├── MANIFEST.in
├── setup.cfg
├── .gitignore
├── ipynb_py_convert
├── __init__.py
└── __main__.py
├── conda-forge
├── README.md
└── meta.yaml
├── examples
├── jupyter.png
├── vscode.png
├── plot.py
├── plot.ipynb
└── .ipynb_checkpoints
│ └── plot-checkpoint.ipynb
├── upload
├── upload.txt
├── setup.py
├── LICENSE
└── README.md
/MANIFEST.in:
--------------------------------------------------------------------------------
1 | include LICENSE
2 |
--------------------------------------------------------------------------------
/setup.cfg:
--------------------------------------------------------------------------------
1 | [metadata]
2 | description-file = README.md
3 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | build/
2 | dist/
3 | ipynb_py_convert.egg-info/
4 | *.pyc
5 |
--------------------------------------------------------------------------------
/ipynb_py_convert/__init__.py:
--------------------------------------------------------------------------------
1 | from .__main__ import nb2py, py2nb, convert
2 |
--------------------------------------------------------------------------------
/conda-forge/README.md:
--------------------------------------------------------------------------------
1 | [ipynb-py-convert](https://github.com/conda-forge/ipynb-py-convert-feedstock)
2 |
--------------------------------------------------------------------------------
/examples/jupyter.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kiwi0fruit/ipynb-py-convert/HEAD/examples/jupyter.png
--------------------------------------------------------------------------------
/examples/vscode.png:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/kiwi0fruit/ipynb-py-convert/HEAD/examples/vscode.png
--------------------------------------------------------------------------------
/upload:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | cd "$( cd "$( dirname "${BASH_SOURCE[0]}" )" && pwd )"
3 |
4 | python setup.py sdist
5 | if [[ "$(uname -s)" == MINGW* ]]; then
6 | winpty twine upload dist/* --skip-existing
7 | else
8 | twine upload dist/* --skip-existing; fi
9 |
10 | rm -rf ./dist
11 |
--------------------------------------------------------------------------------
/examples/plot.py:
--------------------------------------------------------------------------------
1 | # %%
2 | '''
3 | ## Matplot example
4 |
5 | ** Run the cell below to import some packages and show a line plot **
6 | '''
7 |
8 | # %%
9 | import matplotlib.pyplot as plt
10 | import numpy as np
11 |
12 | x = np.linspace(0, 20, 100)
13 | plt.plot(x, np.sin(x))
14 | plt.show()
15 |
--------------------------------------------------------------------------------
/upload.txt:
--------------------------------------------------------------------------------
1 | Install to conda environment:
2 |
3 | * twine
4 |
5 | conda install twine
6 |
7 | * On Windows install Git together with Bash.
8 |
9 |
10 | Scripts:
11 |
12 | To run the script open Bash terminal, then type . (dot with space), then
13 | drag and drop the script to the Bash terminal (the script will change CWD itself).
14 |
15 | * open terminal with activated environment
16 | * to upload package to pypi change version in `upload`, push changes, run `upload`
17 |
18 |
19 | Hint: Easily create shortcut to activated environment via Shortcutter:
20 |
21 | conda install -c defaults -c conda-forge shortcutter
22 | # pip install shortcutter
23 | shortcutter --terminal
24 |
25 | * To start Bash on windows type `%b%` in the terminal created via Shortcutter
26 |
--------------------------------------------------------------------------------
/setup.py:
--------------------------------------------------------------------------------
1 | from setuptools import setup
2 | from os import path
3 | import io
4 |
5 | here = path.abspath(path.dirname(__file__))
6 | with io.open(path.join(here, 'README.md'), encoding='utf-8') as f:
7 | long_description = f.read()
8 |
9 | setup(
10 | name='ipynb-py-convert',
11 | packages=['ipynb_py_convert'],
12 | version='0.4.6',
13 | description='Convert .py files runnable in VSCode/Python or Atom/Hydrogen to jupyter .ipynb notebooks and vice versa',
14 | long_description=long_description,
15 | long_description_content_type="text/markdown",
16 | author='Noj Vek',
17 | author_email='nojvek@gmail.com',
18 | license='MIT',
19 | url='https://github.com/kiwi0fruit/ipynb-py-convert',
20 | keywords=['vscode', 'jupyter', 'convert', 'ipynb', 'py', 'atom', 'hydrogen'],
21 | classifiers=[],
22 | entry_points={
23 | 'console_scripts': [
24 | 'ipynb-py-convert=ipynb_py_convert.__main__:main',
25 | ],
26 | },
27 | )
28 |
--------------------------------------------------------------------------------
/conda-forge/meta.yaml:
--------------------------------------------------------------------------------
1 | {% set name = "ipynb-py-convert" %}
2 | {% set version = "0.4.4" %}
3 |
4 | package:
5 | name: {{ name|lower }}
6 | version: {{ version }}
7 |
8 | source:
9 | url: https://pypi.io/packages/source/{{ name[0] }}/{{ name }}/{{ name }}-{{ version }}.tar.gz
10 | sha256: 45a1bb36ed3580b7c5f40d70ce104da375be89537925fba2643a9372cc002dc5
11 |
12 | build:
13 | noarch: python
14 | number: 0
15 | entry_points:
16 | - ipynb-py-convert = ipynb_py_convert.__main__:main
17 | script: "{{ PYTHON }} -m pip install . --no-deps -vv"
18 |
19 | requirements:
20 | host:
21 | - python
22 | - pip
23 | run:
24 | - python
25 |
26 | test:
27 | imports:
28 | - ipynb_py_convert
29 |
30 | about:
31 | home: https://github.com/kiwi0fruit/ipynb-py-convert
32 | license: MIT
33 | license_family: MIT
34 | license_file: LICENSE
35 | summary: "Convert .py files runnable in VSCode/Python or Atom/Hydrogen to jupyter .ipynb notebooks and vice versa"
36 | doc_url: https://github.com/kiwi0fruit/ipynb-py-convert
37 | dev_url: https://github.com/kiwi0fruit/ipynb-py-convert
38 |
39 | extra:
40 | recipe-maintainers:
41 | - kiwi0fruit
42 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | The MIT License (MIT)
2 |
3 | Copyright (c) 2018 Noj Vek nojvek@gmail.com
4 |
5 | Permission is hereby granted, free of charge, to any person obtaining a copy
6 | of this software and associated documentation files (the "Software"), to deal
7 | in the Software without restriction, including without limitation the rights
8 | to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
9 | copies of the Software, and to permit persons to whom the Software is
10 | furnished to do so, subject to the following conditions:
11 |
12 | The above copyright notice and this permission notice shall be included in all
13 | copies or substantial portions of the Software.
14 |
15 | THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
16 | IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
17 | FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
18 | AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
19 | LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
20 | OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE
21 | SOFTWARE.
22 |
23 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # ipynb-py-convert
2 |
3 | Atom/Hydrogen or VSCode/Python allows creating a python files split into cells with `# %%` separators with the ability to run cells via backend Jupyter session and interactively show results back.
4 |
5 | More examples: [Jupyter Python VSCode examples](https://github.com/DonJayamanne/pythonVSCode/wiki/Jupyter-Examples), [Atom/Hydrogen Getting Started](https://nteract.gitbooks.io/hydrogen/docs/Usage/GettingStarted.html).
6 |
7 | [ipynb-py-convert](https://pypi.python.org/pypi/ipynb-py-convert) python module converts files: .ipynb to .py and .py to .ipynb.
8 |
9 | **ipynb-py-convert** is a fork of the [vscode-ipynb-py-converter](https://github.com/nojvek/vscode-ipynb-py-converter).
10 |
11 |
12 | ## Install
13 |
14 | ```bash
15 | conda install -c defaults -c conda-forge ipynb-py-convert
