexec_snap_2_row_0_clr;
638 | // NoAction;
639 | }
640 |
641 | // default_action = NoAction();
642 | //round-robin logic
643 | // const entries = {
644 | // 0 : regexec_snap_2_row_0_read();
645 | // 1 : regexec_snap_2_row_0_read();
646 | // 2 : regexec_snap_2_row_0_inc();
647 | // 3 : regexec_snap_2_row_0_clr();
648 | // }
649 | // size = 4;
650 | }
651 | Register,_>(SKETCH_SIZE) snap_2_row_1;
652 | RegisterAction, _, bit<32>> (snap_2_row_1) snap_2_row_1_read = {
653 | void apply(inout bit<32> val, out bit<32> rv) {
654 | rv = val;
655 | }
656 | };
657 | action regexec_snap_2_row_1_read(){
658 | ig_md.snap_2_row_1_read=snap_2_row_1_read.execute(ig_md.snap_2_row_1_index);
659 | }
660 | RegisterAction, _, bit<32>> (snap_2_row_1) snap_2_row_1_inc = {
661 | void apply(inout bit<32> val, out bit<32> rv) {
662 | val = val + SKETCH_INC;
663 | rv = val;
664 | }
665 | };
666 | action regexec_snap_2_row_1_inc(){
667 | ig_md.snap_2_row_1_read=snap_2_row_1_inc.execute(ig_md.snap_2_row_1_index);
668 | }
669 | RegisterAction, _, bit<32>> (snap_2_row_1) snap_2_row_1_clr = {
670 | void apply(inout bit<32> val, out bit<32> rv) {
671 | val = 0;
672 | rv = 0;
673 | }
674 | };
675 | action regexec_snap_2_row_1_clr(){
676 | snap_2_row_1_clr.execute(ig_md.snap_2_row_1_index);
677 | }
678 | table tb_snap_2_row_1_rr {
679 | key = {
680 | ig_md.snap_epoch: exact;
681 | }
682 | actions = {
683 | regexec_snap_2_row_1_read;
684 | regexec_snap_2_row_1_inc;
685 | regexec_snap_2_row_1_clr;
686 | // NoAction;
687 | }
688 |
689 | // default_action = NoAction();
690 | //round-robin logic
691 | // const entries = {
692 | // 0 : regexec_snap_2_row_1_read();
693 | // 1 : regexec_snap_2_row_1_read();
694 | // 2 : regexec_snap_2_row_1_inc();
695 | // 3 : regexec_snap_2_row_1_clr();
696 | // }
697 | // size = 4;
698 | }
699 |
700 | // SNAPSHOT 3
701 | Register,_>(SKETCH_SIZE) snap_3_row_0;
702 | RegisterAction, _, bit<32>> (snap_3_row_0) snap_3_row_0_read = {
703 | void apply(inout bit<32> val, out bit<32> rv) {
704 | rv = val;
705 | }
706 | };
707 | action regexec_snap_3_row_0_read(){
708 | ig_md.snap_3_row_0_read=snap_3_row_0_read.execute(ig_md.snap_3_row_0_index);
709 | }
710 | RegisterAction, _, bit<32>> (snap_3_row_0) snap_3_row_0_inc = {
711 | void apply(inout bit<32> val, out bit<32> rv) {
712 | val = val + SKETCH_INC;
713 | rv = val;
714 | }
715 | };
716 | action regexec_snap_3_row_0_inc(){
717 | ig_md.snap_3_row_0_read=snap_3_row_0_inc.execute(ig_md.snap_3_row_0_index);
718 | }
719 | RegisterAction, _, bit<32>> (snap_3_row_0) snap_3_row_0_clr = {
720 | void apply(inout bit<32> val, out bit<32> rv) {
721 | val = 0;
722 | rv = 0;
723 | }
724 | };
725 | action regexec_snap_3_row_0_clr(){
726 | snap_3_row_0_clr.execute(ig_md.snap_3_row_0_index);
727 | }
728 | table tb_snap_3_row_0_rr {
729 | key = {
730 | ig_md.snap_epoch: exact;
731 | }
732 | actions = {
733 | regexec_snap_3_row_0_read;
734 | regexec_snap_3_row_0_inc;
735 | regexec_snap_3_row_0_clr;
736 | // NoAction;
737 | }
738 |
739 | // default_action = NoAction();
740 | //round-robin logic
741 | // const entries = {
742 | // 0 : regexec_snap_3_row_0_clr();
743 | // 1 : regexec_snap_3_row_0_read();
744 | // 2 : regexec_snap_3_row_0_read();
745 | // 3 : regexec_snap_3_row_0_inc();
746 | // }
747 | // size = 4;
748 | }
749 | Register,_>(SKETCH_SIZE) snap_3_row_1;
750 | RegisterAction, _, bit<32>> (snap_3_row_1) snap_3_row_1_read = {
751 | void apply(inout bit<32> val, out bit<32> rv) {
752 | rv = val;
753 | }
754 | };
755 | action regexec_snap_3_row_1_read(){
756 | ig_md.snap_3_row_1_read=snap_3_row_1_read.execute(ig_md.snap_3_row_1_index);
757 | }
758 | RegisterAction, _, bit<32>> (snap_3_row_1) snap_3_row_1_inc = {
759 | void apply(inout bit<32> val, out bit<32> rv) {
760 | val = val + SKETCH_INC;
761 | rv = val;
762 | }
763 | };
764 | action regexec_snap_3_row_1_inc(){
765 | ig_md.snap_3_row_1_read=snap_3_row_1_inc.execute(ig_md.snap_3_row_1_index);
766 | }
767 | RegisterAction, _, bit<32>> (snap_3_row_1) snap_3_row_1_clr = {
768 | void apply(inout bit<32> val, out bit<32> rv) {
769 | val = 0;
770 | rv = 0;
771 | }
772 | };
773 | action regexec_snap_3_row_1_clr(){
774 | snap_3_row_1_clr.execute(ig_md.snap_3_row_1_index);
775 | }
776 | table tb_snap_3_row_1_rr {
777 | key = {
778 | ig_md.snap_epoch: exact;
779 | }
780 | actions = {
781 | regexec_snap_3_row_1_read;
782 | regexec_snap_3_row_1_inc;
783 | regexec_snap_3_row_1_clr;
784 | // NoAction;
785 | }
786 |
787 | // default_action = NoAction();
788 | //round-robin logic
789 | // const entries = {
790 | // 0 : regexec_snap_3_row_1_clr();
791 | // 1 : regexec_snap_3_row_1_read();
792 | // 2 : regexec_snap_3_row_1_read();
793 | // 3 : regexec_snap_3_row_1_inc();
794 | // }
795 | // size = 4;
796 | }
797 |
798 | //== Folding sums, which can't be written inline
799 | action calc_sum_0_l0(){
800 | ig_md.snap_0_read_min_l1 =
801 | ig_md.snap_0_read_min_l0 + ig_md.snap_1_read_min_l0;
802 | }
803 | action calc_sum_2_l0(){
804 | ig_md.snap_2_read_min_l1 =
805 | ig_md.snap_2_read_min_l0 + ig_md.snap_3_read_min_l0;
806 | }
807 |
808 | action calc_sum_0_l1(){
809 | ig_md.snap_0_read_min_l2 =
810 | ig_md.snap_0_read_min_l1 + ig_md.snap_2_read_min_l1;
811 | }
812 |
813 | table threshold {
814 | key = {
815 | ig_md.snap_0_read_min_l2[19:0] : range; //scale down to 20 bits
816 | }
817 | actions = {
818 | NoAction;
819 | drop;
820 | }
821 | default_action = NoAction();
822 | size = 1;
823 | }
824 |
825 | apply {
826 | ig_md.snap_epoch = ig_intr_md.ingress_mac_tstamp[33:32];
827 | prep_reads();
828 |
829 | bit<32> index = hash_index.get(
830 | {
831 | hdr.ipv4.src_addr,
832 | hdr.ipv4.dst_addr,
833 | hdr.ipv4.protocol,
834 | ig_md.src_port,
835 | ig_md.dst_port
836 | }
837 | );
838 |
839 | ig_md.hashed_index_row_0 = index[13:0];
840 | ig_md.hashed_index_row_1 = index[21:8];
841 |
842 | // if(hdr.ipv4.protocol==IP_PROTOCOLS_TCP){
843 | // calc_hashed_index_TCP();
844 | // }else if(hdr.ipv4.protocol==IP_PROTOCOLS_UDP){
845 | // calc_hashed_index_UDP();
846 | // }else{
847 | // calc_hashed_index_Other();
848 | // }
849 |
850 | // Select index for snapshots. Cyclic for cleaning, hashed for read/inc
851 | // @stage(1){
852 | tb_snap_0_select_index.apply();
853 | tb_snap_1_select_index.apply();
854 | tb_snap_2_select_index.apply();
855 | tb_snap_3_select_index.apply();
856 | // }
857 | // Run the snapshots! Round-robin clean, inc, read
858 | tb_snap_0_row_0_rr.apply();
859 | tb_snap_0_row_1_rr.apply();
860 | tb_snap_1_row_0_rr.apply();
861 | tb_snap_1_row_1_rr.apply();
862 | tb_snap_2_row_0_rr.apply();
863 | tb_snap_2_row_1_rr.apply();
864 | tb_snap_3_row_0_rr.apply();
865 | tb_snap_3_row_1_rr.apply();
866 |
867 | // Calc min across rows (as in count-"min" sketch)
868 | ig_md.snap_0_read_min_l0=min(ig_md.snap_0_row_0_read,ig_md.snap_0_row_1_read);
869 | ig_md.snap_1_read_min_l0=min(ig_md.snap_1_row_0_read,ig_md.snap_1_row_1_read);
870 | ig_md.snap_2_read_min_l0=min(ig_md.snap_2_row_0_read,ig_md.snap_2_row_1_read);
871 | ig_md.snap_3_read_min_l0=min(ig_md.snap_3_row_0_read,ig_md.snap_3_row_1_read);
872 |
873 | // Sum all reads together, using log(CQ_H) layers.
