├── nanoverl
├── __init__.py
├── data
│ └── __init__.py
├── rewards
│ ├── __init__.py
│ ├── reward_types.py
│ └── deepscaler_rule_reward.py
└── config
│ └── ppo_trainer.yaml
├── pyproject.toml
├── README.md
├── examples
└── deepscaler
│ ├── train_grpo_r1_distill_1b_8k.bash
│ ├── train_grpo_r1_distill_1b_8k.slurm
│ ├── prepare_dataset.py
│ └── reasoning_eval.py
├── .gitignore
├── main_ppo.py
└── LICENSE
/nanoverl/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/nanoverl/data/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/nanoverl/rewards/__init__.py:
--------------------------------------------------------------------------------
1 | """Import reward-related classes and types from the reward module."""
2 |
3 | from .reward_types import (RewardConfig, RewardFn, RewardInput, RewardOutput,
4 | RewardType)
5 |
6 | __all__ = ['RewardConfig', 'RewardFn', 'RewardInput', 'RewardOutput', 'RewardType']
7 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [project]
2 | name = "nanoverl"
3 | version = "0.1.0"
4 | description = ""
5 | authors = [
6 | {name = "koalazf99",email = "koala99.zf@gmail.com"}
7 | ]
8 | readme = "README.md"
9 | requires-python = ">=3.10"
10 | dependencies = [
11 | ]
12 |
13 |
14 | [build-system]
15 | requires = ["poetry-core>=2.0.0,<3.0.0"]
16 | build-backend = "poetry.core.masonry.api"
17 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # nanoverl
2 |
3 | Run RL $\times$ LM experiments using minimal monkey patches for [verl](https://github.com/volcengine/verl). So that you do not need to modify the original code of verl, and keep up with the latest version of verl. We also do not use submodule to avoid the complexity of version control.
4 |
5 | ## Usage
6 |
7 | First follow instructions in verl to install the main repo, then locally install this repo.
8 | ```bash
9 | git clone https://github.com/koalazf99/nanoverl.git nanoverl
10 | cd nanoverl
11 | pip install -e .
12 | ```
13 |
14 | ## Examples
15 |
16 | All scripts for RL experiments are in `nanoverl/example/`. For example, we can run the following script to train [deepscaler](https://huggingface.co/datasets/agentica-org/DeepScaleR-Preview-Dataset) dataset using [R1-Distill-Qwen-1.5B](https://huggingface.co/deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B) with GRPO algorithm:
17 |
18 | ```bash
19 | cd examples/deepscaler
20 | python prepare_dataset.py
21 | bash train_grpo_r1_distill_1b_8k.bash
22 | ```
23 |
24 | The evaluation script is also a "nano" version thanks to [sglang](https://github.com/sgl-project/sglang). We use sglang-router to serve multiple backends.
25 | ```bash
26 | python -m sglang_router.launch_server \
27 | --model-path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
28 | --port 30000 --dp-size 8
29 | python reasoning_eval.py \
30 | --data-path nanoverl/aime \
31 | --parallel 256 \
32 | --num-tries 16
33 | ```
34 |
35 |
36 | ## Local Installable Package Configuration
37 | ```bash
38 | pip install poetry
39 | poetry init
40 | poetry build
41 | ```
42 |
--------------------------------------------------------------------------------
/examples/deepscaler/train_grpo_r1_distill_1b_8k.bash:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | set -x
3 |
4 | # Warning: Export VLLM_ATTENTION_BACKEND on every machine before starting Ray cluster.
5 | # vLLM without XFORMERS will results in CUDA errors.
6 | export VLLM_ATTENTION_BACKEND=XFORMERS
7 |
8 | # Parse command line arguments
9 | while [[ $# -gt 0 ]]; do
10 | case $1 in
11 | --model)
12 | MODEL_PATH="$2"
13 | shift 2
14 | ;;
15 | *)
16 | break
17 | ;;
18 | esac
19 | done
20 |
21 | # Set default model path if not provided
22 | if [ -z "$MODEL_PATH" ]; then
23 | MODEL_PATH="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
24 | fi
25 |
26 | export PYTHONPATH=$PYTHONPATH:$HOME/nanoverl/
27 | EXP_NAME="deepscaler-1.5b-8k"
28 |
29 | # Train over a single node, 8 A100-80GB GPUs.
30 | python3 -m main_ppo \
31 | algorithm.adv_estimator=grpo \
32 | data.train_files=$HOME/nanoverl/data/parquet_data/deepscaler/train.parquet \
33 | data.val_files=$HOME/nanoverl/data/parquet_data/deepscaler/aime.parquet \
34 | data.train_batch_size=128 \
35 | data.val_batch_size=512 \
36 | data.max_prompt_length=1024 \
37 | data.max_response_length=8192 \
38 | actor_rollout_ref.model.path=$MODEL_PATH \
39 | actor_rollout_ref.actor.optim.lr=1e-6 \
40 | actor_rollout_ref.model.use_remove_padding=True \
41 | actor_rollout_ref.actor.ppo_mini_batch_size=64 \
42 | actor_rollout_ref.actor.use_dynamic_bsz=True \
43 | actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \
44 | actor_rollout_ref.actor.use_kl_loss=True \
45 | actor_rollout_ref.actor.kl_loss_coef=0.001 \
46 | actor_rollout_ref.actor.kl_loss_type=low_var_kl \
47 | actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \
48 | actor_rollout_ref.model.enable_gradient_checkpointing=True \
49 | actor_rollout_ref.actor.fsdp_config.param_offload=False \
50 | actor_rollout_ref.actor.fsdp_config.grad_offload=False \
51 | actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
52 | actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
53 | actor_rollout_ref.rollout.name=vllm \
54 | actor_rollout_ref.rollout.temperature=0.6 \
55 | actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \
56 | actor_rollout_ref.rollout.n=8 \
57 | actor_rollout_ref.ref.fsdp_config.param_offload=True \
58 | algorithm.kl_ctrl.kl_coef=0.001 \
59 | trainer.critic_warmup=0 \
60 | trainer.logger=['console','wandb'] \
61 | +trainer.val_before_train=False \
62 | trainer.project_name='nanoverl' \
63 | trainer.experiment_name=$EXP_NAME \
64 | trainer.n_gpus_per_node=8 \
65 | trainer.nnodes=1 \
66 | trainer.save_freq=20 \
67 | trainer.test_freq=20 \
68 | trainer.default_hdfs_dir=null \
69 | trainer.default_local_dir=$HOME/nanoverl/checkpoints/$EXP_NAME \
70 | trainer.total_epochs=30 "${@:1}"
--------------------------------------------------------------------------------
/nanoverl/rewards/reward_types.py:
--------------------------------------------------------------------------------
1 | """
2 | https://github.com/agentica-project/deepscaler/blob/main/deepscaler/rewards/reward_types.py
3 | This module defines data structures and base classes for reward calculations
4 | to evaluate model responses for various problem types, including math and coding.
