├── 1-Simple Linear Regression.pdf ├── 2-Ridge And Lasso Regression.pdf ├── 3-Logistic Regression.pdf ├── 4-Naive Bayes.pdf ├── Decision Tree Practical Implementation.ipynb ├── Decision Tree Preprunning Practical Implementation.ipynb ├── Deicsion Tree Regression And Cross Validation.ipynb ├── LICENSE ├── Linear Regression Practical Implementation-Hindi.ipynb ├── Logistic Regression Practical Implementation.ipynb ├── Postprunning and preprunning decision tree.pdf ├── README.md ├── Randomforestregressionandclassification.pdf ├── Ridge And Lasso Practical.ipynb ├── SVR Algorithms.pdf ├── decision tree.pdf ├── mse,mae,rmse.pdf ├── r2adjustedr2.pdf ├── train,test and validation.pdf └── typesofcrossvalidation.pdf /1-Simple Linear Regression.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/1-Simple Linear Regression.pdf -------------------------------------------------------------------------------- /2-Ridge And Lasso Regression.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/2-Ridge And Lasso Regression.pdf -------------------------------------------------------------------------------- /3-Logistic Regression.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/3-Logistic Regression.pdf -------------------------------------------------------------------------------- /4-Naive Bayes.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/4-Naive Bayes.pdf -------------------------------------------------------------------------------- /LICENSE: -------------------------------------------------------------------------------- 1 | GNU GENERAL PUBLIC LICENSE 2 | Version 3, 29 June 2007 3 | 4 | Copyright (C) 2007 Free Software Foundation, Inc. 5 | Everyone is permitted to copy and distribute verbatim copies 6 | of this license document, but changing it is not allowed. 7 | 8 | Preamble 9 | 10 | The GNU General Public License is a free, copyleft license for 11 | software and other kinds of works. 12 | 13 | The licenses for most software and other practical works are designed 14 | to take away your freedom to share and change the works. By contrast, 15 | the GNU General Public License is intended to guarantee your freedom to 16 | share and change all versions of a program--to make sure it remains free 17 | software for all its users. We, the Free Software Foundation, use the 18 | GNU General Public License for most of our software; it applies also to 19 | any other work released this way by its authors. You can apply it to 20 | your programs, too. 21 | 22 | When we speak of free software, we are referring to freedom, not 23 | price. Our General Public Licenses are designed to make sure that you 24 | have the freedom to distribute copies of free software (and charge for 25 | them if you wish), that you receive source code or can get it if you 26 | want it, that you can change the software or use pieces of it in new 27 | free programs, and that you know you can do these things. 28 | 29 | To protect your rights, we need to prevent others from denying you 30 | these rights or asking you to surrender the rights. Therefore, you have 31 | certain responsibilities if you distribute copies of the software, or if 32 | you modify it: responsibilities to respect the freedom of others. 33 | 34 | For example, if you distribute copies of such a program, whether 35 | gratis or for a fee, you must pass on to the recipients the same 36 | freedoms that you received. You must make sure that they, too, receive 37 | or can get the source code. And you must show them these terms so they 38 | know their rights. 39 | 40 | Developers that use the GNU GPL protect your rights with two steps: 41 | (1) assert copyright on the software, and (2) offer you this License 42 | giving you legal permission to copy, distribute and/or modify it. 43 | 44 | For the developers' and authors' protection, the GPL clearly explains 45 | that there is no warranty for this free software. For both users' and 46 | authors' sake, the GPL requires that modified versions be marked as 47 | changed, so that their problems will not be attributed erroneously to 48 | authors of previous versions. 49 | 50 | Some devices are designed to deny users access to install or run 51 | modified versions of the software inside them, although the manufacturer 52 | can do so. This is fundamentally incompatible with the aim of 53 | protecting users' freedom to change the software. The systematic 54 | pattern of such abuse occurs in the area of products for individuals to 55 | use, which is precisely where it is most unacceptable. Therefore, we 56 | have designed this version of the GPL to prohibit the practice for those 57 | products. If such problems arise substantially in other domains, we 58 | stand ready to extend this provision to those domains in future versions 59 | of the GPL, as needed to protect the freedom of users. 60 | 61 | Finally, every program is threatened constantly by software patents. 62 | States should not allow patents to restrict development and use of 63 | software on general-purpose computers, but in those that do, we wish to 64 | avoid the special danger that patents applied to a free program could 65 | make it effectively proprietary. To prevent this, the GPL assures that 66 | patents cannot be used to render the program non-free. 67 | 68 | The precise terms and conditions for copying, distribution and 69 | modification follow. 70 | 71 | TERMS AND CONDITIONS 72 | 73 | 0. Definitions. 74 | 75 | "This License" refers to version 3 of the GNU General Public License. 76 | 77 | "Copyright" also means copyright-like laws that apply to other kinds of 78 | works, such as semiconductor masks. 79 | 80 | "The Program" refers to any copyrightable work licensed under this 81 | License. Each licensee is addressed as "you". "Licensees" and 82 | "recipients" may be individuals or organizations. 83 | 84 | To "modify" a work means to copy from or adapt all or part of the work 85 | in a fashion requiring copyright permission, other than the making of an 86 | exact copy. The resulting work is called a "modified version" of the 87 | earlier work or a work "based on" the earlier work. 88 | 89 | A "covered work" means either the unmodified Program or a work based 90 | on the Program. 91 | 92 | To "propagate" a work means to do anything with it that, without 93 | permission, would make you directly or secondarily liable for 94 | infringement under applicable copyright law, except executing it on a 95 | computer or modifying a private copy. Propagation includes copying, 96 | distribution (with or without modification), making available to the 97 | public, and in some countries other activities as well. 98 | 99 | To "convey" a work means any kind of propagation that enables other 100 | parties to make or receive copies. Mere interaction with a user through 101 | a computer network, with no transfer of a copy, is not conveying. 102 | 103 | An interactive user interface displays "Appropriate Legal Notices" 104 | to the extent that it includes a convenient and prominently visible 105 | feature that (1) displays an appropriate copyright notice, and (2) 106 | tells the user that there is no warranty for the work (except to the 107 | extent that warranties are provided), that licensees may convey the 108 | work under this License, and how to view a copy of this License. If 109 | the interface presents a list of user commands or options, such as a 110 | menu, a prominent item in the list meets this criterion. 111 | 112 | 1. Source Code. 113 | 114 | The "source code" for a work means the preferred form of the work 115 | for making modifications to it. "Object code" means any non-source 116 | form of a work. 117 | 118 | A "Standard Interface" means an interface that either is an official 119 | standard defined by a recognized standards body, or, in the case of 120 | interfaces specified for a particular programming language, one that 121 | is widely used among developers working in that language. 122 | 123 | The "System Libraries" of an executable work include anything, other 124 | than the work as a whole, that (a) is included in the normal form of 125 | packaging a Major Component, but which is not part of that Major 126 | Component, and (b) serves only to enable use of the work with that 127 | Major Component, or to implement a Standard Interface for which an 128 | implementation is available to the public in source code form. A 129 | "Major Component", in this context, means a major essential component 130 | (kernel, window system, and so on) of the specific operating system 131 | (if any) on which the executable work runs, or a compiler used to 132 | produce the work, or an object code interpreter used to run it. 133 | 134 | The "Corresponding Source" for a work in object code form means all 135 | the source code needed to generate, install, and (for an executable 136 | work) run the object code and to modify the work, including scripts to 137 | control those activities. However, it does not include the work's 138 | System Libraries, or general-purpose tools or generally available free 139 | programs which are used unmodified in performing those activities but 140 | which are not part of the work. For example, Corresponding Source 141 | includes interface definition files associated with source files for 142 | the work, and the source code for shared libraries and dynamically 143 | linked subprograms that the work is specifically designed to require, 144 | such as by intimate data communication or control flow between those 145 | subprograms and other parts of the work. 146 | 147 | The Corresponding Source need not include anything that users 148 | can regenerate automatically from other parts of the Corresponding 149 | Source. 150 | 151 | The Corresponding Source for a work in source code form is that 152 | same work. 153 | 154 | 2. Basic Permissions. 155 | 156 | All rights granted under this License are granted for the term of 157 | copyright on the Program, and are irrevocable provided the stated 158 | conditions are met. This License explicitly affirms your unlimited 159 | permission to run the unmodified Program. The output from running a 160 | covered work is covered by this License only if the output, given its 161 | content, constitutes a covered work. This License acknowledges your 162 | rights of fair use or other equivalent, as provided by copyright law. 163 | 164 | You may make, run and propagate covered works that you do not 165 | convey, without conditions so long as your license otherwise remains 166 | in force. You may convey covered works to others for the sole purpose 167 | of having them make modifications exclusively for you, or provide you 168 | with facilities for running those works, provided that you comply with 169 | the terms of this License in conveying all material for which you do 170 | not control copyright. Those thus making or running the covered works 171 | for you must do so exclusively on your behalf, under your direction 172 | and control, on terms that prohibit them from making any copies of 173 | your copyrighted material outside their relationship with you. 174 | 175 | Conveying under any other circumstances is permitted solely under 176 | the conditions stated below. Sublicensing is not allowed; section 10 177 | makes it unnecessary. 178 | 179 | 3. Protecting Users' Legal Rights From Anti-Circumvention Law. 180 | 181 | No covered work shall be deemed part of an effective technological 182 | measure under any applicable law fulfilling obligations under article 183 | 11 of the WIPO copyright treaty adopted on 20 December 1996, or 184 | similar laws prohibiting or restricting circumvention of such 185 | measures. 186 | 187 | When you convey a covered work, you waive any legal power to forbid 188 | circumvention of technological measures to the extent such circumvention 189 | is effected by exercising rights under this License with respect to 190 | the covered work, and you disclaim any intention to limit operation or 191 | modification of the work as a means of enforcing, against the work's 192 | users, your or third parties' legal rights to forbid circumvention of 193 | technological measures. 194 | 195 | 4. Conveying Verbatim Copies. 196 | 197 | You may convey verbatim copies of the Program's source code as you 198 | receive it, in any medium, provided that you conspicuously and 199 | appropriately publish on each copy an appropriate copyright notice; 200 | keep intact all notices stating that this License and any 201 | non-permissive terms added in accord with section 7 apply to the code; 202 | keep intact all notices of the absence of any warranty; and give all 203 | recipients a copy of this License along with the Program. 204 | 205 | You may charge any price or no price for each copy that you convey, 206 | and you may offer support or warranty protection for a fee. 207 | 208 | 5. Conveying Modified Source Versions. 209 | 210 | You may convey a work based on the Program, or the modifications to 211 | produce it from the Program, in the form of source code under the 212 | terms of section 4, provided that you also meet all of these conditions: 213 | 214 | a) The work must carry prominent notices stating that you modified 215 | it, and giving a relevant date. 216 | 217 | b) The work must carry prominent notices stating that it is 218 | released under this License and any conditions added under section 219 | 7. This requirement modifies the requirement in section 4 to 220 | "keep intact all notices". 221 | 222 | c) You must license the entire work, as a whole, under this 223 | License to anyone who comes into possession of a copy. This 224 | License will therefore apply, along with any applicable section 7 225 | additional terms, to the whole of the work, and all its parts, 226 | regardless of how they are packaged. This License gives no 227 | permission to license the work in any other way, but it does not 228 | invalidate such permission if you have separately received it. 229 | 230 | d) If the work has interactive user interfaces, each must display 231 | Appropriate Legal Notices; however, if the Program has interactive 232 | interfaces that do not display Appropriate Legal Notices, your 233 | work need not make them do so. 234 | 235 | A compilation of a covered work with other separate and independent 236 | works, which are not by their nature extensions of the covered work, 237 | and which are not combined with it such as to form a larger program, 238 | in or on a volume of a storage or distribution medium, is called an 239 | "aggregate" if the compilation and its resulting copyright are not 240 | used to limit the access or legal rights of the compilation's users 241 | beyond what the individual works permit. Inclusion of a covered work 242 | in an aggregate does not cause this License to apply to the other 243 | parts of the aggregate. 244 | 245 | 6. Conveying Non-Source Forms. 246 | 247 | You may convey a covered work in object code form under the terms 248 | of sections 4 and 5, provided that you also convey the 249 | machine-readable Corresponding Source under the terms of this License, 250 | in one of these ways: 251 | 252 | a) Convey the object code in, or embodied in, a physical product 253 | (including a physical distribution medium), accompanied by the 254 | Corresponding Source fixed on a durable physical medium 255 | customarily used for software interchange. 256 | 257 | b) Convey the object code in, or embodied in, a physical product 258 | (including a physical distribution medium), accompanied by a 259 | written offer, valid for at least three years and valid for as 260 | long as you offer spare parts or customer support for that product 261 | model, to give anyone who possesses the object code either (1) a 262 | copy of the Corresponding Source for all the software in the 263 | product that is covered by this License, on a durable physical 264 | medium customarily used for software interchange, for a price no 265 | more than your reasonable cost of physically performing this 266 | conveying of source, or (2) access to copy the 267 | Corresponding Source from a network server at no charge. 268 | 269 | c) Convey individual copies of the object code with a copy of the 270 | written offer to provide the Corresponding Source. This 271 | alternative is allowed only occasionally and noncommercially, and 272 | only if you received the object code with such an offer, in accord 273 | with subsection 6b. 274 | 275 | d) Convey the object code by offering access from a designated 276 | place (gratis or for a charge), and offer equivalent access to the 277 | Corresponding Source in the same way through the same place at no 278 | further charge. You need not require recipients to copy the 279 | Corresponding Source along with the object code. If the place to 280 | copy the object code is a network server, the Corresponding Source 281 | may be on a different server (operated by you or a third party) 282 | that supports equivalent copying facilities, provided you maintain 283 | clear directions next to the object code saying where to find the 284 | Corresponding Source. Regardless of what server hosts the 285 | Corresponding Source, you remain obligated to ensure that it is 286 | available for as long as needed to satisfy these requirements. 287 | 288 | e) Convey the object code using peer-to-peer transmission, provided 289 | you inform other peers where the object code and Corresponding 290 | Source of the work are being offered to the general public at no 291 | charge under subsection 6d. 292 | 293 | A separable portion of the object code, whose source code is excluded 294 | from the Corresponding Source as a System Library, need not be 295 | included in conveying the object code work. 296 | 297 | A "User Product" is either (1) a "consumer product", which means any 298 | tangible personal property which is normally used for personal, family, 299 | or household purposes, or (2) anything designed or sold for incorporation 300 | into a dwelling. In determining whether a product is a consumer product, 301 | doubtful cases shall be resolved in favor of coverage. For a particular 302 | product received by a particular user, "normally used" refers to a 303 | typical or common use of that class of product, regardless of the status 304 | of the particular user or of the way in which the particular user 305 | actually uses, or expects or is expected to use, the product. A product 306 | is a consumer product regardless of whether the product has substantial 307 | commercial, industrial or non-consumer uses, unless such uses represent 308 | the only significant mode of use of the product. 309 | 310 | "Installation Information" for a User Product means any methods, 311 | procedures, authorization keys, or other information required to install 312 | and execute modified versions of a covered work in that User Product from 313 | a modified version of its Corresponding Source. The information must 314 | suffice to ensure that the continued functioning of the modified object 315 | code is in no case prevented or interfered with solely because 316 | modification has been made. 317 | 318 | If you convey an object code work under this section in, or with, or 319 | specifically for use in, a User Product, and the conveying occurs as 320 | part of a transaction in which the right of possession and use of the 321 | User Product is transferred to the recipient in perpetuity or for a 322 | fixed term (regardless of how the transaction is characterized), the 323 | Corresponding Source conveyed under this section must be accompanied 324 | by the Installation Information. But this requirement does not apply 325 | if neither you nor any third party retains the ability to install 326 | modified object code on the User Product (for example, the work has 327 | been installed in ROM). 328 | 329 | The requirement to provide Installation Information does not include a 330 | requirement to continue to provide support service, warranty, or updates 331 | for a work that has been modified or installed by the recipient, or for 332 | the User Product in which it has been modified or installed. Access to a 333 | network may be denied when the modification itself materially and 334 | adversely affects the operation of the network or violates the rules and 335 | protocols for communication across the network. 336 | 337 | Corresponding Source conveyed, and Installation Information provided, 338 | in accord with this section must be in a format that is publicly 339 | documented (and with an implementation available to the public in 340 | source code form), and must require no special password or key for 341 | unpacking, reading or copying. 342 | 343 | 7. Additional Terms. 344 | 345 | "Additional permissions" are terms that supplement the terms of this 346 | License by making exceptions from one or more of its conditions. 347 | Additional permissions that are applicable to the entire Program shall 348 | be treated as though they were included in this License, to the extent 349 | that they are valid under applicable law. If additional permissions 350 | apply only to part of the Program, that part may be used separately 351 | under those permissions, but the entire Program remains governed by 352 | this License without regard to the additional permissions. 353 | 354 | When you convey a copy of a covered work, you may at your option 355 | remove any additional permissions from that copy, or from any part of 356 | it. (Additional permissions may be written to require their own 357 | removal in certain cases when you modify the work.) You may place 358 | additional permissions on material, added by you to a covered work, 359 | for which you have or can give appropriate copyright permission. 360 | 361 | Notwithstanding any other provision of this License, for material you 362 | add to a covered work, you may (if authorized by the copyright holders of 363 | that material) supplement the terms of this License with terms: 364 | 365 | a) Disclaiming warranty or limiting liability differently from the 366 | terms of sections 15 and 16 of this License; or 367 | 368 | b) Requiring preservation of specified reasonable legal notices or 369 | author attributions in that material or in the Appropriate Legal 370 | Notices displayed by works containing it; or 371 | 372 | c) Prohibiting misrepresentation of the origin of that material, or 373 | requiring that modified versions of such material be marked in 374 | reasonable ways as different from the original version; or 375 | 376 | d) Limiting the use for publicity purposes of names of licensors or 377 | authors of the material; or 378 | 379 | e) Declining to grant rights under trademark law for use of some 380 | trade names, trademarks, or service marks; or 381 | 382 | f) Requiring indemnification of licensors and authors of that 383 | material by anyone who conveys the material (or modified versions of 384 | it) with contractual assumptions of liability to the recipient, for 385 | any liability that these contractual assumptions directly impose on 386 | those licensors and authors. 387 | 388 | All other non-permissive additional terms are considered "further 389 | restrictions" within the meaning of section 10. If the Program as you 390 | received it, or any part of it, contains a notice stating that it is 391 | governed by this License along with a term that is a further 392 | restriction, you may remove that term. If a license document contains 393 | a further restriction but permits relicensing or conveying under this 394 | License, you may add to a covered work material governed by the terms 395 | of that license document, provided that the further restriction does 396 | not survive such relicensing or conveying. 397 | 398 | If you add terms to a covered work in accord with this section, you 399 | must place, in the relevant source files, a statement of the 400 | additional terms that apply to those files, or a notice indicating 401 | where to find the applicable terms. 402 | 403 | Additional terms, permissive or non-permissive, may be stated in the 404 | form of a separately written license, or stated as exceptions; 405 | the above requirements apply either way. 406 | 407 | 8. Termination. 408 | 409 | You may not propagate or modify a covered work except as expressly 410 | provided under this License. Any attempt otherwise to propagate or 411 | modify it is void, and will automatically terminate your rights under 412 | this License (including any patent licenses granted under the third 413 | paragraph of section 11). 414 | 415 | However, if you cease all violation of this License, then your 416 | license from a particular copyright holder is reinstated (a) 417 | provisionally, unless and until the copyright holder explicitly and 418 | finally terminates your license, and (b) permanently, if the copyright 419 | holder fails to notify you of the violation by some reasonable means 420 | prior to 60 days after the cessation. 421 | 422 | Moreover, your license from a particular copyright holder is 423 | reinstated permanently if the copyright holder notifies you of the 424 | violation by some reasonable means, this is the first time you have 425 | received notice of violation of this License (for any work) from that 426 | copyright holder, and you cure the violation prior to 30 days after 427 | your receipt of the notice. 428 | 429 | Termination of your rights under this section does not terminate the 430 | licenses of parties who have received copies or rights from you under 431 | this License. If your rights have been terminated and not permanently 432 | reinstated, you do not qualify to receive new licenses for the same 433 | material under section 10. 434 | 435 | 9. Acceptance Not Required for Having Copies. 436 | 437 | You are not required to accept this License in order to receive or 438 | run a copy of the Program. Ancillary propagation of a covered work 439 | occurring solely as a consequence of using peer-to-peer transmission 440 | to receive a copy likewise does not require acceptance. However, 441 | nothing other than this License grants you permission to propagate or 442 | modify any covered work. These actions infringe copyright if you do 443 | not accept this License. Therefore, by modifying or propagating a 444 | covered work, you indicate your acceptance of this License to do so. 445 | 446 | 10. Automatic Licensing of Downstream Recipients. 447 | 448 | Each time you convey a covered work, the recipient automatically 449 | receives a license from the original licensors, to run, modify and 450 | propagate that work, subject to this License. You are not responsible 451 | for enforcing compliance by third parties with this License. 452 | 453 | An "entity transaction" is a transaction transferring control of an 454 | organization, or substantially all assets of one, or subdividing an 455 | organization, or merging organizations. If propagation of a covered 456 | work results from an entity transaction, each party to that 457 | transaction who receives a copy of the work also receives whatever 458 | licenses to the work the party's predecessor in interest had or could 459 | give under the previous paragraph, plus a right to possession of the 460 | Corresponding Source of the work from the predecessor in interest, if 461 | the predecessor has it or can get it with reasonable efforts. 462 | 463 | You may not impose any further restrictions on the exercise of the 464 | rights granted or affirmed under this License. For example, you may 465 | not impose a license fee, royalty, or other charge for exercise of 466 | rights granted under this License, and you may not initiate litigation 467 | (including a cross-claim or counterclaim in a lawsuit) alleging that 468 | any patent claim is infringed by making, using, selling, offering for 469 | sale, or importing the Program or any portion of it. 470 | 471 | 11. Patents. 472 | 473 | A "contributor" is a copyright holder who authorizes use under this 474 | License of the Program or a work on which the Program is based. The 475 | work thus licensed is called the contributor's "contributor version". 476 | 477 | A contributor's "essential patent claims" are all patent claims 478 | owned or controlled by the contributor, whether already acquired or 479 | hereafter acquired, that would be infringed by some manner, permitted 480 | by this License, of making, using, or selling its contributor version, 481 | but do not include claims that would be infringed only as a 482 | consequence of further modification of the contributor version. For 483 | purposes of this definition, "control" includes the right to grant 484 | patent sublicenses in a manner consistent with the requirements of 485 | this License. 486 | 487 | Each contributor grants you a non-exclusive, worldwide, royalty-free 488 | patent license under the contributor's essential patent claims, to 489 | make, use, sell, offer for sale, import and otherwise run, modify and 490 | propagate the contents of its contributor version. 491 | 492 | In the following three paragraphs, a "patent license" is any express 493 | agreement or commitment, however denominated, not to enforce a patent 494 | (such as an express permission to practice a patent or covenant not to 495 | sue for patent infringement). To "grant" such a patent license to a 496 | party means to make such an agreement or commitment not to enforce a 497 | patent against the party. 498 | 499 | If you convey a covered work, knowingly relying on a patent license, 500 | and the Corresponding Source of the work is not available for anyone 501 | to copy, free of charge and under the terms of this License, through a 502 | publicly available network server or other readily accessible means, 503 | then you must either (1) cause the Corresponding Source to be so 504 | available, or (2) arrange to deprive yourself of the benefit of the 505 | patent license for this particular work, or (3) arrange, in a manner 506 | consistent with the requirements of this License, to extend the patent 507 | license to downstream recipients. "Knowingly relying" means you have 508 | actual knowledge that, but for the patent license, your conveying the 509 | covered work in a country, or your recipient's use of the covered work 510 | in a country, would infringe one or more identifiable patents in that 511 | country that you have reason to believe are valid. 512 | 513 | If, pursuant to or in connection with a single transaction or 514 | arrangement, you convey, or propagate by procuring conveyance of, a 515 | covered work, and grant a patent license to some of the parties 516 | receiving the covered work authorizing them to use, propagate, modify 517 | or convey a specific copy of the covered work, then the patent license 518 | you grant is automatically extended to all recipients of the covered 519 | work and works based on it. 520 | 521 | A patent license is "discriminatory" if it does not include within 522 | the scope of its coverage, prohibits the exercise of, or is 523 | conditioned on the non-exercise of one or more of the rights that are 524 | specifically granted under this License. You may not convey a covered 525 | work if you are a party to an arrangement with a third party that is 526 | in the business of distributing software, under which you make payment 527 | to the third party based on the extent of your activity of conveying 528 | the work, and under which the third party grants, to any of the 529 | parties who would receive the covered work from you, a discriminatory 530 | patent license (a) in connection with copies of the covered work 531 | conveyed by you (or copies made from those copies), or (b) primarily 532 | for and in connection with specific products or compilations that 533 | contain the covered work, unless you entered into that arrangement, 534 | or that patent license was granted, prior to 28 March 2007. 535 | 536 | Nothing in this License shall be construed as excluding or limiting 537 | any implied license or other defenses to infringement that may 538 | otherwise be available to you under applicable patent law. 539 | 540 | 12. No Surrender of Others' Freedom. 541 | 542 | If conditions are imposed on you (whether by court order, agreement or 543 | otherwise) that contradict the conditions of this License, they do not 544 | excuse you from the conditions of this License. If you cannot convey a 545 | covered work so as to satisfy simultaneously your obligations under this 546 | License and any other pertinent obligations, then as a consequence you may 547 | not convey it at all. For example, if you agree to terms that obligate you 548 | to collect a royalty for further conveying from those to whom you convey 549 | the Program, the only way you could satisfy both those terms and this 550 | License would be to refrain entirely from conveying the Program. 551 | 552 | 13. Use with the GNU Affero General Public License. 553 | 554 | Notwithstanding any other provision of this License, you have 555 | permission to link or combine any covered work with a work licensed 556 | under version 3 of the GNU Affero General Public License into a single 557 | combined work, and to convey the resulting work. The terms of this 558 | License will continue to apply to the part which is the covered work, 559 | but the special requirements of the GNU Affero General Public License, 560 | section 13, concerning interaction through a network will apply to the 561 | combination as such. 562 | 563 | 14. Revised Versions of this License. 564 | 565 | The Free Software Foundation may publish revised and/or new versions of 566 | the GNU General Public License from time to time. Such new versions will 567 | be similar in spirit to the present version, but may differ in detail to 568 | address new problems or concerns. 569 | 570 | Each version is given a distinguishing version number. If the 571 | Program specifies that a certain numbered version of the GNU General 572 | Public License "or any later version" applies to it, you have the 573 | option of following the terms and conditions either of that numbered 574 | version or of any later version published by the Free Software 575 | Foundation. If the Program does not specify a version number of the 576 | GNU General Public License, you may choose any version ever published 577 | by the Free Software Foundation. 578 | 579 | If the Program specifies that a proxy can decide which future 580 | versions of the GNU General Public License can be used, that proxy's 581 | public statement of acceptance of a version permanently authorizes you 582 | to choose that version for the Program. 583 | 584 | Later license versions may give you additional or different 585 | permissions. However, no additional obligations are imposed on any 586 | author or copyright holder as a result of your choosing to follow a 587 | later version. 588 | 589 | 15. Disclaimer of Warranty. 590 | 591 | THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY 592 | APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT 593 | HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY 594 | OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, 595 | THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR 596 | PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM 597 | IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF 598 | ALL NECESSARY SERVICING, REPAIR OR CORRECTION. 599 | 600 | 16. Limitation of Liability. 601 | 602 | IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING 603 | WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS 604 | THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY 605 | GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE 606 | USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF 607 | DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD 608 | PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS), 609 | EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF 610 | SUCH DAMAGES. 611 | 612 | 17. Interpretation of Sections 15 and 16. 613 | 614 | If the disclaimer of warranty and limitation of liability provided 615 | above cannot be given local legal effect according to their terms, 616 | reviewing courts shall apply local law that most closely approximates 617 | an absolute waiver of all civil liability in connection with the 618 | Program, unless a warranty or assumption of liability accompanies a 619 | copy of the Program in return for a fee. 620 | 621 | END OF TERMS AND CONDITIONS 622 | 623 | How to Apply These Terms to Your New Programs 624 | 625 | If you develop a new program, and you want it to be of the greatest 626 | possible use to the public, the best way to achieve this is to make it 627 | free software which everyone can redistribute and change under these terms. 628 | 629 | To do so, attach the following notices to the program. It is safest 630 | to attach them to the start of each source file to most effectively 631 | state the exclusion of warranty; and each file should have at least 632 | the "copyright" line and a pointer to where the full notice is found. 633 | 634 | 635 | Copyright (C) 636 | 637 | This program is free software: you can redistribute it and/or modify 638 | it under the terms of the GNU General Public License as published by 639 | the Free Software Foundation, either version 3 of the License, or 640 | (at your option) any later version. 641 | 642 | This program is distributed in the hope that it will be useful, 643 | but WITHOUT ANY WARRANTY; without even the implied warranty of 644 | MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the 645 | GNU General Public License for more details. 646 | 647 | You should have received a copy of the GNU General Public License 648 | along with this program. If not, see . 649 | 650 | Also add information on how to contact you by electronic and paper mail. 651 | 652 | If the program does terminal interaction, make it output a short 653 | notice like this when it starts in an interactive mode: 654 | 655 | Copyright (C) 656 | This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'. 657 | This is free software, and you are welcome to redistribute it 658 | under certain conditions; type `show c' for details. 659 | 660 | The hypothetical commands `show w' and `show c' should show the appropriate 661 | parts of the General Public License. Of course, your program's commands 662 | might be different; for a GUI interface, you would use an "about box". 663 | 664 | You should also get your employer (if you work as a programmer) or school, 665 | if any, to sign a "copyright disclaimer" for the program, if necessary. 666 | For more information on this, and how to apply and follow the GNU GPL, see 667 | . 668 | 669 | The GNU General Public License does not permit incorporating your program 670 | into proprietary programs. If your program is a subroutine library, you 671 | may consider it more useful to permit linking proprietary applications with 672 | the library. If this is what you want to do, use the GNU Lesser General 673 | Public License instead of this License. But first, please read 674 | . 675 | -------------------------------------------------------------------------------- /Linear Regression Practical Implementation-Hindi.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "c3b5cf5d", 6 | "metadata": {}, 7 | "source": [ 8 | "### Linear Regression Practical Implementation" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 1, 14 | "id": "26dd6c2a", 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "import pandas as pd" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 64, 24 | "id": "048fc045", 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "from sklearn.datasets import load_boston" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 65, 34 | "id": "c01140eb", 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "import numpy as np\n", 39 | "import pandas as pd\n", 40 | "import matplotlib.pyplot as plt" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": 68, 46 | "id": "b2c173df", 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "df=load_boston()" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": 69, 56 | "id": "3592e757", 57 | "metadata": {}, 58 | "outputs": [ 59 | { 60 | "data": { 61 | "text/plain": [ 62 | "{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,\n", 63 | " 4.9800e+00],\n", 64 | " [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,\n", 65 | " 9.1400e+00],\n", 66 | " [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,\n", 67 | " 4.0300e+00],\n", 68 | " ...,\n", 69 | " [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n", 70 | " 5.6400e+00],\n", 71 | " [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,\n", 72 | " 6.4800e+00],\n", 73 | " [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n", 74 | " 7.8800e+00]]),\n", 75 | " 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,\n", 76 | " 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,\n", 77 | " 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,\n", 78 | " 13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,\n", 79 | " 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,\n", 80 | " 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,\n", 81 | " 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,\n", 82 | " 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,\n", 83 | " 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,\n", 84 | " 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,\n", 85 | " 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,\n", 86 | " 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,\n", 87 | " 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,\n", 88 | " 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,\n", 89 | " 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,\n", 90 | " 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,\n", 91 | " 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,\n", 92 | " 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,\n", 93 | " 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,\n", 94 | " 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,\n", 95 | " 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,\n", 96 | " 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,\n", 97 | " 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,\n", 98 | " 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,\n", 99 | " 36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,\n", 100 | " 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,\n", 101 | " 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,\n", 102 | " 20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,\n", 103 | " 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,\n", 104 | " 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,\n", 105 | " 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,\n", 106 | " 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,\n", 107 | " 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,\n", 108 | " 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,\n", 109 | " 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,\n", 110 | " 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,\n", 111 | " 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,\n", 112 | " 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4,\n", 113 | " 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. ,\n", 114 | " 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,\n", 115 | " 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,\n", 116 | " 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,\n", 117 | " 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,\n", 118 | " 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,\n", 119 | " 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,\n", 120 | " 23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),\n", 121 | " 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',\n", 122 | " 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='\n", 156 | "\n", 169 | "\n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | "
0123456789101112
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.98
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.14
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.03
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.94
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.33
..........................................
