20 |
Privacy Policy
21 |
22 | Omkar Prabhu built the TorchExpo app as an Open Source app. This SERVICE
23 | is provided by Omkar Prabhu at no cost and is intended for use as is.
24 |
25 |
26 | This page is used to inform visitors regarding my policies with the collection, use, and disclosure of Personal Information if anyone decided to use my Service.
27 |
28 |
29 | If you choose to use my Service, then you agree to the collection and use of information in relation to this policy. The Personal Information that I collect is used for providing and improving the Service. I will not use or share your information with anyone except as described in this Privacy Policy.
30 |
31 |
32 | The terms used in this Privacy Policy have the same meanings as in our Terms and
33 | Conditions, which is accessible at TorchExpo unless otherwise defined in this Privacy
34 | Policy.
35 |
36 |
Information Collection and Use
37 |
38 | For a better experience, while using our Service, I may require you to provide us with certain personally identifiable information. The information that I request will be retained on your device and is not collected by me in any way.
39 |
40 |
41 | The app does use third party services that may collect information used to identify you.
42 |
43 |
44 |
45 | Link to privacy policy of third party service providers used by the app
46 |
47 |
50 |
51 |
Log Data
52 |
53 | I want to inform you that whenever you use my Service, in a case of an error in the app I collect data and information (through third party products) on your phone called Log Data. This Log Data may include information such as your device Internet Protocol (“IP”) address, device name, operating system version, the configuration of the app when utilizing my Service, the time and date of your use of the Service, and other statistics.
54 |
55 |
Cookies
56 |
57 | Cookies are files with a small amount of data that are commonly used as anonymous unique identifiers. These are sent to your browser from the websites that you visit and are stored on your device's internal memory.
58 |
59 |
60 | This Service does not use these “cookies” explicitly. However, the app may use third party code and libraries that use “cookies” to collect information and improve their services. You have the option to either accept or refuse these cookies and know when a cookie is being sent to your device. If you choose to refuse our cookies, you may not be able to use some portions of this Service.
61 |
62 |
Service Providers
63 |
64 | I may employ third-party companies and individuals due to the following reasons:
65 |
66 |
67 | - To facilitate our Service;
68 | - To provide the Service on our behalf;
69 | - To perform Service-related services; or
70 | - To assist us in analyzing how our Service is used.
71 |
72 |
73 | I want to inform users of this Service that these third parties have access to your Personal Information. The reason is to perform the tasks assigned to them on our behalf. However, they are obligated not to disclose or use the information for any other purpose.
74 |
75 |
Security
76 |
77 | I value your trust in providing us your Personal Information, thus we are striving to use commercially acceptable means of protecting it. But remember that no method of transmission over the internet, or method of electronic storage is 100% secure and reliable, and I cannot guarantee its absolute security.
78 |
79 |
Links to Other Sites
80 |
81 | This Service may contain links to other sites. If you click on a third-party link, you will be directed to that site. Note that these external sites are not operated by me. Therefore, I strongly advise you to review the Privacy Policy of these websites. I have no control over and assume no responsibility for the content, privacy policies, or practices of any third-party sites or services.
82 |
83 |
Children's Privacy
84 |
85 | These Services do not address anyone under the age of 13. I do not knowingly collect personally identifiable information from children under 13. In the case I discover that a child under 13 has provided me with personal information, I immediately delete this from our servers. If you are a parent or guardian and you are aware that your child has provided us with personal information, please contact me so that I will be able to do necessary actions.
86 |
87 |
Changes to This Privacy Policy
88 |
89 | I may update our Privacy Policy from time to time. Thus, you are advised to review this page periodically for any changes. I will notify you of any changes by posting the new Privacy Policy on this page. These changes are effective immediately after they are posted on this page.
90 |
91 |
Contact Us
92 |
93 | If you have any questions or suggestions about my Privacy Policy, do not hesitate to contact me at prabhuomkar@pm.me
94 |
95 |
96 |
97 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Apache License
2 | Version 2.0, January 2004
3 | http://www.apache.org/licenses/
4 |
5 | TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND DISTRIBUTION
6 |
7 | 1. Definitions.
8 |
9 | "License" shall mean the terms and conditions for use, reproduction,
10 | and distribution as defined by Sections 1 through 9 of this document.
11 |
12 | "Licensor" shall mean the copyright owner or entity authorized by
13 | the copyright owner that is granting the License.
14 |
15 | "Legal Entity" shall mean the union of the acting entity and all
16 | other entities that control, are controlled by, or are under common
17 | control with that entity. For the purposes of this definition,
18 | "control" means (i) the power, direct or indirect, to cause the
19 | direction or management of such entity, whether by contract or
20 | otherwise, or (ii) ownership of fifty percent (50%) or more of the
21 | outstanding shares, or (iii) beneficial ownership of such entity.
22 |
23 | "You" (or "Your") shall mean an individual or Legal Entity
24 | exercising permissions granted by this License.
25 |
26 | "Source" form shall mean the preferred form for making modifications,
27 | including but not limited to software source code, documentation
28 | source, and configuration files.
29 |
30 | "Object" form shall mean any form resulting from mechanical
31 | transformation or translation of a Source form, including but
32 | not limited to compiled object code, generated documentation,
33 | and conversions to other media types.
34 |
35 | "Work" shall mean the work of authorship, whether in Source or
36 | Object form, made available under the License, as indicated by a
37 | copyright notice that is included in or attached to the work
38 | (an example is provided in the Appendix below).
39 |
40 | "Derivative Works" shall mean any work, whether in Source or Object
41 | form, that is based on (or derived from) the Work and for which the
42 | editorial revisions, annotations, elaborations, or other modifications
43 | represent, as a whole, an original work of authorship. For the purposes
44 | of this License, Derivative Works shall not include works that remain
45 | separable from, or merely link (or bind by name) to the interfaces of,
46 | the Work and Derivative Works thereof.
47 |
48 | "Contribution" shall mean any work of authorship, including
49 | the original version of the Work and any modifications or additions
50 | to that Work or Derivative Works thereof, that is intentionally
51 | submitted to Licensor for inclusion in the Work by the copyright owner
52 | or by an individual or Legal Entity authorized to submit on behalf of
53 | the copyright owner. For the purposes of this definition, "submitted"
54 | means any form of electronic, verbal, or written communication sent
55 | to the Licensor or its representatives, including but not limited to
56 | communication on electronic mailing lists, source code control systems,
57 | and issue tracking systems that are managed by, or on behalf of, the
58 | Licensor for the purpose of discussing and improving the Work, but
59 | excluding communication that is conspicuously marked or otherwise
60 | designated in writing by the copyright owner as "Not a Contribution."