5 | """
6 |
7 | from dataclasses import dataclass, field
8 | from enum import Enum
9 |
10 |
11 | @dataclass
12 | class RewardConfig:
13 | # Use LLM as ORM to evaluate correctness.
14 | use_math_orm: bool = False
15 |
16 | # General reward constants.
17 | correct_reward: float = 1.0
18 | incorrect_reward: float = -1.0
19 | format_error_reward: float = -1.0
20 | unk_error_reward: float = -1.0
21 |
22 |
23 | class RewardType(Enum):
24 | """
25 | Enum class representing the different types of rewards that can be assigned.
26 |
27 | Attributes:
28 | MATH (str): Represents a math-related problem type.
29 | CODE (str): Represents a coding-related problem type.
30 | UNK (str): Represents an unknown or unclassified problem type.
31 | """
32 | MATH = 'MATH'
33 | CODE = 'CODE'
34 | UNK = 'UNK'
35 |
36 |
37 | @dataclass
38 | class RewardInput:
39 | """Data structure for input required to calculate rewards.
40 |
41 | Attributes:
42 | problem (str): The original problem text or prompt provided to the model.
43 | model_response (str): The response generated by the model that needs evaluation.
44 | problem_type (RewardType): The category of the problem (e.g., math, code) to be evaluated.
45 | ground_truth (dict): Additional contextual information necessary for evaluation:
46 | - For math problems: This may include the ground truth answer.
47 | - For coding problems: This may include unit tests to validate the solution.
48 | """
49 | problem: str
50 | model_response: str
51 | problem_type: RewardType = RewardType.UNK
52 | ground_truth: dict = field(default_factory=dict)
53 |
54 |
55 | @dataclass
56 | class RewardOutput:
57 | """Data structure for the output of reward calculations.
58 |
59 | Attributes:
60 | reward (float): The computed reward value based on the evaluation of the model's response.
61 | is_correct (bool): A boolean flag indicating whether the model's response is deemed correct.
62 | """
63 | reward: float
64 | is_correct: bool
65 |
66 |
67 | class RewardFn:
68 | """Abstract base class for defining reward calculation strategies.
69 |
70 | This class should be subclassed to implement specific reward calculation logic.
71 | The __call__ method must be overridden to provide the functionality for evaluating
72 | the input and returning the corresponding reward output.
73 | """
74 | def __init__(self, config: RewardConfig):
75 | self.config = config
76 |
77 | def __call__(self, input: RewardInput) -> RewardOutput:
78 | raise NotImplementedError("Subclasses must implement this method.")
--------------------------------------------------------------------------------
/examples/deepscaler/train_grpo_r1_distill_1b_8k.slurm:
--------------------------------------------------------------------------------
1 | #!/bin/bash
2 | #SBATCH --job-name=nanoverl_deepscaler
3 | #SBATCH --partition=fan
4 | #SBATCH --nodes=8
5 | #SBATCH --ntasks=8
6 | #SBATCH --ntasks-per-node=1
7 | #SBATCH --gres=gpu:8
8 | #SBATCH --cpus-per-task=100
9 | #SBATCH --mem=512G
10 | #SBATCH --output=./logs/slurm-%j.log
11 | #SBATCH --error=./logs/slurm-%j.log
12 | #SBATCH --exclusive
13 | #SBATCH --time=12:00:00
14 |
15 | # set -x
16 |
17 | sleep 10
18 | export worker_num=$SLURM_NNODES
19 | JOBLOG="./logs/slurm-$SLURM_JOB_ID.log"
20 |
21 | nodes=( $( scontrol show hostnames $SLURM_JOB_NODELIST ) )
22 | export head_node=${nodes[0]}
23 | export head_node_ip=$(srun --nodes=1 --ntasks=1 -w "$head_node" hostname --ip-address)
24 | export port=30310
25 | export address_head=$head_node_ip:$port
26 |
27 |
28 | export VLLM_ATTENTION_BACKEND=XFORMERS
29 | export EXPERIMENT_NAME=deepscaler-1.5b-8k
30 | export OUTPUT_DIR=$HOME/nanoverl/checkpoints/${EXPERIMENT_NAME}
31 | export GLOO_SOCKET_IFNAME=ens10f0np0
32 |
33 |
34 | srun --nodes=$worker_num --ntasks=$worker_num --ntasks-per-node=1 rm -rf /tmp/ray/ray_current_cluster
35 | srun --nodes=1 --ntasks=1 -w "$head_node" --export=ALL,VLLM_ATTENTION_BACKEND=XFORMERS \
36 | ray start --head --node-ip-address="$head_node_ip" --port=$port \
37 | --num-gpus 8 --block & >> ${JOBLOG}
38 |
39 | sleep 10
40 |
41 | for ((i = 1; i < worker_num; i++)); do
42 | node_i=${nodes[$i]}
43 | echo "Starting WORKER $i at $node_i"
44 | srun --nodes=1 --ntasks=1 -w "$node_i" --export=ALL,VLLM_ATTENTION_BACKEND=XFORMERS \
45 | ray start --address "$address_head" \
46 | --num-gpus 8 --block & >> ${JOBLOG}
47 | sleep 10
48 | done
49 |
50 | export PYTHONPATH=$PYTHONPATH:$HOME/nanoverl/
51 | MODEL_PATH="deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B"
52 | EXP_NAME="deepscaler-1.5b-8k"
53 |
54 |
55 | python -m main_ppo \
56 | algorithm.adv_estimator=grpo \
57 | data.train_files=$HOME/nanoverl/data/parquet_data/deepscaler/train.parquet \
58 | data.val_files=$HOME/nanoverl/data/parquet_data/deepscaler/aime.parquet \
59 | data.train_batch_size=128 \
60 | data.val_batch_size=512 \
61 | data.max_prompt_length=1024 \
62 | data.max_response_length=8192 \
63 | actor_rollout_ref.model.path=$MODEL_PATH \
64 | actor_rollout_ref.actor.optim.lr=1e-6 \
65 | actor_rollout_ref.model.use_remove_padding=True \
66 | actor_rollout_ref.actor.ppo_mini_batch_size=128 \
67 | actor_rollout_ref.actor.use_dynamic_bsz=True \
68 | actor_rollout_ref.actor.ppo_max_token_len_per_gpu=32768 \
69 | actor_rollout_ref.actor.use_kl_loss=True \
70 | actor_rollout_ref.actor.kl_loss_coef=0.001 \
71 | actor_rollout_ref.actor.kl_loss_type=low_var_kl \
72 | actor_rollout_ref.actor.ulysses_sequence_parallel_size=1 \
73 | actor_rollout_ref.model.enable_gradient_checkpointing=True \
