├── lol.jpg
├── mdown_copy.py
├── mkdocs.yml
├── .github
└── workflows
│ └── deploy_parse.yml
├── LICENSE
├── LOLMonday_latest.csv
└── README.md
/lol.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/ladiesoflandsat/LOLManuscriptMonday/HEAD/lol.jpg
--------------------------------------------------------------------------------
/mdown_copy.py:
--------------------------------------------------------------------------------
1 | import os
2 | from pathlib import Path
3 |
4 |
5 | def markdown_copy(source_path,target_path):
6 | # Define the source and target file paths
7 | source_file_path = source_path # Replace with the path to your source Markdown file
8 | target_file_path = target_path # Replace with the path to your target Markdown file
9 |
10 | # Define the start and end markers for the content you want to copy
11 | source_start_marker = ""
12 | source_end_marker = ""
13 | target_start_marker = ""
14 | target_end_marker = ""
15 |
16 | # Read the source Markdown file
17 | with open(source_file_path, "r", encoding="utf-8") as source_file:
18 | source_content = source_file.read()
19 |
20 | # Find the indices of the start and end markers in the source content
21 | start_index = source_content.find(source_start_marker)
22 | end_index = source_content.find(source_end_marker)
23 |
24 | # Check if both markers were found in the source content
25 | if start_index != -1 and end_index != -1:
26 | # Extract the content between the markers
27 | content_to_copy = source_content[start_index + len(source_start_marker):end_index]
28 |
29 | # Read the target Markdown file
30 | with open(target_file_path, "r", encoding="utf-8") as target_file:
31 | target_content = target_file.read()
32 |
33 | # Find the location where you want to insert the copied content in the target content
34 | target_start_index = target_content.find(target_start_marker)
35 | target_end_index = target_content.find(target_end_marker)
36 |
37 | # Check if both markers were found in the target content
38 | if target_start_index != -1 and target_end_index != -1:
39 | # Insert the copied content into the target content
40 | updated_content = (
41 | target_content[:target_start_index + len(target_start_marker)]
42 | + content_to_copy
43 | + target_content[target_end_index:]
44 | )
45 |
46 | # Write the updated content back to the target file
47 | with open(target_file_path, "w", encoding="utf-8") as target_file:
48 | target_file.write(updated_content)
49 |
50 | print("Content copied and inserted into the target Markdown.")
51 | else:
52 | print("Insert markers not found in the target Markdown.")
53 | else:
54 | print("Start or end markers not found in the source Markdown.")
55 |
56 | dir_path = os.getcwd()
57 | source_file = os.path.join(dir_path,'README.md')
58 | target_file = os.path.join(dir_path,'docs','README.md')
59 | print(source_file,target_file)
60 | markdown_copy(Path(source_file),Path(target_file))
61 |
--------------------------------------------------------------------------------
/mkdocs.yml:
--------------------------------------------------------------------------------
1 | site_name: Ladies of Landsat ManuscriptMonday
2 | site_description: Ladies of Landsat ManuscriptMonday
3 | site_author: Ladies of Landsat
4 | site_url: https://ladiesoflandsat.github.io/LOLManuscriptMonday
5 |
6 | # Repository
7 | repo_name: LOLManuscriptMonday
8 | repo_url: https://github.com/ladiesoflandsat/LOLManuscriptMonday
9 |
10 | # Copyright
11 | copyright: "Copyright © 2022 - 2023 Ladies of Landsat"
12 |
13 | # Configuration
14 | theme:
15 | name: "material"
16 |
17 | # 404 page
18 | static_templates:
19 | - 404.html
20 |
21 | # Don't include MkDocs' JavaScript
22 | include_search_page: false
23 | search_index_only: true
24 |
25 | # Default values, taken from mkdocs_theme.yml
26 | language: en
27 | palette:
28 | - scheme: default
29 | primary: teal
30 | accent: indigo
31 | toggle:
32 | icon: material/toggle-switch-off-outline
33 | name: Switch to dark mode
34 | - scheme: slate
35 | primary: red
36 | accent: red
37 | toggle:
38 | icon: material/toggle-switch
39 | name: Switch to light mode
40 | font:
41 | text: Google Sans
42 | code: Regular
43 | favicon: assets/favicon.png
44 | logo: "https://raw.githubusercontent.com/ladiesoflandsat/LOLManuscriptMonday/main/lol.jpg"
45 |
46 | # Options
47 | extra:
48 | social:
49 | - icon: fontawesome/brands/github
50 | link: https://github.com/ladiesoflandsat
51 | - icon: fontawesome/brands/twitter
52 | link: https://twitter.com/LadiesOfLandsat
53 | - icon: fontawesome/brands/linkedin
54 | link: https://ca.linkedin.com/company/ladies-of-landsat
55 | - icon: fontawesome/brands/mastodon
56 | link: https://mapstodon.space/@LadiesOfLandsat
57 |
58 | extra_css:
59 | - stylesheets/extra.css
60 |
61 | extra_javascript:
62 | - https://unpkg.com/tablesort@5.3.0/dist/tablesort.min.js
63 | - javascripts/tablesort.js
64 |
65 | plugins:
66 | - search
67 | - minify:
68 | minify_html: true
69 |
70 | # Extensions
71 | markdown_extensions:
72 | - admonition
73 | - abbr
74 | - attr_list
75 | - def_list
76 | - footnotes
77 | - meta
78 | - md_in_html
79 | - toc:
80 | permalink: true
81 | - pymdownx.arithmatex:
82 | generic: true
83 | - pymdownx.betterem:
84 | smart_enable: all
85 | - pymdownx.caret
86 | - pymdownx.critic
87 | - pymdownx.details
88 | - pymdownx.emoji:
89 | emoji_index: !!python/name:materialx.emoji.twemoji
90 | emoji_generator: !!python/name:materialx.emoji.to_svg
91 | options:
92 | custom_icons:
93 | - overrides/.icons
94 | - pymdownx.highlight
95 | - pymdownx.inlinehilite
96 | - pymdownx.keys
97 | - pymdownx.magiclink:
98 | repo_url_shorthand: true
99 | user: squidfunk
100 | repo: mkdocs-material
101 | - pymdownx.mark
102 | - pymdownx.smartsymbols
103 | - pymdownx.superfences:
104 | custom_fences:
105 | - name: mermaid
106 | class: mermaid
107 | format: !!python/name:pymdownx.superfences.fence_code_format
108 | - pymdownx.tabbed
109 | - pymdownx.tasklist:
110 | custom_checkbox: true
111 | - pymdownx.tilde
112 |
113 | # Page tree
114 | nav:
115 | - Introduction: README.md
116 |
--------------------------------------------------------------------------------
/.github/workflows/deploy_parse.yml:
--------------------------------------------------------------------------------
1 | name: Deploy and Parse
2 | on:
3 | workflow_dispatch:
4 | push:
5 | branches:
6 | - main
7 |
8 | jobs:
9 | deploy:
10 | runs-on: ubuntu-latest
11 | steps:
12 | - name: Checkout repository
13 | uses: actions/checkout@v3
14 | with:
15 | fetch-depth: 0
16 | - uses: actions/setup-python@v4
17 | with:
18 | python-version: "3.10"
19 | - name: Install Python dependencies
20 | run: |
21 | pip install \
22 | "wheel" \
23 | "lxml" \
24 | "mkdocs-material" \
25 | "cairosvg>=2.5" \
26 | "mkdocs-git-committers-plugin-2>=1.1.1" \
27 | "mkdocs-git-revision-date-localized-plugin>=1.0" \
28 | "mkdocs-minify-plugin>=0.3" \
29 | "mkdocs-rss-plugin>=1.2" \
30 | "mkdocs-redirects>=1.0" \
31 | "pillow<10"
32 | - name: Sync markdown with script
33 | run: python mdown_copy.py
34 | - name: Deploy documentation
35 | env:
36 | GH_TOKEN: ${{ secrets.GITHUB_TOKEN }}
37 | run: |
38 | mkdocs gh-deploy --force
39 | mkdocs --version
40 | build:
41 | runs-on: ubuntu-latest
42 | needs: deploy
43 | steps:
44 | - uses: actions/checkout@v3
45 | - uses: actions/setup-python@v4
46 | with:
47 | python-version: "3.8"
48 |
49 | - name: upgrade pip and install python packages
50 | run: |
51 | python -m pip install --upgrade pip
52 | pip install -U pip setuptools
53 | pip install requests
54 | pip install beautifulsoup4
55 | pip install pandas
56 | pip install lxml
57 | pip install html5lib
58 | - name: output_render
59 | uses: jannekem/run-python-script-action@v1
60 | with:
61 | script: |
62 | import csv
63 | import json
64 | import requests
65 | from bs4 import BeautifulSoup
66 |
67 | url = "https://ladiesoflandsat.github.io/LOLManuscriptMonday/"
68 |
69 | response = requests.get(url)
70 | key_order = ["Week", "Date", "Name","Article Title","Article Link","Twitter Handle","MM Tweet","Key Words"]
71 | if response.status_code == 200:
72 | soup = BeautifulSoup(response.text, 'html.parser')
73 | table = soup.find('table')
74 |
75 | if table:
76 | table_data = []
77 | rows = table.find_all('tr')
78 | headers = [header.text.strip() for header in rows[0].find_all('th')]
79 |
80 | for row in rows[1:]:
81 | row_data = {}
82 | columns = row.find_all('td')
83 |
84 | for i in range(len(headers)):
85 | row_data[headers[i]] = columns[i].text.strip()
86 | row_data = {key: row_data[key] for key in key_order if key in row_data}
87 | table_data.append(row_data)
88 | with open('LOLMonday_latest.json', 'w') as json_file:
89 | json.dump(table_data, json_file, indent=2)
90 | column_headers = key_order
91 | csv_file_name = "LOLMonday_latest.csv"
92 | with open(csv_file_name, mode="w", newline="", encoding="utf-8") as csv_file:
93 | writer = csv.DictWriter(csv_file, fieldnames=column_headers)
94 | writer.writeheader()
95 | for data in table_data:
96 | writer.writerow(data)
97 |
98 | print(f"Data has been written to {csv_file_name}.")
99 | else:
100 | print("No table found on the web page.")