61 |
62 | "Contributor" shall mean Licensor and any individual or Legal Entity
63 | on behalf of whom a Contribution has been received by Licensor and
64 | subsequently incorporated within the Work.
65 |
66 | 2. Grant of Copyright License. Subject to the terms and conditions of
67 | this License, each Contributor hereby grants to You a perpetual,
68 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
69 | copyright license to reproduce, prepare Derivative Works of,
70 | publicly display, publicly perform, sublicense, and distribute the
71 | Work and such Derivative Works in Source or Object form.
72 |
73 | 3. Grant of Patent License. Subject to the terms and conditions of
74 | this License, each Contributor hereby grants to You a perpetual,
75 | worldwide, non-exclusive, no-charge, royalty-free, irrevocable
76 | (except as stated in this section) patent license to make, have made,
77 | use, offer to sell, sell, import, and otherwise transfer the Work,
78 | where such license applies only to those patent claims licensable
79 | by such Contributor that are necessarily infringed by their
80 | Contribution(s) alone or by combination of their Contribution(s)
81 | with the Work to which such Contribution(s) was submitted. If You
82 | institute patent litigation against any entity (including a
83 | cross-claim or counterclaim in a lawsuit) alleging that the Work
84 | or a Contribution incorporated within the Work constitutes direct
85 | or contributory patent infringement, then any patent licenses
86 | granted to You under this License for that Work shall terminate
87 | as of the date such litigation is filed.
88 |
89 | 4. Redistribution. You may reproduce and distribute copies of the
90 | Work or Derivative Works thereof in any medium, with or without
91 | modifications, and in Source or Object form, provided that You
92 | meet the following conditions:
93 |
94 | (a) You must give any other recipients of the Work or
95 | Derivative Works a copy of this License; and
96 |
97 | (b) You must cause any modified files to carry prominent notices
98 | stating that You changed the files; and
99 |
100 | (c) You must retain, in the Source form of any Derivative Works
101 | that You distribute, all copyright, patent, trademark, and
102 | attribution notices from the Source form of the Work,
103 | excluding those notices that do not pertain to any part of
104 | the Derivative Works; and
105 |
106 | (d) If the Work includes a "NOTICE" text file as part of its
107 | distribution, then any Derivative Works that You distribute must
108 | include a readable copy of the attribution notices contained
109 | within such NOTICE file, excluding those notices that do not
110 | pertain to any part of the Derivative Works, in at least one
111 | of the following places: within a NOTICE text file distributed
112 | as part of the Derivative Works; within the Source form or
113 | documentation, if provided along with the Derivative Works; or,
114 | within a display generated by the Derivative Works, if and
115 | wherever such third-party notices normally appear. The contents
116 | of the NOTICE file are for informational purposes only and
117 | do not modify the License. You may add Your own attribution
118 | notices within Derivative Works that You distribute, alongside
119 | or as an addendum to the NOTICE text from the Work, provided
120 | that such additional attribution notices cannot be construed
121 | as modifying the License.
122 |
123 | You may add Your own copyright statement to Your modifications and
124 | may provide additional or different license terms and conditions
125 | for use, reproduction, or distribution of Your modifications, or
126 | for any such Derivative Works as a whole, provided Your use,
127 | reproduction, and distribution of the Work otherwise complies with
128 | the conditions stated in this License.
129 |
130 | 5. Submission of Contributions. Unless You explicitly state otherwise,
131 | any Contribution intentionally submitted for inclusion in the Work
132 | by You to the Licensor shall be under the terms and conditions of
133 | this License, without any additional terms or conditions.
134 | Notwithstanding the above, nothing herein shall supersede or modify
135 | the terms of any separate license agreement you may have executed
136 | with Licensor regarding such Contributions.
137 |
138 | 6. Trademarks. This License does not grant permission to use the trade
139 | names, trademarks, service marks, or product names of the Licensor,
140 | except as required for reasonable and customary use in describing the
141 | origin of the Work and reproducing the content of the NOTICE file.
142 |
143 | 7. Disclaimer of Warranty. Unless required by applicable law or
144 | agreed to in writing, Licensor provides the Work (and each
145 | Contributor provides its Contributions) on an "AS IS" BASIS,
146 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or
147 | implied, including, without limitation, any warranties or conditions
148 | of TITLE, NON-INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A
149 | PARTICULAR PURPOSE. You are solely responsible for determining the
150 | appropriateness of using or redistributing the Work and assume any
151 | risks associated with Your exercise of permissions under this License.
152 |
153 | 8. Limitation of Liability. In no event and under no legal theory,
154 | whether in tort (including negligence), contract, or otherwise,
155 | unless required by applicable law (such as deliberate and grossly
156 | negligent acts) or agreed to in writing, shall any Contributor be
157 | liable to You for damages, including any direct, indirect, special,
158 | incidental, or consequential damages of any character arising as a
159 | result of this License or out of the use or inability to use the
160 | Work (including but not limited to damages for loss of goodwill,
161 | work stoppage, computer failure or malfunction, or any and all
162 | other commercial damages or losses), even if such Contributor
163 | has been advised of the possibility of such damages.
164 |
165 | 9. Accepting Warranty or Additional Liability. While redistributing
166 | the Work or Derivative Works thereof, You may choose to offer,
167 | and charge a fee for, acceptance of support, warranty, indemnity,
168 | or other liability obligations and/or rights consistent with this
169 | License. However, in accepting such obligations, You may act only
170 | on Your own behalf and on Your sole responsibility, not on behalf
171 | of any other Contributor, and only if You agree to indemnify,
172 | defend, and hold each Contributor harmless for any liability
173 | incurred by, or claims asserted against, such Contributor by reason
174 | of your accepting any such warranty or additional liability.
175 |
176 | END OF TERMS AND CONDITIONS
177 |
178 | APPENDIX: How to apply the Apache License to your work.
179 |
180 | To apply the Apache License to your work, attach the following
181 | boilerplate notice, with the fields enclosed by brackets "[]"
182 | replaced with your own identifying information. (Don't include
183 | the brackets!) The text should be enclosed in the appropriate
184 | comment syntax for the file format. We also recommend that a
185 | file or class name and description of purpose be included on the
186 | same "printed page" as the copyright notice for easier
187 | identification within third-party archives.