5010.062630.011.930.00.5736.59369.12.47861.0273.021.0391.999.67
5020.045270.011.930.00.5736.12076.72.28751.0273.021.0396.909.08
5030.060760.011.930.00.5736.97691.02.16751.0273.021.0396.905.64
5040.109590.011.930.00.5736.79489.32.38891.0273.021.0393.456.48
5050.047410.011.930.00.5736.03080.82.50501.0273.021.0396.907.88
\n", 367 | "

506 rows × 13 columns

\n", 368 | "" 369 | ], 370 | "text/plain": [ 371 | " 0 1 2 3 4 5 6 7 8 9 10 \\\n", 372 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 \n", 373 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 \n", 374 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 \n", 375 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 \n", 376 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 \n", 377 | ".. ... ... ... ... ... ... ... ... ... ... ... \n", 378 | "501 0.06263 0.0 11.93 0.0 0.573 6.593 69.1 2.4786 1.0 273.0 21.0 \n", 379 | "502 0.04527 0.0 11.93 0.0 0.573 6.120 76.7 2.2875 1.0 273.0 21.0 \n", 380 | "503 0.06076 0.0 11.93 0.0 0.573 6.976 91.0 2.1675 1.0 273.0 21.0 \n", 381 | "504 0.10959 0.0 11.93 0.0 0.573 6.794 89.3 2.3889 1.0 273.0 21.0 \n", 382 | "505 0.04741 0.0 11.93 0.0 0.573 6.030 80.8 2.5050 1.0 273.0 21.0 \n", 383 | "\n", 384 | " 11 12 \n", 385 | "0 396.90 4.98 \n", 386 | "1 396.90 9.14 \n", 387 | "2 392.83 4.03 \n", 388 | "3 394.63 2.94 \n", 389 | "4 396.90 5.33 \n", 390 | ".. ... ... \n", 391 | "501 391.99 9.67 \n", 392 | "502 396.90 9.08 \n", 393 | "503 396.90 5.64 \n", 394 | "504 393.45 6.48 \n", 395 | "505 396.90 7.88 \n", 396 | "\n", 397 | "[506 rows x 13 columns]" 398 | ] 399 | }, 400 | "execution_count": 72, 401 | "metadata": {}, 402 | "output_type": "execute_result" 403 | } 404 | ], 405 | "source": [ 406 | "dataset" 407 | ] 408 | }, 409 | { 410 | "cell_type": "code", 411 | "execution_count": 73, 412 | "id": "7ad3b490", 413 | "metadata": {}, 414 | "outputs": [], 415 | "source": [ 416 | "dataset.columns=df.feature_names" 417 | ] 418 | }, 419 | { 420 | "cell_type": "code", 421 | "execution_count": 75, 422 | "id": "9cf167a0", 423 | "metadata": {}, 424 | "outputs": [ 425 | { 426 | "data": { 427 | "text/html": [ 428 | "
\n", 429 | "\n", 442 | "\n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.98
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.14
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.03
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.94
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.33
\n", 544 | "
" 545 | ], 546 | "text/plain": [ 547 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n", 548 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n", 549 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n", 550 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n", 551 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n", 552 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n", 553 | "\n", 554 | " PTRATIO B LSTAT \n", 555 | "0 15.3 396.90 4.98 \n", 556 | "1 17.8 396.90 9.14 \n", 557 | "2 17.8 392.83 4.03 \n", 558 | "3 18.7 394.63 2.94 \n", 559 | "4 18.7 396.90 5.33 " 560 | ] 561 | }, 562 | "execution_count": 75, 563 | "metadata": {}, 564 | "output_type": "execute_result" 565 | } 566 | ], 567 | "source": [ 568 | "dataset.head()" 569 | ] 570 | }, 571 | { 572 | "cell_type": "code", 573 | "execution_count": 76, 574 | "id": "8204ddd1", 575 | "metadata": {}, 576 | "outputs": [], 577 | "source": [ 578 | "## Independent features and dependent features\n", 579 | "X=dataset\n", 580 | "y=df.target" 581 | ] 582 | }, 583 | { 584 | "cell_type": "code", 585 | "execution_count": 77, 586 | "id": "f05469ba", 587 | "metadata": {}, 588 | "outputs": [ 589 | { 590 | "data": { 591 | "text/plain": [ 592 | "array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,\n", 593 | " 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,\n", 594 | " 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,\n", 595 | " 13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,\n", 596 | " 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,\n", 597 | " 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,\n", 598 | " 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,\n", 599 | " 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,\n", 600 | " 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,\n", 601 | " 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,\n", 602 | " 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,\n", 603 | " 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,\n", 604 | " 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,\n", 605 | " 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,\n", 606 | " 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,\n", 607 | " 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,\n", 608 | " 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,\n", 609 | " 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,\n", 610 | " 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,\n", 611 | " 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,\n", 612 | " 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,\n", 613 | " 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,\n", 614 | " 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,\n", 615 | " 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,\n", 616 | " 36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,\n", 617 | " 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,\n", 618 | " 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,\n", 619 | " 20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,\n", 620 | " 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,\n", 621 | " 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,\n", 622 | " 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,\n", 623 | " 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,\n", 624 | " 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,\n", 625 | " 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,\n", 626 | " 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,\n", 627 | " 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,\n", 628 | " 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,\n", 629 | " 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4,\n", 630 | " 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. ,\n", 631 | " 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,\n", 632 | " 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,\n", 633 | " 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,\n", 634 | " 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,\n", 635 | " 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,\n", 636 | " 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,\n", 637 | " 23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])" 638 | ] 639 | }, 640 | "execution_count": 77, 641 | "metadata": {}, 642 | "output_type": "execute_result" 643 | } 644 | ], 645 | "source": [ 646 | "y" 647 | ] 648 | }, 649 | { 650 | "cell_type": "code", 651 | "execution_count": 78, 652 | "id": "2dca59c1", 653 | "metadata": {}, 654 | "outputs": [], 655 | "source": [ 656 | "## train test split \n", 657 | "from sklearn.model_selection import train_test_split\n", 658 | "\n", 659 | "X_train, X_test, y_train, y_test = train_test_split(\n", 660 | " X, y, test_size=0.30, random_state=42)" 661 | ] 662 | }, 663 | { 664 | "cell_type": "code", 665 | "execution_count": 80, 666 | "id": "9a76e705", 667 | "metadata": {}, 668 | "outputs": [ 669 | { 670 | "data": { 671 | "text/html": [ 672 | "
\n", 673 | "\n", 686 | "\n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT
50.029850.02.180.00.4586.43058.76.06223.0222.018.7394.125.21
1160.131580.010.010.00.5476.17672.52.73016.0432.017.8393.3012.04
450.171420.06.910.00.4485.68233.85.10043.0233.017.9396.9010.21
161.053930.08.140.00.5385.93529.34.49864.0307.021.0386.856.58
46815.575700.018.100.00.5805.92671.02.908424.0666.020.2368.7418.13
..........................................
1060.171200.08.560.00.5205.83691.92.21105.0384.020.9395.6718.66
2700.2991620.06.960.00.4645.85642.14.42903.0223.018.6388.6513.00
3480.0150180.02.010.00.4356.63529.78.34404.0280.017.0390.945.99
43511.160400.018.100.00.7406.62994.62.124724.0666.020.2109.8523.27
1020.228760.08.560.00.5206.40585.42.71475.0384.020.970.8010.63
\n", 884 | "

354 rows × 13 columns

\n", 885 | "
" 886 | ], 887 | "text/plain": [ 888 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n", 889 | "5 0.02985 0.0 2.18 0.0 0.458 6.430 58.7 6.0622 3.0 222.0 \n", 890 | "116 0.13158 0.0 10.01 0.0 0.547 6.176 72.5 2.7301 6.0 432.0 \n", 891 | "45 0.17142 0.0 6.91 0.0 0.448 5.682 33.8 5.1004 3.0 233.0 \n", 892 | "16 1.05393 0.0 8.14 0.0 0.538 5.935 29.3 4.4986 4.0 307.0 \n", 893 | "468 15.57570 0.0 18.10 0.0 0.580 5.926 71.0 2.9084 24.0 666.0 \n", 894 | ".. ... ... ... ... ... ... ... ... ... ... \n", 895 | "106 0.17120 0.0 8.56 0.0 0.520 5.836 91.9 2.2110 5.0 384.0 \n", 896 | "270 0.29916 20.0 6.96 0.0 0.464 5.856 42.1 4.4290 3.0 223.0 \n", 897 | "348 0.01501 80.0 2.01 0.0 0.435 6.635 29.7 8.3440 4.0 280.0 \n", 898 | "435 11.16040 0.0 18.10 0.0 0.740 6.629 94.6 2.1247 24.0 666.0 \n", 899 | "102 0.22876 0.0 8.56 0.0 0.520 6.405 85.4 2.7147 5.0 384.0 \n", 900 | "\n", 901 | " PTRATIO B LSTAT \n", 902 | "5 18.7 394.12 5.21 \n", 903 | "116 17.8 393.30 12.04 \n", 904 | "45 17.9 396.90 10.21 \n", 905 | "16 21.0 386.85 6.58 \n", 906 | "468 20.2 368.74 18.13 \n", 907 | ".. ... ... ... \n", 908 | "106 20.9 395.67 18.66 \n", 909 | "270 18.6 388.65 13.00 \n", 910 | "348 17.0 390.94 5.99 \n", 911 | "435 20.2 109.85 23.27 \n", 912 | "102 20.9 70.80 10.63 \n", 913 | "\n", 914 | "[354 rows x 13 columns]" 915 | ] 916 | }, 917 | "execution_count": 80, 918 | "metadata": {}, 919 | "output_type": "execute_result" 920 | } 921 | ], 922 | "source": [ 923 | "X_train" 924 | ] 925 | }, 926 | { 927 | "cell_type": "code", 928 | "execution_count": 81, 929 | "id": "882e5902", 930 | "metadata": {}, 931 | "outputs": [], 932 | "source": [ 933 | "## standardizing the dataset\n", 934 | "from sklearn.preprocessing import StandardScaler\n", 935 | "scaler = StandardScaler()\n" 936 | ] 937 | }, 938 | { 939 | "cell_type": "code", 940 | "execution_count": 83, 941 | "id": "21f803c8", 942 | "metadata": {}, 943 | "outputs": [], 944 | "source": [ 945 | "X_train=scaler.fit_transform(X_train)" 946 | ] 947 | }, 948 | { 949 | "cell_type": "code", 950 | "execution_count": 84, 951 | "id": "2dcdff63", 952 | "metadata": {}, 953 | "outputs": [], 954 | "source": [ 955 | "X_test=scaler.transform(X_test)" 956 | ] 957 | }, 958 | { 959 | "cell_type": "code", 960 | "execution_count": null, 961 | "id": "2e7ff359", 962 | "metadata": {}, 963 | "outputs": [], 964 | "source": [] 965 | }, 966 | { 967 | "cell_type": "code", 968 | "execution_count": 87, 969 | "id": "c88b6c65", 970 | "metadata": {}, 971 | "outputs": [], 972 | "source": [ 973 | "from sklearn.linear_model import LinearRegression\n", 974 | "##cross validation\n", 975 | "from sklearn.model_selection import cross_val_score" 976 | ] 977 | }, 978 | { 979 | "cell_type": "code", 980 | "execution_count": 96, 981 | "id": "572ff827", 982 | "metadata": {}, 983 | "outputs": [ 984 | { 985 | "data": { 986 | "text/plain": [ 987 | "LinearRegression()" 988 | ] 989 | }, 990 | "execution_count": 96, 991 | "metadata": {}, 992 | "output_type": "execute_result" 993 | } 994 | ], 995 | "source": [ 996 | "regression=LinearRegression()\n", 997 | "regression.fit(X_train,y_train)" 998 | ] 999 | }, 1000 | { 1001 | "cell_type": "code", 1002 | "execution_count": 91, 1003 | "id": "c52bdebf", 1004 | "metadata": {}, 1005 | "outputs": [], 1006 | "source": [ 1007 | "mse=cross_val_score(regression,X_train,y_train,scoring='neg_mean_squared_error',cv=10)" 1008 | ] 1009 | }, 1010 | { 1011 | "cell_type": "code", 1012 | "execution_count": 92, 1013 | "id": "04a908f0", 1014 | "metadata": {}, 1015 | "outputs": [ 1016 | { 1017 | "data": { 1018 | "text/plain": [ 1019 | "-25.550660791660782" 1020 | ] 1021 | }, 1022 | "execution_count": 92, 1023 | "metadata": {}, 1024 | "output_type": "execute_result" 1025 | } 1026 | ], 1027 | "source": [ 1028 | "np.mean(mse)" 1029 | ] 1030 | }, 1031 | { 1032 | "cell_type": "code", 1033 | "execution_count": 97, 1034 | "id": "34f2244f", 1035 | "metadata": {}, 1036 | "outputs": [], 1037 | "source": [ 1038 | "##prediction \n", 1039 | "reg_pred=regression.predict(X_test)" 1040 | ] 1041 | }, 1042 | { 1043 | "cell_type": "code", 1044 | "execution_count": 98, 1045 | "id": "5cd2b597", 1046 | "metadata": {}, 1047 | "outputs": [ 1048 | { 1049 | "data": { 1050 | "text/plain": [ 1051 | "array([28.64896005, 36.49501384, 15.4111932 , 25.40321303, 18.85527988,\n", 1052 | " 23.14668944, 17.3921241 , 14.07859899, 23.03692679, 20.59943345,\n", 1053 | " 24.82286159, 18.53057049, -6.86543527, 21.80172334, 19.22571177,\n", 1054 | " 26.19191985, 20.27733882, 5.61596432, 40.44887974, 17.57695918,\n", 1055 | " 27.44319095, 30.1715964 , 10.94055823, 24.02083139, 18.07693812,\n", 1056 | " 15.934748 , 23.12614028, 14.56052142, 22.33482544, 19.3257627 ,\n", 1057 | " 22.16564973, 25.19476081, 25.31372473, 18.51345025, 16.6223286 ,\n", 1058 | " 17.50268505, 30.94992991, 20.19201752, 23.90440431, 24.86975466,\n", 1059 | " 13.93767876, 31.82504715, 42.56978796, 17.62323805, 27.01963242,\n", 1060 | " 17.19006621, 13.80594006, 26.10356557, 20.31516118, 30.08649576,\n", 1061 | " 21.3124053 , 34.15739602, 15.60444981, 26.11247588, 39.31613646,\n", 1062 | " 22.99282065, 18.95764781, 33.05555669, 24.85114223, 12.91729352,\n", 1063 | " 22.68101452, 30.80336295, 31.63522027, 16.29833689, 21.07379993,\n", 1064 | " 16.57699669, 20.36362023, 26.15615896, 31.06833034, 11.98679953,\n", 1065 | " 20.42550472, 27.55676301, 10.94316981, 16.82660609, 23.92909733,\n", 1066 | " 5.28065815, 21.43504661, 41.33684993, 18.22211675, 9.48269245,\n", 1067 | " 21.19857446, 12.95001331, 21.64822797, 9.3845568 , 23.06060014,\n", 1068 | " 31.95762512, 19.16662892, 25.59942257, 29.35043558, 20.13138581,\n", 1069 | " 25.57297369, 5.42970803, 20.23169356, 15.1949595 , 14.03241742,\n", 1070 | " 20.91078077, 24.82249135, -0.47712079, 13.70520524, 15.69525576,\n", 1071 | " 22.06972676, 24.64152943, 10.7382866 , 19.68622564, 23.63678009,\n", 1072 | " 12.07974981, 18.47894211, 25.52713393, 20.93461307, 24.6955941 ,\n", 1073 | " 7.59054562, 19.01046053, 21.9444339 , 27.22319977, 32.18608828,\n", 1074 | " 15.27826455, 34.39190421, 12.96314168, 21.01681316, 28.57880911,\n", 1075 | " 15.86300844, 24.85124135, 3.37937111, 23.90465773, 25.81792146,\n", 1076 | " 23.11020547, 25.33489201, 33.35545176, 20.60724498, 38.4772665 ,\n", 1077 | " 13.97398533, 25.21923987, 17.80946626, 20.63437371, 9.80267398,\n", 1078 | " 21.07953576, 22.3378417 , 32.32381854, 31.48694863, 15.46621287,\n", 1079 | " 16.86242766, 28.99330526, 24.95467894, 16.73633557, 6.12858395,\n", 1080 | " 26.65990044, 23.34007187, 17.40367164, 13.38594123, 39.98342478,\n", 1081 | " 16.68286302, 18.28561759])" 1082 | ] 1083 | }, 1084 | "execution_count": 98, 1085 | "metadata": {}, 1086 | "output_type": "execute_result" 1087 | } 1088 | ], 1089 | "source": [ 1090 | "reg_pred" 1091 | ] 1092 | }, 1093 | { 1094 | "cell_type": "code", 1095 | "execution_count": 100, 1096 | "id": "8ef9df8d", 1097 | "metadata": {}, 1098 | "outputs": [ 1099 | { 1100 | "data": { 1101 | "text/plain": [ 1102 | "" 1103 | ] 1104 | }, 1105 | "execution_count": 100, 1106 | "metadata": {}, 1107 | "output_type": "execute_result" 1108 | }, 1109 | { 1110 | "data": { 1111 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAviklEQVR4nO3deZxcZ33n+8+vqve9W93qXeqWLC/yIi/yAoRwCYsXML5JmIxJPCxD4jjXzsINkzFhJpDMTC53ILxCJlwcB7iDQ4INwTGGOLYxIWBPvEiWLNmSLEvW1q1e1Pu+VdUzf1SV3LRb6uruOnVOVX3fr5de6q5zTvevbOmrp5/z/J5jzjlERCTzQn4XICKSrxTAIiI+UQCLiPhEASwi4hMFsIiITwr8LiCdbrrpJvf444/7XYaIyFK23Is5NQIeHBz0uwQRkZTlVACLiGQTBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPlEAi4j4RAEskqNiMT3vMegUwCI55ocH+3n//3iaq//rD9l1YtjvcuQ8FMAiOaR7ZJq7/24P0/NRakoLueOrz7Ova9TvsuQcFMAiOeRz//QqIYNvfvx6vvtbb6WypIA/f+o1v8uSc1AAi+SII/0T/GB/L3f+/FZaakrZUFHMR9/awY8PD/Bq37jf5ckyFMAiOeKxl/swgztu2HT2tTtu2ExZUZi//ulxHyuTc1EAi+SIxw/0sXNzLRsrS86+VlNWxPsub+bJg30sRGM+VifLUQCL5ICTQ1Mc6h3nxkub3nTsXZc0MjEbYddxrYgIGgWwSA548kA/wLIB/PZt9RQVhHjq0JlMlyUrUACL5IDnjw/TWV9Oe13Zm46VFxfw1q0beOpQP86pOSNIFMAiWc45x95TI1y9qfac57zr4o2cGp7m5NB0BiuTlSiARbLcyaFphqbmuXpzzTnPubazDoDdJ0cyVJWkQgEskuX2nIqH6jWbzz0CvnBjJZUlBbx4UjfigkQBLJLl9pwaoaK4gG0bK895TihkXL2plt0nNAIOEgWwSJbbc3KUK9trCIfsvOft3FzLkTOTjE7PZ6gyWYkCWCSLLURjHDkzwWWt1Suee01HfIoiOWUh/lMAi2Sx44NTLEQdFzede/oh6cr2GkIG+7rGMlCZpEIBLJLFXu2bAODCxpUDuKyogM76cg70aGOeoFAAi2Sxw33jhEPG1o3lKZ1/aUs1B3s0Ag4KBbBIFjvcN8GW+nKKC8IpnX9pSxU9Y7OMTOlGXBAogEWy2OH+CS5KYf436dKW+M06TUMEgwJYJEtNzkXoGp5J6QZc0qUtVQAc7NU0RBAogEWy1NEzkwBsS+EGXFJteREt1SUaAQeEAlgkSx0fjAfw1oaKVV13SXMVh3oVwEGgABbJUscHpggZbFpmC8rz2dZYyfHBKSJ6QobvFMAiWer40DSttaUUFazur/G2jRUsRB0ntDWl7xTAIlnqxOAUnfWrm36AN5o2jp6ZSHdJskoKYJEs5Jzj+OAUnRtWN/0AnG3aeK1/Mt1lySopgEWy0ODkPJNzETrqU+uAW6ysqIC22lKOnFEA+83TADazm8zssJkdNbN7lzl+sZk9a2ZzZvbJ1Vwrks9ODE0BrCmAIT4NcaRfUxB+8yyAzSwMfBm4GdgOfMjMti85bRj4HeALa7hWJG8dH4gH8JY1BvC2jRUcG9BKCL95OQK+DjjqnDvmnJsHHgRuW3yCc+6Mc24XsLDaa0Xy2fGhKQpCRmtN6Zqu37qxgvlojFPDWgnhJy8DuBXoWvR5d+K1tF5rZnea2W4z2z0wMLCmQkWyzanh+BK0gvDa/gpvbYiPnJNTGeIPLwN4ueejuHRf65y73zm30zm3s6GhIeXiRLJZ98gM7bWrXwGRlFy+dmxAAewnLwO4G2hf9Hkb0JOBa0VyXvfwNO11a5t+AKgtK6S6tJDjgwpgP3kZwLuAbWbWaWZFwO3Aoxm4ViSnTc9HGJqap20dI2Azo7O+XAHsswKvvrBzLmJm9wBPAGHg6865A2Z2V+L4fWbWBOwGqoCYmf0esN05N77ctV7VKpJNukdmAGirXfsIGOIrKJ49NpSOkmSNPAtgAOfcY8BjS167b9HHfcSnF1K6VkSgeyS+cqF9lZvwLLWloZyH955mej5CWZGnUSDnoE44kSzTNZyeEXDyRtyJQS1F84sCWCTLdA1PU1IYoqGieF1fpzPRxKF5YP8ogEWyTPfIDG21ZZgtt1ozdR318SmM5MbuknkKYJEs0zUyTfs6px8gvilPQ2Xx2SkNyTwFsEiWOT06Q2saAhigvbZU7cg+UgCLZJHZhSij0ws0V6cngDfVlSmAfaQAFskifWOzADRWlaTl622qK6N3bIYF7YrmCwWwSBbpG48HcFOaAri9royYg55RzQP7QQEskkX6kwFcnb4RMKBpCJ8ogEWySHIKIm0BvEEB7CcFsEgW6R2bpaK4gIri9LQON1aWUBQOKYB9ogAWySL947M0Vq2vA26xUMhoqy2lSwHsCwWwSBbpG59N2/RDUntdmZoxfKIAFski/WOzNFWlZw1wktYC+0cBLJIlojHHmYk5mqrTNwUB8QAem1lgbHrps3HFawpgkSwxNDlHJObStgY4KbmvcNeIRsGZpgAWyRLJJox0dcElJZ8tp2mIzFMAi2SJ5BrgdO0DkdSuZgzfKIBFskSyC64xzXPAVSWF1JYVKoB9oAAWyRJ947MUhIz68vQGMMRvxGktcOYpgEWyRO/YLBsriwmF1vckjOW0K4B9oQAWyRL947M0prkJI2lTXRndIzNEY86Try/LUwCLZIm+sVmaPQrg9royIjFH75g64jJJASySJfrH59K+BC0p+Yj70yMK4ExSAItkgYnZBSbnImlvwkhqrUkEsDZmzygFsEgWSPdG7Eu1JAJYT8bILAWwSBboG5sD0t8Fl1RSGGZDeZFGwBmmABbJAsk2ZK9uwgG01pZyenTWs68vb6YAFskC/R7tA7FYS3Upp7UhT0YpgEWyQN/YLDVlhZQUhj37Hq21pfSMzuKc1gJnigJYJAv0js16tgIiqaWmlJmFKCPaFzhjFMAiWSD+LDhvA7hVKyEyTgEskgX6xr3rgkvSWuDMUwCLBNxCNMbgpHddcEktNfGvr264zFEAiwTcwMQcznnXhJFUV15ESWFIUxAZpAAWCbjexJMwvL4JZ2a01JRqCiKDFMAiAZeJNcBJrTWlGgFnkAJYJODeeBZcZgJYI+DMUQCLBFz/+CxFBSFqygo9/16tNaUMTs4zuxD1/HuJAlgk8PrG400YZul/FNFS2hUtsxTAIgGXiS64pNbaZABrU55MUACLBJyXz4Jb6o1mDG3KkwkKYJEAc855+iy4pRqrSjBD21JmiAJYJMDGZhaYi8QysgQNoKggRGNlieaAM0QBLBJgyY3YMzUHDPGWZLUjZ4YCWCTAznbBVRdn7Hu21pbRo8fTZ4SnAWxmN5nZYTM7amb3LnPczOwvEsf3m9nVi459wswOmNkrZvYtM8vcEEAkIPrPBnBpxr5nc3UJvWPamD0TPAtgMwsDXwZuBrYDHzKz7UtOuxnYlvh1J/CVxLWtwO8AO51zlwFh4HavahUJqr7xWcxgY2XmRsDN1SXMR2IMT81n7HvmKy9HwNcBR51zx5xz88CDwG1LzrkNeMDFPQfUmFlz4lgBUGpmBUAZ0ONhrSKB1D8+y4byYgrDmZstTK64SE5/iHe8/L/aCnQt+rw78dqK5zjnTgNfAE4BvcCYc+7J5b6Jmd1pZrvNbPfAwEDaihcJgr6x2YzO/wI0J6Y7FMDe8zKAl+ubXDqptOw5ZlZLfHTcCbQA5WZ2x3LfxDl3v3Nup3NuZ0NDw7oKFgmaTHbBJSVHwH26Eec5LwO4G2hf9Hkbb55GONc57waOO+cGnHMLwMPAWz2sVSSQ+sdnPd+Ifan6imIKQkaPRsCe8zKAdwHbzKzTzIqI30R7dMk5jwIfTqyGuIH4VEMv8amHG8yszOI7kLwLOORhrSKBM5t4QnGmR8ChkNFYVXJ2G0zxToFXX9g5FzGze4AniK9i+Lpz7oCZ3ZU4fh/wGHALcBSYBj6WOPa8mf09sAeIAHuB+72qVSSIzozPAZnZiH2plhp1w2WCZwEM4Jx7jHjILn7tvkUfO+Duc1z7GeAzXtYnEmS9iTnYTE9BxL9nKfu7RzP+ffONOuFEAsqPNuQkNWNkhgJYJKCSz4LzYwSsZozMUACLBFTf2BzlRWEqS7x/FNFSasbIDAWwSEBlciP2pdSMkRkKYJGA6h2b8WX+FxaPgLUSwksKYJGA6h+f8y2Ak80YGgF7SwEsEkCxmPOlCy4p2YzRq7XAnlIAiwTQ0NQ8kZjzLYAh3oyhEbC3FMAiAZRcguZHF1xSU3Xp2bXI4g0FsEgAnX0UkY8B3KJmDM8pgEUCqM/HJoykJjVjeE4BLBJA/WOzhENGfUVmN2NfTGuBvacAFgmgvvFZNlYWEw4t98yCzFA3nPcUwCIB1D8+6+sNOIDmGjVjeE0BLBJAfjyKaKn6cjVjeE0BLBJA/WP+NWEkqRnDewpgkYCZmoswMRfxPYBBzRheUwCLBIyfG7Ev1VRdqgD2kAJYJGD6x/zvgktqqY4/nFPNGN5QAIsEzNkuuABMQTRVlzAfjTGkZgxPKIBFAiZIUxDJZgw9ot4bCmCRgOkfn6W6tJDSorDfpagZw2MKYJGA6QvAGuAkNWN4SwEsEjB+PgtuqfryYgrDasbwigJYJGDiXXD+bcKzmJoxvKUAFgmQSDTG4KR/z4JbTnO1mjG8ogAWCZD+iTliDpprSv0u5axmNWN4RgEsEiB9iZtdzQGZA4Z4LWrG8IYCWCRAekbjI82WAI2Ak80YejJG+imARQIkudwrCF1wSXoyhncUwCIB0jM6S0VxAVUlhX6XcpaaMbyjABYJkL6x2UDN/8IbAdynZoy0UwCLBEjv2Eygph8A6iv0ZAyvKIBFAqRnbJaW6uDcgINFzRgK4LRTAIsExHwk3oSR3H8hSOLNGJqCSDcFsEhA9I/P4hyBGwFDvDFEW1KmnwJYJCCCtBH7Usl2ZDVjpJcCWCQgkj/itwRwCqKpqoS5SIyR6QW/S8kpKQWwmX3XzN5nZgpsEY+8MQIO3hREi/YF9kSqgfoV4FeBI2b2OTO72MOaRPJS7+gMlSUFVBQX+F3KmyT/Uegd1TxwOqUUwM65p5xzvwZcDZwAfmhm/2pmHzOz4LTsiGSxIC5BSzrbDTeuAE6nlKcUzGwD8FHg14G9wJeIB/IPPalMJM/0jc0GcgkavNGMoW649ErpZx0zexi4GPgb4FbnXG/i0ENmttur4kTySe/YDJe1VvldxrLCasbwRKqTTV91zj22+AUzK3bOzTnndnpQl0hemYtEGZycP7vzWBA1VZdoDjjNUp2C+K/LvPZsOgsRyWfJJoegbcSzWFN1CX2aA06r846AzawJaAVKzewqwBKHqoAyj2sTyRvJH+2DtBH7Ui3VJfzoUD/OOcxs5QtkRStNQdxI/MZbG/DFRa9PAH+40hc3s5uI36wLE5/G+NyS45Y4fgswDXzUObcncawG+CpwGeCAf++c06hbclIQN2Jfqqm6lNmFGKPTC9SWF/ldTk44bwA7574BfMPMftk5993VfGEzCwNfBt4DdAO7zOxR59zBRafdDGxL/Lqe+Hrj6xPHvgQ87pz7oJkVoRG35LCzjyIK8Bzw4o3ZFcDpsdIUxB3OuW8CHWb2fy897pz74jKXJV0HHHXOHUt8rQeB24DFAXwb8ICLN5g/Z2Y1ZtYMTAE/T3z0jXNuHtADqSRn9Y3NUlNWSGlR2O9SzunsxuzjM2xvCeZqjWyz0k248sTvFUDlMr/OpxXoWvR5d+K1VM7ZAgwA/7+Z7TWzr5pZOcswszvNbLeZ7R4YGFihJJFg6hmdoakquNMP8Maz4Xq0EiJtVpqC+KvE73+8hq+93Cz90q2UznVOAfEmj992zj1vZl8C7gX+8zI13g/cD7Bz505t1SRZqXtkhk0bgj3L1lBZTDhk2pYyjVLdjOe/m1mVmRWa2Y/MbNDM7ljhsm6gfdHnbUBPiud0A93OuecTr/898UAWyTnOObpGpmmrDe78LySaMSqL1YyRRqmuA36vc24ceD/xcLwQ+A8rXLML2GZmnYmbaLcDjy4551HgwxZ3AzDmnOt1zvUBXWZ2UeK8d/Gzc8ciOWNkeoHp+SjttcEeAUNyLbDakdMl1U645IY7twDfcs4Nr7QO0DkXMbN7gCeIL0P7unPugJndlTh+H/BY4mseJb4M7WOLvsRvA3+bCO9jS46J5Iyu4WkA2uuCH8DN1aUc6h33u4yckWoAf9/MXgVmgP/LzBqAFX8OSbQvP7bktfsWfeyAu89x7UuA2pwl53WNxAM46FMQEF8J8c+vnlEzRpqkuh3lvcBbgJ3OuQXiy8Ru87IwkXzRPRL/kT4bAripuoSZhSjjMxG/S8kJq9n5+RLi64EXX/NAmusRyTtdw9PUlBVSWRL8rbXPLkUbm6G6LPj1Bl2q21H+DbAVeAmIJl52KIBF1q1rZCYrbsDBG63SfWOzXNKsZoz1SnUEvBPY7vRIVJG06x6Z5uKmlfqaguGNZ8NpKVo6pLoM7RWgyctCRPJRLOboHpmhLUtGwA0VxYQMPRkjTVIdAdcDB83sBWAu+aJz7gOeVCWSJwYm55iPxGjPghtwAAXhEBsrS+jRCDgtUg3gz3pZhEi+6j67BC07RsAAzTUlakdOk5QC2Dn3EzPbDGxzzj1lZmXEmytEZB26huM/yrfXZccIGOJrgQ/3TfhdRk5IdS+I3yC+H8NfJV5qBR7xqCaRvJHsgsumEXBTVSm9Y7Ponvz6pXoT7m7gbcA4gHPuCLDRq6JE8kX3yAz1FcWUFGbPD5QtNSVMz0cZn1UzxnqlGsBziU3RAUg0Y+ifP5F16hqZzqrpB/jZtcCyPqkG8E/M7A+JP5zzPcB3gO97V5ZIfsimJWhJySdj9Ggp2rqlGsD3En9CxcvAbxLfYOc/eVWUSD6Ixhw9ozNZswQtKdmOrBHw+qW6CiJmZo8Ajzjn9NwfkTToHZshEnNZsQ3lYg2V8WYMdcOt33lHwImN0j9rZoPAq8BhMxswsz/KTHkiuSubdkFbrDAcoqGyWN1wabDSFMTvEV/9cK1zboNzro74Y+PfZmaf8Lo4kVx2diP2LJsDhvg0hEbA67dSAH8Y+JBz7njyhcRj5u9IHBORNToxNEU4ZLRm2QgY4jfiFMDrt1IAFzrnBpe+mJgH1magIutwYij+IM7CcKr3woOjqVrtyOmw0v/5+TUeE5EVnBicomNDud9lrElLdSmTcxHGZxf8LiWrrbQKYoeZLfcEPgNKPKhHJC845zgxOMW1HXV+l7Imi5sxqrLgSR5Bdd4Ads5lT3+kSBYZmJxjaj5Kx4bsuwEHi5oxRme4sDE7NpMPouybfBLJASeH4isgOuqzdAqiJn7jUDfi1kcBLOKD44NTAHRmaQBvrCwmHDJOj2gt8HoogEV8cGJwioKQ0VqTfUvQIP5kjKaqEnpGFcDroQAW8cHJoWna68ooyMIlaEmtNaWcVgCvS/b+3xfJYq8PTGbt9ENSS02JdkRbJwWwSIZFY47jg1NcsLHC71LWpaWmlL6xWaIxbQ2+VgpgkQzrGZ1hLhJja0O2j4BLWYg6BibmVj5ZlqUAFsmwowOTAGxtyO4RcPIGouaB104BLJJhr5/JkQBObCKklRBrpwAWybDXByapKy+itrzI71LWZXE3nKyNAlgkw14/M5X1878AlSWFVJUUaApiHRTAIhn2+sBk1k8/JLXUlGoEvA4KYJEMGpmaZ2hqPmcCuK22lNOj2g9irRTAIhn0Wv8EANsacyOANQJeHwWwSAYlA/iiptzYwrGlppSxmQUm5yJ+l5KVFMAiGXS4f4LKkgKaqnLjeQbJbSk1Cl4bBbBIBr3WP8lFjZWYmd+lpEVrTfwfEq2EWBsFsEiGOOd4rX+CC3Nk+gGgtSb+RA+NgNdGASySIQMTc4xOL3Bhlm/Cs1hDZTEFIVMAr5ECWCRDDiduwOXSCDgcMpqqS/RkjDVSAItkyOG+xAqIHHuIZXwpmtYCr4UCWCRDDvaOs7GymA0VxX6XklZ6MsbaKYBFMuRgzzjbW6r8LiPtWmtK6RufJRKN+V1K1lEAi2TAXCTK0TOTXNKcewHcVltKNOb0iPo1UACLZMDRM5NEYo7tORjA7XXxpWhdI9M+V5J9PA1gM7vJzA6b2VEzu3eZ42Zmf5E4vt/Mrl5yPGxme83sB17WKeK1gz3jADk5BdFeGw/g7mHNA6+WZwFsZmHgy8DNwHbgQ2a2fclpNwPbEr/uBL6y5PjvAoe8qlEkUw72jlNSGKJjQ/bvA7xUc00JIdMIeC28HAFfBxx1zh1zzs0DDwK3LTnnNuABF/ccUGNmzQBm1ga8D/iqhzWKZMTBnnEuaqoiHMqNFuTFCsMhmqtL6dZa4FXzMoBbga5Fn3cnXkv1nD8H/gA4761VM7vTzHab2e6BgYF1FSzihWjM8crpMXa0VftdimfaakvpGtYIeLW8DODl/ql3qZxjZu8HzjjnXlzpmzjn7nfO7XTO7WxoaFhLnSKeOjYwydR8lB1tNX6X4pn2ujJNQayBlwHcDbQv+rwN6EnxnLcBHzCzE8SnLn7BzL7pXaki3nmpaxSAHe25OwJury2jf3yO2YWo36VkFS8DeBewzcw6zawIuB14dMk5jwIfTqyGuAEYc871Ouc+5Zxrc851JK77Z+fcHR7WKuKZfd2jVBQXsKU+dzbhWaq9Lr4vsDriVqfAqy/snIuY2T3AE0AY+Lpz7oCZ3ZU4fh/wGHALcBSYBj7mVT0iftnXNcYVbdWEcvAGXNLZtcDD0znzvLtM8CyAAZxzjxEP2cWv3bfoYwfcvcLX+BfgXzwoT8RzswtRDvWO8xs/v8XvUjzVVhsfAXdpJcSqqBNOxEMHe8eJxFxO34ADaKwsoSgcolsrIVZFASzioX2JG3BXttf4WofXQiGjtVZrgVdLASzioX1dozRWFdNUnRsP4TyfttpSLUVbJQWwiIf2d49xRY5PPyS115WpGWOVFMAiHhmbXuDY4FTOTz8ktdeWMTK9wORcxO9SsoYCWMQj+0+PAuT8Dbik5FpgjYJTpwAW8cjeU6MAXJ7De0As1lb7xlpgSY0CWMQju04Mc3FTJdWlhX6XkhHtWgu8agpgEQ8sRGO8eHKE6zrr/C4lY+rKiygrCmsEvAoKYBEPHOgZZ3o+yvWdG/wuJWPMjPZarYRYDQWwiAdeOD4EwLWdtT5XklmbN5RxYmjK7zKyhgJYxAMvHB9mS305GytzvwFjsc76crqGZ4jGlm79LctRAIukWSzmeOH4cF7N/yZ11JczH43Ro20pU6IAFkmzw/0TjM9G8jOAEw8d1TREahTAImn2wvFhgPwM4Pr4WuATQ7oRlwoFsEiavXB8mNaa0rONCfmksbKEksIQJwY1Ak6FAlgkjZxzPJ+n878Q35ayY0O5AjhFCmCRNDo2OMXg5BzXduRnAEN8HlhzwKlRAIuk0TNHBgH4uQvqfa7EP5vry7QULUUKYJE0evrIAJvqyti0If/mf5M6N2gpWqoUwCJpshCN8ezrQ7x9W/6OfiG+Fhi0FC0VCmCRNNl7apSp+Shv39bgdym+6kwGsG7ErUgBLJImTx8ZIGTwlq35swHPcjZWFlNaGOb4oNYCr0QBLJImTx8Z5Mr2mrzZ//dczEyb8qRIASySBqPT8+zvHs376YekznotRUuFAlgkDf719SFijry/AZfUUV9O1/A0kWjM71ICTQEskgZPHxmksriAHXnyBOSVdGwoYyHq6Bmd9buUQFMAi6yTc46fvjbADVs3UBjWXynQrmip0p8WkXV6tW+C06MzvOvijX6XEhidDfEAfn1g0udKgk0BLLJOTx3sB+AXLlEAJzVUFFNdWsjRMwrg81EAi6zTU6+e4cr2mrx7/ND5mBnbNlZwRAF8XgpgkXU4Mz7Lvq5R3q3R75tsa6zQCHgFCmCRdfjRq2cAePf2Rp8rCZ5tGysZnppncHLO71ICSwEssg5PHeynrbaUixor/S4lcLY1VgBwpF+j4HNRAIus0cx8lGeODvLuSxoxM7/LCZxtG+P/KB09M+FzJcGlABZZo2eODjIXifHuSzT9sJzGqmIqiwt0I+48FMAia/TEgT4qiwvy9vlvKzEzLmis0BTEeSiARdZgLhLliQN9vPfSJooK9NfoXOJL0TQFcS76kyOyBj99bZCJ2Qjv39HsdymBtm1jJYOT8wxPzftdSiApgEXW4Af7e6gpK8zrh2+m4oLESgitB16eAlhklWbmo/zwYD83X9akzXdWcGFieZ6mIZanPz0iq/Tjw2eYno9y6xUtfpcSeC3VJZQXhXUj7hwUwCKr9P19PdRXFHP9lvx+9lsqzIwLdCPunBTAIqswORfhn189w/subyIcUvNFKi7YWKkR8DkogEVW4Z9e7mUuEuPWHZp+SNW2xgrOTMwxOq2VEEspgEVW4cFdXWxpKOeazbV+l5I1Lm6K34g71KtpiKU8DWAzu8nMDpvZUTO7d5njZmZ/kTi+38yuTrzebmY/NrNDZnbAzH7XyzpFUvFa/wQvnhzh9mvbtffDKmxvqQLgUO+4z5UEj2cBbGZh4MvAzcB24ENmtn3JaTcD2xK/7gS+kng9Avy+c+4S4Abg7mWuFcmoh3Z1URg2funqNr9LySobK0uoryjmoAL4TbwcAV8HHHXOHXPOzQMPArctOec24AEX9xxQY2bNzrle59weAOfcBHAIaPWwVpHzmotEeXhPN+/Z3kh9RbHf5WSdS5orOdijAF7KywBuBboWfd7Nm0N0xXPMrAO4Cng+/SWKpOaJA/2MTC9w+7Wb/C4lK21vqeLomUnmIzG/SwkULwN4uUkyt5pzzKwC+C7we865Zf/5NLM7zWy3me0eGBhYc7Ei5/PgC6dorSlV6/EabW+uYj4a01OSl/AygLuB9kWftwE9qZ5jZoXEw/dvnXMPn+ubOOfud87tdM7tbGhoSEvhIou92jfOv74+xIeuayektb9rsr05fiNO0xA/y8sA3gVsM7NOMysCbgceXXLOo8CHE6shbgDGnHO9Fr/F/DXgkHPuix7WKLKi+39yjNLCMHfcsNnvUrLWloYKSgvDvNIz5ncpgVLg1Rd2zkXM7B7gCSAMfN05d8DM7kocvw94DLgFOApMAx9LXP424N8BL5vZS4nX/tA595hX9Yos5/ToDI/u6+HfvWUzNWVFfpeTtcIh49KWKvZ3K4AX8yyAARKB+diS1+5b9LED7l7mumdYfn5YJKO+/sxxHPDrb9/idylZ74q2Gv7uhZNEojEKtIscoE44kXManZ7nWy+c4gM7WmitKfW7nKx3RVs1swsxjupG3FkKYJFz+JtnTzI9H+XOn9foNx0ub6sG0DTEIgpgkWWMTM1z/9PHeNfFG7kkcQdf1qdzQzkVxQW8rAA+SwEssoy//PFRpuYi/MFNF/tdSs4IhYzLW6vZ1z3qdymBoQAWWaJreJoHnj3BB69p46LETl6SHldtquFgzzizC1G/SwkEBbDIEl948jDhkPGJ91zodyk555rNtURiTvPACQpgkUX2d4/yvZd6+PjPddJcrZUP6XbVpvg+yi+eHPG5kmBQAIskRKIx/vAfXqahspjffMdWv8vJSXXlRWypL1cAJyiARRK+8exJXjk9zmdu3U5VSaHf5eSsqzfXsvfUCPE+rPymABYBekZn+LMnD/POixp43+XNfpeT067ZXMvQ1DzHB6f8LsV3CmDJe845/uh7B3AO/uS2y/S4IY9d31kHwPPHh32uxH8KYMl7j7x0mqcO9fOJ92yjva7M73JyXmd9ORsri3nu2JDfpfhOASx5rXtkmj965ADXddTx8Z9Ty3EmmBk3bNnAc8eG8n4eWAEseSsWc/z+t/fhgD/7lR2Etdl6xtywZQP943N5Pw+sAJa89dVnjvH88WE+c+t2TT1k2A1b4vPAz+b5NIQCWPLSod5xvvDEa9x4aSMfvEaPmc+0zvpyWqpLePq1Qb9L8ZUCWPLOXCTKJx56iarSQv70Fy/XqgcfmBnvuKiB/3V0kIVo/j4pWQEseefPnnyNV/sm+PwHr2BDRbHf5eStd1zYwMRchL2nRv0uxTcKYMkrz74+xF8/fYxfu34T77x4o9/l5LW3XlBPQcj4l8Nn/C7FNwpgyRvjswt88jv76NhQzqffd4nf5eS9qpJCrt5cy48PD/hdim8UwJI3Pvu9A/SNz/LFX9lBWZGnz6OVFL3nkkYO9Y7TNTztdym+UABLXvjH/b08vPc097zzgrNbIor/bry0CYAnDvT5XIk/FMCS8/rHZ/n0Iy+zo62ae37hAr/LkUU2bShje3MVj7+iABbJOc45PvmdfcwuRPniv72SwrD+yAfNjZc28eKpEfrHZ/0uJeP0p1Fy2gPPnuTpI4N8+n3b2dpQ4Xc5soz372jGOfj+vh6/S8k4BbDkrKNnJvnTxw7xjgsbuOP6TX6XI+ewtaGCHe01fHfPab9LyTgFsOSkuUiU33toL6VFYT7/wSvU7RZwv3x1K4d6xznYM+53KRmlAJac9N8fP8wrp8f5f3/5CjZWlfhdjqzg1itaKAwb397d5XcpGaUAlpzzo0P9fO2Z43zkLZvPLnOSYKstL+KWy5v5+xe7mZyL+F1OxiiAJaf0jc3yye/s45LmKj51i7rdsslH3trB5FyEh/d0+11KxiiAJWfMLkS565svMheJ8Ze/ehUlhWG/S5JVuKq9hh1t1fzP/3WCaCw/npShAJac4Jzj3u/u56WuUb74K1dqyVkWMjPuesdWjg1O8YP9+bEkTQEsOeErP3mdR17q4ZPvvZCbLtO8b7a68dImLm6q5Es/OpIXo2AFsGS9R/ae5vNPHObWHS3c/U61GmezUMj43Xdt49jAFA/tyv0VEQpgyWrf39fD739nHzd0btB63xxx02VNXNdZxxeePMzY9ILf5XhKASxZyTnH1545zu88uJdrNtXy1Y/s1E23HGFmfPbWSxmdnudPHzvkdzmeUgBL1hmdnud3HnyJ//KDg7x3eyMPfPw6you1v28u2d5SxW++YysP7e7iyRzeqlJ/aiVrzC5E+fbuLv78qSOMzSzwH268iN96x1ZCIU075KJPvPtCnj4ywB98dz8XNlbSUV/ud0lpZ87lzp3GnTt3ut27d/tdhqTJ1FyE3rEZDvVO8MyRQR4/0MfYzALXdtTyxx+4jO0tVX6XKB47NTTNbV9+htqyIr77W2+ltrzI75LWatlRggJYfNU9Ms2rvROcGJrixNAUPaOz9IzO0DM6w/jsGy2pFcUFvGd7I//22nau76zTzbY88sLxYe742vNsbajgb3/9euqyM4QVwOK/+UiMHx8+wxOv9PH88WFOj86cPVZVUkBbbRktNSU0V5fSXFNCS3UpWxrK2d5cRYE2U89bP31tgN94YDfN1SV87aPXZmOjjQJY/OGcY3/3GA/v6ebRfT2MTC9QV17EDVvquK6jjh3tNXTWl1NTlpUjG8mQ3SeG+c2/eZHZhSifuuUSfvW6Tdk0/68AlszqHZvhH/ae5uE9pzl6ZpKighDv3d7IL1/TxtsvqNeIVlbt9OgM//Hv9/PM0UFu2FLHn/7i5WzJjtGwAli85Zyja3iGpw7189jLvbx4agTn4NqOWn7p6jZuubyZ6tJCv8uULOec46FdXfy3fzzE9EKUX7qqld/+hW1s2lDmd2nnowD228TsAoOT80SiMSIxR2lhmI1VxZQV+b8acHo+wonBaQYn5xicnGNqLkI05og6CBkUhEMUhIxwyM7+DjA0OU//xCzHBqbYe2qUwck5AC5uquSWy5u57coWNm/IveVD4r+BiTnu+8nrfPO5k0Rjjpsua+Kjb+3gms21QbxJqwDOpL6xWV44MczuE8PsPTXKyaGpn7mrv1hFcQFbG8q5pLmK7S1VXL2ploubKj37EX0+EuPl06O8cHyEF0+O8GrfON0jMytfeA5F4RBttaVcuamGqzbV8ratG7Llx0LJAf3js/z1T4/x0O4uJmYjXNxUyS9e1cqtO1poqSn1u7wkBbBXYjHH6wOT7Doxwq4Tw+w6MXw20MqKwly1qYYt9RW01ZaysaqYglCIcMiYno8yMDFH//gsr/VPcKh3nJFE73tpYZgd7dVcs7mWazbXclV77ZrXQA5NzrGve5Q9J0d54cQw+7pGmYvEAOisL+fSlioubKxka0MFG6uKqa8opqK4gHDICJsRc45IzBGNOSKxWOJ3h3OODeXF1JQVBnHEIXlmej7CI3t7eGjXKfZ1jwFwXUcdt+5o5p0Xb6St1tcpiswHsJndBHwJCANfdc59bslxSxy/BZgGPuqc25PKtcvJVACPTs/zUtfoz/waTQRnfUUR13bUsbMjfof/kubUR7LOOXrGZtlzMj4y3XNqhAM942e35dvSUM5V7bVsaShnU10ZzdUllBcXUF5UQNQ5pucjTM5GOD06Q9fwDEfOTLCve5Su4fg/BuGQcWlLFdd21HFtRy07O+qoryj25j+SiI9ODE7x6L4evvfSaV4fmAJga0M5b7ugnqs31XLVpho21ZVlcuCQ2QA2szDwGvAeoBvYBXzIOXdw0Tm3AL9NPICvB77knLs+lWuXs5YAjkRjzEVizEfe+H1mIcrI9DwjU/OMTC8wODnHiaEpTg5Nc2JwiqGp+UT9sG1jBVe217Bzcx3XdtbRsSG9/1On5yPs7x5jz6kR9pwcYV/3GAMTcyteZwYt1aVc2V7DjvZqdrTVcFlrtfZMkLzinOPomUl+8toAP3ltgBdPjjA9HwXiP2V21Jezpb6cjvoyGqtKqC0roq68iJqyQsqLCiguDFEUDlFcGKYoHKIwbGv9+53xAH4L8Fnn3I2Jzz8F4Jz7fxad81fAvzjnvpX4/DDwfwAdK127nNUG8Ae/8q/sPjmS0rlNVSV01JfRsaGcjvpyrmit5vK2aipLMn9Xf2ouQtfINP3jc0zPRZiajxIOQWlhAeXFYVpqSmmtKdXuYCJLRKIxXuuf5KWuUV4fmOT44BTHB6c4NTyd0gbwlcUFvPzHN67lWy8bwF4Oh1qBxTsqdxMf5a50TmuK1wJgZncCdyY+nUyE+FrUA4PnOngSeH6NXzhgzvs+c4zea+7x/X3an6zpssedczctfdHLAF4u8Zf+E3Ouc1K5Nv6ic/cD96+utDczs93OuZ3r/TpBly/vE/Rec1GuvU8vA7gbaF/0eRuw9El75zqnKIVrRUSympe9oLuAbWbWaWZFwO3Ao0vOeRT4sMXdAIw553pTvFZEJKt5NgJ2zkXM7B7gCeJLyb7unDtgZncljt8HPEZ8BcRR4svQPna+a72qNWHd0xhZIl/eJ+i95qKcep851YghIpJNtB2ViIhPFMAiIj7J6wA2s/9iZvvN7CUze9LMWhYd+5SZHTWzw2a2ppXXQWJmnzezVxPv9x/MrGbRsVx7r//GzA6YWczMdi45lmvv9abEezlqZvf6XU86mdnXzeyMmb2y6LU6M/uhmR1J/F7rZ43rldcBDHzeOXeFc+5K4AfAHwGY2XbiKy8uBW4C/r9Ee3Q2+yFwmXPuCuJt3p+CnH2vrwC/BPx08Yu59l4TtX8ZuBnYDnwo8R5zxf8k/v9psXuBHznntgE/SnyetfI6gJ1z44s+LeeNZo/bgAedc3POuePEV2lcl+n60sk596RzLrkf5nPE11ZDbr7XQ8655Toic+29Xgccdc4dc87NAw8Sf485wTn3U2B4ycu3Ad9IfPwN4P/MZE3pltcBDGBm/83MuoBfIzEC5twt0rni3wP/lPg419/rYrn2XnPt/aSiMdErQOL3jT7Xsy45vzWWmT0FNC1z6NPOue855z4NfDqx4c89wGdYRSt0kKz0XhPnfBqIAH+bvGyZ83PivS532TKvBf69nkeuvZ+8k/MB7Jx7d4qn/h3wj8QDOJU26sBZ6b2a2UeA9wPvcm8sAM/J93oOWflezyPX3k8q+s2s2TnXa2bNwBm/C1qPvJ6CMLNtiz79APBq4uNHgdvNrNjMOoFtwAuZri+dEhvc/0fgA8656UWHcu69nkeuvdd8bNl/FPhI4uOPAOf6aScr5PwIeAWfM7OLgBjxHSeTbdIHzOzbwEHiP67f7ZyL+ldmWvwlUAz8MLGh9HPOubty8b2a2S8C/wNoAP7RzF5yzt2Ya+/Vp5b9jDGzbxHfH7zezLqJ/3T6OeDbZvZx4BTwb/yrcP3Uiiwi4pO8noIQEfGTAlhExCcKYBERnyiARUR8ogAWEfGJAlhExCcKYBERn/xvkQ+kXbE2bQIAAAAASUVORK5CYII=\n", 1112 | "text/plain": [ 1113 | "
" 1114 | ] 1115 | }, 1116 | "metadata": { 1117 | "needs_background": "light" 1118 | }, 1119 | "output_type": "display_data" 1120 | } 1121 | ], 1122 | "source": [ 1123 | "import seaborn as sns\n", 1124 | "sns.displot(reg_pred-y_test,kind='kde')" 1125 | ] 1126 | }, 1127 | { 1128 | "cell_type": "code", 1129 | "execution_count": 101, 1130 | "id": "09da978f", 1131 | "metadata": {}, 1132 | "outputs": [], 1133 | "source": [ 1134 | "from sklearn.metrics import r2_score" 1135 | ] 1136 | }, 1137 | { 1138 | "cell_type": "code", 1139 | "execution_count": 102, 1140 | "id": "e229dcb4", 1141 | "metadata": {}, 1142 | "outputs": [], 1143 | "source": [ 1144 | "score=r2_score(reg_pred,y_test)" 1145 | ] 1146 | }, 1147 | { 1148 | "cell_type": "code", 1149 | "execution_count": 103, 1150 | "id": "0276b604", 1151 | "metadata": {}, 1152 | "outputs": [ 1153 | { 1154 | "data": { 1155 | "text/plain": [ 1156 | "0.669370269149559" 1157 | ] 1158 | }, 1159 | "execution_count": 103, 1160 | "metadata": {}, 1161 | "output_type": "execute_result" 1162 | } 1163 | ], 1164 | "source": [ 1165 | "score" 1166 | ] 1167 | }, 1168 | { 1169 | "cell_type": "code", 1170 | "execution_count": null, 1171 | "id": "f7af9c9e", 1172 | "metadata": {}, 1173 | "outputs": [], 1174 | "source": [] 1175 | } 1176 | ], 1177 | "metadata": { 1178 | "kernelspec": { 1179 | "display_name": "Python 3 (ipykernel)", 1180 | "language": "python", 1181 | "name": "python3" 1182 | }, 1183 | "language_info": { 1184 | "codemirror_mode": { 1185 | "name": "ipython", 1186 | "version": 3 1187 | }, 1188 | "file_extension": ".py", 1189 | "mimetype": "text/x-python", 1190 | "name": "python", 1191 | "nbconvert_exporter": "python", 1192 | "pygments_lexer": "ipython3", 1193 | "version": "3.9.7" 1194 | } 1195 | }, 1196 | "nbformat": 4, 1197 | "nbformat_minor": 5 1198 | } 1199 | -------------------------------------------------------------------------------- /Postprunning and preprunning decision tree.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/Postprunning and preprunning decision tree.pdf -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Machine-Learning-Algorithms-Materials -------------------------------------------------------------------------------- /Randomforestregressionandclassification.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/Randomforestregressionandclassification.pdf -------------------------------------------------------------------------------- /Ridge And Lasso Practical.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "id": "c3b5cf5d", 6 | "metadata": {}, 7 | "source": [ 8 | "### Linear Regression Practical Implementation" 9 | ] 10 | }, 11 | { 12 | "cell_type": "code", 13 | "execution_count": 104, 14 | "id": "26dd6c2a", 15 | "metadata": {}, 16 | "outputs": [], 17 | "source": [ 18 | "import pandas as pd" 19 | ] 20 | }, 21 | { 22 | "cell_type": "code", 23 | "execution_count": 105, 24 | "id": "048fc045", 25 | "metadata": {}, 26 | "outputs": [], 27 | "source": [ 28 | "from sklearn.datasets import load_boston" 29 | ] 30 | }, 31 | { 32 | "cell_type": "code", 33 | "execution_count": 106, 34 | "id": "c01140eb", 35 | "metadata": {}, 36 | "outputs": [], 37 | "source": [ 38 | "import numpy as np\n", 39 | "import pandas as pd\n", 40 | "import matplotlib.pyplot as plt" 41 | ] 42 | }, 43 | { 44 | "cell_type": "code", 45 | "execution_count": 107, 46 | "id": "b2c173df", 47 | "metadata": {}, 48 | "outputs": [], 49 | "source": [ 50 | "df=load_boston()" 51 | ] 52 | }, 53 | { 54 | "cell_type": "code", 55 | "execution_count": 108, 56 | "id": "3592e757", 57 | "metadata": {}, 58 | "outputs": [ 59 | { 60 | "data": { 61 | "text/plain": [ 62 | "{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,\n", 63 | " 4.9800e+00],\n", 64 | " [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,\n", 65 | " 9.1400e+00],\n", 66 | " [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,\n", 67 | " 4.0300e+00],\n", 68 | " ...,\n", 69 | " [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n", 70 | " 5.6400e+00],\n", 71 | " [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,\n", 72 | " 6.4800e+00],\n", 73 | " [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n", 74 | " 7.8800e+00]]),\n", 75 | " 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,\n", 76 | " 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,\n", 77 | " 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,\n", 78 | " 13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,\n", 79 | " 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,\n", 80 | " 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,\n", 81 | " 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,\n", 82 | " 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,\n", 83 | " 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,\n", 84 | " 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,\n", 85 | " 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,\n", 86 | " 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,\n", 87 | " 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,\n", 88 | " 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,\n", 89 | " 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,\n", 90 | " 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,\n", 91 | " 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,\n", 92 | " 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,\n", 93 | " 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,\n", 94 | " 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,\n", 95 | " 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,\n", 96 | " 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,\n", 97 | " 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,\n", 98 | " 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,\n", 99 | " 36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,\n", 100 | " 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,\n", 101 | " 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,\n", 102 | " 20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,\n", 103 | " 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,\n", 104 | " 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,\n", 105 | " 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,\n", 106 | " 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,\n", 107 | " 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,\n", 108 | " 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,\n", 109 | " 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,\n", 110 | " 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,\n", 111 | " 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,\n", 112 | " 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4,\n", 113 | " 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. ,\n", 114 | " 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,\n", 115 | " 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,\n", 116 | " 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,\n", 117 | " 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,\n", 118 | " 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,\n", 119 | " 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,\n", 120 | " 23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),\n", 121 | " 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',\n", 122 | " 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='\n", 156 | "\n", 169 | "\n", 170 | " \n", 171 | " \n", 172 | " \n", 173 | " \n", 174 | " \n", 175 | " \n", 176 | " \n", 177 | " \n", 178 | " \n", 179 | " \n", 180 | " \n", 181 | " \n", 182 | " \n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | " \n", 284 | " \n", 285 | " \n", 286 | " \n", 287 | " \n", 288 | " \n", 289 | " \n", 290 | " \n", 291 | " \n", 292 | " \n", 293 | " \n", 294 | " \n", 295 | " \n", 296 | " \n", 297 | " \n", 298 | " \n", 299 | " \n", 300 | " \n", 301 | " \n", 302 | " \n", 303 | " \n", 304 | " \n", 305 | " \n", 306 | " \n", 307 | " \n", 308 | " \n", 309 | " \n", 310 | " \n", 311 | " \n", 312 | " \n", 313 | " \n", 314 | " \n", 315 | " \n", 316 | " \n", 317 | " \n", 318 | " \n", 319 | " \n", 320 | " \n", 321 | " \n", 322 | " \n", 323 | " \n", 324 | " \n", 325 | " \n", 326 | " \n", 327 | " \n", 328 | " \n", 329 | " \n", 330 | " \n", 331 | " \n", 332 | " \n", 333 | " \n", 334 | " \n", 335 | " \n", 336 | " \n", 337 | " \n", 338 | " \n", 339 | " \n", 340 | " \n", 341 | " \n", 342 | " \n", 343 | " \n", 344 | " \n", 345 | " \n", 346 | " \n", 347 | " \n", 348 | " \n", 349 | " \n", 350 | " \n", 351 | " \n", 352 | " \n", 353 | " \n", 354 | " \n", 355 | " \n", 356 | " \n", 357 | " \n", 358 | " \n", 359 | " \n", 360 | " \n", 361 | " \n", 362 | " \n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | "
0123456789101112
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.98
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.14
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.03
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.94
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.33
..........................................