16 | ```
17 | or
18 | ```bash
19 | pip install ipynb-py-convert
20 | ```
21 |
22 |
23 | ## Troubleshooting
24 |
25 | * If encoding problems on Windows try using `python>=3.7`, setting `set PYTHONUTF8=1` in Windows console and use `ipynb-py-convert` for UTF-8 files only. If using [Git-Bash on Windows](https://git-scm.com/download/win) setting:
26 |
27 | ```bash
28 | export LANG=C.UTF-8
29 | export PYTHONIOENCODING=utf-8
30 | export PYTHONUTF8=1
31 | ```
32 | should be enough. Also try setting default Bash settings to UTF-8: [Options] - [Text] - [Locale / Character set] - [C / UTF-8]. It might affect all Bash runs so there would be no need to setting encoding every time.
33 |
34 |
35 | ## Example
36 |
37 | `ipynb-py-convert examples/plot.py examples/plot.ipynb`
38 |
39 | or
40 |
41 | `ipynb-py-convert examples/plot.ipynb examples/plot.py`
42 |
43 |
44 | **VSCode**
45 |
46 | 
47 |
48 | Markdown cells are converted to python multiline strings `'''`. Code cells are left as is. `# %%` is used by vscode as the cell marker on which 'Run Cell' action is available.
49 |
50 |
51 | **Jupyter ipynb notebook**
52 |
53 | 
54 |
--------------------------------------------------------------------------------
/ipynb_py_convert/__main__.py:
--------------------------------------------------------------------------------
1 | import json
2 | import sys
3 | from os import path
4 |
5 | header_comment = '# %%\n'
6 |
7 |
8 | def nb2py(notebook):
9 | result = []
10 | cells = notebook['cells']
11 |
12 | for cell in cells:
13 | cell_type = cell['cell_type']
14 |
15 | if cell_type == 'markdown':
16 | result.append('%s"""\n%s\n"""'%
17 | (header_comment, ''.join(cell['source'])))
18 |
19 | if cell_type == 'code':
20 | result.append("%s%s" % (header_comment, ''.join(cell['source'])))
21 |
22 | return '\n\n'.join(result)
23 |
24 |
25 | def py2nb(py_str):
26 | # remove leading header comment
27 | if py_str.startswith(header_comment):
28 | py_str = py_str[len(header_comment):]
29 |
30 | cells = []
31 | chunks = py_str.split('\n\n%s' % header_comment)
32 |
33 | for chunk in chunks:
34 | cell_type = 'code'
35 | if chunk.startswith("'''"):
36 | chunk = chunk.strip("'\n")
37 | cell_type = 'markdown'
38 | elif chunk.startswith('"""'):
39 | chunk = chunk.strip('"\n')
40 | cell_type = 'markdown'
41 |
42 | cell = {
43 | 'cell_type': cell_type,
44 | 'metadata': {},
45 | 'source': chunk.splitlines(True),
46 | }
47 |
48 | if cell_type == 'code':
49 | cell.update({'outputs': [], 'execution_count': None})
50 |
51 | cells.append(cell)
52 |
53 | notebook = {
54 | 'cells': cells,
55 | 'metadata': {
56 | 'anaconda-cloud': {},
57 | 'kernelspec': {
58 | 'display_name': 'Python 3',
59 | 'language': 'python',
60 | 'name': 'python3'},
61 | 'language_info': {
62 | 'codemirror_mode': {'name': 'ipython', 'version': 3},
63 | 'file_extension': '.py',
64 | 'mimetype': 'text/x-python',
65 | 'name': 'python',
66 | 'nbconvert_exporter': 'python',
67 | 'pygments_lexer': 'ipython3',
68 | 'version': '3.6.1'}},
69 | 'nbformat': 4,
70 | 'nbformat_minor': 4
71 | }
72 |
73 | return notebook
74 |
75 |
76 | def convert(in_file, out_file):
77 | _, in_ext = path.splitext(in_file)
78 | _, out_ext = path.splitext(out_file)
79 |
80 | if in_ext == '.ipynb' and out_ext == '.py':
81 | with open(in_file, 'r', encoding='utf-8') as f:
82 | notebook = json.load(f)
83 | py_str = nb2py(notebook)
84 | with open(out_file, 'w', encoding='utf-8') as f:
85 | f.write(py_str)
86 |
87 | elif in_ext == '.py' and out_ext == '.ipynb':
88 | with open(in_file, 'r', encoding='utf-8') as f:
89 | py_str = f.read()
90 | notebook = py2nb(py_str)
91 | with open(out_file, 'w', encoding='utf-8') as f:
92 | json.dump(notebook, f, indent=2)
93 |
94 | else:
95 | raise(Exception('Extensions must be .ipynb and .py or vice versa'))
96 |
97 |
98 | def main():
99 | argv = sys.argv
100 | if len(argv) < 3:
101 | print('Usage: ipynb-py-convert in.ipynb out.py')
102 | print('or: ipynb-py-convert in.py out.ipynb')
103 | sys.exit(1)
104 |
105 | convert(in_file=argv[1], out_file=argv[2])
106 |
107 |
108 | if __name__ == '__main__':
109 | main()
110 |
--------------------------------------------------------------------------------
/examples/plot.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Matplot example\n",
8 | "\n",
9 | "** Run the cell below to import some packages and show a line plot **"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 1,
15 | "metadata": {},
16 | "outputs": [
17 | {
18 | "data": {
19 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXl4ZNV16PtbVZpVmqeW1GqpNfRI0w2IBmzg2RhjPAFJ\nPEAGk8QJLy/2y0v8kmt8/a7j5yRf7Pjmkpt8TmziCd/4YbBjG+wQY8DggbEbeh7UGlrdrXmWqjSr\nar8/zjnqkpBaQw1nqP37vvpUdYY6S7vO2WuvYa8tSik0Go1Go7Hw2S2ARqPRaJyFVgwajUajWYJW\nDBqNRqNZglYMGo1Go1mCVgwajUajWYJWDBqNRqNZglYMGo1Go1mCVgwajUajWYJWDBqNRqNZQprd\nAmyG0tJSVVdXZ7cYGo1G4ypef/31IaVU2VrHuVIx1NXVcfjwYbvF0Gg0GlchIhfWc5x2JWk0Go1m\nCVoxaDQajWYJWjFoNBqNZglaMWg0Go1mCVoxaDQajWYJcVEMIvJ1ERkQkZOr7BcR+UcRaROR4yJy\nbdS++0Wk1XzdHw95NBqNRrN54mUxfBO48wr73w00ma8HgH8BEJFi4C+BG4CDwF+KSFGcZNJoNBrN\nJoiLYlBK/QIYucIhdwPfUgavAIUiUgm8C3hGKTWilBoFnuHKCsbRjE3N8ePjPUzMzNstSsoRjih+\ncrKX1y9c6TbUJIrTPRM8+tpF5sMRu0XRxIFkTXCrBi5Ffe4yt622/U2IyAMY1gbbtm1LjJSb5NnT\n/Tx++BLPtwwwH1bsqcznWx89SGkg027RPM9COMKPjvfwTz9ro2NwEr9P+G/v3c39b6lDROwWz/NM\nzi7wD8+e4+svdhKOKB597SJ//8H9NFXk2S2aJgZcE3xWSj2slGpWSjWXla05oztpPHmshz/41mGO\nXBrj/pvq+MJv7KNjKMSHv/IyvePTdovnacIRxb0Pv8KfPXaMDL+P/3nvAd6+s5zP/ug0n/z348wu\nhO0W0dMcuTjKHQ/9gn/95Xk+1FzDQx/eT9foNO/9p1/xtV+dt1s8TQwky2LoBmqiPm81t3UDb1u2\n/YUkyRQzwZl5/vrHp9lXXcAP/vgtpPkNPbu9NMDvf/MQH/zyy3zngRvZWpRjs6Te5LuHL3H4wiif\nff8ePnJTHT6f8P6rq/iHZ8/xjz9rY3x6nq/8TrPdYnqScETxF987jlKK7/7RTVxfVwzAzY1lPPjv\nx/mrH59mT2U+NzWU2CypZjMky2J4EviImZ10IzCulOoFngbuEJEiM+h8h7nNFfzPZ1sZDM3yV/dc\ntagUAA5uL+b/+8MbGJ2c44tPt9gooXcJzS7w3396jutqi7j/LYZSAPD5hE/csZM/vb2Jp0/1c6Jr\n3GZJvckPj3TTNhDiv71vz6JSACjLy+RLv3Ut5XmZPPTsOZRSNkqp2SzxSld9FHgZ2CkiXSLyURH5\nIxH5I/OQp4AOoA34V+CPAZRSI8BfAYfM1+fMbY7nbN8E33ipk3uv38aBmsI37b96ayH3HdzGj4/3\n0jOmXUrx5is/b2coNMv/897dK8YSfv/m7eRlpfHPL7TZIJ23mVuI8NCz59hXXcCdV2150/6sdD8f\ne3sjr50f4cW2YRsk1MRKvLKS7lNKVSql0pVSW5VSX1NKfVkp9WVzv1JKfUwp1aCU2qeUOhx17teV\nUo3m6xvxkCfRKKX4zA9PkZ+Vxn95185Vj/u9m7cD8I0Xtb81nvSMTfPwLzq4a38V12xbObs5Pyud\n+2+q4yen+mgbCCZZQm/z2KGLdI1O8+fv2rlqgP/egzVUFmTxP55p0VaDC3FN8NlJvHBukNc6R/jk\nnbsoys1Y9bjqwmzeu6+SR1+7pFNY48h/f7oFBfyXO1dXymBYDVlpfv75hfbkCJYCTM+F+ceftXFw\nezG3NpWuelxmmp+P39bIGxfHeOHcYBIl1MQDrRg2wRNHuinITufXr9265rF/eEs9odkFHnvt0prH\natZmMDjLD49285Eba9cM6hfnZnDfwW08cbSHSyNTSZLQ23zr5U4Gg7P8xRWsBYsPXlfD1qJsHnpG\nxxriQSSiiESS045aMWyQ6bkwPz3dz3v2bSEjbe3m27e1gBvri/nGi+f15J848JNTfUQUfKB5baUM\n8MCt9fgEvvxzbTXEg+++3sXBuuIlAefVyEjz8bG3N3K8a5w3Lo4lQTpv86u2IW782+c42zeR8Gtp\nxbBBnjvbz9RcmPfvr1r3OQ/cWk/P+AxPnehNoGSpwVPHe6kvy2XnOidQbSnI4q791TxxtIe5Ba2Y\nY6FtIEjbQIj3Xl257nPee3Ul6X7hp6f6EihZavDM6X6CMwvUleQm/FpaMWyQJ4/2UJ6XyQ3b15+f\n/bYd5VQXZvOjYz0JlMz7DAZnefX8MO/bV7mhWc3vvmoLodkFXj2vM2Ri4elT/QDcsbdi3efkZ6Vz\nU0MpT5/q0+6kGFBK8eyZfm5pKiUr3Z/w62nFsAHGp+d5oWWQ911dhd+3/o7J5xNu313Or9qGmJnX\ns3E3i+VGes8GRqwAb20sJSvdx7On+xMkWWrwk5N9HKgppLIge0PnvWtvBZ3DU5zrDyVIMu9zsnuC\n3vEZ3rln/Uo5FrRi2ABPn+pjLhzhrgPrdyNZvH1XOTPzEV7u0KPWzfLU8V4aNuBGssjO8HNLUxnP\nnhnQo9ZN0jU6xYnucd69wryFtXjnngpEjOdHszmeOd2HT+Adu7VicBw/OtZDbUkO+7cWbPjcG+tL\nyE738/zZgQRI5n0sN9J7N+hGsnjn7gq6x6Y506vnNGwGy430rr0bVwzleVlcU1OoFUMM/PR0P821\nxRRfIT0+nmjFsE6GQrO81D7M+6+u2lTHlJXu562NpTynR62bYrNuJIu37ypHBJ49o91Jm+Hpk33s\n2pJHXenmAp/v2ruFUz0TOm14E1wameJsX3BDsZ1Y0YphnTx3pp9wRPG+/ZvrmABu21VO99g0rQPa\n17pRNutGsijLy+SamkKtGDbBYHCWQxdGVix/sV4sS+MZHefZMD812yxZ8QXQimHdvNIxQmkgc9Md\nExiKAeBn2p20Ican5nn1/DDv2aQbyeL2PRUc7xqnb3wmjtJ5n5+e7kMpYlIMdaWGUtfupI3zzOk+\ndlQEqE1CmqqFVgzrQCnFy+3D3FhfHFPHtKUgiz2V+fzsjFYMG+FQ5wgRZWQXxcI7zcDdc2f1qHUj\nPHO6n9qSnJgGRWBkJx3qHGE4NBsnybzP2NQchzpHk2otgFYM6+LC8BR9EzPcWB97bfl37C7n9Yuj\njE/p2knr5bXOETL8vhWr2G6ExvIAtSU5Om11A4QjisOdo9zcWBrzini37a4gotCZeRvghZZBwhHF\nO/ds3lrbDFoxrINXzBs5Horh7bvKCUcUP2/VhcXWy6sdwxyoKYx5Yo+I8Pad5bzUPqxnQa+TM70T\nhGYXOLh97RIYa7G3Kp/sdD+HO0fjIFlq8Or5YfKz0ri6euOZkLGgFcM6eKVjmNJAJg1lsfv49m8t\npDg3g5+3aMWwHkKzC5zsmeCG+tg7JjAWUZpdiHCqRy/gsx5eO28sj7Ke2khrke73cW1t4eJ3atbm\nUOco19UWLS5ElSzitVDPnSLSIiJtIvLgCvsfEpGj5uuciIxF7QtH7XsyHvLEE6UUr3SMxBxfsPD7\nhObaIt64qEdN6+H1C6OEIyouI1aA5tqixe/VrM2hzhGqC7OpKtzYbOfVaK4t5mzfhC5Dvw5GJ+do\nGwjRHAelvFFiVgwi4ge+BLwb2APcJyJ7oo9RSv2ZUuqAUuoA8E/A96N2T1v7lFJ3xSpPvIlnfMHi\nutoizg9N6iDcOni1Y5g0n3Bd7coL8myU8vwsaoqztTtjHSilONQ5EjelDIbFFlFwRFdbXRNr8NIc\np3t/I8TDYjgItCmlOpRSc8B3gLuvcPx9wKNxuG5SsAJl8VzU/Frzh9aliNfmtfMjXFVdQE5GWty+\ns7m2mMMXRvVEwzU4PzTJUGguLm4kiwM1hfh9wiHtTlqTQxdGSPcL+2NMutgM8VAM1UD0KjRd5rY3\nISK1wHbgZ1Gbs0TksIi8IiL3xEGeuPJKxzBleZnUb3LG50rsqy4g3S/anbQG03NhjnWNxS2+YHFd\nbRFDoVku6lm4V+RQp9F5H9wevxFrbmYae6vyF79bszqHO0fZV12QlGqqy0l28Ple4HtKqegSo7VK\nqWbgN4F/EJGGlU4UkQdMBXJ4cDA5gVsjvjDMjfUlcYkvWGSl+9lbVaD93Gtw5NIo82HFjRsocb4e\nmuuMjk67k67Ma+dHKc7NoKEsENfvvb6umKOXxphd0JWGV2NmPsyJrnFb4gsQH8XQDdREfd5qbluJ\ne1nmRlJKdZt/O4AXgGtWOlEp9bBSqlkp1VxWVharzOuic3iK/olZbozziBWMUeuxS2N6Vbcr8GrH\nCD6B6+ri62PdUZ5HXlYah7ViviKHOke4vq4oroMigOvriphdiHCyO/ErkbmVE93jzIUjtsQXID6K\n4RDQJCLbRSQDo/N/U3aRiOwCioCXo7YViUim+b4UeCtwOg4yxYVXzfjCRhblWS/XbjMejtM9+uFY\njVfPD7OnKp/8rPS4fq/PJ1y7rYjXL2h3xmr0T8xwcWQqrvEFC2sUrN1Jq2NZs/FKutgoMSsGpdQC\n8HHgaeAM8LhS6pSIfE5EorOM7gW+o5ZG/HYDh0XkGPA88HmllGMUw7GucfKz0uIyf2E519YaASUd\nZ1iZ2YUwRy6OcbAu/koZjEyPc/0hxqbmEvL9bseaaxDPjCSL0oARszusFcOqHO4cob4sl5JApi3X\nj0uqh1LqKeCpZds+s+zzZ1c47yVgXzxkSAQnuse4emth3E1pgMqCbKoLs3n9wii/99btcf9+t3O2\nN8jsQmQxHhBvrFHrGxdHuW1XcuvQuIFDnSPkZvjZU5mfkO9vrivi6VP9RCIq6ZO3nE4kojh8YZQ7\nN7H2RbzQM59XYWY+TEtfkH2bWJRnvVyzrZA3tJ97RU50GzOT9yWoFMCBmkLSfKID0KtwuHOUa7YV\nkeZPTBdxfV0x49PzugT9CrQPhhifno97bG0jaMWwCi19QebDKmEdExj+w57xGXrGphN2Dbdysnuc\ngux0thbFZ8btcrIz/OytytcB6BWYXQhzrj/I1QkcFFlzeY5d0nN5lnPIHKwkIr6zXrRiWIVEj1jh\ncmBJxxnezInucfZVFyTEjWdxXW2xzgxbgZa+IAsRxVUJvPe3l+SSm+HnpK5Z9SaOd41RmJNOXUmO\nbTJoxbAKJ7rGKcpJ3IgVYHdlPlnpPj2fYRnWiDWRHRPAvq35zC5EaB/U7oxorDTSRA6KfD5hb1UB\np3RW3ps41TPB3qr8hA6K1kIrhlU43j3OvgQFni3S/T72VRdwokuPmqJJhhsP4Koq4/tP6Xz6JZzs\nMbLxEjkoAthTlc/pngnCEV2axGI+HKGlL7h4b9qFVgwrMDNv+liTUAN9b1UBZ3oniOiHY5FkuPEA\n6ssCZKX79Kh1Gae6x7kqwW48gKuqC5ieD3N+SFtsFq39IebCEfZUJSYbbL1oxbACp3uNUUwiM5Is\n9lTmMzkX5oKu27OIFXiuKU7siNXvE3ZtyddrM0QxH45wpi/xbjyAq6qNzk/PgL6MdS/u1RaD87Bc\nO4nMyrCwRgZ6BvRlkhF4tthblc/p3gldadWkbSDE3EKEvUkYsTaWBchM83GyWytmi1M9E+Rk+Nke\nx6Kdm0ErhhU43jVOaSCTLflZCb9WU0WANJ/oUavJ7IIxfyQZI1YwRmbBmQUujeiUYWCxk05G+6f5\nfeyqzNeZSVGc6hlnd2U+fpsn/WnFsAInu8e5emtyRqyZaX4aywOc7tUWA8C5vlBSAs8W1shYK2aD\nk93j5Gb42V6SnBHrVVX5nOrRFhsYM55P90xwlc3xBdCK4U1MzS3QOhBMWscEl7MzNMkLPFvs3JKH\n3yc6AG1ysmeCPVX5SStToS22y3QOTzI5F7Y9vgBaMbyJ0z0TRFTyOiYwHo6B4CyDQb3U54kkBZ4t\nstL9NJYFtMUAhM0RazI7psUAtG7/xcGJ3RlJoBXDmzhuBp6TkZFkYRUq0+4kw5VxVXVyJ/fsNd0Z\nqc75oRDT8+GkxXcAdlTkkeYTHYDGUI7pfmFHRZ7domjFsJwzvROUBjKoSELg2WJRMaR45zS3EElq\n4NliT1W+tthIzozn5WSl+2mqyONkit/7YDz/OyryyEizv1u2XwKH0dIfZOeW5GrsArP0Rqq7M1oH\ngsyFI0mf9Wm5TlK9/U92j5OZ5kvI+iNX4qqqfE51j6d0AFopxameCdtnPFtoxRBFOKI41x9kZ0Xy\nfXx7KvNT3pXU0hcEYHdlchXznsXMpNRu/xPdRqpkokptr8ZV1QUMT87RP5G6Flvv+Awjk3PsrbY/\nvgBxUgwicqeItIhIm4g8uML+3xWRQRE5ar7+IGrf/SLSar7uj4c8m+XiyBQz8xF2JdliAKNzOj80\nydTcQtKv7RRa+oJk+H3UJSlV0sIKdqeyK08pxZneCVsCn1bK8IkUjjNYg5JkTCxcDzErBhHxA18C\n3g3sAe4TkT0rHPqYUuqA+fqqeW4x8JfADcBB4C9FxLbVKVr6jB9nV5JHrGC4M5SCM73BpF/bKbT0\nB2koDyR9xAqwt7IgpV1J/ROzTMws2DIo2mXG2KznLxU51TOOiFFx2QnE4wk8CLQppTqUUnPAd4C7\n13nuu4BnlFIjSqlR4BngzjjItCnO9gURgaZyeywGSO3MpJa+oC0dExgjtc7hKYIz87Zc325a+o0B\niR0ZMYFMo5JrS3/qFtM72xukriSXnIy4rLYcM/FQDNXApajPXea25fyGiBwXke+JSM0Gz00KLX3G\nj5Od4U/6tasKsijITk9Zd8b49Dy94zNJD/xbWKPWVF1q0hqt77QpVXJnRR6t/alrLZ8bCLKjImC3\nGIsky2b/EVCnlLoawyp4ZKNfICIPiMhhETk8ODgYdwHBUAx2PRgiktIB6HNmp2BX+1sPZap2Ti19\nIcrzMinKzbDl+ju25NE+GErJ1fRm5sN0Dk3adu+vRDwUQzdQE/V5q7ltEaXUsFLKSjn4KnDdes+N\n+o6HlVLNSqnmsrKyOIi9lJn5MJ3Dk7aNWMEoz9DWH0zJtL2zZkaSXe1fU5RDVrqPlr7UtBjO2ZCm\nHc3Oijzmw4rOoUnbZLCL9sEQEWUoR6cQD8VwCGgSke0ikgHcCzwZfYCIVEZ9vAs4Y75/GrhDRIrM\noPMd5rak09pv/Dh2+bjBqLQ6ORemeyz16sac6wuSl5VGZUHyJhZG4/MJTeV5tA6knsUQjihaB4K2\nzrhtMi22lhS02FrN2IqnLAal1ALwcYwO/QzwuFLqlIh8TkTuMg/7ExE5JSLHgD8Bftc8dwT4Kwzl\ncgj4nLkt6ZyxfKw2KgbrwWxNwSCc5cazc53bHRV5i3MpUolLZpq2nR1TQ1kAnxgDhFSjpT9Iul+o\ns3kNhmjiEgJXSj0FPLVs22ei3n8K+NQq534d+Ho85IiFlr4gWek+apOcQx/NDjMb6lx/kLfvKrdN\njmSjlKKlP8h7r65c++AEsqMiwL+/0cXY1ByFOfb42u1gMSPJxkFRVrqfutLclLQYzvUFqS8NkG5D\nmvZqOEcSm2npC9JUnmfrAhkFOemU52VyLsUshv6JWcan521148Fliy3V2t8apTeV25sVs7MiL+Xa\nHsyMJAfFF0ArhkXO2phDH82OitTzc5813Xh2V5W0Hs5zKTZqbekPUlOcTW6mvTn0Oyry6ByeZGY+\nbKscyWRy1liLYofNSnk5WjEAw6FZhkKztsYXLJoqAkYgPJI6mUl2p6paVBVkEchMSz3FYGOadjQ7\nt+ShlLHudKpg/a/aYnAgVsBx1xb7p6PvqMhjej61MpPO9gVtzaG3EBGaKgIppRhmF8KcH7I3TdvC\nshhTKQGgxSGDouVoxYD9OfTRWBOtUqlzsjuHPpod5XkplRV2fmiShYiy3Y0HUFeSQ4bfl1r3fl+Q\nzDQfNcU5douyBK0YMDqm4twMyvIy7RaFxvLUCoCGI4rW/pAj4jtgmPTDk3MMhVKjBHSLgwZFaX4f\nDeWBlMpMOjcQoqkiYGvSy0poxYDh52t0SPCnIDudLflZKTNq6hyeZHYh4ogRK6SexXauP0iaT6gv\ndcb9v7MikFJzGc712TuxcDVSXjEopWh1kGIAUsrP3WpjVc+VsHy9qdI5tfSF2F6a64jlJMGw2HrG\nZ5hIgSq349Pz9E3MOObej8YZd4ONDIXmGJ+etz2HO5odFXm0DYQIp0BmkpWV4RTFXJaXSUF2OudS\nJDPmXL+zcuh3Ls7+975ibnVo4Bm0YnBcxwSGO2N2IcKlkSm7RUk4bQMhqgqybM+htxARY6JVClgM\n03NhLo1OLc64dwKXM5O8r5idMON8NbRiGHSeYmiqSJ2JVm2DIRoc1PZw2ZXn9Sq37YMhlHLWvV9d\nmE12uj8l5jKc6wsSyEyjyqbCkVdCK4Z+48fZku+cH8dya3l90ZhIRNE+MOmojgmMDJ2JmQXPL07f\n7sBBkc8nNJTnLg7YvIw1KLKzcORqaMXgwB8nLyud6sJsz1sMPePTTM+HHdUxATSWGfJ4fdTaPhDC\nJ1BX6qwc+oayAO0eb3swsyHLnHXvW6S8Ymjtd+aPY7gzvP1wLMZ3HNb+lqJq9/iotW0wxLbiHDLT\nkr+U7ZVoLAvQPTbN5OyC3aIkjImZefonZh03KLJIacUwMTPPQNCZP05jWYCOQW/XTHJi4B+MzKS8\nzDTPWwxOmr8TjSXTeQ+v5tYxaPxvDWXOWYMhmpRWDNaD76RUVYuGciMzycs1k9oHQxTlpFMSsH/G\neTQiQkN5wNMWw0I4wvmhSccF/uGyYvCyYnbqoMgiLopBRO4UkRYRaRORB1fY/wkROS0ix0XkORGp\njdoXFpGj5uvJ5ecmkrZ+5/44iw+Hhzsnp45YwfBze7ljujgyxXxYOc6NB1BbkovfJ55u/7aBEOl+\nYZvDaiRZxKwYRMQPfAl4N7AHuE9E9iw77AjQrJS6Gvge8HdR+6aVUgfM110kkbbBEBkOLGAFRscE\neDoI52TF0FgeYCA469kZuO2mK8OJ7Z+R5qO2OMfTFlv7YIi6klzSHLRqWzTxkOog0KaU6lBKzQHf\nAe6OPkAp9bxSypqt9QqwNQ7XjZm2gRD1pbmOK2AFUJybQXFuhmcfjuHQLKNT84tFA53GYgDao4rZ\nGo070ZUEhlxethjaHTwogvgohmrgUtTnLnPbanwU+M+oz1kiclhEXhGRe1Y7SUQeMI87PDg4GJvE\nJq0DQUf/OA1lubQPeDMA53QfqxUU9Grn1DYQojwvk/ysdLtFWZHG8gCdw5MshCN2ixJ35hYiXBiZ\nWvQKOJGk2jEi8ttAM/DFqM21Sqlm4DeBfxCRhpXOVUo9rJRqVko1l5WVxSzLzHyYrtFpx3ZMYOZz\ne9RicOKM82i2FeeQ7pdFl4vXaBt09oi1oSzAfFhxwYNlYS4MTxKOKEe3fzwUQzdQE/V5q7ltCSJy\nO/Bp4C6l1OKUUqVUt/m3A3gBuCYOMq2JE8sBLKexPMDw5Byjk3N2ixJ32gZC5GT4HVkOAIy1AepK\ncj1pMSilHO/K8LIrz+nWMsRHMRwCmkRku4hkAPcCS7KLROQa4CsYSmEganuRiGSa70uBtwKn4yDT\nmlxOVXWmjxuiAtAetBraBkI0lDlrxvlyGsuNuSReYyA4S2h2wdEd06Irz4Ptb/U99Q6dwwBxUAxK\nqQXg48DTwBngcaXUKRH5nIhYWUZfBALAd5elpe4GDovIMeB54PNKqaQpBieWA4jG64rByR0TGO1/\nYWSKuQVv+bmdOuM8mrwsY8EqL1ps7YMhqguzyclwRkXhlYiLZEqpp4Cnlm37TNT721c57yVgXzxk\n2ChtAyFqS3IdVw4gmuqibDLTfJ57OEKzC/SOzzheMTSWBwhHFJ3Dk45cTGWzuMGVAdBQnutNV9Jg\nyNHWAqTwzOeOwUnHTke38PuE7aW5nguAWg+7k7MywLtzSdoGQuRlpjlijfMr0VgWoH1w0lPlz51a\nUXg5KakYwhFllANweMcEeLI0gxPLPa9EvUdTVtsGnFdReCUaywOEZr1V/rx3Yobp+bDj+56UVAxd\no1PMhSOON+fAGDVdGpliZj5styhxo30wRJpPqC1xbnwHINdcRMVritnpqaoW1uQ7Lylmt7jxUlIx\nXK5s6OwfB4yHI6Kgc9g77qSOwUlznoDzb7+G8oCnMmMmZuYZDM664t5v9GDyRbtWDM7FutHc8HBY\ncRAvzYBuHwxR74K2B+MBbh+Y9Ez58w4H10haTlleJnlZ3ip/3jYYoiA7nZLcDLtFuSIpqxiKctIp\ncviPA1BfGkDEO+Z0OKLoHJqiodz5bjwwBg/T82F6J2bsFiUutLsgh95CRKgvC9Ax5I17H4z2byjL\ndXx8J0UVgzsCzwDZGX6qC7M9Y05b8Z2GUne0v9cykzqGjPiOU8s9L6ehLHfRyvECbul7UlIxdAyG\nXPHjWDR6KDNpMb7jFovBlNMrM6DbBybZVuKO+A4Yirl3fMYTy3yOT88zFJp1bEXbaNxxd8SR8al5\nhkJzrjClLaxiel7wc1sKrt4lFkNZwFjm0ytzSTqG3DUosmJsXljms2Px3nd+35NyiqF9yD2BZ4v6\nslxm5iOe8HO3D4Yozs1wRXwHTD93uTf83FZ8x02DonoPZSZdtpad3/eknmJw+AIlK2EpMS+4M9oH\nJ10xYoqmodQb62IsxndcNCiqLcnBJ3jCYrPm77ghvpNyiqFjaJJ0v1BTlG23KOumfjFl1f2KwW3x\nHTAGEX0TM4Rc7ue+nKbtHsWcmeanxiPLfHYMuie+43wJ40y7WTzPqWutroTl5+5wuZ/Viu+4JfBs\nYVk4510+arVcGW6J71g0lAU8kZnUPhhyTdu7p3eME+2DIVeNmCDKz+3yh8OK77jl4bCw3I5ujzO4\nLb5jUV+ay/khdydfLIQjXBieck3fk1KKYT4c4eLIlGtm3UbTUJrrenPaTcG3aBb93C