188 |
189 | Copyright 2020 Omkar Prabhu
190 |
191 | Licensed under the Apache License, Version 2.0 (the "License");
192 | you may not use this file except in compliance with the License.
193 | You may obtain a copy of the License at
194 |
195 | http://www.apache.org/licenses/LICENSE-2.0
196 |
197 | Unless required by applicable law or agreed to in writing, software
198 | distributed under the License is distributed on an "AS IS" BASIS,
199 | WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
200 | See the License for the specific language governing permissions and
201 | limitations under the License.
202 |
--------------------------------------------------------------------------------
/models/image_segmentation.ipynb:
--------------------------------------------------------------------------------
1 | {
2 | "nbformat": 4,
3 | "nbformat_minor": 0,
4 | "metadata": {
5 | "colab": {
6 | "name": "image_segmentation.ipynb",
7 | "provenance": []
8 | },
9 | "kernelspec": {
10 | "name": "python3",
11 | "display_name": "Python 3"
12 | },
13 | "widgets": {
14 | "application/vnd.jupyter.widget-state+json": {
15 | "75ab0b7a6d804f93a574a0ba2ece1a50": {
16 | "model_module": "@jupyter-widgets/controls",
17 | "model_name": "HBoxModel",
18 | "state": {
19 | "_view_name": "HBoxView",
20 | "_dom_classes": [],
21 | "_model_name": "HBoxModel",
22 | "_view_module": "@jupyter-widgets/controls",
23 | "_model_module_version": "1.5.0",
24 | "_view_count": null,
25 | "_view_module_version": "1.5.0",
26 | "box_style": "",
27 | "layout": "IPY_MODEL_f4b915078dc8465d8f06f672c84bbdae",
28 | "_model_module": "@jupyter-widgets/controls",
29 | "children": [
30 | "IPY_MODEL_843a20f4a2c04a1386d0ea66b506d3f2",
31 | "IPY_MODEL_ff7d3ef6f06a4a2fab71babd49f83bca"
32 | ]
33 | }
34 | },
35 | "f4b915078dc8465d8f06f672c84bbdae": {
36 | "model_module": "@jupyter-widgets/base",
37 | "model_name": "LayoutModel",
38 | "state": {
39 | "_view_name": "LayoutView",
40 | "grid_template_rows": null,
41 | "right": null,
42 | "justify_content": null,
43 | "_view_module": "@jupyter-widgets/base",
44 | "overflow": null,
45 | "_model_module_version": "1.2.0",
46 | "_view_count": null,
47 | "flex_flow": null,
48 | "width": null,
49 | "min_width": null,
50 | "border": null,
51 | "align_items": null,
52 | "bottom": null,
53 | "_model_module": "@jupyter-widgets/base",
54 | "top": null,
55 | "grid_column": null,
56 | "overflow_y": null,
57 | "overflow_x": null,
58 | "grid_auto_flow": null,
59 | "grid_area": null,
60 | "grid_template_columns": null,
61 | "flex": null,
62 | "_model_name": "LayoutModel",
63 | "justify_items": null,
64 | "grid_row": null,
65 | "max_height": null,
66 | "align_content": null,
67 | "visibility": null,
68 | "align_self": null,
69 | "height": null,
70 | "min_height": null,
71 | "padding": null,
72 | "grid_auto_rows": null,
73 | "grid_gap": null,
74 | "max_width": null,
75 | "order": null,
76 | "_view_module_version": "1.2.0",
77 | "grid_template_areas": null,
78 | "object_position": null,
79 | "object_fit": null,
80 | "grid_auto_columns": null,
81 | "margin": null,
82 | "display": null,
83 | "left": null
84 | }
85 | },
86 | "843a20f4a2c04a1386d0ea66b506d3f2": {
87 | "model_module": "@jupyter-widgets/controls",
88 | "model_name": "FloatProgressModel",
89 | "state": {
90 | "_view_name": "ProgressView",
91 | "style": "IPY_MODEL_fc26dda3f25d45f48fc24c4e20529884",
92 | "_dom_classes": [],
93 | "description": "100%",
94 | "_model_name": "FloatProgressModel",
95 | "bar_style": "success",
96 | "max": 178728960,
97 | "_view_module": "@jupyter-widgets/controls",
98 | "_model_module_version": "1.5.0",
99 | "value": 178728960,
100 | "_view_count": null,
101 | "_view_module_version": "1.5.0",
102 | "orientation": "horizontal",
103 | "min": 0,
104 | "description_tooltip": null,
105 | "_model_module": "@jupyter-widgets/controls",
106 | "layout": "IPY_MODEL_f4aa0e88499b4b2c8e6b609ca9fe1e8d"
107 | }
108 | },
109 | "ff7d3ef6f06a4a2fab71babd49f83bca": {
110 | "model_module": "@jupyter-widgets/controls",
111 | "model_name": "HTMLModel",
112 | "state": {
113 | "_view_name": "HTMLView",
114 | "style": "IPY_MODEL_d2964b37745e4de9ba85b97eed987968",
115 | "_dom_classes": [],
116 | "description": "",
117 | "_model_name": "HTMLModel",
118 | "placeholder": "",
119 | "_view_module": "@jupyter-widgets/controls",
120 | "_model_module_version": "1.5.0",
121 | "value": " 170M/170M [00:07<00:00, 24.2MB/s]",
122 | "_view_count": null,
123 | "_view_module_version": "1.5.0",
124 | "description_tooltip": null,
125 | "_model_module": "@jupyter-widgets/controls",
126 | "layout": "IPY_MODEL_85e12dd66e52492f981b9e0518ed3bb1"
127 | }
128 | },
129 | "fc26dda3f25d45f48fc24c4e20529884": {
130 | "model_module": "@jupyter-widgets/controls",
131 | "model_name": "ProgressStyleModel",
132 | "state": {
133 | "_view_name": "StyleView",
134 | "_model_name": "ProgressStyleModel",
135 | "description_width": "initial",
136 | "_view_module": "@jupyter-widgets/base",
137 | "_model_module_version": "1.5.0",
138 | "_view_count": null,
139 | "_view_module_version": "1.2.0",
140 | "bar_color": null,
141 | "_model_module": "@jupyter-widgets/controls"
142 | }
143 | },
144 | "f4aa0e88499b4b2c8e6b609ca9fe1e8d": {