5010.062630.011.930.00.5736.59369.12.47861.0273.021.0391.999.67
5020.045270.011.930.00.5736.12076.72.28751.0273.021.0396.909.08
5030.060760.011.930.00.5736.97691.02.16751.0273.021.0396.905.64
5040.109590.011.930.00.5736.79489.32.38891.0273.021.0393.456.48
5050.047410.011.930.00.5736.03080.82.50501.0273.021.0396.907.88
\n", 367 | "

506 rows × 13 columns

\n", 368 | "" 369 | ], 370 | "text/plain": [ 371 | " 0 1 2 3 4 5 6 7 8 9 10 \\\n", 372 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 15.3 \n", 373 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 17.8 \n", 374 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 17.8 \n", 375 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 18.7 \n", 376 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 18.7 \n", 377 | ".. ... ... ... ... ... ... ... ... ... ... ... \n", 378 | "501 0.06263 0.0 11.93 0.0 0.573 6.593 69.1 2.4786 1.0 273.0 21.0 \n", 379 | "502 0.04527 0.0 11.93 0.0 0.573 6.120 76.7 2.2875 1.0 273.0 21.0 \n", 380 | "503 0.06076 0.0 11.93 0.0 0.573 6.976 91.0 2.1675 1.0 273.0 21.0 \n", 381 | "504 0.10959 0.0 11.93 0.0 0.573 6.794 89.3 2.3889 1.0 273.0 21.0 \n", 382 | "505 0.04741 0.0 11.93 0.0 0.573 6.030 80.8 2.5050 1.0 273.0 21.0 \n", 383 | "\n", 384 | " 11 12 \n", 385 | "0 396.90 4.98 \n", 386 | "1 396.90 9.14 \n", 387 | "2 392.83 4.03 \n", 388 | "3 394.63 2.94 \n", 389 | "4 396.90 5.33 \n", 390 | ".. ... ... \n", 391 | "501 391.99 9.67 \n", 392 | "502 396.90 9.08 \n", 393 | "503 396.90 5.64 \n", 394 | "504 393.45 6.48 \n", 395 | "505 396.90 7.88 \n", 396 | "\n", 397 | "[506 rows x 13 columns]" 398 | ] 399 | }, 400 | "execution_count": 110, 401 | "metadata": {}, 402 | "output_type": "execute_result" 403 | } 404 | ], 405 | "source": [ 406 | "dataset" 407 | ] 408 | }, 409 | { 410 | "cell_type": "code", 411 | "execution_count": 111, 412 | "id": "7ad3b490", 413 | "metadata": {}, 414 | "outputs": [], 415 | "source": [ 416 | "dataset.columns=df.feature_names" 417 | ] 418 | }, 419 | { 420 | "cell_type": "code", 421 | "execution_count": 112, 422 | "id": "9cf167a0", 423 | "metadata": {}, 424 | "outputs": [ 425 | { 426 | "data": { 427 | "text/html": [ 428 | "
\n", 429 | "\n", 442 | "\n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | " \n", 470 | " \n", 471 | " \n", 472 | " \n", 473 | " \n", 474 | " \n", 475 | " \n", 476 | " \n", 477 | " \n", 478 | " \n", 479 | " \n", 480 | " \n", 481 | " \n", 482 | " \n", 483 | " \n", 484 | " \n", 485 | " \n", 486 | " \n", 487 | " \n", 488 | " \n", 489 | " \n", 490 | " \n", 491 | " \n", 492 | " \n", 493 | " \n", 494 | " \n", 495 | " \n", 496 | " \n", 497 | " \n", 498 | " \n", 499 | " \n", 500 | " \n", 501 | " \n", 502 | " \n", 503 | " \n", 504 | " \n", 505 | " \n", 506 | " \n", 507 | " \n", 508 | " \n", 509 | " \n", 510 | " \n", 511 | " \n", 512 | " \n", 513 | " \n", 514 | " \n", 515 | " \n", 516 | " \n", 517 | " \n", 518 | " \n", 519 | " \n", 520 | " \n", 521 | " \n", 522 | " \n", 523 | " \n", 524 | " \n", 525 | " \n", 526 | " \n", 527 | " \n", 528 | " \n", 529 | " \n", 530 | " \n", 531 | " \n", 532 | " \n", 533 | " \n", 534 | " \n", 535 | " \n", 536 | " \n", 537 | " \n", 538 | " \n", 539 | " \n", 540 | " \n", 541 | " \n", 542 | " \n", 543 | "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.98
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.14
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.03
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.94
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.33
\n", 544 | "
" 545 | ], 546 | "text/plain": [ 547 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n", 548 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n", 549 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n", 550 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n", 551 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n", 552 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n", 553 | "\n", 554 | " PTRATIO B LSTAT \n", 555 | "0 15.3 396.90 4.98 \n", 556 | "1 17.8 396.90 9.14 \n", 557 | "2 17.8 392.83 4.03 \n", 558 | "3 18.7 394.63 2.94 \n", 559 | "4 18.7 396.90 5.33 " 560 | ] 561 | }, 562 | "execution_count": 112, 563 | "metadata": {}, 564 | "output_type": "execute_result" 565 | } 566 | ], 567 | "source": [ 568 | "dataset.head()" 569 | ] 570 | }, 571 | { 572 | "cell_type": "code", 573 | "execution_count": 113, 574 | "id": "8204ddd1", 575 | "metadata": {}, 576 | "outputs": [], 577 | "source": [ 578 | "## Independent features and dependent features\n", 579 | "X=dataset\n", 580 | "y=df.target" 581 | ] 582 | }, 583 | { 584 | "cell_type": "code", 585 | "execution_count": 114, 586 | "id": "f05469ba", 587 | "metadata": {}, 588 | "outputs": [ 589 | { 590 | "data": { 591 | "text/plain": [ 592 | "array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,\n", 593 | " 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,\n", 594 | " 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,\n", 595 | " 13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,\n", 596 | " 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,\n", 597 | " 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,\n", 598 | " 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,\n", 599 | " 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,\n", 600 | " 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,\n", 601 | " 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,\n", 602 | " 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,\n", 603 | " 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,\n", 604 | " 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,\n", 605 | " 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,\n", 606 | " 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,\n", 607 | " 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,\n", 608 | " 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,\n", 609 | " 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,\n", 610 | " 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,\n", 611 | " 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,\n", 612 | " 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,\n", 613 | " 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,\n", 614 | " 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,\n", 615 | " 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,\n", 616 | " 36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,\n", 617 | " 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,\n", 618 | " 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,\n", 619 | " 20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,\n", 620 | " 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,\n", 621 | " 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,\n", 622 | " 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,\n", 623 | " 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,\n", 624 | " 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,\n", 625 | " 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,\n", 626 | " 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,\n", 627 | " 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,\n", 628 | " 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,\n", 629 | " 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4,\n", 630 | " 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. ,\n", 631 | " 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,\n", 632 | " 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,\n", 633 | " 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,\n", 634 | " 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,\n", 635 | " 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,\n", 636 | " 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,\n", 637 | " 23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9])" 638 | ] 639 | }, 640 | "execution_count": 114, 641 | "metadata": {}, 642 | "output_type": "execute_result" 643 | } 644 | ], 645 | "source": [ 646 | "y" 647 | ] 648 | }, 649 | { 650 | "cell_type": "code", 651 | "execution_count": 115, 652 | "id": "2dca59c1", 653 | "metadata": {}, 654 | "outputs": [], 655 | "source": [ 656 | "## train test split \n", 657 | "from sklearn.model_selection import train_test_split\n", 658 | "\n", 659 | "X_train, X_test, y_train, y_test = train_test_split(\n", 660 | " X, y, test_size=0.30, random_state=42)" 661 | ] 662 | }, 663 | { 664 | "cell_type": "code", 665 | "execution_count": 116, 666 | "id": "9a76e705", 667 | "metadata": {}, 668 | "outputs": [ 669 | { 670 | "data": { 671 | "text/html": [ 672 | "
\n", 673 | "\n", 686 | "\n", 687 | " \n", 688 | " \n", 689 | " \n", 690 | " \n", 691 | " \n", 692 | " \n", 693 | " \n", 694 | " \n", 695 | " \n", 696 | " \n", 697 | " \n", 698 | " \n", 699 | " \n", 700 | " \n", 701 | " \n", 702 | " \n", 703 | " \n", 704 | " \n", 705 | " \n", 706 | " \n", 707 | " \n", 708 | " \n", 709 | " \n", 710 | " \n", 711 | " \n", 712 | " \n", 713 | " \n", 714 | " \n", 715 | " \n", 716 | " \n", 717 | " \n", 718 | " \n", 719 | " \n", 720 | " \n", 721 | " \n", 722 | " \n", 723 | " \n", 724 | " \n", 725 | " \n", 726 | " \n", 727 | " \n", 728 | " \n", 729 | " \n", 730 | " \n", 731 | " \n", 732 | " \n", 733 | " \n", 734 | " \n", 735 | " \n", 736 | " \n", 737 | " \n", 738 | " \n", 739 | " \n", 740 | " \n", 741 | " \n", 742 | " \n", 743 | " \n", 744 | " \n", 745 | " \n", 746 | " \n", 747 | " \n", 748 | " \n", 749 | " \n", 750 | " \n", 751 | " \n", 752 | " \n", 753 | " \n", 754 | " \n", 755 | " \n", 756 | " \n", 757 | " \n", 758 | " \n", 759 | " \n", 760 | " \n", 761 | " \n", 762 | " \n", 763 | " \n", 764 | " \n", 765 | " \n", 766 | " \n", 767 | " \n", 768 | " \n", 769 | " \n", 770 | " \n", 771 | " \n", 772 | " \n", 773 | " \n", 774 | " \n", 775 | " \n", 776 | " \n", 777 | " \n", 778 | " \n", 779 | " \n", 780 | " \n", 781 | " \n", 782 | " \n", 783 | " \n", 784 | " \n", 785 | " \n", 786 | " \n", 787 | " \n", 788 | " \n", 789 | " \n", 790 | " \n", 791 | " \n", 792 | " \n", 793 | " \n", 794 | " \n", 795 | " \n", 796 | " \n", 797 | " \n", 798 | " \n", 799 | " \n", 800 | " \n", 801 | " \n", 802 | " \n", 803 | " \n", 804 | " \n", 805 | " \n", 806 | " \n", 807 | " \n", 808 | " \n", 809 | " \n", 810 | " \n", 811 | " \n", 812 | " \n", 813 | " \n", 814 | " \n", 815 | " \n", 816 | " \n", 817 | " \n", 818 | " \n", 819 | " \n", 820 | " \n", 821 | " \n", 822 | " \n", 823 | " \n", 824 | " \n", 825 | " \n", 826 | " \n", 827 | " \n", 828 | " \n", 829 | " \n", 830 | " \n", 831 | " \n", 832 | " \n", 833 | " \n", 834 | " \n", 835 | " \n", 836 | " \n", 837 | " \n", 838 | " \n", 839 | " \n", 840 | " \n", 841 | " \n", 842 | " \n", 843 | " \n", 844 | " \n", 845 | " \n", 846 | " \n", 847 | " \n", 848 | " \n", 849 | " \n", 850 | " \n", 851 | " \n", 852 | " \n", 853 | " \n", 854 | " \n", 855 | " \n", 856 | " \n", 857 | " \n", 858 | " \n", 859 | " \n", 860 | " \n", 861 | " \n", 862 | " \n", 863 | " \n", 864 | " \n", 865 | " \n", 866 | " \n", 867 | " \n", 868 | " \n", 869 | " \n", 870 | " \n", 871 | " \n", 872 | " \n", 873 | " \n", 874 | " \n", 875 | " \n", 876 | " \n", 877 | " \n", 878 | " \n", 879 | " \n", 880 | " \n", 881 | " \n", 882 | " \n", 883 | "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT
50.029850.02.180.00.4586.43058.76.06223.0222.018.7394.125.21
1160.131580.010.010.00.5476.17672.52.73016.0432.017.8393.3012.04
450.171420.06.910.00.4485.68233.85.10043.0233.017.9396.9010.21
161.053930.08.140.00.5385.93529.34.49864.0307.021.0386.856.58
46815.575700.018.100.00.5805.92671.02.908424.0666.020.2368.7418.13
..........................................
1060.171200.08.560.00.5205.83691.92.21105.0384.020.9395.6718.66
2700.2991620.06.960.00.4645.85642.14.42903.0223.018.6388.6513.00
3480.0150180.02.010.00.4356.63529.78.34404.0280.017.0390.945.99
43511.160400.018.100.00.7406.62994.62.124724.0666.020.2109.8523.27
1020.228760.08.560.00.5206.40585.42.71475.0384.020.970.8010.63
\n", 884 | "

354 rows × 13 columns

\n", 885 | "
" 886 | ], 887 | "text/plain": [ 888 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n", 889 | "5 0.02985 0.0 2.18 0.0 0.458 6.430 58.7 6.0622 3.0 222.0 \n", 890 | "116 0.13158 0.0 10.01 0.0 0.547 6.176 72.5 2.7301 6.0 432.0 \n", 891 | "45 0.17142 0.0 6.91 0.0 0.448 5.682 33.8 5.1004 3.0 233.0 \n", 892 | "16 1.05393 0.0 8.14 0.0 0.538 5.935 29.3 4.4986 4.0 307.0 \n", 893 | "468 15.57570 0.0 18.10 0.0 0.580 5.926 71.0 2.9084 24.0 666.0 \n", 894 | ".. ... ... ... ... ... ... ... ... ... ... \n", 895 | "106 0.17120 0.0 8.56 0.0 0.520 5.836 91.9 2.2110 5.0 384.0 \n", 896 | "270 0.29916 20.0 6.96 0.0 0.464 5.856 42.1 4.4290 3.0 223.0 \n", 897 | "348 0.01501 80.0 2.01 0.0 0.435 6.635 29.7 8.3440 4.0 280.0 \n", 898 | "435 11.16040 0.0 18.10 0.0 0.740 6.629 94.6 2.1247 24.0 666.0 \n", 899 | "102 0.22876 0.0 8.56 0.0 0.520 6.405 85.4 2.7147 5.0 384.0 \n", 900 | "\n", 901 | " PTRATIO B LSTAT \n", 902 | "5 18.7 394.12 5.21 \n", 903 | "116 17.8 393.30 12.04 \n", 904 | "45 17.9 396.90 10.21 \n", 905 | "16 21.0 386.85 6.58 \n", 906 | "468 20.2 368.74 18.13 \n", 907 | ".. ... ... ... \n", 908 | "106 20.9 395.67 18.66 \n", 909 | "270 18.6 388.65 13.00 \n", 910 | "348 17.0 390.94 5.99 \n", 911 | "435 20.2 109.85 23.27 \n", 912 | "102 20.9 70.80 10.63 \n", 913 | "\n", 914 | "[354 rows x 13 columns]" 915 | ] 916 | }, 917 | "execution_count": 116, 918 | "metadata": {}, 919 | "output_type": "execute_result" 920 | } 921 | ], 922 | "source": [ 923 | "X_train" 924 | ] 925 | }, 926 | { 927 | "cell_type": "code", 928 | "execution_count": 117, 929 | "id": "882e5902", 930 | "metadata": {}, 931 | "outputs": [], 932 | "source": [ 933 | "## standardizing the dataset\n", 934 | "from sklearn.preprocessing import StandardScaler\n", 935 | "scaler = StandardScaler()\n" 936 | ] 937 | }, 938 | { 939 | "cell_type": "code", 940 | "execution_count": 118, 941 | "id": "21f803c8", 942 | "metadata": {}, 943 | "outputs": [], 944 | "source": [ 945 | "X_train=scaler.fit_transform(X_train)" 946 | ] 947 | }, 948 | { 949 | "cell_type": "code", 950 | "execution_count": 119, 951 | "id": "2dcdff63", 952 | "metadata": {}, 953 | "outputs": [], 954 | "source": [ 955 | "X_test=scaler.transform(X_test)" 956 | ] 957 | }, 958 | { 959 | "cell_type": "code", 960 | "execution_count": null, 961 | "id": "2e7ff359", 962 | "metadata": {}, 963 | "outputs": [], 964 | "source": [] 965 | }, 966 | { 967 | "cell_type": "code", 968 | "execution_count": 120, 969 | "id": "c88b6c65", 970 | "metadata": {}, 971 | "outputs": [], 972 | "source": [ 973 | "from sklearn.linear_model import LinearRegression\n", 974 | "##cross validation\n", 975 | "from sklearn.model_selection import cross_val_score" 976 | ] 977 | }, 978 | { 979 | "cell_type": "code", 980 | "execution_count": 121, 981 | "id": "572ff827", 982 | "metadata": {}, 983 | "outputs": [ 984 | { 985 | "data": { 986 | "text/plain": [ 987 | "LinearRegression()" 988 | ] 989 | }, 990 | "execution_count": 121, 991 | "metadata": {}, 992 | "output_type": "execute_result" 993 | } 994 | ], 995 | "source": [ 996 | "regression=LinearRegression()\n", 997 | "regression.fit(X_train,y_train)" 998 | ] 999 | }, 1000 | { 1001 | "cell_type": "code", 1002 | "execution_count": 122, 1003 | "id": "c52bdebf", 1004 | "metadata": {}, 1005 | "outputs": [], 1006 | "source": [ 1007 | "mse=cross_val_score(regression,X_train,y_train,scoring='neg_mean_squared_error',cv=10)" 1008 | ] 1009 | }, 1010 | { 1011 | "cell_type": "code", 1012 | "execution_count": 123, 1013 | "id": "04a908f0", 1014 | "metadata": {}, 1015 | "outputs": [ 1016 | { 1017 | "data": { 1018 | "text/plain": [ 1019 | "-25.550660791660782" 1020 | ] 1021 | }, 1022 | "execution_count": 123, 