101 | else:
102 | print(f"Failed to fetch web page. Status code: {response.status_code}")
103 | - name: commit files
104 | continue-on-error: true
105 | run: |
106 | today=$(date +"%Y-%m-%d")
107 | git config --local user.email "action@github.com"
108 | git config --local user.name "GitHub Action"
109 | git add -A
110 | git commit -m "updated datasets ${today} UTC" -a
111 | - name: push changes
112 | continue-on-error: true
113 | uses: ad-m/github-push-action@v0.6.0
114 | with:
115 | github_token: ${{ secrets.GITHUB_TOKEN }}
116 | branch: main
117 |
--------------------------------------------------------------------------------
/LICENSE:
--------------------------------------------------------------------------------
1 | Creative Commons Legal Code
2 |
3 | CC0 1.0 Universal
4 |
5 | CREATIVE COMMONS CORPORATION IS NOT A LAW FIRM AND DOES NOT PROVIDE
6 | LEGAL SERVICES. DISTRIBUTION OF THIS DOCUMENT DOES NOT CREATE AN
7 | ATTORNEY-CLIENT RELATIONSHIP. CREATIVE COMMONS PROVIDES THIS
8 | INFORMATION ON AN "AS-IS" BASIS. CREATIVE COMMONS MAKES NO WARRANTIES
9 | REGARDING THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS
10 | PROVIDED HEREUNDER, AND DISCLAIMS LIABILITY FOR DAMAGES RESULTING FROM
11 | THE USE OF THIS DOCUMENT OR THE INFORMATION OR WORKS PROVIDED
12 | HEREUNDER.
13 |
14 | Statement of Purpose
15 |
16 | The laws of most jurisdictions throughout the world automatically confer
17 | exclusive Copyright and Related Rights (defined below) upon the creator
18 | and subsequent owner(s) (each and all, an "owner") of an original work of
19 | authorship and/or a database (each, a "Work").
20 |
21 | Certain owners wish to permanently relinquish those rights to a Work for
22 | the purpose of contributing to a commons of creative, cultural and
23 | scientific works ("Commons") that the public can reliably and without fear
24 | of later claims of infringement build upon, modify, incorporate in other
25 | works, reuse and redistribute as freely as possible in any form whatsoever
26 | and for any purposes, including without limitation commercial purposes.
27 | These owners may contribute to the Commons to promote the ideal of a free
28 | culture and the further production of creative, cultural and scientific
29 | works, or to gain reputation or greater distribution for their Work in
30 | part through the use and efforts of others.
31 |
32 | For these and/or other purposes and motivations, and without any
33 | expectation of additional consideration or compensation, the person
34 | associating CC0 with a Work (the "Affirmer"), to the extent that he or she
35 | is an owner of Copyright and Related Rights in the Work, voluntarily
36 | elects to apply CC0 to the Work and publicly distribute the Work under its
37 | terms, with knowledge of his or her Copyright and Related Rights in the
38 | Work and the meaning and intended legal effect of CC0 on those rights.
39 |
40 | 1. Copyright and Related Rights. A Work made available under CC0 may be
41 | protected by copyright and related or neighboring rights ("Copyright and
42 | Related Rights"). Copyright and Related Rights include, but are not
43 | limited to, the following:
44 |
45 | i. the right to reproduce, adapt, distribute, perform, display,
46 | communicate, and translate a Work;
47 | ii. moral rights retained by the original author(s) and/or performer(s);
48 | iii. publicity and privacy rights pertaining to a person's image or
49 | likeness depicted in a Work;
50 | iv. rights protecting against unfair competition in regards to a Work,
51 | subject to the limitations in paragraph 4(a), below;
52 | v. rights protecting the extraction, dissemination, use and reuse of data
53 | in a Work;
54 | vi. database rights (such as those arising under Directive 96/9/EC of the
55 | European Parliament and of the Council of 11 March 1996 on the legal
56 | protection of databases, and under any national implementation
57 | thereof, including any amended or successor version of such
58 | directive); and
59 | vii. other similar, equivalent or corresponding rights throughout the
60 | world based on applicable law or treaty, and any national
61 | implementations thereof.
62 |
63 | 2. Waiver. To the greatest extent permitted by, but not in contravention
64 | of, applicable law, Affirmer hereby overtly, fully, permanently,
65 | irrevocably and unconditionally waives, abandons, and surrenders all of
66 | Affirmer's Copyright and Related Rights and associated claims and causes
67 | of action, whether now known or unknown (including existing as well as
68 | future claims and causes of action), in the Work (i) in all territories
69 | worldwide, (ii) for the maximum duration provided by applicable law or
70 | treaty (including future time extensions), (iii) in any current or future
71 | medium and for any number of copies, and (iv) for any purpose whatsoever,
72 | including without limitation commercial, advertising or promotional
73 | purposes (the "Waiver"). Affirmer makes the Waiver for the benefit of each
74 | member of the public at large and to the detriment of Affirmer's heirs and
75 | successors, fully intending that such Waiver shall not be subject to
76 | revocation, rescission, cancellation, termination, or any other legal or
77 | equitable action to disrupt the quiet enjoyment of the Work by the public
78 | as contemplated by Affirmer's express Statement of Purpose.
79 |
80 | 3. Public License Fallback. Should any part of the Waiver for any reason
81 | be judged legally invalid or ineffective under applicable law, then the
82 | Waiver shall be preserved to the maximum extent permitted taking into
83 | account Affirmer's express Statement of Purpose. In addition, to the
84 | extent the Waiver is so judged Affirmer hereby grants to each affected
85 | person a royalty-free, non transferable, non sublicensable, non exclusive,
86 | irrevocable and unconditional license to exercise Affirmer's Copyright and
87 | Related Rights in the Work (i) in all territories worldwide, (ii) for the
88 | maximum duration provided by applicable law or treaty (including future
89 | time extensions), (iii) in any current or future medium and for any number
90 | of copies, and (iv) for any purpose whatsoever, including without
91 | limitation commercial, advertising or promotional purposes (the
92 | "License"). The License shall be deemed effective as of the date CC0 was
93 | applied by Affirmer to the Work. Should any part of the License for any
94 | reason be judged legally invalid or ineffective under applicable law, such
95 | partial invalidity or ineffectiveness shall not invalidate the remainder
96 | of the License, and in such case Affirmer hereby affirms that he or she
97 | will not (i) exercise any of his or her remaining Copyright and Related
98 | Rights in the Work or (ii) assert any associated claims and causes of
99 | action with respect to the Work, in either case contrary to Affirmer's
100 | express Statement of Purpose.
101 |
102 | 4. Limitations and Disclaimers.
103 |
104 | a. No trademark or patent rights held by Affirmer are waived, abandoned,
105 | surrendered, licensed or otherwise affected by this document.
106 | b. Affirmer offers the Work as-is and makes no representations or
107 | warranties of any kind concerning the Work, express, implied,
108 | statutory or otherwise, including without limitation warranties of
109 | title, merchantability, fitness for a particular purpose, non
110 | infringement, or the absence of latent or other defects, accuracy, or
111 | the present or absence of errors, whether or not discoverable, all to
112 | the greatest extent permissible under applicable law.
113 | c. Affirmer disclaims responsibility for clearing rights of other persons
114 | that may apply to the Work or any use thereof, including without
115 | limitation any person's Copyright and Related Rights in the Work.
116 | Further, Affirmer disclaims responsibility for obtaining any necessary
117 | consents, permissions or other rights required for any use of the
118 | Work.
119 | d. Affirmer understands and acknowledges that Creative Commons is not a
120 | party to this document and has no duty or obligation with respect to
121 | this CC0 or use of the Work.
122 |
--------------------------------------------------------------------------------
/LOLMonday_latest.csv:
--------------------------------------------------------------------------------
1 | Week,Date,Name,Article Title,Article Link,Twitter Handle,MM Tweet,Key Words
2 | 1,"Oct 21, 2019",Dr. Keiko Nomura,Oil palm concessions in southern Myanmar consist mostly of unconverted forest,Scientific Reports,@Keiko_geo,Nomura 2019,"forest, deforestation, rubber plantations, Sentinel-1, Sentinel-2, SAR, SRTM, high resolution"
3 | 2,"Oct 28, 2019",Dr. Catherine Nakalembe,Characterizing agricultural drought in the Karamoja subregion of Uganda with meteorological and satellite-based indices,Natural Hazards,@CLNakalembe,Nakalembe 2019,"agricultural drought, NDVI, SPI, remote sensing, Karamoja, East Africa"
4 | 3,"Nov 4, 2019",Dr. Mary Henry and Dr. Jessica McCarty,Fire on the Water Towers: Mapping Burn Scars on Mount Kenya Using Satellite Data to Reconstruct Recent Fire History,Remote Sensing,@MaryHenryGEO and @jmccarty_geo,Henry 2019,"fire, Kenya, MODIS, Landsat, dNBR, active fire, burned areas, Africa"
5 | 4,"Nov 11, 2019",Sherrie Wang,Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques,Remote Sensing of Environment,@sherwang,Wang 2019,"classification, unsupervised learning, agriculture, Landsat, land cover, machine learning, Google Earth Engine, big data, remote sensing"
6 | 5,"Nov 18, 2019",Dr. Michelle Kalamandeen,Pervasive Rise of Small-scale Deforestation in Amazonia,Scientific Reports,@Earth2Mika,Kalamandeen 2018,"deforestation, Amazonia, z-scores, forest loss, Global Forest Change, Landsat, tropical forest, statistical evaluation"
7 | 6,"Nov 25, 2019",Dr. Jody Vogeler,Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015),Remote Sensing of Environment,@JodyVogeler,Vogeler 2018,"canopy cover, Landsat time series, LandsatLinkr, LandTrendr, Minnesota"