145 | "model_module": "@jupyter-widgets/base",
146 | "model_name": "LayoutModel",
147 | "state": {
148 | "_view_name": "LayoutView",
149 | "grid_template_rows": null,
150 | "right": null,
151 | "justify_content": null,
152 | "_view_module": "@jupyter-widgets/base",
153 | "overflow": null,
154 | "_model_module_version": "1.2.0",
155 | "_view_count": null,
156 | "flex_flow": null,
157 | "width": null,
158 | "min_width": null,
159 | "border": null,
160 | "align_items": null,
161 | "bottom": null,
162 | "_model_module": "@jupyter-widgets/base",
163 | "top": null,
164 | "grid_column": null,
165 | "overflow_y": null,
166 | "overflow_x": null,
167 | "grid_auto_flow": null,
168 | "grid_area": null,
169 | "grid_template_columns": null,
170 | "flex": null,
171 | "_model_name": "LayoutModel",
172 | "justify_items": null,
173 | "grid_row": null,
174 | "max_height": null,
175 | "align_content": null,
176 | "visibility": null,
177 | "align_self": null,
178 | "height": null,
179 | "min_height": null,
180 | "padding": null,
181 | "grid_auto_rows": null,
182 | "grid_gap": null,
183 | "max_width": null,
184 | "order": null,
185 | "_view_module_version": "1.2.0",
186 | "grid_template_areas": null,
187 | "object_position": null,
188 | "object_fit": null,
189 | "grid_auto_columns": null,
190 | "margin": null,
191 | "display": null,
192 | "left": null
193 | }
194 | },
195 | "d2964b37745e4de9ba85b97eed987968": {
196 | "model_module": "@jupyter-widgets/controls",
197 | "model_name": "DescriptionStyleModel",
198 | "state": {
199 | "_view_name": "StyleView",
200 | "_model_name": "DescriptionStyleModel",
201 | "description_width": "",
202 | "_view_module": "@jupyter-widgets/base",
203 | "_model_module_version": "1.5.0",
204 | "_view_count": null,
205 | "_view_module_version": "1.2.0",
206 | "_model_module": "@jupyter-widgets/controls"
207 | }
208 | },
209 | "85e12dd66e52492f981b9e0518ed3bb1": {
210 | "model_module": "@jupyter-widgets/base",
211 | "model_name": "LayoutModel",
212 | "state": {
213 | "_view_name": "LayoutView",
214 | "grid_template_rows": null,
215 | "right": null,
216 | "justify_content": null,
217 | "_view_module": "@jupyter-widgets/base",
218 | "overflow": null,
219 | "_model_module_version": "1.2.0",
220 | "_view_count": null,
221 | "flex_flow": null,
222 | "width": null,
223 | "min_width": null,
224 | "border": null,
225 | "align_items": null,
226 | "bottom": null,
227 | "_model_module": "@jupyter-widgets/base",
228 | "top": null,
229 | "grid_column": null,
230 | "overflow_y": null,
231 | "overflow_x": null,
232 | "grid_auto_flow": null,
233 | "grid_area": null,
234 | "grid_template_columns": null,
235 | "flex": null,
236 | "_model_name": "LayoutModel",
237 | "justify_items": null,
238 | "grid_row": null,
239 | "max_height": null,
240 | "align_content": null,
241 | "visibility": null,
242 | "align_self": null,
243 | "height": null,
244 | "min_height": null,
245 | "padding": null,
246 | "grid_auto_rows": null,
247 | "grid_gap": null,
248 | "max_width": null,
249 | "order": null,
250 | "_view_module_version": "1.2.0",
251 | "grid_template_areas": null,
252 | "object_position": null,
253 | "object_fit": null,
254 | "grid_auto_columns": null,
255 | "margin": null,
256 | "display": null,
257 | "left": null
258 | }
259 | },
260 | "fa14f81544254fa38418fd8df0586a73": {
261 | "model_module": "@jupyter-widgets/controls",
262 | "model_name": "HBoxModel",
263 | "state": {
264 | "_view_name": "HBoxView",
265 | "_dom_classes": [],
266 | "_model_name": "HBoxModel",
267 | "_view_module": "@jupyter-widgets/controls",
268 | "_model_module_version": "1.5.0",
269 | "_view_count": null,
270 | "_view_module_version": "1.5.0",
271 | "box_style": "",
272 | "layout": "IPY_MODEL_313f087449354e7395a9a8078f5a32b3",
273 | "_model_module": "@jupyter-widgets/controls",
274 | "children": [
275 | "IPY_MODEL_d0bfeefb99714549996078b75e631fd5",
276 | "IPY_MODEL_f4f0f75ea6574e848c775d213e10ac20"
277 | ]
278 | }
279 | },
280 | "313f087449354e7395a9a8078f5a32b3": {
281 | "model_module": "@jupyter-widgets/base",
282 | "model_name": "LayoutModel",
283 | "state": {
284 | "_view_name": "LayoutView",
285 | "grid_template_rows": null,
286 | "right": null,
287 | "justify_content": null,
288 | "_view_module": "@jupyter-widgets/base",
289 | "overflow": null,
290 | "_model_module_version": "1.2.0",
291 | "_view_count": null,
292 | "flex_flow": null,
293 | "width": null,
294 | "min_width": null,
295 | "border": null,
296 | "align_items": null,
297 | "bottom": null,
298 | "_model_module": "@jupyter-widgets/base",
299 | "top": null,
300 | "grid_column": null,
301 | "overflow_y": null,
302 | "overflow_x": null,
303 | "grid_auto_flow": null,
304 | "grid_area": null,
305 | "grid_template_columns": null,
306 | "flex": null,
307 | "_model_name": "LayoutModel",
308 | "justify_items": null,
309 | "grid_row": null,
310 | "max_height": null,
311 | "align_content": null,
312 | "visibility": null,
313 | "align_self": null,
314 | "height": null,
315 | "min_height": null,
316 | "padding": null,
317 | "grid_auto_rows": null,
318 | "grid_gap": null,
319 | "max_width": null,
320 | "order": null,
321 | "_view_module_version": "1.2.0",
322 | "grid_template_areas": null,