535bW7oKLw\nSjSUB5jUOdcdAAAgAElEQVSZj9AzPm23KJuma3TaVfGdlFIMl0ammA8r1/w40TSUuz+fu30w5Lr4\nDkT5uV3uyutwkSsjGsuV5+YAtGVtuiUjLC6KQUTuFJEWEWkTkQdX2J8pIo+Z+18VkbqofZ8yt7eI\nyLviIc9qXC6e544fJ5pFP7eLO6eOQffFdyzqS929aIxb4zsQ5cpzscVsZbW5ZVAa8xMqIn7gS8C7\ngT3AfSKyZ9lhHwVGlVKNwEPAF8xz92CsEb0XuBP4Z/P7EsLi5CqX/DjRWA+Hm91JbkxVtagvC3B+\nyL3F9Nwa3wEoyc0gPyvN1fd+x5B76rNBfCyGg0CbUqpDKTUHfAe4e9kxdwOPmO+/B7xDjCpSdwPf\nUUrNKqXOA23m9yWE9sEQpYFMCrLTE3WJhOH2fG4j+DbpuviCRUNZgNmFCN1j7vRzuzW+A0byRYPL\nky/cUiPJIh6KoRq4FPW5y9y24jFKqQVgHChZ57kAiMgDInJYRA4PDg5uStDJuTA7Ktzz40STmeZn\na1GOa83pS6PTro3vwGXfsFtTht0a37GoL3V3vbAOF6zzHI1rnL1KqYeVUs1KqeaysrJNfceXfvNa\n/u2jN8RZsuTRUObe9Z/dVO55Jdw++9zN8R0wihn2T8y6cpLhYnzHRYOieNwl3UBN1Oet5rYVjxGR\nNKAAGF7nuXHF53N2HfQrYfi53ZnPbWVluKXc9nJKAxnkudjP7eb4DlyOjbhRMS/Gd1JMMRwCmkRk\nu4hkYASTn1x2zJPA/eb7DwA/U0opc/u9ZtbSdqAJeC0OMnmShrKAa4vptQ9MGvGdHPfFd8D0c7t0\nBq7b4zsAjYvlz93X/m7MhoxZMZgxg48DTwNngMeVUqdE5HMicpd52NeAEhFpAz4BPGieewp4HDgN\n/AT4mFLKO6vexxk310xqd5mPdSXqy9w5ydCK77jZYthWnIvfJ65sf6t4Xo0LiudZpMXjS5RSTwFP\nLdv2maj3M8AHVzn3b4C/iYccXifaz33rjs3FWeyifTDEnVdV2i1GTDSUBfj+G92EZhcIZMbl0UkK\nbqwovJyMNB/binNcajGEqHVJ8TwL90iqifJzu+vhGJmcY3Rq3lWm9EpY8rvNz71YVdWl8R2LBpda\nbO2Dk66KL4BWDK5i0c/tsmJuVkfq5hErRK3/7LLOqWPQ3fEdC+PenyTsouSLeSu+oxWDJpHUl7lv\n0RivjFi3leTg94nr3BlurCi8Eg1lAeYWInSPumeS4eX6bO5qf60YXEZDmfsWjekYnCQjzUe1SydX\nWWSm+dnmwkVj2gdDrrfWgMU6T25q/3aXzjjXisFlWCapmxaNMRYoMbJK3E6Dyyy2y/Edd3VMK2HN\nZXCXYnCntawVg8uw8rnbBoM2S7J+jOCbu0zp1Wgwi+m5xc99uXCk+9u/KDeD4twMdymGgZAr4zta\nMbiMxXxul4xa5xaMxZG8MGIF088djtA1OmW3KOvCSlVt9Ez7u8ti6xhy5+JIWjG4jIw0H7Uu8nNf\nHDFG155RDC7zc7cPhshM81FV6O74jkVDmXuK6SmlaBtwZ3xHKwYX0lDunoejzWULlKzFop/bJaPW\njsFJtnskvgPGfTQ8OcfY1JzdoqzJyOQc49PujO9oxeBCGsoCdA5NsRCO2C3KmlgKbLsLzemVKMrN\noMRFfm6vZCRZXLbYnK+Y211YI8lCKwYX0lCWy1w4wiUX5HO3D4bYkp/lqhISa+EWd8bsQthT8R1w\n1yTDxYwkF7a/VgwuZHGZTxcU0+sYnHTlOsNXoqE8lzYXtP2F4Skiyp0j1tXYWpRDht/nDsUwECIr\n3Ue1C+M7WjG4kAaX5HMrpcxZt+4bMV2JhrIAo1PzjEw628+9WDzPQ+3v9wnbS92RmWTM3wm4cg0Y\nrRhcSEFOOqWBTMcrhsHQLMGZBVeXe14Jt7gzFuM7Hmv/+rJcVxQybB907xoYWjG4lMZy5y/zaY3q\n3PpwrMaiYnC4O6ljcJKqgixyPRTfAaP9L4xMMbfg3OSLmfkwl0anXOvGi0kxiEixiDwjIq3m36IV\njjkgIi+LyCkROS4iH47a900ROS8iR83XgVjkSSUaygK0DYQwFsJzJovLeXrIlQFQXZRNRprz/dxe\ny0iyaCjPJRxRXBxx7sCoc3gSpdx778dqMTwIPKeUagKeMz8vZwr4iFJqL3An8A8iUhi1/y+UUgfM\n19EY5UkZGsoCjE/PM+xgP3fbQIicDD9b8rPsFiWu+H1CfamzLTYjvuO+cs/rwfqf2hwcZ2h3+fyd\nWBXD3cAj5vtHgHuWH6CUOqeUajXf9wADgLuWH3MgbshMahsI0VjuzuDbWjg9ZXUgOEtodsG1rowr\nUe+CGE/7YAgR98Z3YlUMFUqpXvN9H1BxpYNF5CCQAbRHbf4b08X0kIhkxihPymA98E4etbYNhDxT\no2c5DWW5XBqZYmbemUuUW+m0bls5bD0EMtPYkp/leMVQXZhNdobfblE2xZqKQUSeFZGTK7zujj5O\nGc7uVR3eIlIJ/C/g95RSVtToU8Au4HqgGPjkFc5/QEQOi8jhwcHBtf8zj1NVkE12ut+xD0dwZp7e\n8RkaK7zXMYFhsUWUMVfAibT2G9V3mzza/o3lAUdby25P015TMSilbldKXbXC6wmg3+zwrY5/YKXv\nEJF84D+ATyulXon67l5lMAt8Azh4BTkeVko1K6Way8q0J8rnE2M1N4cqhjaPVfVczmU/tzPbv3Ug\nREF2OmUBbxrhjeUBWh2afBGJKNoH3B3fidWV9CRwv/n+fuCJ5QeISAbwA+BbSqnvLdtnKRXBiE+c\njFGelMLKTHIillxNFXk2S5IYrPUNnNr+rQMhmsoDGI+W92iqCDA1F6ZnfMZuUd5E99g00/NhdrjY\nWotVMXweeKeItAK3m58RkWYR+ap5zIeAW4HfXSEt9dsicgI4AZQCfx2jPClFQ1nAuAnnnOfnbhsI\nkZHmo8bly3muRk5GGjXF2bQOOHPBpLaBkGfdSABN5caAw3KZOQnrnnBz+8c080UpNQy8Y4Xth4E/\nMN//G/Bvq5x/WyzXT3WaKgIoZfgzr6ousFucJbQOGMt5pvm9O4eyqTyP1n7nWQzDoVlGJudoLPem\ntQbQVH7Zlfe2neU2S7MU655oLHNv+3v3qU0BrIfDiaNWK1XVyzRVBOgYCjmu/HmrFd/xcPsX5WZQ\nGshwpGJuHQhRnue+5Tyj0YrBxdSV5pLuF8457OGwygF4uWMCw2KYDysujDgrM8lSDE0eb38jAO28\nQVFrf9DVbiTQisHVpPt9bC/NdZyftX0whFKX/cBeZdFic1r7D4TIzfBTWeCtGefLaSrPc1xmklLK\nDPy7+97XisHlWA+Hk2hLAVcGXP7/nObOaB0I0liR59mMJIumigDBmQUGgrN2i7JIz/gMU3NhbTFo\n7KWpIsDFkSlHZSa19ofw+4S60hy7RUkouZlpVBdmO04xt/aHPO9GAmcq5sWJhdpi0NjJjoq8xcwk\np9A2EKK2JIfMNHeWA9gIOyoCjlIM41PzDARnU0IxLKasOijO0OaR+I5WDC7HmkRzzkF+7taBoGdn\nPC+nqSKP9sEQ4Ygz/Nxtg+7PoV8vpYEMCnPSHZV80dofojSQQVFuht2ixIRWDC6ntsTITHLKqHVu\nIULn8FRKdExguDPmFiJcdEhmkuVWcbsrYz2ICE3lAdocZDGcGwh6ou21YnA5TstMujA8STiiPB94\ntthR4awZuK0uXoB+MzSW53Gu3xmZSUop2vq9MeNcKwYP0FSR5xhz+nIOvftHTethMQDqEIutdcCo\n6unFNTBWoqncWLBqKGT/glX9E7MEZxdcH18ArRg8wY7yPC6NOiMz6fI6AO5coGSjBKzMJIdYDG39\nQU90TOvFGp07IQBtyeCFUiRaMXiA6JpJdtPSF6SmOJucDG8tQH8lrBLQdhOcmadnfMazFW1XwrJM\nnVDldjG+o11JGifgpMyks30T7NqSb7cYScUIgNqfmWSt5ufmdQA2SkV+JnmZaY6Yy9A6EKQ4N4NS\nD6yBoRWDB7Ayk+yOM8zMhzk/NMnuLakzYgUjAD27EKFr1N7MpJa+CQB2pVD7iwiNFQFHDIpa+71T\nOFIrBg9gZSbZnbbXNhAiomBXZWpZDNbypXaPWs/0BsnJ8LOt2Nszzpeza0s+Z/uCtmYmWTWStGLQ\nOAonZCad6TVGrDtTaMQKl2e5ttg8aj3bN8HOLXkpk5Fksbsyj/Hpefom7FvNrXd8hvHpec9YyzEp\nBhEpFpFnRKTV/Fu0ynHhqNXbnozavl1EXhWRNhF5zFwGVLMJnJCZdLYvSGaaj7qS1MhIssjLSmdr\nUfaiYrQDpRRneoMpF98BFv/ns732KWbrt9/tEWs5VovhQeA5pVQT8Jz5eSWmlVIHzNddUdu/ADyk\nlGoERoGPxihPyrJzi5GZZKevtaUvyI6KPPwpNmIFo0OwUzH0TZgj1kpvjFg3wi7zfz5tY/tbv71X\n3KixKoa7gUfM948A96z3RDFqAt8GfG8z52uWYo1U7OycjIyk1OuYwGj/80OTzMzbY7FZo+VUtBjy\ns9KpLszmbJ+NFkNfkG3FOQQyvZGmHatiqFBK9Zrv+4CKVY7LEpHDIvKKiFidfwkwppRaMD93AdUx\nypOy1BQZN6Vdo6bB4CxDoTnPjJg2yp7KPCLKsJrs4ExfasZ3LOy22M70emtQtKZ6E5FngS0r7Pp0\n9AellBKR1dICapVS3SJSD/xMRE4A4xsRVEQeAB4A2LZt20ZOTQl8PmF3ZR6ne+x5OKwO0UsPx0aI\nttj21xQm/fpne4NUF2ZTkO3edYZjYXdlHj8728/MfJis9OSWe5+eC9M5NMn7r65K6nUTyZoWg1Lq\ndqXUVSu8ngD6RaQSwPw7sMp3dJt/O4AXgGuAYaBQRCzltBXovoIcDyulmpVSzWVlZRv4F1OH3ZVG\n2l7EholWZ1Mwhz6amqIccjP8to1az/ZNpGR8wWLXlnwiyp4Z0C39QSLKO4FniN2V9CRwv/n+fuCJ\n5QeISJGIZJrvS4G3AqeVkXT8PPCBK52vWT97KvMJzS5wyYaJVmf7gpQGMinxwKzPzeDzCbsq8zlj\nQ2bM7EKY9sHJlIwvWOy2MQBtDQb2aMWwyOeBd4pIK3C7+RkRaRaRr5rH7AYOi8gxDEXweaXUaXPf\nJ4FPiEgbRszhazHKk9LsqTJuTDvcSak+YgWjczrTN5H0iVat/UY5jl0p3P61JblkpftsSVk92ztB\nboafrUXeKXUeUwhdKTUMvGOF7YeBPzDfvwTsW+X8DuBgLDJoLrOjIg+fGCOYd++rTNp1F8IRWvtD\nfOSm2qRd04nsrszn3165SNfoNDVJnH18ti91M5Is/D5h5xZ7AtBneoPsqsz31MRCPfPZQ2Sl+2ko\nCyTdnO4cnmJ2IcLOFO6YwL6U4bO9E+bEwtQqhbGc3VvyOJtki00pxRkPWstaMXiMPVXJ93OnekaS\nxa4teYiQ9PY/a04sTPOn9uO8a0seo1PzDARnk3bNrtFpgjMLngo8g1YMnmN3ZT7dY9OMTSVvRauz\nfRP4feKZAmKbJScjjbqS3ORbDB4csW4Gq3NOpsW8OOPZY9ayVgweY48ND8epngnqS3OTnj/uRKwA\ndLJYnFjosY5pM9hRM+lsXxAR71nLWjF4jMt+7uQ8HEopjneNcfXW5E/qciK7t+RzYXiK0OzC2gfH\ngcsjVm91TJuhIMcqjZFci6G2OIdcj5TCsNCKwWOU5WVSlpeZtJTVnvEZhkJz7K8pSMr1nI6lmFuS\n1Dmd6DYKCOyt0u0PhoI8lcR07TO9E56LL4BWDJ5kT2V+0lxJJ7rGANhXrTsmgN3WXJIkWWzHLo1R\nX5pLQU5qlsJYztVbC2kfDBGcmU/4tYIz81wYmfKkG08rBg+ypyqftoEgcwuRhF/rWNc4aT7x5Khp\nM1QVZFGUk87Jrg2VAts0x7rGbKnN5FT21xSg1GVLKpGc6BpHKTxpLWvF4EH2VOYzH1ZJWZvheNcY\nuyrzdODZREQ4UFPIkUujCb9W3/gM/ROzXL3Vex3TZjlgKsljlxKvGI5cGltyTS+hFYMH2W8Ggo+Z\nbp5EEYkojneN68DzMg7UFNE6kHh3xlGzY9IWw2UKczKoK8nhaBIU89FLY2wvzaUwx3sLT2rF4EFq\nirMpyc3gjQuJVQydw5MEZxbYr0esS7hmWyFKwfEEu5OOdY2R5hNPFW+LB/trChNuMSilOHppzJPW\nAmjF4ElEhGu2FSXcnWF1fNpiWIo1grdG9InieNcYuyvztRtvGfu3FtI3MUPf+EzCrtEzPsNgcFYr\nBo27uGZbIR2DkwmdAX28a5ysdB9NKT7jeTkF2enUl+Vy5GLiFEMkojh+adyTgc9YObAt8a7Uoxe9\nG18ArRg8y7XbioDLAbJEcLxrjL1VBSlfo2clrqkp4uil0YQVdOsYmiQ4u7AYT9JcZk9lPmk+4VgC\n7/1jXWNkpPk8m42nn2iPcvXWAnwCRy4kxp20EI5wsmdcZ8SswoFthQyF5uganU7I9x/TgedVyUr3\ns7syP6GuvKMXx9hblU9Gmje7UG/+VxpyM9PYtSU/YRZD60CImfmIHrGuwjVmh52o9j/eNUZuhlFm\nXfNmDtQUcrxrPCHL3C6EI5zoHvf0vR+TYhCRYhF5RkRazb9FKxzzdhE5GvWaEZF7zH3fFJHzUfsO\nxCKPZinXbCvk6MWxhDwcx03/rbYYVmbnljyy0n2Lvuh4c7RrnH1bC/B7aHGYeLK/ppDQ7AIdQ/Ff\nA7qlP8j0fJhrtmnFsBoPAs8ppZqA58zPS1BKPa+UOqCUOgDcBkwBP4065C+s/UqpozHKo4ni2m1F\nBGcXaBuM/8NxrGucvCyjzLTmzaT7feyrLkhIPv3sQpgzPRPajXQFDphB+aMJSFs96uGJbRaxKoa7\ngUfM948A96xx/AeA/1RKJX+1+hTEGtEcuRj/zun1zlEO1BR6ajnDeHOgppCTPRNxL01ytjfIXDjC\nAQ+7MmKlvjRAXmZaQhTz0YtjFOdmsC2Jy7cmm1gVQ4VSqtd83wdUrHH8vcCjy7b9jYgcF5GHRCRz\ntRNF5AEROSwihwcHB2MQOXUwZmWmx32i22Bwlpb+IG9pKI3r93qNa7YVMbcQifvCPW+Yil5bDKvj\n8wlX1xQkJAB9rGuM/VsLEPHuoGhNxSAiz4rIyRVed0cfp4y8vFWd2SJSCewDno7a/ClgF3A9UAx8\ncrXzlVIPK6WalVLNZWVla4mtwZzoloC6Pa90DAPwloaSuH6v1ziQoIluL7YNU1uSQ1Vhdly/12tc\nV1vM6Z4JxqfjV5pkYmae1oEQB2reFE71FGsqBqXU7Uqpq1Z4PQH0mx2+1fEPXOGrPgT8QCm1+Csp\npXqVwSzwDeBgbP+OZjnXbjPq9kzEsW7PS+3D5GWlsbfKmznc8aKyIIst+Vm8dn4kbt+5EI7wSscw\nb23U1tpa3NxYSkRdHsjEg1fah1EKbqgvjtt3OpFYXUlPAveb7+8HnrjCsfexzI0UpVQEIz5xMkZ5\nNMu4ZlsRSsHrcZzP8HL7EDdsL9ET29ZARLi5qZRftQ0RjlNm2LGucUKzC9ysFcOaHKgpJCfDz69a\nh+L2nb9sHSInw784gdSrxPpkfx54p4i0ArebnxGRZhH5qnWQiNQBNcDPl53/