8 | 7,"Dec 2, 2019",Dr. Temilola Fatoyinbo,Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta,Environmental Research Letters,@EarthToLola,Fatoyinbo 2018,"lidar, mangrove, biomass, canopy height, Mozambique, blue carbon, monitoring"
9 | 8,"Dec 9, 2019",Dr. Brianna R. Pagán,Exploring the Potential of Satellite Solar-Induced Fluorescence to Constrain Global Transpiration Estimates,Remote Sensing,@Brianna_R_Pagan,Pagán 2019,"solar-induced chlorophyll fluorescence, transpiration, transpiration efficiency, GOME-2, eddy-covariance"
10 | 9,"Dec 16, 2019",Susan M. Kotikot,Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands,Remote Sensing,,Kotikot 2020,"frost zones, topography, MODIS, NASA, Kenya, tea crop"
11 | 10,"Dec 23, 2019",Tianjia Liu,Missing emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and active fire products,Environmental Research Communications,@TheRealPyroTina,Liu 2019,"India, burned area, active fires, crop residue burning, MODIS, Landsat"
12 | 11,"Dec 30, 2019",Jen Hirdman,"Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping",Remote Sensing,@JNHird,Hird 2017,"cloud computing, machine learning, wetland classification, Sentinel-1, Sentinel-2, digital terrain model, boosted regression trees, topographic wetness index, topographic position index, satellite data streams"
13 | 12,"Jan 6, 2020",Dr. Maryam Pourshamsi,A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data,IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing,@marpourshamsi,Pourshamsi 2018,"data fusion, forest height, L-band, LiDAR (RH100), polarimetric synthetic aperture radar interferometry (PolInSAR), support vector machine (SVM)"
14 | 13,"Jan 13, 2020",Dr. Beth Tellman,Understanding the role of illicit transactions in land-change dynamics,Nature Sustainability,@pazjusticiavida,Tellman 2020,"conceptual framework, illicit land transactions, remote sensing, land use, interdisciplinary, narco-deforestation"
15 | 14,"Jan 20, 2020",Andréa Puzzi Nicolau,"A spatial pattern analysis of forest loss in the Madre de Dios region, Peru",Environmental Research Letters,@puzzinicolau,Puzzi Nicolau 2019,"Landsat, forest loss, Amazon, conservation, drivers of deforestation, Peru, spectral mixture analysis"
16 | 15,"Jan 27, 2020",Lillian Ndungu,Application of MODIS NDVI for Monitoring Kenyan Rangelands Through a Web Based Decision Support Tool,Frontiers in Environmental Science,@lilianwangui,Ndungu 2019,"ASALS, rangelands, NDVI, MODIS, vegetation indices, Kenya"
17 | 16,"Feb 3, 2020",Kelsey Herndon,An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel,Sensors,@KEHerndon,Herndon 2020,"remote sensing, spectral indices, Landsat 8 OLI, West Africa"
18 | 17,"Feb 10, 2020",Enass Said Al-Kharusi,Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data,Remote Sensing,@SaidEnass,Al-Kharusi 2020,"Sentinel-2A, northern lakes, remote sensing, atmospheric correction, coloured dissolved organic matter (CDOM), water quality"
19 | 18,"Feb 17, 2020",Dr. Amy Neuenschwander,The ATL08 land and vegetation product for the ICESat-2 Mission,Remote Sensing of Enviornment,@longhornglam,Neuenschwander 2019,"ICESat-2, Lidar, vegetation, terrain, land"
20 | 19,"Feb 24, 2020",Dr. Pinki Mondal,"A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data",Remote Sensing of Environment,@environmondal,Mondal 2020,"SDG indicator, forest degradataion, climate, rain-use efficiency, MODIS, Landsat, Sentinel, CHIRPS, Google Earth Engine, protected area, Asia"
21 | 20,"Mar 2, 2020",Dr. Agnieszka Faulkner,Coastal Tidal Effects on Industrial Thermal Plumes in Satellite Imagery,Remote Sensing,@its__Agnes,Faulkner 2019,"industrial plumes, remote sensing, Landsat 8, ASTER, SST"
22 | 21,"Mar 9, 2020",Grace Koech,"Climate change vulnerability assessment using a GIS modelling approach in ASAL ecosystem: a case study of Upper Ewaso Nyiro basin, Kenya",Modeling Earth Systems and Environment,@GraceKoech1,Koech 2020,"climate change, vulnerability, spatial analyses, semi-arid"
23 | 22,"Mar 16, 2020",Dr. Eleanor Stokes,Urban Applications of Nasa’s Black Marble Product Suite,Remote Sensing of Environment,@UrbanElla,Stokes 2019,"urbanization, energy infrastructure, nighttime lights, satellite, urban land use, human settlement, Suomi-NPP, NOAA-20, NASA Black Marble, VIIRS-DNB, Night Lights, NTL"
24 | 23,"Mar 23, 2020",Africa Flores-Anderson,"Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala",Frontiers in Environmental Science,@africa_science,Flores-Anderson 2020,"hyperspectral remote sensing, water quality, chlorophyll a concentration, Lake Atitlán, Guatemala"
25 | 24,"Mar 30, 2020",Amanda Weigel,A Spatial Pattern Analysis of Land Surface Roughness Heterogeneity and its Relationship to the Initiation of Weak Tornadoes,Earth Interactions,@amweigelWX,Weigel 2019,"atmosphere–land interaction, boundary layer, geographic information systems (GIS), land surface, tornadoes, tornadogenesis"
26 | 25,"Apr 6, 2020",Dr. Nkeiruka Nneti Onyia,Normalized Difference Vegetation Vigour Index: A New Remote Sensing Approach to Biodiversity Monitoring in Oil Polluted Regions,Remote Sensing,@NNkeiru,Onyia 2018,"biodiversity monitoring, species diversity, hyper-spectral imaging, Hyperion, spectral metrics, vegetation vigour, oil pollution"
27 | 26,"Apr 13, 2020",Dr. Mika Tosca,Attributing Accelerated Summertime Warming in the Southeast United States to Recent Reductions in Aerosol Burden: Indications from Vertically-Resolved Observations,Remote Sensing,@trans_icon_mika,Tosca 2017,"warming hole, air quality, southeast US, global warming, climate change, aerosols"
28 | 27,"Apr 20, 2020",Dr. Gopika Suresh,Application of the automatic seep location estimator (ASLE) with the use of contextual information for estimating offshore oil seeps,Remote Sensing Applications: Society and Environment,@Go__pika,Suresh 2017,"automatic classification, ASLE, oil slicks, oil seeps, SAR"
29 | 28,"Apr 27, 2020",Dr. Laura Dingle Robertson,Assessing Land Cover Change and Anthropogenic Disturbance in Wetlands Using Vegetation Fractions Derived from Landsat 5 TM Imagery (1984–2010),Wetlands,@LDR1,Dingle Robertson 2015,"wetlands, spectral mixture analysis, anthropogenic disturbance, time series, Landsat"
30 | 29,"May 4, 2020",Phoebe Oduor,Land Cover Mapping for Green House Gas Inventories in Eastern and Southern Africa Using Landsat and High Resolution Imagery: Approach and Lessons Learnt,Earth Science Satellite Applications,@poduor24,Oduor 2016,"land cover, land cover change, accuracy assessment, land cover class, land cover mapping"
31 | 30,"May 11, 2020",Jesslyn Brown,"Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach",Remote Sensing of Environment,@jesslynbrown1,Brown 2020,"time series, Landsat, analysis ready data, land cover, change detection, monitoring, Earth observations"
32 | 31,"May 18, 2020",Dr. Harini Nagendra,Classification of Indian cities using Google Earth Engine,Journal of Land Use Science,@HariniNagendra,Nagendra 2019,"urbanization, land cover, Google Earth Engine, supervised classification, random forest classification tree, Landsat images"
33 | 32,"May 25, 2020",Dr. Inga Jonkheere,"Image Analysis of Hemispherical Photographs, Algorithms and Calculations","Hemispherical Photography in Forest Science: Theory, Methods, Applications",@aingejo,Jonkheere 2017,"biophysical data extraction, hemispherical photography algorithms, image classification, sun maps, vegetation canopy structure"
34 | 33,"Jun 1, 2020",Radhika Bhargava,A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana,"Estuarine, Coastal and Shelf Science",@radb06,Bhargava 2021,"mangrove loss, coastal erosion, coastal accretion, Google Earth Engine, water classification"
35 | 34,"Jun 8, 2020",Dr. Raha Hakimdavar,Monitoring Water-Related Ecosystems with Earth Observation Data in Support of Sustainable Development Goal (SDG) 6 Reporting,Remote Sensing,@RahaHakimdavar,Hakimdavar 2020,"water-related ecosystems, surface water extent, mangroves, water quality, Sustainable Development Goal 6, Indicator 6.6.1"
36 | 35,"Jun 15, 2020",Dr. Polyanna Da Conceição Bispo,Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry,Remote Sensing of Environment,@Polybispo,Da Conceição Bispo 2019,"tropical forests, successional stages, forest height, Synthetic Aperture Radar, interferometry, TanDEM-X"
37 | 36,"Jun 22, 2020",Dr. Samiah Moustafa,Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet,Remote Sensing of Environment,@Samiahmou,Moustafa 2017,"MODIS, WV-2, albedo, ablation zone, Greenland ice sheet, spatial representativeness"
38 | 37,"Jun 29, 2020",Dr. Fabiola D. Yépez and Ana Lucrecia Rivera,"Assessing hydrometeorological impacts with terrestrial and aerial Lidar data in Monterrey, México","International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences",@fabiolayepez and @LucreciaRivera,Yépez 2013,"hidrometeorological impacts, Lidar, environmental policy, risk management"
39 | 38,"Jul 6, 2020",Dr. Michelle Stuhlmacher,Environmental Outcomes of Urban Land System Change: Comparing Riparian Design Approaches in the Phoenix Metropolitan Area,Land Use Policy,@MFStuhlmacher,Stuhlmacher 2020,"land system architecture, design, urban development, remote sensing, urban land systems"
40 | 39,"Jul 13, 2020",Richa Marwaha,Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data,Journal of Applied Remote Sensing,@richa_marwaha,Marwaha 2015,"support vector machine, spectral angle mapper, minimum noise fraction, error matrix"
41 | 40,"Jul 20, 2020",Meyra Fuentes and Dr. Koreen Millard,Big geospatial data analysis for Canada’s Air Pollutant Emissions Inventory (APEI): using google earth engine to estimate particulate matter from exposed mine disturbance areas,GIScience & Remote Sensing,@MDelMal and @GeoKoreen,Fuentes 2020,"Google Earth Engine, random forest classification, transfer learning, air quality, mine mapping"