323 | "object_position": null,
324 | "object_fit": null,
325 | "grid_auto_columns": null,
326 | "margin": null,
327 | "display": null,
328 | "left": null
329 | }
330 | },
331 | "d0bfeefb99714549996078b75e631fd5": {
332 | "model_module": "@jupyter-widgets/controls",
333 | "model_name": "FloatProgressModel",
334 | "state": {
335 | "_view_name": "ProgressView",
336 | "style": "IPY_MODEL_d59ce7884cdd43bea7478e4849b274c2",
337 | "_dom_classes": [],
338 | "description": "100%",
339 | "_model_name": "FloatProgressModel",
340 | "bar_style": "success",
341 | "max": 217800805,
342 | "_view_module": "@jupyter-widgets/controls",
343 | "_model_module_version": "1.5.0",
344 | "value": 217800805,
345 | "_view_count": null,
346 | "_view_module_version": "1.5.0",
347 | "orientation": "horizontal",
348 | "min": 0,
349 | "description_tooltip": null,
350 | "_model_module": "@jupyter-widgets/controls",
351 | "layout": "IPY_MODEL_81d2aaf5a92b4c55bfc9a8d363dca106"
352 | }
353 | },
354 | "f4f0f75ea6574e848c775d213e10ac20": {
355 | "model_module": "@jupyter-widgets/controls",
356 | "model_name": "HTMLModel",
357 | "state": {
358 | "_view_name": "HTMLView",
359 | "style": "IPY_MODEL_a617ecce90284874b7f439f9589879d5",
360 | "_dom_classes": [],
361 | "description": "",
362 | "_model_name": "HTMLModel",
363 | "placeholder": "",
364 | "_view_module": "@jupyter-widgets/controls",
365 | "_model_module_version": "1.5.0",
366 | "value": " 208M/208M [00:03<00:00, 57.8MB/s]",
367 | "_view_count": null,
368 | "_view_module_version": "1.5.0",
369 | "description_tooltip": null,
370 | "_model_module": "@jupyter-widgets/controls",
371 | "layout": "IPY_MODEL_961e7ff1ef18449396fb6542daaa5129"
372 | }
373 | },
374 | "d59ce7884cdd43bea7478e4849b274c2": {
375 | "model_module": "@jupyter-widgets/controls",
376 | "model_name": "ProgressStyleModel",
377 | "state": {
378 | "_view_name": "StyleView",
379 | "_model_name": "ProgressStyleModel",
380 | "description_width": "initial",
381 | "_view_module": "@jupyter-widgets/base",
382 | "_model_module_version": "1.5.0",
383 | "_view_count": null,
384 | "_view_module_version": "1.2.0",
385 | "bar_color": null,
386 | "_model_module": "@jupyter-widgets/controls"
387 | }
388 | },
389 | "81d2aaf5a92b4c55bfc9a8d363dca106": {
390 | "model_module": "@jupyter-widgets/base",
391 | "model_name": "LayoutModel",
392 | "state": {
393 | "_view_name": "LayoutView",
394 | "grid_template_rows": null,
395 | "right": null,
396 | "justify_content": null,
397 | "_view_module": "@jupyter-widgets/base",
398 | "overflow": null,
399 | "_model_module_version": "1.2.0",
400 | "_view_count": null,
401 | "flex_flow": null,
402 | "width": null,
403 | "min_width": null,
404 | "border": null,
405 | "align_items": null,
406 | "bottom": null,
407 | "_model_module": "@jupyter-widgets/base",
408 | "top": null,
409 | "grid_column": null,
410 | "overflow_y": null,
411 | "overflow_x": null,
412 | "grid_auto_flow": null,
413 | "grid_area": null,
414 | "grid_template_columns": null,
415 | "flex": null,
416 | "_model_name": "LayoutModel",
417 | "justify_items": null,
418 | "grid_row": null,
419 | "max_height": null,
420 | "align_content": null,
421 | "visibility": null,
422 | "align_self": null,
423 | "height": null,
424 | "min_height": null,
425 | "padding": null,
426 | "grid_auto_rows": null,
427 | "grid_gap": null,
428 | "max_width": null,
429 | "order": null,
430 | "_view_module_version": "1.2.0",
431 | "grid_template_areas": null,
432 | "object_position": null,
433 | "object_fit": null,
434 | "grid_auto_columns": null,
435 | "margin": null,
436 | "display": null,
437 | "left": null
438 | }
439 | },
440 | "a617ecce90284874b7f439f9589879d5": {
441 | "model_module": "@jupyter-widgets/controls",
442 | "model_name": "DescriptionStyleModel",
443 | "state": {
444 | "_view_name": "StyleView",
445 | "_model_name": "DescriptionStyleModel",
446 | "description_width": "",
447 | "_view_module": "@jupyter-widgets/base",
448 | "_model_module_version": "1.5.0",
449 | "_view_count": null,
450 | "_view_module_version": "1.2.0",
451 | "_model_module": "@jupyter-widgets/controls"
452 | }
453 | },
454 | "961e7ff1ef18449396fb6542daaa5129": {
455 | "model_module": "@jupyter-widgets/base",
456 | "model_name": "LayoutModel",
457 | "state": {
458 | "_view_name": "LayoutView",
459 | "grid_template_rows": null,
460 | "right": null,
461 | "justify_content": null,
462 | "_view_module": "@jupyter-widgets/base",
463 | "overflow": null,
464 | "_model_module_version": "1.2.0",
465 | "_view_count": null,
466 | "flex_flow": null,
467 | "width": null,
468 | "min_width": null,
469 | "border": null,
470 | "align_items": null,
471 | "bottom": null,
472 | "_model_module": "@jupyter-widgets/base",
473 | "top": null,
474 | "grid_column": null,
475 | "overflow_y": null,
476 | "overflow_x": null,
477 | "grid_auto_flow": null,
478 | "grid_area": null,
479 | "grid_template_columns": null,
480 | "flex": null,
481 | "_model_name": "LayoutModel",
482 | "justify_items": null,
483 | "grid_row": null,
484 | "max_height": null,
485 | "align_content": null,
486 | "visibility": null,
487 | "align_self": null,
488 | "height": null,
489 | "min_height": null,
490 | "padding": null,
491 | "grid_auto_rows": null,