74 | actor_rollout_ref.actor.fsdp_config.param_offload=False \
75 | actor_rollout_ref.actor.fsdp_config.grad_offload=False \
76 | actor_rollout_ref.actor.fsdp_config.optimizer_offload=False \
77 | actor_rollout_ref.rollout.tensor_model_parallel_size=1 \
78 | actor_rollout_ref.rollout.name=vllm \
79 | actor_rollout_ref.rollout.temperature=0.6 \
80 | actor_rollout_ref.rollout.gpu_memory_utilization=0.85 \
81 | actor_rollout_ref.rollout.n=8 \
82 | actor_rollout_ref.ref.fsdp_config.param_offload=True \
83 | algorithm.kl_ctrl.kl_coef=0.001 \
84 | trainer.critic_warmup=0 \
85 | trainer.logger=['console','wandb'] \
86 | +trainer.val_before_train=False \
87 | trainer.project_name='nanoverl' \
88 | trainer.experiment_name=$EXP_NAME \
89 | trainer.n_gpus_per_node=8 \
90 | trainer.nnodes=8 \
91 | trainer.save_freq=20 \
92 | trainer.test_freq=20 \
93 | trainer.default_hdfs_dir=null \
94 | trainer.default_local_dir=$HOME/nanoverl/checkpoints/$EXP_NAME \
95 | trainer.total_epochs=30 >> ${JOBLOG}
96 |
--------------------------------------------------------------------------------
/examples/deepscaler/prepare_dataset.py:
--------------------------------------------------------------------------------
1 | """Script to prepare DeepScaler training and test datasets.
2 |
3 | This script processes math problem datasets into a standardized format for training
4 | and testing DeepScaler models. It loads problems from specified datasets, adds
5 | instruction prompts, and saves the processed data as parquet files.
6 | """
7 |
8 | import argparse
9 | import os
10 | from typing import Any, Dict, List, Optional
11 |
12 | import pandas as pd
13 | from datasets import load_dataset
14 | from verl.utils.hdfs_io import copy, makedirs
15 | from verl.utils.reward_score.math import last_boxed_only_string, remove_boxed
16 |
17 |
18 | def extract_solution(solution_str: str) -> str:
19 | """Extract the final boxed solution from a solution string.
20 |
21 | Args:
22 | solution_str: Raw solution string that may contain multiple boxed answers
23 |
24 | Returns:
25 | The final boxed answer with box notation removed
26 | """
27 | return remove_boxed(last_boxed_only_string(solution_str))
28 |
29 |
30 | def make_map_fn(split: str):
31 | """Create a mapping function to process dataset examples.
32 |
33 | Args:
34 | split: Dataset split name ('train' or 'test')
35 |
36 | Returns:
37 | Function that processes individual dataset examples
38 | """
39 | def process_fn(example: Dict[str, Any], idx: int) -> Optional[Dict[str, Any]]:
40 | question = example.pop('problem')
41 | instruction = "Let's think step by step and output the final answer within \\boxed{}."
42 | question = f"{question} {instruction}"
43 | answer = example.pop('answer')
44 |
45 | data = {
46 | "data_source": "",
47 | "prompt": [{
48 | "role": "user",
49 | "content": question
50 | }],
51 | "ability": "math",
52 | "reward_model": {
53 | "style": "rule",
54 | "ground_truth": answer
55 | },
56 | "extra_info": {
57 | 'split': split,
58 | 'index': idx
59 | }
60 | }
61 | return data
62 | return process_fn
63 |
64 |
65 | if __name__ == '__main__':
66 | parser = argparse.ArgumentParser(description='Process datasets for DeepScaler training')
67 | parser.add_argument('--local_dir', default=os.path.expanduser('../../data/parquet_data/deepscaler'),
68 | help='Local directory to save processed datasets')
69 | parser.add_argument('--hdfs_dir', default=None,
70 | help='Optional HDFS directory to copy datasets to')
71 | args = parser.parse_args()
72 |
73 | local_dir = args.local_dir
74 | hdfs_dir = args.hdfs_dir
75 |
76 | # Make local directory if it doesn't exist
77 | makedirs(local_dir, exist_ok=True)
78 |
79 | # Initialize datasets
80 | TRAIN_DATASET = "nanoverl/deepscaler"
81 | train_dataset_data = load_dataset(TRAIN_DATASET, split="train")
82 | TEST_DATASETS = ["nanoverl/minerva", "nanoverl/aime", "nanoverl/amc", "nanoverl/olympiad_bench", "nanoverl/math"]
83 | test_dataset_data = [load_dataset(d, split="test") for d in TEST_DATASETS]
84 |
85 | # Process training data
86 | process_fn = make_map_fn('train')
87 | train_data = train_dataset_data.map(process_fn, with_indices=True)
88 | train_df = pd.DataFrame(train_data)
89 | train_df.to_parquet(os.path.join(local_dir, 'train.parquet'))
90 | print("train data size:", len(train_df))
91 |
92 | # Process and save each test dataset separately
93 | for test_dataset, test_data in zip(TEST_DATASETS, test_dataset_data):
94 | process_fn = make_map_fn('test')
95 | test_data = test_data.map(process_fn, with_indices=True)
96 | dataset_name = os.path.basename(test_dataset.lower())
97 | test_df = pd.DataFrame(test_data)
98 | test_df.to_parquet(os.path.join(local_dir, f'{dataset_name}.parquet'))
99 | print(f"{dataset_name} test data size:", len(test_df))
100 |
101 | # Optionally copy to HDFS
102 | if hdfs_dir is not None:
103 | makedirs(hdfs_dir)
104 | copy(src=local_dir, dst=hdfs_dir)
105 |
106 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | # Byte-compiled / optimized / DLL files
2 | __pycache__/
3 | *.py[cod]
4 | *$py.class
5 |
6 | # C extensions
7 | *.so
8 |
9 | # Distribution / packaging
10 | .Python
11 | build/
12 | develop-eggs/
13 | dist/
14 | downloads/
15 | eggs/
16 | .eggs/
17 | lib/
18 | lib64/
19 | parts/
20 | sdist/
21 | var/
22 | wheels/
23 | share/python-wheels/
24 | *.egg-info/
25 | .installed.cfg
26 | *.egg
27 | MANIFEST
28 |
29 | # PyInstaller
30 | # Usually these files are written by a python script from a template
31 | # before PyInstaller builds the exe, so as to inject date/other infos into it.