42 | 41,"Jul 27, 2020",Dr. Apoorva Shastry,Water Surface Elevation Constraints in a Data Assimilation Scheme to Infer Floodplain Topography: A Case Study in the Logone Floodplain,Geophysical Research Letters,@ApoorvaShastry,Shastry 2020,"flood inundation prediction, topography, Landsat 7, Landsat 8, MERIT DEM, LISFLOOD-FP, Cameroon"
43 | 42,"Aug 3, 2020",Dr. Jill Deines,Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine,Remote Sensing of Environment,@JillDeines,Deines 2019,"irrigation, Google Earth Engine, Landsat time series, groundwater, High Plains Aquifer, Ogallala Aquifer, agriculture"
44 | 43,"Aug 10, 2020",Sheryl Reyes,Enhancing Sustainability in Traditional Agriculture: Indicators for Monitoring the Conservation of Globally Important Agricultural Heritage Systems(GIAHS) in Japan,Sustainability,@srcreyes,Reyes 2020,"agricultural heritage systems, traditional knowledge, socio-ecological production, landscapes and seascapes (SEPLS)"
45 | 44,"Aug 17, 2020",Dr. Katarzyna Ewa Lewińska,Short-term vegetation loss versus decadal degradation of grasslands in the Caucasus based on Cumulative Endmember Fractions,Remote Sensing of Environment,@kelewinska,Lewińska 2020,"land degradation, rangelands, spectral mixture analysis (SMA), MODIS, Caucasus mountains, LandTrendr, Landsat, Google Earth Engine"
46 | 45,"Aug 24, 2020",Agatha Czekajlo,The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics,International Journal of Applied Earth Observation and Geoinformation,@AgathaCzekajlo,Czekajlo 2020,"urban, vegetation, time series, Landsat, spectral unmixing, Canada"
47 | 46,"Aug 31, 2020",Dr. Carolina Monmany Garzia,"How are landscape complexity and vegetation structure related across an agricultural frontier in the subtropical Chaco, NW Argentina?",Journal of Arid Environments,@CMonmanyGarzia,Monmany Garzia 2015,"landscape metrics, QuickBird, 2-D complexity, 3-D complexity"
48 | 47,"Sep 7, 2020",Nimisha Wagle,Past and Present Practices of Topographic Base Map Database Update in Nepal,ISPRS International Journal of Geo-Information,@Wagle1996,Wagle 2020,"topographic base map, national mapping agency, updates, history, ZY-3, Nepal"
49 | 48,"Sep 14, 2020",Dr. Mirela Tulbure,Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region,Remote Sensing of Environment,@MirelaGTulbure,Tulbure 2016,"Landsat time series, seasonally continuous, surface water dynamics, flooding dynamics, accuracy assessment, probability sampling design, Murray–Darling Basin, Australia, competing water demands, drought, random forest, long term trends, water, river basin, water management"
50 | 49,"Sep 21, 2020",Dr. Gohar Ghazaryan,Local-scale agricultural drought monitoring with satellite-based multi-sensor time-series,GIScience & Remote Sensing,@ghazaryangohar,Ghazaryan 2020,"crop stress, Sentinel-1, Landsat-8, Sentinel 2, logistic regression, data fusion"
51 | 50,"Sep 28, 2020",Sarah Banks and Dr. Koreen Millard,Contributions of Actual and Simulated Satellite SAR Data for Substrate Type Differentiation and Shoreline Mapping in the Canadian Arctic,Remote Sensing,@SAR_ahBanks and @GeoKoreen,Banks 2017,"RADARSAT-2, RADARSAT Constellation Mission, random forests, Arctic, shorelines"
52 | 51,"Oct 5, 2020",Karen Chen,Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution,Remote Sensing of Environment,@THKarenChen,Chen 2020,urban form; urban growth; urbanization; deep learning; semantic segmentation; multi-temporal classification; spatial and temporal transferability; Landsat
53 | 52,"Oct 12, 2020",Dr. Karen Bailey,Land-cover change within and around protected areas in a biodiversity hotspot,Journal of Land Use Science,@karnebe,Bailey 2015,"land-cover change, land-use change, protected area, Landsat, southern Africa"
54 | 53,"Oct 19, 2020",Dr. Laura Duncanson,"Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California",Remote Sensing of Environment,@LauraDuncanson,Duncanson 2020,"GEDI, NISAR, ICESat-2, biomass estimation, biomass errors, data fusion"
55 | 54,"Oct 26, 2020",Dr. Vanessa Brum-Bastos,Multi-source data fusion of optical satellite imagery to characterize habitat selection from wildlife tracking data,Ecological Informatics,@VanessaBBastos,Brum-Bastos 2020,"movement analysis, remote sensing, NDVI, MODIS, Landsat, data fusion, multi-source"
56 | 55,"Nov 2, 2020",Mary K. Bennett,Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth Engine,Drones,@Katie_Ben91,Bennett 2020,"drone mapping, coral reefs, random forest, Google Earth Engine, remote sensing, RPAS, heron reef, drone imagery"
57 | 56,"Nov 9, 2020",Dr. Flavia de Souza Mendes,Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso,Remote Sensing,@flasmendes,de Souza Mendes 2019,"Cerrado, Amazon, vegetation type, optical, sar, synergism, mapping"
58 | 57,"Nov 16, 2020",Dr. Alicia Caruso,"Airborne hyperspectral characterisation of hydrothermal alteration in a regolith-dominated terrain, southern Gawler Ranges, South Australia",Australian Journal of Earth Sciences,@aliciascaruso,Caruso 2020,"mineral exploration, regolith-dominated terrain, hyperspectral imagery, HyMap, Spectral Feature Fitting, X-ray diffraction, hydrothermal alteration, Gawler Ranges"
59 | 58,"Nov 23, 2020",Dr. Di Yang,Open land-use map: a regional land-use mapping strategy for incorporating OpenStreetMap with earth observations,Geo-spatial Information Science,@yangdi1031,Yang 2017,"OpenStreetMap (OSM), Volunteered Geographic Information (VGI), crowdsourced data, random forest, Google Earth Engine (GEE)"
60 | 59,"Nov 30, 2020",Dr. Raechel Portelli,Describing the problem-solving strategies of expert image interpreters using graphical knowledge elicitation methods,GIScience & Remote Sensing,@CurmudgeonPhD,Portelli 2015,"image interpretation, expertise, knowledge elicitation"
61 | 60,"Dec 7, 2020",Dr. Xiao Xiang Zhu,A Review of Ten-Year Advances of Multi-Baseline SAR Interferometry Using TerraSAR-X Data,Remote Sensing,@xiaoxiang_zhu,Zhu 2018,"multi-baseline, multi-pass, PS, DS, geodetic, TomoSAR, D-TomoSAR, PSI, robust estimation, covariance matrix, InSAR, SAR, review"
62 | 61,"Dec 14, 2020",Chippie Kislik,Application of UAV Imagery to Detect and Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River,Remote Sensing,@chippiekizzle,Kislik 2020,"benthic mapping, drones, submerged aquatic vegetation, filamentous algae, macrophytes"
63 | 62,"Dec 21, 2020",Dr. Priyanka deSouza,"Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications",Atmospheric Measurement Techniques,@PDez90,deSouza 2020,"near-surface particulate matter, air quality, Nairobi, Kenya, ground-based monitors, aerosol optical depth, MODIS, MISR"
64 | 63,"Dec 28, 2020",2020 MM Moments Thread,,2020 MM,,,
65 | 64,"Jan 4, 2021",Dr. Joanne White,Evaluating the capacity of single photon lidar for terrain characterization under a range of forest conditions,Remote Sensing of Environment,@Joanne_C_White,White 2021,"forestry, elevation, SPL, ALS, Lidar, forest inventory"
66 | 65,"Jan 11, 2021",Dr. Dawn Wright,"Swells, Soundings, and Sustainability, but…“Here Be Monsters”",Oceanography,@deepseadawn,Wright 2017,"ocean mapping, GIS, Earth observations, multidimensional approaches, sustainable development goal monitoring, SDG"
67 | 66,"Jan 18, 2021",Dr. Meredith Brown,Intercomparison of Machine-Learning Methods for Estimating Surface Shortwave and Photosynthetically Active Radiation,Remote Sensing,@mglbrown,Brown 2020,"PAR, machine-learning, MODIS, shortwave radiation, radiative transfer, surface radiation, satellite remote sensing, radiation budget"
68 | 67,"Jan 25, 2021",Charmaine Cruz,"Linear spectral unmixing of Sentinel-3 imagery for urban land cover - land surface temperature (LST) analysis: A case study of metro Manila, Philippines","International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences",@charmcharmcruz,Cruz 2019,"urbanization, urban heat island, land cover fractions, land surface temperature, remote sensing"
69 | 68,"Feb 1, 2021",Dr. Louise Leroux,Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices,European Journal of Agronomy,@LerouxLouise4,Leroux 2019,"crop yield estimation and forecast, food security, MODIS NDVI and LST, SMOS SSM, statistical model, SARRA-O crop model, uncalibrated approach"
70 | 69,"Feb 8, 2021",Ufuoma Ovienmhada,Earth observation technology applied to environmental management : a case study in Benin,DSpace@MIT,@ItsUfuoma,Ovienmhada 2020,"Landsat, Sentinel-2, Sentinel-1, Planet, local stakeholders, invasive plant species, water quality, Benin"
71 | 70,"Feb 15, 2021",Dr. Alyssa Whitcraft,No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework,Remote Sensing of Environment,@AKWhitcraft,Whitcraft 2019,"Earth observations, agriculture, food security, Sustainable development goals, policy mandates, GEOGLAM"
72 | 71,"Feb 22, 2021",Jacqueline Hung,"Environmental land-cover classification for integrated watershed studies: Cape Bounty, Melville Island, Nunavut",Arctic Science,@jackiehung4,Hung 2020,"parametric algorithms, non-parametric algorithms, land cover, WorldView-2, Cape Bountry Arctic Watershed Observatory, Nunavut, support vector machine"
73 | 72,"Mar 1, 2021",Carly Beneke (Mertes),Detecting change in urban areas at continental scales with MODIS data,Remote Sensing of Environment,@CarlyMertes,Mertes 2015,"urban areas, urbanization, cities, land cover, change detection, classification, machine learning, decision trees, data fusion, decision fusion"
74 | 73,"Mar 8, 2021",Anam Khan,Reviews and syntheses: Ongoing and emerging opportunities to improve environmental science using observations from the Advanced Baseline Imager on the Geostationary Operational Environmental Satellites,Biogeosciences - Preprint,@An_Khan3,Khan 2021,"GOES, geostationary satellites, environmental monitoring, heat fluxes, droughts, wildfires"
75 | 74,"Mar 15, 2021",Dr. Francesca Giannetti,A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series,Remote Sensing,@fgiannetti_FRS,Giannetti 2020,"Landsat, forest disturbances, time series analysis, remote sensing, Mediterranean forest, optical time series images, algorithm, change detection"