492 | "grid_gap": null,
493 | "max_width": null,
494 | "order": null,
495 | "_view_module_version": "1.2.0",
496 | "grid_template_areas": null,
497 | "object_position": null,
498 | "object_fit": null,
499 | "grid_auto_columns": null,
500 | "margin": null,
501 | "display": null,
502 | "left": null
503 | }
504 | },
505 | "1eca330d27a9430e85e5257b96be066b": {
506 | "model_module": "@jupyter-widgets/controls",
507 | "model_name": "HBoxModel",
508 | "state": {
509 | "_view_name": "HBoxView",
510 | "_dom_classes": [],
511 | "_model_name": "HBoxModel",
512 | "_view_module": "@jupyter-widgets/controls",
513 | "_model_module_version": "1.5.0",
514 | "_view_count": null,
515 | "_view_module_version": "1.5.0",
516 | "box_style": "",
517 | "layout": "IPY_MODEL_90cac4dfde3f46ac8594ed67ad0adf53",
518 | "_model_module": "@jupyter-widgets/controls",
519 | "children": [
520 | "IPY_MODEL_de27b48e3ce0416da3bdb664e4db7b4f",
521 | "IPY_MODEL_66aad7a4101b4734be990a31ee7dad00"
522 | ]
523 | }
524 | },
525 | "90cac4dfde3f46ac8594ed67ad0adf53": {
526 | "model_module": "@jupyter-widgets/base",
527 | "model_name": "LayoutModel",
528 | "state": {
529 | "_view_name": "LayoutView",
530 | "grid_template_rows": null,
531 | "right": null,
532 | "justify_content": null,
533 | "_view_module": "@jupyter-widgets/base",
534 | "overflow": null,
535 | "_model_module_version": "1.2.0",
536 | "_view_count": null,
537 | "flex_flow": null,
538 | "width": null,
539 | "min_width": null,
540 | "border": null,
541 | "align_items": null,
542 | "bottom": null,
543 | "_model_module": "@jupyter-widgets/base",
544 | "top": null,
545 | "grid_column": null,
546 | "overflow_y": null,
547 | "overflow_x": null,
548 | "grid_auto_flow": null,
549 | "grid_area": null,
550 | "grid_template_columns": null,
551 | "flex": null,
552 | "_model_name": "LayoutModel",
553 | "justify_items": null,
554 | "grid_row": null,
555 | "max_height": null,
556 | "align_content": null,
557 | "visibility": null,
558 | "align_self": null,
559 | "height": null,
560 | "min_height": null,
561 | "padding": null,
562 | "grid_auto_rows": null,
563 | "grid_gap": null,
564 | "max_width": null,
565 | "order": null,
566 | "_view_module_version": "1.2.0",
567 | "grid_template_areas": null,
568 | "object_position": null,
569 | "object_fit": null,
570 | "grid_auto_columns": null,
571 | "margin": null,
572 | "display": null,
573 | "left": null
574 | }
575 | },
576 | "de27b48e3ce0416da3bdb664e4db7b4f": {
577 | "model_module": "@jupyter-widgets/controls",
578 | "model_name": "FloatProgressModel",
579 | "state": {
580 | "_view_name": "ProgressView",
581 | "style": "IPY_MODEL_3bdcefab5b064cee9803d4a1d3e290f0",
582 | "_dom_classes": [],
583 | "description": "100%",
584 | "_model_name": "FloatProgressModel",
585 | "bar_style": "success",
586 | "max": 244545539,
587 | "_view_module": "@jupyter-widgets/controls",
588 | "_model_module_version": "1.5.0",
589 | "value": 244545539,
590 | "_view_count": null,
591 | "_view_module_version": "1.5.0",
592 | "orientation": "horizontal",
593 | "min": 0,
594 | "description_tooltip": null,
595 | "_model_module": "@jupyter-widgets/controls",
596 | "layout": "IPY_MODEL_7857076f048744cda1c8fe5222168296"
597 | }
598 | },
599 | "66aad7a4101b4734be990a31ee7dad00": {
600 | "model_module": "@jupyter-widgets/controls",
601 | "model_name": "HTMLModel",
602 | "state": {
603 | "_view_name": "HTMLView",
604 | "style": "IPY_MODEL_1278e6bc089c48b9bd1f08fc30b6eb5d",
605 | "_dom_classes": [],
606 | "description": "",
607 | "_model_name": "HTMLModel",
608 | "placeholder": "",
609 | "_view_module": "@jupyter-widgets/controls",
610 | "_model_module_version": "1.5.0",
611 | "value": " 233M/233M [00:03<00:00, 74.8MB/s]",
612 | "_view_count": null,
613 | "_view_module_version": "1.5.0",
614 | "description_tooltip": null,
615 | "_model_module": "@jupyter-widgets/controls",
616 | "layout": "IPY_MODEL_4c50d1e036f3401d8cd92817ae0edb2b"
617 | }
618 | },
619 | "3bdcefab5b064cee9803d4a1d3e290f0": {
620 | "model_module": "@jupyter-widgets/controls",
621 | "model_name": "ProgressStyleModel",
622 | "state": {
623 | "_view_name": "StyleView",
624 | "_model_name": "ProgressStyleModel",
625 | "description_width": "initial",
626 | "_view_module": "@jupyter-widgets/base",
627 | "_model_module_version": "1.5.0",
628 | "_view_count": null,
629 | "_view_module_version": "1.2.0",
630 | "bar_color": null,
631 | "_model_module": "@jupyter-widgets/controls"
632 | }
633 | },
634 | "7857076f048744cda1c8fe5222168296": {
635 | "model_module": "@jupyter-widgets/base",
636 | "model_name": "LayoutModel",
637 | "state": {
638 | "_view_name": "LayoutView",
639 | "grid_template_rows": null,
640 | "right": null,
641 | "justify_content": null,
642 | "_view_module": "@jupyter-widgets/base",
643 | "overflow": null,
644 | "_model_module_version": "1.2.0",
645 | "_view_count": null,
646 | "flex_flow": null,
647 | "width": null,
648 | "min_width": null,
649 | "border": null,
650 | "align_items": null,
651 | "bottom": null,
652 | "_model_module": "@jupyter-widgets/base",
653 | "top": null,
654 | "grid_column": null,
655 | "overflow_y": null,
656 | "overflow_x": null,
657 | "grid_auto_flow": null,
658 | "grid_area": null,
659 | "grid_template_columns": null,