874 | calc_sum_0_l0();
875 | calc_sum_2_l0();
876 |
877 | calc_sum_0_l1();
878 |
879 | // Check whether it exceeds threshold
880 | threshold.apply();
881 | }
882 | }
883 |
884 | control SwitchEgress(
885 | inout header_t hdr,
886 | inout eg_metadata_t eg_md,
887 | in egress_intrinsic_metadata_t eg_intr_md,
888 | in egress_intrinsic_metadata_from_parser_t eg_intr_md_from_prsr,
889 | inout egress_intrinsic_metadata_for_deparser_t ig_intr_dprs_md,
890 | inout egress_intrinsic_metadata_for_output_port_t eg_intr_oport_md) {
891 |
892 | apply {
893 |
894 | }
895 | }
896 |
897 |
898 | Pipeline(SwitchIngressParser(),
899 | SwitchIngress(),
900 | SwitchIngressDeparser(),
901 | SwitchEgressParser(),
902 | SwitchEgress(),
903 | SwitchEgressDeparser()
904 | ) pipe;
905 |
906 | Switch(pipe) main;
--------------------------------------------------------------------------------
/misc/fcm/fcm.p4:
--------------------------------------------------------------------------------
1 | /* -*- P4_16 -*- */
2 | /*
3 | Retrieved and adapted from: https://github.com/fcm-project/fcm_p4
4 | */
5 |
6 | #include
7 | #include
8 |
9 | /*************************************************************************
10 | ************* C O N S T A N T S A N D T Y P E S *******************
11 | **************************************************************************/
12 | #define SKETCH_W1 0x40000 // 8 bits, width at layer 1, 2^18 = 262,144
13 | #define SKETCH_W2 0x8000 // 16 bits, width at layer 2, 2^15 = 32,768
14 | #define SKETCH_W3 0x1000 // 32 bits, width at layer 3, 2^12 = 4096
15 |
16 | #define ADD_LEVEL1 0x000000ff // 2^8 - 2 + 1 (property of SALU)
17 | #define ADD_LEVEL2 0x000100fd // (2^8 - 2) + (2^16 - 2) + 1 (property of SALU)
18 |
19 | typedef bit<48> mac_addr_t;
20 | typedef bit<32> ipv4_addr_t;
21 | typedef bit<16> l4_port_t;
22 |
23 | typedef bit<16> ether_type_t;
24 | const ether_type_t ETHERTYPE_IPV4 = 16w0x0800;
25 | const ether_type_t ETHERTYPE_ARP = 16w0x0806;
26 | const ether_type_t ETHERTYPE_DECAY_UPDATE = 16w0x8888;
27 |
28 | typedef bit<8> ip_proto_t;
29 | const ip_proto_t IP_PROTO_ICMP = 1;
30 | const ip_proto_t IP_PROTO_TCP = 6;
31 | const ip_proto_t IP_PROTO_UDP = 17;
32 |
33 | typedef bit<32> count_t;
34 |
35 | const bit<3> HH_DIGEST = 0x03;
36 | struct hh_digest_t {
37 | ipv4_addr_t src_addr;
38 | ipv4_addr_t dst_addr;
39 | bit<8> protocol;
40 | l4_port_t src_port;
41 | l4_port_t dst_port;
42 | }
43 |
44 | /*************************************************************************
45 | *********************** H E A D E R S *********************************
46 | *************************************************************************/
47 |
48 | /* Define all the headers the program will recognize */
49 | /* The actual sets of headers processed by each gress can differ */
50 |
51 | /* Standard ethernet header */
52 | header ethernet_h {
53 | mac_addr_t dst_addr;
54 | mac_addr_t src_addr;
55 | ether_type_t ether_type;
56 | }
57 |
58 | header ipv4_h {
59 | bit<4> version;
60 | bit<4> ihl;
61 | bit<8> diffserv;
62 | bit<16> total_len;
63 | bit<16> identification;
64 | bit<3> flags;
65 | bit<13> frag_offset;
66 | bit<8> ttl;
67 | ip_proto_t protocol;
68 | bit<16> hdr_checksum;
69 | ipv4_addr_t src_addr;
70 | ipv4_addr_t dst_addr;
71 | }
72 |
73 | header icmp_h {
74 | bit<8> type_;
75 | bit<8> code;
76 | bit<16> hdr_checksum;
77 | }
78 |
79 | header tcp_h {
80 | l4_port_t src_port;
81 | l4_port_t dst_port;
82 | bit<32> seq_no;
83 | bit<32> ack_no;
84 | bit<4> data_offset;
85 | bit<4> res;
86 | bit<8> flag;
87 | bit<16> window;
88 | bit<16> checksum;
89 | bit<16> urgent_ptr;
90 | }
91 |
92 | header udp_h {
93 | l4_port_t src_port;
94 | l4_port_t dst_port;
95 | bit<16> hdr_length;
96 | bit<16> checksum;
97 | }
98 |
99 |
100 | /*************************************************************************
101 | ************** I N G R E S S P R O C E S S I N G *******************
102 | *************************************************************************/
103 |
104 | /*********************** H E A D E R S ************************/
105 |
106 | struct my_ingress_headers_t {
107 | ethernet_h ethernet;
108 | ipv4_h ipv4;
109 | tcp_h tcp;
110 | udp_h udp;
111 | }
112 |
113 | /****** G L O B A L I N G R E S S M E T A D A T A *********/
114 | struct fcm_metadata_t {
115 | bit<32> hash_meta_d1;
116 | bit<32> hash_meta_d2;
117 |
118 |
119 | bit<32> result_d1;
120 | bit<32> result_d2;
121 | bit<32> increment_occupied;
122 | }
123 |
124 | struct my_ingress_metadata_t {
125 | fcm_metadata_t fcm_mdata;
126 | l4_port_t src_port;
127 | l4_port_t dst_port;
128 | }
129 |
130 | /*********************** P A R S E R **************************/
131 | parser IngressParser(packet_in pkt,
132 | /* User */
133 | out my_ingress_headers_t hdr,
134 | out my_ingress_metadata_t meta,
135 | /* Intrinsic */
136 | out ingress_intrinsic_metadata_t ig_intr_md)
137 | {
138 | /* This is a mandatory state, required by Tofino Architecture */
139 | state start {
140 | pkt.extract(ig_intr_md);
141 | pkt.advance(PORT_METADATA_SIZE);
142 |
143 | // initialize metadata
144 | meta.fcm_mdata.result_d1 = 0;
145 | meta.fcm_mdata.result_d2 = 0;
146 | meta.fcm_mdata.increment_occupied = 0;
147 |
148 | transition parse_ethernet;
149 | }
150 |
151 | state parse_ethernet {
152 | pkt.extract(hdr.ethernet);
153 | transition select(hdr.ethernet.ether_type) {
154 | ETHERTYPE_IPV4 : parse_ipv4;
155 | }
156 | }
157 |
158 | state parse_ipv4 {
159 | pkt.extract(hdr.ipv4);
160 | meta.src_port = 0;
161 | meta.dst_port = 0;
162 | transition select(hdr.ipv4.protocol) {
163 | IP_PROTO_TCP : parse_tcp;
164 | IP_PROTO_UDP : parse_udp;
165 | default : accept;
166 | }
167 | }
168 |
169 | state parse_tcp {
170 | pkt.extract(hdr.tcp);
171 | meta.src_port = hdr.tcp.src_port;
172 | meta.dst_port = hdr.tcp.dst_port;
173 | transition accept;
174 | }
175 |
176 | state parse_udp {
177 | pkt.extract(hdr.udp);
178 | meta.src_port = hdr.udp.src_port;
179 | meta.dst_port = hdr.udp.dst_port;
180 | transition accept;
181 | }
182 | }
183 |
184 | /********************* D E P A R S E R ************************/
185 |
186 | control IngressDeparser(packet_out pkt,
187 | /* User */
188 | inout my_ingress_headers_t hdr,
189 | in my_ingress_metadata_t meta,
190 | /* Intrinsic */
191 | in ingress_intrinsic_metadata_for_deparser_t ig_dprsr_md)
192 | {
193 | Mirror() mirror;
194 | Digest () hh_digest;
195 |
196 | apply {
197 | if(ig_dprsr_md.mirror_type == 1) {
198 | // session 1, where it points to the recirculation port
199 | mirror.emit(10w1);
200 | }
201 |
202 | if(ig_dprsr_md.digest_type == HH_DIGEST) {
203 | hh_digest.pack({hdr.ipv4.src_addr, hdr.ipv4.dst_addr, hdr.ipv4.protocol, meta.src_port, meta.dst_port});
204 | }
205 |
206 | pkt.emit(hdr);
207 | }
208 | }
209 |
210 | // ---------------------------------------------------------------------------
211 | // FCM logic control block
212 | // ---------------------------------------------------------------------------
213 | control FCMSketch (
214 | inout my_ingress_headers_t hdr,
215 | inout my_ingress_metadata_t meta,
216 | out bit<19> num_occupied_reg,
217 | out bit<32> flow_size,
218 | out bit<32> cardinality) {
219 |
220 | bit<32> index = 0;
221 | bit<32> index0 = 0;
222 | bit<32> index1 = 0;
223 |
224 | // +++++++++++++++++++
225 | // hashings & hash action
226 | // +++++++++++++++++++
227 |
228 | // CRCPolynomial>(32w0x04C11DB7, // polynomial
229 | // true, // reversed
230 | // false, // use msb?
231 | // false, // extended?