bRE5AZwASoG/jlEe\nzTKa64rITPPxi3Pxict0j03TOTyl3Ujr5JamUsan5+O2PsCLbUOIwE31uv3XIiPNx431JfyqLZ6K\nYZCb6ks8O7HNIqb/Tik1rJR6h1KqyXQ5jZjbDyul/iDquE6lVLVSKrLs/NuUUvtM19RvK6Xin1eZ\n4mSl+7mxvoSft8RHMbzcbpjlN2nFsC5uaSpDhLgp5l+1DXFVVQFFud4r9ZwI3tpYyvmhSbpGY0+E\nvDQyRefwFDc3ed9a87ba0wDwtp1ldAxNcnE49ofjpfYhinMz2FmhF59fD8W5GeyrLoiLYpicXeDI\nxVHe0qiV8nq5xezEX4yD1fBL0yV1S5P3k1+0YkgB3razHICfn7tSbsDaKKV4uX2Ym+pL9PyFDXBL\nUylHLo3FnADwWucI82Gl4wsboKk8QHleJr9qiz0A/cvWQaoKsmgo8/6kTq0YUoC6khy2FefwQozu\npM7hKXrHZ7QbaYPc2lRGOKJ4KcbO6cXWITLSfFxf5+2MmHgiItzcWMqLbUMxlYZZCEd4sW3IdA16\nf1CkFUMKICK8bWcZL7UPMzMf3vT3vNRumNI68Lwxrq0tIpCZxi9aY1PML7YP01xbpBfm2SA3N5Uy\nMjnH6RgmGh7vHmdiZoFbdqSGtaYVQ4rwtp1lTM+HOdS5+Zz6l9qG2ZKfxfZS75vS8STd7+OmhhJ+\ncW5w0+szDIVmOdM7oecvbAKrzWKJM/zynJEN9tYUme2vFUOKcFN9KRlpvk27k6bmFni+ZYD/bUdq\nmNLx5tamUrpGjVTfzWB1aloxbJyK/Cx2VARiSlv9Zesg+6pTJxtMK4YUITvDzw3bi3mhZXMB6GdO\n9zM1F+aea6rjLFlqcOsOI5Nls9lJPz7eS2kgk33Vusz5ZrilqYxXz49sqjzGxMw8Ry6NLWY4pQJa\nMaQQb9tZTvvgJJdGNj5q/f4b3VQXZnPDdh343Ay1JbnUleTw9Km+DZ87FJrl+bMD/Pq11Xr9hU1y\n94Eq5hYiPHmsZ8Pn/sfxXsIRxTt2r1Uj1DtoxZBC3LbLSFv98fHeNY5cykBwhl+2DnL3gSqdphoD\nH7huKy+1D3N+aHJD5/3wSDcLEcUHr9uaIMm8z77qAnZtyePxQ5c2fO6jr11kZ0Xe4qp8qYBWDCnE\n9tJcbqwv5t9eubCh2j1PHu0houDXtBspJj7UXEOaT3j0tYvrPkcpxfde72J/TSFNelLhphERPnx9\nDSe6xznds/7spJPd4xzvGue+gzUpFVvTiiHF+N231NE9Ns2zZ/rXfc4Pj3ZzVXW+7phipDw/i3fu\nqeC7hy+tO234ZPcEZ/uC2lqIA/ccqCbD7+Pxw+u3Gr5z6CKZaT5+7ZrUan+tGFKM23dXUF2YzTdf\n7FzX8a39QU52T6Tcg5EofuuGWkan5vnJyfXFGr77+iUy03y8f39VgiXzPkW5Gdyxt4IfHOlel2Ke\nmlvgh0d6eO++Sgpy0pMgoXPQiiHFSPP7+O0ba3m5Y5iWvuCax3//SDd+n3CX7pjiwlsaSqgryeHb\nr15Y89iZ+TBPHO3hXXu3UJCdWh1Tovjw9TWMT8/z09NrW8w/Pt5LaHaB+27YlgTJnIVWDCnIvdfX\nkJnm45GXO6943OjkHI8fusQtTaWU5a266qpmA/h8wm/esI1DnaNrKuZnTvczPj3PB5u1tRYv3tpQ\nSnVh9rqC0I++dpHG8gDNtd5ee2EltGJIQYpyM7jnQDU/eKOb8anV87r/6senGZ+e5y/etTOJ0nmf\nD1xXQ4bfxzdfOr/qMeNT8/ztU2eoL83Va2vHEZ/PCEL/qm2In19hTsmrHcMcuTjGfQe3pVTQ2SIm\nxSAiHxSRUyISEZHmKxx3p4i0iEibiDwYtX27iLxqbn9MRFJjWqEDuP8tdUzPh/mbp06vWKbhZ2f7\n+f6Rbv74bQ3srdKTquJJcW4Gv3nDNh597RI/WiGvXinFf/3hCQaCszz04QN67kKc+cNb6tlZkccn\nHjtK/8TMm/YPTMzw8UePUFeSw4dS1FqL1WI4Cfw68IvVDhARP/Al4N3AHuA+Edlj7v4C8JBSqhEY\nBT4aozyadbKnKp//87ZGHj/cxRd+0rJk38TMPP/1+yfZURHgY7c12iSht/nUe3ZxfV0Rf/7dYxzv\nGluy77uvd/Efx3v5xB072J9CufPJIjvDz5d+6xqm5sL8yaNHWAhfXj9sbiHC//HtN5icXeArv9NM\nXlZqxnZiXcHtjFKqZY3DDgJtSqkOpdQc8B3gbnOd59uA75nHPYKx7rMmSXzinTv4nRtr+fLP2/ny\nz9uZmlvgpfYh/u/HjzEQnOHvPrCfzDRdyTMRZKb5+Zffvo7SQCZ/+K3DXBye4tLIFL84N8hnnzzF\njfXF/O+3NtgtpmdpLM/jr++5ilfPj/DFp1s4PzRJ3/gMn/vxKV6/MMrffeBqdm5J3fTstCRcoxqI\njvR0ATcAJcCYUmoharueQZVERIT/9669jE3P8/n/PMsXn25ZnPj2Z7fv4IAerSaU0kAm//qRZj7w\n5Ze49YvPL24vzEnXLqQk8BvXbeXljmG+8osOvvKLjsXtD9xaz/uuTu0svDUVg4g8C2xZYdenlVJP\nxF+kVeV4AHgAYNu21EsfSxQ+n/D3H9zP9tJcIhHFdbVFXLutKOXytu1iT1U+j/7hjbzYPkRpIJPy\nvEz2VhXoLLAk8be/vo/37NvCxPQC0/NhcjL8vHdfpd1i2c6aikEpdXuM1+gGaqI+bzW3DQOFIpJm\nWg3W9tXkeBh4GKC5uXnzSzFp3kRGmo9PvHOH3WKkLPtrCnUswSbS/T5u25U6xfHWSzLSVQ8BTWYG\nUgZwL/CkMlJhngc+YB53P5A0C0Sj0Wg0KxNruuqviUgXcBPwHyLytLm9SkSeAjCtgY8DTwNngMeV\nUqfMr/gk8AkRacOIOXwtFnk0Go1GEzuy2aUG7aS5uVkdPnzYbjE0Go3GVYjI60qpVeecWeiZzxqN\nRqNZglYMGo1Go1mCVgwajUajWYJWDBqNRqNZglYMGo1Go1mCK7OSRGQQWHulk5UpBYbiKE680HJt\nDC3XxtBybQyvylWrlCpb6yBXKoZYEJHD60nXSjZaro2h5doYWq6NkepyaVeSRqPRaJagFYNGo9Fo\nlpCKiuFhuwVYBS3XxtBybQwt18ZIablSLsag0Wg0miuTihaDRqPRaK6AZxWDiNwpIi0i0iYiD66w\nP1NEHjP3vyoidUmQqUZEnheR0yJySkT+rxWOeZuIjIvIUfP1mUTLZV63U0ROmNd8U4VCMfhHs72O\ni6UUPHIAAASNSURBVMi1SZBpZ1Q7HBWRCRH502XHJKW9ROTrIjIgIiejthWLyDMi0mr+LVrl3PvN\nY1pF5P4kyPVFETlr/k4/EJEVF3tY6zdPgFyfFZHuqN/qPauce8VnNwFyPRYlU6eIHF3l3ES214p9\ng233mFLKcy/AD7QD9UAGcAzYs+yYPwa+bL6/F3gsCXJVAtea7/OAcyvI9Tbgxza0WSdQeoX97wH+\nExDgRuBVG37TPow87KS3F3ArcC1wMmrb3wEPmu8fBL6wwnnFQIf5t8h8X5Rgue4A0sz3X1hJrvX8\n5gmQ67PAn6/jd77isxtvuZbt/3vgMza014p9g133mFcthoNAm1KqQyk1B3wHuHvZMXcDj5jvvwe8\nQ0QSusiuUqpXKfWG+T6IsT6FW9a5vhv4ljJ4BWP1vWSugfgOoF0ptdmJjTGhlPoFMLJsc/Q99Ahw\nzwqnvgt4Rik1opQaBZ4B7kykXEqpn6rLa6m/grE6YlJZpb3Ww3qe3YTIZT7/HwIejdf11ssV+gZb\n7jGvKoZq4FLU5y7e3AEvHmM+ROMYiwUlBdN1dQ3w6gq7bxKRYyLynyKyN0kiKeCnIvK6GOtrL2c9\nbZpI7mX1B9aO9gKoUEr1mu/7gJXWiLS73X4fw9JbibV+80TwcdPF9fVV3CJ2ttctQL9SqnWV/Ulp\nr2V9gy33mFcVg6MRkQDw78CfKqUmlu1+A8Ndsh/4J+CHSRLrZqXUtcC7gY+JyK1Juu6aiLEk7F3A\nd1fYbVd7LUEZNr2jUvxE5NPAAvDtVQ5J9m/+L0ADcADoxXDbOIn7uLK1kPD2ulLfkMx7zKuKoRuo\nifq81dy24jEikgYUAMOJFkxE0jF++G8rpb6/fL9SakIpFTLfPwWki0hpouVSSnWbfweAH2CY9NGs\np00TxbuBN5RS/ct32NVeJv2WO838O7DCMba0m4j8LvA+4LfMDuVNrOM3jytKqX6lVFgpFQH+dZXr\n2dVeacCvA4+tdkyi22uVvsGWe8yriuEQ0CQi283R5r3Ak8uOeRKwovcfAH622gMUL0wf5teAM0qp\n/7HKMVusWIeIHMT4jRKqsEQkV0TyrPcYwcuTyw57EviIGNwIjEeZuIlm1ZGcHe0VRfQ9dD/wxArH\nPA3cISJFpuvkDnNbwhCRO4H/AtyllJpa5Zj1/Obxlis6JvVrq1xvPc9uIrgdOKuU6lppZ6Lb6wp9\ngz33WCIi7E54YWTRnMPIcPi0ue1zGA8LQBaGa6INeA2oT4JMN2OYgseBo+brPcAfAX9kHvNx4BRG\nNsYrwFuSIFe9eb1j5rWt9oqWS4Avme15AmhO0u+Yi9HRF0RtS3p7YSimXmAew4f7UYyY1HNAK/As\nUGwe2wx8Nerc3zfvszbg95IgVxuGz9m6x6zsuyrgqSv95gmW63+Z985xjA6vcrlc5uc3PbuJlMvc\n/k3rnoo6NpnttVrfYMs9pmc+azQajWYJXnUlaTQajWaTaMWg0Wg0miVoxaDRaDSaJWjFoNFoNJol\naMWg0Wg0miVoxaDRaDSaJWjFoNFoNJolaMWg0Wg0miX8/zB11YJATPPHAAAAAElFTkSuQmCC\n",
20 | "text/plain": [
21 | ""
22 | ]
23 | },
24 | "metadata": {},
25 | "output_type": "display_data"
26 | }
27 | ],
28 | "source": [
29 | "import matplotlib.pyplot as plt\n",
30 | "import numpy as np\n",
31 | "\n",
32 | "x = np.linspace(0, 20, 100)\n",
33 | "plt.plot(x, np.sin(x))\n",
34 | "plt.show()\n"
35 | ]
36 | }
37 | ],
38 | "metadata": {
39 | "anaconda-cloud": {},
40 | "kernelspec": {
41 | "display_name": "Python 3",
42 | "language": "python",
43 | "name": "python3"
44 | },
45 | "language_info": {
46 | "codemirror_mode": {
47 | "name": "ipython",
48 | "version": 3
49 | },
50 | "file_extension": ".py",
51 | "mimetype": "text/x-python",
52 | "name": "python",
53 | "nbconvert_exporter": "python",
54 | "pygments_lexer": "ipython3",
55 | "version": "3.6.1"
56 | }
57 | },
58 | "nbformat": 4,
59 | "nbformat_minor": 1
60 | }
61 |
--------------------------------------------------------------------------------
/examples/.ipynb_checkpoints/plot-checkpoint.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "cells": [
3 | {
4 | "cell_type": "markdown",
5 | "metadata": {},
6 | "source": [
7 | "## Matplot example\n",
8 | "\n",
9 | "** Run the cell below to import some packages and show a line plot **"
10 | ]
11 | },
12 | {
13 | "cell_type": "code",
14 | "execution_count": 1,
15 | "metadata": {},
16 | "outputs": [
17 | {
18 | "data": {
19 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYYAAAD8CAYAAABzTgP2AAAABHNCSVQICAgIfAhkiAAAAAlwSFlz\nAAALEgAACxIB0t1+/AAAIABJREFUeJztvXl4ZNV16PtbVZpVmqeW1GqpNfRI0w2IBmzg2RhjPAFJ\nPEAGk8QJLy/2y0v8kmt8/a7j5yRf7Pjmkpt8TmziCd/4YbBjG+wQY8DggbEbeh7UGlrdrXmWqjSr\nar8/zjnqkpBaQw1nqP37vvpUdYY6S7vO2WuvYa8tSik0Go1Go7Hw2S2ARqPRaJyFVgwajUajWYJW\nDBqNRqNZglYMGo1Go1mCVgwajUajWYJWDBqNRqNZglYMGo1Go1mCVgwajUajWYJWDBqNRqNZQprd\nAmyG0tJSVVdXZ7cYGo1G4ypef/31IaVU2VrHuVIx1NXVcfjwYbvF0Gg0GlchIhfWc5x2JWk0Go1m\nCVoxaDQajWYJWjFoNBqNZglaMWg0Go1mCVoxaDQajWYJcVEMIvJ1ERkQkZOr7BcR+UcRaROR4yJy\nbdS++0Wk1XzdHw95NBqNRrN54mUxfBO48wr73w00ma8HgH8BEJFi4C+BG4CDwF+KSFGcZNJoNBrN\nJoiLYlBK/QIYucIhdwPfUgavAIUiUgm8C3hGKTWilBoFnuHKCsbRjE3N8ePjPUzMzNstSsoRjih+\ncrKX1y9c6TbUJIrTPRM8+tpF5sMRu0XRxIFkTXCrBi5Ffe4yt622/U2IyAMY1gbbtm1LjJSb5NnT\n/Tx++BLPtwwwH1bsqcznWx89SGkg027RPM9COMKPjvfwTz9ro2NwEr9P+G/v3c39b6lDROwWz/NM\nzi7wD8+e4+svdhKOKB597SJ//8H9NFXk2S2aJgZcE3xWSj2slGpWSjWXla05oztpPHmshz/41mGO\nXBrj/pvq+MJv7KNjKMSHv/IyvePTdovnacIRxb0Pv8KfPXaMDL+P/3nvAd6+s5zP/ug0n/z348wu\nhO0W0dMcuTjKHQ/9gn/95Xk+1FzDQx/eT9foNO/9p1/xtV+dt1s8TQwky2LoBmqiPm81t3UDb1u2\n/YUkyRQzwZl5/vrHp9lXXcAP/vgtpPkNPbu9NMDvf/MQH/zyy3zngRvZWpRjs6Te5LuHL3H4wiif\nff8ePnJTHT6f8P6rq/iHZ8/xjz9rY3x6nq/8TrPdYnqScETxF987jlKK7/7RTVxfVwzAzY1lPPjv\nx/mrH59mT2U+NzWU2CypZjMky2J4EviImZ10IzCulOoFngbuEJEiM+h8h7nNFfzPZ1sZDM3yV/dc\ntagUAA5uL+b/+8MbGJ2c44tPt9gooXcJzS7w3396jutqi7j/LYZSAPD5hE/csZM/vb2Jp0/1c6Jr\n3GZJvckPj3TTNhDiv71vz6JSACjLy+RLv3Ut5XmZPPTsOZRSNkqp2SzxSld9FHgZ2CkiXSLyURH5\