1023 | "metadata": {}, 1024 | "output_type": "execute_result" 1025 | } 1026 | ], 1027 | "source": [ 1028 | "np.mean(mse)" 1029 | ] 1030 | }, 1031 | { 1032 | "cell_type": "code", 1033 | "execution_count": 124, 1034 | "id": "34f2244f", 1035 | "metadata": {}, 1036 | "outputs": [], 1037 | "source": [ 1038 | "##prediction \n", 1039 | "reg_pred=regression.predict(X_test)" 1040 | ] 1041 | }, 1042 | { 1043 | "cell_type": "code", 1044 | "execution_count": 125, 1045 | "id": "5cd2b597", 1046 | "metadata": {}, 1047 | "outputs": [ 1048 | { 1049 | "data": { 1050 | "text/plain": [ 1051 | "array([28.64896005, 36.49501384, 15.4111932 , 25.40321303, 18.85527988,\n", 1052 | " 23.14668944, 17.3921241 , 14.07859899, 23.03692679, 20.59943345,\n", 1053 | " 24.82286159, 18.53057049, -6.86543527, 21.80172334, 19.22571177,\n", 1054 | " 26.19191985, 20.27733882, 5.61596432, 40.44887974, 17.57695918,\n", 1055 | " 27.44319095, 30.1715964 , 10.94055823, 24.02083139, 18.07693812,\n", 1056 | " 15.934748 , 23.12614028, 14.56052142, 22.33482544, 19.3257627 ,\n", 1057 | " 22.16564973, 25.19476081, 25.31372473, 18.51345025, 16.6223286 ,\n", 1058 | " 17.50268505, 30.94992991, 20.19201752, 23.90440431, 24.86975466,\n", 1059 | " 13.93767876, 31.82504715, 42.56978796, 17.62323805, 27.01963242,\n", 1060 | " 17.19006621, 13.80594006, 26.10356557, 20.31516118, 30.08649576,\n", 1061 | " 21.3124053 , 34.15739602, 15.60444981, 26.11247588, 39.31613646,\n", 1062 | " 22.99282065, 18.95764781, 33.05555669, 24.85114223, 12.91729352,\n", 1063 | " 22.68101452, 30.80336295, 31.63522027, 16.29833689, 21.07379993,\n", 1064 | " 16.57699669, 20.36362023, 26.15615896, 31.06833034, 11.98679953,\n", 1065 | " 20.42550472, 27.55676301, 10.94316981, 16.82660609, 23.92909733,\n", 1066 | " 5.28065815, 21.43504661, 41.33684993, 18.22211675, 9.48269245,\n", 1067 | " 21.19857446, 12.95001331, 21.64822797, 9.3845568 , 23.06060014,\n", 1068 | " 31.95762512, 19.16662892, 25.59942257, 29.35043558, 20.13138581,\n", 1069 | " 25.57297369, 5.42970803, 20.23169356, 15.1949595 , 14.03241742,\n", 1070 | " 20.91078077, 24.82249135, -0.47712079, 13.70520524, 15.69525576,\n", 1071 | " 22.06972676, 24.64152943, 10.7382866 , 19.68622564, 23.63678009,\n", 1072 | " 12.07974981, 18.47894211, 25.52713393, 20.93461307, 24.6955941 ,\n", 1073 | " 7.59054562, 19.01046053, 21.9444339 , 27.22319977, 32.18608828,\n", 1074 | " 15.27826455, 34.39190421, 12.96314168, 21.01681316, 28.57880911,\n", 1075 | " 15.86300844, 24.85124135, 3.37937111, 23.90465773, 25.81792146,\n", 1076 | " 23.11020547, 25.33489201, 33.35545176, 20.60724498, 38.4772665 ,\n", 1077 | " 13.97398533, 25.21923987, 17.80946626, 20.63437371, 9.80267398,\n", 1078 | " 21.07953576, 22.3378417 , 32.32381854, 31.48694863, 15.46621287,\n", 1079 | " 16.86242766, 28.99330526, 24.95467894, 16.73633557, 6.12858395,\n", 1080 | " 26.65990044, 23.34007187, 17.40367164, 13.38594123, 39.98342478,\n", 1081 | " 16.68286302, 18.28561759])" 1082 | ] 1083 | }, 1084 | "execution_count": 125, 1085 | "metadata": {}, 1086 | "output_type": "execute_result" 1087 | } 1088 | ], 1089 | "source": [ 1090 | "reg_pred" 1091 | ] 1092 | }, 1093 | { 1094 | "cell_type": "code", 1095 | "execution_count": 126, 1096 | "id": "8ef9df8d", 1097 | "metadata": {}, 1098 | "outputs": [ 1099 | { 1100 | "data": { 1101 | "text/plain": [ 1102 | "" 1103 | ] 1104 | }, 1105 | "execution_count": 126, 1106 | "metadata": {}, 1107 | "output_type": "execute_result" 1108 | }, 1109 | { 1110 | "data": { 1111 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAviklEQVR4nO3deZxcZ33n+8+vqve9W93qXeqWLC/yIi/yAoRwCYsXML5JmIxJPCxD4jjXzsINkzFhJpDMTC53ILxCJlwcB7iDQ4INwTGGOLYxIWBPvEiWLNmSLEvW1q1e1Pu+VdUzf1SV3LRb6uruOnVOVX3fr5de6q5zTvevbOmrp5/z/J5jzjlERCTzQn4XICKSrxTAIiI+UQCLiPhEASwi4hMFsIiITwr8LiCdbrrpJvf444/7XYaIyFK23Is5NQIeHBz0uwQRkZTlVACLiGQTBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPlEAi4j4RAEskqNiMT3vMegUwCI55ocH+3n//3iaq//rD9l1YtjvcuQ8FMAiOaR7ZJq7/24P0/NRakoLueOrz7Ova9TvsuQcFMAiOeRz//QqIYNvfvx6vvtbb6WypIA/f+o1v8uSc1AAi+SII/0T/GB/L3f+/FZaakrZUFHMR9/awY8PD/Bq37jf5ckyFMAiOeKxl/swgztu2HT2tTtu2ExZUZi//ulxHyuTc1EAi+SIxw/0sXNzLRsrS86+VlNWxPsub+bJg30sRGM+VifLUQCL5ICTQ1Mc6h3nxkub3nTsXZc0MjEbYddxrYgIGgWwSA548kA/wLIB/PZt9RQVhHjq0JlMlyUrUACL5IDnjw/TWV9Oe13Zm46VFxfw1q0beOpQP86pOSNIFMAiWc45x95TI1y9qfac57zr4o2cGp7m5NB0BiuTlSiARbLcyaFphqbmuXpzzTnPubazDoDdJ0cyVJWkQgEskuX2nIqH6jWbzz0CvnBjJZUlBbx4UjfigkQBLJLl9pwaoaK4gG0bK895TihkXL2plt0nNAIOEgWwSJbbc3KUK9trCIfsvOft3FzLkTOTjE7PZ6gyWYkCWCSLLURjHDkzwWWt1Suee01HfIoiOWUh/lMAi2Sx44NTLEQdFzede/oh6cr2GkIG+7rGMlCZpEIBLJLFXu2bAODCxpUDuKyogM76cg70aGOeoFAAi2Sxw33jhEPG1o3lKZ1/aUs1B3s0Ag4KBbBIFjvcN8GW+nKKC8IpnX9pSxU9Y7OMTOlGXBAogEWy2OH+CS5KYf436dKW+M06TUMEgwJYJEtNzkXoGp5J6QZc0qUtVQAc7NU0RBAogEWy1NEzkwBsS+EGXFJteREt1SUaAQeEAlgkSx0fjAfw1oaKVV13SXMVh3oVwEGgABbJUscHpggZbFpmC8rz2dZYyfHBKSJ6QobvFMAiWer40DSttaUUFazur/G2jRUsRB0ntDWl7xTAIlnqxOAUnfWrm36AN5o2jp6ZSHdJskoKYJEs5Jzj+OAUnRtWN/0AnG3aeK1/Mt1lySopgEWy0ODkPJNzETrqU+uAW6ysqIC22lKOnFEA+83TADazm8zssJkdNbN7lzl+sZk9a2ZzZvbJ1Vwrks9ODE0BrCmAIT4NcaRfUxB+8yyAzSwMfBm4GdgOfMjMti85bRj4HeALa7hWJG8dH4gH8JY1BvC2jRUcG9BKCL95OQK+DjjqnDvmnJsHHgRuW3yCc+6Mc24XsLDaa0Xy2fGhKQpCRmtN6Zqu37qxgvlojFPDWgnhJy8DuBXoWvR5d+K1tF5rZnea2W4z2z0wMLCmQkWyzanh+BK0gvDa/gpvbYiPnJNTGeIPLwN4ueejuHRf65y73zm30zm3s6GhIeXiRLJZ98gM7bWrXwGRlFy+dmxAAewnLwO4G2hf9Hkb0JOBa0VyXvfwNO11a5t+AKgtK6S6tJDjgwpgP3kZwLuAbWbWaWZFwO3Aoxm4ViSnTc9HGJqap20dI2Azo7O+XAHsswKvvrBzLmJm9wBPAGHg6865A2Z2V+L4fWbWBOwGqoCYmf0esN05N77ctV7VKpJNukdmAGirXfsIGOIrKJ49NpSOkmSNPAtgAOfcY8BjS167b9HHfcSnF1K6VkSgeyS+cqF9lZvwLLWloZyH955mej5CWZGnUSDnoE44kSzTNZyeEXDyRtyJQS1F84sCWCTLdA1PU1IYoqGieF1fpzPRxKF5YP8ogEWyTPfIDG21ZZgtt1ozdR318SmM5MbuknkKYJEs0zUyTfs6px8gvilPQ2Xx2SkNyTwFsEiWOT06Q2saAhigvbZU7cg+UgCLZJHZhSij0ws0V6cngDfVlSmAfaQAFskifWOzADRWlaTl622qK6N3bIYF7YrmCwWwSBbpG48HcFOaAri9royYg55RzQP7QQEskkX6kwFcnb4RMKBpCJ8ogEWySHIKIm0BvEEB7CcFsEgW6R2bpaK4gIri9LQON1aWUBQOKYB9ogAWySL947M0Vq2vA26xUMhoqy2lSwHsCwWwSBbpG59N2/RDUntdmZoxfKIAFski/WOzNFWlZw1wktYC+0cBLJIlojHHmYk5mqrTNwUB8QAem1lgbHrps3HFawpgkSwxNDlHJObStgY4KbmvcNeIRsGZpgAWyRLJJox0dcElJZ8tp2mIzFMAi2SJ5BrgdO0DkdSuZgzfKIBFskSyC64xzXPAVSWF1JYVKoB9oAAWyRJ947MUhIz68vQGMMRvxGktcOYpgEWyRO/YLBsriwmF1vckjOW0K4B9oQAWyRL947M0prkJI2lTXRndIzNEY86Try/LUwCLZIm+sVmaPQrg9royIjFH75g64jJJASySJfrH59K+BC0p+Yj70yMK4ExSAItkgYnZBSbnImlvwkhqrUkEsDZmzygFsEgWSPdG7Eu1JAJYT8bILAWwSBboG5sD0t8Fl1RSGGZDeZFGwBmmABbJAsk2ZK9uwgG01pZyenTWs68vb6YAFskC/R7tA7FYS3Upp7UhT0YpgEWyQN/YLDVlhZQUhj37Hq21pfSMzuKc1gJnigJYJAv0js16tgIiqaWmlJmFKCPaFzhjFMAiWSD+LDhvA7hVKyEyTgEskgX6xr3rgkvSWuDMUwCLBNxCNMbgpHddcEktNfGvr264zFEAiwTcwMQcznnXhJFUV15ESWFIUxAZpAAWCbjexJMwvL4JZ2a01JRqCiKDFMAiAZeJNcBJrTWlGgFnkAJYJODeeBZcZgJYI+DMUQCLBFz/+CxFBSFqygo9/16tNaUMTs4zuxD1/HuJAlgk8PrG400YZul/FNFS2hUtsxTAIgGXiS64pNbaZABrU55MUACLBJyXz4Jb6o1mDG3KkwkKYJEAc855+iy4pRqrSjBD21JmiAJYJMDGZhaYi8QysgQNoKggRGNlieaAM0QBLBJgyY3YMzUHDPGWZLUjZ4YCWCTAznbBVRdn7Hu21pbRo8fTZ4SnAWxmN5nZYTM7amb3LnPczOwvEsf3m9nVi459wswOmNkrZvYtM8vcEEAkIPrPBnBpxr5nc3UJvWPamD0TPAtgMwsDXwZuBrYDHzKz7UtOuxnYlvh1J/CVxLWtwO8AO51zlwFh4HavahUJqr7xWcxgY2XmRsDN1SXMR2IMT81n7HvmKy9HwNcBR51zx5xz88CDwG1LzrkNeMDFPQfUmFlz4lgBUGpmBUAZ0ONhrSKB1D8+y4byYgrDmZstTK64SE5/iHe8/L/aCnQt+rw78dqK5zjnTgNfAE4BvcCYc+7J5b6Jmd1pZrvNbPfAwEDaihcJgr6x2YzO/wI0J6Y7FMDe8zKAl+ubXDqptOw5ZlZLfHTcCbQA5WZ2x3LfxDl3v3Nup3NuZ0NDw7oKFgmaTHbBJSVHwH26Eec5LwO4G2hf9Hkbb55GONc57waOO+cGnHMLwMPAWz2sVSSQ+sdnPd+Ifan6imIKQkaPRsCe8zKAdwHbzKzTzIqI30R7dMk5jwIfTqyGuIH4VEMv8amHG8yszOI7kLwLOORhrSKBM5t4QnGmR8ChkNFYVXJ2G0zxToFXX9g5FzGze4AniK9i+Lpz7oCZ3ZU4fh/wGHALcBSYBj6WOPa8mf09sAeIAHuB+72qVSSIzozPAZnZiH2plhp1w2WCZwEM4Jx7jHjILn7tvkUfO+Duc1z7GeAzXtYnEmS9iTnYTE9BxL9nKfu7RzP+ffONOuFEAsqPNuQkNWNkhgJYJKCSz4LzYwSsZozMUACLBFTf2BzlRWEqS7x/FNFSasbIDAWwSEBlciP2pdSMkRkKYJGA6h2b8WX+FxaPgLUSwksKYJGA6h+f8y2Ak80YGgF7SwEsEkCxmPOlCy4p2YzRq7XAnlIAiwTQ0NQ8kZjzLYAh3oyhEbC3FMAiAZRcguZHF1xSU3Xp2bXI4g0FsEgAnX0UkY8B3KJmDM8pgEUCqM/HJoykJjVjeE4BLBJA/WOzhENGfUVmN2NfTGuBvacAFgmgvvFZNlYWEw4t98yCzFA3nPcUwCIB1D8+6+sNOIDmGjVjeE0BLBJAfjyKaKn6cjVjeE0BLBJA/WP+NWEkqRnDewpgkYCZmoswMRfxPYBBzRheUwCLBIyfG7Ev1VRdqgD2kAJYJGD6x/zvgktqqY4/nFPNGN5QAIsEzNkuuABMQTRVlzAfjTGkZgxPKIBFAiZIUxDJZgw9ot4bCmCRgOkfn6W6tJDSorDfpagZw2MKYJGA6QvAGuAkNWN4SwEsEjB+PgtuqfryYgrDasbwigJYJGDiXXD+bcKzmJoxvKUAFgmQSDTG4KR/z4JbTnO1mjG8ogAWCZD+iTliDpprSv0u5axmNWN4RgEsEiB9iZtdzQGZA4Z4LWrG8IYCWCRAekbjI82WAI2Ak80YejJG+imARQIkudwrCF1wSXoyhncUwCIB0jM6S0VxAVUlhX6XcpaaMbyjABYJkL6x2UDN/8IbAdynZoy0UwCLBEjv2Eygph8A6iv0ZAyvKIBFAqRnbJaW6uDcgINFzRgK4LRTAIsExHwk3oSR3H8hSOLNGJqCSDcFsEhA9I/P4hyBGwFDvDFEW1KmnwJYJCCCtBH7Usl2ZDVjpJcCWCQgkj/itwRwCqKpqoS5SIyR6QW/S8kpKQWwmX3XzN5nZgpsEY+8MQIO3hREi/YF9kSqgfoV4FeBI2b2OTO72MOaRPJS7+gMlSUFVBQX+F3KmyT/Uegd1TxwOqUUwM65p5xzvwZcDZwAfmhm/2pmHzOz4LTsiGSxIC5BSzrbDTeuAE6nlKcUzGwD8FHg14G9wJeIB/IPPalMJM/0jc0GcgkavNGMoW649ErpZx0zexi4GPgb4FbnXG/i0ENmttur4kTySe/YDJe1VvldxrLCasbwRKqTTV91zj22+AUzK3bOzTnndnpQl0hemYtEGZycP7vzWBA1VZdoDjjNUp2C+K/LvPZsOgsRyWfJJoegbcSzWFN1CX2aA06r846AzawJaAVKzewqwBKHqoAyj2sTyRvJH+2DtBH7Ui3VJfzoUD/OOcxs5QtkRStNQdxI/MZbG/DFRa9PAH+40hc3s5uI36wLE5/G+NyS45Y4fgswDXzUObcncawG+CpwGeCAf++c06hbclIQN2Jfqqm6lNmFGKPTC9SWF/ldTk44bwA7574BfMPMftk5993VfGEzCwNfBt4DdAO7zOxR59zBRafdDGxL/Lqe+Hrj6xPHvgQ87pz7oJkVoRG35LCzjyIK8Bzw4o3ZFcDpsdIUxB3OuW8CHWb2fy897pz74jKXJV0HHHXOHUt8rQeB24DFAXwb8ICLN5g/Z2Y1ZtYMTAE/T3z0jXNuHtADqSRn9Y3NUlNWSGlR2O9SzunsxuzjM2xvCeZqjWyz0k248sTvFUDlMr/OpxXoWvR5d+K1VM7ZAgwA/7+Z7TWzr5pZOcswszvNbLeZ7R4YGFihJJFg6hmdoakquNMP8Maz4Xq0EiJtVpqC+KvE73+8hq+93Cz90q2UznVOAfEmj992zj1vZl8C7gX+8zI13g/cD7Bz505t1SRZqXtkhk0bgj3L1lBZTDhk2pYyjVLdjOe/m1mVmRWa2Y/MbNDM7ljhsm6gfdHnbUBPiud0A93OuecTr/898UAWyTnOObpGpmmrDe78LySaMSqL1YyRRqmuA36vc24ceD/xcLwQ+A8rXLML2GZmnYmbaLcDjy4551HgwxZ3AzDmnOt1zvUBXWZ2UeK8d/Gzc8ciOWNkeoHp+SjttcEeAUNyLbDakdMl1U645IY7twDfcs4Nr7QO0DkXMbN7gCeIL0P7unPugJndlTh+H/BY4mseJb4M7WOLvsRvA3+bCO9jS46J5Iyu4WkA2uuCH8DN1aUc6h33u4yckWoAf9/MXgVmgP/LzBqAFX8OSbQvP7bktfsWfeyAu89x7UuA2pwl53WNxAM46FMQEF8J8c+vnlEzRpqkuh3lvcBbgJ3OuQXiy8Ru87IwkXzRPRL/kT4bAripuoSZhSjjMxG/S8kJq9n5+RLi64EXX/NAmusRyTtdw9PUlBVSWRL8rbXPLkUbm6G6LPj1Bl2q21H+DbAVeAmIJl52KIBF1q1rZCYrbsDBG63SfWOzXNKsZoz1SnUEvBPY7vRIVJG06x6Z5uKmlfqaguGNZ8NpKVo6pLoM7RWgyctCRPJRLOboHpmhLUtGwA0VxYQMPRkjTVIdAdcDB83sBWAu+aJz7gOeVCWSJwYm55iPxGjPghtwAAXhEBsrS+jRCDgtUg3gz3pZhEi+6j67BC07RsAAzTUlakdOk5QC2Dn3EzPbDGxzzj1lZmXEmytEZB26huM/yrfXZccIGOJrgQ/3TfhdRk5IdS+I3yC+H8NfJV5qBR7xqCaRvJHsgsumEXBTVSm9Y7Ponvz6pXoT7m7gbcA4gHPuCLDRq6JE8kX3yAz1FcWUFGbPD5QtNSVMz0cZn1UzxnqlGsBziU3RAUg0Y+ifP5F16hqZzqrpB/jZtcCyPqkG8E/M7A+JP5zzPcB3gO97V5ZIfsimJWhJySdj9Ggp2rqlGsD3En9CxcvAbxLfYOc/eVWUSD6Ixhw9ozNZswQtKdmOrBHw+qW6CiJmZo8Ajzjn9NwfkTToHZshEnNZsQ3lYg2V8WYMdcOt33lHwImN0j9rZoPAq8BhMxswsz/KTHkiuSubdkFbrDAcoqGyWN1wabDSFMTvEV/9cK1zboNzro74Y+PfZmaf8Lo4kVx2diP2LJsDhvg0hEbA67dSAH8Y+JBz7njyhcRj5u9IHBORNToxNEU4ZLRm2QgY4jfiFMDrt1IAFzrnBpe+mJgH1magIutwYij+IM7CcKr3woOjqVrtyOmw0v/5+TUeE5EVnBicomNDud9lrElLdSmTcxHGZxf8LiWrrbQKYoeZLfcEPgNKPKhHJC845zgxOMW1HXV+l7Imi5sxqrLgSR5Bdd4Ads5lT3+kSBYZmJxjaj5Kx4bsuwEHi5oxRme4sDE7NpMPouybfBLJASeH4isgOuqzdAqiJn7jUDfi1kcBLOKD44NTAHRmaQBvrCwmHDJOj2gt8HoogEV8cGJwioKQ0VqTfUvQIP5kjKaqEnpGFcDroQAW8cHJoWna68ooyMIlaEmtNaWcVgCvS/b+3xfJYq8PTGbt9ENSS02JdkRbJwWwSIZFY47jg1NcsLHC71LWpaWmlL6xWaIxbQ2+VgpgkQzrGZ1hLhJja0O2j4BLWYg6BibmVj5ZlqUAFsmwowOTAGxtyO4RcPIGouaB104BLJJhr5/JkQBObCKklRBrpwAWybDXByapKy+itrzI71LWZXE3nKyNAlgkw14/M5X1878AlSWFVJUUaApiHRTAIhn2+sBk1k8/JLXUlGoEvA4KYJEMGpmaZ2hqPmcCuK22lNOj2g9irRTAIhn0Wv8EANsacyOANQJeHwWwSAYlA/iiptzYwrGlppSxmQUm5yJ+l5KVFMAiGXS4f4LKkgKaqnLjeQbJbSk1Cl4bBbBIBr3WP8lFjZWYmd+lpEVrTfwfEq2EWBsFsEiGOOd4rX+CC3Nk+gGgtSb+RA+NgNdGASySIQMTc4xOL3Bhlm/Cs1hDZTEFIVMAr5ECWCRDDiduwOXSCDgcMpqqS/RkjDVSAItkyOG+xAqIHHuIZXwpmtYCr4UCWCRDDvaOs7GymA0VxX6XklZ6MsbaKYBFMuRgzzjbW6r8LiPtWmtK6RufJRKN+V1K1lEAi2TAXCTK0TOTXNKcewHcVltKNOb0iPo1UACLZMDRM5NEYo7tORjA7XXxpWhdI9M+V5J9PA1gM7vJzA6b2VEzu3eZ42Zmf5E4vt/Mrl5yPGxme83sB17WKeK1gz3jADk5BdFeGw/g7mHNA6+WZwFsZmHgy8DNwHbgQ2a2fclpNwPbEr/uBL6y5PjvAoe8qlEkUw72jlNSGKJjQ/bvA7xUc00JIdMIeC28HAFfBxx1zh1zzs0DDwK3LTnnNuABF/ccUGNmzQBm1ga8D/iqhzWKZMTBnnEuaqoiHMqNFuTFCsMhmqtL6dZa4FXzMoBbga5Fn3cnXkv1nD8H/gA4761VM7vTzHab2e6BgYF1FSzihWjM8crpMXa0VftdimfaakvpGtYIeLW8DODl/ql3qZxjZu8HzjjnXlzpmzjn7nfO7XTO7WxoaFhLnSKeOjYwydR8lB1tNX6X4pn2ujJNQayBlwHcDbQv+rwN6EnxnLcBHzCzE8SnLn7BzL7pXaki3nmpaxSAHe25OwJury2jf3yO2YWo36VkFS8DeBewzcw6zawIuB14dMk5jwIfTqyGuAEYc871Ouc+5Zxrc851JK77Z+fcHR7WKuKZfd2jVBQXsKU+dzbhWaq9Lr4vsDriVqfAqy/snIuY2T3AE0AY+Lpz7oCZ3ZU4fh/wGHALcBSYBj7mVT0iftnXNcYVbdWEcvAGXNLZtcDD0znzvLtM8CyAAZxzjxEP2cWv3bfoYwfcvcLX+BfgXzwoT8RzswtRDvWO8xs/v8XvUjzVVhsfAXdpJcSqqBNOxEMHe8eJxFxO34ADaKwsoSgcolsrIVZFASzioX2JG3BXttf4WofXQiGjtVZrgVdLASzioX1dozRWFdNUnRsP4TyfttpSLUVbJQWwiIf2d49xRY5PPyS115WpGWOVFMAiHhmbXuDY4FTOTz8ktdeWMTK9wORcxO9SsoYCWMQj+0+PAuT8Dbik5FpgjYJTpwAW8cjeU6MAXJ7De0As1lb7xlpgSY0CWMQju04Mc3FTJdWlhX6XkhHtWgu8agpgEQ8sRGO8eHKE6zrr/C4lY+rKiygrCmsEvAoKYBEPHOgZZ3o+yvWdG/wuJWPMjPZarYRYDQWwiAdeOD4EwLWdtT5XklmbN5RxYmjK7zKyhgJYxAMvHB9mS305GytzvwFjsc76crqGZ4jGlm79LctRAIukWSzmeOH4cF7N/yZ11JczH43Ro20pU6IAFkmzw/0TjM9G8jOAEw8d1TREahTAImn2wvFhgPwM4Pr4WuATQ7oRlwoFsEiavXB8mNaa0rONCfmksbKEksIQJwY1Ak6FAlgkjZxzPJ+n878Q35ayY0O5AjhFCmCRNDo2OMXg5BzXduRnAEN8HlhzwKlRAIuk0TNHBgH4uQvqfa7EP5vry7QULUUKYJE0evrIAJvqyti0If/mf5M6N2gpWqoUwCJpshCN8ezrQ7x9W/6OfiG+Fhi0FC0VCmCRNNl7apSp+Shv39bgdym+6kwGsG7ErUgBLJImTx8ZIGTwlq35swHPcjZWFlNaGOb4oNYCr0QBLJImTx8Z5Mr2mrzZ//dczEyb8qRIASySBqPT8+zvHs376YekznotRUuFAlgkDf719SFijry/AZfUUV9O1/A0kWjM71ICTQEskgZPHxmksriAHXnyBOSVdGwoYyHq6Bmd9buUQFMAi6yTc46fvjbADVs3UBjWXynQrmip0p8WkXV6tW+C06MzvOvijX6XEhidDfEAfn1g0udKgk0BLLJOTx3sB+AXLlEAJzVUFFNdWsjRMwrg81EAi6zTU6+e4cr2mrx7/ND5mBnbNlZwRAF8XgpgkXU4Mz7Lvq5R3q3R75tsa6zQCHgFCmCRdfjRq2cAePf2Rp8rCZ5tGysZnppncHLO71ICSwEssg5PHeynrbaUixor/S4lcLY1VgBwpF+j4HNRAIus0cx8lGeODvLuSxoxM7/LCZxtG+P/KB09M+FzJcGlABZZo2eODjIXifHuSzT9sJzGqmIqiwt0I+48FMAia/TEgT4qiwvy9vlvKzEzLmis0BTEeSiARdZgLhLliQN9vPfSJooK9NfoXOJL0TQFcS76kyOyBj99bZCJ2Qjv39HsdymBtm1jJYOT8wxPzftdSiApgEXW4Af7e6gpK8zrh2+m4oLESgitB16eAlhklWbmo/zwYD83X9akzXdWcGFieZ6mIZanPz0iq/Tjw2eYno9y6xUtfpcSeC3VJZQXhXUj7hwUwCKr9P19PdRXFHP9lvx+9lsqzIwLdCPunBTAIqswORfhn189w/subyIcUvNFKi7YWKkR8DkogEVW4Z9e7mUuEuPWHZp+SNW2xgrOTMwxOq2VEEspgEVW4cFdXWxpKOeazbV+l5I1Lm6K34g71KtpiKU8DWAzu8nMDpvZUTO7d5njZmZ/kTi+38yuTrzebmY/NrNDZnbAzH7XyzpFUvFa/wQvnhzh9mvbtffDKmxvqQLgUO+4z5UEj2cBbGZh4MvAzcB24ENmtn3JaTcD2xK/7gS+kng9Avy+c+4S4Abg7mWuFcmoh3Z1URg2funqNr9LySobK0uoryjmoAL4TbwcAV8HHHXOHXPOzQMPArctOec24AEX9xxQY2bNzrle59weAOfcBHAIaPWwVpHzmotEeXhPN+/Z3kh9RbHf5WSdS5orOdijAF7KywBuBboWfd7Nm0N0xXPMrAO4Cng+/SWKpOaJA/2MTC9w+7Wb/C4lK21vqeLomUnmIzG/SwkULwN4uUkyt5pzzKwC+C7we865Zf/5NLM7zWy3me0eGBhYc7Ei5/PgC6dorSlV6/EabW+uYj4a01OSl/AygLuB9kWftwE9qZ5jZoXEw/dvnXMPn+ubOOfud87tdM7tbGhoSEvhIou92jfOv74+xIeuayektb9rsr05fiNO0xA/y8sA3gVsM7NOMysCbgceXXLOo8CHE6shbgDGnHO9Fr/F/DXgkHPuix7WKLKi+39yjNLCMHfcsNnvUrLWloYKSgvDvNIz5ncpgVLg1Rd2zkXM7B7gCSAMfN05d8DM7kocvw94DLgFOApMAx9LXP424N8BL5vZS4nX/tA595hX9Yos5/ToDI/u6+HfvWUzNWVFfpeTtcIh49KWKvZ3K4AX8yyAARKB+diS1+5b9LED7l7mumdYfn5YJKO+/sxxHPDrb9/idylZ74q2Gv7uhZNEojEKtIscoE44kXManZ7nWy+c4gM7WmitKfW7nKx3RVs1swsxjupG3FkKYJFz+JtnTzI9H+XOn9foNx0ub6sG0DTEIgpgkWWMTM1z/9PHeNfFG7kkcQdf1qdzQzkVxQW8rAA+SwEssoy//PFRpuYi/MFNF/tdSs4IhYzLW6vZ1z3qdymBoQAWWaJreJoHnj3BB69p46LETl6SHldtquFgzzizC1G/SwkEBbDIEl948jDhkPGJ91zodyk555rNtURiTvPACQpgkUX2d4/yvZd6+PjPddJcrZUP6XbVpvg+yi+eHPG5kmBQAIskRKIx/vAfXqahspjffMdWv8vJSXXlRWypL1cAJyiARRK+8exJXjk9zmdu3U5VSaHf5eSsqzfXsvfUCPE+rPymABYBekZn+LMnD/POixp43+XNfpeT067ZXMvQ1DzHB6f8LsV3CmDJe845/uh7B3AO/uS2y/S4IY9d31kHwPPHh32uxH8KYMl7j7x0mqcO9fOJ92yjva7M73JyXmd9ORsri3nu2JDfpfhOASx5rXtkmj965ADXddTx8Z9Ty3EmmBk3bNnAc8eG8n4eWAEseSsWc/z+t/fhgD/7lR2Etdl6xtywZQP943N5Pw+sAJa89dVnjvH88WE+c+t2TT1k2A1b4vPAz+b5NIQCWPLSod5xvvDEa9x4aSMfvEaPmc+0zvpyWqpLePq1Qb9L8ZUCWPLOXCTKJx56iarSQv70Fy/XqgcfmBnvuKiB/3V0kIVo/j4pWQEseefPnnyNV/sm+PwHr2BDRbHf5eStd1zYwMRchL2nRv0uxTcKYMkrz74+xF8