32 | *.manifest
33 | *.spec
34 |
35 | # Installer logs
36 | pip-log.txt
37 | pip-delete-this-directory.txt
38 |
39 | # Unit test / coverage reports
40 | htmlcov/
41 | .tox/
42 | .nox/
43 | .coverage
44 | .coverage.*
45 | .cache
46 | nosetests.xml
47 | coverage.xml
48 | *.cover
49 | *.py,cover
50 | .hypothesis/
51 | .pytest_cache/
52 | cover/
53 |
54 | # Translations
55 | *.mo
56 | *.pot
57 |
58 | # Django stuff:
59 | *.log
60 | local_settings.py
61 | db.sqlite3
62 | db.sqlite3-journal
63 |
64 | # Flask stuff:
65 | instance/
66 | .webassets-cache
67 |
68 | # Scrapy stuff:
69 | .scrapy
70 |
71 | # Sphinx documentation
72 | docs/_build/
73 |
74 | # PyBuilder
75 | .pybuilder/
76 | target/
77 |
78 | # Jupyter Notebook
79 | .ipynb_checkpoints
80 |
81 | # IPython
82 | profile_default/
83 | ipython_config.py
84 |
85 | # pyenv
86 | # For a library or package, you might want to ignore these files since the code is
87 | # intended to run in multiple environments; otherwise, check them in:
88 | # .python-version
89 |
90 | # pipenv
91 | # According to pypa/pipenv#598, it is recommended to include Pipfile.lock in version control.
92 | # However, in case of collaboration, if having platform-specific dependencies or dependencies
93 | # having no cross-platform support, pipenv may install dependencies that don't work, or not
94 | # install all needed dependencies.
95 | #Pipfile.lock
96 |
97 | # UV
98 | # Similar to Pipfile.lock, it is generally recommended to include uv.lock in version control.
99 | # This is especially recommended for binary packages to ensure reproducibility, and is more
100 | # commonly ignored for libraries.
101 | #uv.lock
102 |
103 | # poetry
104 | # Similar to Pipfile.lock, it is generally recommended to include poetry.lock in version control.
105 | # This is especially recommended for binary packages to ensure reproducibility, and is more
106 | # commonly ignored for libraries.
107 | # https://python-poetry.org/docs/basic-usage/#commit-your-poetrylock-file-to-version-control
108 | #poetry.lock
109 |
110 | # pdm
111 | # Similar to Pipfile.lock, it is generally recommended to include pdm.lock in version control.
112 | #pdm.lock
113 | # pdm stores project-wide configurations in .pdm.toml, but it is recommended to not include it
114 | # in version control.
115 | # https://pdm.fming.dev/latest/usage/project/#working-with-version-control
116 | .pdm.toml
117 | .pdm-python
118 | .pdm-build/
119 |
120 | # PEP 582; used by e.g. github.com/David-OConnor/pyflow and github.com/pdm-project/pdm
121 | __pypackages__/
122 |
123 | # Celery stuff
124 | celerybeat-schedule
125 | celerybeat.pid
126 |
127 | # SageMath parsed files
128 | *.sage.py
129 |
130 | # Environments
131 | .env
132 | .venv
133 | env/
134 | venv/
135 | ENV/
136 | env.bak/
137 | venv.bak/
138 |
139 | # Spyder project settings
140 | .spyderproject
141 | .spyproject
142 |
143 | # Rope project settings
144 | .ropeproject
145 |
146 | # mkdocs documentation
147 | /site
148 |
149 | # mypy
150 | .mypy_cache/
151 | .dmypy.json
152 | dmypy.json
153 |
154 | # Pyre type checker
155 | .pyre/
156 |
157 | # pytype static type analyzer
158 | .pytype/
159 |
160 | # Cython debug symbols
161 | cython_debug/
162 |
163 | # PyCharm
164 | # JetBrains specific template is maintained in a separate JetBrains.gitignore that can
165 | # be found at https://github.com/github/gitignore/blob/main/Global/JetBrains.gitignore
166 | # and can be added to the global gitignore or merged into this file. For a more nuclear
167 | # option (not recommended) you can uncomment the following to ignore the entire idea folder.
168 | #.idea/
169 |
170 | # PyPI configuration file
171 | .pypirc
172 |
173 | dev/
174 | data/
175 | **/outputs/
176 | **/wandb/
177 | checkpoints/
--------------------------------------------------------------------------------
/main_ppo.py:
--------------------------------------------------------------------------------
1 | # Copyright 2024 Bytedance Ltd. and/or its affiliates
2 | #
3 | # Licensed under the Apache License, Version 2.0 (the "License");
4 | # you may not use this file except in compliance with the License.
5 | # You may obtain a copy of the License at
6 | #
7 | # http://www.apache.org/licenses/LICENSE-2.0
8 | #
9 | # Unless required by applicable law or agreed to in writing, software
10 | # distributed under the License is distributed on an "AS IS" BASIS,
11 | # WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12 | # See the License for the specific language governing permissions and
13 | # limitations under the License.
14 | """
15 | Note that we don't combine the main with ray_trainer as ray_trainer is used by other main.