nIxH5I/OQp4AOoA34V+CPAZRSI8BfAYfM1+fMbY7nbN8E33ipk3uv38aBmsI37b96ayH3HdzGj4/3\n0jOmXUrx5is/b2coNMv/897dK8YSfv/m7eRlpfHPL7TZIJ23mVuI8NCz59hXXcCdV2150/6sdD8f\ne3sjr50f4cW2YRsk1MRKvLKS7lNKVSql0pVSW5VSX1NKfVkp9WVzv1JKfUwp1aCU2qeUOhx17teV\nUo3m6xvxkCfRKKX4zA9PkZ+Vxn95185Vj/u9m7cD8I0Xtb81nvSMTfPwLzq4a38V12xbObs5Pyud\n+2+q4yen+mgbCCZZQm/z2KGLdI1O8+fv2rlqgP/egzVUFmTxP55p0VaDC3FN8NlJvHBukNc6R/jk\nnbsoys1Y9bjqwmzeu6+SR1+7pFNY48h/f7oFBfyXO1dXymBYDVlpfv75hfbkCJYCTM+F+ceftXFw\nezG3NpWuelxmmp+P39bIGxfHeOHcYBIl1MQDrRg2wRNHuinITufXr9265rF/eEs9odkFHnvt0prH\natZmMDjLD49285Eba9cM6hfnZnDfwW08cbSHSyNTSZLQ23zr5U4Gg7P8xRWsBYsPXlfD1qJsHnpG\nxxriQSSiiESS045aMWyQ6bkwPz3dz3v2bSEjbe3m27e1gBvri/nGi+f15J848JNTfUQUfKB5baUM\n8MCt9fgEvvxzbTXEg+++3sXBuuIlAefVyEjz8bG3N3K8a5w3Lo4lQTpv86u2IW782+c42zeR8Gtp\nxbBBnjvbz9RcmPfvr1r3OQ/cWk/P+AxPnehNoGSpwVPHe6kvy2XnOidQbSnI4q791TxxtIe5Ba2Y\nY6FtIEjbQIj3Xl257nPee3Ul6X7hp6f6EihZavDM6X6CMwvUleQm/FpaMWyQJ4/2UJ6XyQ3b15+f\n/bYd5VQXZvOjYz0JlMz7DAZnefX8MO/bV7mhWc3vvmoLodkFXj2vM2Ri4elT/QDcsbdi3efkZ6Vz\nU0MpT5/q0+6kGFBK8eyZfm5pKiUr3Z/w62nFsAHGp+d5oWWQ911dhd+3/o7J5xNu313Or9qGmJnX\ns3E3i+VGes8GRqwAb20sJSvdx7On+xMkWWrwk5N9HKgppLIge0PnvWtvBZ3DU5zrDyVIMu9zsnuC\n3vEZ3rln/Uo5FrRi2ABPn+pjLhzhrgPrdyNZvH1XOTPzEV7u0KPWzfLU8V4aNuBGssjO8HNLUxnP\nnhnQo9ZN0jU6xYnucd69wryFtXjnngpEjOdHszmeOd2HT+Adu7VicBw/OtZDbUkO+7cWbPjcG+tL\nyE738/zZgQRI5n0sN9J7N+hGsnjn7gq6x6Y506vnNGwGy430rr0bVwzleVlcU1OoFUMM/PR0P821\nxRRfIT0+nmjFsE6GQrO81D7M+6+u2lTHlJXu562NpTynR62bYrNuJIu37ypHBJ49o91Jm+Hpk33s\n2pJHXenmAp/v2ruFUz0TOm14E1wameJsX3BDsZ1Y0YphnTx3pp9wRPG+/ZvrmABu21VO99g0rQPa\n17pRNutGsijLy+SamkKtGDbBYHCWQxdGVix/sV4sS+MZHefZMD812yxZ8QXQimHdvNIxQmkgc9Md\nExiKAeBn2p20Ican5nn1/DDv2aQbyeL2PRUc7xqnb3wmjtJ5n5+e7kMpYlIMdaWGUtfupI3zzOk+\ndlQEqE1CmqqFVgzrQCnFy+3D3FhfHFPHtKUgiz2V+fzsjFYMG+FQ5wgRZWQXxcI7zcDdc2f1qHUj\nPHO6n9qSnJgGRWBkJx3qHGE4NBsnybzP2NQchzpHk2otgFYM6+LC8BR9EzPcWB97bfl37C7n9Yuj\njE/p2knr5bXOETL8vhWr2G6ExvIAtSU5Om11A4QjisOdo9zcWBrzini37a4gotCZeRvghZZBwhHF\nO/ds3lrbDFoxrINXzBs5Horh7bvKCUcUP2/VhcXWy6sdwxyoKYx5Yo+I8Pad5bzUPqxnQa+TM70T\nhGYXOLh97RIYa7G3Kp/sdD+HO0fjIFlq8Or5YfKz0ri6euOZkLGgFcM6eKVjmNJAJg1lsfv49m8t\npDg3g5+3aMWwHkKzC5zsmeCG+tg7JjAWUZpdiHCqRy/gsx5eO28sj7Ke2khrke73cW1t4eJ3atbm\nUOco19UWLS5ElSzitVDPnSLSIiJtIvLgCvsfEpGj5uuciIxF7QtH7XsyHvLEE6UUr3SMxBxfsPD7\nhObaIt64qEdN6+H1C6OEIyouI1aA5tqixe/VrM2hzhGqC7OpKtzYbOfVaK4t5mzfhC5Dvw5GJ+do\nGwjRHAelvFFiVgwi4ge+BLwb2APcJyJ7oo9RSv2ZUuqAUuoA8E/A96N2T1v7lFJ3xSpPvIlnfMHi\nutoizg9N6iDcOni1Y5g0n3Bd7coL8myU8vwsaoqztTtjHSilONQ5EjelDIbFFlFwRFdbXRNr8NIc\np3t/I8TDYjgItCmlOpRSc8B3gLuvcPx9wKNxuG5SsAJl8VzU/Frzh9aliNfmtfMjXFVdQE5GWty+\ns7m2mMMXRvVEwzU4PzTJUGguLm4kiwM1hfh9wiHtTlqTQxdGSPcL+2NMutgM8VAM1UD0KjRd5rY3\nISK1wHbgZ1Gbs0TksIi8IiL3xEGeuPJKxzBleZnUb3LG50rsqy4g3S/anbQG03NhjnWNxS2+YHFd\nbRFDoVku6lm4V+RQp9F5H9wevxFrbmYae6vyF79bszqHO0fZV12QlGqqy0l28Ple4HtKqegSo7VK\nqWbgN4F/EJGGlU4UkQdMBXJ4cDA5gVsjvjDMjfUlcYkvWGSl+9lbVaD93Gtw5NIo82HFjRsocb4e\nmuuMjk67k67Ma+dHKc7NoKEsENfvvb6umKOXxphd0JWGV2NmPsyJrnFb4gsQH8XQDdREfd5qbluJ\ne1nmRlJKdZt/O4AXgGtWOlEp9bBSqlkp1VxWVharzOuic3iK/olZbozziBWMUeuxS2N6Vbcr8GrH\nCD6B6+ri62PdUZ5HXlYah7ViviKHOke4vq4oroMigOvriphdiHCyO/ErkbmVE93jzIUjtsQXID6K\n4RDQJCLbRSQDo/N/U3aRiOwCioCXo7YViUim+b4UeCtwOg4yxYVXzfjCRhblWS/XbjMejtM9+uFY\njVfPD7OnKp/8rPS4fq/PJ1y7rYjXL2h3xmr0T8xwcWQqrvEFC2sUrN1Jq2NZs/FKutgoMSsGpdQC\n8HHgaeAM8LhS6pSIfE5EorOM7gW+o5ZG/HYDh0XkGPA88HmllGMUw7GucfKz0uIyf2E519YaASUd\nZ1iZ2YUwRy6OcbAu/koZjEyPc/0hxqbmEvL9bseaaxDPjCSL0oARszusFcOqHO4cob4sl5JApi3X\nj0uqh1LqKeCpZds+s+zzZ1c47yVgXzxkSAQnuse4emth3E1pgMqCbKoLs3n9wii/99btcf9+t3O2\nN8jsQmQxHhBvrFHrGxdHuW1XcuvQuIFDnSPkZvjZU5mfkO9vrivi6VP9RCIq6ZO3nE4kojh8YZQ7\nN7H2RbzQM59XYWY+TEtfkH2bWJRnvVyzrZA3tJ97RU50GzOT9yWoFMCBmkLSfKID0KtwuHOUa7YV\nkeZPTBdxfV0x49PzugT9CrQPhhifno97bG0jaMWwCi19QebDKmEdExj+w57xGXrGphN2Dbdysnuc\ngux0thbFZ8btcrIz/OytytcB6BWYXQhzrj/I1QkcFFlzeY5d0nN5lnPIHKwkIr6zXrRiWIVEj1jh\ncmBJxxnezInucfZVFyTEjWdxXW2xzgxbgZa+IAsRxVUJvPe3l+SSm+HnpK5Z9SaOd41RmJNOXUmO\nbTJoxbAKJ7rGKcpJ3IgVYHdlPlnpPj2fYRnWiDWRHRPAvq35zC5EaB/U7oxorDTSRA6KfD5hb1UB\np3RW3ps41TPB3qr8hA6K1kIrhlU43j3OvgQFni3S/T72VRdwokuPmqJJhhsP4Koq4/tP6Xz6JZzs\nMbLxEjkoAthTlc/pngnCEV2axGI+HKGlL7h4b9qFVgwrMDNv+liTUAN9b1UBZ3oniOiHY5FkuPEA\n6ssCZKX79Kh1Gae6x7kqwW48gKuqC5ieD3N+SFtsFq39IebCEfZUJSYbbL1oxbACp3uNUUwiM5Is\n9lTmMzkX5oKu27OIFXiuKU7siNXvE3ZtyddrM0QxH45wpi/xbjyAq6qNzk/PgL6MdS/u1RaD87Bc\nO4nMyrCwRgZ6BvRlkhF4tthblc/p3gldadWkbSDE3EKEvUkYsTaWBchM83GyWytmi1M9E+Rk+Nke\nx6Kdm0ErhhU43jVOaSCTLflZCb9WU0WANJ/oUavJ7IIxfyQZI1YwRmbBmQUujeiUYWCxk05G+6f5\nfeyqzNeZSVGc6hlnd2U+fpsn/WnFsAInu8e5emtyRqyZaX4aywOc7tUWA8C5vlBSAs8W1shYK2aD\nk93j5Gb42V6SnBHrVVX5nOrRFhsYM55P90xwlc3xBdCK4U1MzS3QOhBMWscEl7MzNMkLPFvs3JKH\n3yc6AG1ysmeCPVX5SStToS22y3QOTzI5F7Y9vgBaMbyJ0z0TRFTyOiYwHo6B4CyDQb3U54kkBZ4t\nstL9NJYFtMUAhM0RazI7psUAtG7/xcGJ3RlJoBXDmzhuBp6TkZFkYRUq0+4kw5VxVXVyJ/fsNd0Z\nqc75oRDT8+GkxXcAdlTkkeYTHYDGUI7pfmFHRZ7domjFsJwzvROUBjKoSELg2WJRMaR45zS3EElq\n4NliT1W+tthIzozn5WSl+2mqyONkit/7YDz/OyryyEizv1u2XwKH0dIfZOeW5GrsArP0Rqq7M1oH\ngsyFI0mf9Wm5TlK9/U92j5OZ5kvI+iNX4qqqfE51j6d0AFopxameCdtnPFtoxRBFOKI41x9kZ0Xy\nfXx7KvNT3pXU0hcEYHdlchXznsXMpNRu/xPdRqpkokptr8ZV1QUMT87RP5G6Flvv+Awjk3PsrbY/\nvgBxUgwicqeItIhIm4g8uML+3xWRQRE5ar7+IGrf/SLSar7uj4c8m+XiyBQz8xF2JdliAKNzOj80\nydTcQtKv7RRa+oJk+H3UJSlV0sIKdqeyK08pxZneCVsCn1bK8IkUjjNYg5JkTCxcDzErBhHxA18C\n3g3sAe4TkT0rHPqYUuqA+fqqeW4x8JfADcBB4C9FxLbVKVr6jB9nV5JHrGC4M5SCM73BpF/bKbT0\nB2koDyR9xAqwt7IgpV1J/ROzTMws2DIo2mXG2KznLxU51TOOiFFx2QnE4wk8CLQppTqUUnPAd4C7\n13nuu4BnlFIjSqlR4BngzjjItCnO9gURgaZyeywGSO3MpJa+oC0dExgjtc7hKYIz87Zc325a+o0B\niR0ZMYFMo5JrS3/qFtM72xukriSXnIy4rLYcM/FQDNXApajPXea25fyGiBwXke+JSM0Gz00KLX3G\nj5Od4U/6tasKsijITk9Zd8b49Dy94zNJD/xbWKPWVF1q0hqt77QpVXJnRR6t/alrLZ8bCLKjImC3\nGIsky2b/EVCnlLoawyp4ZKNfICIPiMhhETk8ODgYdwHBUAx2PRgiktIB6HNmp2BX+1sPZap2Ti19\nIcrzMinKzbDl+ju25NE+GErJ1fRm5sN0Dk3adu+vRDwUQzdQE/V5q7ltEaXUsFLKSjn4KnDdes+N\n+o6HlVLNSqnmsrKyOIi9lJn5MJ3Dk7aNWMEoz9DWH0zJtL2zZkaSXe1fU5RDVrqPlr7UtBjO2ZCm\nHc3Oijzmw4rOoUnbZLCL9sEQEWUoR6cQD8VwCGgSke0ikgHcCzwZfYCIVEZ9vAs4Y75/GrhDRIrM\noPMd5rak09pv/Dh2+bjBqLQ6ORemeyz16sac6wuSl5VGZUHyJhZG4/MJTeV5tA6knsUQjihaB4K2\nzrhtMi22lhS02FrN2IqnLAal1ALwcYwO/QzwuFLqlIh8TkTuMg/7ExE5JSLHgD8Bftc8dwT4Kwzl\ncgj4nLkt6ZyxfKw2KgbrwWxNwSCc5cazc53bHRV5i3MpUolLZpq2nR1TQ1kAnxgDhFSjpT9Iul+o\ns3kNhmjiEgJXSj0FPLVs22ei3n8K+NQq534d+Ho85IiFlr4gWek+apOcQx/NDjMb6lx/kLfvKrdN\njmSjlKKlP8h7r65c++AEsqMiwL+/0cXY1ByFOfb42u1gMSPJxkFRVrqfutLclLQYzvUFqS8NkG5D\nmvZqOEcSm2npC9JUnmfrAhkFOemU52VyLsUshv6JWcan521148Fliy3V2t8apTeV25sVs7MiL+Xa\nHsyMJAfFF0ArhkXO2phDH82OitTzc5813Xh2V5W0Hs5zKTZqbekPUlOcTW6mvTn0Oyry6ByeZGY+\nbKscyWRy1liLYofNSnk5WjEAw6FZhkKztsYXLJoqAkYgPJI6mUl2p6paVBVkEchMSz3FYGOadjQ7\nt+ShlLHudKpg/a/aYnAgVsBx1xb7p6PvqMhjej61MpPO9gVtzaG3EBGaKgIppRhmF8KcH7I3TdvC\nshhTKQGgxSGDouVoxYD9OfTRWBOtUqlzsjuHPpod5XkplRV2fmiShYiy3Y0HUFeSQ4bfl1r3fl+Q\nzDQfNcU5douyBK0YMDqm4twMyvIy7RaFxvLUCoCGI4rW/pAj4jtgmPTDk3MMhVKjBHSLgwZFaX4f\nDeWBlMpMOjcQoqkiYGvSy0poxYDh52t0SPCnIDudLflZKTNq6hyeZHYh4ogRK6SexXauP0iaT6gv\ndcb9v7MikFJzGc712TuxcDVSXjEopWh1kGIAUsrP3WpjVc+VsHy9qdI5tfSF2F6a64jlJMGw2HrG\nZ5hIgSq349Pz9E3MOObej8YZd4ONDIXmGJ+etz2HO5odFXm0DYQIp0BmkpWV4RTFXJaXSUF2OudS\nJDPmXL+zcuh3Ls7+975ibnVo4Bm0YnBcxwSGO2N2IcKlkSm7RUk4bQMhqgqybM+htxARY6JVClgM\n03NhLo1OLc64dwKXM5O8r5idMON8NbRiGHSeYmiqSJ2JVm2DIRoc1PZw2ZXn9Sq37YMhlHLWvV9d\nmE12uj8l5jKc6wsSyEyjyqbCkVdCK4Z+48fZku+cH8dya3l90ZhIRNE+MOmojgmMDJ2JmQXPL07f\n7sBBkc8nNJTnLg7YvIw1KLKzcORqaMXgwB8nLyud6sJsz1sMPePTTM+HHdUxATSWGfJ4fdTaPhDC\nJ1BX6qwc+oayAO0eb3swsyHLnHXvW6S8Ymjtd+aPY7gzvP1wLMZ3HNb+lqJq9/iotW0wxLbiHDLT\nkr+U7ZVoLAvQPTbN5OyC3aIkjImZefonZh03KLJIacUwMTPPQNCZP05jWYCOQW/XTHJi4B+MzKS8\nzDTPWwxOmr8TjSXTeQ+v5tYxaPxvDWXOWYMhmpRWDNaD76RUVYuGciMzycs1k9oHQxTlpFMSsH/G\neTQiQkN5wNMWw0I4wvmhSccF/uGyYvCyYnbqoMgiLopBRO4UkRYRaRORB1fY/wkROS0ix0XkORGp\njdoXFpGj5uvJ5ecmkrZ+5/44iw+Hhzsnp45YwfBze7ljujgyxXxYOc6NB1BbkovfJ55u/7aBEOl+\nYZvDaiRZxKwYRMQPfAl4N7AHuE9E9iw77AjQrJS6Gvge8HdR+6aVUgfM110kkbbBEBkOLGAFRscE\neDoI52TF0FgeYCA469kZuO2mK8OJ7Z+R5qO2OMfTFlv7YIi6klzSHLRqWzTxkOog0KaU6lBKzQHf\nAe6OPkAp9bxSypqt9QqwNQ7XjZm2gRD1pbmOK2AFUJybQXFuhmcfjuHQLKNT84tFA53GYgDao4rZ\nGo070ZUEhlxethjaHTwogvgohmrgUtTnLnPbanwU+M+oz1kiclhEXhGRe1Y7SUQeMI87PDg4GJvE\nJq0DQUf/OA1lubQPeDMA53QfqxUU9Grn1DYQojwvk/ysdLtFWZHG8gCdw5MshCN2ixJ35hYiXBiZ\nWvQKOJGk2jEi8ttAM/DFqM21Sqlm4DeBfxCRhpXOVUo9rJRqVko1l5WVxSzLzHyYrtFpx3ZMYOZz\ne9RicOKM82i2FeeQ7pdFl4vXaBt09oi1oSzAfFhxwYNlYS4MTxKOKEe3fzwUQzdQE/V5q7ltCSJy\nO/Bp4C6l1OKUUqVUt/m3A3gBuCYOMq2JE8sBLKexPMDw5Byjk3N2ixJ32gZC5GT4HVkOAIy1AepK\ncj1pMSilHO/K8LIrz+nWMsRHMRwCmkRku4hkAPcCS7KLROQa4CsYSmEganuRiGSa70uBtwKn4yDT\nmlxOVXWmjxuiAtAetBraBkI0lDlrxvlyGsuNuSReYyA4S2h2wdEd06Irz4Ptb/U99Q6dwwBxUAxK\nqQXg48DTwBngcaXUKRH5nIhYWUZfBALAd5elpe4GDovIMeB54PNKqaQpBieWA4jG64rByR0TGO1/\nYWSKuQVv+bmdOuM8mrwsY8EqL1ps7YMhqguzyclwRkXhlYiLZEqpp4Cnlm37TNT721c57yVgXzxk\n2ChtAyFqS3IdVw4gmuqibDLTfJ57OEKzC/SOzzheMTSWBwhHFJ3Dk45cTGWzuMGVAdBQnutNV9Jg\nyNHWAqTwzOeOwUnHTke38PuE7aW5nguAWg+7k7MywLtzSdoGQuRlpjlijfMr0VgWoH1w0lPlz51a\nUXg5KakYwhFllANweMcEeLI0gxPLPa9EvUdTVtsGnFdReCUaywOEZr1V/rx3Yobp+bDj+56UVAxd\no1PMhSOON+fAGDVdGpliZj5styhxo30wRJpPqC1xbnwHINdcRMVritnpqaoW1uQ7Lylmt7jxUlIx\nXK5s6OwfB4yHI6Kgc9g77qSOwUlznoDzb7+G8oCnMmMmZuYZDM664t5v9GDyRbtWDM7FutHc8HBY\ncRAvzYBuHwxR74K2B+MBbh+Y9Ez58w4H10haTlleJnlZ3ip/3jYYoiA7nZLcDLtFuSIpqxiKctIp\ncviPA1BfGkDEO+Z0OKLoHJqiodz5bjwwBg/T82F6J2bsFiUutLsgh95CRKgvC9Ax5I17H4z2byjL\ndXx8J0UVgzsCzwDZGX6qC7M9Y05b8Z2GUne0v9cykzqGjPiOU8s9L6ehLHfRyvECbul7UlIxdAyG\nXPHjWDR6KDNpMb7jFovBlNMrM6DbBybZVuKO+A4Yirl3fMYTy3yOT88zFJp1bEXbaNxxd8SR8al5\nhkJzrjClLaxiel7wc1sKrt4lFkNZwFjm0ytzSTqG3DUosmJsXljms2Px3nd+35NyiqF9yD2BZ4v6\nslxm5iOe8HO3D4Yozs1wRXwHTD93uTf83FZ8x02DonoPZSZdtpad3/eknmJw+AIlK2EpMS+4M9oH\nJ10xYoqmodQb62IsxndcNCiqLcnBJ3jCYrPm77ghvpNyiqFjaJJ0v1BTlG23KOumfjFl1f2KwW3x\nHTAGEX0TM4Rc7ue+nKbtHsWcmeanxiPLfHYMuie+43wJ40y7WTzPqWutroTl5+5wuZ/Viu+4JfBs\nYVk4510+arVcGW6J71g0lAU8kZnUPhhyTdu7p3eME+2DIVeNmCDKz+3yh8OK77jl4bCw3I5ujzO4\nLb5jUV+ay/khdydfLIQjXBieck3fk1KKYT4c4eLIlGtm3UbTUJrrenPaTcG3aBb93C535bW7oKLw\nSjSUB5jUOdcdAAAgAElEQVSZj9AzPm23KJuma3TaVfGdlFIMl0ammA8r1/w40TSUuz+fu30w5Lr4\nDkT5uV3uyutwkSsjGsuV5+YAtGVtuiUjLC6KQUTuFJEWEWkTkQdX2J8pIo+Z+18VkbqofZ8yt7eI\nyLviIc9qXC6e544fJ5pFP7eLO6eOQffFdyzqS929aIxb4zsQ5cpzscVsZbW5ZVAa8xMqIn7gS8C7\ngT3AfSKyZ9lhHwVGlVKNwEPAF8xz92CsEb0XuBP4Z/P7EsLi5CqX/DjRWA+Hm91JbkxVtagvC3B+\nyL3F9Nwa3wEoyc0gPyvN1fd+x5B76rNBfCyGg0CbUqpDKTUHfAe4e9kxdwOPmO+/B7xDjCpSdwPf\nUUrNKqXOA23m9yWE9sEQpYFMCrLTE3WJhOH2fG4j+DbpuviCRUNZgNmFCN1j7vRzuzW+A0byRYPL\nky/cUiPJIh6KoRq4FPW5y9y24jFKqQVgHChZ57kAiMgDInJYRA4PDg5uStDJuTA7Ktzz40STmeZn\na1GOa83pS6PTro3vwGXfsFtTht0a37GoL3V3vbAOF6zzHI1rnL1KqYeVUs1KqeaysrJNfceXfvNa\n/u2jN8RZsuTRUObe9Z/dVO55Jdw++9zN8R0wihn2T8y6cpLhYnzHRYOieNwl3UBN1Oet5rYVjxGR\nNKAAGF7nuXHF53N2HfQrYfi53ZnPbWVluKXc9nJKAxnkudjP7eb4DlyOjbhRMS/Gd1JMMRwCmkRk\nu4hkYASTn1x2zJPA/eb7DwA/U0opc/u9ZtbSdqAJeC0OMnmShrKAa4vptQ9MGvGdHPfFd8D0c7t0\nBq7b4zsAjYvlz93X/m7MhoxZMZgxg48DTwNngMeVUqdE5HMicpd52NeAEhFpAz4BPGieewp4HDgN\n/AT4mFLKO6vexxk310xqd5mPdSXqy9w5ydCK77jZYthWnIvfJ65sf6t4Xo0LiudZpMXjS5RSTwFP\nLdv2maj3M8AHVzn3b4C/iYccXifaz33rjs3FWeyifTDEnVdV2i1GTDSUBfj+G92EZhcIZMbl0UkK\nbqwovJyMNB/binNcajGEqHVJ8TwL90iqifJzu+vhGJmcY3Rq3lWm9EpY8rvNz71YVdWl8R2LBpda\nbO2Dk66KL4BWDK5i0c/tsmJuVkfq5hErRK3/7LLOqWPQ3fEdC+PenyTsouSLeSu+oxWDJpHUl7lv\n0RivjFi3leTg94nr3BlurCi8Eg1lAeYWInSPumeS4eX6bO5qf60YXEZDmfsWjekYnCQjzUe1SydX\nWWSm+dnmwkVj2gdDrrfWgMU6T25q/3aXzjjXisFlWCapmxaNMRYoMbJK3E6Dyyy2y/Edd3VMK2HN\nZXCXYnCntawVg8uw8rnbBoM2S7J+jOCbu0zp1Wgwi+m5xc99uXCk+9u/KDeD4twMdymGgZAr4zta\nMbiMxXxul4xa5xaMxZG8MGIF088djtA1OmW3KOvCSlVt9Ez7u8ti6xhy5+JIWjG4jIw0H7Uu8nNf\nHDFG155RDC7zc7cPhshM81FV6O74jkVDmXuK6SmlaBtwZ3xHKwYX0lDunoejzWULlKzFop/bJaPW\njsFJtnskvgPGfTQ8OcfY1JzdoqzJyOQc49PujO9oxeBCGsoCdA5NsRCO2C3KmlgKbLsLzemVKMrN\noMRFfm6vZCRZXLbYnK+Y211YI8lCKwYX0lCWy1w4wiUX5HO3D4bYkp/lqhISa+EWd8bsQthT8R1w\n1yTDxYwkF7a/VgwuZHGZTxcU0+sYnHTlOsNXoqE8lzYXtP2F4Skiyp0j1tXYWpRDht/nDsUwECIr\n3Ue1C+M7WjG4kAaX5HMrpcxZt+4bMV2JhrIAo1PzjEw628+9WDzPQ+3v9wnbS92RmWTM3wm4cg0Y\nrRhcSEFOOqWBTMcrhsHQLMGZBVeXe14Jt7gzFuM7Hmv/+rJcVxQybB907xoYWjG4lMZy5y/zaY3q\n3PpwrMaiYnC4O6ljcJKqgixyPRTfAaP9L4xMMbfg3OSLmfkwl0anXOvGi0kxiEixiDwjIq3m36IV\njjkgIi+LyCkROS4iH47a900ROS8iR83XgVjkSSUaygK0DYQwFsJzJovLeXrIlQFQXZRNRprz/dxe\ny0iyaCjPJRxRXBxx7sCoc3gSpdx778dqMTwIPKeUagKeMz8vZwr4iFJqL3An8A8iUhi1/y+UUgfM\n19EY5UkZGsoCjE/PM+xgP3fbQIicDD9b8rPsFiWu+H1CfamzLTYjvuO+cs/rwfqf2hwcZ2h3+fyd\nWBXD3cAj5vtHgHuWH6CUOqeUajXf9wADgLuWH3MgbshMahsI0VjuzuDbWjg9ZXUgOEtodsG1rowr\nUe+CGE/7YAgR98Z3YlUMFUqpXvN9H1BxpYNF5CCQAbRHbf4b08X0kIhkxihPymA98E4etbYNhDxT\no2c5DWW5XBqZYmbemUuUW+m0bls5bD0EMtPYkp/leMVQXZhNdobfblE2xZqKQUSeFZGTK7zujj5O\nGc7uVR3eIlIJ/C/g95RSVtToU8Au4HqgGPjkFc5/QEQOi8jhwcHBtf8zj1NVkE12ut+xD0dwZp7e\n8RkaK7zXMYFhsUWUMVfAibT2G9V3mzza/o3lAUdby25P015TMSilbldKXbXC6wmg3+zwrY5/YKXv\nEJF84D+ATyulXon67l5lMAt8Azh4BTkeVko1K6Way8q0J8rnE2M1N4cqhjaPVfVczmU/tzPbv3Ug\nREF2OmUBbxrhjeUBWh2afBGJKNoH3B3fidWV9CRwv/n+fuCJ5QeISAbwA+BbSqnvLdtnKRXBiE+c\njFGelMLKTHIillxNFXk2S5IYrPUNnNr+rQMhmsoDGI+W92iqCDA1F6ZnfMZuUd5E99g00/NhdrjY\nWotVMXweeKeItAK3m58RkWYR+ap5zIeAW4HfXSEt9dsicgI4AZQCfx2jPClFQ1nAuAnnnOfnbhsI\nkZHmo8bly3muRk5GGjXF2bQOOHPBpLaBkGfdSABN5caAw3KZOQnrnnBz+8c080UpNQy8Y4Xth4E/\nMN//G/Bvq5x/WyzXT3WaKgIoZfgzr6ousFucJbQOGMt5pvm9O4eyqTyP1n7nWQzDoVlGJudoLPem\ntQbQVH7Zlfe2neU2S7MU655oLHNv+3v3qU0BrIfDiaNWK1XVyzRVBOgYCjmu/HmrFd/xcPsX5WZQ\nGshwpGJuHQhRnue+5Tyj0YrBxdSV5pLuF8457OGwygF4uWMCw2KYDysujDgrM8lSDE0eb38jAO28\nQVFrf9DVbiTQisHVpPt9bC/NdZyftX0whFKX/cBeZdFic1r7D4TIzfBTWeCtGefLaSrPc1xmklLK\nDPy7+97XisHlWA+Hk2hLAVcGXP7/nObOaB0I0liR59mMJIumigDBmQUGgrN2i7JIz/gMU3NhbTFo\n7KWpIsDFkSlHZSa19ofw+4S60hy7RUkouZlpVBdmO04xt/aHPO9GAmcq5sWJhdpi0NjJjoq8xcwk\np9A2EKK2JIfMNHeWA9gIOyoCjlIM41PzDARnU0IxLKasOijO0OaR+I5WDC7HmkRzzkF+7taBoGdn\nPC+nqSKP9sEQ4Ygz/Nxtg+7PoV8vpYEMCnPSHZV80dofojSQQVFuht2ixIRWDC6ntsTITHLKqHVu\nIULn8FRKdExguDPmFiJcdEhmkuVWcbsrYz2ICE3lAdocZDGcGwh6ou21YnA5TstMujA8STiiPB94\ntthR4awZuK0uXoB+MzSW53Gu3xmZSUop2vq9MeNcKwYP0FSR5xhz+nIOvftHTethMQDqEIutdcCo\n6unFNTBWoqncWLBqKGT/glX9E7MEZxdcH18ArRg8wY7yPC6NOiMz6fI6AO5coGSjBKzMJIdYDG39\nQU90TOvFGp07IQBtyeCFUiRaMXiA6JpJdtPSF6SmOJucDG8tQH8lrBLQdhOcmadnfMazFW1XwrJM\nnVDldjG+o11JGifgpMyks30T7NqSb7cYScUIgNqfmWSt5ufmdQA2SkV+JnmZaY6Yy9A6EKQ4N4NS\nD6yBoRWDB7Ayk+yOM8zMhzk/NMnuLakzYgUjAD27EKFr1N7MpJa+CQB2pVD7iwiNFQFHDIpa+71T\nOFIrBg9gZSbZnbbXNhAiomBXZWpZDNbypXaPWs/0BsnJ8LOt2Nszzpeza0s+Z/uCtmYmWTWStGLQ\nOAonZCad6TVGrDtTaMQKl2e5ttg8aj3bN8HOLXkpk5Fksbsyj/Hpefom7FvNrXd8hvHpec9YyzEp\nBhEpFpFnRKTV/Fu0ynHhqNXbnozavl1EXhWRNhF5zFwGVLMJnJCZdLYvSGaaj7qS1MhIssjLSmdr\nUfaiYrQDpRRneoMpF98BFv/ns732KWbrt9/tEWs5VovhQeA5pVQT8Jz5eSWmlVIHzNddUdu/ADyk\nlGoERoGPxihPyrJzi5GZZKevtaUvyI6KPPwpNmIFo0OwUzH0TZgj1kpvjFg3wi7zfz5tY/tbv71X\n3KixKoa7gUfM948A96z3RDFqAt8GfG8z52uWYo1U7OycjIyk1OuYwGj/80OTzMzbY7FZo+VUtBjy\ns9KpLszmbJ+NFkNfkG3FOQQyvZGmHatiqFBK9Zrv+4CKVY7LEpHDIvKKiFidfwkwppRaMD93AdUx\nypOy1BQZN6Vdo6bB4CxDoTnPjJg2yp7KPCLKsJrs4ExfasZ3LOy22M70emtQtKZ6E5FngS0r7Pp0\n9AellBKR1dICapVS3SJSD/xMRE4A4xsRVEQeAB4A2LZt20ZOTQl8PmF3ZR6ne+x5OKwO0UsPx0aI\nttj21xQm/fpne4NUF2ZTkO3edYZjYXdlHj8728/MfJis9OSWe5+eC9M5NMn7r65K6nUTyZoWg1Lq\ndqXUVSu8ngD6RaQSwPw7sMp3dJt/O4AXgGuAYaBQRCzltBXovoIcDyulmpVSzWVlZRv4F1OH3ZVG\n2l7EholWZ1Mwhz6amqIccjP8to1az/ZNpGR8wWLXlnwiyp4Z0C39QSLKO4FniN2V9CRwv/n+fuCJ\n5QeISJGIZJrvS4G3AqeVkXT8PPCBK52vWT97KvMJzS5wyYaJVmf7gpQGMinxwKzPzeDzCbsq8zlj\nQ2bM7EKY9sHJlIwvWOy2MQBtDQb2aMWwyOeBd4pIK3C7+RkRaRaRr5rH7AYOi8gxDEXweaXUaXPf\nJ4FPiEgbRszhazHKk9LsqTJuTDvcSak+YgWjczrTN5H0iVat/UY5jl0p3P61JblkpftsSVk92ztB\nboafrUXeKXUeUwhdKTUMvGOF7YeBPzDfvwTsW+X8DuBgLDJoLrOjIg+fGCOYd++rTNp1F8IRWvtD\nfOSm2qRd04nsrszn3165SNfoNDVJnH18ti91M5Is/D5h5xZ7AtBneoPsqsz31MRCPfPZQ2Sl+2ko\nCyTdnO4cnmJ2IcLOFO6YwL6U4bO9E+bEwtQqhbGc3VvyOJtki00pxRkPWstaMXiMPVXJ93OnekaS\nxa4teYiQ9PY/a04sTPOn9uO8a0seo1PzDARnk3bNrtFpgjMLngo8g1YMnmN3ZT7dY9OMTSVvRauz\nfRP4feKZAmKbJScjjbqS3ORbDB4csW4Gq3NOpsW8OOPZY9ayVgweY48ND8epngnqS3OTnj/uRKwA\ndLJYnFjosY5pM9hRM+lsXxAR71nLWjF4jMt+7uQ8HEopjneNcfXW5E/qciK7t+RzYXiK0OzC2gfH\ngcsjVm91TJuhIMcqjZFci6G2OIdcj5TCsNCKwWOU5WVSlpeZtJTVnvEZhkJz7K8pSMr