76 | 75,"Mar 22, 2021",Dr. Yujia Zhang,Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression,Landscape Ecology,,Zhang 2019,"Google Street View, 3D urban form, Geographically weighted regression, Land surface temperature, Urban heat island"
77 | 76,"Mar 29, 2021",Dr. Mylène Jacquemart,"What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska",Geology,@MyleneJac,Jacquemart 2020,"Planet, Arctic, DEM, glacier detachment, Flat Creek Glacier, Alaska"
78 | 77,"April 5, 2021",Kurnia Latifiana,Spatial Habitat Suitability Modeling of the Roti Snake-Necked Turtle (Chelodina Mccordi) Based on Landsat-8 Imagery and GIS,2018 4th International Conference on Science and Technology,@latifiana,Latifiana 2018,"Geographic Information System (GIS), Habitat Suitability Index (HSI), freshwater turtles, conservation"
79 | 78,"April 12, 2021",Dr. Kirsten J. Lees,Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale,Science of The Total Environment,@K_J_Lees,Lees 2021,"TG model, photosynthesis, NDVI, satellite, blanket bog"
80 | 79,"April 26, 2021",Dr. Hannah Kerner,Rapid Response Crop Maps in Data Sparse Regions,KDD ’20 Humanitarian Mapping Workshop,@hannah_kerner,Kerner 2020,"agriculture, food security, crop classification, neural networks, Earth observation"
81 | 80,"May 3, 2021",Dr. Viviana Zalles,Rapid expansion of human impact on natural land in South America since 1985,Science Advances,@vzalles,Zalles 2021,"Landsat, SWIR, NIR, NDVI, land-use conversion, land cover modification, South America"
82 | 81,"May 10, 2021",Dr. Ninni Saarinen,Understanding 3D structural complexity of individual Scots pine trees with different management history,Ecology and Evolution,@ninni_saarinen,Saarinen 2021,"box dimension, forest ecology, ground-based LiDAR, growth and yield, silviculture, terrestrial laser scanning, tree structure"
83 | 82,"May 17, 2021",Dr. Yhasmin Mendes de Moura,Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data,Remote Sensing,@yhasmoura,Mendes de Moura 2020,"airborne LiDAR, Amazon forest, aboveground carbon, canopy height, forest disturbance"
84 | 83,"May 24, 2021",Amy Pickens,Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series,Remote Sensing of Environment,,Pickens 2020,"surface water, Landsat, time-series, area estimation, change detection, Global"
85 | 84,"May 31, 2021",Angel Chen,Biophysical controls of increased tundra productivity in the western Canadian Arctic,Remote Sensing of Environment,@angelchen95,Chen 2021,"Landsat, Random Forests, Arctic tundra, greening, EVI, vegetation indices, climate change"
86 | 85,"June 7, 2021",Dr. Teresa Konlechner,Mapping spatial variability in shoreline change hotspots from satellite data; a case study in southeast Australia,"Estuarine, Coastal and Shelf Science",@tkonlechner,Konlechner 2020,"coastal erosion, Google earth engine, shoreline dynamics, shoreline detection, satellite derived shorelines"
87 | 86,"June 14, 2021",Dr. Min Xu,Implementation Strategy and Spatiotemporal Extensibility of Multipredictor Ensemble Model for Water Quality Parameter Retrieval With Multispectral Remote Sensing Data,IEEE Transactions on Geoscience and Remote Sensing,@MinXu_UC,Xu 2021,"chlorophyll-a (Chl-a), ensemble model, spatiotemporal extensibility, space and time, water quality"
88 | 87,"June 21, 2021",Dr. Kaitlin M. Gold,Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato,Remote Sensing,@KaitlinMGold,Gold 2020,"field spectroscopy, pathogen; plant disease, agriculture, shortwave infrared, hyperspectral"
89 | 88,"June 28, 2021",Mary Immaculate Neh-Fru,"Remote Sensing for Geological Investigation of Mayo Kila and Environs, North West Region of Cameroon",American Journal of Earth Sciences,@ImmaculateNeh,Neh-Fru 2020,"Lineaments, fractal analysis, orogeny, remote sensing, Mayo Kila"
90 | 89,"July 5, 2021",Abigail Barenblitt,The large footprint of small-scale artisanal gold mining in Ghana,Science of the Total Environment,@abarenblitt,Barenblitt 2021,"Galamsey, Landsat, extent mapping, NDVI, Google Earth Engine"
91 | 90,"July 12, 2021",Dr. Bianca Molinari,Assessing Spatial Variation in Algal Productivity in a Tropical River Floodplain Using Satellite Remote Sensing,Remote Sensing,@molinari_bia,Molinari 2021,"statistical modelling, wetlands, tropical rivers, wetland management, epiphyton, phytoplankton, primary productivity, Landsat 8, Australia"
92 | 91,"July 19, 2021",Dr. Cheryl Doughty,Characterizing spatial variability in coastal wetland biomass across multiple scales using UAV and satellite imagery,Remote Sensing in Ecology and Conservation,@cherylldoughty,Doughty 2021,"drones, Landsat, saltmarsh, semivariogram, spatial heterogeneity, unoccupied aerial systems"
93 | 92,"July 26, 2021",Dr. Lorena A. Santos,Quality control and class noise reduction of satellite image time series,ISPRS Journal of Photogrammetry and Remote Sensing,@lorenaalvesgo,Santos 2021,"self-organizing map, class noise reduction, Bayesian inference, satellite image time series, land use and cover classification"
94 | 93,"August 2, 2021",Dr. Laura Chasmer,Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence With a New Active Normalized Burn Ratio for Wildfires,Geophysical Research Letters,@ErsPeat,Chasmer 2017,"active normalized burn ratio, dNBR, lidar, Landsat 7, Fort McMurray, Canada, peatland, wildfire"
95 | 94,"August 9, 2021",Gizem Şenel,Exploring the potential of Landsat-8 OLI and Sentinel-2 MSI data for mapping and monitoring Enez Dalyan Lagoon,Desalination and Water Treatment,@GizemSenel,Senel 2019,"coastal lagoon monitoring, Landsat 8, Sentinel-2, spectral water index algorithms, normalized difference water index"
96 | 95,"August 16, 2021",Dr. Emma Li Johansson,"Mapping and quantifying perceptions of environmental change in Kilombero Valley, Tanzania",Ambio,@emmalijohansson,Johansson & Abdi 2020,"deforestation, large-scale land acquisitions, mixed methods, participatory research, remote sensing, socio-environmental change"
97 | 96,"August 23, 2021",Dr. Cibele Hummel do Amaral,Characterization of indicator tree species in neotropical environments and implications for geological mapping,Remote Sensing of Environment,@CibeleHdoAmaral,do Amaral 2018,"geobotany, Cerrado biome, sedimentary formations, multivariate analysis, spectroscopy, Spectral Mixture Analysis"
98 | 97,"August 30, 2021",Zoe Pierrat,Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest,JGR Biogeosciences,@zoeapie,Pierrat 2021,"tower-based remote sensing, PhotoSpec, vegetation indices, spring transition, Boreal forests"
99 | 98,"September 6, 2021",Rabia Kahn,Water quality monitoring over Finger Lakes region using Sentinel-2 imagery on Google Earth Engine cloud computing platform,XXIV ISPRS Congress,@MunsafRabia,Khan 2021,"Google Earth Engine, Finger Lakes, Sentinel 2, sediment loading, water quality"
100 | 99,"September 13, 2021",Dr. Catherine Champagne,Impact of Soil Moisture Data Characteristics on the Sensitivity to Crop Yields Under Drought and Excess Moisture Conditions,Remote Sensing,@cathchampagne,Champagne 2019,"soil moisture, drought, agriculture, SMOS, ESA-CCI"
101 | 100,"September 20, 2021",Mahsa Khodaee,Monitoring Forest Infestation and Fire Disturbance in the Southern Appalachian Using a Time Series Analysis of Landsat Imagery,Remote Sensing,@mahsa_khodaee,Khodaee 2020,"Hemlock Woolly Adelgid, fire, Landsat, Tasseled Cap Transformation"
102 | 101,"Sept 27, 2021",EO Scientist Landsat 9 Trading Card Deck,,,,L9 Cards,
103 | 102,"October 4, 2021",Dr. María Fernández-Giménez and Dr. Ginger Allington,Using an integrated social-ecological analysis to detect effects of household herding practices on indicators of rangeland resilience in Mongolia,Environmental Research Letters,@gigi_rose,Fernández-Giménez 2018,"pastoralism, grassland, mobility, statistical matching, otor, dzud, resilience"
104 | 103,"October 11, 2021",Dr. Milto Miltiadou,A Comparative Study about Data Structures Used for Efficient Management of Voxelised Full-Waveform Airborne LiDAR Data during 3D Polygonal Model Creation,Remote Sensing,@DrMiltiadou,Miltiadou 2021,"LiDAR, voxelisation, iso-surface, visualisations, data structures, efficiency, memory management, execution time, volumetric data"
105 | 104,"October 18, 2021",Emily C. Adams,Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019–2021 Desert Locust Upsurge,Frontiers in Climate,@emily4eo,Adams 2021,"locust, NDVI, vegetation, damage assessment, MODIS, harmonized landsat sentinel"
106 | 105,"October 25, 2021",Gina Maskell,Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam,Remote Sensing of Environment,@GinaMask,Maskell 2021,"agroforestry, smallholder agriculture, crop mask, Sentinel-1, Sentinel-2, data fusion, Google Earth Engine, random forest"
107 | 106,"November 1, 2021",Dr. Angela Kross,Using Artificial Neural Networks and Remotely Sensed Data to Evaluate the Relative Importance of Variables for Prediction of Within-Field Corn and Soybean Yields,Remote Sensing,@angela_kross,Kross 2020,"corn; soybean, yield prediction, remote sensing, vegetation indices, artificial neural network, elevation, within-field scale"
108 | 107,"November 8, 2021",Bogumila Backiel,Mapping Sandbars in the Connecticut River Watershed through Aerial Images for Floodplain Conservation,Scholarworks at UMass Amherst,@bobackiel,Backiel 2018,"NAIP, aerial imagery, fluuvial geomorphic feature modelling, Connecticut River, New England, sandbars"
109 | 108,"November 15, 2021",Dr. Meghan Halabisky,Harnessing the Temporal Dimension to Improve Object-Based Image Analysis Classification of Wetlands,Remote Sensing,@mhalabisky1,Halabisky 2018,"time series, Landsat, wetlands, hydrology, hydroperiod, high resolution, GEOBIA, OBIA"
110 | 109,"November 22, 2021",Dr. Swanni Alvarado,Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents,Global Ecology and Biogeography,@SwanniAlvarado,Alvarado 2020,"MODIS, burned area, dry season, rainfall, CHIRPS, fuel conditions, Pantropical savannas"
111 | 110,"November 29, 2021",Dr. Camile Söthe,Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations,Geoderma,@SotheCamile,Söthe 2022,"soil organic carbon, machine learning, carbon cycle, satellite data, Google Earth Engine, climate change, peatland"