660 | "flex": null,
661 | "_model_name": "LayoutModel",
662 | "justify_items": null,
663 | "grid_row": null,
664 | "max_height": null,
665 | "align_content": null,
666 | "visibility": null,
667 | "align_self": null,
668 | "height": null,
669 | "min_height": null,
670 | "padding": null,
671 | "grid_auto_rows": null,
672 | "grid_gap": null,
673 | "max_width": null,
674 | "order": null,
675 | "_view_module_version": "1.2.0",
676 | "grid_template_areas": null,
677 | "object_position": null,
678 | "object_fit": null,
679 | "grid_auto_columns": null,
680 | "margin": null,
681 | "display": null,
682 | "left": null
683 | }
684 | },
685 | "1278e6bc089c48b9bd1f08fc30b6eb5d": {
686 | "model_module": "@jupyter-widgets/controls",
687 | "model_name": "DescriptionStyleModel",
688 | "state": {
689 | "_view_name": "StyleView",
690 | "_model_name": "DescriptionStyleModel",
691 | "description_width": "",
692 | "_view_module": "@jupyter-widgets/base",
693 | "_model_module_version": "1.5.0",
694 | "_view_count": null,
695 | "_view_module_version": "1.2.0",
696 | "_model_module": "@jupyter-widgets/controls"
697 | }
698 | },
699 | "4c50d1e036f3401d8cd92817ae0edb2b": {
700 | "model_module": "@jupyter-widgets/base",
701 | "model_name": "LayoutModel",
702 | "state": {
703 | "_view_name": "LayoutView",
704 | "grid_template_rows": null,
705 | "right": null,
706 | "justify_content": null,
707 | "_view_module": "@jupyter-widgets/base",
708 | "overflow": null,
709 | "_model_module_version": "1.2.0",
710 | "_view_count": null,
711 | "flex_flow": null,
712 | "width": null,
713 | "min_width": null,
714 | "border": null,
715 | "align_items": null,
716 | "bottom": null,
717 | "_model_module": "@jupyter-widgets/base",
718 | "top": null,
719 | "grid_column": null,
720 | "overflow_y": null,
721 | "overflow_x": null,
722 | "grid_auto_flow": null,
723 | "grid_area": null,
724 | "grid_template_columns": null,
725 | "flex": null,
726 | "_model_name": "LayoutModel",
727 | "justify_items": null,
728 | "grid_row": null,
729 | "max_height": null,
730 | "align_content": null,
731 | "visibility": null,
732 | "align_self": null,
733 | "height": null,
734 | "min_height": null,
735 | "padding": null,
736 | "grid_auto_rows": null,
737 | "grid_gap": null,
738 | "max_width": null,
739 | "order": null,
740 | "_view_module_version": "1.2.0",
741 | "grid_template_areas": null,
742 | "object_position": null,
743 | "object_fit": null,
744 | "grid_auto_columns": null,
745 | "margin": null,
746 | "display": null,
747 | "left": null
748 | }
749 | }
750 | }
751 | }
752 | },
753 | "cells": [
754 | {
755 | "cell_type": "code",
756 | "metadata": {
757 | "id": "V2ccBDwMmcMG",
758 | "colab_type": "code",
759 | "colab": {
760 | "base_uri": "https://localhost:8080/",
761 | "height": 34
762 | },
763 | "outputId": "f3596ece-72a9-44c7-fd77-ba8552cc684b"
764 | },
765 | "source": [
766 | "!pip uninstall torch"
767 | ],
768 | "execution_count": 1,
769 | "outputs": [
770 | {
771 | "output_type": "stream",
772 | "text": [
773 | "\u001b[33mWARNING: Skipping torch as it is not installed.\u001b[0m\n"
774 | ],
775 | "name": "stdout"
776 | }
777 | ]
778 | },
779 | {
780 | "cell_type": "code",
781 | "metadata": {
782 | "id": "BMqStOkCmrwS",
783 | "colab_type": "code",
784 | "colab": {
785 | "base_uri": "https://localhost:8080/",
786 | "height": 170
787 | },
788 | "outputId": "8cecd5f1-d4d2-457d-c5f2-23fbc1326dd5"
789 | },
790 | "source": [
791 | "!pip install --pre torch -f https://download.pytorch.org/whl/nightly/cu101/torch_nightly.html"
792 | ],
793 | "execution_count": 2,
794 | "outputs": [
795 | {
796 | "output_type": "stream",
797 | "text": [
798 | "Looking in links: https://download.pytorch.org/whl/nightly/cu101/torch_nightly.html\n",
799 | "Collecting torch\n",
800 | "\u001b[?25l Downloading https://download.pytorch.org/whl/nightly/cu101/torch-1.6.0.dev20200528%2Bcu101-cp36-cp36m-linux_x86_64.whl (765.5MB)\n",
801 | "\u001b[K |████████████████████████████████| 765.5MB 20kB/s \n",
802 | "\u001b[?25hRequirement already satisfied: numpy in /usr/local/lib/python3.6/dist-packages (from torch) (1.18.4)\n",
803 | "Requirement already satisfied: future in /usr/local/lib/python3.6/dist-packages (from torch) (0.16.0)\n",
804 | "\u001b[31mERROR: fastai 1.0.61 requires torchvision, which is not installed.\u001b[0m\n",
805 | "Installing collected packages: torch\n",
806 | "Successfully installed torch-1.6.0.dev20200528+cu101\n"
807 | ],
808 | "name": "stdout"
809 | }
810 | ]
811 | },
812 | {
813 | "cell_type": "code",
814 | "metadata": {
815 | "id": "m8WLc_tmm_-m",
816 | "colab_type": "code",
817 | "colab": {}
818 | },
819 | "source": [
820 | "import torch"
821 | ],
822 | "execution_count": 0,
823 | "outputs": []
824 | },
825 | {
826 | "cell_type": "code",
827 | "metadata": {
828 | "id": "Hz_If778nA6v",
829 | "colab_type": "code",
830 | "colab": {
831 | "base_uri": "https://localhost:8080/",
832 | "height": 34
833 | },
834 | "outputId": "fa7dbc1f-57b9-4906-88e6-a55bb9ec0ac0"
835 | },
836 | "source": [
837 | "print(torch.__version__)"
838 | ],
839 | "execution_count": 4,
840 | "outputs": [
841 | {
842 | "output_type": "stream",
843 | "text": [
844 | "1.6.0.dev20200528+cu101\n"