16 | """
17 | import hydra
18 | import ray
19 | from verl.trainer.ppo.ray_trainer import RayPPOTrainer
20 |
21 | from nanoverl.rewards.deepscaler_rule_reward import deepscaler_reward_fn
22 |
23 |
24 | @hydra.main(config_path='nanoverl/config', config_name='ppo_trainer', version_base=None)
25 | def main(config):
26 | #FIXME skip yaml since it is too complicated, force to use nanoverl rewards for now
27 | compute_score = deepscaler_reward_fn if True else None
28 | run_ppo(config, compute_score)
29 |
30 |
31 | def run_ppo(config, compute_score=None):
32 | if not ray.is_initialized():
33 | # this is for local ray cluster
34 | ray.init(runtime_env={'env_vars': {'TOKENIZERS_PARALLELISM': 'true', 'NCCL_DEBUG': 'WARN'}})
35 |
36 | ray.get(main_task.remote(config, compute_score))
37 |
38 |
39 | @ray.remote(num_cpus=1) # please make sure main_task is not scheduled on head
40 | def main_task(config, compute_score=None):
41 | # print initial config
42 | from pprint import pprint
43 |
44 | from omegaconf import OmegaConf
45 | from verl.utils.fs import copy_local_path_from_hdfs
46 | pprint(OmegaConf.to_container(config, resolve=True)) # resolve=True will eval symbol values
47 | OmegaConf.resolve(config)
48 |
49 | # download the checkpoint from hdfs
50 | local_path = copy_local_path_from_hdfs(config.actor_rollout_ref.model.path)
51 |
52 | # instantiate tokenizer
53 | from verl.utils import hf_tokenizer
54 | tokenizer = hf_tokenizer(local_path)
55 |
56 | # define worker classes
57 | if config.actor_rollout_ref.actor.strategy == 'fsdp':
58 | assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
59 | from verl.single_controller.ray import RayWorkerGroup
60 | from verl.workers.fsdp_workers import (ActorRolloutRefWorker,
61 | CriticWorker)
62 | ray_worker_group_cls = RayWorkerGroup
63 |
64 | elif config.actor_rollout_ref.actor.strategy == 'megatron':
65 | assert config.actor_rollout_ref.actor.strategy == config.critic.strategy
66 | from verl.single_controller.ray.megatron import \
67 | NVMegatronRayWorkerGroup
68 | from verl.workers.megatron_workers import (ActorRolloutRefWorker,
69 | CriticWorker)
70 | ray_worker_group_cls = NVMegatronRayWorkerGroup
71 |
72 | else:
73 | raise NotImplementedError
74 |
75 | from verl.trainer.ppo.ray_trainer import ResourcePoolManager, Role
76 |
77 | role_worker_mapping = {
78 | Role.ActorRollout: ray.remote(ActorRolloutRefWorker),
79 | Role.Critic: ray.remote(CriticWorker),
80 | Role.RefPolicy: ray.remote(ActorRolloutRefWorker)
81 | }
82 |
83 | global_pool_id = 'global_pool'
84 | resource_pool_spec = {
85 | global_pool_id: [config.trainer.n_gpus_per_node] * config.trainer.nnodes,
86 | }
87 | mapping = {
88 | Role.ActorRollout: global_pool_id,
89 | Role.Critic: global_pool_id,
90 | Role.RefPolicy: global_pool_id,
91 | }
92 |
93 | # we should adopt a multi-source reward function here
94 | # - for rule-based rm, we directly call a reward score
95 | # - for model-based rm, we call a model
96 | # - for code related prompt, we send to a sandbox if there are test cases
97 | # - finally, we combine all the rewards together
98 | # - The reward type depends on the tag of the data
99 | if config.reward_model.enable:
100 | if config.reward_model.strategy == 'fsdp':
101 | from verl.workers.fsdp_workers import RewardModelWorker
102 | elif config.reward_model.strategy == 'megatron':
103 | from verl.workers.megatron_workers import RewardModelWorker
104 | else:
105 | raise NotImplementedError
106 | role_worker_mapping[Role.RewardModel] = ray.remote(RewardModelWorker)
107 | mapping[Role.RewardModel] = global_pool_id
108 |
109 | reward_manager_name = config.reward_model.get("reward_manager", "naive")
110 | if reward_manager_name == 'naive':
111 | from verl.workers.reward_manager import NaiveRewardManager
112 | reward_manager_cls = NaiveRewardManager
113 | elif reward_manager_name == 'prime':
114 | from verl.workers.reward_manager import PrimeRewardManager
115 | reward_manager_cls = PrimeRewardManager
116 | else:
117 | raise NotImplementedError
118 | reward_fn = reward_manager_cls(tokenizer=tokenizer, num_examine=0, compute_score=compute_score)
119 |
120 | # Note that we always use function-based RM for validation
121 | val_reward_fn = reward_manager_cls(tokenizer=tokenizer, num_examine=1, compute_score=compute_score)
122 |
123 | resource_pool_manager = ResourcePoolManager(resource_pool_spec=resource_pool_spec, mapping=mapping)
124 |
125 | trainer = RayPPOTrainer(config=config,
126 | tokenizer=tokenizer,
127 | role_worker_mapping=role_worker_mapping,
128 | resource_pool_manager=resource_pool_manager,
129 | ray_worker_group_cls=ray_worker_group_cls,
130 | reward_fn=reward_fn,
131 | val_reward_fn=val_reward_fn)
132 | trainer.init_workers()
133 | trainer.fit()
134 |
135 |
136 | if __name__ == '__main__':
137 | main()
--------------------------------------------------------------------------------
/examples/deepscaler/reasoning_eval.py:
--------------------------------------------------------------------------------
1 | """
2 | Usage:
3 | python -m sglang_router.launch_server \
4 | --model-path deepseek-ai/DeepSeek-R1-Distill-Qwen-1.5B \
5 | --port 30000 --dp-size 8
6 | python reasoning_eval.py \
7 | --data-path nanoverl/aime \
8 | --parallel 256 \
9 | --num-tries 16 \
10 | --question-key problem
11 | """
12 | import argparse
13 | import json
14 | import time
15 |
16 | from datasets import load_dataset
17 | from math_verify import parse, verify, LatexExtractionConfig
18 | from latex2sympy2_extended import NormalizationConfig
19 |
20 | import sglang as sgl
21 | from sglang.test.test_utils import (
22 | add_common_sglang_args_and_parse,
23 | select_sglang_backend,
24 | )
25 | from sglang.utils import dump_state_text
26 |
27 | @sgl.function
28 | def reasoning_gen(s, question: str):
29 | s += sgl.user(
30 | question
31 | + " Please reason step by step, and put your final answer within \\boxed{}."