112 | 111,"December 6, 2021",Dr. Ane Alencar,Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform,Remote Sensing,@anealencar3,Alencar 2020,"Cerrado, land cover, grasslands, forests, monitoring, random forest, spectral indexes, vegetation seasonality"
113 | 112,"December 13, 2021",Dr. Tahisa Neitzel Kuck,Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks,Remote Sensing,@tatakuck,Kuck 2021,"selective logging, synthetic aperture radar, SAR, convolutional neural networks"
114 | 113,"December 20, 2021",Dr. Michelle Picoli,Land use change: the barrier for sugarcane sustainability,"Biofuels, Bioproducts, & Biorefining",@Michelle_Picoli,Picoli 2021,"public policy, bioethanol production, Brazil, Landsat, MapBiomas, land-use change"
115 | 114,"December 27, 2021",2021 MM Moments Thread,,2021 MM,2021 MM,,
116 | 115,"January 3, 2022",Dr. Jessica McCarty,Reviews and syntheses: Arctic fire regimes and emissions in the 21st century,Biogeosciences,@jmccarty_geo,McCarty 2021,"Arctic, boreal, fire regimes, fire emissions, MODIS, VIIRS, Sentinel-2, Earth observations"
117 | 116,"January 10, 2022",Katja Kowalski,Quantifying drought effects in Central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series,Remote Sensing of Environment,@katja_kowalski,Kowalski 2022,"fractional cover, support vector regression, NDFI, photosynthetic vegetation, PV, non-photosynthetic vegetation, NPV, soil, Copernicus, climate change"
118 | 117,"January 17, 2022",Dr. Kiana Zolfaghari,Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment,IEEE Transactions on Geoscience and Remote Sensing,@KianaZol,Zolfaghari 2021,"cyanobacteria harmful algal bloom (Cyano HAB), hyperspectral, machine learning (ML), neural network, phycocyanin (PC), spectral resolution"
119 | 118,"January 24, 2022",Alexandra Runge,Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr,Remote Sensing of Environment,@RungeAlexandra,Runge 2022,"retrogressive thaw slumps, time series, multi-spectral analysis, Landsat, Sentinel-2, thermo-erosion, permafrost thaw"
120 | 119,"January 31, 2022","Dr. Melania Michetti, Eleanora Cogo, and Dr. Sara Venturini",Monitoring Adaptation Using Earth Observations in View of the “Global Stocktake”,Handbook of Climate Change Management,@elecogo and @la_Venturini,Michetti 2021,"Earth observations, adaptation, resilience, global stocktake, Paris Agreement, monitoring and evaluation, climate change, climate policy, Big Data, Citizen Science"
121 | 120,"February 7, 2022",Dr. Alice Alonso and Dr. Natalie Nelson,Estimating the Influence of Oyster Reef Chains on Freshwater Detention at the Estuary Scale Using Landsat-8 Imagery,Estuaries and Coasts,@alonsoalice1 and @nataliegnelson,Alonso 2021,"Landsat 8, satellite imagery, salinity, oyster reefs, Suwannee River, Gulf of Mexico"
122 | 121,"February 14, 2022",Dr. Fang Cao and Dr. Maria Tzortziou,Capturing dissolved organic carbon dynamics with Landsat-8 and Sentinel-2 in tidally influenced wetland–estuarine systems,Science of the Total Environment,@mtzortziou,Cao & Tzortziou 2021,"coastal ecosystems, carbon cycling, tidal exchanges, episodic events, remote sensing, biogeochemistry"
123 | 122,"February 21, 2022",Dr. Zahra Sadeghi,Benchmarking and inter-comparison of Sentinel-1 InSAR velocities and time series,Remote Sensing of Environment,@ZahraSadeghi_RS,Sadeghi 2021,"InSAR, comparison, Sentinel-1, ground motion"
124 | 123,"Februrary 28, 2022",Aurélie C. Shapiro,Forest condition in the Congo Basin for the assessment of ecosystem conservation status,Ecological Indicators,@aurelgrooves,Shapiro 2021,"monitoring, forest degradation, condition, conservation planning, REDD+, stratification, Red List, prioritization"
125 | 124,"March 7, 2022",Dr. Anjana Shah,Mapping Critical Minerals from the Sky,GSA Today,,Shah 2021,"critical minerals, airborne, geology, mineral deposits, magnetic, radiometric"
126 | 125,"March 14, 2022",Dr. Maycira Costa,Historical distribution of kelp forests on the coast of British Columbia: 1858–1956,Applied Geography,@UVicSpectral,Costa 2020,"kelp spatial distribution, British Columbia, historical British admiralty charts, 1858–1956"
127 | 126,"March 21, 2022",Alejandra Mora-Soto,A High-Resolution Global Map of Giant Kelp (Macrocystis pyrifera) Forests and Intertidal Green Algae (Ulvophyceae) with Sentinel-2 Imagery,Remote Sensing,@alitamoras,Mora-Soto 2020,"giant kelp, Macrocystis pyrifera, Google Earth Engine, UAV, Sentinel-2, Ulvophyceae"
128 | 127,"March 28, 2022",Shijuan Chen,Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis,Remote Sensing of Environment,@shijuan_chen,Chen 2021,"forest degradation, deforestation, disturbance, Landsat, Google Earth Engine, CCDC-SMA, time series analysis, change detection, area estimation"
129 | 128,"April 4, 2022",Dr. Amy Collins,How community forest management performs when REDD+ payments fail,Environmental Research Letters,@amy_christina,Collins 2022,"REDD+, community forest management, co-benefits, statistical matching, climate change mitigation, deforestation, socio-ecological systems"
130 | 129,"April 11, 2022",Vanesa Martín-Arias and Christine Evans,Modeled Impacts of LULC and Climate Change Predictions on the Hydrologic Regime in Belize,Frontiers in Environmental Science,@vanessa_martian and @ChristineAEvans,Martín-Arias 2022,"land cover change, hydrology, runoff, CMIP-6, climate change, Belize, N-SPECT, TerrSet"
131 | 130,"April 18, 2022",Caroline S. Juang,Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States,Geophysical Research Letters,@caro_in_space,Juang 2022,"forest fires, western USA, MTBS, MODIS burned areas, aridification, fuels, climate, Climgrid"
132 | 131,"April 25, 2022",Dr. Ellen Whitman,"Climate-induced fire regime amplification in Alberta, Canada",Environmental Research Letters,@EllWhitman,Whitman 2022,"climate change, fire, fire severity, wildfire, fire regime, Landsat"
133 | 132,"May 2, 2022",Breylla Campos Carvalho,Shoreline position change and the relationship to annual and interannual meteo-oceanographic conditions in Southeastern Brazil,"Estuarine, Coastal and Shelf Science",@bre_campos,Campos Carvalho 2020,"Landsat imagery, WW3 model, coastal morphology, El Niño/La Niña teleconnections, Rio de Janeiro, sandy beaches"
134 | 133,"May 9, 2022",Julia Wagemann,A user perspective on future cloud-based services for Big Earth data,International Journal of Digital Earth,@JuliaWagemann,Wagemann 2021,user requirements; cloud-based services; Big Earth data; open data
135 | 134,"May 16, 2022",Rebekke Muench,Assessment of Open Access Global Elevation Model Errors Impact on Flood Extents in Southern Niger,Frontiers in Environmental Science,@beemuench,Muench 2022,"flood, DEM, RMSE, West Africa, HAND, SERVIR"
136 | 135,"May 23, 2022",Dr. Trisalyn Nelson,"Accelerating ethics, empathy, and equity in geographic information science",PNAS,@TrisalynNelson and @deepseadawn,Nelson 2022,"diversity, equity, inclusion, justice, GIS, conceptual, ethics, empathy"
137 | 136,"May 30, 2022",Eleanor Wratten,Physiographic Controls on Landfast Ice Variability from 20 Years of Maximum Extents across the Northwest Canadian Arctic,Remote Sensing,@EleanorWratten,Wratten 2022,"arctic, MODIS, landfast ice extent, scale, topographic setting, storms, environmental processes, community, coastal erosion"
138 | 137,"June 7, 2022",Heather Kay,Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations,Remote Sensing,@HeatherKayMTB,Kay 2021,"canopy height, canopy density, ICESat GLAS, forest structure"
139 | 138,"June 13, 2022",Dr. Ekena Rangel Pinagé,Forest structure and solar-induced fluorescence across intact and degraded forests in the Amazon,Remote Sensing of Environment,@EkenaRP,Pinagé 2022,"Amazon, forest degradation, selective logging, forest fires, forest structure, solar-induced chlorophyll fluorescence"
140 | 139,"June 20, 2022","Dr. Karen Joyce, Dr. Karen Anderson, and Dr. Renee Bartolo",Of Course We Fly Unmanned—We’re Women!,Remote Sensing,"@KEJoyce2, @KAnderson_RS and @ReneeBartolo","Joyce, Anderson, & Bartolo 2021","drones, UAS, UAV, SheMaps, Dames of Drones, diversity, equity, inclusion, justice, inclusive language"
141 | 140,"June 27, 2022",Dr. Meha Jain,Groundwater depletion will reduce cropping intensity in India,Science Advances,@Meha__Jain,Jain 2021,"groundwater depletion, MODIS, high-resolution dataset, India, cropping intensity, winter cropped land, irrigation"
142 | 141,"July 4, 2022",Dr. Antara Dasgupta,"On the Impacts of Observation Location, Timing, and Frequency on Flood Extent Assimilation Performance",Water Resources Research,@ant_dasgupta,Dasgupta 2021,"SAR, flood extent, Australia, flood forecasting, LISFLOOD-FP model"
143 | 142,"July 11, 2022",Dr. Chelene Hanes,"Mapping organic layer thickness and fuel load of the boreal forest in Alberta, Canada",Geoderma,@WildfireScience,Hanes 2022,"fuel load, random forests, machine learning, wildland fire, spatial visualization, forest fuels"
144 | 143,"July 18, 2022",Yingtong Zhang,A Global Analysis of the Spatial and Temporal Variability of Usable Landsat Observations at the Pixel Scale,Frontiers in Remote Sensing,@YingtongZhang,Zhang 2022,"Landsat, time series, data density, pixel quality, land change, land cover"
145 | 144,"July 25, 2022",Itohan-Osa Abu,Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas,Ecological Indicators,@Itohan_Osa_,Abu 2021,"cocoa mapping, cash crops, West Africa, Sentinel-1, Sentinel-2, protected areas, encroachment"
146 | 145,"August 1, 2022",Dr. Iryna Dronova & Dr. Sophie Taddeo,Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales,Journal of Ecology,@dronova_iryna and @SophieTaddeo,Dronova & Taddeo 2022,"heterogeneity, phenology, plant diversity, remote sensing, resilience, satellite, spectral vegetation indicators, stability"
147 | 146,"August 8, 2022",Dr. Akansha Singh Bansal,"Data-Driven Control, Modeling, and Forecasting for Residential Solar Power",Scholarworks @UMass Amherst,@akansha_asb,Singh Bansal 2022,"satellite-data techniques, solar power, residential solar power, physical models, machine learning models, deep learning models, GOES-R, GOES-17, GOES-16, data-driven techniques"
