├── README.md └── Lassoand Regression.ipynb /README.md: -------------------------------------------------------------------------------- 1 | # RegressionandLasso -------------------------------------------------------------------------------- /Lassoand Regression.ipynb: -------------------------------------------------------------------------------- 1 | { 2 | "cells": [ 3 | { 4 | "cell_type": "markdown", 5 | "metadata": {}, 6 | "source": [ 7 | "## Ridge and LAsso Regression implementation" 8 | ] 9 | }, 10 | { 11 | "cell_type": "code", 12 | "execution_count": 5, 13 | "metadata": {}, 14 | "outputs": [], 15 | "source": [ 16 | "from sklearn.datasets import load_boston" 17 | ] 18 | }, 19 | { 20 | "cell_type": "code", 21 | "execution_count": 4, 22 | "metadata": {}, 23 | "outputs": [], 24 | "source": [ 25 | "import numpy as np\n", 26 | "import pandas as pd\n", 27 | "import matplotlib.pyplot as plt" 28 | ] 29 | }, 30 | { 31 | "cell_type": "code", 32 | "execution_count": 6, 33 | "metadata": {}, 34 | "outputs": [], 35 | "source": [ 36 | "df=load_boston()" 37 | ] 38 | }, 39 | { 40 | "cell_type": "code", 41 | "execution_count": 8, 42 | "metadata": {}, 43 | "outputs": [ 44 | { 45 | "data": { 46 | "text/plain": [ 47 | "{'data': array([[6.3200e-03, 1.8000e+01, 2.3100e+00, ..., 1.5300e+01, 3.9690e+02,\n", 48 | " 4.9800e+00],\n", 49 | " [2.7310e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9690e+02,\n", 50 | " 9.1400e+00],\n", 51 | " [2.7290e-02, 0.0000e+00, 7.0700e+00, ..., 1.7800e+01, 3.9283e+02,\n", 52 | " 4.0300e+00],\n", 53 | " ...,\n", 54 | " [6.0760e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n", 55 | " 5.6400e+00],\n", 56 | " [1.0959e-01, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9345e+02,\n", 57 | " 6.4800e+00],\n", 58 | " [4.7410e-02, 0.0000e+00, 1.1930e+01, ..., 2.1000e+01, 3.9690e+02,\n", 59 | " 7.8800e+00]]),\n", 60 | " 'target': array([24. , 21.6, 34.7, 33.4, 36.2, 28.7, 22.9, 27.1, 16.5, 18.9, 15. ,\n", 61 | " 18.9, 21.7, 20.4, 18.2, 19.9, 23.1, 17.5, 20.2, 18.2, 13.6, 19.6,\n", 62 | " 15.2, 14.5, 15.6, 13.9, 16.6, 14.8, 18.4, 21. , 12.7, 14.5, 13.2,\n", 63 | " 13.1, 13.5, 18.9, 20. , 21. , 24.7, 30.8, 34.9, 26.6, 25.3, 24.7,\n", 64 | " 21.2, 19.3, 20. , 16.6, 14.4, 19.4, 19.7, 20.5, 25. , 23.4, 18.9,\n", 65 | " 35.4, 24.7, 31.6, 23.3, 19.6, 18.7, 16. , 22.2, 25. , 33. , 23.5,\n", 66 | " 19.4, 22. , 17.4, 20.9, 24.2, 21.7, 22.8, 23.4, 24.1, 21.4, 20. ,\n", 67 | " 20.8, 21.2, 20.3, 28. , 23.9, 24.8, 22.9, 23.9, 26.6, 22.5, 22.2,\n", 68 | " 23.6, 28.7, 22.6, 22. , 22.9, 25. , 20.6, 28.4, 21.4, 38.7, 43.8,\n", 69 | " 33.2, 27.5, 26.5, 18.6, 19.3, 20.1, 19.5, 19.5, 20.4, 19.8, 19.4,\n", 70 | " 21.7, 22.8, 18.8, 18.7, 18.5, 18.3, 21.2, 19.2, 20.4, 19.3, 22. ,\n", 71 | " 20.3, 20.5, 17.3, 18.8, 21.4, 15.7, 16.2, 18. , 14.3, 19.2, 19.6,\n", 72 | " 23. , 18.4, 15.6, 18.1, 17.4, 17.1, 13.3, 17.8, 14. , 14.4, 13.4,\n", 73 | " 15.6, 11.8, 13.8, 15.6, 14.6, 17.8, 15.4, 21.5, 19.6, 15.3, 19.4,\n", 74 | " 17. , 15.6, 13.1, 41.3, 24.3, 23.3, 27. , 50. , 50. , 50. , 22.7,\n", 75 | " 25. , 50. , 23.8, 23.8, 22.3, 17.4, 19.1, 23.1, 23.6, 22.6, 29.4,\n", 76 | " 23.2, 24.6, 29.9, 37.2, 39.8, 36.2, 37.9, 32.5, 26.4, 29.6, 50. ,\n", 77 | " 32. , 29.8, 34.9, 37. , 30.5, 36.4, 31.1, 29.1, 50. , 33.3, 30.3,\n", 78 | " 34.6, 34.9, 32.9, 24.1, 42.3, 48.5, 50. , 22.6, 24.4, 22.5, 24.4,\n", 79 | " 20. , 21.7, 19.3, 22.4, 28.1, 23.7, 25. , 23.3, 28.7, 21.5, 23. ,\n", 80 | " 26.7, 21.7, 27.5, 30.1, 44.8, 50. , 37.6, 31.6, 46.7, 31.5, 24.3,\n", 81 | " 31.7, 41.7, 48.3, 29. , 24. , 25.1, 31.5, 23.7, 23.3, 22. , 20.1,\n", 82 | " 22.2, 23.7, 17.6, 18.5, 24.3, 20.5, 24.5, 26.2, 24.4, 24.8, 29.6,\n", 83 | " 42.8, 21.9, 20.9, 44. , 50. , 36. , 30.1, 33.8, 43.1, 48.8, 31. ,\n", 84 | " 36.5, 22.8, 30.7, 50. , 43.5, 20.7, 21.1, 25.2, 24.4, 35.2, 32.4,\n", 85 | " 32. , 33.2, 33.1, 29.1, 35.1, 45.4, 35.4, 46. , 50. , 32.2, 22. ,\n", 86 | " 20.1, 23.2, 22.3, 24.8, 28.5, 37.3, 27.9, 23.9, 21.7, 28.6, 27.1,\n", 87 | " 20.3, 22.5, 29. , 24.8, 22. , 26.4, 33.1, 36.1, 28.4, 33.4, 28.2,\n", 88 | " 22.8, 20.3, 16.1, 22.1, 19.4, 21.6, 23.8, 16.2, 17.8, 19.8, 23.1,\n", 89 | " 21. , 23.8, 23.1, 20.4, 18.5, 25. , 24.6, 23. , 22.2, 19.3, 22.6,\n", 90 | " 19.8, 17.1, 19.4, 22.2, 20.7, 21.1, 19.5, 18.5, 20.6, 19. , 18.7,\n", 91 | " 32.7, 16.5, 23.9, 31.2, 17.5, 17.2, 23.1, 24.5, 26.6, 22.9, 24.1,\n", 92 | " 18.6, 30.1, 18.2, 20.6, 17.8, 21.7, 22.7, 22.6, 25. , 19.9, 20.8,\n", 93 | " 16.8, 21.9, 27.5, 21.9, 23.1, 50. , 50. , 50. , 50. , 50. , 13.8,\n", 94 | " 13.8, 15. , 13.9, 13.3, 13.1, 10.2, 10.4, 10.9, 11.3, 12.3, 8.8,\n", 95 | " 7.2, 10.5, 7.4, 10.2, 11.5, 15.1, 23.2, 9.7, 13.8, 12.7, 13.1,\n", 96 | " 12.5, 8.5, 5. , 6.3, 5.6, 7.2, 12.1, 8.3, 8.5, 5. , 11.9,\n", 97 | " 27.9, 17.2, 27.5, 15. , 17.2, 17.9, 16.3, 7. , 7.2, 7.5, 10.4,\n", 98 | " 8.8, 8.4, 16.7, 14.2, 20.8, 13.4, 11.7, 8.3, 10.2, 10.9, 11. ,\n", 99 | " 9.5, 14.5, 14.1, 16.1, 14.3, 11.7, 13.4, 9.6, 8.7, 8.4, 12.8,\n", 100 | " 10.5, 17.1, 18.4, 15.4, 10.8, 11.8, 14.9, 12.6, 14.1, 13. , 13.4,\n", 101 | " 15.2, 16.1, 17.8, 14.9, 14.1, 12.7, 13.5, 14.9, 20. , 16.4, 17.7,\n", 102 | " 19.5, 20.2, 21.4, 19.9, 19. , 19.1, 19.1, 20.1, 19.9, 19.6, 23.2,\n", 103 | " 29.8, 13.8, 13.3, 16.7, 12. , 14.6, 21.4, 23. , 23.7, 25. , 21.8,\n", 104 | " 20.6, 21.2, 19.1, 20.6, 15.2, 7. , 8.1, 13.6, 20.1, 21.8, 24.5,\n", 105 | " 23.1, 19.7, 18.3, 21.2, 17.5, 16.8, 22.4, 20.6, 23.9, 22. , 11.9]),\n", 106 | " 'feature_names': array(['CRIM', 'ZN', 'INDUS', 'CHAS', 'NOX', 'RM', 'AGE', 'DIS', 'RAD',\n", 107 | " 'TAX', 'PTRATIO', 'B', 'LSTAT'], dtype='\n", 169 | "\n", 182 | "\n", 183 | " \n", 184 | " \n", 185 | " \n", 186 | " \n", 187 | " \n", 188 | " \n", 189 | " \n", 190 | " \n", 191 | " \n", 192 | " \n", 193 | " \n", 194 | " \n", 195 | " \n", 196 | " \n", 197 | " \n", 198 | " \n", 199 | " \n", 200 | " \n", 201 | " \n", 202 | " \n", 203 | " \n", 204 | " \n", 205 | " \n", 206 | " \n", 207 | " \n", 208 | " \n", 209 | " \n", 210 | " \n", 211 | " \n", 212 | " \n", 213 | " \n", 214 | " \n", 215 | " \n", 216 | " \n", 217 | " \n", 218 | " \n", 219 | " \n", 220 | " \n", 221 | " \n", 222 | " \n", 223 | " \n", 224 | " \n", 225 | " \n", 226 | " \n", 227 | " \n", 228 | " \n", 229 | " \n", 230 | " \n", 231 | " \n", 232 | " \n", 233 | " \n", 234 | " \n", 235 | " \n", 236 | " \n", 237 | " \n", 238 | " \n", 239 | " \n", 240 | " \n", 241 | " \n", 242 | " \n", 243 | " \n", 244 | " \n", 245 | " \n", 246 | " \n", 247 | " \n", 248 | " \n", 249 | " \n", 250 | " \n", 251 | " \n", 252 | " \n", 253 | " \n", 254 | " \n", 255 | " \n", 256 | " \n", 257 | " \n", 258 | " \n", 259 | " \n", 260 | " \n", 261 | " \n", 262 | " \n", 263 | " \n", 264 | " \n", 265 | " \n", 266 | " \n", 267 | " \n", 268 | " \n", 269 | " \n", 270 | " \n", 271 | " \n", 272 | " \n", 273 | " \n", 274 | " \n", 275 | " \n", 276 | " \n", 277 | " \n", 278 | " \n", 279 | " \n", 280 | " \n", 281 | " \n", 282 | " \n", 283 | "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTAT
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.98
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.14
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.03
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.94
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.33
\n", 284 | "" 285 | ], 286 | "text/plain": [ 287 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n", 288 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n", 289 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n", 290 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n", 291 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n", 292 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n", 293 | "\n", 294 | " PTRATIO B LSTAT \n", 295 | "0 15.3 396.90 4.98 \n", 296 | "1 17.8 396.90 9.14 \n", 297 | "2 17.8 392.83 4.03 \n", 298 | "3 18.7 394.63 2.94 \n", 299 | "4 18.7 396.90 5.33 " 300 | ] 301 | }, 302 | "execution_count": 12, 303 | "metadata": {}, 304 | "output_type": "execute_result" 305 | } 306 | ], 307 | "source": [ 308 | "dataset.head()" 309 | ] 310 | }, 311 | { 312 | "cell_type": "code", 313 | "execution_count": 13, 314 | "metadata": {}, 315 | "outputs": [ 316 | { 317 | "data": { 318 | "text/plain": [ 319 | "(506,)" 320 | ] 321 | }, 322 | "execution_count": 13, 323 | "metadata": {}, 324 | "output_type": "execute_result" 325 | } 326 | ], 327 | "source": [ 328 | "df.target.shape" 329 | ] 330 | }, 331 | { 332 | "cell_type": "code", 333 | "execution_count": 15, 334 | "metadata": {}, 335 | "outputs": [], 336 | "source": [ 337 | "dataset[\"Price\"]=df.target" 338 | ] 339 | }, 340 | { 341 | "cell_type": "code", 342 | "execution_count": 16, 343 | "metadata": {}, 344 | "outputs": [ 345 | { 346 | "data": { 347 | "text/html": [ 348 | "
\n", 349 | "\n", 362 | "\n", 363 | " \n", 364 | " \n", 365 | " \n", 366 | " \n", 367 | " \n", 368 | " \n", 369 | " \n", 370 | " \n", 371 | " \n", 372 | " \n", 373 | " \n", 374 | " \n", 375 | " \n", 376 | " \n", 377 | " \n", 378 | " \n", 379 | " \n", 380 | " \n", 381 | " \n", 382 | " \n", 383 | " \n", 384 | " \n", 385 | " \n", 386 | " \n", 387 | " \n", 388 | " \n", 389 | " \n", 390 | " \n", 391 | " \n", 392 | " \n", 393 | " \n", 394 | " \n", 395 | " \n", 396 | " \n", 397 | " \n", 398 | " \n", 399 | " \n", 400 | " \n", 401 | " \n", 402 | " \n", 403 | " \n", 404 | " \n", 405 | " \n", 406 | " \n", 407 | " \n", 408 | " \n", 409 | " \n", 410 | " \n", 411 | " \n", 412 | " \n", 413 | " \n", 414 | " \n", 415 | " \n", 416 | " \n", 417 | " \n", 418 | " \n", 419 | " \n", 420 | " \n", 421 | " \n", 422 | " \n", 423 | " \n", 424 | " \n", 425 | " \n", 426 | " \n", 427 | " \n", 428 | " \n", 429 | " \n", 430 | " \n", 431 | " \n", 432 | " \n", 433 | " \n", 434 | " \n", 435 | " \n", 436 | " \n", 437 | " \n", 438 | " \n", 439 | " \n", 440 | " \n", 441 | " \n", 442 | " \n", 443 | " \n", 444 | " \n", 445 | " \n", 446 | " \n", 447 | " \n", 448 | " \n", 449 | " \n", 450 | " \n", 451 | " \n", 452 | " \n", 453 | " \n", 454 | " \n", 455 | " \n", 456 | " \n", 457 | " \n", 458 | " \n", 459 | " \n", 460 | " \n", 461 | " \n", 462 | " \n", 463 | " \n", 464 | " \n", 465 | " \n", 466 | " \n", 467 | " \n", 468 | " \n", 469 | "
CRIMZNINDUSCHASNOXRMAGEDISRADTAXPTRATIOBLSTATPrice
00.0063218.02.310.00.5386.57565.24.09001.0296.015.3396.904.9824.0
10.027310.07.070.00.4696.42178.94.96712.0242.017.8396.909.1421.6
20.027290.07.070.00.4697.18561.14.96712.0242.017.8392.834.0334.7
30.032370.02.180.00.4586.99845.86.06223.0222.018.7394.632.9433.4
40.069050.02.180.00.4587.14754.26.06223.0222.018.7396.905.3336.2
\n", 470 | "
" 471 | ], 472 | "text/plain": [ 473 | " CRIM ZN INDUS CHAS NOX RM AGE DIS RAD TAX \\\n", 474 | "0 0.00632 18.0 2.31 0.0 0.538 6.575 65.2 4.0900 1.0 296.0 \n", 475 | "1 0.02731 0.0 7.07 0.0 0.469 6.421 78.9 4.9671 2.0 242.0 \n", 476 | "2 0.02729 0.0 7.07 0.0 0.469 7.185 61.1 4.9671 2.0 242.0 \n", 477 | "3 0.03237 0.0 2.18 0.0 0.458 6.998 45.8 6.0622 3.0 222.0 \n", 478 | "4 0.06905 0.0 2.18 0.0 0.458 7.147 54.2 6.0622 3.0 222.0 \n", 479 | "\n", 480 | " PTRATIO B LSTAT Price \n", 481 | "0 15.3 396.90 4.98 24.0 \n", 482 | "1 17.8 396.90 9.14 21.6 \n", 483 | "2 17.8 392.83 4.03 34.7 \n", 484 | "3 18.7 394.63 2.94 33.4 \n", 485 | "4 18.7 396.90 5.33 36.2 " 486 | ] 487 | }, 488 | "execution_count": 16, 489 | "metadata": {}, 490 | "output_type": "execute_result" 491 | } 492 | ], 493 | "source": [ 494 | "dataset.head()" 495 | ] 496 | }, 497 | { 498 | "cell_type": "code", 499 | "execution_count": 18, 500 | "metadata": {}, 501 | "outputs": [], 502 | "source": [ 503 | "X=dataset.iloc[:,:-1] ## independent features\n", 504 | "y=dataset.iloc[:,-1] ## dependent features" 505 | ] 506 | }, 507 | { 508 | "cell_type": "markdown", 509 | "metadata": {}, 510 | "source": [ 511 | "## Linear Regression\n" 512 | ] 513 | }, 514 | { 515 | "cell_type": "code", 516 | "execution_count": 19, 517 | "metadata": {}, 518 | "outputs": [ 519 | { 520 | "name": "stderr", 521 | "output_type": "stream", 522 | "text": [ 523 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\importlib\\_bootstrap.py:219: RuntimeWarning: numpy.ufunc size changed, may indicate binary incompatibility. Expected 192 from C header, got 216 from PyObject\n", 524 | " return f(*args, **kwds)\n" 525 | ] 526 | }, 527 | { 528 | "name": "stdout", 529 | "output_type": "stream", 530 | "text": [ 531 | "-37.131807467699204\n" 532 | ] 533 | } 534 | ], 535 | "source": [ 536 | "from