32 | )
33 | s += sgl.assistant(
34 | sgl.gen(
35 | "answer",
36 | )
37 | )
38 |
39 |
40 | def convert_dataset(path: str, question_key: str, answer_key: str, num_tries: int):
41 | raw_dataset = load_dataset(path)
42 | questions = []
43 | answers = []
44 | for data in raw_dataset["test"]:
45 | question = data[question_key]
46 | answer = data[answer_key]
47 | for _ in range(num_tries):
48 | questions.append({"question": question})
49 | answers.append({"answer": answer})
50 | return questions, answers
51 |
52 |
53 | def main(args):
54 | # Select backend
55 | sgl.set_default_backend(select_sglang_backend(args))
56 |
57 | # Get dataset
58 | questions, answers = convert_dataset(
59 | args.data_path, args.question_key, args.answer_key, args.num_tries
60 | )
61 |
62 | # Run requests
63 | tic = time.time()
64 | states = reasoning_gen.run_batch(
65 | questions,
66 | num_threads=args.parallel,
67 | progress_bar=True,
68 | temperature=0.6,
69 | max_new_tokens=32768,
70 | top_p=0.95,
71 | )
72 | latency = time.time() - tic
73 |
74 | # Extract answers
75 | # Calculate Pass@K, since we have multiple tries
76 | problem_group = dict()
77 | for i, state in enumerate(states):
78 | try:
79 | pred_answer = parse(
80 | state["answer"],
81 | extraction_config=[
82 | LatexExtractionConfig(
83 | normalization_config=NormalizationConfig(
84 | nits=False,
85 | malformed_operators=False,
86 | basic_latex=True,
87 | equations=True,
88 | boxed="all",
89 | units=True,
90 | ),
91 | # Ensures that boxed is tried first
92 | boxed_match_priority=True,
93 | try_extract_without_anchor=False,
94 | )
95 | ],
96 | extraction_mode="first_match",
97 | )
98 | # turn number to string
99 | if isinstance(answers[i]["answer"], (int, float)):
100 | gt_answer = str(answers[i]["answer"])
101 | else:
102 | gt_answer = parse(answers[i]["answer"])
103 |
104 | correct = 1 if verify(pred_answer, gt_answer) else 0
105 |
106 | question = questions[i]["question"]
107 | if question not in problem_group:
108 | problem_group[question] = []
109 | if len(pred_answer) > 0:
110 | problem_group[question].append((correct, pred_answer[0]))
111 | else:
112 | problem_group[question].append((correct, None))
113 | except Exception as e:
114 | print(pred_answer, gt_answer)
115 | print(f"Error extracting answer: {e}")
116 | pass
117 |
118 | # Calculate Pass@1
119 | pass_1 = 0
120 | for question, results in problem_group.items():
121 | pass_1 += sum([1 for crt, _ in results if crt == 1])
122 | pass_1 /= len(states)
123 | print(f"Pass@1: {pass_1}")
124 |
125 | # Calculate Cons@K (Majority Vote)
126 | from collections import Counter
127 | cons_k = 0
128 | if args.num_tries > 1:
129 | for question, results in problem_group.items():
130 | # if most common answer is correct, then it is correct
131 | # print(Counter(results).most_common(1)[0][0][0])
132 | if Counter(results).most_common(1)[0][0][0] == 1:
133 | cons_k += 1
134 | cons_k /= len(problem_group)
135 | print(f"Cons@{args.num_tries}: {cons_k}")
136 |
137 | # Calculate output throughput
138 | num_output_tokens = sum(
139 | s.get_meta_info("answer")["completion_tokens"] for s in states
140 | )
141 | output_throughput = num_output_tokens / latency
142 | print(f"Output throughput: {output_throughput} token/s")
143 |
144 | # Dump results
145 | dump_state_text(f"tmp_output_{args.backend}.txt", states)
146 |
147 | # Write results
148 | with open(args.result_file, "a") as fout:
149 | value = {
150 | "task": args.data_path,
151 | "backend": args.backend,
152 | "latency": round(latency, 3),
153 | "pass_1": round(pass_1, 3),
154 | "cons_k": round(cons_k, 3),
155 | "num_requests": len(questions),
156 | "other": {
157 | "num_questions": len(questions),
158 | "parallel": args.parallel,
159 | },
160 | }
161 | fout.write(json.dumps(value) + "\n")
162 |
163 |
164 | if __name__ == "__main__":
165 | parser = argparse.ArgumentParser()
166 | parser.add_argument("--data-path", type=str, default="nanoverl/aime")
167 | parser.add_argument("--question-key", type=str, default="problem")
168 | parser.add_argument("--answer-key", type=str, default="answer")
169 | parser.add_argument("--num-tries", type=int, default=16)
170 | add_common_sglang_args_and_parse(parser)
171 | args = parser.parse_args()
172 | main(args)
--------------------------------------------------------------------------------
/nanoverl/rewards/deepscaler_rule_reward.py:
--------------------------------------------------------------------------------
1 | """
2 | https://github.com/agentica-project/deepscaler/blob/main/deepscaler/rewards/math_reward.py
3 | This module contains the RewardMathFn class, which evaluates mathematical answers
4 | and assigns rewards based on their correctness. It utilizes a language model to
5 | validate answers when necessary.
6 | """
7 | from typing import List, Union
8 |
9 | from latex2sympy2_extended import NormalizationConfig
10 | from math_verify import LatexExtractionConfig, parse, verify
11 |
12 | from nanoverl.rewards import (RewardConfig, RewardFn, RewardInput,
13 | RewardOutput, RewardType)
14 |
15 | THOUGHT_DELIMITER_START = ""
16 | THOUGHT_DELIMITER_END = ""
17 |
18 | class RewardMathFn(RewardFn):
19 | """
20 | Reward function for evaluating mathematical answers.
21 |
22 | This class implements the __call__ method to process the input and determine
23 | the reward based on the correctness of the provided answer compared to the ground truth.
24 | """
25 |
26 | def __call__(self, input: RewardInput) -> RewardOutput:
27 | assert input.problem_type == RewardType.MATH, \
28 | "Invalid problem type: expected 'MATH', but got '{}'".format(input.problem_type)
29 |
30 | # @fan: problem only used for ORM
31 | # problem = input.problem
32 | model_response = input.model_response
33 |
34 | # Extract solution.