232 | // 32w0xFFFFFFFF, // initial shift register value
233 | // 32w0xFFFFFFFF // result xor
234 | // ) CRC32;
235 | // Hash>(HashAlgorithm_t.CUSTOM, CRC32) hash_d1;
236 |
237 | Hash>(HashAlgorithm_t.CRC32) hash_d1;
238 | CRCPolynomial>(32w0x04C11DB7,
239 | false,
240 | false,
241 | false,
242 | 32w0xFFFFFFFF,
243 | 32w0x00000000
244 | ) CRC32_MPEG;
245 | Hash>(HashAlgorithm_t.CUSTOM, CRC32_MPEG) hash_d2;
246 |
247 |
248 | // +++++++++++++++++++
249 | // registers
250 | // +++++++++++++++++++
251 |
252 | Register, bit<18>>(SKETCH_W1) sketch_reg_l1_d1;
253 | Register, bit<15>>(SKETCH_W2) sketch_reg_l2_d1;
254 | Register, bit<12>>(SKETCH_W3) sketch_reg_l3_d1;
255 |
256 | Register, bit<18>>(SKETCH_W1) sketch_reg_l1_d2;
257 | Register, bit<15>>(SKETCH_W2) sketch_reg_l2_d2;
258 | Register, bit<12>>(SKETCH_W3) sketch_reg_l3_d2;
259 |
260 | // total number of empty registers for all trees
261 | Register, _>(1) reg_num_empty;
262 |
263 | // +++++++++++++++++++
264 | // register actions
265 | // +++++++++++++++++++
266 |
267 | // level 1, depth 1
268 | RegisterAction, bit<18>, bit<32>>(sketch_reg_l1_d1) increment_l1_d1 = {
269 | void apply(inout bit<8> value, out bit<32> result) {
270 | value = value |+| 1;
271 | result = (bit<32>)value; // return level 1 value (255 -> count 254)
272 | }
273 | };
274 | // level 2, depth 1, only when level 1 output is 255
275 | RegisterAction, bit<15>, bit<32>>(sketch_reg_l2_d1) increment_l2_d1 = {
276 | void apply(inout bit<16> value, out bit<32> result) {
277 | result = (bit<32>)value + ADD_LEVEL1; // return level 1 + 2
278 | value = value |+| 1;
279 | }
280 | };
281 | // level 3, depth 1, only when level 2 output is 65789
282 | RegisterAction, bit<12>, bit<32>>(sketch_reg_l3_d1) increment_l3_d1 = {
283 | void apply(inout bit<32> value, out bit<32> result) {
284 | result = value + ADD_LEVEL2; // return level 1 + 2 + 3
285 | value = value |+| 1;
286 |
287 | }
288 | };
289 |
290 | // level 1, depth 2
291 | RegisterAction, bit<18>, bit<32>>(sketch_reg_l1_d2) increment_l1_d2 = {
292 | void apply(inout bit<8> value, out bit<32> result) {
293 | value = value |+| 1;
294 | result = (bit<32>)value; // return level 1 value (255 -> count 254)
295 | }
296 | };
297 | // level 2, depth 2, only when level 1 output is 255
298 | RegisterAction, bit<15>, bit<32>>(sketch_reg_l2_d2) increment_l2_d2 = {
299 | void apply(inout bit<16> value, out bit<32> result) {
300 | result = (bit<32>)value + ADD_LEVEL1; // return level 1 + 2
301 | value = value |+| 1;
302 | }
303 | };
304 | // level 3, depth 2, only when level 2 output is 65789
305 | RegisterAction, bit<12>, bit<32>>(sketch_reg_l3_d2) increment_l3_d2 = {
306 | void apply(inout bit<32> value, out bit<32> result) {
307 | result = value + ADD_LEVEL2; // return level 1 + 2 + 3
308 | value = value |+| 1; // increment assuming no 32-bit overflow
309 |
310 | }
311 | };
312 |
313 | // increment number of empty register value for cardinality
314 | RegisterAction, _, bit<32>>(reg_num_empty) increment_occupied_reg = {
315 | void apply(inout bit<32> value, out bit<32> result) {
316 | result = value + meta.fcm_mdata.increment_occupied;
317 | value = value + meta.fcm_mdata.increment_occupied;
318 | }
319 | };
320 |
321 |
322 | // +++++++++++++++++++
323 | // actions
324 | // +++++++++++++++++++
325 |
326 | // action for level 1, depth 1, you can re-define the flow key identification
327 | action fcm_action_l1_d1() {
328 | // meta.fcm_mdata.result_d1 = increment_l1_d1.execute(index0[17:0]);
329 | meta.fcm_mdata.result_d1 = increment_l1_d1.execute(index[17:0]);
330 | }
331 | // action for level 2, depth 1
332 | action fcm_action_l2_d1() {
333 | // meta.fcm_mdata.result_d1 = increment_l2_d1.execute(index0[17:3]);
334 | meta.fcm_mdata.result_d1 = increment_l2_d1.execute(index[17:3]);
335 | }
336 | // action for level 3, depth 1
337 | action fcm_action_l3_d1() {
338 | // meta.fcm_mdata.result_d1 = increment_l3_d1.execute(index0[17:6]);
339 | meta.fcm_mdata.result_d1 = increment_l3_d1.execute(index[17:6]);
340 | }
341 |
342 | // action for level 1, depth 2, you can re-define the flow key identification
343 | action fcm_action_l1_d2() {
344 | // meta.fcm_mdata.result_d2 = increment_l1_d2.execute(index1[17:0]);
345 | meta.fcm_mdata.result_d2 = increment_l1_d2.execute(index[23:6]);
346 | }
347 | // action for level 2, depth 2
348 | action fcm_action_l2_d2() {
349 | // meta.fcm_mdata.result_d2 = increment_l2_d2.execute(index1[17:3]);
350 | meta.fcm_mdata.result_d2 = increment_l2_d2.execute(index1[23:9]);
351 | }
352 | // action for level 3, depth 2
353 | action fcm_action_l3_d2() {
354 | // meta.fcm_mdata.result_d2 = increment_l3_d2.execute(index1[17:6]);
355 | meta.fcm_mdata.result_d2 = increment_l3_d2.execute(index1[23:12]);
356 | }
357 |
358 |
359 | // increment reg of occupied leaf number
360 | action fcm_action_increment_cardreg() {
361 | num_occupied_reg = (increment_occupied_reg.execute(0))[19:1];
362 | }
363 |
364 | action fcm_action_check_occupied(bit<32> increment_val) {
365 | meta.fcm_mdata.increment_occupied = increment_val;
366 | }
367 |
368 |
369 | action fcm_action_set_cardinality(bit<32> card_match) {
370 | cardinality = card_match;
371 | }
372 |
373 | // +++++++++++++++++++
374 | // tables
375 | // +++++++++++++++++++
376 |
377 | // if level 1 is full, move to level 2.
378 | table tb_fcm_l1_to_l2_d1 {
379 | key = {
380 | meta.fcm_mdata.result_d1 : exact;
381 | }
382 | actions = {
383 | fcm_action_l2_d1;
384 | @defaultonly NoAction;
385 | }
386 | const default_action = NoAction();
387 | const entries = {
388 | 32w255: fcm_action_l2_d1();
389 | }
390 | size = 2;
391 | }
392 |
393 | // if level 2 is full, move to level 3.
394 | table tb_fcm_l2_to_l3_d1 {
395 | key = {
396 | meta.fcm_mdata.result_d1 : exact;
397 | }
398 | actions = {
399 | fcm_action_l3_d1;
400 | @defaultonly NoAction;
401 | }
402 | const default_action = NoAction();
403 | const entries = {
404 | 32w65789: fcm_action_l3_d1();
405 | }
406 | size = 2;
407 | }
408 |
409 | // if level 1 is full, move to level 2.
410 | table tb_fcm_l1_to_l2_d2 {
411 | key = {
412 | meta.fcm_mdata.result_d2 : exact;
413 | }
414 | actions = {
415 | fcm_action_l2_d2;
416 | @defaultonly NoAction;
417 | }
418 | const default_action = NoAction();
419 | const entries = {
420 | 32w255: fcm_action_l2_d2();
421 | }
422 | size = 2;
423 | }
424 |
425 | // if level 2 is full, move to level 3.
426 | table tb_fcm_l2_to_l3_d2 {
427 | key = {
428 | meta.fcm_mdata.result_d2 : exact;
429 | }
430 | actions = {
431 | fcm_action_l3_d2;
432 | @defaultonly NoAction;
433 | }
434 | const default_action = NoAction();
435 | const entries = {
436 | 32w65789: fcm_action_l3_d2();
437 | }
438 | size = 2;
439 | }
440 |
441 | // Update the number of occupied leaf nodes
442 | table tb_fcm_increment_occupied {
443 | key = {
444 | meta.fcm_mdata.result_d1 : ternary;
445 | meta.fcm_mdata.result_d2 : ternary;
446 | }
447 | actions = {
448 | fcm_action_check_occupied;
449 | }
450 | const default_action = fcm_action_check_occupied(0);
451 | const entries = {
452 | (32w1, 32w1) : fcm_action_check_occupied(2);
453 | (32w1, _) : fcm_action_check_occupied(1);
454 | (_, 32w1) : fcm_action_check_occupied(1);
455 | }
456 | size = 4;
457 | }
458 |
459 |
460 | // look up LC cardinality using number of empty counters at level 1
461 | // [30:12] : divide by 2 ("average" empty_reg number).