sklearn.model_selection import cross_val_score\n", 537 | "from sklearn.linear_model import LinearRegression\n", 538 | "\n", 539 | "lin_regressor=LinearRegression()\n", 540 | "mse=cross_val_score(lin_regressor,X,y,scoring='neg_mean_squared_error',cv=5)\n", 541 | "mean_mse=np.mean(mse)\n", 542 | "print(mean_mse)" 543 | ] 544 | }, 545 | { 546 | "cell_type": "markdown", 547 | "metadata": {}, 548 | "source": [ 549 | "## Ridge Regression" 550 | ] 551 | }, 552 | { 553 | "cell_type": "code", 554 | "execution_count": 22, 555 | "metadata": {}, 556 | "outputs": [ 557 | { 558 | "data": { 559 | "text/plain": [ 560 | "GridSearchCV(cv=5, error_score='raise-deprecating',\n", 561 | " estimator=Ridge(alpha=1.0, copy_X=True, fit_intercept=True, max_iter=None,\n", 562 | " normalize=False, random_state=None, solver='auto', tol=0.001),\n", 563 | " fit_params=None, iid='warn', n_jobs=None,\n", 564 | " param_grid={'alpha': [1e-15, 1e-10, 1e-08, 0.001, 0.01, 1, 5, 10, 20, 30, 35, 40, 45, 50, 55, 100]},\n", 565 | " pre_dispatch='2*n_jobs', refit=True, return_train_score='warn',\n", 566 | " scoring='neg_mean_squared_error', verbose=0)" 567 | ] 568 | }, 569 | "execution_count": 22, 570 | "metadata": {}, 571 | "output_type": "execute_result" 572 | } 573 | ], 574 | "source": [ 575 | "from sklearn.linear_model import Ridge\n", 576 | "from sklearn.model_selection import GridSearchCV\n", 577 | "\n", 578 | "ridge=Ridge()\n", 579 | "parameters={'alpha':[1e-15,1e-10,1e-8,1e-3,1e-2,1,5,10,20,30,35,40,45,50,55,100]}\n", 580 | "ridge_regressor=GridSearchCV(ridge,parameters,scoring='neg_mean_squared_error',cv=5)\n", 581 | "ridge_regressor.fit(X,y)" 582 | ] 583 | }, 584 | { 585 | "cell_type": "code", 586 | "execution_count": 23, 587 | "metadata": {}, 588 | "outputs": [ 589 | { 590 | "name": "stdout", 591 | "output_type": "stream", 592 | "text": [ 593 | "{'alpha': 100}\n", 594 | "-29.871945115432595\n" 595 | ] 596 | } 597 | ], 598 | "source": [ 599 | "print(ridge_regressor.best_params_)\n", 600 | "print(ridge_regressor.best_score_)" 601 | ] 602 | }, 603 | { 604 | "cell_type": "markdown", 605 | "metadata": {}, 606 | "source": [ 607 | "## Lasso Regression" 608 | ] 609 | }, 610 | { 611 | "cell_type": "code", 612 | "execution_count": 24, 613 | "metadata": {}, 614 | "outputs": [ 615 | { 616 | "name": "stderr", 617 | "output_type": "stream", 618 | "text": [ 619 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\site-packages\\sklearn\\linear_model\\coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.\n", 620 | " ConvergenceWarning)\n", 621 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\site-packages\\sklearn\\linear_model\\coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.\n", 622 | " ConvergenceWarning)\n", 623 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\site-packages\\sklearn\\linear_model\\coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.\n", 624 | " ConvergenceWarning)\n", 625 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\site-packages\\sklearn\\linear_model\\coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.\n", 626 | " ConvergenceWarning)\n", 627 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\site-packages\\sklearn\\linear_model\\coordinate_descent.py:492: ConvergenceWarning: Objective did not converge. You might want to increase the number of iterations. Fitting data with very small alpha may cause precision problems.\n", 628 | " ConvergenceWarning)\n" 629 | ] 630 | }, 631 | { 632 | "name": "stdout", 633 | "output_type": "stream", 634 | "text": [ 635 | "{'alpha': 1}\n", 636 | "-35.491283263627096\n" 637 | ] 638 | } 639 | ], 640 | "source": [ 641 | "from sklearn.linear_model import Lasso\n", 642 | "from sklearn.model_selection import GridSearchCV\n", 643 | "lasso=Lasso()\n", 644 | "parameters={'alpha':[1e-15,1e-10,1e-8,1e-3,1e-2,1,5,10,20,30,35,40,45,50,55,100]}\n", 645 | "lasso_regressor=GridSearchCV(lasso,parameters,scoring='neg_mean_squared_error',cv=5)\n", 646 | "\n", 647 | "lasso_regressor.fit(X,y)\n", 648 | "print(lasso_regressor.best_params_)\n", 649 | "print(lasso_regressor.best_score_)" 650 | ] 651 | }, 652 | { 653 | "cell_type": "code", 654 | "execution_count": 25, 655 | "metadata": {}, 656 | "outputs": [], 657 | "source": [ 658 | "from sklearn.model_selection import train_test_split\n", 659 | "X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=0)" 660 | ] 661 | }, 662 | { 663 | "cell_type": "code", 664 | "execution_count": 26, 665 | "metadata": {}, 666 | "outputs": [], 667 | "source": [ 668 | "prediction_lasso=lasso_regressor.predict(X_test)\n", 669 | "prediction_ridge=ridge_regressor.predict(X_test)" 670 | ] 671 | }, 672 | { 673 | "cell_type": "code", 674 | "execution_count": 28, 675 | "metadata": {}, 676 | "outputs": [ 677 | { 678 | "name": "stderr", 679 | "output_type": "stream", 680 | "text": [ 681 | "C:\\Users\\krish.naik\\AppData\\Local\\Continuum\\anaconda3\\envs\\myenv\\lib\\site-packages\\scipy\\stats\\stats.py:1713: FutureWarning: Using a non-tuple sequence for multidimensional indexing is deprecated; use `arr[tuple(seq)]` instead of `arr[seq]`. In the future this will be interpreted as an array index, `arr[np.array(seq)]`, which will result either in an error or a different result.\n", 682 | " return np.add.reduce(sorted[indexer] * weights, axis=axis) / sumval\n" 683 | ] 684 | }, 685 | { 686 | "data": { 687 | "text/plain": [ 688 | "" 689 | ] 690 | }, 691 | "execution_count": 28, 692 | "metadata": {}, 693 | "output_type": "execute_result" 694 | }, 695 | { 696 | "data": { 697 