35 | if THOUGHT_DELIMITER_START in model_response and THOUGHT_DELIMITER_END in model_response:
36 | model_solution = model_response.split(THOUGHT_DELIMITER_END)[1]
37 | else:
38 | return RewardOutput(reward=self.config.format_error_reward, is_correct=False)
39 |
40 | # FIXME @fan use math_verify to parse the model solution for now
41 | # we use open-r1 acc_reward for this:
42 | # https://github.com/huggingface/open-r1/blob/main/src/open_r1/rewards.py
43 | model_answers = parse(
44 | model_solution,
45 | extraction_config=[
46 | LatexExtractionConfig(
47 | normalization_config=NormalizationConfig(
48 | nits=False,
49 | malformed_operators=False,
50 | basic_latex=True,
51 | equations=True,
52 | boxed="all",
53 | units=True,
54 | ),
55 | # Ensures that boxed is tried first
56 | boxed_match_priority=True,
57 | try_extract_without_anchor=False,
58 | )
59 | ],
60 | extraction_mode="first_match",
61 | )
62 | if model_answers is None or len(model_answers) == 0:
63 | return RewardOutput(reward=self.config.format_error_reward, is_correct=False)
64 |
65 | # Process the ground truth(s)
66 | ground_truths = input.ground_truth.get("answer", None)
67 | if ground_truths is None:
68 | return RewardOutput(reward=self.config.unk_error_reward, is_correct=False)
69 |
70 | # Convert single answer to list for uniform processing
71 | if isinstance(ground_truths, (str, float, int)):
72 | ground_truths = [ground_truths]
73 |
74 | # Process each ground truth
75 | processed_ground_truths = []
76 | for truth in ground_truths:
77 | truth = str(truth)
78 | if "\\boxed" in truth:
79 | processed_truth = parse(
80 | truth,
81 | extraction_config=[
82 | LatexExtractionConfig(
83 | normalization_config=NormalizationConfig(
84 | nits=False,
85 | malformed_operators=False,
86 | basic_latex=True,
87 | equations=True,
88 | boxed="all",
89 | units=True,
90 | ),
91 | # Ensures that boxed is tried first
92 | boxed_match_priority=True,
93 | try_extract_without_anchor=False,
94 | )
95 | ],
96 | extraction_mode="first_match",
97 | )
98 | if processed_truth is not None:
99 | processed_ground_truths.extend(processed_truth)
100 | else:
101 | truth = parse(truth)
102 | processed_ground_truths.extend(truth)
103 |
104 | if not processed_ground_truths:
105 | return RewardOutput(reward=self.config.unk_error_reward, is_correct=False)
106 |
107 | # Check against all possible correct answers
108 | is_correct = verify(model_answers, processed_ground_truths)
109 | if is_correct:
110 | return RewardOutput(reward=self.config.correct_reward, is_correct=True)
111 |
112 | # If latex heuristics fail and ORM is enabled, use LLM as ORM to evaluate correctness
113 | if self.config.use_math_orm:
114 | raise NotImplementedError("ORM is not used in nanoverl yet.")
115 |
116 | return RewardOutput(reward=self.config.incorrect_reward, is_correct=False)
117 |
118 | def deepscaler_reward_fn(data_source: str, solution_str: str, ground_truth: Union[str, List[str]], enable_llm = False):
119 | reward_config = RewardConfig()
120 | reward_config.use_math_orm = enable_llm
121 | reward_fn = RewardMathFn(reward_config)
122 | reward_response = reward_fn(RewardInput(problem=solution_str, problem_type=RewardType.MATH, model_response=solution_str, ground_truth={"answer": ground_truth}))
123 | return reward_response.is_correct
124 |
125 | if __name__ == "__main__":
126 | reward = RewardMathFn(RewardConfig)
127 | input = RewardInput(
128 | problem="Let $P(x)=x^{4}+2 x^{3}-13 x^{2}-14 x+24$ be a polynomial with roots $r_{1}, r_{2}, r_{3}, r_{4}$. Let $Q$ be the quartic polynomial with roots $r_{1}^{2}, r_{2}^{2}, r_{3}^{2}, r_{4}^{2}$, such that the coefficient of the $x^{4}$ term of $Q$ is 1. Simplify the quotient $Q\\left(x^{2}\\right) / P(x)$, leaving your answer in terms of $x$. (You may assume that $x$ is not equal to any of $\\left.r_{1}, r_{2}, r_{3}, r_{4}\\right)$.",
129 | problem_type=RewardType.MATH,
130 | model_response=" I am omniscient. \\boxed{24 + 14*x + (-13)*x^2 - 2*x^3 + x^4} The answer is \\boxed{24 + 14*x + (-13)*x^2 - 2*x^3 + x^4}.",
131 | ground_truth={"answer": ["10", "$x^{4}-2 x^{3}-13 x^{2}+14 x+24$"]})
132 | output = reward(input)
133 | print(output)
--------------------------------------------------------------------------------
/nanoverl/config/ppo_trainer.yaml:
--------------------------------------------------------------------------------
1 | data:
2 | tokenizer: null
3 | train_files: ~/data/rlhf/gsm8k/train.parquet
4 | val_files: ~/data/rlhf/gsm8k/test.parquet
5 | prompt_key: prompt
6 | max_prompt_length: 512
7 | max_response_length: 512
8 | train_batch_size: 1024
9 | val_batch_size: 1312
10 | return_raw_input_ids: False # This should be set to true when the tokenizer between policy and rm differs
11 | return_raw_chat: False
12 | shuffle: True
13 |
14 | actor_rollout_ref:
15 | hybrid_engine: True
16 | model:
17 | path: ~/models/deepseek-llm-7b-chat
18 | external_lib: null
19 | override_config: { }
20 | enable_gradient_checkpointing: True
21 | use_remove_padding: False
22 | actor:
23 | strategy: fsdp # This is for backward-compatibility
24 | ppo_mini_batch_size: 256
25 | ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
26 | ppo_micro_batch_size_per_gpu: null
27 | use_dynamic_bsz: False
28 | ppo_max_token_len_per_gpu: 16384 # n * ${data.max_prompt_length} + ${data.max_response_length}
29 | grad_clip: 1.0
30 | clip_ratio: 0.2
31 | entropy_coeff: 0.001
32 | use_kl_loss: False # True for GRPO
33 | kl_loss_coef: 0.001 # for grpo
34 | kl_loss_type: low_var_kl # for grpo