462 | // Each array size is 2 ** 19, so slice 19 bits
463 | table tb_fcm_cardinality {
464 | key = {
465 | num_occupied_reg : range; // 19 bits
466 | }
467 | actions = {
468 | fcm_action_set_cardinality;
469 | }
470 | const default_action = fcm_action_set_cardinality(0);
471 | size = 4096;
472 | }
473 |
474 |
475 | // +++++++++++++++++++
476 | // apply
477 | // +++++++++++++++++++
478 | apply {
479 | // index0 = hash_d1.get(
480 | // {
481 | // hdr.ipv4.src_addr,
482 | // hdr.ipv4.dst_addr,
483 | // hdr.ipv4.protocol,
484 | // meta.src_port,
485 | // meta.dst_port
486 | // }
487 | // );
488 | // index1 = hash_d2.get(
489 | // {
490 | // hdr.ipv4.src_addr,
491 | // hdr.ipv4.dst_addr,
492 | // hdr.ipv4.protocol,
493 | // meta.src_port,
494 | // meta.dst_port
495 | // }
496 | // );
497 | index = hash_d2.get(
498 | {
499 | hdr.ipv4.src_addr,
500 | hdr.ipv4.dst_addr,
501 | hdr.ipv4.protocol,
502 | meta.src_port,
503 | meta.dst_port
504 | }
505 | );
506 |
507 | fcm_action_l1_d1(); // increment level 1, depth 1
508 | fcm_action_l1_d2(); // increment level 1, depth 2
509 | /* increment the number of occupied leaf nodes */
510 | // tb_fcm_increment_occupied.apply();
511 | // fcm_action_increment_cardreg();
512 | // tb_fcm_cardinality.apply(); // calculate cardinality estimate
513 | tb_fcm_l1_to_l2_d1.apply(); // conditional increment level 2, depth 1
514 | tb_fcm_l1_to_l2_d2.apply(); // conditional increment level 2, depth 2
515 | tb_fcm_l2_to_l3_d1.apply(); // conditional increment level 3, depth 1
516 | tb_fcm_l2_to_l3_d2.apply(); // conditional increment level 3, depth 2
517 |
518 | /* Take minimum for final count-query. */
519 | flow_size = meta.fcm_mdata.result_d1 > meta.fcm_mdata.result_d2 ? meta.fcm_mdata.result_d2 : meta.fcm_mdata.result_d1;
520 | }
521 | }
522 |
523 |
524 | /***************** M A T C H - A C T I O N *********************/
525 |
526 | control Ingress(
527 | /* User */
528 | inout my_ingress_headers_t hdr,
529 | inout my_ingress_metadata_t meta,
530 | /* Intrinsic */
531 | in ingress_intrinsic_metadata_t ig_intr_md,
532 | in ingress_intrinsic_metadata_from_parser_t ig_prsr_md,
533 | inout ingress_intrinsic_metadata_for_deparser_t ig_dprsr_md,
534 | inout ingress_intrinsic_metadata_for_tm_t ig_tm_md)
535 | {
536 |
537 | bit<19> num_occupied_reg = 0; // local variable for cardinality
538 | bit<32> flow_size = 0; // local variable for final query
539 | bit<32> cardinality = 0; // local variable for final query
540 |
541 |
542 | /*** temp ***/
543 | // increment when packet comes in
544 | Register, _>(1, 0) num_pkt;
545 | RegisterAction, _, bit<32>>(num_pkt) increment_pkt = {
546 | void apply(inout bit<32> value, out bit<32> result) {
547 | value = value |+| 1;
548 | result = value;
549 | }
550 | };
551 |
552 | action count_pkt() {
553 | increment_pkt.execute(0);
554 | }
555 | /*** temp ***/
556 |
557 | action generate_digest() {
558 | ig_dprsr_md.digest_type = 0x03;
559 | }
560 |
561 | action drop() {
562 | ig_dprsr_md.drop_ctl = 0x0; // drop packet
563 | exit;
564 | }
565 |
566 | action forward(PortId_t port) {
567 | ig_tm_md.ucast_egress_port = port;
568 | }
569 |
570 | table ipv4_forward {
571 | key = {
572 | ig_intr_md.ingress_port : exact;
573 | }
574 | actions = {
575 | forward;
576 | NoAction;
577 | }
578 | default_action = NoAction();
579 | }
580 |
581 |
582 | table threshold {
583 | key = {
584 | // TODO: this needs to be slightly readjusted
585 | flow_size[19:0] : range;
586 | }
587 | actions = {
588 | generate_digest;
589 | NoAction;
590 | }
591 | default_action = NoAction();
592 | size = 1;
593 | }
594 |
595 |
596 | FCMSketch() fcmsketch;
597 | apply {
598 | // bit<19> num_occupied_reg; // local variable for cardinality
599 | // bit<32> flow_size; // local variable for final query
600 | // bit<32> cardinality; // local variable for final query
601 |
602 | // count_pkt(); // temp
603 | ipv4_forward.apply();
604 | fcmsketch.apply(hdr,
605 | meta,
606 | num_occupied_reg,
607 | flow_size,
608 | cardinality);
609 |
610 | threshold.apply();
611 | }
612 | }
613 |
614 | /*************************************************************************
615 | **************** E G R E S S P R O C E S S I N G *******************
616 | *************************************************************************/
617 |
618 | /*********************** H E A D E R S ************************/
619 |
620 | struct my_egress_headers_t {
621 | }
622 |
623 | /******** G L O B A L E G R E S S M E T A D A T A *********/
624 |
625 | struct my_egress_metadata_t {
626 | }
627 |
628 | /*********************** P A R S E R **************************/
629 |
630 | parser EgressParser(packet_in pkt,
631 | /* User */
632 | out my_egress_headers_t hdr,
633 | out my_egress_metadata_t meta,
634 | /* Intrinsic */
635 | out egress_intrinsic_metadata_t eg_intr_md)
636 | {
637 | /* This is a mandatory state, required by Tofino Architecture */
638 | state start {
639 | pkt.extract(eg_intr_md);
640 | transition accept;
641 | }
642 | }
643 |
644 | /***************** M A T C H - A C T I O N *********************/
645 |
646 | control Egress(
647 | /* User */
648 | inout my_egress_headers_t hdr,
649 | inout my_egress_metadata_t meta,
650 | /* Intrinsic */
651 | in egress_intrinsic_metadata_t eg_intr_md,
652 | in egress_intrinsic_metadata_from_parser_t eg_prsr_md,
653 | inout egress_intrinsic_metadata_for_deparser_t eg_dprsr_md,
654 | inout egress_intrinsic_metadata_for_output_port_t eg_oport_md)
655 | {
656 | apply {
657 | }
658 | }
659 |
660 | /********************* D E P A R S E R ************************/
661 |
662 | control EgressDeparser(packet_out pkt,
663 | /* User */
664 | inout my_egress_headers_t hdr,
665 | in my_egress_metadata_t meta,
666 | /* Intrinsic */
667 | in egress_intrinsic_metadata_for_deparser_t eg_dprsr_md)
668 | {
669 | apply {
670 | pkt.emit(hdr);
671 | }
672 | }
673 |
674 |
675 | Pipeline(
676 | IngressParser(),
677 | Ingress(),
678 | IngressDeparser(),
679 | EgressParser(),
680 | Egress(),
681 | EgressDeparser()
682 | ) pipe;
683 |
684 | Switch(pipe) main;
685 |
686 |
687 |
--------------------------------------------------------------------------------
/misc/precision/entries_better_32.p4inc:
--------------------------------------------------------------------------------
1 | (32w0x0 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w4095 ) : clone_and_recirc_replace_entry();
2 | (32w0x1 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w2047 ) : clone_and_recirc_replace_entry();
3 | (32w0x2 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w1364 ) : clone_and_recirc_replace_entry();
4 | (32w0x3 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w1023 ) : clone_and_recirc_replace_entry();
5 | (32w0x4 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w818 ) : clone_and_recirc_replace_entry();
6 | (32w0x5 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w681 ) : clone_and_recirc_replace_entry();
7 | (32w0x6 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w584 ) : clone_and_recirc_replace_entry();
8 | (32w0x7 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w511 ) : clone_and_recirc_replace_entry();
9 | (32w0x8 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w454 ) : clone_and_recirc_replace_entry();
10 | (32w0x9 &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w408 ) : clone_and_recirc_replace_entry();
11 | (32w0xa &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w371 ) : clone_and_recirc_replace_entry();
12 | (32w0xb &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w340 ) : clone_and_recirc_replace_entry();
13 | (32w0xc &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w314 ) : clone_and_recirc_replace_entry();
14 | (32w0xd &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w291 ) : clone_and_recirc_replace_entry();
15 | (32w0xe &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w272 ) : clone_and_recirc_replace_entry();
16 | (32w0xf &&& 32w0xffffffff, 32w0 &&& 32w0, 12w0..12w255 ) : clone_and_recirc_replace_entry();
17 | (32w0x10 &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w511 ) : clone_and_recirc_replace_entry();
18 | (32w0x12 &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w454 ) : clone_and_recirc_replace_entry();
19 | (32w0x14 &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w408 ) : clone_and_recirc_replace_entry();
20 | (32w0x16 &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w371 ) : clone_and_recirc_replace_entry();
21 | (32w0x18 &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w340 ) : clone_and_recirc_replace_entry();
22 | (32w0x1a &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w314 ) : clone_and_recirc_replace_entry();
23 | (32w0x1c &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w291 ) : clone_and_recirc_replace_entry();
24 | (32w0x1e &&& 32w0xfffffffe, 32w0 &&& 32w0x1, 12w0..12w272 ) : clone_and_recirc_replace_entry();
25 | (32w0x20 &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w511 ) : clone_and_recirc_replace_entry();
26 | (32w0x24 &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w454 ) : clone_and_recirc_replace_entry();
27 | (32w0x28 &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w408 ) : clone_and_recirc_replace_entry();
28 | (32w0x2c &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w371 ) : clone_and_recirc_replace_entry();
29 | (32w0x30 &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w340 ) : clone_and_recirc_replace_entry();
30 | (32w0x34 &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w314 ) : clone_and_recirc_replace_entry();
31 | (32w0x38 &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w291 ) : clone_and_recirc_replace_entry();
32 | (32w0x3c &&& 32w0xfffffffc, 32w0 &&& 32w0x3, 12w0..12w272 ) : clone_and_recirc_replace_entry();
33 | (32w0x40 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w511 ) : clone_and_recirc_replace_entry();
34 | (32w0x48 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w454 ) : clone_and_recirc_replace_entry();
35 | (32w0x50 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w408 ) : clone_and_recirc_replace_entry();
36 | (32w0x58 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w371 ) : clone_and_recirc_replace_entry();
37 | (32w0x60 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w340 ) : clone_and_recirc_replace_entry();
38 | (32w0x68 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w314 ) : clone_and_recirc_replace_entry();
39 | (32w0x70 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w291 ) : clone_and_recirc_replace_entry();
40 | (32w0x78 &&& 32w0xfffffff8, 32w0 &&& 32w0x7, 12w0..12w272 ) : clone_and_recirc_replace_entry();
41 | (32w0x80 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w511 ) : clone_and_recirc_replace_entry();
42 | (32w0x90 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w454 ) : clone_and_recirc_replace_entry();
43 | (32w0xa0 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w408 ) : clone_and_recirc_replace_entry();
44 | (32w0xb0 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w371 ) : clone_and_recirc_replace_entry();
45 | (32w0xc0 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w340 ) : clone_and_recirc_replace_entry();
46 | (32w0xd0 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w314 ) : clone_and_recirc_replace_entry();
47 | (32w0xe0 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w291 ) : clone_and_recirc_replace_entry();
48 | (32w0xf0 &&& 32w0xfffffff0, 32w0 &&& 32w0xf, 12w0..12w272 ) : clone_and_recirc_replace_entry();
49 | (32w0x100 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w511 ) : clone_and_recirc_replace_entry();
50 | (32w0x120 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w454 ) : clone_and_recirc_replace_entry();
51 | (32w0x140 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w408 ) : clone_and_recirc_replace_entry();
52 | (32w0x160 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w371 ) : clone_and_recirc_replace_entry();
53 | (32w0x180 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w340 ) : clone_and_recirc_replace_entry();
54 | (32w0x1a0 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w314 ) : clone_and_recirc_replace_entry();
55 | (32w0x1c0 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w291 ) : clone_and_recirc_replace_entry();
56 | (32w0x1e0 &&& 32w0xffffffe0, 32w0 &&& 32w0x1f, 12w0..12w272 ) : clone_and_recirc_replace_entry();
57 | (32w0x200 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w511 ) : clone_and_recirc_replace_entry();
58 | (32w0x240 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w454 ) : clone_and_recirc_replace_entry();
59 | (32w0x280 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w408 ) : clone_and_recirc_replace_entry();
60 | (32w0x2c0 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w371 ) : clone_and_recirc_replace_entry();
61 | (32w0x300 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w340 ) : clone_and_recirc_replace_entry();
62 | (32w0x340 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w314 ) : clone_and_recirc_replace_entry();
63 | (32w0x380 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w291 ) : clone_and_recirc_replace_entry();
64 | (32w0x3c0 &&& 32w0xffffffc0, 32w0 &&& 32w0x3f, 12w0..12w272 ) : clone_and_recirc_replace_entry();
65 | (32w0x400 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w511 ) : clone_and_recirc_replace_entry();
66 | (32w0x480 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w454 ) : clone_and_recirc_replace_entry();
67 | (32w0x500 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w408 ) : clone_and_recirc_replace_entry();
68 | (32w0x580 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w371 ) : clone_and_recirc_replace_entry();
69 | (32w0x600 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w340 ) : clone_and_recirc_replace_entry();
70 | (32w0x680 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w314 ) : clone_and_recirc_replace_entry();
71 | (32w0x700 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w291 ) : clone_and_recirc_replace_entry();
72 | (32w0x780 &&& 32w0xffffff80, 32w0 &&& 32w0x7f, 12w0..12w272 ) : clone_and_recirc_replace_entry();