148 | 147,"August 15, 2022",Dr. Ana Bastos,Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity,Science Advances,@Ana__Bastos,Bastos 2020,"ERA5, SMOS, SAR, ecosystem productivity, 2018 heat wave, drought, Europe, vegetation, carbon, water exchange"
149 | 148,"August 22, 2022",Viola H.A. Heinrich,Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change,Nature Communications,@vh_trees,Heinrich 2021,"MapBiomas, Landsat, LULC, land-use land-cover, ESA-CCI ABG, Brazilian Amazon, disturbance, tropical forest, secondary forest, regrowth, drivers"
150 | 149,"August 29, 2022",Dr. Anni Yang,Leveraging Machine Learning and Geo-Tagged Citizen Science Data to Disentangle the Factors of Avian Mortality Events at the Species Level,Remote Sensing,@anniyang0406,Yang 2022,"avian conservation, citizen science, random forest, earth observations, mortality, natural hazards"
151 | 150,"September 5, 2022",Elham Shafeian,Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data,International Journal of Applied Earth Observation and Geoinformation,@EShafeian,Shafeian 2021,"semi-arid woodlands, Zagros, woody cover, Sentinel-2, VHR imagery, land cover"
152 | 151,"September 12, 2022",Itziar Irakulis-Loitxate,Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico,Environmental Science & Technology Letters,@itziraloi,Irakulis-Loitxate 2022,"Methane emissions, offshore platforms, high-resolution satellite data, WorldView-3, Landsat 8, Gulf of Mexico, sun-glint, VIIRS"
153 | 152,"September 19, 2022",Dr. Anna K. Schweigher,Plant beta-diversity across biomes captured by imaging spectroscopy,Nature Communications,,Schweiger 2022,"high-resolution, spectral images, spectrometers, plant diversity, NEON, National Ecological Observatory Network"
154 | 153,"September 26, 2022",Dr. Joanne V. Hall,Validation of GOES-16 ABI and MSG SEVIRI Active Fire Products,International Journal of Applied Earth Observation and Geoinformation,@JoanneVHall,Hall 2019,"Fire, biomass burning, GOES ABI, MSG SEVIRI, Landsat"
155 | 154,"October 3, 2022",Joan Sturm,Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought,Global Change Biology,@JTSturm,Sturm 2022,"environmental drivers, forest drought responses, NDWI, remote sensing, resilience, resistance, Sentinel-2"
156 | 155,"October 10, 2022",Abena B. Asare-Ansah,Tracking the Godzilla dust plume using Google Earth Engine platform,"The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences",@Ms_Pixels,Asare-Ansah 2022,"Godzilla, dust plume, aerosol, air quality, Sentinel-5P, Google Earth Engine, Sahara Desert, Africa"
157 | 156,"October 17, 2022",Dr. Radost Stanimirova,"Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay",Remote Sensing of Environment,@radost_stan,Stanimirova 2022,"South America, land cover change, remote sensing, deforestation, afforestation, woody encroachment, desertification"
158 | 157,"October 24, 2022",Matilda Anokye,"Assessing land cover change around Bayou Perot- Little Lake, New Orleans using Sentinel 2 satellite imagery","The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences",@KKtilda,Anokye 2022,"Hurricane Ida, land cover change, Sentinel 2, coastal ecosystems, NDVI, Random Forest classification"
159 | 158,"October 31, 2022",Dr. Natasha Stavros,Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s,Journal of Geophysical Research: Biogeosciences,@DrWKID,Stavros 2022,"surface biology and geology, observing system, framework, design, satellite, spectroscopic, thermal data"
160 | 159,"November 7, 2022",Germán Silva,Shifts in Salt Marsh Vegetation Landcover after Debris Flow Deposition,Remote Sensing,@envirogeography,Silva 2022,"remote sensing, wetland change, change detection, random forest classifier, Salicornia pacifica"
161 | 160,"November 14, 2022",Diana Efia Frimpong,Assessing the Impact of Land Use and Land Cover Change on Air Quality in East Baton Rouge—Louisiana Using Earth Observation Techniques,Advances in Remote Sensing,@Diana_BF,Frimpong 2022,"Google Earth Engine, aerosol, air quality, Sentinel-5P, land use land cover change"
162 | 161,"November 21, 2022",Dr. Rachael H. Nolan,What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?,Fire,@Rachael_H_Nolan,Nolan 2022,"wildfire, smoke, demographics, fuel, climate change, adaptation, resilience, policy, human health"
163 | 162,"November 28, 2022",Dr. Joel P. Scott & Dr. Erin Urquhart,Leveraging Design Principles to Inform the Next Generation of NASA Earth Satellites,Oceanography,@jpsco & @ea_urquhart,Scott & Urquhart 2020,"workshop report, satellite mission, user requirements, applications, NASA PACE, ocean remote sensing, plankton, aerosol, cloud, ocean ecosystem"
164 | 162,"December 5, 2022",Highlighting new LoLManuscriptMonday website,,Github.IO,,Tweet,
165 | 164,"December 12, 2022",LoL Leadership Feature of Matilda Anokye,,,@KKTilda,Matilda Anokye Feature,
166 | 165,"December 19, 2022",LoL Leadership Feature of Sarah Schenkein,,,,Sarah Schenkein Feature,
167 | 166,"December 26, 2022",LoL Leadership Feature of Sheryl Rose Reyes,,,@srcreyes,Sheryl Rose Reyes Feature,
168 | 167,"January 2, 2023",Happy New Year 2023 Post,"Virginia Norwood, la ""madre del Landsat"" que revolucionó la observación de la Tierra desde el espacio",,,BBC Mundo feature of Virginia Norwood Feature,
169 | 168,"January 9, 2023",Dr. Morgan Crowley,Towards a whole-system framework for wildfire monitoring using Earth observations,Global Change Biology,@morganahcrowley,Crowley 2022,"complex systems, Earth observations, fire monitoring, forest fires, pyrogeography, remote sensing, wildfires"
170 | 169,"January 16, 2023",Dr. Ana Cláudia dos Santos Luciano,"Mapping 33 years of sugarcane evolution in São Paulo state, Brazil, using landsat imagery and generalized space-time classifiers",Remote Sensing Applications: Society and Environment,,dos Santos Luciano 2022,"Landsat, sugarcane, Brazil, space-time classifiers, multi-source, machine learning, random forest"
171 | 170,"January 23, 2023",Carmen Morales,Earth Map: A Novel Tool for Fast Performance of Advanced Land Monitoring and Climate Assessment,Journal of Remote Sensing,,Morales 2023,"Earth Map, Google Earth Engine, analysis platform, datasets, software architecture"
172 | 171,"January 30, 2023",Dr. Marta Sapena,Empiric recommendations for population disaggregation under different data scenarios,Plos One,@marta_sapena,Sapena 2022,"land use, population density, census, statistical methods, cities, statistical data, machine learning, urban areas"
173 | 171,"February 6, 2023",Dr. Crista Straub,Economic Valuation of Landsat Imagery,USGS Publications Warehouse,@cstraubresearch,Straub 2019,"Landsat, economic value, imagery"
174 | 172,"February 13, 2023",Edmund B. Molder & Sarah F. Schenkein,Landsat Data Ecosystem Case Study: Actor Perceptions of the Use and Value of Landsat,Frontiers in Environmental Science,,Molder & Schenkein 2022,"Landsat, data ecosystem, values, decision support, societal benefits, qualitative, remote sensing, Earth observation"
175 | 173,"February 20, 2023",Ileana A. Callejas,Effect of COVID-19 Anthropause on Water Clarity in the Belize Coastal Lagoon,Frontiers in Marine Science,@IleanaCallejas,Callejas 2021,"diffuse attenuation coefficient, moderate resolution imaging spectroradiometer, remote sensing, water quality, marine traffic, Belize Barrier Reef Reserve System, water clarity"
176 | 174,"February 27, 2023",Mary Joy Buitre,The Mangrove Forests Change and Impacts from Tropical Cyclones in the Philippines Using Time Series Satellite Imagery,MDPI Remote Sensing,@Joyee_Twenty5,Buitre 2019,"comparative analysis, mangroves, Philippines, landscape metrics"
177 | 175,"March 13, 2023",Dr. Karen Joyce,Discovering Inclusivity in Remote Sensing: Leaving No One Behind,Frontiers in Remote Sensing,@DrKJoyce,Joyce 2022,"diversity, equity, inclusion, remote sensing, editorial boards, publications"
178 | 176,"May 1, 2023",Dr. Ursa Kanjir,Vessel detection and classification from spaceborne optical images: A literature survey,Remote Sensing of Environment,@OrsoMajor,Kanjir 2018,"vessel detection, vessel classification, sea target detection, object recognition, optical satellite data, maritime domain awareness"
179 | 177,"May 15, 2023",Dr. Ana Stritih,Alternative states in the structure of mountain forests across the Alps and the role of disturbance and recovery,Landscape Ecology,@AnaStritih,Stritih 2023,"mountain forests,GEDI, disturbance, basins of attraction, recovery"
180 | 181,"June 13, 2023",Mari Trix Estomata,Mapping of Forest Cover Extent and Change in the Philippines Using Decision Tree Classification on ALOS-½ PALSAR-½ Mosaic Data,Proceedings of the 40th Asian Conference on Remote Sensing),@Trixie_EA,Estomata_2019,"L-Band SAR, REDD+, Unbiased Area Estimation, Multi-Temporal Speckle Filtering"
181 | 183,"July 31, 2023",Sona Guliyeva,Comparative Analysis of Machine Learning Algorithms for Crop Mapping Based on Azersky Satellite Images,ICAIAME 2022: 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering,@SonaGuliyeva_15,Guliyeva 2023,"Remote Sensing, Deep Learning, Azersky, Crop Map, GEE"
182 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # LOLManuscriptMonday
2 |
3 | [](https://github.com/ladiesoflandsat/LOLManuscriptMonday/actions/workflows/deploy_parse.yml)
4 |
5 | **This repo is to hold the links to the Manuscript Monday series led by Ladies of Landsat.**
6 |
7 | Manuscript Monday is a weekly Twitter and LinkedIn series featuring recently published, cutting-edge research led by underrepresented scientists in the field of remote sensing.
8 |
9 | Manuscript Monday was founded by [Morgan Crowley](https://twitter.com/MorganAHCrowley), and over the years has received contributions from Flávia de Souza Mendes, Michelle Stuhlmacher, Agnieszka Faulkner, Sheryl Rose Reyes, and Matilda Anokye. Currently in September 2023, Flávia and Sheryl are the main contributors.