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xl83PV95/HXZ2ak0X1LPnT4kA3YxgdYMYeBsJAQpwduG0gg2YQcLdlt2TaPHrskadOWbrvNPrpNtlv62NKSLG1CgJLSOAVKuDEGjG3wbWxL8iXLtm5ZtzQz3/1jRlQIyRpJI81Iv/fz8dDDM7/5/mY+M5be+ur7+/6+P3POISIi3uBLdgEiIjJ7FPoiIh6i0BcR8RCFvoiIhyj0RUQ8RKEvIuIhCn0REQ9R6IuIeIhCX0TEQwLJLmC0kpISt3Tp0mSXISIyp+zZs6fFOVc6UbuUC/2lS5eye/fuZJchIjKnmNmpeNppeEdExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRDUu6MXJk/Ht15Ou62n72magYrEZFh6umLiHiIQl9ExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRDFPoiIh6i0BcR8ZC4Qt/MtpjZUTOrNbP7x3j8JjN7x8xCZnbHiO0bzOxNMztkZvvN7DOJLF5ERCZnwtA3Mz/wIPBJYDVwt5mtHtXsNPBF4NFR23uBLzjn1gBbgO+aWcF0ixYRkamJZ2nlTUCtc64ewMweA7YCh4cbOOdOxh6LjNzROXdsxO1GM2sCSoGOaVcuIiKTFs/wTjlwZsT9hti2STGzTUA6UDfGY/ea2W4z293c3DzZpxYRkTjFE/o2xjY3mRcxs0XAPwJfcs5FRj/unHvIOVfjnKspLS2dzFOLiMgkxBP6DUDliPsVQGO8L2BmecDTwO87596aXHkiIpJI8YT+LmClmS0zs3TgLmBbPE8ea/8U8A/OuX+aepkiIpIIE4a+cy4E3Ac8BxwBnnDOHTKzB8zsdgAz+4iZNQB3An9rZodiu38auAn4opntjX1tmJF3IiIiE4rrwujOuWeAZ0Zt+9aI27uIDvuM3u8HwA+mWaOIiCSIzsgVEfEQhb6IiIco9EVEPEShLyLiIQp9EREPUeiLiHiIQl9ExEMU+iIiHqLQFxHxEIW+iIiHKPRFRDxEoS8i4iEKfRERD1Hoi4h4iEJfRMRD4lpPXyQRnHO8dLSJ4xe6KcpOZ2FeBtcuLyY9oL6HyGzRT5vMinDE8eN3GnjxSBOhSISTLT3826Hz/PidBpxzyS5PxDPU05cZF3GOR3ee4sj5Lm5dVcYtl5dhZrx6rJnnDp1ncUEmn7t2SbLLFPEE9fRlxu1v6OTI+S4+eeVCbr1iAWYGwE0rS1hbns/PDp3n1WPNSa5SxBsU+jKjQuEIzx8+z6L8DDavKPnAY2bGp66uoCQ3yAM/PUQkomEekZmm0JcZ9fbJNtp7h/jEmoX4Yj38kdIDPm6+rJS65h6217YkoUIRb1Hoy4zpHwrz0ntNLC/NZmVZzrjt1lbkU5ob5OHXT8xidSLeFFfom9kWMztqZrVmdv8Yj99kZu+YWcjM7hj12D1mdjz2dU+iCpfU9/aJNnoHw2xZs/D9cfyxBHw+vnDtEl471szxC12zWKGI90wY+mbmBx4EPgmsBu42s9Wjmp0Gvgg8OmrfIuAPgWuATcAfmlnh9MuWVOecY/epNpYWZ1FRmDVh+89eU0V6wMf33zg588WJeFg8Pf1NQK1zrt45Nwg8Bmwd2cA5d9I5tx+IjNr3E8Dzzrk251w78DywJQF1S4rbfaqdlu5BNi4piqt9cU6QX7mqnH9+p4Gu/qEZrk7Eu+IJ/XLgzIj7DbFt8ZjOvjKHPbHrDOkBH1eW58W9z6c2VtA/FOGVo5q+KTJT4gn9sQZj451bF9e+Znavme02s93NzfqBn+u6B0I8feAc68rzCQb8ce93dVUhxdnp/OzwhRmsTsTb4gn9BqByxP0KoDHO549rX+fcQ865GudcTWlpaZxPLanqmf3n6B0Ms3HJ5A7f+H3Gx1Yt4OX3mhgIhWeoOhFviyf0dwErzWyZmaUDdwHb4nz+54DbzKwwdgD3ttg2mcf+ac8ZqkuzqSqa+ADuaLetWUD3QIi36ttmoDIRmTD0nXMh4D6iYX0EeMI5d8jMHjCz2wHM7CNm1gDcCfytmR2K7dsG/AnRXxy7gAdi22SearrYz66T7dy+vvyS0zTHs3lFCVnpfn526PwMVCcicS245px7Bnhm1LZvjbi9i+jQzVj7fg/43jRqlDlkeDx+y5UL2XOqfdL7Z6T5+ehlpTx/+AJ/svVKfL7J/+IQkfHpjFxJqOcOnWdpcRaXLRj/DNyJ3LZmAU1dA+xr6EhgZSICCn1JoM6+Id6sa+UTE5yBO5FbLl+Az+Dl95oSWJ2IgEJfEujl95oIRRy3rVk4refJz0pjbXk+b9a3JqgyERmm0JeEee7Qecpyg1xVWTDt57q2upi9ZzroG9TUTZFE0pWzJCH6h8K8crSZT20sn9LB10d3nv7A/YGhCENhx/987j1WluV+qP1nr6macq0iXqaeviTEjtoW+obC3LZ6ekM7w5YUZ+EzqG/uScjziUiUQl8S4pWjzWSm+blmeXwLrE0kGPBTUZjFiRaFvkgiKfRl2pxzvHy0ic0riie11s5ElpVk09DeqyUZRBJIoS/TVtfcQ0N7Hx+9vCyhz7u8NJuIg1OtvQl9XhEvU+jLtL1yNDqf/ubLErtY3pKibPxm1Dd3J/R5RbxMoS/T9uqxZlaU5VA5hQXWLiU94KOiKJN6jeuLJIxCX6aldzDEzvq2hPfyhy0tzqaxo4+h8OiLsonIVCj0ZVreqG1lMBzh5gSP5w+rKsoi4qChvW9Gnl/EaxT6Mi2vHmsmK93PR5bNzPXuh4eMzrTpYK5IIij0ZVq2H2/muuWJnao5Uk4wQHF2OqcV+iIJodCXKTvd2svJ1l5uXFkyo69TWZTFmbZenIv30swiMh6FvkzZ9troRexvWDmz1zWuKsqiayBER+/QjL6OiBco9GXKXj/ewuL8DKpLs2f0dYavtashHpHpU+jLlIQjjh21LdywsmRaF0yJx4K8DNL9PoW+SAIo9GVK9jd0cLE/xI0zPLQD4PcZ5YWZCn2RBFDoy5RsP96CGWxeMbMHcYdVFWVxrlMnaYlMl0JfpuT14y1cuTifouz0WXk9naQlkhgKfZm07oEQ75xu54YZnqo5UkVhJgBnOxT6ItMRV+ib2RYzO2pmtWZ2/xiPB83s8djjO81saWx7mpk9YmYHzOyImX09seVLMrx9opVQxHHDLA3tAORmpJGfmUZDu8b1RaZjwtA3Mz/wIPBJYDVwt5mtHtXsK0C7c24F8B3g27HtdwJB59xaYCPw1eFfCDJ37ahtJT3gY+OSmVl6YTzlBZmc1fCOyLTE09PfBNQ65+qdc4PAY8DWUW22Ao/Ebj8J3GrReXwOyDazAJAJDAIXE1K5JM2O2hZqlhSSkTYzSy+Mp6Iwk9aeQfoGdSUtkamKJ/TLgTMj7jfEto3ZxjkXAjqBYqK/AHqAc8Bp4C+cc23TrFmSqKV7gPfOd83arJ2RyjWuLzJtgTjajHXmzehFUMZrswkIA4uBQmC7mb3gnKv/wM5m9wL3AlRVVcVRkiTDoztPs7+hA4Du/hCP7jw9q69fXhALfY3ri0xZPD39BqByxP0KoHG8NrGhnHygDfgs8G/OuSHnXBOwA6gZ/QLOuYecczXOuZrS0pk/2Uemrq65m2DAx+JYAM+mrPQARdnpNKinLzJl8YT+LmClmS0zs3TgLmDbqDbbgHtit+8AXnLRJRFPA7dYVDZwLfBeYkqXZKhr7mF5STZ+38wuvTCeisJMzdUXmYYJQz82Rn8f8BxwBHjCOXfIzB4ws9tjzR4Gis2sFvhtYHha54NADnCQ6C+P7zvn9if4Pcgsae8ZpK1nkOqynKTVUF6QSWffEM1dA0mrQWQui2dMH+fcM8Azo7Z9a8TtfqLTM0fv1z3Wdpmb6pq7AaguTV7oVxRGV9w8cLaDW65YkLQ6ROYqnZErcatt7iY3I0BZbjBpNSwuyMCAfWc6k1aDyFym0Je4OOeoa+6hujRnxpdSvpRgwE9pbpADZxX6IlOh0Je4HL3QRc9AaMYvmBKPisJM9jd06PKJIlOg0Je47KhtBZI7nj+svDCLlu5BznX2J7sUkTlHoS9xeaO2heLsdAqyZmcp5UupiJ0jMHyimIjET6EvEwqFI+w80ZYSvXyAhfkZBHzGvgaN64tMlkJfJrSvoZPugVBS5+ePlOb3cfnCXA4o9EUmTaEvE3qjtgWA5SXJP4g7bF1FgQ7mikyBQl8mtKOuhdWL8sgOxnUu36xYX5HPxf4QJ1u1+JrIZCj05ZL6BsO8c6qDzSuKk13KB6ytyAd0MFdkshT6ckm7T7UxGI5wfRLWz7+UyxbkEgz42K9xfZFJUejLJe2obSXgMzYtLUp2KR+Q5vexZnGeDuaKTJJCXy7pjboWrqoqSKnx/GHrKgo42NhJOKKDuSLxUujLuDp7hzhwtpPrq1NraGfYuop8egfD1DZ1J7sUkTlDoS/jerO+FefghpWpGvoFgA7mikyGQl/G9UZdC1npftbHwjXVLC/JJicY0MFckUlQ6Mu4Xq9tYdOyItIDqflt4vMZV5bnqacvMgmp+dMsSXe+s5/65h42p+h4/rD1FQUcOdfFYCiS7FJE5gSFvoxpR2zphetT7KSs0dZW5DMYjnD0fFeySxGZExT6MqYddS0UZaezamFesku5pOHjDfs0xCMSF4W+fIhzjjdqW7lueTE+X/IujRiPisJMCrPSdJKWSJwU+vIh9S09nL/Yn/JDOwBmxtqKAvX0ReKk0JcPGV5KOdUP4g5bX5HP8aZu+gbDyS5FJOXFFfpmtsXMjppZrZndP8bjQTN7PPb4TjNbOuKxdWb2ppkdMrMDZpaRuPJlJuyobaW8IJMlxVnJLiUua8vzCUcch89piEdkIhMuqGJmfuBB4ONAA7DLzLY55w6PaPYVoN05t8LM7gK+DXzGzALAD4DPO+f2mVkxMJTwdyFT8ujO0x/aFnGOV481s3pRHj96+0wSqpq89ZWxg7lnOtm4JLUWhhNJNfH09DcBtc65eufcIPAYsHVUm63AI7HbTwK3mpkBtwH7nXP7AJxzrc45/Q2ews519NM3FKa6LHWukjWRBXkZLMgLcuCsevoiE4kn9MuBkV2+hti2Mds450JAJ1AMXAY4M3vOzN4xs/861guY2b1mttvMdjc3N0/2PUgC1TVHFy9bniIXQY/X2nIdzBWJRzyhP9acvdFr2Y7XJgDcAHwu9u8vm9mtH2ro3EPOuRrnXE1paWkcJclMqWvupiw3SF5GWrJLmZT1FfnUN/dwsV+jhyKXEk/oNwCVI+5XAI3jtYmN4+cDbbHtrzrnWpxzvcAzwNXTLVpmRigc4WRrD9VzrJcPsC42rn9QQzwilxRP6O8CVprZMjNLB+4Cto1qsw24J3b7DuAl55wDngPWmVlW7JfBR4HDSEo63d7LUNjNydBfWz58zVyFvsilTDh7xzkXMrP7iAa4H/iec+6QmT0A7HbObQMeBv7RzGqJ9vDviu3bbmZ/SfQXhwOecc49PUPvRaaprqkHA5aVzJ2DuMOKstOpLMrUmbkiE4jrGnjOuWeIDs2M3PatEbf7gTvH2fcHRKdtSoqra+6mojCTzHR/skuZknU6mCsyIZ2RKwD0D4VpaO+dk0M7w9ZV5NPQ3kdr90CySxFJWQp9AeBkSw8RB9Vlczn0owdzNV9fZHwKfQGiQzsBn1FVNDeWXhjLleV5mOlgrsilKPQFgLrmHpYUZ5Hmn7vfErkZaSwvydblE0UuYe7+hEvCdA+EOH+xf06P5w9bX1nA3jMdRGcMi8hoCn15f+mF+RD6G5cU0tI9yKnW3mSXIpKSFPpCXVM3GWk+ygszk13KtH1kaXSVzd2n2pNciUhqUugLdc3dLCvJwWepfWnEeKwozSEvI8Duk23JLkUkJSn0Pa6tZ5D23iGqS+feWbhj8fmMjUsK1dMXGUdcZ+TK/DVXx/PHugDMsDS/j9qmbv5+ez1Z6dFv8c9eUzVbpYmkNPX0Pa6uuZvcjABlucFkl5IwVbHLPJ7WwVyRD1Hoe5hzjrrm6FLKNg/G84dVFGThN+OkQl/kQxT6Hnbh4gA9A6F5M54/LD3gY3FBBqfaepJdikjKUeh72Fwdz4/HkuJszrb3EQpHkl2KSEpR6HtYXXM3xdnpFGSlJ7uUhFtSnEUo4jjb0ZfsUkRSikLfo0LhCCdaeub0qpqXsqw4G+Pf/5oRkSiFvkfta+hkIBSZl0M7AFnBAIvyM6hr1ri+yEgKfY/aUduCAdVz8NKI8aouzeF0Wy+DIY3riwxT6HvUjtoWFuVnkBWcv+fnLS/NIRxxnGpVb19kmELfg/oGw7x7umPeDu0MW1qShc/QEI/ICAp9D9p1so3BcGTeHsQdFgz4qSzK0sFckREU+h60o66FNL+xtHj+jucPqy7NobGjj87eoWSXIpISFPoe9EZtK1dVFpIemP///dWlOTjgzfrWZJcikhLi+qk3sy1mdtTMas3s/jEeD5rZ47HHd5rZ0lGPV5lZt5n9bmLKlqnq6B3kYGMn168oTnYps6KyKJM0v7GjtiXZpYikhAlD38z8wIPAJ4HVwN1mtnpUs68A7c65FcB3gG+Pevw7wLPTL1em6636VpyDzStKkl3KrAj4fKwozeHFIxd03VwR4uvpbwJqnXP1zrlB4DFg66g2W4FHYrefBG612LKNZvZLQD1wKDEly3TsqG0lK93P+oqCZJcya1YtyqOxs5/D5y4muxSRpIsn9MuBMyPuN8S2jdnGORcCOoFiM8