73 | (32w0x800 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
74 | (32w0x900 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
75 | (32w0xa00 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
76 | (32w0xb00 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
77 | (32w0xc00 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
78 | (32w0xd00 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
79 | (32w0xe00 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
80 | (32w0xf00 &&& 32w0xffffff00, 32w0 &&& 32w0xff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
81 | (32w0x1000 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
82 | (32w0x1200 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
83 | (32w0x1400 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
84 | (32w0x1600 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
85 | (32w0x1800 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
86 | (32w0x1a00 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
87 | (32w0x1c00 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
88 | (32w0x1e00 &&& 32w0xfffffe00, 32w0 &&& 32w0x1ff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
89 | (32w0x2000 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
90 | (32w0x2400 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
91 | (32w0x2800 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
92 | (32w0x2c00 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
93 | (32w0x3000 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
94 | (32w0x3400 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
95 | (32w0x3800 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
96 | (32w0x3c00 &&& 32w0xfffffc00, 32w0 &&& 32w0x3ff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
97 | (32w0x4000 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
98 | (32w0x4800 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
99 | (32w0x5000 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
100 | (32w0x5800 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
101 | (32w0x6000 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
102 | (32w0x6800 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
103 | (32w0x7000 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
104 | (32w0x7800 &&& 32w0xfffff800, 32w0 &&& 32w0x7ff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
105 | (32w0x8000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
106 | (32w0x9000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
107 | (32w0xa000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
108 | (32w0xb000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
109 | (32w0xc000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
110 | (32w0xd000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
111 | (32w0xe000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
112 | (32w0xf000 &&& 32w0xfffff000, 32w0 &&& 32w0xfff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
113 | (32w0x10000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
114 | (32w0x12000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
115 | (32w0x14000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
116 | (32w0x16000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
117 | (32w0x18000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
118 | (32w0x1a000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
119 | (32w0x1c000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
120 | (32w0x1e000 &&& 32w0xffffe000, 32w0 &&& 32w0x1fff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
121 | (32w0x20000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
122 | (32w0x24000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
123 | (32w0x28000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
124 | (32w0x2c000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
125 | (32w0x30000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
126 | (32w0x34000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
127 | (32w0x38000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
128 | (32w0x3c000 &&& 32w0xffffc000, 32w0 &&& 32w0x3fff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
129 | (32w0x40000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
130 | (32w0x48000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
131 | (32w0x50000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
132 | (32w0x58000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
133 | (32w0x60000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
134 | (32w0x68000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
135 | (32w0x70000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
136 | (32w0x78000 &&& 32w0xffff8000, 32w0 &&& 32w0x7fff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
137 | (32w0x80000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
138 | (32w0x90000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
139 | (32w0xa0000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
140 | (32w0xb0000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
141 | (32w0xc0000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
142 | (32w0xd0000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
143 | (32w0xe0000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
144 | (32w0xf0000 &&& 32w0xffff0000, 32w0 &&& 32w0xffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
145 | (32w0x100000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
146 | (32w0x120000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
147 | (32w0x140000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
148 | (32w0x160000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
149 | (32w0x180000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
150 | (32w0x1a0000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
151 | (32w0x1c0000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
152 | (32w0x1e0000 &&& 32w0xfffe0000, 32w0 &&& 32w0x1ffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
153 | (32w0x200000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
154 | (32w0x240000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
155 | (32w0x280000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
156 | (32w0x2c0000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
157 | (32w0x300000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
158 | (32w0x340000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
159 | (32w0x380000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
160 | (32w0x3c0000 &&& 32w0xfffc0000, 32w0 &&& 32w0x3ffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
161 | (32w0x400000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
162 | (32w0x480000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
163 | (32w0x500000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
164 | (32w0x580000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
165 | (32w0x600000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
166 | (32w0x680000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
167 | (32w0x700000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
168 | (32w0x780000 &&& 32w0xfff80000, 32w0 &&& 32w0x7ffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
169 | (32w0x800000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
170 | (32w0x900000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
171 | (32w0xa00000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
172 | (32w0xb00000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
173 | (32w0xc00000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
174 | (32w0xd00000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
175 | (32w0xe00000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
176 | (32w0xf00000 &&& 32w0xfff00000, 32w0 &&& 32w0xfffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
177 | (32w0x1000000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
178 | (32w0x1200000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
179 | (32w0x1400000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
180 | (32w0x1600000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
181 | (32w0x1800000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
182 | (32w0x1a00000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
183 | (32w0x1c00000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
184 | (32w0x1e00000 &&& 32w0xffe00000, 32w0 &&& 32w0x1fffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
185 | (32w0x2000000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
186 | (32w0x2400000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
187 | (32w0x2800000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
188 | (32w0x2c00000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
189 | (32w0x3000000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
190 | (32w0x3400000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
191 | (32w0x3800000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
192 | (32w0x3c00000 &&& 32w0xffc00000, 32w0 &&& 32w0x3fffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
193 | (32w0x4000000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
194 | (32w0x4800000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
195 | (32w0x5000000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
196 | (32w0x5800000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
197 | (32w0x6000000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
198 | (32w0x6800000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
199 | (32w0x7000000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
200 | (32w0x7800000 &&& 32w0xff800000, 32w0 &&& 32w0x7fffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
201 | (32w0x8000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
202 | (32w0x9000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
203 | (32w0xa000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
204 | (32w0xb000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
205 | (32w0xc000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
206 | (32w0xd000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
207 | (32w0xe000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
208 | (32w0xf000000 &&& 32w0xff000000, 32w0 &&& 32w0xffffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
209 | (32w0x10000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
210 | (32w0x12000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
211 | (32w0x14000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
212 | (32w0x16000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
213 | (32w0x18000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
214 | (32w0x1a000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
215 | (32w0x1c000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
216 | (32w0x1e000000 &&& 32w0xfe000000, 32w0 &&& 32w0x1ffffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
217 | (32w0x20000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
218 | (32w0x24000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
219 | (32w0x28000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
220 | (32w0x2c000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
221 | (32w0x30000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
222 | (32w0x34000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
223 | (32w0x38000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
224 | (32w0x3c000000 &&& 32w0xfc000000, 32w0 &&& 32w0x3ffffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
225 | (32w0x40000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
226 | (32w0x48000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
227 | (32w0x50000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
228 | (32w0x58000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
229 | (32w0x60000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
230 | (32w0x68000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
231 | (32w0x70000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
232 | (32w0x78000000 &&& 32w0xf8000000, 32w0 &&& 32w0x7ffffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
233 | (32w0x80000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w511 ) : clone_and_recirc_replace_entry();
234 | (32w0x90000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w454 ) : clone_and_recirc_replace_entry();
235 | (32w0xa0000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w408 ) : clone_and_recirc_replace_entry();
236 | (32w0xb0000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w371 ) : clone_and_recirc_replace_entry();
237 | (32w0xc0000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w340 ) : clone_and_recirc_replace_entry();
238 | (32w0xd0000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w314 ) : clone_and_recirc_replace_entry();
239 | (32w0xe0000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w291 ) : clone_and_recirc_replace_entry();
240 | (32w0xf0000000 &&& 32w0xf0000000, 32w0 &&& 32w0xfffffff, 12w0..12w272 ) : clone_and_recirc_replace_entry();
241 |
--------------------------------------------------------------------------------
/misc/precision/precision.p4:
--------------------------------------------------------------------------------
1 | /*
2 | PRECISION: A heavy-htter detection algorithm using Probabilistic Recirculation
3 |
4 | Copyright (C) 2019 Xiaoqi Chen, Princeton University
5 | xiaoqic [at] cs.princeton.edu
6 |
7 | This program is free software: you can redistribute it and/or modify
8 | it under the terms of the GNU Affero General Public License as published by
9 | the Free Software Foundation, either version 3 of the License, or
10 | (at your option) any later version.
11 | This program is distributed in the hope that it will be useful,
12 | but WITHOUT ANY WARRANTY; without even the implied warranty of
13 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 | GNU Affero General Public License for more details.
15 | You should have received a copy of the GNU Affero General Public License
16 | along with this program. If not, see .