845 | ],
846 | "name": "stdout"
847 | }
848 | ]
849 | },
850 | {
851 | "cell_type": "code",
852 | "metadata": {
853 | "id": "MQ4piRfanCep",
854 | "colab_type": "code",
855 | "colab": {
856 | "base_uri": "https://localhost:8080/",
857 | "height": 186,
858 | "referenced_widgets": [
859 | "75ab0b7a6d804f93a574a0ba2ece1a50",
860 | "f4b915078dc8465d8f06f672c84bbdae",
861 | "843a20f4a2c04a1386d0ea66b506d3f2",
862 | "ff7d3ef6f06a4a2fab71babd49f83bca",
863 | "fc26dda3f25d45f48fc24c4e20529884",
864 | "f4aa0e88499b4b2c8e6b609ca9fe1e8d",
865 | "d2964b37745e4de9ba85b97eed987968",
866 | "85e12dd66e52492f981b9e0518ed3bb1",
867 | "fa14f81544254fa38418fd8df0586a73",
868 | "313f087449354e7395a9a8078f5a32b3",
869 | "d0bfeefb99714549996078b75e631fd5",
870 | "f4f0f75ea6574e848c775d213e10ac20",
871 | "d59ce7884cdd43bea7478e4849b274c2",
872 | "81d2aaf5a92b4c55bfc9a8d363dca106",
873 | "a617ecce90284874b7f439f9589879d5",
874 | "961e7ff1ef18449396fb6542daaa5129"
875 | ]
876 | },
877 | "outputId": "36dca186-1b05-4155-9815-c13546a5ad6f"
878 | },
879 | "source": [
880 | "\"\"\"FCN-ResNet101\"\"\"\n",
881 | "fcn = torch.hub.load('pytorch/vision:v0.6.0', 'fcn_resnet101', pretrained=True)\n",
882 | "fcn.eval()\n",
883 | "fcn_example = torch.rand(1, 3, 224, 224)\n",
884 | "fcn_traced_script_module = torch.jit.trace(fcn, fcn_example, strict=False)\n",
885 | "fcn_traced_script_module.save(\"fcn.pt\")"
886 | ],
887 | "execution_count": 5,
888 | "outputs": [
889 | {
890 | "output_type": "stream",
891 | "text": [
892 | "Downloading: \"https://github.com/pytorch/vision/archive/v0.6.0.zip\" to /root/.cache/torch/hub/v0.6.0.zip\n",
893 | "Downloading: \"https://download.pytorch.org/models/resnet101-5d3b4d8f.pth\" to /root/.cache/torch/hub/checkpoints/resnet101-5d3b4d8f.pth\n"
894 | ],
895 | "name": "stderr"
896 | },
897 | {
898 | "output_type": "display_data",
899 | "data": {
900 | "application/vnd.jupyter.widget-view+json": {
901 | "model_id": "75ab0b7a6d804f93a574a0ba2ece1a50",
902 | "version_minor": 0,
903 | "version_major": 2
904 | },
905 | "text/plain": [
906 | "HBox(children=(FloatProgress(value=0.0, max=178728960.0), HTML(value='')))"
907 | ]
908 | },
909 | "metadata": {
910 | "tags": []
911 | }
912 | },
913 | {
914 | "output_type": "stream",
915 | "text": [
916 | "\n"
917 | ],
918 | "name": "stdout"
919 | },
920 | {
921 | "output_type": "stream",
922 | "text": [
923 | "Downloading: \"https://download.pytorch.org/models/fcn_resnet101_coco-7ecb50ca.pth\" to /root/.cache/torch/hub/checkpoints/fcn_resnet101_coco-7ecb50ca.pth\n"
924 | ],
925 | "name": "stderr"
926 | },
927 | {
928 | "output_type": "display_data",
929 | "data": {
930 | "application/vnd.jupyter.widget-view+json": {
931 | "model_id": "fa14f81544254fa38418fd8df0586a73",
932 | "version_minor": 0,
933 | "version_major": 2
934 | },
935 | "text/plain": [
936 | "HBox(children=(FloatProgress(value=0.0, max=217800805.0), HTML(value='')))"
937 | ]
938 | },
939 | "metadata": {
940 | "tags": []
941 | }
942 | },
943 | {
944 | "output_type": "stream",
945 | "text": [
946 | "\n"
947 | ],
948 | "name": "stdout"
949 | }
950 | ]
951 | },
952 | {
953 | "cell_type": "code",
954 | "metadata": {
955 | "id": "t_1MJ6FUnF_J",
956 | "colab_type": "code",
957 | "colab": {
958 | "base_uri": "https://localhost:8080/",
959 | "height": 120,
960 | "referenced_widgets": [
961 | "1eca330d27a9430e85e5257b96be066b",
962 | "90cac4dfde3f46ac8594ed67ad0adf53",
963 | "de27b48e3ce0416da3bdb664e4db7b4f",
964 | "66aad7a4101b4734be990a31ee7dad00",
965 | "3bdcefab5b064cee9803d4a1d3e290f0",
966 | "7857076f048744cda1c8fe5222168296",
967 | "1278e6bc089c48b9bd1f08fc30b6eb5d",
968 | "4c50d1e036f3401d8cd92817ae0edb2b"
969 | ]
970 | },
971 | "outputId": "f6aff1fc-afd0-4134-94a2-f98381751cfe"
972 | },
973 | "source": [
974 | "\"\"\"DeepLabV3-ResNet101\"\"\"\n",
975 | "deeplabv3 = torch.hub.load('pytorch/vision:v0.6.0', 'deeplabv3_resnet101', pretrained=True)\n",
976 | "deeplabv3.eval()\n",
977 | "deeplabv3_example = torch.rand(1, 3, 224, 224)\n",
978 | "deeplabv3_traced_script_module = torch.jit.trace(deeplabv3, deeplabv3_example, strict=False)\n",
979 | "deeplabv3_traced_script_module.save(\"deeplabv3.pt\")"
980 | ],
981 | "execution_count": 6,
982 | "outputs": [
983 | {
984 | "output_type": "stream",
985 | "text": [
986 | "Using cache found in /root/.cache/torch/hub/pytorch_vision_v0.6.0\n",
987 | "Downloading: \"https://download.pytorch.org/models/deeplabv3_resnet101_coco-586e9e4e.pth\" to /root/.cache/torch/hub/checkpoints/deeplabv3_resnet101_coco-586e9e4e.pth\n"
988 | ],
989 | "name": "stderr"
990 | },
991 | {
992 | "output_type": "display_data",
993 | "data": {
994 | "application/vnd.jupyter.widget-view+json": {
995 | "model_id": "1eca330d27a9430e85e5257b96be066b",
996 | "version_minor": 0,
997 | "version_major": 2
998 | },
999 | "text/plain": [
1000 | "HBox(children=(FloatProgress(value=0.0, max=244545539.0), HTML(value='')))"
1001 | ]
1002 | },
1003 | "metadata": {
1004 | "tags": []
1005 | }
1006 | },
1007 | {
1008 | "output_type": "stream",
1009 | "text": [
1010 | "\n"
1011 | ],
1012 | "name": "stdout"
1013 | }
1014 | ]
1015 | }
1016 | ]
1017 | }
--------------------------------------------------------------------------------