sG/hvwx5d6ATO718x2m9nu5ubmeGuXKdhR18KmZUWeGM8fdvnCXMzg+cMXkl2KSNLF85M/1kLro/9OHq/NHwPfcc5dcs6cc+4h51yNc66mtLQ0jpJkKs539lPf3MPmam8M7QzLzUjj6qpCXjii0BeJJ/QbgMoR9yuAxvHamFkAyAfagGuA/2lmJ4GvAd8ws/umWbNM0fDBTK8cxB3pY6sWcPDsRRq16qZ4XDyhvwtYaWbLzCwduAvYNqrNNuCe2O07gJdc1I3OuaXOuaXAd4E/c879dYJql0naUddCUXY6qxbmJbuUWffx1QsA1NsXz5sw9GNj9PcBzwFHgCecc4fM7AEzuz3W7GGiY/i1wG8DH5rWKcnlnOON2lauW16Mzzd/Lo0Yr+rSbJaVZGtcXzwvrtW2nHPPAM+M2vatEbf7gTsneI4/mkJ9kiD1LT2cv9jvyaEdADPj46sX8P0dJ+joHZyXF44RiYd3pnB43OvHo+P5N67w7oHyrRsWMxR2bNs3+pCUiHco9D1i+/FmqoqyqCrOSnYpSbNmcT6rFuXx5J6GZJcikjQKfQ8YCkd4q76NG1Z6a6rmWO7YWMH+hk6Onu9KdikiSaHQ94C9ZzroHghxk0KfX9qwmIDPeHLPmYkbi8xDCn0P2H68BZ/BdR47KWssxTlBbrmijKfebWQorMsoivco9D1g+/Fm1lUUkJ+ZluxSUsKdNZW0dA/w8ntNyS5FZNYp9Oe5zr4h9p3p4EYN7bzv5stLWZyfwUOv1WvlTfEchf4892ZdKxEHN6707lTN0dL8Pr760Wp2n2pn54m2ZJcjMqsU+vPc67XNZKf7uarKO0spx+MzH6mkJCfIX79Um+xSRGaVQn+ee/14C9cuLybNr//qkTLS/Pzajct4vbaFd0+3J7sckVmjJJjHzrT1crK1V/Pzx/G5a5dQkJXGd184rrF98QyF/jy2fXjpBY3njyknGODXb67m1WPNPHvwfLLLEZkVcS24JnPDoztPj7p/ivzMNHbWt/K2DliO6cubl/GTvY186yeH2FxdQn5WdFrr6M9yIp+9pmomyhNJOPX056mIc9Q197CiNIfY5YplDAG/j29/ah3tvYP82TNHkl2OyIxT6M9TZ9v76BsKs2JBTrJLSXlXlufzazcu5/HdZ3j2wLlklyMyozS8M0/VNkcvS1xdqtCPx9c+tpK3T7Tytcf3sqggM9nliMwY9fTnqdqmbhbnZ5AT1O/1eGSk+XnoCzWU5QX51Ud2094zmOySRGaEQn8eGhgKc7q1lxVl6uVPRklOkO9/8SMMhsL8/ev1tHYPJLskkYRT6M9Dx5u6CTvH5R68APp0rSjL5Qe/eg0DoQgPvVbP+c7+ZJckklAK/Xno6IUuMtJ8VBV59ypZ07GuooBfu3E5ZvDQ9jpOtPQkuySRhFHozzMR5zh6vouVZbn4fZqqOVUL8jL46k3V5AQDfH/HCQ6e7Ux2SSIJodCfZxo7+ugeCHHFwtxklzLnFWan89WbqllckMmP3j7Nm3UtyS5JZNriCn0z22JmR82s1szuH+PxoJk9Hnt8p5ktjW3/uJntMbMDsX9vSWz5MtrR810YsHKBQj8RsoMBvrx5GVcsyuOn+8/xbwfPE9E6PTKHTTifz8z8wIPAx4EGYJeZbXPOHR7R7CtAu3NuhZndBXwb+AzQAvyic67RzK4EngPKE/0m5N8dvdBFZVGWpmqOMtllFUZKD/j43DVV/HRfI68db6Z7IMSvXF2OT2c6yxwUT09/E1DrnKt3zg0CjwFbR7XZCjwSu/0kcKuZmXPuXedcY2z7ISDDzIKJKFw+rKt/iIb2Pi7X0E7C+cy4ff1ibr2ijHdOt7NtX6NW5pQ5KZ7uYDlwZsT9BuCa8do450Jm1gkUE+3pD/sU8K5zTpOfZ8jR810AXK6hnRlhZtxyRRlDYcdrx5sJBnxsWbNQaxvJnBJP6I/1HT26i3PJNma2huiQz21jvoDZvcC9AFVVWq1wqg41XqQwK41F+RnJLmXeMjM+sWYBA6Ew24+3kJ+ZxvXVul6BzB3xDO80AJUj7lcAjeO1MbMAkA+0xe5XAE8BX3DO1Y31As65h5xzNc65mtJSrf0+FRf7h6ht6mbN4nz1PGeYmfGL6xezamEuT+8/x/ELXckuSSRu8YT+LmClmS0zs3TgLmDbqDbbgHtit+8AXnLOOTMrAJ4Gvu6c25GoouXDXjxygbBzXLlYZ+HOBp8Zn66pZEFeBj/adZq62AJ3IqluwtB3zoWA+4jOvDkCPOGcO2RmD5jZ7bFmDwPFZlYL/DYwPK3zPmAF8Admtjf2VZbwdyE8e+A8eRkBKnQW7qwJpvn5/LVL8Jvxn3+wh97BULJLEpmQpdoMhJqaGrd79+5klzGn9AyEuPpPnueqqkJuX7842eV4Tm1TN99/4wSfurqCv7hzfbLLEY8ysz3OuZqJ2umM3HnglaPNDIQiGtpJkhVlOfyXW1by5J4G/mn3mYl3EEkihf488MzBcxRnp7O0JDvZpXjWb926kuuri/mDnxx8f+qsSCpS6M9xF/uHeOHwBT65dqHOEE0iv8/47l0byAmm8es/3EPPgMb3JTUp9Oe4p/efYyAU4Y6NlRM3lhlVlpvBX929gRMtPfz+vxzUGbuSkhT6c9yTexpYUZbD+or8ZJciwPXVJfzWrZfx1LtneXyXxvcl9Sj057ATLT3sOdXOp66u0AlZKeS+W1Zww4oS/nDbIY6cu5jsckQ+QKE/h/14TwM+g1++SguXppLh8f38zDR+44fv0K3xfUkhCv05KhJx/PM7Ddy4spSFWmsn5ZTkBPmru6/iZGsP/+3H+zW+LylDoT9HvXKsicbOfu7YWJHsUmQc1y4v5r9uuYKn95/jr16sTXY5IkB8q2xKCnrotXoW5mWw5cqFyS5FLuGrNy3n2IUuvvPCMarLsvmFdTpjWpJLoT8HHTzbyVv1bXz9k1eQ5tcfa6ngUlfm2lBRwJ6T7Xztsb3sPdPB8pIcPntN/EuIT/aqX5N57tl4fkktSow56O+215MTDHC3fvjmhIDfx+euXUJRdjqPvHGSEy09yS5JPEyhP8c0dvTxr/vP8ZmPVJKXkZbsciROOcEAX7lhGQWZ0eB/q7412SWJR2l4Z4556LV6AL60eWlyC5FJy81I4ys3LuPh7Sf4j3+/k9//+VXcc/3SaZ1j4ZyjZzBMa/cAnX1DhCIOn0FGmp+8zAB5GWnkZaaRmxG9nZXu1zkdHqfQn0Nqm7r5wVun+HRNJRWFWjd/LsrLSOM/31zNG3Wt/NFPD7P7VDvf/PlVLMrPjPs5ugdC1DZ1cfxCN7XN3XT1f/A8gCf3NIy7r99n5GUEyI39AnAO2noGCTtHxDkMSA/4CAb8FGWnU5obpLIwi6UlWQR8GhiYDxT6c8ifPn2YzDQ/v3PbZckuRaYhI83PQ5/fyN+8UstfvVjL84cv8MXrl3JnTQXVpTkf6omHwhFOtfVGQ76pi8bOfgAy0/ysKMuhqiiL4px0CrLSSff7+JWry+kfCnOxP8TFviG6+kNc7B/iYt8QF/tj9/uG6BkM4zcjPeDD7zN8Bs7BYDhC31CYEy097D3TAUAw4OPyhblcu6wY59yc/WtBB60V+nPGK0ebePloM9/4uSsoyQkmuxyZJp/PuO+WlWzdUM53XjjGQ9vr+dvYNNwrFuUSDPgIR+BESzcnWnqIOPAZLCnO5rbVC1hRlsPigswxV1ZdXBD/Xw1w6SAcGApT39LDkXMXOdR4kf0Nnbx1opXfvGUlt64qm7Ph72UK/TmgbzDMA/96mKXFWXzx+mXJLkcSqLIoi7/89AZ+57bLee1YM68fb+FMey+DoQjORS/QUlmYRWVRFstLsgmm+We1vmCan1WL8li1KI9fWBfh3TPt7DvTwa/+w26uXV7EN39uNWu12N+cotBPcc45vvHUAU609PAPX95EekDjqvNReUEmd2+q4u5NHx5OmOyQxExJD/i4Zlkxf3Hneh57+zTffeE4tz/4OndvquL3brucwuz0ZJcocVCCpLgf7jzNU++e5Wu3XsaNK0uTXY4IaX4fn79uKS//3s18efMyHt91hv/wv17h0Z2nCUe0xlCqU08/hb1R28IDPz3MzZeX8l9uWZFb5v+fAAAKwElEQVTsckQ+IC8jjT/4hdV8uqaSP/jJQb7x1AEe23WaB7ZeyYbKgmSXNynOOZq6BjjZ2kNr9yCdfUP0DYV55WgTOcEAy0qyWVOex4bKQorm+F80lmqr/9XU1Ljdu3cnu4y4TeZP78nMBNi2r5HffWIfS0uyeOKr11GQNfE3WqoMA4j3OOfY19DJswfP0d0fomZpIbetXkh2MJBSM2BG/oxEnONUay97z3RwuLGTnsEwAGl+e/+chuxggIt9Q+/PmDKDjVWFfGz1An5+7SIqi1Jn6rSZ7XHO1UzUTj39FNM/FOb/vlrHd184zqZlRfzd52vIz9KZt5LazIwNlQVcsTCXl95r4o26Fg6c7WRzdQk/v3ZRSn0Pn+/sZ++ZDvY3dNDRN0Sa31i1KI+VZTksK8mhMCvt/VlJw7+wuvqHOHKuizfqWnjhyAX+/Nn3+PNn36NmSSFbryrnF9YumjPHNOLq6ZvZFuB/A37g751zfz7q8SDwD8BGoBX4jHPuZOyxrwNfAcLAbzrnnrvUa6VaT7+1e4CjF2InwjR109TVT2v3ID2DYSIRR0ffIMGAn8w0P3mZaRRnp1Ock05xdpCi7PQPHHi9VI+nfyjMswfP8RfPHeNsRx9bNyzm259aR8YkZmuopy+p4sLFfn52+AJHzl0kJxjgjo0VfLqmktWL85JSz+nWXp4+cI5H3jjJ+Yv9+AxWluWyvrKAVYtyCQbG/jkb72f2TFsv2/Y18i/vnuV4UzcBn/HRy0rZelU5H1+1gMz02Z1lBfH39CcMfTPzA8eAjwMNwC7gbufc4RFtfh1Y55z7T2Z2F/DLzrnPmNlq4EfAJmAx8AJwmXMuPN7rJSv0O3oHOXahm2MXujh+oev9oG/tGXy/TW4wwML8DEpygmQHA/h9cKatj4FQmL6hMJ29Q+//iThyn8LsdIqy07npslIqCjIJpvlI8/vo7BvifGc/hxo7eb22hf6hCGsW5/HNn1vF9StKJv0eFPqSas519nG6rZdnD5xnMBxh1aI8br2ijJsvL2VtRf64YTtdXf1D7DnVzs4Tbbx0pImjF7oAqCrKYn1lAWvL88kJTjzQMdHQlHOOw+cu8pO9jWzb28j5i/1kp/vZvKKEG1eWcO3yYpaX5uD3zfz5DIkM/euAP3LOfSJ2/+sAzrn/MaLNc7E2b5pZADgPlAL3j2w7st14rzfV0HfOEXEwFI4QjjhCEUcoHGEo7OgeGKKzL0RX7GzEtp5Bznb00dDeS0N7Hw3tfbSNCPfsdD8rF+Ry2YIcLluQ+/7Xgrzgh05GGR20/UNhWnsGae0eoK1nkLaeQVp7BmnvGaSzf4jRH7cZVBZmccsVZdy6qozN1SX4pvgNotCXVPTZa6po7xnkX/ae5dkD59lzup1wxJHmNy5fmMtlZblUFmVRXpBJflYaeRnRtYLyM9PISPNjBkZ0CMmAgVCE7oEQPQMhugdCdPWHaOrqp7Gjn5MtPRy90MXJ1h6cg4DPuHpJIbetXsAn1ixk+/GWSdcer3DE8faJNn66v5FXjzZztqMPiObJ6sV5LC/Joao4i7LcIAVZ6eRnplGQlRZ9nwE/aQEj3e8jMMXl0hM5pl8OnBlxvwG4Zrw2zrmQmXUCxbHtb43ad0Yu6NraM0jNf38h7vbBgI/ywkwqCrO4sjyfJUVZ0XBfmMvi/Iwpn2mYkeanvCCT8jHOirxjYwUXLvYzGI4wGIqQl5lGWW5Qa+LLvFeYnc6XNi/jS5uX0dk7xJv1Lexr6ORAQydv1bfy1N6zH+oQTVaa36gszOKKhbls3bCYmiVFXL2kgKz02Tl06fcZ11UXc111dKmKk6297DnVzoGGDg41XuTF95po6R645HOsryzgJ7+xeUbrjOfTGCv9Rv/3jNcmnn0xs3uBe2N3u83saBx1Tdux2XiRET4XX7MSYHLdkflHn8E8+gzi/L4fy6Q/g1rg5am/3odMo/YpOQXYfR/YNJnPYEk8jeIJ/QagcsT9CqBxnDYNseGdfKAtzn1xzj0EPBRPwfOdme2O50+0+UyfgT4D0GcAM/MZxDOusAtYaWbLzCwduAvYNqrNNuCe2O07gJdc9GDBNuAuMwua2TJgJfB2YkoXEZHJmrCnHxujvw94juiUze855w6Z2QPAbufcNuBh4B/NrJZoD/+u2L6HzOwJ4DAQAn7jUjN3RERkZqXcGbleZ2b3xoa7PEufgT4D0GcAM/MZKPRFRDxEcwVFRDxEoZ8CzOxOMztkZhEzqxn12NfNrNbMjprZJ5JV42wwsy2x91lrZvcnu57ZYmbfM7MmMzs4YluRmT1vZsdj/xYms8aZZmaVZvaymR2J/Sz8Vmy7Zz4HM8sws7fNbF/sM/jj2PZlZrYz9hk8HptQM2UK/dRwEPgV4LWRG2PLWNwFrAG2AH8TWxZj3om9rweBTwKrgbtj798L/h/R/9+R7gdedM6tBF6M3Z/PQsDvOOdWAdcCvxH7//fS5zAA3OKcWw9sALaY2bXAt4HvxD6DdqJrmU2ZQj8FOOeOOOfGOiFtK/CYc27AOXeC6Lknm2a3ulmzCah1ztU75waBx4i+/3nPOfca0VlvI20FHondfgT4pVktapY55845596J3e4CjhA9e98zn4OL6o7dTYt9OeAW4MnY9ml/Bgr91DbWEhgzsoxFCvDSe43HAufcOYgGIlCW5HpmjZktBa4CduKxz8HM/Ga2F2gCngfqgA7nXCjWZNo/F1pPf5aY2QvAwjEe+qZz7ifj7TbGtvk63cpL71XGYWY5wI+BrznnLk51Day5KnYe0wYzKwCeAlaN1Ww6r6HQnyXOuY9NYbe4lrGYJ7z0XuNxwcwWOefOmdkioj2/ec3M0ogG/g+dc/8c2+y5zwHAOddhZq8QPb5RYGaBWG9/2j8XGt5JbV5axiKe5T68ZOTSJvcA4/01OC9YtEv/MHDEOfeXIx7yzOdgZqWxHj5mlgl8jOixjZeJLm8DCfgMdHJWCjCzXwb+D9FrEHQAe0dcv+CbwJeJzm74mnPu2aQVOsPM7OeA7/Lvy338aZJLmhVm9iPgZqIrKl4A/hD4F+AJoAo4DdzpnBt9sHfeMLMbgO3AASAS2/wNouP6nvgczGwd0QO1fqId8ieccw+Y2XKiExuKgHeB/+icu/QazZd6HYW+iIh3aHhHRMRDFPoiIh6i0BcR8RCFvoiIhyj0RUQ8RKEvnmdmYTPba2YHzeyfzCxrnHbPDM+jFpmrNGVTPM/Mup1zObHbPwT2jDxBKHbikDnnIuM9h8hcoZ6+yAdtB1aY2dLY2u5/A7wDVJrZSTMrATCzL5jZ/tja5/8Y21ZqZj82s12xr81JfB8iY9LaOyIxZhYgup7/v8U2XQ58yTn367HHh9utAb4JbHbOtZhZUaz9/ya67vnrZlYFPMfYC2aJJI1CXwQyY8vZQrSn/zCwGDjlnHtrjPa3AE8651oARiwL8DFg9YiVIfPMLDe2PrxISlDoi0Cfc27DyA2x4O4Zp70x9vK2PuA651xfYssTSRyN6YtM3ovAp82sGKLXcY1t/xlw33AjM9swxr4iSaXQF5kk59wh4E+BV81sHzA80+c3gZrYAd7DwH9KVo0i49GUTRERD1FPX0TEQxT6IiIeotAXEfEQhb6IiIco9EVEPEShLyLiIQp9EREPUeiLiHjI/wfmNDXzkbOOZQAAAABJRU5ErkJggg==\n", 698 | "text/plain": [ 699 | "
" 700 | ] 701 | }, 702 | "metadata": { 703 | "needs_background": "light" 704 | }, 705 | "output_type": "display_data" 706 | } 707 | ], 708 | "source": [ 709 | "import seaborn as sns\n", 710 | "\n", 711 | "sns.distplot(y_test-prediction_lasso)" 712 | ] 713 | }, 714 | { 715 | "cell_type": "code", 716 | "execution_count": 29, 717 | "metadata": {}, 718 | "outputs": [ 719 | { 720 | "data": { 721 | "text/plain": [ 722 | "" 723 | ] 724 | }, 725 | "execution_count": 29, 726 | "metadata": {}, 727 | "output_type": "execute_result" 728 | }, 729 | { 730 | "data": { 731 | "image/png": "iVBORw0KGgoAAAANSUhEUgAAAX0AAAEKCAYAAAD+XoUoAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADl0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uIDMuMC4yLCBodHRwOi8vbWF0cGxvdGxpYi5vcmcvOIA7rQAAIABJREFUeJzt3Xt0nHd95/H3d2Z0v98lWzfLl9iOkzqJbOdCQkgCJNBiaJNiwpbAwklZyLbdtmc3bHeBpmy37OlC2W16TtMNJaVNQghLMNsEkwskkATbcmwndnyTZVuSZet+v4/mt3/MyCiKZI2kkWY083md4+OZZ36j+c7Y+ujR9/k9v8ecc4iISGLwRLsAERFZPgp9EZEEotAXEUkgCn0RkQSi0BcRSSAKfRGRBKLQFxFJIAp9EZEEotAXEUkgvmgXMF1hYaGrrq6OdhkiIivKgQMHOpxzRXONi7nQr66upq6uLtpliIisKGZ2LpxxYbV3zOxOMzthZvVm9uAMj99iZm+Ymd/M7p6yfauZvW5mR83sTTP7ePhvQUREIm3O0DczL/AwcBewGfiEmW2eNqwR+DTw+LTtQ8CnnHNXAncCf2NmuYstWkREFiac9s52oN451wBgZk8CO4G3Jwc4586GHgtMfaJz7uSU2y1m1gYUAT2LrlxEROYtnPbOaqBpyv3m0LZ5MbPtQDJwer7PFRGRyAgn9G2GbfNahN/MyoDvAp9xzgVmePx+M6szs7r29vb5fGkREZmHcEK/GaiYcr8caAn3BcwsG/hX4L8453410xjn3CPOuVrnXG1R0ZwzjkREZIHCCf39wHozW2NmycAuYHc4Xzw0/ofAPznnvr/wMkVEJBLmDH3nnB94ANgDHAOecs4dNbOHzOwjAGa2zcyagXuAvzezo6Gn/y5wC/BpMzsU+rN1Sd6JiIjMyWLtGrm1tbVOJ2eJiMyPmR1wztXONS7mzsiVleHxvY3zfs69OyqXoBIRmQ8tuCYikkAU+iIiCUShLyKSQBT6IiIJRKEvIpJAFPoiIglEoS8ikkAU+iIiCUShLyKSQBT6IiIJRKEvIpJAFPoiIglEoS8ikkAU+iIiCUShLyKSQBT6IiIJRKEvS6ZnaIxX6zvoGx6PdikiEqIrZ8mS6B0e5x9+0UD30DjPHbnAltU53LaxmNKc1GiXJpLQtKcvEdc/Ms6jv2xgaGyCf7OjihvXFnLsQh9/9sO3ol2aSMLTnr5ElHOOx/c20jfs5zM3VVNVkMHmVdlkpPjYc/Qiexs62VFTEO0yRRKW9vQlopq7hznXNcQHt5RSVZBxafuNawsozU7lr35yHOdcFCsUSWwKfYmo1xs6SfF5uLYy9x3bk7we/sP713OwsYc9R1ujVJ2IKPQlYvpHxnmruZdrq/JI8Xnf9fjvXFvOuuJM/uaFk1GoTkRAoS8RtP9sNxPOcf2amXv2Pq+H+26o4vjFfk619i9zdSICCn2JkImAY9+ZTtYXZ1KUlTLruA9eWYoZPPvWxWWsTkQmhRX6ZnanmZ0ws3oze3CGx28xszfMzG9md0977D4zOxX6c1+kCpfYcrp9gL4RPztm2cufVJydSm1VHs8dubBMlYnIVHOGvpl5gYeBu4DNwCfMbPO0YY3Ap4HHpz03H/gKsAPYDnzFzPIWX7bEmuMX+0nyGutLMucce9eWMo5f7KehfWAZKhORqcLZ098O1DvnGpxzY8CTwM6pA5xzZ51zbwKBac/9IPC8c67LOdcNPA/cGYG6JYY45zhxsY+1RZkkeef+L3XnllIAnjuiFo/Icgsn9FcDTVPuN4e2hWMxz5UVor1/lO6hca4ozQpr/KrcNK6pzFWLRyQKwgl9m2FbuGfXhPVcM7vfzOrMrK69vT3MLy2x4kRoJs4VJeGFPsBdW0o5cr6Pxs6hpSpLRGYQzjIMzUDFlPvlQEuYX78ZuHXac38+fZBz7hHgEYDa2lqdrrnCHL/YT2l2KrnpyZcd9/jexku3R8aDncD/+fyJWQ/+3rujMnJFiggQ3p7+fmC9ma0xs2RgF7A7zK+/B/iAmeWFDuB+ILRN4sTI+ATnOgfDbu1MKshIJictidPtg0tUmYjMZM7Qd875gQcIhvUx4Cnn3FEze8jMPgJgZtvMrBm4B/h7Mzsaem4X8BcEf3DsBx4KbZM4captgICbX2sHwMyoKcygoX2AgNbiEVk2Ya2y6Zx7Fnh22rYvT7m9n2DrZqbnfhv49iJqlBh2srWftCQvFfnp837u2qJMDjb10NY3qnX2RZaJzsiVRTnTMciawgy8npmO2V9eTVFwFc7Tmq8vsmwU+rJgvcPjdA2OUV2YMffgGeSmJ5OfkayTtESWkUJfFuxsZ/Ag7JqChYU+wNqiDM50DqqvL7JMFPqyYGc7BknxeRbVj68pymRkPEBLz3AEKxOR2Sj0ZcHOdAxSVZC+oH7+pJpQa6hBUzdFloVCXxZkcNRPW/8o1Yto7QBkpSZRnJVCQ4f6+iLLQaEvC3Jusp+/wIO4U1UXZNDYNaS+vsgyUOjLgpzpGMTnMVbnpi36a1UVpDMyHqCtbzQClYnI5Sj0ZUHOdg5RkZ+OL4yllOdSFWoRTc4GEpGlo9CXeRsc9dPSM7zofv6kvPQkslN9l1pGIrJ0FPoyb2829+KAygUsvTATM6OqIINzXVpmWWSpKfRl3g42dQNQkbf4fv6kqoJ0eobG6Rkai9jXFJF3U+jLvB1s7KEwM5n0lLDW6wvLZF9fe/siS0uhL/PinONgYw8VeZFp7UwqzU4l2edRX19kiSn0ZV7O9wzTMTC6oKWUL8frMSrz0zmnyyeKLCmFvszLwcYegIiHPkBVfjoXe0cYGZ+I+NcWkSCFvszLwcae4CJr2ZG/6ElVQQYOaFRfX2TJKPRlXg41dXN1ec6iFlmbTUV+Gh5DfX2RJaTQl7CN+ic40tLHNZV5S/L1U3xeynLSOKu+vsiSUehL2I5d6GfMH+Caitwle42qgnSau4eYCGjxNZGloNCXsB1sDJ6UtbVyKUM/g/EJp4uqiCwRhb6E7VBTD6XZqZTlRO5M3OmqCoKzgtTXF1kaCn0J28HGHq5Zwr18gOzUJPIzktXXF1kiCn0JS+fAKI1dQ2xdwn7+pOqCdM51DuJ0URWRiFPoS1gONQVPylqqmTtTVeVnMDg2wZkOtXhEIk2hL2E52NiD12NctTpnyV9rsq9fd657yV9LJNEo9CUsB5u62VSWRVqyd8lfqygrhfRkL3Vnu5b8tUQSTVihb2Z3mtkJM6s3swdneDzFzL4XenyvmVWHtieZ2WNm9paZHTOzL0W2fFkOEwHH4abeZennQ+iiKvnp1J3Vnr5IpM0Z+mbmBR4G7gI2A58ws83Thn0W6HbOrQO+CXw9tP0eIMU5dxVwHfD7kz8QZOU43T7AwKifayqWvp8/qaogg4aOQToGdLF0kUgKZ09/O1DvnGtwzo0BTwI7p43ZCTwWuv00cLuZGeCADDPzAWnAGNAXkcpl2UyelLXU0zWnutTX196+SESFE/qrgaYp95tD22Yc45zzA71AAcEfAIPABaAR+Gvn3LsatWZ2v5nVmVlde3v7vN+ELK2DjT3kpCWxpjAyF0IPx+rcNJJ9Hg6cU19fJJLCCf2ZllOcPoF6tjHbgQlgFbAG+BMzq3nXQOcecc7VOudqi4qKwihJltPBxh62VuQS/OVtefi8HraW57Jfe/oiERVO6DcDFVPulwMts40JtXJygC7gXuAnzrlx51wb8CpQu9iiZfkMjPo52da/rK2dSddV53HkfC/DY7qoikikhBP6+4H1ZrbGzJKBXcDuaWN2A/eFbt8NvOSCp1M2ArdZUAZwPXA8MqXLcnizqQfnluekrOm2VefhD7hLJ4aJyOL55hrgnPOb2QPAHsALfNs5d9TMHgLqnHO7gUeB75pZPcE9/F2hpz8M/CNwhGAL6B+dc28uwfuQRXp8b+OM239+og2A+tYBzncv78qX11XmA1B3tosb1hYs62uLxKs5Qx/AOfcs8Oy0bV+ecnuE4PTM6c8bmGm7rBxNXUMUZqYsy0lZ0+WkJ3FFSRb7dWauSMTojFyZlXOOxu5hKvOXbinluWxbk8eBs12MTwSiVoNIPFHoy6y6h8YZHPVTkZ8etRpuXFvI4NgEbzarry8SCQp9mVVTV3BN+4q86IX+DTUFmMGr9Z1Rq0Eknij0ZVZN3UMkeY2S7NSo1ZCXkczmsmxere+IWg0i8UShL7Nq6hpidW46Xs/ynZQ1k5vWFXKwsUfz9UUiQKEvM/JPBGjpHaEiigdxJ924toCxiQB1WpJBZNEU+jKjlt4RJgIuqv38SdvX5OPzmPr6IhGg0JcZNYYO4lYWRD/005N9XFOZy2un1dcXWSyFvsyosXOQvPQkslOTol0KEJy6+db5XnqHxqNdisiKptCXd3HO0dg1RGUU5+dP9571hTiH9vZFFkmhL+/SOzxO34g/pkL/mopcslJ9/PyErrcgshgKfXmXc5f6+ct30ZS5+Lwebl5fyMsn2wku4CoiC6HQl3dp7AyelFUaxZOyZvLeDUVc7BvhRGt/tEsRWbEU+vIujV1DVORF/6Ss6d67oRhALR6RRVDoyzuM+QNc6B2OqX7+pNKcVDaWZl1a419E5k+hL+/Q3DNEwMXG/PyZ3HpFMXVnu+kf0dRNkYVQ6Ms7NHWGDuLGwJm4M3nvhiL8Aaezc0UWSKEv73AudKWs9JSwLqq27Gqr88hM8fHySbV4RBZCoS+XTJ6UVRWD/fxJSaGpmy8eayMQ0NRNkflS6MslnYNjDI1NxGw/f9Idm0po6x/lSEtvtEsRWXEU+nJJ42Q/P4b39AHet7EYj8ELb7dGuxSRFUehL5ec6xoiNclDUVZKtEu5rPyMZK6ryuOFY+rri8yXQl8uaQotsuax2DopayZ3bCrh7Qt9nO8ZjnYpIitKbE7RkGU3Mj5Ba98IV64ujnYplzy+t3HWx4bHg5dO/Ppzx7m+pgCAe3dULktdIiuZ9vQFCO7lO6AqP3YWWbucoswUCjKSOXahL9qliKwoCn0BguvtGFCeF/1r4obDzNhUlk1DxyCj47pguki4wgp9M7vTzE6YWb2ZPTjD4ylm9r3Q43vNrHrKY1eb2etmdtTM3jKz2Fq6UYBg6Jdkp5Ka5I12KWHbWJbFRMBxqm0g2qWIrBhzhr6ZeYGHgbuAzcAnzGzztGGfBbqdc+uAbwJfDz3XB/wz8Hnn3JXArYAWTYkxE4HYu1JWOKryM0hL8qrFIzIP4ezpbwfqnXMNzrkx4Elg57QxO4HHQrefBm43MwM+ALzpnDsM4JzrdM7pd/EYc+JiP6P+AFUxflLWdF6PcUVpFida+wnowioiYQkn9FcDTVPuN4e2zTjGOecHeoECYAPgzGyPmb1hZv9x8SVLpO0/2wVAdeHKOIg71cbSLIbGJi6dWCYilxfOlM2ZJm1P362abYwPeA+wDRgCXjSzA865F9/xZLP7gfsBKis17W657T/bRU5aErlpSdEuZd42lGThMTh+US0ekXCEs6ffDFRMuV8OtMw2JtTHzwG6Qttfds51OOeGgGeBa6e/gHPuEedcrXOutqioaP7vQhbMOcf+s11UFaRjK+CkrOlSk7zUFGZy7IIuoSgSjnBCfz+w3szWmFkysAvYPW3MbuC+0O27gZdc8OrVe4CrzSw99MPgvcDbkSldIqGpa5jWvlGqY+gi6PO1sSyL9oFRznQMRrsUkZg3Z+iHevQPEAzwY8BTzrmjZvaQmX0kNOxRoMDM6oE/Bh4MPbcb+AbBHxyHgDecc/8a+bchC3Wpn7+SQ780G4AXj2kBNpG5hLUMg3PuWYKtmanbvjzl9ghwzyzP/WeC0zYlBk3284uzY3uRtcvJz0imJDuFF4618rmba6JdjkhM0xm5CW7f2S5qq/JWxCJrl7OpNJv9Z7vpGRqLdikiMU2hn8A6B0ZpaB+ktjo/2qUs2qaybCYCjp+faI92KSIxTaGfwPaf7QZg+5q8KFeyeKvz0ijMDLZ4RGR2Cv0EVne2i2Sfhy2rc6JdyqJ5zLh9YzEvn2hnzB+IdjkiMUuhn8D2n+1ia0UuKb6Vs8ja5dy+qZj+Uf+lGUki8m4K/QQ1OOrnSEsf2+Ognz/pPesLSfF5eF7XzhWZlUI/QR1q6mEi4KitXvn9/EnpyT5uWlfIi8dbcVqATWRGCv0Ete9MFx6D66riJ/QheO3cpq5hTrZqjX2RmSj0E9T+s11sKssmK3XlLbJ2ObdvCl7jV7N4RGam0E9A4xMBDjb2sC2O+vmTSrJTubo8R6EvMguFfgI62tLH8PhEXIY+BFs8h5p6aO8fjXYpIjFHoZ+A6kJTGrfF0UHcqW7fVIxz8LPjbdEuRSTmKPQT0L4zwfXzi7Pj8xr1m8uyWZWTyvNq8Yi8i0I/wQQCwYumxGtrB8DMuH1TCb881cHIuC7JLDKVQj/BnGoboHtonB1r4jf0Ae7YXMLw+ASvne6IdikiMUWhn2D2nukE4PqagihXsrSur8knI9nLC8fU1xeZSqGfYPY2dLEqJ5XyvLRol7KkUnxebtlQxIvHdHauyFQK/QTinGPvmS62r8lfkRdBn687NpXQ2jfKkfN90S5FJGYo9BNIQ8cgHQOj7Ijz1s6k920sxmNoFo/IFGFdI1fiw96G4Pz8eD2I+/jexndtq8hP5+m6JkpnmZ56747KpS5LJKZoTz+B7D3TSVFWCmsKM6JdyrLZVJpNS++Irp0rEqLQTxDOOfY2dLEjQfr5kzaWZQFw/GJ/lCsRiQ0K/QTR1DXMxb6RhOnnTyrKTKEgI5njF3UwVwQU+gnjV6H5+fHaz5+NmbGpLJvT7YOM6uxcEYV+otjb0EV+RjLrizOjXcqy21iWxUTAcapNF1YR0eydODV9JstLx1tZlZvGE/uaolRR9FTlZ5CW5OX4xT62rM6JdjkiURXWnr6Z3WlmJ8ys3swenOHxFDP7XujxvWZWPe3xSjMbMLM/jUzZMh89Q2N0D40n1Kydqbwe44rSLI5f7Cegs3Mlwc0Z+mbmBR4G7gI2A58ws83Thn0W6HbOrQO+CXx92uPfBJ5bfLmyEGc6BgESNvQBNpZmMTQ2QVPXULRLEYmqcPb0twP1zrkG59wY8CSwc9qYncBjodtPA7dbaF6gmX0UaACORqZkma8zHYOkJnkoidP188OxoSQLj8GxC5q6KYktnNBfDUxtBDeHts04xjnnB3qBAjPLAP4T8OeLL1UW6kzHINUFGXgSaH7+dKlJXtYUZnBMUzclwYUT+jMlxfTG6Gxj/hz4pnPustMmzOx+M6szs7r29vYwSpJw9Y2M0zk4ltCtnUmbyrJp7x+lc0DXzpXEFU7oNwMVU+6XAy2zjTEzH5ADdAE7gP9hZmeBPwL+s5k9MP0FnHOPOOdqnXO1RUVF834TMjv1839tY2k2AMd0dq4ksHBCfz+w3szWmFkysAvYPW3MbuC+0O27gZdc0M3OuWrnXDXwN8BfOuf+NkK1SxjOdAyS4vNQlhPf6+eHIz8jmZLsFI5dUItHEtecoR/q0T8A7AGOAU85546a2UNm9pHQsEcJ9vDrgT8G3jWtU6KjoT3Yz/d6ErefP9Wm0mzOdQ4yPKazcyUxhXVylnPuWeDZadu+POX2CHDPHF/jqwuoTxahb3icjoFRtlXnRbuUmLGxLJufn2znRGs/Wytyo12OyLLTMgxxrKEjePx8bVHiLb0wm/K8NDJSfFqATRKWQj+OnW4fJC3JS2lO4s7Pn85jxsbSLE629jMR0Nm5kngU+nGsoX2ANYWJPT9/JptKsxkZD3C2czDapYgsO4V+nOoaDK63s7ZIUzWnW1ecic9jmsUjCUmhH6ca2oP9/Br1898l2edhbVEmxy704bQAmyQYhX6caugYJCPFR3FWSrRLiUkby7LoHhrXGvuScBT6ccg5R0P7AGuLMhLqerjzMXl27vNvt0a5EpHlpdCPQw0dg/SN+KkpVGtnNjlpSazOTePFYwp9SSwK/Tj0+ung9XB1EPfyNpZlcbCphw4twCYJRKEfh14/3UlOWhL5GcnRLiWmbSrNxjl46XhbtEsRWTYK/TgTCDheb+ikplD9/LmU5aSyKidVfX1JKAr9OHOyrZ+uwTEtvRAGM+MDV5by8sl2+kfGo12OyLJQ6MeZ1+qD/fwa9fPD8pGtqxjzB/jJkYvRLkVkWSj048xrpzupKkgnN139/HBcU5FLZX46uw9Pvy6QSHxS6MeRiYBj75lObqgpiHYpK4aZsXPrKl6t76CtfyTa5YgsOYV+HDna0kv/iJ8b1ir052Pn1lUEHPy/wxeiXYrIklPox5FXQ/18hf78rCvO4spV2fzo0PlolyKy5BT6ceQXp9rZWJpFcZbWz5+vj25dzeHm3ksL1YnEK4V+nBga81N3tptbNhRFu5QVaec1q/B5jO/tb4p2KSJLSqEfJ/Y2dDE2EeDm9YXRLmVFKs5K5Y5NJXz/QDOjfl00XeKXQj9OvHKqnRSfh23V+dEuZcW6d0clXYNj7DmqM3Qlfin048QvTnWwo6aA1CRvtEtZsd6zrpCK/DSe2NsY7VJEloxCPw609AxT3zbALWrtLIrHY+zaVsnrDZ06oCtxS6EfB355qgOAm9frIO5i3VNbjs9j/Iv29iVOKfTjwCun2inOSmFDiRZZW6zirFQ+fHUZT+xrpGdoLNrliEScQn+F808EeOVkO7dsKNJSyhHy725dy9DYBI+9di7apYhEnEJ/hTtwrpu+ET+3byyOdilxY2NpNrdvLOY7r51haMwf7XJEIiqs0DezO83shJnVm9mDMzyeYmbfCz2+18yqQ9vfb2YHzOyt0N+3RbZ8eelEG0le4z06iBtRX3jfWrqHxnlin07Wkvjim2uAmXmBh4H3A83AfjPb7Zx7e8qwzwLdzrl1ZrYL+DrwcaAD+C3nXIuZbQH2AKsj/SYS2UvH2ti+Jp+s1KRol7IiPX6ZA7bVBRl864WT+DxGkje4f3TvjsrlKk1kSYSzp78dqHfONTjnxoAngZ3TxuwEHgvdfhq43czMOXfQOTe5UPlRINXMUiJRuEBT1xCn2ga4bWNJtEuJS3dsLqZvxM8rp9qjXYpIxIQT+quBqb/jNvPuvfVLY5xzfqAXmL7U4+8AB51zo9NfwMzuN7M6M6trb9c3WLgmL+itfv7SqCnMZMvqHF452a6ZPBI3wgn9maaEuPmMMbMrCbZ8fn+mF3DOPeKcq3XO1RYVaa55uF463kZNYQbVhbo04lK5a0spAM/pcooSJ8IJ/WagYsr9cmD6teUujTEzH5ADdIXulwM/BD7lnDu92IIlaGjMz+sNndymvfwllZeezC0binjrfC+n2vqjXY7IooUT+vuB9Wa2xsySgV3A7mljdgP3hW7fDbzknHNmlgv8K/Al59yrkSpa4OUT7Yz5A9y+Sf38pXbL+iIKM1P4fl0zbX26pKKsbHOGfqhH/wDBmTfHgKecc0fN7CEz+0ho2KNAgZnVA38MTE7rfABYB/xXMzsU+qNd0wh49shFCjKS2b5Gq2outSSvh0/uqGTUP8EDTxzEPxGIdkkiCzbnlE0A59yzwLPTtn15yu0R4J4Znvc14GuLrFGmGRmf4KVjrey8ZjVej87CXQ4l2al8dOtqvn+gmf/+3HH+y4c36QxoWZHCCn2JLa+cbGdwbIIPbSmLdikJ5ZrKPNKTvTz6yzNMBBxf/s3NePRDV1YYhf4K9OxbF8hLT2JHjVo7y+0rv3UlXo+Hb796hr6Rcf7yY1fpGgayoij0V5hR/wQvHGvjw1eVXTpLVJaPx2P819/cRG56Et94/iRvnOvmLz66Rctay4qh1Fhhfnmqg4FRP3ddVRrtUhKWmfEHt6/nXz63AzPj9x7dx+89upefHLnIuA7ySozTnv4Ks/twC9mpPm5cqwXWou2mdYU894c38+gvz/Dd18/x+X8+QGFmMu/fXMIHrizlxrUFpPjU+pHYotBfIR7f28jw2AT/+uYFrqvK4+kDzdEuSYDUJC9ffN86fv+WGn52op1nDp1n96EWntjXREayl5qiTK4uz2FjaXZYM60WsqDb5RaNi9RrSPxQ6K8gb57vwR9wXFeVF+1SZBqf18P7N5fw/s0ljPoneK2+k5++fZHdhy/w1vlectOSuGFtAdfXFOhYjESVQn8FeeNcNyXZKazOTYt2KXIZKT4v79tYzPs2FnPlqhyOX+jj1dOdPHfkIq+f7uSuq8rYsipb8/wlKhT6K0Rr3whN3cN8aEupwmIF8ZixeVUOm1flcKZjkB8fbuGJfY1cUZLF71xXTmaKvgVleen3zBXijXPdeAy2Vqq1s1KtKczgi+9bx4evKuN0+wDfevEUJ1u1iJssL4X+CjDqn+CNph42lmZrz3CF83qMm9YV8oVb15GZ4uU7r51lz9GLTASmr1YusjSUICvAMwfPMzjq1xm4MWC+M2VmU5qTyhduXcePD7fw8sl2GruG2LWtYu4niiyS9vRjXCDg+PtXGliVk8q6osxolyMRlOT18NvXlnP3teU0dw/xty/V86uGzmiXJXFOe/ox7oVjrTS0D/LxbRU6gBunrq3KY1VuGo/vO8e9//Ar/vD2DXz+1pp5n9gVcI7z3cM0tA/QPTzO0KgfgJKcVFblpLGuOFPTRUWhH+seeaWB8rw0tqzKiXYpsoRKc1L54q3rONTcwzdfOMkzh87zld/azHs3FF32h71/IsCp1n4ON/dy7EIfw+MTAKQne8lI9hFwjqMtfTggM8XHDWsL+NBVpeSmJy/TO5NYo9CPYfvOdFF3rpuv/tZmrZufAFKSvHxr1zX89rXlfHX3UT79j/upKcrg7uvK2V6dT1luGqk+D83dw5xuH+Dlk+38/EQ7vcPjpPg8bC7LZkNpFmuLMt9xwH/UP8G5ziFeO93B82+3csc3XuYvP3YVH7hS6zclInMutmYN1NbWurq6umiXEXWBgGPnw6/S1j/Cz/70Vp45OP2yxBKPJpdIGPVP8MzB8/zgwHn2ne2acWx+RjK3XlFEWpKXDSVZYbVuWnqGeel4G29f6OPu68r5i51bSEvW+kDxwMwOOOdq5xqnPf0Y9VRdE2+d7+Vbu7bn871PAAAL0ElEQVSSnqx/pkST4vPy8W2VfHxbJc3dQ9S3DXChd4ThsQnK89KoLEhnfXEWXo/Na0bRqtw0nvniTfyvF0/x8M/rqW8b4B8+VUtRVsoSvpvoW8isq3hdo0hpEoN6h8f5H3tOsK06j4/8xqpolyNRVp6XTnleesS+XrLPw59+8Aq2rM7hj753kI/93at85zPbWFecFbHXkNilQ/kx6K/3nKBnaIyvfuRKzdiRJXPnllKevP8GRsYn+O2/e43XT2u6aCJQ6MeYHx06z3d/dY5P37iGKzVjR5bY1opcfviFmyjOTuVT397LD7Rkd9xT6MeQoy29/KcfvMn26ny+9KGN0S5HEkRFfjo/+Hc3sq06nz/5/mG+8dMTxNoED4kchX6MaOoa4v5/OkBeejIPf/JanUQjyyonLYnvfGY7v1tbzv96qZ4/ePIQI6E5/4nCOUf/yDidA6N0DY7R1j8Slz/8dCA3BtSd7eL+7x7APxHgnz+3I+5nUkhsSvZ5+PrvXM2awky+/pPjnGrt5+FPXsvaOF3+Y9Q/QUP7IPVtA5ztHKRzYIyxKdc4/uufniAzxUdNUQa1VfncvKGQ69cUrPgprpqnHwELvVzd8NgEj71+lm/89CSr89J49L5aamb5BovUQl8i4TjZ2s9TdU34Jxxf+9gW7rmufEVPKpj8/pkIOE63D3CoqYejLb2MTziSvEZVQQYlWSnkZySTmuTFAVetDl4D4WRrPwfOdTPqD5Ce7OUDm0vYuXU171lfGFO/kWue/hJzzjE4NsHgqJ/e4XEAfB4jxefBd5n/CBMBx+GmHn5xqp3vvHaWjoExbttYzDd+9zd0arzEjA0lWfz729bzvf2N/Men3+TpA8187aNb2FCy8qZ1Ouc43zPM4aYeDjf10D/qJzXJwzUVeVxVnkNVfvqM37NT5+mPjE+w70wXzx25yLNvXeCZQy3kZyTz4avK+Og1q7i2Mm/F/FAMa0/fzO4EvgV4gf/jnPuraY+nAP8EXAd0Ah93zp0NPfYl4LPABPAHzrk9l3utWNvTHxrzU982wMnWAU619nOytZ+TrQNc7BuZdQ10rxnJPg8pPs+lvx3BPfv+Ef+lXyFvWlfAf7hjA7XVcy+ZrD19iYaAc/g8xl/95Dh9w+N8+OpV/P4tNWxZHfszy0619vPjwy38+M0LnOkYxGvGFaVZbK3IZWNp1mV3zmD2k7NG/RO8crKDHx06z/NvtzLqD1Cel8bOravYuXV11H4whrunP2fom5kXOAm8H2gG9gOfcM69PWXMF4CrnXOfN7NdwMeccx83s83AE8B2YBXwArDBOTfrEaJohf7I+EQo3Pt/HfBt/TR1DV8ak+z1UFOUwYaSLMrz0shJSyIz1UfdmW4c4A8EGPMHGPUHGPVPTLkdwIC0ZC+ZKT4+sb2SHTX5FGelhl2fQl+i5d4dlXQNjvH3L5/m8b2N9I/6ubo8h7u2lPH+zcXUFGbiiYG1oXqHxjnQ2MXrpzt55WQHJ1r78RjcsLaA4qxUrlyVPa+z28M5I3dg1M9Pj17kmUMtvFrfwUTAsbE0i/dtLGbHmnyuq8ojKzVpMW8rbJEM/RuArzrnPhi6/yUA59x/nzJmT2jM62bmAy4CRcCDU8dOHTfb6y009J1zTAQc/kDo7wmHPxBgfMIxMDpO/4j/0p/uoTFaeoY53zNMS88wLT0jtPQOM/lRJHmNmsJM1pdksqEkiw0lmawvyZr118CF9vTnQ6Ev0TL1/2vfyDhP7W/ix29e4HBTDxCc+XN1eQ5rizKpKkinJDuV7NQkstN8ob+TSPZ58Jrh8YDP48FjvKsd4pwj4IIt0ID79fdyIOAYDwToHwm2UnuHx+kbHqdzYIym7iGauoY4dqGf8z3BHbRkr4drq3K5a0sZd11VSnFW6rIsw9DeP8qzb13g/73ZwsHGHvyhTkBFfhpXlGSzKjeVkuzJP8HjB2lJXlKSvKT6PJf+nus3kNlEsqe/Gmiacr8Z2DHbGOec38x6gYLQ9l9Ne+7qMF5z3joHx6j92gthj/d5jLLc4DrjO2ryqcxPvxTwVQUZMXWARiRWZKcm8bmba/jczTU0dw/xWn0nB5u6ebO5lzfONTE4Fv40T48FfwA4QuG+gDkl6cleKvLSubYqj9+7oYqrV+dwbVUeqUnLP8OmKCuF+26s5r4bqxka83PgXDeHm3o4dqGfU2397DvTSd+I/7Jf4zfKc/jRA+9Z0jrDCf2Zfm+b/s8z25hwnouZ3Q/cH7o7YGYnwqhr0U4vx4vM4JO/vlkIdESpjFiizyEoJj+HT849ZCmE/VkcA366BAVE432fA+zfv2PTfP5PVIUzKJzQbwamXryzHJi+zu/kmOZQeycH6ArzuTjnHgEeCafgeGJmdeH8Ohbv9DkE6XP4NX0WQUvxOYTTw9gPrDezNWaWDOwCdk8bsxu4L3T7buAlFzxYsBvYZWYpZrYGWA/si0zpIiIyX3Pu6Yd69A8AewhO2fy2c+6omT0E1DnndgOPAt81s3qCe/i7Qs89amZPAW8DfuCLl5u5IyIiSyvmzshNJGZ2f6i1ldD0OQTpc/g1fRZBS/E5KPRFRBKI5iWKiCQQhf4yM7N7zOyomQXMrHbaY18ys3ozO2FmH4xWjcvFzO4Mvdd6M3sw2vUsJzP7tpm1mdmRKdvyzex5MzsV+jsvmjUuBzOrMLOfmdmx0PfFH4a2J9RnYWapZrbPzA6HPoc/D21fY2Z7Q5/D90KTaRZFob/8jgC/DbwydWNoyYpdwJXAncDfhZbAiEuh9/YwcBewGfhE6DNIFN8h+O881YPAi8659cCLofvxzg/8iXNuE3A98MXQ/4NE+yxGgducc78BbAXuNLPrga8D3wx9Dt0E1zFbFIX+MnPOHXPOzXTy2U7gSefcqHPuDFBPcM2ieLUdqHfONTjnxoAnCX4GCcE59wrBmW5T7QQeC91+DPjoshYVBc65C865N0K3+wmea7WaBPssXNBA6G5S6I8DbgOeDm2PyOeg0I8dMy13sSRLVsSIRHu/4Shxzl2AYBgCxVGuZ1mZWTVwDbCXBPwszMxrZoeANuB5gosG9DjnJtduiMj3iNbTXwJm9gJQOsNDf+ac+9FsT5thWzxPrUq09yuXYWaZwA+AP3LO9a2UtekjKXQO01YzywV+CGyaadhiX0ehvwScc3cs4GlhLVkRRxLt/Yaj1czKnHMXzKyM4B5f3DOzJIKB/y/Ouf8b2pyQnwWAc67HzH5O8BhHrpn5Qnv7EfkeUXsndiTakhXhLO+RaKYuZ3IfMNtvhXHDgrv0jwLHnHPfmPJQQn0WZlYU2sPHzNKAOwge3/gZwaVtIEKfg07OWmZm9jHgfxO83kAPcGjKtQr+DPi3BGc0/JFz7rmoFboMzOxDwN/w6+U9/luUS1o2ZvYEcCvBVRRbga8AzwBPAZVAI3CPc276wd64YmbvAX4BvAVMXpX8PxPs6yfMZ2FmVxM8UOsluDP+lHPuITOrITjJIR84CPwb59zool5LoS8ikjjU3hERSSAKfRGRBKLQFxFJIAp9EZEEotAXEUkgCn1JeGY2YWaHzOyImX3fzNJnGffs5FxqkZVKUzYl4ZnZgHMuM3T7X4ADU08UCp1AZM65wGxfQ2Sl0J6+yDv9AlhnZtWhNd7/DngDqDCzs2ZWCGBmnzKzN0Prn383tK3IzH5gZvtDf26K4vsQmZHW3hEJMTMfwfX9fxLadAXwGefcF0KPT467Evgz4CbnXIeZ5YfGf4vg2ue/NLNKYA8zL5olEjUKfRFICy1pC8E9/UeBVcA559yvZhh/G/C0c64DYMryAHcAm6esEJltZlmhdeJFYoJCXwSGnXNbp24IBffgLOONmZe49QA3OOeGI1ueSOSopy8yfy8Cv2tmBRC8nmto+0+BByYHmdnWGZ4rElUKfZF5cs4dBf4b8LKZHQYmZ/r8AVAbOsD7NvD5aNUoMhtN2RQRSSDa0xcRSSAKfRGRBKLQFxFJIAp9EZEEotAXEUkgCn0RkQSi0BcRSSAKfRGRBPL/AaI6ySPQJU/HAAAAAElFTkSuQmCC\n", 732 | "text/plain": [ 733 | "
" 734 | ] 735 | }, 736 | "metadata": { 737 | "needs_background": "light" 738 | }, 739 | "output_type": "display_data" 740 | } 741 | ], 742 | "source": [ 743 | "import seaborn as sns\n", 744 | "\n", 745 | "sns.distplot(y_test-prediction_ridge)" 746 | ] 747 | }, 748 | { 749 | "cell_type": "code", 750 | "execution_count": null, 751 | "metadata": {}, 752 | "outputs": [], 753 | "source": [] 754 | } 755 | ], 756 | "metadata": { 757 | "kernelspec": { 758 | "display_name": "Python 3", 759 | "language": "python", 760 | "name": "python3" 761 | }, 762 | "language_info": { 763 | "codemirror_mode": { 764 | "name": "ipython", 765 | "version": 3 766 | }, 767 | "file_extension": ".py", 768 | "mimetype": "text/x-python", 769 | "name": "python", 770 | "nbconvert_exporter": "python", 771 | "pygments_lexer": "ipython3", 772 | "version": "3.6.7" 773 | } 774 | }, 775 | "nbformat": 4, 776 | "nbformat_minor": 2 777 | } 778 | --------------------------------------------------------------------------------