17 | */
18 |
19 | /*
20 | Retrieved, and adapted from: https://github.com/Princeton-Cabernet/p4-projects
21 | */
22 |
23 |
24 | #include
25 | #include
26 | //== Preamble: macro, header and parser definitions
27 |
28 | #define _OAT(act) table tb_## act { \
29 | actions = {act;} \
30 | default_action = act(); \
31 | size = 1; \
32 | }
33 |
34 | typedef bit<48> mac_addr_t;
35 | typedef bit<32> ipv4_addr_t;
36 | typedef bit<16> ether_type_t;
37 | const ether_type_t ETHERTYPE_IPV4 = 16w0x0800;
38 | const ether_type_t ETHERTYPE_VLAN = 16w0x0810;
39 |
40 | typedef bit<8> ip_protocol_t;
41 | const ip_protocol_t IP_PROTOCOLS_ICMP = 1;
42 | const ip_protocol_t IP_PROTOCOLS_TCP = 6;
43 | const ip_protocol_t IP_PROTOCOLS_UDP = 17;
44 |
45 |
46 | header ethernet_h {
47 | mac_addr_t dst_addr;
48 | mac_addr_t src_addr;
49 | bit<16> ether_type;
50 | }
51 |
52 | header vlan_h {
53 | bit<3> pri;
54 | bit<1> cfi;
55 | bit<12> vlan_id;
56 | bit<16> etherType;
57 | }
58 |
59 | header ipv4_h {
60 | bit<4> version;
61 | bit<4> ihl;
62 | bit<8> diffserv;
63 | bit<16> total_len;
64 | bit<16> identification;
65 | bit<3> flags;
66 | bit<13> frag_offset;
67 | bit<8> ttl;
68 | bit<8> protocol;
69 | bit<16> hdr_checksum;
70 | ipv4_addr_t src_addr;
71 | ipv4_addr_t dst_addr;
72 | }
73 |
74 | header tcp_h {
75 | bit<16> src_port;
76 | bit<16> dst_port;
77 |
78 | bit<32> seq_no;
79 | bit<32> ack_no;
80 | bit<4> data_offset;
81 | bit<4> res;
82 | bit<8> flags;
83 | bit<16> window;
84 | bit<16> checksum;
85 | bit<16> urgent_ptr;
86 | }
87 |
88 | header udp_h {
89 | bit<16> src_port;
90 | bit<16> dst_port;
91 | bit<16> hdr_lenght;
92 | bit<16> checksum;
93 | }
94 |
95 | struct header_t {
96 | ethernet_h ethernet;
97 | vlan_h vlan;
98 | ipv4_h ipv4;
99 | tcp_h tcp;
100 | udp_h udp;
101 | }
102 |
103 | header resubmit_data_64bit_t {
104 | //size is 64, same as port meta
105 | bit<8> min_stage;
106 | bit<8> data_1;
107 | bit<16> data_2;
108 | bit<32> _padding;
109 | }
110 |
111 | header resubmit_data_skimmed_t {
112 | bit<8> min_stage;
113 | bit<8> data_1;
114 | bit<16> data_2;
115 | }
116 |
117 | const bit<3> HH_DIGEST = 0x03;
118 | struct hh_digest_t {
119 | ipv4_addr_t src_addr;
120 | ipv4_addr_t dst_addr;
121 | bit<8> protocol;
122 | bit<16> src_port;
123 | bit<16> dst_port;
124 | }
125 |
126 |
127 | @pa_container_size("ingress","ig_md.flow_id_part_1",32)
128 | @pa_container_size("ingress","ig_md.flow_id_part_2",32)
129 | @pa_container_size("ingress","ig_md.flow_id_part_3",32)
130 | @pa_container_size("ingress","ig_md.flow_id_part_4",32)
131 | @pa_container_size("ingress","ig_md.resubmit_data_read.min_stage",8)
132 | @pa_container_size("ingress","ig_md.resubmit_data_write.min_stage",8)
133 | struct ig_metadata_t {
134 | resubmit_data_64bit_t resubmit_data_read;
135 | resubmit_data_skimmed_t resubmit_data_write;
136 |
137 | //128bit flowID
138 | bit<32> flow_id_part_1;
139 | bit<32> flow_id_part_2;
140 | bit<32> flow_id_part_3;
141 | bit<32> flow_id_part_4;
142 |
143 | //register index to access (hash of flow ID, with different hash functions)
144 | bit<14> stage_1_loc;
145 | bit<14> stage_2_loc;
146 | //hash seeds, different width
147 | bit<3> hash_seed_1;
148 | bit<5> hash_seed_2;
149 |
150 | //is flowID matched register entry?
151 | bit<8> fid_matched_1_1;
152 | bit<8> fid_matched_1_2;
153 | bit<8> fid_matched_1_3;
154 | bit<8> fid_matched_1_4;
155 | bit<8> fid_matched_2_1;
156 | bit<8> fid_matched_2_2;
157 | bit<8> fid_matched_2_3;
158 | bit<8> fid_matched_2_4;
159 |
160 | bool matched_at_stage_1;
161 | bool matched_at_stage_2;
162 |
163 | //if so, we need to carry current count, and remember c_min/min_stage
164 | bit<32> counter_read_1;
165 | bit<32> counter_read_2;
166 | //bit<32> counter_incr;//you have a match, this is incremented value
167 | bit<32> c_min;
168 | bit<32> diff;
169 |
170 | //need some entropy for random coin flips!
171 | bit<32> entropy_long;
172 | bit<12> entropy_short;
173 |
174 | bit<16> src_port;
175 | bit<16> dst_port;
176 | }
177 | struct eg_metadata_t {
178 | }
179 |
180 | struct paired_32bit {
181 | bit<32> lo;
182 | bit<32> hi;
183 | }
184 |
185 | parser TofinoIngressParser(
186 | packet_in pkt,
187 | inout ig_metadata_t ig_md,
188 | out ingress_intrinsic_metadata_t ig_intr_md) {
189 | state start {
190 | pkt.extract(ig_intr_md);
191 | transition select(ig_intr_md.resubmit_flag) {
192 | 1 : parse_resubmit;
193 | 0 : parse_port_metadata;
194 | }
195 | }
196 |
197 | state parse_resubmit {
198 | // Parse resubmitted packet here.
199 | //pkt.advance(64);
200 | pkt.extract(ig_md.resubmit_data_read);
201 | transition accept;
202 | }
203 |
204 | state parse_port_metadata {
205 | pkt.advance(64); //tofino 1
206 | transition accept;
207 | }
208 | }
209 | parser SwitchIngressParser(
210 | packet_in pkt,
211 | out header_t hdr,
212 | out ig_metadata_t ig_md,
213 | out ingress_intrinsic_metadata_t ig_intr_md) {
214 |
215 | TofinoIngressParser() tofino_parser;
216 |
217 | state start {
218 | tofino_parser.apply(pkt, ig_md, ig_intr_md);
219 | transition parse_ethernet;
220 | }
221 |
222 | state parse_ethernet {
223 | pkt.extract(hdr.ethernet);
224 | transition select (hdr.ethernet.ether_type) {
225 | ETHERTYPE_IPV4 : parse_ipv4;
226 | ETHERTYPE_VLAN: parse_vlan;
227 | default : reject;
228 | }
229 | }
230 |
231 | state parse_vlan {
232 | pkt.extract(hdr.vlan);
233 | transition select(hdr.vlan.etherType) {
234 | ETHERTYPE_IPV4: parse_ipv4;
235 | default: reject;
236 | }
237 | }
238 |
239 | state parse_ipv4 {
240 | pkt.extract(hdr.ipv4);
241 | ig_md.src_port = 0;
242 | ig_md.dst_port = 0;
243 | transition select(hdr.ipv4.protocol) {
244 | IP_PROTOCOLS_TCP : parse_tcp;
245 | IP_PROTOCOLS_UDP : parse_udp;
246 | default : accept;
247 | }
248 | }
249 |
250 | state parse_tcp {
251 | pkt.extract(hdr.tcp);
252 | ig_md.src_port = hdr.tcp.src_port;
253 | ig_md.dst_port = hdr.tcp.dst_port;
254 | transition accept;
255 | }
256 |
257 | state parse_udp {
258 | pkt.extract(hdr.udp);
259 | ig_md.src_port = hdr.udp.src_port;
260 | ig_md.dst_port = hdr.udp.dst_port;
261 | transition accept;
262 | }
263 | }
264 |
265 | control SwitchIngressDeparser(
266 | packet_out pkt,
267 | inout header_t hdr,
268 | in ig_metadata_t ig_md,
269 | in ingress_intrinsic_metadata_for_deparser_t ig_intr_dprsr_md) {
270 |
271 | Digest () hh_digest;
272 | Resubmit() resubmit;
273 |
274 | apply {
275 |
276 | if(ig_intr_dprsr_md.digest_type == HH_DIGEST) {
277 | hh_digest.pack({hdr.ipv4.src_addr, hdr.ipv4.dst_addr, hdr.ipv4.protocol, ig_md.src_port, ig_md.dst_port});
278 | }
279 |
280 | if (ig_intr_dprsr_md.resubmit_type == 1) {
281 | resubmit.emit(ig_md.resubmit_data_write);
282 | }
283 |
284 | pkt.emit(hdr.ethernet);
285 | pkt.emit(hdr.vlan);
286 | pkt.emit(hdr.ipv4);
287 | pkt.emit(hdr.tcp);
288 | pkt.emit(hdr.udp);
289 | }
290 | }
291 |
292 | parser SwitchEgressParser(
293 | packet_in pkt,
294 | out header_t hdr,
295 | out eg_metadata_t eg_md,
296 | out egress_intrinsic_metadata_t eg_intr_md) {
297 | state start {
298 | pkt.extract(eg_intr_md);
299 | transition accept;
300 | }
301 | }
302 |
303 | control SwitchEgressDeparser(
304 | packet_out pkt,
305 | inout header_t hdr,
306 | in eg_metadata_t eg_md,
307 | in egress_intrinsic_metadata_for_deparser_t eg_intr_md_for_dprsr) {
308 | apply {
309 | }
310 | }
311 |
312 |
313 | // == Start of control logic
314 | control SwitchIngress(
315 | inout header_t hdr,
316 | inout ig_metadata_t ig_md,
317 | in ingress_intrinsic_metadata_t ig_intr_md,
318 | in ingress_intrinsic_metadata_from_parser_t ig_intr_prsr_md,
319 | inout ingress_intrinsic_metadata_for_deparser_t ig_intr_dprsr_md,
320 | inout ingress_intrinsic_metadata_for_tm_t ig_intr_tm_md) {
321 |
322 | // action drop() {
323 | // ig_intr_dprsr_md.drop_ctl = 0x1; // Drop packet.