1nI6lmFuS\n1Dmd6DYKCOyt0u0PhoI8lcR07TO9E56LL4BWDJ5kT2V+0lxJJ7rGANhXrTsmgN3WXJIkWWzHLo1R\nX5pLQU5qlsJYztVbC2kfDBGcmU/4tYIz81wYmfKkG08rBg+ypyqftoEgcwuRhF/rWNc4aT7x5Khp\nM1QVZFGUk87Jrg2VAts0x7rGbKnN5FT21xSg1GVLKpGc6BpHKTxpLWvF4EH2VOYzH1ZJWZvheNcY\nuyrzdODZREQ4UFPIkUujCb9W3/gM/ROzXL3Vex3TZjlgKsljlxKvGI5cGltyTS+hFYMH2W8Ggo+Z\nbp5EEYkojneN68DzMg7UFNE6kHh3xlGzY9IWw2UKczKoK8nhaBIU89FLY2wvzaUwx3sLT2rF4EFq\nirMpyc3gjQuJVQydw5MEZxbYr0esS7hmWyFKwfEEu5OOdY2R5hNPFW+LB/trChNuMSilOHppzJPW\nAmjF4ElEhGu2FSXcnWF1fNpiWIo1grdG9InieNcYuyvztRtvGfu3FtI3MUPf+EzCrtEzPsNgcFYr\nBo27uGZbIR2DkwmdAX28a5ysdB9NKT7jeTkF2enUl+Vy5GLiFEMkojh+adyTgc9YObAt8a7Uoxe9\nG18ArRg8y7XbioDLAbJEcLxrjL1VBSlfo2clrqkp4uil0YQVdOsYmiQ4u7AYT9JcZk9lPmk+4VgC\n7/1jXWNkpPk8m42nn2iPcvXWAnwCRy4kxp20EI5wsmdcZ8SswoFthQyF5uganU7I9x/TgedVyUr3\ns7syP6GuvKMXx9hblU9Gmje7UG/+VxpyM9PYtSU/YRZD60CImfmIHrGuwjVmh52o9j/eNUZuhlFm\nXfNmDtQUcrxrPCHL3C6EI5zoHvf0vR+TYhCRYhF5RkRazb9FKxzzdhE5GvWaEZF7zH3fFJHzUfsO\nxCKPZinXbCvk6MWxhDwcx03/rbYYVmbnljyy0n2Lvuh4c7RrnH1bC/B7aHGYeLK/ppDQ7AIdQ/Ff\nA7qlP8j0fJhrtmnFsBoPAs8ppZqA58zPS1BKPa+UOqCUOgDcBkwBP4065C+s/UqpozHKo4ni2m1F\nBGcXaBuM/8NxrGucvCyjzLTmzaT7feyrLkhIPv3sQpgzPRPajXQFDphB+aMJSFs96uGJbRaxKoa7\ngUfM948A96xx/AeA/1RKJX+1+hTEGtEcuRj/zun1zlEO1BR6ajnDeHOgppCTPRNxL01ytjfIXDjC\nAQ+7MmKlvjRAXmZaQhTz0YtjFOdmsC2Jy7cmm1gVQ4VSqtd83wdUrHH8vcCjy7b9jYgcF5GHRCRz\ntRNF5AEROSwihwcHB2MQOXUwZmWmx32i22Bwlpb+IG9pKI3r93qNa7YVMbcQifvCPW+Yil5bDKvj\n8wlX1xQkJAB9rGuM/VsLEPHuoGhNxSAiz4rIyRVed0cfp4y8vFWd2SJSCewDno7a/ClgF3A9UAx8\ncrXzlVIPK6WalVLNZWVla4mtwZzoloC6Pa90DAPwloaSuH6v1ziQoIluL7YNU1uSQ1Vhdly/12tc\nV1vM6Z4JxqfjV5pkYmae1oEQB2reFE71FGsqBqXU7Uqpq1Z4PQH0mx2+1fEPXOGrPgT8QCm1+Csp\npXqVwSzwDeBgbP+OZjnXbjPq9kzEsW7PS+3D5GWlsbfKmznc8aKyIIst+Vm8dn4kbt+5EI7wSscw\nb23U1tpa3NxYSkRdHsjEg1fah1EKbqgvjtt3OpFYXUlPAveb7+8HnrjCsfexzI0UpVQEIz5xMkZ5\nNMu4ZlsRSsHrcZzP8HL7EDdsL9ET29ZARLi5qZRftQ0RjlNm2LGucUKzC9ysFcOaHKgpJCfDz69a\nh+L2nb9sHSInw784gdSrxPpkfx54p4i0ArebnxGRZhH5qnWQiNQBNcDPl53/bRE5AZwASoG/jlEe\nzTKa64rITPPxi3Pxict0j03TOTyl3Ujr5JamUsan5+O2PsCLbUOIwE31uv3XIiPNx431JfyqLZ6K\nYZCb6ks8O7HNIqb/Tik1rJR6h1KqyXQ5jZjbDyul/iDquE6lVLVSKrLs/NuUUvtM19RvK6Xin1eZ\n4mSl+7mxvoSft8RHMbzcbpjlN2nFsC5uaSpDhLgp5l+1DXFVVQFFud4r9ZwI3tpYyvmhSbpGY0+E\nvDQyRefwFDc3ed9a87ba0wDwtp1ldAxNcnE49ofjpfYhinMz2FmhF59fD8W5GeyrLoiLYpicXeDI\nxVHe0qiV8nq5xezEX4yD1fBL0yV1S5P3k1+0YkgB3razHICfn7tSbsDaKKV4uX2Ym+pL9PyFDXBL\nUylHLo3FnADwWucI82Gl4wsboKk8QHleJr9qiz0A/cvWQaoKsmgo8/6kTq0YUoC6khy2FefwQozu\npM7hKXrHZ7QbaYPc2lRGOKJ4KcbO6cXWITLSfFxf5+2MmHgiItzcWMqLbUMxlYZZCEd4sW3IdA16\nf1CkFUMKICK8bWcZL7UPMzMf3vT3vNRumNI68Lwxrq0tIpCZxi9aY1PML7YP01xbpBfm2SA3N5Uy\nMjnH6RgmGh7vHmdiZoFbdqSGtaYVQ4rwtp1lTM+HOdS5+Zz6l9qG2ZKfxfZS75vS8STd7+OmhhJ+\ncW5w0+szDIVmOdM7oecvbAKrzWKJM/zynJEN9tYUme2vFUOKcFN9KRlpvk27k6bmFni+ZYD/bUdq\nmNLx5tamUrpGjVTfzWB1aloxbJyK/Cx2VARiSlv9Zesg+6pTJxtMK4YUITvDzw3bi3mhZXMB6GdO\n9zM1F+aea6rjLFlqcOsOI5Nls9lJPz7eS2kgk33Vusz5ZrilqYxXz49sqjzGxMw8Ry6NLWY4pQJa\nMaQQb9tZTvvgJJdGNj5q/f4b3VQXZnPDdh343Ay1JbnUleTw9Km+DZ87FJrl+bMD/Pq11Xr9hU1y\n94Eq5hYiPHmsZ8Pn/sfxXsIRxTt2r1Uj1DtoxZBC3LbLSFv98fHeNY5cykBwhl+2DnL3gSqdphoD\nH7huKy+1D3N+aHJD5/3wSDcLEcUHr9uaIMm8z77qAnZtyePxQ5c2fO6jr11kZ0Xe4qp8qYBWDCnE\n9tJcbqwv5t9eubCh2j1PHu0houDXtBspJj7UXEOaT3j0tYvrPkcpxfde72J/TSFNelLhphERPnx9\nDSe6xznds/7spJPd4xzvGue+gzUpFVvTiiHF+N231NE9Ns2zZ/rXfc4Pj3ZzVXW+7phipDw/i3fu\nqeC7hy+tO234ZPcEZ/uC2lqIA/ccqCbD7+Pxw+u3Gr5z6CKZaT5+7ZrUan+tGFKM23dXUF2YzTdf\n7FzX8a39QU52T6Tcg5EofuuGWkan5vnJyfXFGr77+iUy03y8f39VgiXzPkW5Gdyxt4IfHOlel2Ke\nmlvgh0d6eO++Sgpy0pMgoXPQiiHFSPP7+O0ba3m5Y5iWvuCax3//SDd+n3CX7pjiwlsaSqgryeHb\nr15Y89iZ+TBPHO3hXXu3UJCdWh1Tovjw9TWMT8/z09NrW8w/Pt5LaHaB+27YlgTJnIVWDCnIvdfX\nkJnm45GXO6943OjkHI8fusQtTaWU5a266qpmA/h8wm/esI1DnaNrKuZnTvczPj3PB5u1tRYv3tpQ\nSnVh9rqC0I++dpHG8gDNtd5ee2EltGJIQYpyM7jnQDU/eKOb8anV87r/6senGZ+e5y/etTOJ0nmf\nD1xXQ4bfxzdfOr/qMeNT8/ztU2eoL83Va2vHEZ/PCEL/qm2In19hTsmrHcMcuTjGfQe3pVTQ2SIm\nxSAiHxSRUyISEZHmKxx3p4i0iEibiDwYtX27iLxqbn9MRFJjWqEDuP8tdUzPh/mbp06vWKbhZ2f7\n+f6Rbv74bQ3srdKTquJJcW4Gv3nDNh597RI/WiGvXinFf/3hCQaCszz04QN67kKc+cNb6tlZkccn\nHjtK/8TMm/YPTMzw8UePUFeSw4dS1FqL1WI4Cfw68IvVDhARP/Al4N3AHuA+Edlj7v4C8JBSqhEY\nBT4aozyadbKnKp//87ZGHj/cxRd+0rJk38TMPP/1+yfZURHgY7c12iSht/nUe3ZxfV0Rf/7dYxzv\nGluy77uvd/Efx3v5xB072J9CufPJIjvDz5d+6xqm5sL8yaNHWAhfXj9sbiHC//HtN5icXeArv9NM\nXlZqxnZiXcHtjFKqZY3DDgJtSqkOpdQc8B3gbnOd59uA75nHPYKx7rMmSXzinTv4nRtr+fLP2/ny\nz9uZmlvgpfYh/u/HjzEQnOHvPrCfzDRdyTMRZKb5+Zffvo7SQCZ/+K3DXBye4tLIFL84N8hnnzzF\njfXF/O+3NtgtpmdpLM/jr++5ilfPj/DFp1s4PzRJ3/gMn/vxKV6/MMrffeBqdm5J3fTstCRcoxqI\njvR0ATcAJcCYUmoharueQZVERIT/9669jE3P8/n/PMsXn25ZnPj2Z7fv4IAerSaU0kAm//qRZj7w\n5Ze49YvPL24vzEnXLqQk8BvXbeXljmG+8osOvvKLjsXtD9xaz/uuTu0svDUVg4g8C2xZYdenlVJP\nxF+kVeV4AHgAYNu21EsfSxQ+n/D3H9zP9tJcIhHFdbVFXLutKOXytu1iT1U+j/7hjbzYPkRpIJPy\nvEz2VhXoLLAk8be/vo/37NvCxPQC0/NhcjL8vHdfpd1i2c6aikEpdXuM1+gGaqI+bzW3DQOFIpJm\nWg3W9tXkeBh4GKC5uXnzSzFp3kRGmo9PvHOH3WKkLPtrCnUswSbS/T5u25U6xfHWSzLSVQ8BTWYG\nUgZwL/CkMlJhngc+YB53P5A0C0Sj0Wg0KxNruuqviUgXcBPwHyLytLm9SkSeAjCtgY8DTwNngMeV\nUqfMr/gk8AkRacOIOXwtFnk0Go1GEzuy2aUG7aS5uVkdPnzYbjE0Go3GVYjI60qpVeecWeiZzxqN\nRqNZglYMGo1Go1mCVgwajUajWYJWDBqNRqNZglYMGo1Go1mCK7OSRGQQWHulk5UpBYbiKE680HJt\nDC3XxtBybQyvylWrlCpb6yBXKoZYEJHD60nXSjZaro2h5doYWq6NkepyaVeSRqPRaJagFYNGo9Fo\nlpCKiuFhuwVYBS3XxtBybQwt18ZIablSLsag0Wg0miuTihaDRqPRaK6AZxWDiNwpIi0i0iYiD66w\nP1NEHjP3vyoidUmQqUZEnheR0yJySkT+rxWOeZuIjIvIUfP1mUTLZV63U0ROmNd8U4VCMfhHs72O\ni6UUPHIAAASNSURBVMi1SZBpZ1Q7HBWRCRH502XHJKW9ROTrIjIgIiejthWLyDMi0mr+LVrl3PvN\nY1pF5P4kyPVFETlr/k4/EJEVF3tY6zdPgFyfFZHuqN/qPauce8VnNwFyPRYlU6eIHF3l3ES214p9\ng233mFLKcy/AD7QD9UAGcAzYs+yYPwa+bL6/F3gsCXJVAtea7/OAcyvI9Tbgxza0WSdQeoX97wH+\nExDgRuBVG37TPow87KS3F3ArcC1wMmrb3wEPmu8fBL6wwnnFQIf5t8h8X5Rgue4A0sz3X1hJrvX8\n5gmQ67PAn6/jd77isxtvuZbt/3vgMza014p9g133mFcthoNAm1KqQyk1B3wHuHvZMXcDj5jvvwe8\nQ0QSusiuUqpXKfWG+T6IsT6FW9a5vhv4ljJ4BWP1vWSugfgOoF0ptdmJjTGhlPoFMLJsc/Q99Ahw\nzwqnvgt4Rik1opQaBZ4B7kykXEqpn6rLa6m/grE6YlJZpb3Ww3qe3YTIZT7/HwIejdf11ssV+gZb\n7jGvKoZq4FLU5y7e3AEvHmM+ROMYiwUlBdN1dQ3w6gq7bxKRYyLynyKyN0kiKeCnIvK6GOtrL2c9\nbZpI7mX1B9aO9gKoUEr1mu/7gJXWiLS73X4fw9JbibV+80TwcdPF9fVV3CJ2ttctQL9SqnWV/Ulp\nr2V9gy33mFcVg6MRkQDw78CfKqUmlu1+A8Ndsh/4J+CHSRLrZqXUtcC7gY+JyK1Juu6aiLEk7F3A\nd1fYbVd7LUEZNr2jUvxE5NPAAvDtVQ5J9m/+L0ADcADoxXDbOIn7uLK1kPD2ulLfkMx7zKuKoRuo\nifq81dy24jEikgYUAMOJFkxE0jF++G8rpb6/fL9SakIpFTLfPwWki0hpouVSSnWbfweAH2CY9NGs\np00TxbuBN5RS/ct32NVeJv2WO838O7DCMba0m4j8LvA+4LfMDuVNrOM3jytKqX6lVFgpFQH+dZXr\n2dVeacCvA4+tdkyi22uVvsGWe8yriuEQ0CQi283R5r3Ak8uOeRKwovcfAH622gMUL0wf5teAM0qp\n/7HKMVusWIeIHMT4jRKqsEQkV0TyrPcYwcuTyw57EviIGNwIjEeZuIlm1ZGcHe0VRfQ9dD/wxArH\nPA3cISJFpuvkDnNbwhCRO4H/AtyllJpa5Zj1/Obxlis6JvVrq1xvPc9uIrgdOKuU6lppZ6Lb6wp9\ngz33WCIi7E54YWTRnMPIcPi0ue1zGA8LQBaGa6INeA2oT4JMN2OYgseBo+brPcAfAX9kHvNx4BRG\nNsYrwFuSIFe9eb1j5rWt9oqWS4Avme15AmhO0u+Yi9HRF0RtS3p7YSimXmAew4f7UYyY1HNAK/As\nUGwe2wx8Nerc3zfvszbg95IgVxuGz9m6x6zsuyrgqSv95gmW63+Z985xjA6vcrlc5uc3PbuJlMvc\n/k3rnoo6NpnttVrfYMs9pmc+azQajWYJXnUlaTQajWaTaMWg0Wg0miVoxaDRaDSaJWjFoNFoNJol\naMWg0Wg0miVoxaDRaDSaJWjFoNFoNJolaMWg0Wg0miX8/zB11YJATPPHAAAAAElFTkSuQmCC\n",
20 | "text/plain": [
21 | ""
22 | ]
23 | },
24 | "metadata": {},
25 | "output_type": "display_data"
26 | }
27 | ],
28 | "source": [
29 | "import matplotlib.pyplot as plt\n",
30 | "import numpy as np\n",
31 | "\n",
32 | "x = np.linspace(0, 20, 100)\n",
33 | "plt.plot(x, np.sin(x))\n",
34 | "plt.show()\n"
35 | ]
36 | }
37 | ],
38 | "metadata": {
39 | "anaconda-cloud": {},
40 | "kernelspec": {
41 | "display_name": "Python 3",
42 | "language": "python",
43 | "name": "python3"
44 | },
45 | "language_info": {
46 | "codemirror_mode": {
47 | "name": "ipython",
48 | "version": 3
49 | },
50 | "file_extension": ".py",
51 | "mimetype": "text/x-python",
52 | "name": "python",
53 | "nbconvert_exporter": "python",
54 | "pygments_lexer": "ipython3",
55 | "version": "3.6.1"
56 | }
57 | },
58 | "nbformat": 4,
59 | "nbformat_minor": 1
60 | }
61 |
--------------------------------------------------------------------------------