/fYxfu34T77x4o9/l5LW3XlBPQcj4l8Nn/C7FNwpgyRvjswt88jv76NhQzqffd4nf5eS9qpJCrt5cy48PD/hdim8UwJI3Pvu9A/SNz/LFX9lBWZGnz6OVFL3nkkYO9Y7TNTztdym+UABLXvjH/b08vPc097zzgrNbIor/bry0CYAnDvT5XIk/FMCS8/rHZ/n0Iy+zo62ae37hAr/LkUU2bShje3MVj7+iABbJOc45PvmdfcwuRPniv72SwrD+yAfNjZc28eKpEfrHZ/0uJeP0p1Fy2gPPnuTpI4N8+n3b2dpQ4Xc5soz372jGOfj+vh6/S8k4BbDkrKNnJvnTxw7xjgsbuOP6TX6XI+ewtaGCHe01fHfPab9LyTgFsOSkuUiU33toL6VFYT7/wSvU7RZwv3x1K4d6xznYM+53KRmlAJac9N8fP8wrp8f5f3/5CjZWlfhdjqzg1itaKAwb397d5XcpGaUAlpzzo0P9fO2Z43zkLZvPLnOSYKstL+KWy5v5+xe7mZyL+F1OxiiAJaf0jc3yye/s45LmKj51i7rdsslH3trB5FyEh/d0+11KxiiAJWfMLkS565svMheJ8Ze/ehUlhWG/S5JVuKq9hh1t1fzP/3WCaCw/npShAJac4Jzj3u/u56WuUb74K1dqyVkWMjPuesdWjg1O8YP9+bEkTQEsOeErP3mdR17q4ZPvvZCbLtO8b7a68dImLm6q5Es/OpIXo2AFsGS9R/ae5vNPHObWHS3c/U61GmezUMj43Xdt49jAFA/tyv0VEQpgyWrf39fD739nHzd0btB63xxx02VNXNdZxxeePMzY9ILf5XhKASxZyTnH1545zu88uJdrNtXy1Y/s1E23HGFmfPbWSxmdnudPHzvkdzmeUgBL1hmdnud3HnyJ//KDg7x3eyMPfPw6you1v28u2d5SxW++YysP7e7iyRzeqlJ/aiVrzC5E+fbuLv78qSOMzSzwH268iN96x1ZCIU075KJPvPtCnj4ywB98dz8XNlbSUV/ud0lpZ87lzp3GnTt3ut27d/tdhqTJ1FyE3rEZDvVO8MyRQR4/0MfYzALXdtTyxx+4jO0tVX6XKB47NTTNbV9+htqyIr77W2+ltrzI75LWatlRggJYfNU9Ms2rvROcGJrixNAUPaOz9IzO0DM6w/jsGy2pFcUFvGd7I//22nau76zTzbY88sLxYe742vNsbajgb3/9euqyM4QVwOK/+UiMHx8+wxOv9PH88WFOj86cPVZVUkBbbRktNSU0V5fSXFNCS3UpWxrK2d5cRYE2U89bP31tgN94YDfN1SV87aPXZmOjjQJY/OGcY3/3GA/v6ebRfT2MTC9QV17EDVvquK6jjh3tNXTWl1NTlpUjG8mQ3SeG+c2/eZHZhSifuuUSfvW6Tdk0/68AlszqHZvhH/ae5uE9pzl6ZpKighDv3d7IL1/TxtsvqNeIVlbt9OgM//Hv9/PM0UFu2FLHn/7i5WzJjtGwAli85Zyja3iGpw7189jLvbx4agTn4NqOWn7p6jZuubyZ6tJCv8uULOec46FdXfy3fzzE9EKUX7qqld/+hW1s2lDmd2nnowD228TsAoOT80SiMSIxR2lhmI1VxZQV+b8acHo+wonBaQYn5xicnGNqLkI05og6CBkUhEMUhIxwyM7+DjA0OU//xCzHBqbYe2qUwck5AC5uquSWy5u57coWNm/IveVD4r+BiTnu+8nrfPO5k0Rjjpsua+Kjb+3gms21QbxJqwDOpL6xWV44MczuE8PsPTXKyaGpn7mrv1hFcQFbG8q5pLmK7S1VXL2ploubKj37EX0+EuPl06O8cHyEF0+O8GrfON0jMytfeA5F4RBttaVcuamGqzbV8ratG7Llx0LJAf3js/z1T4/x0O4uJmYjXNxUyS9e1cqtO1poqSn1u7wkBbBXYjHH6wOT7Doxwq4Tw+w6MXw20MqKwly1qYYt9RW01ZaysaqYglCIcMiYno8yMDFH//gsr/VPcKh3nJFE73tpYZgd7dVcs7mWazbXclV77ZrXQA5NzrGve5Q9J0d54cQw+7pGmYvEAOisL+fSlioubKxka0MFG6uKqa8opqK4gHDICJsRc45IzBGNOSKxWOJ3h3OODeXF1JQVBnHEIXlmej7CI3t7eGjXKfZ1jwFwXUcdt+5o5p0Xb6St1tcpiswHsJndBHwJCANfdc59bslxSxy/BZgGPuqc25PKtcvJVACPTs/zUtfoz/waTQRnfUUR13bUsbMjfof/kubUR7LOOXrGZtlzMj4y3XNqhAM942e35dvSUM5V7bVsaShnU10ZzdUllBcXUF5UQNQ5pucjTM5GOD06Q9fwDEfOTLCve5Su4fg/BuGQcWlLFdd21HFtRy07O+qoryj25j+SiI9ODE7x6L4evvfSaV4fmAJga0M5b7ugnqs31XLVpho21ZVlcuCQ2QA2szDwGvAeoBvYBXzIOXdw0Tm3AL9NPICvB77knLs+lWuXs5YAjkRjzEVizEfe+H1mIcrI9DwjU/OMTC8wODnHiaEpTg5Nc2JwiqGp+UT9sG1jBVe217Bzcx3XdtbRsSG9/1On5yPs7x5jz6kR9pwcYV/3GAMTcyteZwYt1aVc2V7DjvZqdrTVcFlrtfZMkLzinOPomUl+8toAP3ltgBdPjjA9HwXiP2V21Jezpb6cjvoyGqtKqC0roq68iJqyQsqLCiguDFEUDlFcGKYoHKIwbGv9+53xAH4L8Fnn3I2Jzz8F4Jz7fxad81fAvzjnvpX4/DDwfwAdK127nNUG8Ae/8q/sPjmS0rlNVSV01JfRsaGcjvpyrmit5vK2aipLMn9Xf2ouQtfINP3jc0zPRZiajxIOQWlhAeXFYVpqSmmtKdXuYCJLRKIxXuuf5KWuUV4fmOT44BTHB6c4NTyd0gbwlcUFvPzHN67lWy8bwF4Oh1qBxTsqdxMf5a50TmuK1wJgZncCdyY+nUyE+FrUA4PnOngSeH6NXzhgzvs+c4zea+7x/X3an6zpssedczctfdHLAF4u8Zf+E3Ouc1K5Nv6ic/cD96+utDczs93OuZ3r/TpBly/vE/Rec1GuvU8vA7gbaF/0eRuw9El75zqnKIVrRUSympe9oLuAbWbWaWZFwO3Ao0vOeRT4sMXdAIw553pTvFZEJKt5NgJ2zkXM7B7gCeJLyb7unDtgZncljt8HPEZ8BcRR4svQPna+a72qNWHd0xhZIl/eJ+i95qKcep851YghIpJNtB2ViIhPFMAiIj7J6wA2s/9iZvvN7CUze9LMWhYd+5SZHTWzw2a2ppXXQWJmnzezVxPv9x/MrGbRsVx7r//GzA6YWczMdi45lmvv9abEezlqZvf6XU86mdnXzeyMmb2y6LU6M/uhmR1J/F7rZ43rldcBDHzeOXeFc+5K4AfAHwGY2XbiKy8uBW4C/r9Ee3Q2+yFwmXPuCuJt3p+CnH2vrwC/BPx08Yu59l4TtX8ZuBnYDnwo8R5zxf8k/v9psXuBHznntgE/SnyetfI6gJ1z44s+LeeNZo/bgAedc3POuePEV2lcl+n60sk596RzLrkf5nPE11ZDbr7XQ8655Toic+29Xgccdc4dc87NAw8Sf485wTn3U2B4ycu3Ad9IfPwN4P/MZE3pltcBDGBm/83MuoBfIzEC5twt0rni3wP/lPg419/rYrn2XnPt/aSiMdErQOL3jT7Xsy45vzWWmT0FNC1z6NPOue855z4NfDqx4c89wGdYRSt0kKz0XhPnfBqIAH+bvGyZ83PivS532TKvBf69nkeuvZ+8k/MB7Jx7d4qn/h3wj8QDOJU26sBZ6b2a2UeA9wPvcm8sAM/J93oOWflezyPX3k8q+s2s2TnXa2bNwBm/C1qPvJ6CMLNtiz79APBq4uNHgdvNrNjMOoFtwAuZri+dEhvc/0fgA8656UWHcu69nkeuvdd8bNl/FPhI4uOPAOf6aScr5PwIeAWfM7OLgBjxHSeTbdIHzOzbwEHiP67f7ZyL+ldmWvwlUAz8MLGh9HPOubty8b2a2S8C/wNoAP7RzF5yzt2Ya+/Vp5b9jDGzbxHfH7zezLqJ/3T6OeDbZvZx4BTwb/yrcP3Uiiwi4pO8noIQEfGTAlhExCcKYBERnyiARUR8ogAWEfGJAlhExCcKYBERn/xvkQ+kXbE2bQIAAAAASUVORK5CYII=\n", 1112 | "text/plain": [ 1113 | "
" 1114 | ] 1115 | }, 1116 | "metadata": { 1117 | "needs_background": "light" 1118 | }, 1119 | "output_type": "display_data" 1120 | } 1121 | ], 1122 | "source": [ 1123 | "import seaborn as sns\n", 1124 | "sns.displot(reg_pred-y_test,kind='kde')" 1125 | ] 1126 | }, 1127 | { 1128 | "cell_type": "code", 1129 | "execution_count": 127, 1130 | "id": "09da978f", 1131 | "metadata": {}, 1132 | "outputs": [], 1133 | "source": [ 1134 | "from sklearn.metrics import r2_score" 1135 | ] 1136 | }, 1137 | { 1138 | "cell_type": "code", 1139 | "execution_count": 128, 1140 | "id": "e229dcb4", 1141 | "metadata": {}, 1142 | "outputs": [], 1143 | "source": [ 1144 | "score=r2_score(reg_pred,y_test)" 1145 | ] 1146 | }, 1147 | { 1148 | "cell_type": "code", 1149 | "execution_count": 129, 1150 | "id": "0276b604", 1151 | "metadata": {}, 1152 | "outputs": [ 1153 | { 1154 | "data": { 1155 | "text/plain": [ 1156 | "0.669370269149559" 1157 | ] 1158 | }, 1159 | "execution_count": 129, 1160 | "metadata": {}, 1161 | "output_type": "execute_result" 1162 | } 1163 | ], 1164 | "source": [ 1165 | "score" 1166 | ] 1167 | }, 1168 | { 1169 | "cell_type": "markdown", 1170 | "id": "e503cdc8", 1171 | "metadata": {}, 1172 | "source": [ 1173 | "## Ridge Regression Algorithm" 1174 | ] 1175 | }, 1176 | { 1177 | "cell_type": "code", 1178 | "execution_count": 130, 1179 | "id": "915bf093", 1180 | "metadata": {}, 1181 | "outputs": [], 1182 | "source": [ 1183 | "from sklearn.linear_model import Ridge\n", 1184 | "from sklearn.model_selection import GridSearchCV" 1185 | ] 1186 | }, 1187 | { 1188 | "cell_type": "code", 1189 | "execution_count": 131, 1190 | "id": "4d2dcfbe", 1191 | "metadata": {}, 1192 | "outputs": [], 1193 | "source": [ 1194 | "ridge_regressor=Ridge()" 1195 | ] 1196 | }, 1197 | { 1198 | "cell_type": "code", 1199 | "execution_count": 132, 1200 | "id": "3f0fa493", 1201 | "metadata": {}, 1202 | "outputs": [ 1203 | { 1204 | "data": { 1205 | "text/plain": [ 1206 | "Ridge()" 1207 | ] 1208 | }, 1209 | "execution_count": 132, 1210 | "metadata": {}, 1211 | "output_type": "execute_result" 1212 | } 1213 | ], 1214 | "source": [ 1215 | "ridge_regressor" 1216 | ] 1217 | }, 1218 | { 1219 | "cell_type": "code", 1220 | "execution_count": 133, 1221 | "id": "37053785", 1222 | "metadata": {}, 1223 | "outputs": [ 1224 | { 1225 | "data": { 1226 | "text/plain": [ 1227 | "GridSearchCV(cv=5, estimator=Ridge(),\n", 1228 | " param_grid={'alpha': [1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80,\n", 1229 | " 90]},\n", 1230 | " scoring='neg_mean_squared_error')" 1231 | ] 1232 | }, 1233 | "execution_count": 133, 1234 | "metadata": {}, 1235 | "output_type": "execute_result" 1236 | } 1237 | ], 1238 | "source": [ 1239 | "parameters={'alpha':[1,2,5,10,20,30,40,50,60,70,80,90]}\n", 1240 | "ridgecv=GridSearchCV(ridge_regressor,parameters,scoring='neg_mean_squared_error',cv=5)\n", 1241 | "ridgecv.fit(X_train,y_train)" 1242 | ] 1243 | }, 1244 | { 1245 | "cell_type": "code", 1246 | "execution_count": 134, 1247 | "id": "3c9c1798", 1248 | "metadata": {}, 1249 | "outputs": [ 1250 | { 1251 | "name": "stdout", 1252 | "output_type": "stream", 1253 | "text": [ 1254 | "{'alpha': 10}\n" 1255 | ] 1256 | } 1257 | ], 1258 | "source": [ 1259 | "print(ridgecv.best_params_)" 1260 | ] 1261 | }, 1262 | { 1263 | "cell_type": "code", 1264 | "execution_count": 135, 1265 | "id": "e74eae4b", 1266 | "metadata": {}, 1267 | "outputs": [ 1268 | { 1269 | "name": "stdout", 1270 | "output_type": "stream", 1271 | "text": [ 1272 | "-25.80722882229147\n" 1273 | ] 1274 | } 1275 | ], 1276 | "source": [ 1277 | "print(ridgecv.best_score_)" 1278 | ] 1279 | }, 1280 | { 1281 | "cell_type": "code", 1282 | "execution_count": 137, 1283 | "id": "175800b5", 1284 | "metadata": {}, 1285 | "outputs": [], 1286 | "source": [ 1287 | "ridge_pred=ridgecv.predict(X_test)" 1288 | ] 1289 | }, 1290 | { 1291 | "cell_type": "code", 1292 | "execution_count": 138, 1293 | "id": "49d1b076", 1294 | "metadata": {}, 1295 | "outputs": [ 1296 | { 1297 | "data": { 1298 | "text/plain": [ 1299 | "" 1300 | ] 1301 | }, 1302 | "execution_count": 138, 1303 | "metadata": {}, 1304 | "output_type": "execute_result" 1305 | }, 1306 | { 1307 | "data": { 1308 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAvrUlEQVR4nO3dd3Rc533n//d3Br0DRCUAFkkUizpFFVveJIrjiJIdK1HWJ1LsuCiJVhspWWdb5HhPEm/5rX+JT84mu4oV2ZZtOY71c+IS2dFPdJUTq5IiVUiKTazoHRiUQZl59o+ZoRAIJAbA3LlzB5/XOTzkzL0X+I4tfvjFc5/nueacQ0REsi/kdwEiImuVAlhExCcKYBERnyiARUR8ogAWEfFJgd8FZNLu3bvd008/7XcZIiIL2WJv5lUHPDAw4HcJIiJpy6sAFhEJEgWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLCLiEwWwiIhPFMAiIj5RAIuI+EQBLJLHZmNxorMx9OzH3JRX21GKyFuO9Ixx96MvMDI5y21XNPHZD15PKLTorojiE3XAInkoOhvj40+8QkEoxK/ftIE9h3p57NlTfpclC6gDFslDX37uNEd6Inzxozfwc1sb6I9M86dPH+X9166nsbLE7/IkSR2wSB761oFOdm6o4dZtjZgZf7B7KzOxOE++0uV3aTKPAlgkzxzrjXCkJ8L7r1l//r3LGiu5pq2ab+7v9LEyWUgBLJJnvvNqFyGDO65u+Rfv37WzjcPdY7zRPeZTZbKQAlgkz+w51MPNl6x721jv+65uwQyePtjjU2WykAJYJI+MTM5wrHecWy6rf9uxdRXFXLG+iudPDvpQmSxGASySR14+MwzA9RtrFz3+zkvreeXsCNHZWDbLkgtQAIvkkX1nhikIGde01Sx6/B2XrGMmFj8f1OIvBbBIHnn59DBXtlZTWhRe9PgNm+sIh4zn39QwRC5QAIvkiem5GK90jLDrAsMPABXFBVzVWs2LpxTAuUABLJInjvZEmJmLs/MiAQxwbXsNBzvHiMW1QY/fFMAieeJIdwSA7S1VFz3vqtZqpmZjnOwfz0ZZchEKYJE8caQnQklhiA11ZRc976q2agBe7xzNRllyEQpgkTxxtHeMy5sqCS+x5eSlDRWUFoZ5rUMB7DcFsEieONoTYWtT5ZLnhUPGjvVVHFQH7DsFsEgeGBifZmB8hq3NSwcwJMaBD3XpRpzfFMAieeBoT+IG3Lbmi9+AS7lifRVTszFOD054WZYsQQEskgeOJAM43Q44dd7x3ohnNcnSFMAieeDN/nFqygppqCxO6/zLGisAONarqWh+UgCL5IHTAxNsWlee9vllRQW01ZZyTB2wrxTAInng9MAEm+vTD2CAy5sqOa4O2FcKYJGAi87G6BqNLqsDBtjSVMHJgXHmYnGPKpOlKIBFAu7M4CQAm+ovvgJuocsbK5mNOU4nr5fsUwCLBNypgcRUsuUOQWxpStyI00wI/yiARQIuNZd34zKHIFIzIY73aRzYLwpgkYA7MzhBXXkR1aWFy7qurKiAluoSTg9oMYZfFMAiAXdqYIJN65Y3/puyaV05p7QazjcKYJGAOzM4uewZECmbG8rPjyFL9imARQJsZi5Oz1iUtiX2AL6QzevKGZmcZWRyJsOVSToUwCIB1jMaxTloqy1d0fWpmRPqgv2hABYJsI7hxBzelQbwJgWwrxTAIgHWMTwFQHvtyoYgNtSVETI0E8InCmCRAOsYniRk0FxdsqLriwpCtNWWcUqr4XzhaQCb2W4zO2pmJ8zsoUWObzOz581s2sz+43KuFZFEB9xSXUpheOV/lTfVl3NqQIsx/OBZAJtZGHgYuB3YAdxjZjsWnDYE/B7wmRVcK7LmdQxP0brC8d+UjXVlnBuaylBFshxedsA3AieccyedczPAE8Cd809wzvU55/YCs8u9VkQSQxArvQGXsqGujNGpWUYnF/41FK95GcCtwLl5rzuS72X0WjO7z8z2mdm+/v7+FRUqEkSzseQc4BXegEtpT84hPjesceBs8zKAbZH30n0Ea9rXOucedc7tcs7tamhoSLs4kaDrGY0SX8Uc4JQNyQA+O6QAzjYvA7gDaJ/3ug3oysK1ImtCagpaa83qAri9LnG9Ajj7vAzgvcAWM9tsZkXA3cCTWbhWZE3oHk0EcMsKp6ClVJYUUltWqAD2QYFXX9g5N2dmDwJ7gDDwmHPukJndnzz+iJk1A/uAKiBuZh8Hdjjnxha71qtaRYKoezQKQEv16jpgSAxDnFMAZ51nAQzgnHsKeGrBe4/M+3MPieGFtK4Vkbd0j05RU1ZIaVF41V+rva6Mg52jGahKlkMr4UQCqnskmpHuFxIdcMfwFLF4uvfJJRMUwCIB1TUaZf0qx39T2uvKmIu78+PKkh0KYJGA6hmdWvEeEAulprJ1DiuAs0kBLBJAUzMxhidnWb/KKWgpqa/TpQ44qxTAIgGUqSloKeuTY8ldI9GMfD1JjwJYJIB6klPQMjUEUVoUZl15EZ0j6oCzSQEsEkBdyQBen6FZEJAYhtAYcHYpgEUCqDvZqWaqAwZYX1NClzrgrFIAiwRQz1iU2rJCSgpXvwgjZX1NKV0jUzinucDZogAWCaDesWmaqjLX/UJiU5+JmRhjU3MZ/bpyYQpgkQDqj0RpzHAAp6ai6UZc9iiARQKod2yaxsrijH7N1LaWGgfOHgWwSMDE447+8WmaqjIbwOqAs08BLBIwgxMzxOKOxsrMDkGsKy+iqCCkDjiLFMAiAdMXScwBznQHHAoZ66tL1AFnkQJYJGD6xqYBaMhwBwxvTUWT7FAAiwSMVx0wpAJY+0FkiwJYJGB6z3fA3gRwbyTKzFw8419b3k4BLBIwfZHEKrjigsytgktpqynFOegdUxecDQpgkYDxYhVciqaiZZcCWCRg+saingw/QGJDHtBijGxRAIsETF/E+w5YAZwdCmCRAInHHf2RzC9DTikpTG3MrjHgbFAAiwTI0OQMc3HnWQcMyY3Z1QFnhQJYJEBSsxO86oBBG7NnkwJYJED6Iok5wJneinK+lurS88+cE28pgEUCpC8LHXBzdQnj03NEorOefQ9JUACLBEhqH4hGD5YhpzQnu2stxvCeAlgkQHojUWo8WgWXknrQZ8/otGffQxIUwCIB0jc2TZMHu6DNl+qAe9QBe04BLBIgvZFpT4cfYH4HrJkQXlMAiwRI/1g040/CWKikMExNWaE64CxQAIsERDzuksuQve2AITEMoalo3lMAiwREahWcl1PQUpqrS9QBZ4ECWCQgUlPQvFyGnJLogDULwmsKYJGA6E0+isjrm3CQ6IAHxqf1ZAyPKYBFAqI/tQjD45tw8NZUtNTz58QbCmCRgEitTPNqM/b53pqKpgD2kgJYJCD6ItPUlBVSUujdKriU8wGsG3GeUgCLBETvWDQrMyAAWqoST8ZQB+wtBbBIQHj5KKKFqkoLKCkMKYA9pgAWCQgvH8a5kJkl9gXWEISnFMAiARCPO/rHs9cBAzRVFasD9pgCWCQAhidnmI05mrLUAUNyMYY6YE95GsBmttvMjprZCTN7aJHjZmZ/mTz+mpntnHfs983skJkdNLOvmVn2/ukXyTHZeBTRQs3VpfSORYnHXda+51rjWQCbWRh4GLgd2AHcY2Y7Fpx2O7Al+es+4LPJa1uB3wN2OeeuBMLA3V7VKpLrUnOAs7ERT0pzVTGzMcfQ5EzWvuda42UHfCNwwjl30jk3AzwB3LngnDuBx13CC0CNmbUkjxUApWZWAJQBXR7WKpLT+rK4Ci6luVpT0bzmZQC3Aufmve5IvrfkOc65TuAzwFmgGxh1zn3Pw1pFclpqSXC2ZkGAVsNlg5cBbIu8t3AwadFzzKyWRHe8GVgPlJvZhxb9Jmb3mdk+M9vX39+/qoJFclXv2DTVpdlZBZfSotVwnvMygDuA9nmv23j7MMKFzvkF4JRzrt85Nwt8E3jnYt/EOfeoc26Xc25XQ0NDxooXySV9kWhWx38B6iuKCYdMHbCHvAzgvcAWM9tsZkUkbqI9ueCcJ4EPJ2dD3ExiqKGbxNDDzWZWZmYGvBt4w8NaRXJa79h0Vsd/AcIho6GiWB2whwq8+sLOuTkzexDYQ2IWw2POuUNmdn/y+CPAU8AdwAlgEvhY8tiLZvb3wH5gDjgAPOpVrSK5rj8yzSUN5Vn/vk1VxednYEjmeRbAAM65p0iE7Pz3Hpn3Zwc8cIFr/xj4Yy/rEwkC5xx9Ee8fxrmYpqoSTg9OZP37rhVaCSeS44YnZxOr4LI8BgyJmRC9Y3o0kVcUwCI57q1FGP50wKNTs0RnY1n/3muBAlgkx51fhpzFOcApqdDXOLA3FMAiOc7fDjgR+pqK5g0FsEiO6092wNlcBZeSejhnb0TjwF5QAIvkuN6xaNZXwaWkdl/rVQfsCQWwSI7rG5v2ZfwXoKqkgNLCsMaAPaIAFslxvZGoL+O/kHg0UVOVVsN5RQEskuP87IAhcfOvT3OBPaEAFslhzjn6I9M0+LAII6VJjybyjAJYJIcNT84yE4ufn43gh8RquCiJnQMkkxTAIjnMzznAKY2VxUzPxRmdmvWthnylABbJYX48C26h1JMxtCdE5imARXKYH8+CWyjVfWscOPMUwCI5LNUBN/rZAWsxhmcUwCI5rDcSpa68iOKC7K+CS0mFvxZjZJ4CWCSH9fo8BxiguCBMbVmhhiA8oAAWyWG9Y/6tgpuvqUobs3tBASySwxIB7G8HDKkAVgecaQpgkRwViydWweVCB9ysAPaEAlgkRw2OTxN3b20J6aemqmIGxqeZi8X9LiWvKIBFclRqzLXJ55twAE3VJcQdDIzP+F1KXlEAi+SoXFiGnNJUqcUYXlAAi+So3kjuBPBby5EVwJmkABbJUb1j05hBfUWR36VoMYZHFMAiOapvLEp9RTEFYf//mtaXFxMOmQI4w/z/f1ZEFtU7FvV1H+D5QiGjsbKYnlEtxsgkBbBIjuodm86JRRgpTVUl9EXUAWeSAlgkR/VFojkxBziluaqEHu2IllEKYJEcNBuLMzA+c376Vy5oqirWGHCGKYBFclB/JLkII5eGIKpLGIvOMTUT87uUvKEAFslBubQIIyXVjasLzhwFsEgOSi1D9vNJGAulFmNoNVzmpBXAZvYNM3uvmSmwRbKgL4dWwaU0aTFGxqUbqJ8Ffh04bmafNrNtHtYksub1jEYpCBl1Zf6vgktJ/WOgAM6ctALYOfcD59wHgZ3AaeD7ZvacmX3MzAq9LFBkLUo9iigUMr9LOa+iuICyorCejJFBaQ8pmNk64KPAbwEHgL8gEcjf96QykTWse3Tq/JhrrjCzxFxgdcAZU5DOSWb2TWAb8BXgl5xz3clD/5+Z7fOqOJG1qns0yo71VX6X8TaNVcV6PH0GpdsBf945t8M59z9T4WtmxQDOuV2eVSeyBjnn6BqZYn2OdcCQfDSRliNnTLoB/N8Xee/5TBYiIgnDk7NMz8VpqS71u5S3ST0d2Tnndyl54aJDEGbWDLQCpWZ2HZC6I1AFlHlcm8ia1DUyBcD6mtzrgJuqSpiZizMyOUttee7M0AiqpcaAbyNx460N+PN570eAP/SoJpE1rTs5xpqrHTAkFmMogFfvogHsnPsy8GUz+1Xn3DeyVJPImtY9muiAW3KwA26ufmsxxvaW3LtJGDRLDUF8yDn3N8AmM/v3C4875/58kctEZBW6RqIUho368txZhpyixRiZtdQQRHny9wqvCxGRhNQc4FxahJHSeH5DHi3GyISlhiD+Ovn7p1byxc1sN4kFG2ESU9k+veC4JY/fAUwCH3XO7U8eqwE+D1wJOOBe55xmXkje6x6J5uT4L0BRQYh15UVajJEh6W7G86dmVmVmhWb2QzMbMLMPLXFNGHgYuB3YAdxjZjsWnHY7sCX56z4Se06k/AXwtHNuG3AN8EZan0gk4LpGc3MOcEpjVQl9CuCMSHce8C8658aA9wEdwOXAf1rimhuBE865k865GeAJ4M4F59wJPO4SXgBqzKzFzKqAnwG+AOCcm3HOjaRZq0hgxeOO3rEoLTW52QEDNFcVqwPOkHQDOLXhzh3A15xzQ2lc0wqcm/e6I/leOudcAvQDXzSzA2b2eTMrZxFmdp+Z7TOzff39/WmUJZK7BsanmY25nO6AU4sxZPXSDeDvmNkRYBfwQzNrAJb6J3CxOwgLl89c6JwCEhv9fNY5dx0wATy02Ddxzj3qnNvlnNvV0NCwREkiua0rh+cApzRVlST/oYj7XUrgpbsd5UPAO4BdzrlZEoG4cDhhoQ6gfd7rNqArzXM6gA7n3IvJ9/+eRCCL5LXukdydA5zSVFWCc4luXVYnrd3QkraTmA88/5rHL3L+XmCLmW0GOoG7SWzqPt+TwINm9gRwEzA6b7Ofc2a21Tl3FHg3cHgZtYoEUqoDXp/DHXBqMUbPaO7O1giKdLej/ApwKfAKkHokquMiAeycmzOzB4E9JKahPeacO2Rm9yePPwI8RWJc+QSJaWgfm/clfhf4qpkVAScXHBPJS90jU5QUhqgpy93nHGgucOak2wHvAna4ZW6B5Jx7ikTIzn/vkXl/dsADF7j2leT3FVkzukejrK8uJTFFPjelNorXarjVS/cm3EGg2ctCRCQxBziXx38B6sqKKAybAjgD0u2A64HDZvYScP7nDufc+z2pSmSN6h6J8q4t9X6XcVGhkNFYqUcTZUK6AfwnXhYhIjAXi9MXieb0HOCUxqpi+jQGvGppBbBz7idmthHY4pz7gZmVkbixJiIZ0huZJu7I6VVwKc1VJRzvG/e7jMBLdy+I3yYxF/evk2+1At/2qCaRNen8HOAAdMCJ1XAaglitdG/CPQDcAowBOOeOA41eFSWyFp2fAxyADripqoRIdI7JmTm/Swm0dAN4OrmhDgDJxRh6Kp9IBp0bmgSgNQABPH8xhqxcugH8EzP7QxIP53wP8HfAd7wrS2Tt6RieZF15EeXFy1mg6o8mLcbIiHQD+CESu5O9DvwbEosr/otXRYmsRR3DU7TVBeNh401ajJER6c6CiJvZt4FvO+e056OIB84NTXJFa7XfZaRFz4bLjIt2wJbwJ2Y2ABwBjppZv5n9UXbKE1kb4nFH58gU7bXB6IAriguoKC7QYoxVWmoI4uMkZj/c4Jxb55yrI7Fr2S1m9vteFyeyVvRGoszGHG21uX8DLkWLMVZvqQD+MHCPc+5U6g3n3EngQ8ljIpIBHcOJOcDtARkDhsRiDHXAq7NUABc65wYWvpkcB87d/fJEAiY1BS1IHbAWY6zeUgE8s8JjIrIM54YSHXAQ5gCnNFWV0Dc2zTJ3qZV5lpoFcY2ZjS3yvgG5v15SJCA6hidprCympDA4W6w0VRUzE4szPDlLXXmR3+UE0kUD2DkXnP8aRALs7NBkoMZ/ITEGDInVcArglUl3IYaIeOjM4CQb1wUrgBtTc4EjGgdeKQWwiM+iszF6xqJsWlfudynLcv7RRNoPYsUUwCI+O5ucARG4DrgysSGP9oNYOQWwiM9OD0wABK4DLgyHqK8o0lzgVVAAi/gsqB0wJIYhekan/C4jsBTAIj47PThBdWkhNWXBm0nQUl1K14g64JVSAIv47MzgJJsC2P1CYuFIlzrgFVMAi/jszOAkGwI2/pvSUp14NFEkOut3KYGkABbx0WwsTufIFBsDtggjJfX8um5NRVsRBbCIj84MThKLOzbXB7MDXl+TmAvcOaJhiJVQAIv46GT/OACXNlb4XMnKnO+AdSNuRRTAIj46mZwDfElDMDvgxsoSwiGjSx3wiiiARXx0sn+c+opiqkqCub12OGQ0VRZrJsQKKYBFfHSyfyKw3W/K+ppSDUGskAJYxEcnBya4NOAB3KK5wCumABbxyfDEDEMTM1xSH8wbcCnra0roHo0Sj+vJGMulABbxycmBxAyIwA9BVJcyMxdncEJPKVsuBbCIT97sT82ACHoHnFqMoWGI5VIAi/jkeG+E4oIQGwK6Ci6lJbkxu6aiLZ8CWMQnx3rHubShgnDI/C5lVVIdsHZFWz4FsIhPjvVG2Npc6XcZq1ZbVkhJYUgd8AoogEV8MBadpXs0ypamYI//ApgZ66tLtSHPCiiARXxwvDcxA+LyxuB3wJAYhtCGPMunABbxwfHeCACXN+VHALdUl2gWxAoogEV8cLQ3QmlhmLbaUr9LyYj1NaX0RaaZjcX9LiVQFMAiPjjWG2FLUwWhgM+ASFlfU4Jz0KNx4GVRAItkmXOON7ojbG+u8ruUjNGTMVZGASySZX2RaYYmZtjekh/jv/BWAHeOTPpcSbB4GsBmttvMjprZCTN7aJHjZmZ/mTz+mpntXHA8bGYHzOy7XtYpkk2Hu8YA2LG+2udKMqc1GcDnhnQjbjk8C2AzCwMPA7cDO4B7zGzHgtNuB7Ykf90HfHbB8X8HvOFVjSJ+ONydCOBtedQBlxSGaaws5tyQOuDl8LIDvhE44Zw76ZybAZ4A7lxwzp3A4y7hBaDGzFoAzKwNeC/weQ9rFMm6w91jtNeVBvYpGBfSXlfGuWEF8HJ4GcCtwLl5rzuS76V7zv8C/jNw0XktZnafme0zs339/f2rKlgkG97oGmNHS/7cgEtpry3VEMQyeRnAi82vWbhj86LnmNn7gD7n3MtLfRPn3KPOuV3OuV0NDQ0rqVMkayZn5jg1OMH2fAzgujK6R6c0F3gZvAzgDqB93us2oCvNc24B3m9mp0kMXfy8mf2Nd6WKZMehrjGcg6ta8+cGXEp7bRlxp0fUL4eXAbwX2GJmm82sCLgbeHLBOU8CH07OhrgZGHXOdTvnPuGca3PObUpe9yPn3Ic8rFUkK17rGAXyM4BTq/o0Dpy+Aq++sHNuzsweBPYAYeAx59whM7s/efwR4CngDuAEMAl8zKt6RHLB6x0jNFeV0FhV4ncpGdee3FheMyHS51kAAzjnniIRsvPfe2Tenx3wwBJf4xngGQ/KE8m61zpHuaot/7pfSGzIEw4ZHcO6EZcurYQTyZKx6Cwn+ye4Jk8DuCAcoqW6REMQy6AAFsmSg53J8d+2Gn8L8VB7bZmGIJZBASySJa+ey98bcCntdaWc0xBE2hTAIlny8pkhLqkvp668yO9SPNNeW0Z/ZJrobMzvUgJBASySBc45Xj4zzPUba/0uxVOpmRAdGgdOiwJYJAve7J9geHKWXZvyPYC1K9pyKIBFsuDlM0MAXL+xzudKvNVem5wLrA44LQpgkSzYd3qY2rJCLm0o97sUTzVUFlNcENJMiDQpgEWyIDX+a5Yfz4C7EDOjTbuipU0BLOKxwfFpTg5M5P3wQ4r2BU6fAljEYy+fGQbI+xtwKYkOWAGcDgWwiMdePjNMUTiU1wsw5ttQV8ZYdI6RyRm/S8l5CmARj+07M8yVrVWUFIb9LiUrNtdXAHBqYMLnSnKfAljEQ9NzMV7vGGXXprUx/guwuT4x00MBvDQFsIiHDpwdYSYWZ1eer4Cbb0NdGSFTAKdDASzioWdPDBAyuPnSdX6XkjVFBSHa68o4qQBekgJYxEPPnhjg6raavHsE/VI215dzql8BvBQFsIhHItFZXu0Y5ZbL1k73m7K5vpzTgxMkHnojF6IAFvHIS6eGiMUdt1xa73cpWXdJfTmTMzH6ItN+l5LTFMAiHnn2xCDFBSF2rqEbcCmpqWgnNQxxUQpgEY889+YAuzbVrpn5v/NtbtBUtHQogEU8MDA+zZGeCO9cg8MPAC1VJRQXhDg1MO53KTlNASzigefeHATglsvWZgCHQpaYCaEO+KIUwCIeeO7EAJUlBWtm/4fFbFpXrrnAS1AAi2SYc45/Pj7AOy5ZRziU3/v/XszmhnLODk4yF4v7XUrOUgCLZNiJvnE6R6b4ua2Nfpfiq8315czFHR16TP0FKYBFMuzHR/sAuHVbg8+V+OuS1KY8gxqGuBAFsEiG/fhIP9uaK2mpLvW7FF+d3xVNc4EvSAEskkGR6Cx7Tw9x67a1PfwAUFdeRFVJgWZCXIQCWCSDnj0xwFzccesaH/+FxAM6NzdU8Ga/5gJfiAJYJIN+dKSPypICdm6o8buUnLC1qYJjvRG/y8hZCmCRDHHO8eOj/fzM5Q0UhPVXC+DypkoGxmcYGNemPIvRfyUiGXKoa4z+yLSGH+bZ1lwFwLEedcGLUQCLZMiPjySmn/3s5Wt7+tl8lzcndkU7ogBelAJYJEP2HO5h54YaGiqL/S4lZzRUFFNXXqRx4AtQAItkwLmhSQ52jrH7yma/S8kpZsbWpkp1wBegABbJgD2HegC47QoF8EJbmys53hshHtfjiRZSAItkwJ5DPWxvqWLjunK/S8k5W5srmZiJ0TmiPSEWUgCLrFJfJMq+M8PsVve7qK3NlYBuxC1GASyySt871ItzaPz3Ai5vSgSwbsS9nQJYZJX2HOphc305lzdV+F1KTqooLqCttlQd8CIUwCKrMDo5y/NvDrL7ymbM1u7m60vZ2lTJ0Z4xv8vIOQpgkVV46mA3c3HH7Rp+uKitzZWc7J9gZk5Px5hPASyyCt/c38FljRVr+tlv6djaXMlc3HFST0n+FxTAIit0ZnCCvaeHuWtnq4YflpCaCXFU48D/gqcBbGa7zeyomZ0ws4cWOW5m9pfJ46+Z2c7k++1m9mMze8PMDpnZv/OyTpGV+NaBTszgl69t9buUnHdpQwVF4RCHujQOPJ9nAWxmYeBh4HZgB3CPme1YcNrtwJbkr/uAzybfnwP+g3NuO3Az8MAi14r4xjnHN/d38s5L17G+Zm0/eigdheEQ21sqeb1j1O9ScoqXHfCNwAnn3Enn3AzwBHDngnPuBB53CS8ANWbW4pzrds7tB3DORYA3ALUZkjNePjPM2aFJ7rquze9SAuPK1moOdo3inJYkp3gZwK3AuXmvO3h7iC55jpltAq4DXlzsm5jZfWa2z8z29ff3r7ZmkbR8Y38npYVhLb5Yhqtaq4lE5zgzOOl3KTnDywBe7K7Ewn/6LnqOmVUA3wA+7pxbdPDIOfeoc26Xc25XQ4P2YRXvTUzP8d1Xu9h9ZTPlxQV+lxMYVyZnirzeqWGIFC8DuANon/e6DehK9xwzKyQRvl91zn3TwzpFluXbr3QSmZ7jgzdt8LuUQLm8qZKicEgBPI+XAbwX2GJmm82sCLgbeHLBOU8CH07OhrgZGHXOdVtiTs8XgDecc3/uYY0iy+Kc4yvPn2F7SxXXb6z1u5xAKSoIsa2lktc6RvwuJWd4FsDOuTngQWAPiZtoX3fOHTKz+83s/uRpTwEngRPA54DfSb5/C/AbwM+b2SvJX3d4VatIul48NcSRnggffsdGzf1dgWvba3i9Y5SY9gYGwNMBLOfcUyRCdv57j8z7swMeWOS6n7L4+LCIrx75yZusKy/S3N8Vum5DDY8/f4ZjvRG2t1T5XY7vtBJOJE2Hu8Z45mg/H7tlE6VFYb/LCaSdGxLDNgfOjvhbSI5QAIuk6eFnTlBeFOY3bt7kdymBtaGujLryIg6cHfa7lJygABZJw8HOUf7xtW7ufddmqssK/S4nsMyM69pr2K8ABhTAImn5sz1HqSkr5Ld/5hK/Swm8nRtrebN/gpHJGb9L8Z0CWGQJPzjcy0+O9fPgrZdRVaLud7VS0/dePqMuWAEschHR2Rif+u4htjRW8JF3bvK7nLxwbXsNReEQL54a8rsU32kdpchFfGbPUc4NTfG1376ZwrD6lUwoKQxzTXu1Ahh1wCIX9Pybg3zh2VP8xs0becel6/wuJ6/ctHkdBztHmZie87sUXymARRbROxbl9544wOZ15Xzijm1+l5N3btxcRyzu1vw4sAJYZIHobIx/+zcvMzE9x2c/dD1lRRqpy7TrN9ZSEDKePznodym+UgCLzBOLOz7+xCvsPzvCZz5wzflnmUlmlRcXcN2GGn56fMDvUnylABZJmovF+fdff4WnD/XwR+/bwR1XtfhdUl77V1saONg1ytDE2p0PrAAWAabnYjzwt/v5h1e6+E+3beXed232u6S8964t9TgHz55Yu12wAljWvOhsjPsef5k9h3r541/awQO3XuZ3SWvC1a3VVJUUrOlhCN1dkDVtfHqO3/ryXl48NcT/+6tX8Ws36CkX2VIQDnHLZfX85Fg/zrk1ub+yOmBZs0YnZ/mNL7zI3tPD/K9fu1bh64N3b2+iZyzKoa5FH/mY9xTAsiYNjk9zz+de4FDnGJ/94E7u1Abrvrh1awMhg+8f7vW7FF8ogGXNGRyf5tcefYGTA+N87iO7+MUr9Gh5v6yrKOb6jbX84A0FsEjem5ie494v7eXc0CRf+tiN/OzlDX6XtOb9wvYmDnWN0TE86XcpWacAljVjZi7O/X/zMge7xvirD+7k5ku0v0Mu2H1l4ieQp17v9rmS7FMAy5oQjzv+49+9yj8fH+DTd13Fu7c3+V2SJG1cV841bdV851UFsEjecc7xX797mCdf7eKh27fxgV3tfpckC/zSNet5vXOUUwMTfpeSVQpgyXt/9cybfOm50/zWuzbzb/RIoZz03qtbMIN/eKXT71KySgEsee2Jl87yZ3uO8ivXtfKHd2xfk5P9g6ClupRbLq3n7/Z1EIs7v8vJGgWw5K09h3r4w2+9zs9tbeBP//XVhEIK31x2943tdI5M8dM1tDeEAljy0osnB/ndrx3gmvYa/uqDO/U4oQB4z44massKeeKls36XkjX6r1LyzhvdY/zW4/vYUFfGYx+5QRuqB0RxQZgP7Grne4d76RyZ8rucrFAAS145NzTJhx97iYriAh6/90Zqy4v8LkmWIfXk6S/+9JS/hWSJAljyRufIFPd87gVmY3Eev/dG1teU+l2SLFNrTSnvu7qFr710ltGpWb/L8ZwCWPJC9+gU9zz6AqNTs3zl3pvY0qRHCQXVfT9zCRMzMb7wzyf9LsVzCmAJvHNDk/z6515keGKGr/zmTVzVVu13SbIKV6yv5r1XtfCFn55icHza73I8pQCWQNt3eog7H36WwfFpvnTvjVzbXuN3SZIBv/+ey5majfGXPzzudymeUgBLIDnn+Pq+c/z6516kurSQbz1wC9dvrPW7LMmQyxor+NDNG/nKC2c42DnqdzmeUQBL4PSORXngb/fzn//+NXZtquVbv/NOLm2o8LssybD/8ItbqSsv4pPfep3ZWNzvcjyhAJbA6ItE+cyeo9z6mWf4weE+/mD3Nr7ymzdRU6apZvmourSQT73/Sl7tGOV/5+lQhGaoS06bmYvz4qlBvn2gi++82sVsPM7tVzbzB7u3sXFdud/licfee3ULPzrSxv/58Qlu2FzHv9qSXxvoK4Al54xPz/GTo/1873APPzrSRyQ6R1lRmLtvbOfeWzazqV7Bu5Z86s4rONQ1yu98dT/f/LfvzKsphuZc/uw8tGvXLrdv3z6/y5AVmJ6L8aM3+vjG/k7+6Vg/M7E4deVF/ML2Rn5xRzPv2lJPSWHY7zLFJx3Dk/zyw88RDsET972DzcH7R3jRnaAUwOIb5xyvdozyjZc7+M5rXYxMztJYWcwvXbOe265o5vqNtYS1g5kkHe2JcM/nXqAgZDz20Ru4sjVQ870VwJIbukam+NaBTr65v4M3+ycoLghx2xXN/Or1bbzrsnqFrlzQsd4IH/viXoYnZ/jU+6/gX1/fFpQ9nhXA4p/JmTmePtjDN/Z38NybgzgHN26q466drdxxdQtVJYV+lygB0ReJ8uBXD/DS6SFuu6KJ/+dXrmJdRbHfZS1FASzZNT49xzNH+9hzqJcfvdHLxEyM9rpS7rqujbt2tmoWg6xYLO74wk9P8pk9xygvDvPgz2/hQzdvoLggZ+8TKIBzQTzumJyNURAyigtCOfnjk3OOsegc/ZFp+iPTRGdjzMUdsbgjZFAQNsKhEAUhIxwyCkLGTCzO4PgM/ZFpjvdFeK1jlKM9EebijnXlRbxnRxO/cl0rN2yq05MpJGOO9kT4b989zE9PDNBaU8oDt17GXTtbc/GGrQI4m0YmZ9h7epjXO0Y43jfOib5xeseiRKbnSP1PHg4ZlSUFbKwrY1N9OVubK7muvZZr2quztom4c45zQ1O8dHqIA2eHOdYb4WhPhLHo3Iq/ZnVpIVe3VXN1WzU/e3mjbqaJ5356fIA/3XOE1zpGqS0r5J4bN/BrN7Tn0k9ZCmAvdY1Msff0EC+dGmLv6SGO9Y4DiZDdWFfGpY0VrK8uobq0kIqSAmZjjsmZOYYnZzkzOMHpgcnzTwEIh4xtzZVcv7GW6zfWsnNDLW21pRnpludicY70RHj5zDAvnR5i76kh+iKJHacqSwrY1lzJ5U2VbFpXTmNVMfUVxZQWhSkMhQiHjLhLdMKpjnguHicWd4TNWFdRTH1FEXXlRTnZ2Ut+c87x4qkhvvjsKb53uBfn4LoNNdx5zXrevb2J9royP8vLfgCb2W7gL4Aw8Hnn3KcXHLfk8TuASeCjzrn96Vy7mGwF8MT0HK93jvJaxwivnhvllXMj58OzoriA6zfWcuPmOm7YVMfVbdVp/zg0PDHDgXPD7D8zwv6zw7xyboTJmRgAjZXFXL+xlus21LClsZJLGyporS29aGc5MT3HqYEJTg5McKhrlANnR3i9Y5Sp2cTXbKku4YZNddywuY4bN9WxpbFCwwOSF7pGpnjy1S6+faCTIz0RILHBz7suq2fnxlp2bqihtSYzTU2ashvAZhYGjgHvATqAvcA9zrnD8865A/hdEgF8E/AXzrmb0rl2MSsJ4FjcMT0XY2YuzsxcnOm5ONHZGMOTswxPzjAyOcPA+AxnByc5MzTBmcFJukej569vqy3lmrYadm2q5YZNdWxvqcrYj9tzsThHeyPsPzPM/rMjvHxmmLNDk+ePhwxqyxIdZyrkHY7RqVlGJmaJTL81jFAYNq5YX811G2q4tr0mo121SC57s3+cZ47288zRPvadHj7fgFSWFHBZYwWX1FfQXF1MY2UJDZWJn/rKisKUFoUpLUz+KgpTGA4RMlb6dybrAfwO4E+cc7clX38CwDn3P+ed89fAM865ryVfHwV+Dti01LWLWW4Af+CR59h7ejitc+sritm4royN68rYtK6cq1oTY5zZnv4yNDHDyf5x3uwfp2N4isGJGYbGZ5iJxXHOYWZUlRRQU1ZEQ2Uxm+vLz//KwRsTIlmVGoJL3O9I3Js5NTBB//g0sfjSWVhZXMDrn7ptJd960QD28k5PK3Bu3usOEl3uUue0pnktAGZ2H3Bf8uV4MsRXqx4YmP/GGeDlDHzhHPO2z5mn9Dnzj2+f1f7rii572jm3e+GbXgbwYom/8J+YC52TzrWJN517FHh0eaVdnJntc87tyuTXzEX6nPllrXxOyJ/P6mUAdwDt8163AV1pnlOUxrUiIoHm5Ybse4EtZrbZzIqAu4EnF5zzJPBhS7gZGHXOdad5rYhIoHnWATvn5szsQWAPialkjznnDpnZ/cnjjwBPkZgBcYLENLSPXexar2pdREaHNHKYPmd+WSufE/Lks+bVQgwRkSDRM+FERHyiABYR8YkCeB4z+29m9pqZvWJm3zOz9fOOfcLMTpjZUTNb0UzsXGFmf2ZmR5Kf9VtmVjPvWD59zg+Y2SEzi5vZrgXH8uZzQmLpfvKznDCzh/yuJ1PM7DEz6zOzg/PeqzOz75vZ8eTvtX7WuBoK4H/pz5xzVzvnrgW+C/wRgJntIDET4wpgN/BXyeXSQfV94Ern3NUklnx/AvLycx4E7gL+af6b+fY5k7U/DNwO7ADuSX7GfPAlEv8fzfcQ8EPn3Bbgh8nXgaQAnsc5NzbvZTlvLf64E3jCOTftnDtFYtbGjdmuL1Occ99zzqU2iniBxDxryL/P+YZzbrGVkXn1OUnUfsI5d9I5NwM8QeIzBp5z7p+AoQVv3wl8OfnnLwO/nM2aMkkBvICZ/Q8zOwd8kGQHzIWXTOeDe4H/P/nnfP6c8+Xb58y3z7OUpuR6AZK/N/pcz4plZ9fvHGJmPwCaFzn0SefcPzjnPgl8MrkB0IPAH7OMpdG5YqnPmTznk8Ac8NXUZYucH/jPudhli7yX059zCfn2edaMNRfAzrlfSPPUvwX+kUQAp7OsOqcs9TnN7CPA+4B3u7cmg+fd57yAwH3OJeTb51lKr5m1OOe6zawF6PO7oJXSEMQ8ZrZl3sv3A0eSf34SuNvMis1sM7AFeCnb9WVKcrP7PwDe75ybnHcorz7nReTb51xrS/efBD6S/PNHgAv9pJPz1lwHvIRPm9lWIE5iB8rUsulDZvZ14DCJH9kfcM7F/Ctz1f4PUAx8P7m59AvOufvz7XOa2a8A/xtoAP7RzF5xzt2Wb58zB5bue8bMvkZij/B6M+sg8RPpp4Gvm9lvAmeBD/hX4epoKbKIiE80BCEi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI++b+YvrBodb9+EQAAAABJRU5ErkJggg==\n", 1309 | "text/plain": [ 1310 | "
" 1311 | ] 1312 | }, 1313 | "metadata": { 1314 | "needs_background": "light" 1315 | }, 1316 | "output_type": "display_data" 1317 | } 1318 | ], 1319 | "source": [ 1320 | "import seaborn as sns\n", 1321 | "sns.displot(ridge_pred-y_test,kind='kde')" 1322 | ] 1323 | }, 1324 | { 1325 | "cell_type": "code", 1326 | "execution_count": 139, 1327 | "id": "178542d5", 1328 | "metadata": {}, 1329 | "outputs": [], 1330 | "source": [ 1331 | "score=r2_score(ridge_pred,y_test)" 1332 | ] 1333 | }, 1334 | { 1335 | "cell_type": "code", 1336 | "execution_count": 140, 1337 | "id": "bdfa8b77", 1338 | "metadata": {}, 1339 | "outputs": [ 1340 | { 1341 | "data": { 1342 | "text/plain": [ 1343 | "0.6468557055633644" 1344 | ] 1345 | }, 1346 | "execution_count": 140, 1347 | "metadata": {}, 1348 | "output_type": "execute_result" 1349 | } 1350 | ], 1351 | "source": [ 1352 | "score" 1353 | ] 1354 | }, 1355 | { 1356 | "cell_type": "code", 1357 | "execution_count": 141, 1358 | "id": "9f4f3eac", 1359 | "metadata": {}, 1360 | "outputs": [], 1361 | "source": [ 1362 | "## Lasso Regression\n", 1363 | "from sklearn.linear_model import Lasso" 1364 | ] 1365 | }, 1366 | { 1367 | "cell_type": "code", 1368 | "execution_count": 142, 1369 | "id": "cf7f027b", 1370 | "metadata": {}, 1371 | "outputs": [], 1372 | "source": [ 1373 | "lasso=Lasso()" 1374 | ] 1375 | }, 1376 | { 1377 | "cell_type": "code", 1378 | "execution_count": 143, 1379 | "id": "b33e3a2c", 1380 | "metadata": {}, 1381 | "outputs": [ 1382 | { 1383 | "data": { 1384 | "text/plain": [ 1385 | "GridSearchCV(cv=5, estimator=Lasso(),\n", 1386 | " param_grid={'alpha': [1, 2, 5, 10, 20, 30, 40, 50, 60, 70, 80,\n", 1387 | " 90]},\n", 1388 | " scoring='neg_mean_squared_error')" 1389 | ] 1390 | }, 1391 | "execution_count": 143, 1392 | "metadata": {}, 1393 | "output_type": "execute_result" 1394 | } 1395 | ], 1396 | "source": [ 1397 | "parameters={'alpha':[1,2,5,10,20,30,40,50,60,70,80,90]}\n", 1398 | "lassocv=GridSearchCV(lasso,parameters,scoring='neg_mean_squared_error',cv=5)\n", 1399 | "lassocv.fit(X_train,y_train)" 1400 | ] 1401 | }, 1402 | { 1403 | "cell_type": "code", 1404 | "execution_count": 144, 1405 | "id": "7aac0425", 1406 | "metadata": {}, 1407 | "outputs": [ 1408 | { 1409 | "name": "stdout", 1410 | "output_type": "stream", 1411 | "text": [ 1412 | "{'alpha': 1}\n", 1413 | "-31.153603752119\n" 1414 | ] 1415 | } 1416 | ], 1417 | "source": [ 1418 | "print(lassocv.best_params_)\n", 1419 | "print(lassocv.best_score_)" 1420 | ] 1421 | }, 1422 | { 1423 | "cell_type": "code", 1424 | "execution_count": 145, 1425 | "id": "e0b0fd47", 1426 | "metadata": {}, 1427 | "outputs": [], 1428 | "source": [ 1429 | "lasso_pred=lassocv.predict(X_test)" 1430 | ] 1431 | }, 1432 | { 1433 | "cell_type": "code", 1434 | "execution_count": 146, 1435 | "id": "28bc1b9c", 1436 | "metadata": {}, 1437 | "outputs": [ 1438 | { 1439 | "data": { 1440 | "text/plain": [ 1441 | "" 1442 | ] 1443 | }, 1444 | "execution_count": 146, 1445 | "metadata": {}, 1446 | "output_type": "execute_result" 1447 | }, 1448 | { 1449 | "data": { 1450 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAWAAAAFgCAYAAACFYaNMAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjQuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/MnkTPAAAACXBIWXMAAAsTAAALEwEAmpwYAAAwCElEQVR4nO3deXycZ33v/c9PI2m0jRbLI8labDmxszgJzuI4WylQ0iZhSVoKPAmhbKekKYHCeTichran9PT0tLwohz7wNCUEylqalCWkBgwBEhKWbHZix7FjO95kW/ti7dtImuv8MTOOUGRrJM0998zo+369/LJm7vvW/G4vX1++7msx5xwiIpJ+eX4XICKyUimARUR8ogAWEfGJAlhExCcKYBERn+T7XUAq3Xjjje7HP/6x32WIiMxl872ZUy3g3t5ev0sQEUlaTgWwiEg2UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIiI+UQCLiPhEASwi4hMFsIiITxTAIitUNKr9IP2mABZZYSamZviL773A5r/9Cb94qcfvclY0BbDICvPhB3bx70+foLQwnz/++k6ePX7K75JWLAWwyApyvG+Un7zYxYd+ZwM/+vCrKS8q4N7Hj/pd1oqlABZZQb759AnyzHjn1euoKi3kLZc38PMD3fSNTPpd2oqkABZZISanZ/jWzpPccFEtteVFAPzh5Y1MRx3bnm/3ubqVSQEsskLsPjHAwNgUt1zacPq98+tCXNxQzn/uVgD7QQEsskI8dfQUZnD1+urfeP+159XwQtsgY5FpnypbuRTAIivEU0f72LSmnIqSgt94/4rmKmaijt0nB/wpbAVTAIusABNTMzx3op+rz6l+xbHL11ZhBs+29PtQ2cqmABZZAZ4/OcDkdHTeAK4oLuC8mhA7jyuA000BLLICJML1yuaqeY9f0VzFcyf6NT05zRTAIivA/o4hGiqLqSwpnPf4FWurGJ6Y5nDPSJorW9kUwCIrwP6OITbVl5/x+IVrYscOdg6nqyRBASyS8yamZjjWO3o6ZOdzTriUQJ5xqEsBnE4KYJEcd7BzmKiDTWtCZzynqCDAuuoSDiqA00oBLJLj9ncMAZy1BQxwfm2Il7rUB5xOCmCRHLe/Y4jSwgBNVSVnPe+82hDH+0aZmJpJU2WiABbJcfs7h7lgTTl5eXbW886rDRF1cLhbreB0UQCL5LijPaNsCJcteN75dbFzXlI/cNoogEVy2NDEFL0jk5wTLl3w3HXVpRQEjENqAaeNAlgkh7X0jgKwfvXCAVwQyKOxqoTjfaNelyVxCmCRHHa0JxamybSAAdauKuF435iXJcksCmCRHHa0d5Q8g6ZVZx8BkdBcXcKJvjGc05oQ6aAAFslhx3pHaawqIZgfSOr8tdWlDE9Oc2o04nFlAgpgkZx2rHckqf7fhObqWEv5+Cl1Q6SDpwFsZjea2UEzO2xmd89z/AIze9LMJs3svy3mWhE5O+ccx3pGFxXA6xIBrAdxaeFZAJtZALgHuAnYBNxmZpvmnHYK+DPg00u4VkTOomd4ktHITNIP4AAaq0owQw/i0sTLFvBW4LBz7qhzLgI8ANwy+wTnXLdzbgcwtdhrReTsEt0Ia5N8AAexRXnWlBcpgNPEywBuAE7Oet0af8/ra0UEOBkP4GRHQCSsqy5VF0SaeBnA8008T3ZsS9LXmtkdZrbTzHb29PQkXZxIrjt5ahyAhsriRV23dlUJJ+LXire8DOBWoGnW60agPdXXOufuc85tcc5tCYfDSypUJBed7B+jtjxIUUFyQ9AS6iuL6R2Z1KpoaeBlAO8ANprZejMrBG4FtqXhWhEh1gWx0BKU82moirWYOwcnUl2SzJHv1Td2zk2b2QeBh4EA8GXn3D4zuzN+/F4zqwN2AuVA1Mw+Amxyzg3Nd61XtYrkotb+cbauX7Xo6+oriwBoGxineRFD2GTxPAtgAOfcdmD7nPfunfV1J7HuhaSuFZHkTM1E6Rgcp6lqcf2/AI2VsVZz24D6gb2mmXAiOah9YJyog8ZFjoAAqK0IYhb7HuItBbBIDkqMgFhKH3AwP0C4LEhbvwLYawpgkRx0sj8xBnjxXRAQexDXPqgA9poCWCQHtfWPE8gz6sqLlnR9fWWxWsBpoAAWyUHtA+PUlReRH1jaX/HGymLaByeIRrUusJcUwCI5qG1g/PRwsqWorywmMh2ld3QyhVXJXApgkRzUMThB/SKnIM+WuLZ9QJMxvKQAFskx0aijY3CcNRVLD+BE33HXkALYSwpgkRzTOzLJ1IyjYRldELXlQQC6FcCeUgCL5JjEDLbldEFUlwUJ5BldQ+oD9pICWCTHdMQX0VlOF0QgzwiXBelUC9hTCmCRHJOYQrzYdYDnqi0Pqg/YYwpgkRzTNjBOaWGA8uLlrbVVW15Et7ogPKUAFskx7QPj1FcWYzbfxjLJqy0vUheExxTAIjmmfWCCNcvsfoBYF8Tg+JR2xvCQAlgkx3QOTbBmiWtAzFYb/x7qhvCOAlgkh0zNROkdmaS2InUBrG4I7yiARXJIz/AkzrHkVdBmq9VsOM8pgEVySKK1mpjJthyajuw9BbBIDuk+HcDLbwGXF+cTzM+je1h9wF5RAIvkkMRW8nUp6AM2s9hQNG1P7xkFsEgO6RyapCBgrCopTMn3qysvUheEhxTAIjmka2iCmlAReXnLm4SRUFMeVBeEhxTAIjmkc3AiJd0PCYkuCOe0NZEXFMAiOaRraCIlIyAS6sqLGJ+aYXhyOmXfU16mABbJIbEATl0LuEYLs3tKASySI4YnphiNzKRkEkbC6dlwg+oH9oICWCRHJEYrpLIPWJMxvKUAFskRiVaqF10QXcMKYC8ogEVyRGIaciq7IEoK8wkV5dOlyRieUACL5IiuFE5Dni02GUN9wF5QAIvkiK6hCcqL8ikuDKT0+9aWF6kLwiMKYJEckepJGAk15UF1QXhEASySI1I9BjihJlRE70hEs+E8oAAWyRGdQxMpfQCXsLqskMhMlKFxzYZLNQWwSA6YnonSMzzpSQs4HIoNResZUTdEqimARXJA70iEqCMle8HNlQhgrYqWegpgkRzQ5cEY4IRwWSyAe0ciKf/eK50CWCQHeDEJI+F0F4RawCmnABbJAacnYVSkbinKhIriAgoCpgD2gAJYJAd0Dk4QyDNWl6Y+gM2McFmQ3hEFcKopgEVyQOfQBDWhYMq2IpprdSioFrAHFMAiOcCrSRgJ4TIFsBcUwCI5oGto0pMHcAnhUJAedUGknAJYJAd0ebQORMLqsiCnRiPMRDUdOZUUwCJZbnRymuHJaW+7IEJBZqKO/jGNBU4lBbBIljs9BtiDIWgJGgvsDU8D2MxuNLODZnbYzO6e57iZ2efix/eY2eWzjv1XM9tnZnvN7H4z8+6fd5EsllgqsjbkbRcEoKFoKeZZAJtZALgHuAnYBNxmZpvmnHYTsDH+4w7g8/FrG4A/A7Y45y4GAsCtXtUqks0Si6V7sQ5EglrA3vCyBbwVOOycO+qciwAPALfMOecW4Osu5img0szWxI/lA8Vmlg+UAO0e1iqStRKbcXo9CgIUwKnmZQA3ACdnvW6Nv7fgOc65NuDTwAmgAxh0zv1kvg8xszvMbKeZ7ezp6UlZ8SLZomtoglAwn9JgvmefUVoYoKggTwGcYl4G8HxTcuaOYZn3HDOrItY6Xg/UA6Vm9s75PsQ5d59zbotzbks4HF5WwSLZqHNwwtPuB4hPRw5pOnKqeRnArUDTrNeNvLIb4UznXA8cc871OOemgAeBaz2sVSRrebUTxlzhMk3GSDUvA3gHsNHM1ptZIbGHaNvmnLMNeFd8NMTVxLoaOoh1PVxtZiVmZsDrgf0e1iqStbqGJqgp924IWkJY60GknGedRs65aTP7IPAwsVEMX3bO7TOzO+PH7wW2A28ADgNjwHvjx542s+8AzwHTwC7gPq9qFclW0aije9jbacgJq8uC7Gjp9/xzVhLveu0B59x2YiE7+717Z33tgLvOcO0ngE94WZ9ItusdnWQm6jydhpwQDsWmI0/NRCkIaA5XKuhXUSSLdcWHoHk5DTkhMRStT1sTpYwCWCSLebkV0VyJ2XDqB04dBbBIFnt5HYj0tYA1FC11FMAiWaxrcII8g+rSQs8/K6wWcMopgEWyWNfQBOFQkPw0PBQ7PR1ZLeCUUQCLZLF0TcIAKCoIEArmqwWcQgpgkSzm9V5wc2lrotRSAItksU6PtyKaS7sjp5YCWCRLjUdmGJrwdiuiucJlQXoVwCmjABbJUokhaOqCyF4KYJEs1ZXGSRgJ4VCQ4YlpJqZm0vaZuUwBLJKlutKwGedcq8ti443VD5waCmCRLNU56E8XBGg2XKoogEWyVOfQBKWFAUJFBWn7zHBZLOzVAk4NBbBIlkr3GGCA1aF4F4RawCmhABbJUp2D6Q/g6lKtB5FKCmCRLNU1NJnWSRgAhfl5VJUUqA84RRTAIlkothVR+lvAEFsXWC3g1FAAi2ShU2MRpmYcdWnYjHMubc6ZOgpgkSyUGIKW7i4IiAVwr7YlSgkFsEgWSkzCqPGhCyJcFqR7eILYnrqyHApgkSyUzr3g5gqHgkxMRRmZnE77Z+caBbBIFuoamsTs5Zlp6XR6Zwz1Ay+bAlgkC3UOjrO6LEhBGrYimksBnDoKYJEs1DE4Qb0PD+AAakLx6cgaC7xsCmCRLNQxOMGaimJfPjvRAu4eUgAvlwJYJAuleyui2SqLC8jPM7WAU0ABLJJlhiamGJmcpr7SnwDOyzNNxkgRBbBIlnl5EoY/XRCg2XCpogAWyTLtA+MAvj2Eg8RkDAXwcimARbKMn9OQE9QCTg0FsEiWaR+cwCy9WxHNVRMKcmp0kpmopiMvhwJYJMt0Do4T9mkSRkI4FCTqoG9UreDlUACLZJmOwQnWVPr3AA40FjhVFMAiWaZjcII1PnY/AIQ1Gy4lFMAiWcQ5R8fAOGt8GgOcUKP1IFJCASySRYYnpxmNzLDGxxEQENuWCBTAy6UAFskiHQOxIWh+rQORUFwYIBTMVwAvkwJYJIt0DMYmYfjdAgYIl2ss8HIpgEWySEd8EobfoyAgNhtOAbw8SQWwmX3XzN5oZgpsER91xCdh1PiwE8Zc4VBQoyCWKdlA/TzwDuCQmX3SzC7wsCYROYOOgXFqQv5OwkgIh4J0x/emk6VJ6nfROfcz59ztwOVAC/BTM3vCzN5rZgVeFigiL+scmvB1FbTZakJFjEZmGNXmnEuW9D+jZlYNvAf4Y2AX8FligfxTTyoTkVdoHxj3dRW02RKz4XrVDbFkyfYBPwj8EigB3uycu9k59x/OuQ8BZV4WKCIxzjk6fNwJY67T05H1IG7J8pM870vOue2z3zCzoHNu0jm3xYO6RGSOoYlpxiIz1GdMF4QmYyxXsl0QfzfPe0+mshARObvO00PQMqsFrABeurMGsJnVmdkVQLGZXWZml8d/vJZYd8RZmdmNZnbQzA6b2d3zHDcz+1z8+B4zu3zWsUoz+46ZHTCz/WZ2zeJvTyR3JHbCyIRJGABVJYUE8kwBvAwLdUHcQOzBWyPwmVnvDwN/cbYLzSwA3AP8LtAK7DCzbc65F2eddhOwMf7jKmLD3a6KH/ss8GPn3FvNrJAkAl8kl7XGA7ipKjP+KgTyjOrSQrqHNRRtqc4awM65rwFfM7M/dM59d5Hfeytw2Dl3FMDMHgBuAWYH8C3A151zDngq3updA4wCv00s/HHORYDIIj9fJKe09o9RGMg7vRBOJqjRdORlOWsAm9k7nXP/BjSb2f8797hz7jPzXJbQAJyc9bqVl1u3ZzunAZgGeoCvmNlm4Fngw8650XlqvAO4A2Dt2rVnux2RrNbaP05DVTF5eeZ3KaeFyzQbbjkWeghXGv+5DAjN8+Ns5vtTMncDqTOdk09sjPHnnXOXEWsRv6IPGcA5d59zbotzbks4HF6gJJHs1do/TmNVZoyASNDmnMuzUBfEF+I//88lfO9WoGnW60agPclzHNDqnHs6/v53OEMAi6wUbf1jbNpU63cZv6EmVETvSISZqCOQQS3zbJHsRIxPmVm5mRWY2SNm1mtm71zgsh3ARjNbH3+Idiuwbc4524B3xUdDXA0MOuc6nHOdwEkzOz9+3uv5zb5jkRVlPDJD70iExgx5AJcQDgWZiTr6x/SIZimSHQf8e865IeBNxFqt5wEfO9sFzrlp4IPAw8B+4FvOuX1mdqeZ3Rk/bTtwFDgMfBH4wKxv8SHgm2a2B7gU+PskaxXJOW0DYwAZ2QUBGgu8VMnOhEssuPMG4H7n3Cmzhf+7EZ89t33Oe/fO+toBd53h2t2AZtmJACf7Y0PQMjmAL1zjczFZKNkA/r6ZHQDGgQ+YWRjQ4D+RNGk9HcCZ1QVRo/UgliXZ5SjvBq4BtjjnpoiNSrjFy8JE5GWJMcDhDBoDDNqcc7mSbQEDXEhsPPDsa76e4npEZB5t/ePUVxZl1BhggNJgPqWFAQXwEiUVwGb2DeBcYDcwE3/boQAWSYvYGODM6n5I0NZES5dsC3gLsCn+0ExE0qy1f5zrL6zxu4x51YSKtDXREiU7DG0vUOdlISIyv4mpGXpHJjNuBESCWsBLl2wLeDXwopk9A5z+lXbO3exJVSJyWqaOgEgIh4L84iUF8FIkG8B/42URInJmrf2ZOQkjIRwKMjw5zXhkhuLCgN/lZJVkh6E9Tmw35IL41zuA5zysS0TiMr0FnFggvlP9wIuW7FoQ7ye2IM4X4m81AA95VJOIzNLaP05BwE5Pesg0deXxAB5UAC9Wsg/h7gKuA4YAnHOHgMx8JCuSY1r7x6ivzKx1gGerPd0CHve5kuyTbABPxnelACA+GUND0kTSIBPXAZ7t5RawHsQtVrIB/LiZ/QWxzTl/F/g28H3vyhKRhNb+cRorM7P/F2Kz4ULBfLrUB7xoyQbw3cS2CHoB+BNiK5z9lVdFiUjM6OQ0vSOTrK3O3ACGWDeE+oAXL6lhaM65qJk9BDzknOvxtiQRSWjpi22D2FxdusCZ/qorL9IoiCU4aws4vlPF35hZL3AAOGhmPWb21+kpT2Rla+mNjQFuXp3hLeDyInVBLMFCXRAfITb64UrnXLVzbhWxnY2vM7P/6nVxIitd1rSAK4J0D08yE9Wz+cVYKIDfBdzmnDuWeMM5dxR4Z/yYiHjoWO8oNaEgpcHFrBybfnXlRcxEHX1aE2JRFgrgAudc79w34/3ABfOcLyIp1NI7SvPqzG79QqwLAjQbbrEWCuCzbXWqbVBFPNbSN8r6DO9+AKir0Gy4pVjo/zWbzWxonvcNKPKgHhGJG56YonckkhUt4MRkDD2IW5yzBrBzTksbifgkMQJifYaPgACoLgsSyDN1QSxSshMxRCTNjiVGQGRBCziQF1ssSNORF0cBLJKhjvfGAnjdqswPYNBY4KVQAItkqGN9o6ypKMqaRc41G27xFMAiGaqldzTjJ2DMVldRRJdGQSyKAlgkQ7X0jWVF/29CXUURw5PTjE5O+11K1lAAi2SgwfEpTo1GsmIEREKdJmMsmgJYJAO19GbHGhCzJWbDqRsieQpgkQzUkkVD0BLqtDnnoimARTLQsd5RzGDtKnVB5DIFsEgGaukdpb6imKKC7BiCBlBcGKC8KF9dEIugABbJQId7Rji3pszvMhatrqKIDgVw0hTAIhkmGnUc7h5hYxYGcH1lMe2D2p4+WQpgkQzTNjDOxFQ0KwO4obKYtn4FcLIUwCIZ5lD3MAAba7MwgKuK6R+bYiyiyRjJUACLZJhDXSMAbAiHfK5k8RoqiwFoH1ArOBkKYJEMc6h7hHAoSEVJ9u36lQjgVnVDJEUBLJJhDmXpAziIdUFArB9bFqYAFskgzjmOdI+wIUsDuCZURH6eqQsiSQpgkQzSNjDOyOQ059dlX/8vxHbGqKso0kiIJCmARTLIgY7YCIgLsjSAIT4UTS3gpCiARTLIwa5YAJ9Xm90B3D6g2XDJUACLZJD9HUM0VhUTKsq+ERAJDVXFdA5NMD0T9buUjKcAFskgBzuHuaCu3O8ylqWhspiZqNOqaElQAItkiImpGY72jnLhmuztfoDYehCAuiGS4GkAm9mNZnbQzA6b2d3zHDcz+1z8+B4zu3zO8YCZ7TKzH3hZp0gmONw9wkzUZe0IiISXxwKP+VxJ5vMsgM0sANwD3ARsAm4zs01zTrsJ2Bj/cQfw+TnHPwzs96pGkUxyoDMxAiK7uyDqK+IBrKFoC/KyBbwVOOycO+qciwAPALfMOecW4Osu5img0szWAJhZI/BG4Ese1iiSMfa2DVJcEGB9Fm1DNJ/iwgDVpYW0qQtiQV4GcANwctbr1vh7yZ7z/wH/HdCjVFkR9rUPsqm+nECe+V3KsjVUaSxwMrwM4Pn+FLlkzjGzNwHdzrlnF/wQszvMbKeZ7ezp6VlKnSK+i0YdL7YPcXF9dnc/JNRXFNPWrz7ghXgZwK1A06zXjUB7kudcB9xsZi3Eui5+x8z+bb4Pcc7d55zb4pzbEg6HU1W7SFq19I0yGpnhooYKv0tJiYaq2GQM5+a2uWQ2LwN4B7DRzNabWSFwK7BtzjnbgHfFR0NcDQw65zqccx93zjU655rj1z3qnHunh7WK+Gpv+xAAF+VIC7ihspjxqRn6x6b8LiWj5Xv1jZ1z02b2QeBhIAB82Tm3z8zujB+/F9gOvAE4DIwB7/WqHpFMtq9tkMJAHhtrsnsIWkJiLHBb/zirSgt9riZzeRbAAM657cRCdvZ798762gF3LfA9HgMe86A8kYzxQtsg59eFKMzPjblRjbPGAl/SmBvdKl7Ijd9tkSwWjTr2tA6yuSl3gqqpqgSAk6c0EuJsFMAiPjvaO8LI5DSbGyv9LiVlKkoKqCgu4PipUb9LyWgKYBGf7ToxAMClTZW+1pFqzdUlHO/TULSzUQCL+Oz51gHKgvmcG87ObYjOZG11qQJ4AQpgEZ89f3KQVzVWkJcDM+Bma64uoW1gnCmtC3xGCmARH01MzbC/Y4jNOdb9ALB2VQkzUadFec5CASzioz2tg0xHHZevrfK7lJRrji8q1NKnB3FnogAW8dHO46cAuGJd7gXwulWxoWgnTqkf+EwUwCI+2tnSzznh0pycLRYOBSkuCNDSqwA+EwWwiE+iUcezx/vZkoOtXwAzY111CSc0FviMFMAiPjnSM8Lg+BRb1q3yuxTPrKsuoUVD0c5IASzikx0t/QBc0ZybLWCA5upSTpwaIxrVspTzUQCL+OSJI73UhIKck+VbEJ3N2uoSItNRbVF/BgpgER8453jySB/XbViNWW5NwJituVpD0c5GASzig4Ndw/SNRrjm3Gq/S/HU2sRQNPUDz0sBLOKDJw73AXBtjgdwfWUxBQHTg7gzUACL+OCJI72sqy6hMb5ubq4K5BlNVRqKdiYKYJE0m56J8vTRU1x77mq/S0mLddUlmoxxBgpgkTR7oW2Q4cnpnO9+SFgXH4qmHZJfSQEskmZPHIn1/+b6A7iE5uoSRian6R2J+F1KxlEAi6TZk0f6uKAuxOqyoN+lpMW5NbGF5g93j/hcSeZRAIuk0cTUDDtaVk7/L8DGmhAAh7uHfa4k8yiARdLoqaN9TE5HefXGlRPAteVBQsF8DqkF/AoKYJE0evRAN8UFgRXT/wuxVdE21JapC2IeCmCRNHHO8cj+bq7bsJqigoDf5aTVhnCZWsDzUACLpMnBrmHaBsa5/sIav0tJu421ZfQMTzIwppEQsymARdLkkf3dALzughUYwKcfxKkVPJsCWCRNHj3QzSUNFdSWF/ldStpt0FC0eSmARdLg1GiE50708/oV2P0A0FBZTFFBnvqB51AAi6TBzw904xy8/oJav0vxRV6esaFGD+LmUgCLpMGjB7qpCQW5qL7c71J8syFcxuEuTcaYTQEs4rHxyAw/P9jN9ZtqycvL3d0vFrKxNkT74AQjk9N+l5IxFMAiHnvsYDdjkRneeMkav0vxVeJB3BF1Q5ymABbx2A9f6KC6tJCr1ufu9vPJ2BgPYPUDv0wBLOKh8cgMjx7o5oaL68gPrOy/bmtXlVAYyNNQtFlW9p8IEY+p++Fl+YE81q8u5ZAexJ2mABbx0A9f6GCVuh9OO68uxIFOBXCCAljEI4nuhxvV/XDaxfXltA2M0z+qNSFAASziGXU/vNJF9RUAvNgx5HMlmUEBLOKRh3a3sbpM3Q+zJSai7G0b9LmSzKAAFvHAwFiERw90c/PmBnU/zFJVWkh9RRH72tUCBgWwiCe+v6eDqRnHWy5v8LuUjHNRQwX72tUCBgWwiCe+91wr59WWrei1H87kovpyjvaOMqopyQpgkVRr6R3luRMDvOXyRsxW7toPZ3JRfQXOwYFOdUMogEVS7MFdbZjBLZfW+11KRkr8r0D9wApgkZRyzvG9Xa1cd+5q1lQU+11ORlpTUcSq0kL2tSmAFcAiKfT0sVOcPDXOH1ymh29nYmZcVF/OXj2I8zaAzexGMztoZofN7O55jpuZfS5+fI+ZXR5/v8nMfm5m+81sn5l92Ms6RVLlgWdOECrK5w2afHFWm+rLealrmMh01O9SfOVZAJtZALgHuAnYBNxmZpvmnHYTsDH+4w7g8/H3p4GPOucuBK4G7prnWpGMMjAWYfveTn7/0gaKCwN+l5PRLq6vYGrGcah7Za8L4WULeCtw2Dl31DkXAR4Abplzzi3A113MU0Clma1xznU4554DcM4NA/sB/Z9OMtr3drURmY5y29a1fpeS8U4/iFvh/cBeBnADcHLW61ZeGaILnmNmzcBlwNPzfYiZ3WFmO81sZ09Pz3JrFlkS5xz3P3OCzY0VbNLY3wU1V5cSCubzfOuA36X4yssAnm8ApFvMOWZWBnwX+Ihzbt5/Kp1z9znntjjntoTD4SUXK7Icz50Y4KWuEW5V6zcpeXnGpWsr2XViwO9SfOVlALcCTbNeNwLtyZ5jZgXEwvebzrkHPaxTZNkeeOYEpYUB3rxZY3+TdVlTJQc6hxiLrNwZcV4G8A5go5mtN7NC4FZg25xztgHvio+GuBoYdM51WGz60L8C+51zn/GwRpFl6x+N8P097dx8aT1lwXy/y8kal62tIupgT+vKHY7mWQA756aBDwIPE3uI9i3n3D4zu9PM7oyfth04ChwGvgh8IP7+dcAfAb9jZrvjP97gVa0iy/EfO08yMRXl3dc2+11KVrm0qRKA5070+1uIjzz959o5t51YyM5+795ZXzvgrnmu+xXz9w+LZJTpmSjfePI415xTzQV1evi2GFWlhZyzupTnjg/4XYpvNBNOZBl++mIXbQPjvOe6Zr9LyUqXra1i14l+Ym2xlUcBLLIMX3mihcaqYq6/sNbvUrLS1vVV9I1GONIz6ncpvlAAiyzRvvZBnjl2indf00wgTz1mS7F1fTUAzxw75XMl/lAAiyzRv/7qGMUFAd6+pWnhk2VezdUlrC4LsqNFASwiSWrtH2Pb7nZu3dpERUmB3+VkLTPjqvWr1AIWkeR98RdHMYP3v/ocv0vJelc2V9E2ME5r/5jfpaSdAlhkkXqGJ3lgx0n+4LIG6iu16PpyXXPuagCeONLncyXppwAWWaSv/PoYkZkof/Kac/0uJSecV1vG6rIgvz7c63cpaacAFlmEoYkpvvHkcW66uI5zw2V+l5MTzIzrNlTz68N9K248sAJYZBG+9IujDE9O84HXbvC7lJxy3bmr6R2Z5KWuEb9LSSsFsEiSeoYn+dKvjvHGS9ZwcUOF3+XklGs3xMYD/2qFdUMogEWSdM/PDzM5HeWjv3ee36XknMaqEs4Jl/L4SytrUwUFsEgSTvSN8c2nj/P2LU2co75fT7zu/BqeOtq3otYHVgCLJOGffvYSeWZ8+PUb/S4lZ73u/Boi01GeXEHD0RTAIgt49ng/39vVxnuvW09dRZHf5eSsK9dXUVoY4OcHu/0uJW0UwCJnMT0T5a8e2suaiiI+9Dsa+eClYH6A6zas5tH93StmOJoCWOQsvvbkcfZ3DPGJN2+iVNsNee73LqqjfXBixWxTpAAWOYPOwQk+85ODvPb8MDdcVOd3OSvC9RfWEMgzfryv0+9S0kIBLDIP5xx/9dBepqOOv735YmL7xIrXKksKueacan68t3NFdEMogEXm8W9Pn+Bn+7v42A3ns7a6xO9yVpQbL67jWO8oB7uG/S7FcwpgkTkOdg7zdz94kdecF+Z91633u5wV58aL6wjkGf+5u93vUjynABaZZWJqhj+7fxehogI+/bbN5GmrobRbXRbktzasZtvudqLR3O6GUABL1ohGnaf9gs45/vy7ezjYNcz/eftmwqGgZ58lZ/f7l9XTNjDOzuP9fpfiKY2rkYz25JE+vv3sSZ480kfX0AQFgTzWrirhug2r+f3LGtjcWJGyB2T/9LND/Ofudj52w/m85rxwSr6nLM3vbaqjuGAv3322la3rV/ldjmcUwJKR2gbGufu7e/jloV4qigv47fPCrFtVQmQmysHOYR7YcYKvPtHClc1V/PmNF7CleXl/Sb/4i6N87pFDvO2KRj7wWi207rfSYD5v3ryG7+9p53+8eRNlOToGOzfvSrLaYwe7+dD9u3AO/sebNnH7VWspKgj8xjlDE1N899lW/uWxI7z13ie5/sIa7r7pAjbUhBb1Wc45/ulnh/jcI4d44yVr+Ie3XKIhZxni1q1r+dbOVrbtbucdV631uxxPWC6NtduyZYvbuXOn32XIMjy0q42Pfvt5zq8Nce87r1hwCNhYZJqv/LqFex87wtjUDO+8ai0fuf48qkoLF/yswfEpPv7gHra/0Mnbrmjk799yCQUBPRbJFM45bvrsL8kPGN//4G9l+z+M8xavP22SMR7Z38VHv/08W5tX8R9/cnVS429LCvO563UbeOxjr+W2rU1846nj/Panfs6nHz5I5+DEvNdEpqN8e+dJfvczj/Pwvi7uvukCPvXWVyl8M4yZcfvV69jbNpSzD+PUApaM8OzxU9z+pac5rzbEv7//6iX3+R3sHOazj7zEj/Z2YsCW5lVcsa6KuvIiItNRDnQO8/hL3fSORNjcWMHf3nIxm5sqU3ovkjpjkWmu/eSjXLV+FV/4oy1+l7Mc87aA1QcsvjvcPcL7vrqTNRXFfPk9Vy7rgcv5dSH+5fYrON43yneebeWxgz184fEjJIaTVpUUcPU51bz9yiZeszGscb4ZrqQwn9uvWsu/PHaElt5RmleX+l1SSqkFLL4amZzmln/+FQNjUzx013U0rUr9tN+ZqOPUaISigjzKgvnZ3pe44nQPTfDqT/2cmzfX849v2+x3OUulPmDJLM45Pvbt52npG+Of33G5J+ELEMgzwqEgoaIChW8Wqikv4h1XreXBXW0c7xv1u5yUUgCLb774y6P8aG8nf37j+VxzbrXf5UgG+9PXnEt+nvHZnx3yu5SUUgCLL5440ssnf3SAN1xSx/tffY7f5UiGqykv4r3XrefBXW3saR3wu5yUUQBL2nUOTvBn9+9i/epSPvXWzeoWkKTc9bpzqS4t5H/94MWcWStYASxpFZmO8oFvPst4ZIYv/NEVOTvFVFIvVFTAx244nx0t/Xxr50m/y0kJBbCk1d9v389zJwb41Fs3L3rasMjbtzSxdf0q/vcP99M1NP9Em2yiAJa0eWhXG199ooX/8lvreeOr1vhdjmShvDzjH95yCZGZKB/91vNZv16wAljSYk/rAB9/8AWubK7i7psu8LscyWLnhsv46zddxK8O9/L5x4/4Xc6yKIDFcyf6xnjfV3ewqrSQe26/XGsuyLLdtrWJN71qDZ/+yUEePdDldzlLpr8J4qlToxHe/ZVnmI46vva+rdSEivwuSXKAmfGPb93MRfXlfOjfd7H75IDfJS2JAlg80z8a4b1feYb2gXG+9K4tbKgp87skySHFhQH+9d1XUl0W5N1ffoa9bYN+l7RoCmDxROfgBG//wpPs7xzmnndcvuwdK0TmU1texDf/+CpKCwPcdt9TPHGk1++SFkUBLCl3pGeEP/z8E3QMTvC1927l+k21fpckOaxpVQnf+dNrqa0o4l3/+gxfe6IlayZqKIAlpX6wp51b/vnXjE/NcP/7r9YaD5IW9ZXFPPiBa3nt+WE+sW0ft3/p6axYuEfLUXpsYCzCC22DHOsdpaV3jI7BcYYmphiZmCbqoKggj6KCADWhIhqrilm7qoRN9eVsqCnLqtEC7QPj/N0PX2T7C51ctraSe95xOfWVxX6XJStMNOq4f8cJPrn9AFPRKH/6mg2859pmKkoK/C5t3vn2CuAUmpia4cWOIZ4/OcDukwM8f3KAlr6x08eLCvJoqCymoriAUFEBeQYTU1HGpmboHpqgc2iCxG9HMD+PC9aUc3F9OZubKrm0qZJzw2UEMmwB8cPdI3zjyRYe2HESB3zk+o3c8epzyM+ifzwk93QOTvCJbXt5eF8XZcHYou63bl3Lev8WdE9/AJvZjcBngQDwJefcJ+cct/jxNwBjwHucc88lc+180hnAE1MzHOgcZm/bIPvaB9nbNsSBziGmZmK/nrXlQS5tqmRzUyWbGyvZUFNGTSh41oVnItNRTpwai3+/2Pfc2zbI8OQ0AKWFAS5prIgFcmMlF9VX0FBVnNZQds5xtHeUX77Uw09e7OKJI30UBvK4+dJ6PnL9RhqrvFnTV2QpXmwf4vOPH+GHe9qJOrhwTTk3XVzHVetX8arGSooLAwt/k9RIbwCbWQB4CfhdoBXYAdzmnHtx1jlvAD5ELICvAj7rnLsqmWvns5QAnok6ItNRJqdn4j/Hvp6YijI0PsWpsQj9oxH6RiO09Y9z/NQYx/tG6RqaPP09KooLuLihnEsaYi3VS5sqqatIzXjXaNRxrG+U5+Mt6t2tg+xvHyIyEwWgMJDH2uoSmqtLaVpVzOqyIOGyINVlhVSWFJ7u4igqCFBcECCYn0eeGY7Y77tzkPgTMBN1jEdmGItMMxaZYXRymp6RSXqGJzlxaoxDXSMc7BqmZzh2783VJbxtSxP/z5VNrC4LpuR+RbzQPjDO9hc62P5CB8+dGAAgP8/YUFPGOeFSmqtLqasooqqkkFWlhVSVFFIaDFCYn0cwP/ZzYSCPgoAtdfW+tAfwNcDfOOduiL/+OIBz7h9mnfMF4DHn3P3x1weB1wLNC107n8UG8NvvfZJnWk4lfX5NKMi66hLWriplXXUJ59WGuLihnIbK4rQuqTg5PcOBjmH2dwxxrG+Ult5RjvWO0to/zlhkxpPPLC4IsLG2jI01IS5bW8lvbwwntWuxSKY5NRph14l+dh7v52DnMMd6Rzl5aozpJNaVCAXzeeF/3rCUj037ppwNwOw141qJtXIXOqchyWsBMLM7gDviL0fiIe6J48Sa4rOsBrJr4GHyXnFvB3wqxAMr6vctx/h+f/a3S7rsx865G+e+6WUAz5f4c/+JOdM5yVwbe9O5+4D7FldaapjZTudcVu+VfSa6t+yUy/cGuXd/XgZwK9A063Uj0J7kOYVJXCsiktW8HCu0A9hoZuvNrBC4Fdg255xtwLss5mpg0DnXkeS1IiJZzbMWsHNu2sw+CDxMbCjZl51z+8zszvjxe4HtxEZAHCY2DO29Z7vWq1qXwZeujzTRvWWnXL43yLH7y6mJGCIi2UTTlUREfKIAFhHxiQJ4kczsf5nZHjPbbWY/MbP6Wcc+bmaHzeygmS1ptLafzOwfzexA/P6+Z2aVs45l9b0BmNnbzGyfmUXNbMucY7lwfzfG6z9sZnf7Xc9ymNmXzazbzPbOem+Vmf3UzA7Ff67ys8ZUUAAv3j86517lnLsU+AHw1wBmtonYaI2LgBuBf4lPqc4mPwUuds69ithU8I9DztwbwF7gLcAvZr+ZC/cXr/ce4CZgE3Bb/L6y1VeJ/V7MdjfwiHNuI/BI/HVWUwAvknNuaNbLUl6eIHIL8IBzbtI5d4zYyI6t6a5vOZxzP3HOTcdfPkVs/DXkwL0BOOf2O+fmmymZC/e3FTjsnDvqnIsADxC7r6zknPsFMHedgFuAr8W//hrw++msyQsK4CUws/9tZieB24m3gDnztOps9T7gR/Gvc+3e5sqF+8uFe1hIbXyeAPGfa3yuZ9m8nAmXtczsZ0DdPIf+0jn3n865vwT+Mr5I0AeBT7CI6dN+Wuje4uf8JTANfDNx2TznZ9y9QXL3N99l87yXkfd3FrlwDyuOAngezrnrkzz134EfEgvgZKZe+26hezOzdwNvAl7vXh4knhX3Bov6vZsta+7vLHLhHhbSZWZrnHMdZrYG6Pa7oOVSF8QimdnGWS9v5uVFwrYBt5pZ0MzWAxuBZ9Jd33LEF8H/c+Bm59zYrENZf28LyIX7WwnT97cB745//W7gTP+jyRpqAS/eJ83sfCBKbIXKxNTqfWb2LeBFYv99v8s5583ivN75ZyAI/DS+vvFTzrk7c+TeMLM/AP5/IAz80Mx2O+duyIX7y6Lp+0kxs/uJrQ2+2sxaif0v85PAt8zsvwAngLf5V2FqaCqyiIhP1AUhIuITBbCIiE8UwCIiPlEAi4j4RAEsIuITBbCIiE8UwCIiPvm/cfqdY6i8PWkAAAAASUVORK5CYII=\n", 1451 | "text/plain": [ 1452 | "
" 1453 | ] 1454 | }, 1455 | "metadata": { 1456 | "needs_background": "light" 1457 | }, 1458 | "output_type": "display_data" 1459 | } 1460 | ], 1461 | "source": [ 1462 | "import seaborn as sns\n", 1463 | "sns.displot(lasso_pred-y_test,kind='kde')" 1464 | ] 1465 | }, 1466 | { 1467 | "cell_type": "code", 1468 | "execution_count": null, 1469 | "id": "bbf4bf18", 1470 | "metadata": {}, 1471 | "outputs": [], 1472 | "source": [] 1473 | } 1474 | ], 1475 | "metadata": { 1476 | "kernelspec": { 1477 | "display_name": "Python 3 (ipykernel)", 1478 | "language": "python", 1479 | "name": "python3" 1480 | }, 1481 | "language_info": { 1482 | "codemirror_mode": { 1483 | "name": "ipython", 1484 | "version": 3 1485 | }, 1486 | "file_extension": ".py", 1487 | "mimetype": "text/x-python", 1488 | "name": "python", 1489 | "nbconvert_exporter": "python", 1490 | "pygments_lexer": "ipython3", 1491 | "version": "3.9.7" 1492 | } 1493 | }, 1494 | "nbformat": 4, 1495 | "nbformat_minor": 5 1496 | } 1497 | -------------------------------------------------------------------------------- /SVR Algorithms.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/SVR Algorithms.pdf -------------------------------------------------------------------------------- /decision tree.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/decision tree.pdf -------------------------------------------------------------------------------- /mse,mae,rmse.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/mse,mae,rmse.pdf -------------------------------------------------------------------------------- /r2adjustedr2.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/r2adjustedr2.pdf -------------------------------------------------------------------------------- /train,test and validation.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/train,test and validation.pdf -------------------------------------------------------------------------------- /typesofcrossvalidation.pdf: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/krishnaik06/Machine-Learning-Algorithms-Materials/853a939e055aa8112693b3ceb0e0888c7d73a002/typesofcrossvalidation.pdf --------------------------------------------------------------------------------