35 | ppo_epochs: 1
36 | shuffle: False
37 | ulysses_sequence_parallel_size: 1 # sp size
38 | optim:
39 | lr: 1e-6
40 | lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
41 | min_lr_ratio: null # only useful for warmup with cosine
42 | warmup_style: constant # select from constant/cosine
43 | total_training_steps: -1 # must be override by program
44 | fsdp_config:
45 | wrap_policy:
46 | # transformer_layer_cls_to_wrap: None
47 | min_num_params: 0
48 | param_offload: False
49 | grad_offload: False
50 | optimizer_offload: False
51 | fsdp_size: -1
52 | ref:
53 | fsdp_config:
54 | param_offload: False
55 | wrap_policy:
56 | # transformer_layer_cls_to_wrap: None
57 | min_num_params: 0
58 | log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
59 | log_prob_micro_batch_size_per_gpu: null
60 | log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
61 | log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
62 | ulysses_sequence_parallel_size: ${actor_rollout_ref.actor.ulysses_sequence_parallel_size} # sp size
63 | rollout:
64 | name: vllm
65 | temperature: 1.0
66 | top_k: -1 # 0 for hf rollout, -1 for vllm rollout
67 | top_p: 1
68 | prompt_length: ${data.max_prompt_length} # not use for opensource
69 | response_length: ${data.max_response_length}
70 | # for vllm rollout
71 | dtype: bfloat16 # should align with FSDP
72 | gpu_memory_utilization: 0.5
73 | ignore_eos: False
74 | enforce_eager: True
75 | free_cache_engine: True
76 | load_format: dummy_dtensor
77 | tensor_model_parallel_size: 2
78 | max_num_batched_tokens: 8192
79 | max_num_seqs: 1024
80 | log_prob_micro_batch_size: null # will be deprecated, use log_prob_micro_batch_size_per_gpu
81 | log_prob_micro_batch_size_per_gpu: null
82 | log_prob_use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
83 | log_prob_max_token_len_per_gpu: ${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}
84 | disable_log_stats: True
85 | enable_chunked_prefill: True # could get higher throughput
86 | # for hf rollout
87 | do_sample: True
88 | # number of responses (i.e. num sample times)
89 | n: 1 # > 1 for grpo
90 |
91 | critic:
92 | strategy: fsdp
93 | optim:
94 | lr: 1e-5
95 | lr_warmup_steps_ratio: 0. # the total steps will be injected during runtime
96 | min_lr_ratio: null # only useful for warmup with cosine
97 | warmup_style: constant # select from constant/cosine
98 | total_training_steps: -1 # must be override by program
99 | model:
100 | path: ~/models/deepseek-llm-7b-chat
101 | tokenizer_path: ${actor_rollout_ref.model.path}
102 | override_config: { }
103 | external_lib: ${actor_rollout_ref.model.external_lib}
104 | enable_gradient_checkpointing: True
105 | use_remove_padding: False
106 | fsdp_config:
107 | param_offload: False
108 | grad_offload: False
109 | optimizer_offload: False
110 | wrap_policy:
111 | # transformer_layer_cls_to_wrap: None
112 | min_num_params: 0
113 | fsdp_size: -1
114 | ppo_mini_batch_size: ${actor_rollout_ref.actor.ppo_mini_batch_size}
115 | ppo_micro_batch_size: null # will be deprecated, use ppo_micro_batch_size_per_gpu
116 | ppo_micro_batch_size_per_gpu: null
117 | forward_micro_batch_size: ${critic.ppo_micro_batch_size}
118 | forward_micro_batch_size_per_gpu: ${critic.ppo_micro_batch_size_per_gpu}
119 | use_dynamic_bsz: ${actor_rollout_ref.actor.use_dynamic_bsz}
120 | ppo_max_token_len_per_gpu: 32768 # (${actor_rollout_ref.actor.ppo_max_token_len_per_gpu}) * 2
121 | forward_max_token_len_per_gpu: ${critic.ppo_max_token_len_per_gpu}
122 | ulysses_sequence_parallel_size: 1 # sp size
123 | ppo_epochs: ${actor_rollout_ref.actor.ppo_epochs}
124 | shuffle: ${actor_rollout_ref.actor.shuffle}
125 | grad_clip: 1.0
126 | cliprange_value: 0.5
127 |
128 | reward_model:
129 | enable: False
130 | strategy: fsdp
131 | model:
132 | input_tokenizer: ${actor_rollout_ref.model.path} # set this to null if the chat template is identical
133 | path: ~/models/FsfairX-LLaMA3-RM-v0.1
134 | external_lib: ${actor_rollout_ref.model.external_lib}
135 | use_remove_padding: False
136 | fsdp_config:
137 | min_num_params: 0
138 | param_offload: False
139 | fsdp_size: -1
140 | micro_batch_size: null # will be deprecated, use micro_batch_size_per_gpu
141 | micro_batch_size_per_gpu: null # set a number
142 | max_length: null
143 | ulysses_sequence_parallel_size: 1 # sp size
144 | use_dynamic_bsz: ${critic.use_dynamic_bsz}
145 | forward_max_token_len_per_gpu: ${critic.forward_max_token_len_per_gpu}
146 | reward_manager: naive
147 |
148 | algorithm:
149 | gamma: 1.0
150 | lam: 1.0
151 | adv_estimator: gae
152 | kl_penalty: kl # how to estimate kl divergence
153 | kl_ctrl:
154 | type: fixed
155 | kl_coef: 0.001
156 |
157 | trainer:
158 | total_epochs: 30
159 | total_training_steps: null
160 | project_name: verl_examples
161 | experiment_name: gsm8k
162 | logger: [ 'console', 'wandb' ]
163 | val_generations_to_log_to_wandb: 0
164 | nnodes: 1
165 | n_gpus_per_node: 8
166 | save_freq: -1
167 | # auto: find the last ckpt to resume. If can't find, start from scratch
168 | resume_mode: auto # or auto or resume_path if
169 | resume_from_path: False
170 | test_freq: -1
171 | critic_warmup: 0
172 | default_hdfs_dir: null
173 | remove_previous_ckpt_in_save: False
174 | del_local_ckpt_after_load: False
175 | default_local_dir: checkpoints/${trainer.project_name}/${trainer.experiment_name}
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright [yyyy] [name of copyright owner]
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------