324 | // }
325 | action nop() {
326 | }
327 |
328 | action route_to_64(){
329 | //route to CPU NIC. on model, it is veth250
330 | ig_intr_tm_md.ucast_egress_port=64;
331 | }
332 |
333 | action drop() {
334 | ig_intr_dprsr_md.drop_ctl = 0x1; // drop packet
335 | exit;
336 | }
337 |
338 | action forward(PortId_t port) {
339 | ig_intr_tm_md.ucast_egress_port = port;
340 | }
341 |
342 | table ipv4_forward {
343 | key = {
344 |
345 | ig_intr_md.ingress_port : exact;
346 | }
347 | actions = {
348 | forward;
349 | NoAction;
350 | }
351 | default_action = NoAction();
352 | }
353 |
354 | action generate_digest() {
355 | // ig_intr_dprsr_md.digest_type = HH_DIGEST;
356 | ig_intr_tm_md.ucast_egress_port = 320;
357 | }
358 |
359 | // == Calculate flow ID for the packet
360 |
361 | Hash>(HashAlgorithm_t.IDENTITY) copy32_1;
362 | Hash>(HashAlgorithm_t.IDENTITY) copy32_2;
363 | Hash>(HashAlgorithm_t.IDENTITY) copy32_3;
364 | Hash>(HashAlgorithm_t.IDENTITY) copy16_1;
365 | Hash>(HashAlgorithm_t.IDENTITY) copy16_2;
366 | Hash>(HashAlgorithm_t.IDENTITY) copy16_3;
367 | Hash>(HashAlgorithm_t.IDENTITY) copy16_4;
368 |
369 | action copy_flow_id_common_1_(){
370 | ig_md.flow_id_part_1=hdr.ipv4.src_addr;//copy32_1.get({hdr.ipv4.src_addr});
371 | }
372 | action copy_flow_id_common_2_(){
373 | ig_md.flow_id_part_2=hdr.ipv4.dst_addr;//copy32_2.get({hdr.ipv4.dst_addr});
374 | }
375 | action copy_flow_id_common_3_(){
376 | //16+16bit ports
377 | //ig_md.flow_id_part_4[7:0]=hdr.ipv4.protocol;
378 | //ig_md.flow_id_part_4[8+12-1:8]=hdr.vlan.vlan_id;
379 | ig_md.flow_id_part_4=copy32_3.get({hdr.ipv4.protocol, hdr.vlan.vlan_id, 12w0});//12+8=20bit, remaining 12bit
380 | }
381 | action copy_flow_id_tcp(){
382 | ig_md.flow_id_part_3[15:0]=hdr.tcp.src_port;//copy16_1.get({hdr.tcp.src_port});
383 | ig_md.flow_id_part_3[31:16]=hdr.tcp.dst_port;//copy16_2.get({hdr.tcp.dst_port});
384 | }
385 | action copy_flow_id_udp(){
386 | ig_md.flow_id_part_3[15:0]=hdr.udp.src_port;//copy16_3.get({hdr.udp.src_port});
387 | ig_md.flow_id_part_3[31:16]=hdr.udp.dst_port;//copy16_4.get({hdr.udp.dst_port});
388 | }
389 | action copy_flow_id_unknown(){
390 | ig_md.flow_id_part_3=0;
391 | }
392 |
393 | @stage(0)
394 | _OAT(copy_flow_id_common_1_)
395 | @stage(0)
396 | _OAT(copy_flow_id_common_2_)
397 | @stage(0)
398 | _OAT(copy_flow_id_common_3_)
399 |
400 | // == Calculate array indices for array access
401 |
402 | Hash>(HashAlgorithm_t.CRC16, CRCPolynomial>(16w0x8005,false,false,false,0,0)) hash1;
403 | Hash>(HashAlgorithm_t.CRC16, CRCPolynomial>(16w0x3D65,false,false,false,0,0)) hash2;
404 | //Hash>(HashAlgorithm_t.CRC32) hash3;
405 | //possible polynomials in standards:
406 | //0x8005,0x0589,0x3D65,0x1021,0x8BB7,0xA097
407 |
408 | action get_hashed_locations_1_(){
409 | ig_md.stage_1_loc=(bit<14>) hash1.get({
410 | ig_md.hash_seed_1,
411 | ig_md.flow_id_part_1,
412 | // 3w0,
413 | ig_md.flow_id_part_2,
414 | // 3w0,
415 | ig_md.flow_id_part_3,
416 | ig_md.flow_id_part_4
417 | });
418 | }
419 | action get_hashed_locations_2_(){
420 | ig_md.stage_2_loc=(bit<14>) hash2.get({
421 | ig_md.hash_seed_2,
422 | ig_md.flow_id_part_1,
423 | // 2w0,
424 | ig_md.flow_id_part_2,
425 | // 2w0,
426 | ig_md.flow_id_part_3,
427 | // 1w0,
428 | ig_md.flow_id_part_4
429 | });
430 | }
431 |
432 |
433 | @stage(1)
434 | _OAT(get_hashed_locations_1_)
435 | //this can be later...
436 | _OAT(get_hashed_locations_2_)
437 |
438 | action init_hash_seed(bit<3> v1, bit<5> v2, bit<7> v3){
439 | ig_md.hash_seed_1=v1;
440 | ig_md.hash_seed_2=v2;
441 | }
442 | table tb_init_hash_seed {
443 | actions = {
444 | init_hash_seed;
445 | }
446 | default_action = init_hash_seed(3w2,5w17,7w71);
447 | }
448 | //enables re-seeding from control plane
449 |
450 |
451 | // == Register arrays for the stateful data structure
452 |
453 | Register,_>(32w16384) reg_flowid_1_1_R;
454 | Register,_>(32w16384) reg_flowid_1_2_R;
455 | Register,_>(32w16384) reg_flowid_1_3_R;
456 | Register,_>(32w16384) reg_flowid_1_4_R;
457 | Register,_>(32w16384) reg_counter_1_R;
458 | Register,_>(32w16384) reg_flowid_2_1_R;
459 | Register,_>(32w16384) reg_flowid_2_2_R;
460 | Register,_>(32w16384) reg_flowid_2_3_R;
461 | Register,_>(32w16384) reg_flowid_2_4_R;
462 | Register,_>(32w16384) reg_counter_2_R;
463 |
464 |
465 | // Define read/write actions for each flowID array
466 | #define RegAct_FlowID(st,pi) \
467 | RegisterAction, _, bit<8>>(reg_flowid_## st ##_## pi ##_R) stage_## st ##_fid_match_## pi ##_RA= { \
468 | void apply(inout bit<32> value, out bit<8> rv) { \
469 | rv = 0; \
470 | bit<32> in_value; \
471 | in_value = value; \
472 | if(in_value==ig_md.flow_id_part_## pi ){ \
473 | rv = 1;} \
474 | } \
475 | }; \
476 | \
477 | RegisterAction, _, bit<8>>(reg_flowid_## st ##_## pi ##_R) stage_## st ##_fid_write_## pi ##_RA= { \
478 | void apply(inout bit<32> value, out bit<8> rv) { \
479 | rv = 0; \
480 | bit<32> in_value; \
481 | in_value = value; \
482 | value=ig_md.flow_id_part_ ## pi; \
483 | } \
484 | }; \
485 | action exec_stage_## st ##_fid_match_## pi ##_(){ ig_md.fid_matched_## st ##_## pi=stage_## st ##_fid_match_## pi ##_RA.execute(ig_md.stage_## st ##_loc);} \
486 | action exec_stage_## st ##_fid_write_## pi ##_(){ stage_## st ##_fid_write_## pi ##_RA.execute(ig_md.stage_## st ##_loc);} \
487 | //done
488 |
489 | RegAct_FlowID(1,1)
490 | RegAct_FlowID(1,2)
491 | RegAct_FlowID(1,3)
492 | RegAct_FlowID(1,4)
493 | RegAct_FlowID(2,1)
494 | RegAct_FlowID(2,2)
495 | RegAct_FlowID(2,3)
496 | RegAct_FlowID(2,4)
497 |
498 | @stage(2)
499 | _OAT(exec_stage_1_fid_match_1_)
500 | @stage(2)
501 | _OAT(exec_stage_1_fid_write_1_)
502 | @stage(2)
503 | _OAT(exec_stage_1_fid_match_2_)
504 | @stage(2)
505 | _OAT(exec_stage_1_fid_write_2_)
506 | @stage(3)
507 | _OAT(exec_stage_1_fid_match_3_)
508 | @stage(3)
509 | _OAT(exec_stage_1_fid_write_3_)
510 | @stage(3)
511 | _OAT(exec_stage_1_fid_match_4_)
512 | @stage(3)
513 | _OAT(exec_stage_1_fid_write_4_)
514 |
515 |
516 | @stage(4)
517 | _OAT(exec_stage_2_fid_match_1_)
518 | @stage(4)
519 | _OAT(exec_stage_2_fid_write_1_)
520 | @stage(4)
521 | _OAT(exec_stage_2_fid_match_2_)
522 | @stage(4)
523 | _OAT(exec_stage_2_fid_write_2_)
524 | @stage(5)
525 | _OAT(exec_stage_2_fid_match_3_)
526 | @stage(5)
527 | _OAT(exec_stage_2_fid_write_3_)
528 | @stage(5)
529 | _OAT(exec_stage_2_fid_match_4_)
530 | @stage(5)
531 | _OAT(exec_stage_2_fid_write_4_)
532 |
533 |
534 | action set_matched_at_stage_1_(){
535 | ig_md.matched_at_stage_1=true;
536 | }
537 | action set_matched_at_stage_2_(){
538 | ig_md.matched_at_stage_2=true;
539 | }
540 |
541 | @stage(6)
542 | _OAT(set_matched_at_stage_1_)
543 |
544 | @stage(6)
545 | _OAT(set_matched_at_stage_2_)
546 |
547 | // Define stateful actions for matching flow ID
548 | #define RegAct_Counter(st) \
549 | RegisterAction, _, bit<32>>(reg_counter_## st ##_R) stage_## st ##_counter_read = { \
550 | void apply(inout bit<32> value, out bit<32> rv) { \
551 | rv = 0; \
552 | bit<32> in_value; \
553 | in_value = value; \
554 | rv = value; \
555 | } \
556 | }; \
557 | action exec_stage_## st ##_counter_read(){ ig_md.counter_read_## st =stage_## st ##_counter_read.execute(ig_md.stage_## st ##_loc);} \
558 | RegisterAction, _, bit<32>>(reg_counter_## st ##_R) stage_## st ##_counter_incr = { \
559 | void apply(inout bit<32> value, out bit<32> rv) { \
560 | rv = 0; \
561 | bit<32> in_value; \
562 | in_value = value; \
563 | value = in_value+1; \
564 | rv = value; \
565 | } \
566 | }; \
567 | action exec_stage_## st ##_counter_incr(){ ig_md.counter_read_## st =stage_## st ##_counter_incr.execute(ig_md.stage_## st ##_loc);} \
568 | //done
569 |
570 | RegAct_Counter(1)
571 | RegAct_Counter(2)
572 |
573 | // @stage(7)
574 | _OAT(exec_stage_1_counter_read)
575 | _OAT(exec_stage_1_counter_incr)
576 |
577 | // @stage(7)
578 | _OAT(exec_stage_2_counter_read)
579 | _OAT(exec_stage_2_counter_incr)
580 |
581 | // == Randomization, for running Probabilistic Recirculation
582 |
583 | Random>() rng1;
584 | Random>() rng2;
585 | action get_randomness_1_(){
586 | ig_md.entropy_long=rng1.get();
587 | }
588 | action get_randomness_2_(){
589 | ig_md.entropy_short=rng2.get();
590 | }
591 |
592 | // @stage(8)
593 | _OAT(get_randomness_1_)
594 | // @stage(8)
595 | _OAT(get_randomness_2_)
596 |
597 | // Find out which stage has the minimum count.
598 | // We use a 32-bit register here for comparing two 32bit numbers
599 | Register,_>(32w32) dummy_reg1;
600 | Register,_>(32w32) dummy_reg2;
601 | RegisterAction, _, bit<32>>(dummy_reg1) get_min_stage = {
602 | void apply(inout bit<32> value, out bit<32> rv) {
603 | rv = 0;
604 | bit<32> in_value;
605 | in_value = value;
606 | if(ig_md.diff>0x7fffff){//negative
607 | value=1;
608 | }
609 | else{
610 | value=2;
611 | }
612 | if((bool) 1)
613 | rv=value;
614 | }
615 | };
616 | action exec_get_min_stage() {
617 | ig_md.resubmit_data_write.min_stage=(bit<8>) get_min_stage.execute(0);
618 | }
619 | // @stage(9)
620 | _OAT(exec_get_min_stage)
621 |
622 | action clear_resubmit_flag(){
623 | ig_intr_dprsr_md.resubmit_type = 0;
624 | }
625 | action clone_and_recirc_replace_entry(){
626 | //trigger resubmit
627 | ig_intr_dprsr_md.resubmit_type = 1;
628 | }
629 |
630 | // Approximate coin flip! See our paper for discussion of 1.125-approximation to coin flip probability.
631 | // Section IV.D @ https://doi.org/10.1109/TNET.2020.2982739
632 | // @stage(11)
633 | table better_approximation {
634 | // Goal: recirculate using probability 1/(2^x*T) nearest to 1/(carry_min+1), x between [1..63], T between [8..15]
635 | actions = {
636 | NoAction();
637 | clone_and_recirc_replace_entry();
638 | }
639 | key = {
640 | ig_md.c_min: ternary;
641 | ig_md.entropy_long: ternary;
642 | ig_md.entropy_short: range;
643 | }
644 | size = 512;
645 | default_action = NoAction();
646 | const entries = {
647 | #include "entries_better_32.p4inc"
648 | }
649 | }
650 |
651 | bit<32> counter0 = 0;
652 | bit<32> counter1 = 0;
653 | table threshold0 {
654 | key = {
655 | ig_intr_md.resubmit_flag : ternary;
656 | ig_md.resubmit_data_read.min_stage : ternary;
657 | ig_md.matched_at_stage_1 : ternary;
658 | ig_md.counter_read_1[19:0] : range;
659 | }
660 | actions = {
661 | generate_digest;
662 | NoAction;
663 | }
664 | default_action = NoAction();
665 | size = 1;
666 | }
667 |
668 | table threshold1 {
669 | key = {
670 | ig_intr_md.resubmit_flag : ternary;
671 | ig_md.resubmit_data_read.min_stage : ternary;
672 | ig_md.matched_at_stage_1 : ternary;
673 | ig_md.counter_read_2[19:0] : range;
674 | }
675 | actions = {
676 | generate_digest;
677 | NoAction;
678 | }
679 | default_action = NoAction();
680 | size = 1;
681 | }
682 |
683 | #undef _OAT
684 | #define _OAT(act) tb_##act.apply()
685 | apply {
686 | //for debugging
687 | // route_to_64();
688 | if(!hdr.ipv4.isValid()) {
689 | drop();
690 | }
691 |
692 | ipv4_forward.apply();
693 |
694 | // === Preprocessing ===
695 | // Get flow ID
696 | _OAT(copy_flow_id_common_1_);
697 | _OAT(copy_flow_id_common_2_);
698 | _OAT(copy_flow_id_common_3_);
699 |
700 | if(hdr.tcp.isValid()){copy_flow_id_tcp();}
701 | else if(hdr.udp.isValid()){copy_flow_id_udp();}
702 | else {copy_flow_id_unknown();}
703 |
704 | // optional hash re-seeding
705 | // tb_init_hash_seed.apply();
706 |
707 | // Get hashed locations based on flow ID
708 | _OAT(get_hashed_locations_1_);
709 | _OAT(get_hashed_locations_2_);
710 |
711 |
712 | // === Start of PRECISION stage counter logic ===
713 |
714 |
715 | // For normal packets, for each stage, we match flow ID, then increment or compute carry_min
716 | // to simplify program logic, we ignore a special case, where both slots are the same flow ID.
717 | // For resubmitted packet, just do write FID + INCR at the right stage.
718 |
719 | bool is_resubmitted=(bool) ig_intr_md.resubmit_flag;
720 | bit<8> resubmitted_min_stage=ig_md.resubmit_data_read.min_stage;
721 |
722 | // = Stage 1 match =
723 |
724 | if(!is_resubmitted){
725 | _OAT(exec_stage_1_fid_match_1_);
726 | }else if(is_resubmitted && resubmitted_min_stage==1){
727 | _OAT(exec_stage_1_fid_write_1_);
728 | }
729 | if(!is_resubmitted){
730 | _OAT(exec_stage_1_fid_match_2_);
731 | }else if(is_resubmitted && resubmitted_min_stage==1){
732 | _OAT(exec_stage_1_fid_write_2_);
733 | }
734 |
735 | if(!is_resubmitted){
736 | _OAT(exec_stage_1_fid_match_3_);
737 | }else if(is_resubmitted && resubmitted_min_stage==1){
738 | _OAT(exec_stage_1_fid_write_3_);
739 | }
740 | if(!is_resubmitted){
741 | _OAT(exec_stage_1_fid_match_4_);
742 | }else if(is_resubmitted && resubmitted_min_stage==1){
743 | _OAT(exec_stage_1_fid_write_4_);
744 | }
745 |
746 | //have a boolean alias, for immediate use in gateway table controlling stage 2 fid match
747 | bool matched_at_stage_1=((ig_md.fid_matched_1_1!=0) &&
748 | (ig_md.fid_matched_1_2!=0) &&
749 | (ig_md.fid_matched_1_3!=0) &&
750 | (ig_md.fid_matched_1_4!=0));
751 | //also have a boolean phv value, for longer gateway matches
752 | if(matched_at_stage_1)
753 | {
754 | _OAT(set_matched_at_stage_1_);
755 | }
756 |
757 | // = Stage 1 incr =
758 | if(is_resubmitted && resubmitted_min_stage==1){
759 | _OAT(exec_stage_1_counter_incr);
760 | }else if(ig_md.matched_at_stage_1){
761 | _OAT(exec_stage_1_counter_incr);
762 | }else{
763 | _OAT(exec_stage_1_counter_read);
764 | }
765 |
766 | threshold0.apply();
767 |
768 | // = Stage 2 match =
769 |
770 | if(!is_resubmitted && !matched_at_stage_1){
771 | _OAT(exec_stage_2_fid_match_1_);
772 | }else if(is_resubmitted && resubmitted_min_stage==2){
773 | _OAT(exec_stage_2_fid_write_1_);
774 | }
775 | if(!is_resubmitted && !matched_at_stage_1){
776 | _OAT(exec_stage_2_fid_match_2_);
777 | }else if(is_resubmitted && resubmitted_min_stage==2){
778 | _OAT(exec_stage_2_fid_write_2_);
779 | }
780 |
781 | if(!is_resubmitted && !matched_at_stage_1){
782 | _OAT(exec_stage_2_fid_match_3_);
783 | }else if(is_resubmitted && resubmitted_min_stage==2){
784 | _OAT(exec_stage_2_fid_write_3_);
785 | }
786 | if(!is_resubmitted && !matched_at_stage_1){
787 | _OAT(exec_stage_2_fid_match_4_);
788 | }else if(is_resubmitted && resubmitted_min_stage==2){
789 | _OAT(exec_stage_2_fid_write_4_);
790 | }
791 |
792 | if((ig_md.fid_matched_2_1!=0) &&
793 | (ig_md.fid_matched_2_2!=0) &&
794 | (ig_md.fid_matched_2_3!=0) &&
795 | (ig_md.fid_matched_2_4!=0))
796 | {
797 | _OAT(set_matched_at_stage_2_);
798 | }
799 |
800 | // = Stage 2 incr =
801 | if(is_resubmitted && resubmitted_min_stage==2){
802 | _OAT(exec_stage_2_counter_incr);
803 | }else if(ig_md.matched_at_stage_2){
804 | _OAT(exec_stage_2_counter_incr);
805 | }else{
806 | _OAT(exec_stage_2_counter_read);
807 | }
808 |
809 | threshold1.apply();
810 |
811 | // Always compute min_stage and c_min, even it's not useful
812 | ig_md.diff= ig_md.counter_read_1 - ig_md.counter_read_2;
813 | ig_md.resubmit_data_write.setValid();
814 | // _OAT(exec_get_min_stage);
815 |
816 | // ig_md.c_min=min(ig_md.counter_read_1, ig_md.counter_read_2);
817 | if(ig_md.resubmit_data_write.min_stage==1){
818 | ig_md.c_min=ig_md.counter_read_1;
819 | }else if(ig_md.resubmit_data_write.min_stage==2){
820 | ig_md.c_min=ig_md.counter_read_2;
821 | }
822 |
823 | // prepare entropy
824 | _OAT(get_randomness_1_);
825 | _OAT(get_randomness_2_);
826 |
827 | clear_resubmit_flag();
828 |
829 | // === If none matched: choose your min stage, for recirculation (actually resubmit) ===
830 | if(!is_resubmitted && !ig_md.matched_at_stage_1 && !ig_md.matched_at_stage_2){
831 | //none matched
832 | //prepare for resubmit!
833 | better_approximation.apply();
834 | }
835 | else if(is_resubmitted){
836 | // finished second pipeline pass. route as normal.
837 | }
838 | else if(ig_md.matched_at_stage_1){
839 | // matched with counter.
840 | }else if(ig_md.matched_at_stage_2){
841 | // matched with counter.
842 | }
843 |
844 |
845 |
846 | if(ig_md.matched_at_stage_1){
847 | hdr.ethernet.dst_addr=(bit<48>)ig_md.counter_read_1;
848 | }else if(ig_md.matched_at_stage_2){
849 | hdr.ethernet.dst_addr=(bit<48>)ig_md.counter_read_2;
850 | }else{
851 | hdr.ethernet.dst_addr=0;
852 | }
853 | }
854 | }
855 |
856 | control SwitchEgress(
857 | inout header_t hdr,
858 | inout eg_metadata_t eg_md,
859 | in egress_intrinsic_metadata_t eg_intr_md,
860 | in egress_intrinsic_metadata_from_parser_t eg_intr_md_from_prsr,
861 | inout egress_intrinsic_metadata_for_deparser_t ig_intr_dprs_md,
862 | inout egress_intrinsic_metadata_for_output_port_t eg_intr_oport_md) {
863 | apply {
864 | }
865 | }
866 |
867 |
868 |
869 | Pipeline(SwitchIngressParser(),
870 | SwitchIngress(),
871 | SwitchIngressDeparser(),
872 | SwitchEgressParser(),
873 | SwitchEgress(),
874 | SwitchEgressDeparser()
875 | ) pipe;
876 |
877 | Switch(pipe) main;
878 |
879 |
--------------------------------------------------------------------------------