10 |
11 | Automated & maintained by [Samapriya Roy](https://www.linkedin.com/in/samapriya/)
12 |
13 |
14 |
15 |
16 |
17 | **Find us on Twitter, [@Ladies of Landsat](https://twitter.com/LadiesOfLandsat), [Mastodon](https://mapstodon.space/@LadiesOfLandsat) and on LinkedIn, [Ladies of Landsat](https://ca.linkedin.com/company/ladies-of-landsat)!!**
18 |
19 | **Want to nominate an article for us to feature in the future? [Fill out this form!](https://forms.gle/5g1Qrmp7229qJDLZ6)**
20 |
21 |
22 | **Week** | **Date** | **Name** | **Article Title** | **Article Link** | **Twitter Handle** | **MM Tweet** | **Key Words**
23 | ---|---|---|---|---|---|---|---
24 | 1 | Oct 21, 2019 | Dr. Keiko Nomura | _Oil palm concessions in southern Myanmar consist mostly of unconverted forest_ | [Scientific Reports](https://www.nature.com/articles/s41598-019-48443-3) | [@Keiko_geo](http://www.twitter.com/Keiko_geo) |[Nomura 2019](https://twitter.com/LadiesOfLandsat/status/1186296231892533249?s=20) | forest, deforestation, rubber plantations, Sentinel-1, Sentinel-2, SAR, SRTM, high resolution |
25 | 2 | Oct 28, 2019 | Dr. Catherine Nakalembe | _Characterizing agricultural drought in the Karamoja subregion of Uganda with meteorological and satellite-based indices_ |[Natural Hazards](https://link.springer.com/article/10.1007/s11069-017-3106-x)|[@CLNakalembe](http://www.twitter.com/CLNakalembe) |[Nakalembe 2019](https://twitter.com/LadiesOfLandsat/status/1188832795201720322?s=20) | agricultural drought, NDVI, SPI, remote sensing, Karamoja, East Africa |
26 | 3 | Nov 4, 2019 | Dr. Mary Henry and Dr. Jessica McCarty | _Fire on the Water Towers: Mapping Burn Scars on Mount Kenya Using Satellite Data to Reconstruct Recent Fire History_ | [Remote Sensing](https://www.mdpi.com/2072-4292/11/2/104/htm)|[@MaryHenryGEO](http://www.twitter.com/MaryHenryGEO) and [@jmccarty_geo](http://www.twitter.com/jmccarty_geo) |[Henry 2019](https://twitter.com/LadiesOfLandsat/status/1191384611114422273?s=20) | fire, Kenya, MODIS, Landsat, dNBR, active fire, burned areas, Africa |
27 | 4 | Nov 11, 2019 | Sherrie Wang | _Crop type mapping without field-level labels: Random forest transfer and unsupervised clustering techniques_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/abs/pii/S0034425718305790) |[@sherwang](http://www.twitter.com/sherwang) |[Wang 2019](https://twitter.com/LadiesOfLandsat/status/1193921377474097154?s=20) | classification, unsupervised learning, agriculture, Landsat, land cover, machine learning, Google Earth Engine, big data, remote sensing |
28 | 5 | Nov 18, 2019 | Dr. Michelle Kalamandeen | _Pervasive Rise of Small-scale Deforestation in Amazonia_ | [Scientific Reports](https://www.nature.com/articles/s41598-018-19358-2) |[@Earth2Mika](http://www.twitter.com/Earth2Mika) |[Kalamandeen 2018](https://twitter.com/LadiesOfLandsat/status/1196458378148679680?s=20) | deforestation, Amazonia, z-scores, forest loss, Global Forest Change, Landsat, tropical forest, statistical evaluation |
29 | 6 | Nov 25, 2019 | Dr. Jody Vogeler | _Extracting the full value of the Landsat archive: Inter-sensor harmonization for the mapping of Minnesota forest canopy cover (1973–2015)_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/abs/pii/S0034425718300579?via%3Dihub) |[@JodyVogeler](http://www.twitter.com/JodyVogeler) |[Vogeler 2018](https://twitter.com/LadiesOfLandsat/status/1198994866354741251?s=20) | canopy cover, Landsat time series, LandsatLinkr, LandTrendr, Minnesota |
30 | 7 | Dec 2, 2019 | Dr. Temilola Fatoyinbo | _Estimating mangrove aboveground biomass from airborne LiDAR data: a case study from the Zambezi River delta_ | [Environmental Research Letters](https://iopscience.iop.org/article/10.1088/1748-9326/aa9f03/meta) |[@EarthToLola](http://www.twitter.com/EarthToLola) |[Fatoyinbo 2018](https://twitter.com/LadiesOfLandsat/status/1201531965989670912?s=20&t=DACTRZFRa7UTHLjkZzg5dg) | lidar, mangrove, biomass, canopy height, Mozambique, blue carbon, monitoring |
31 | 8 | Dec 9, 2019 | Dr. Brianna R. Pagán | _Exploring the Potential of Satellite Solar-Induced Fluorescence to Constrain Global Transpiration Estimates_ | [Remote Sensing](https://www.mdpi.com/2072-4292/11/4/413) |[@Brianna_R_Pagan](http://www.twitter.com/Brianna_R_Pagan) |[Pagán 2019](https://twitter.com/LadiesOfLandsat/status/1204068397614542849?s=20) | solar-induced chlorophyll fluorescence, transpiration, transpiration efficiency, GOME-2, eddy-covariance |
32 | 9 | Dec 16, 2019 | Susan M. Kotikot | _Statistical characterization of frost zones: Case of tea freeze damage in the Kenyan highlands_ |[Remote Sensing](https://www.sciencedirect.com/science/article/pii/S0303243418309899) |[]() |[Kotikot 2020](https://twitter.com/LadiesOfLandsat/status/1206605259755401218?s=20) | frost zones, topography, MODIS, NASA, Kenya, tea crop |
33 | 10 | Dec 23, 2019 | Tianjia Liu | _Missing emissions from post-monsoon agricultural fires in northwestern India: regional limitations of MODIS burned area and active fire products_ | [Environmental Research Communications](https://iopscience.iop.org/article/10.1088/2515-7620/ab056c) |[@TheRealPyroTina](http://www.twitter.com/TheRealPyroTina) |[Liu 2019](https://twitter.com/LadiesOfLandsat/status/1209248987498369024?s=20) | India, burned area, active fires, crop residue burning, MODIS, Landsat |
34 | 11 | Dec 30, 2019 | Jen Hirdman | _Google Earth Engine, Open-Access Satellite Data, and Machine Learning in Support of Large-Area Probabilistic Wetland Mapping_ | [Remote Sensing](https://www.mdpi.com/2072-4292/9/12/1315/htm) |[@JNHird](http://www.twitter.com/JNHird) |[Hird 2017](https://twitter.com/LadiesOfLandsat/status/1211678631279374336?s=20) | cloud computing, machine learning, wetland classification, Sentinel-1, Sentinel-2, digital terrain model, boosted regression trees, topographic wetness index, topographic position index, satellite data streams |
35 | 12 | Jan 6, 2020 | Dr. Maryam Pourshamsi | _A Machine-Learning Approach to PolInSAR and LiDAR Data Fusion for Improved Tropical Forest Canopy Height Estimation Using NASA AfriSAR Campaign Data_ | [IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing](https://ieeexplore.ieee.org/abstract/document/8469014) |[@marpourshamsi](http://www.twitter.com/marpourshamsi) |[Pourshamsi 2018](https://twitter.com/LadiesOfLandsat/status/1214215096098021377?s=20) | data fusion, forest height, L-band, LiDAR (RH100), polarimetric synthetic aperture radar interferometry (PolInSAR), support vector machine (SVM) |
36 | 13 | Jan 13, 2020 | Dr. Beth Tellman | _Understanding the role of illicit transactions in land-change dynamics_ | [Nature Sustainability](https://www.nature.com/articles/s41893-019-0457-1) |[@pazjusticiavida](http://www.twitter.com/pazjusticiavida) |[Tellman 2020](https://twitter.com/LadiesOfLandsat/status/1216755880877862918?s=20) | conceptual framework, illicit land transactions, remote sensing, land use, interdisciplinary, narco-deforestation |
37 | 14 | Jan 20, 2020 | Andréa Puzzi Nicolau | _A spatial pattern analysis of forest loss in the Madre de Dios region, Peru_ | [Environmental Research Letters](https://iopscience.iop.org/article/10.1088/1748-9326/ab57c3) |[@puzzinicolau](http://www.twitter.com/puzzinicolau) |[Puzzi Nicolau 2019](https://twitter.com/LadiesOfLandsat/status/1219288915078799360?s=20) | Landsat, forest loss, Amazon, conservation, drivers of deforestation, Peru, spectral mixture analysis |
38 | 15 | Jan 27, 2020 | Lillian Ndungu | _Application of MODIS NDVI for Monitoring Kenyan Rangelands Through a Web Based Decision Support Tool_ | [Frontiers in Environmental Science](https://www.frontiersin.org/articles/10.3389/fenvs.2019.00187/full?&utm_source=Email_to_authors_&utm_medium=Email&utm_content=T1_11.5e1_author&utm_campaign=Email_publication&field=&journalName=Frontiers_in_Environmental_Science&id=475659) |[@lilianwangui](http://www.twitter.com/lilianwangui) |[Ndungu 2019](https://twitter.com/LadiesOfLandsat/status/1221826465593004033?s=20) | ASALS, rangelands, NDVI, MODIS, vegetation indices, Kenya |
39 | 16 | Feb 3, 2020 | Kelsey Herndon | _An Assessment of Surface Water Detection Methods for Water Resource Management in the Nigerien Sahel_ | [Sensors](https://www.mdpi.com/1424-8220/20/2/431) |[@KEHerndon](http://www.twitter.com/KEHerndon) |[Herndon 2020](https://twitter.com/LadiesOfLandsat/status/1224362311894343682?s=20) | remote sensing, spectral indices, Landsat 8 OLI, West Africa |
40 | 17 | Feb 10, 2020 | Enass Said Al-Kharusi | _Large-Scale Retrieval of Coloured Dissolved Organic Matter in Northern Lakes Using Sentinel-2 Data_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/1/157/htm) |[@SaidEnass](http://www.twitter.com/SaidEnass) |[Al-Kharusi 2020](https://twitter.com/LadiesOfLandsat/status/1226898687584096256?s=20) | Sentinel-2A, northern lakes, remote sensing, atmospheric correction, coloured dissolved organic matter (CDOM), water quality |
41 | 18 | Feb 17, 2020 | Dr. Amy Neuenschwander | _The ATL08 land and vegetation product for the ICESat-2 Mission_ | [Remote Sensing of Enviornment](https://www.sciencedirect.com/science/article/abs/pii/S0034425718305066?via%3Dihub) |[@longhornglam](http://www.twitter.com/longhornglam) |[Neuenschwander 2019](https://twitter.com/LadiesOfLandsat/status/1229436472257843201?s=20) | ICESat-2, Lidar, vegetation, terrain, land |
42 | 19 | Feb 24, 2020 | Dr. Pinki Mondal | _A reporting framework for Sustainable Development Goal 15: Multi-scale monitoring of forest degradation using MODIS, Landsat and Sentinel data_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/abs/pii/S0034425719306121) |[@environmondal](http://www.twitter.com/environmondal) |[Mondal 2020](https://twitter.com/LadiesOfLandsat/status/1231973907403505668?s=20) | SDG indicator, forest degradataion, climate, rain-use efficiency, MODIS, Landsat, Sentinel, CHIRPS, Google Earth Engine, protected area, Asia |
43 | 20 | Mar 2, 2020 | Dr. Agnieszka Faulkner | _Coastal Tidal Effects on Industrial Thermal Plumes in Satellite Imagery_ | [Remote Sensing](https://www.mdpi.com/2072-4292/11/18/2132) |[@its__Agnes](http://www.twitter.com/its__Agnes) |[Faulkner 2019](https://twitter.com/LadiesOfLandsat/status/1234467231511318529?s=20) | industrial plumes, remote sensing, Landsat 8, ASTER, SST |
44 | 21 | Mar 9, 2020 | Grace Koech | _Climate change vulnerability assessment using a GIS modelling approach in ASAL ecosystem: a case study of Upper Ewaso Nyiro basin, Kenya_| [Modeling Earth Systems and Environment](https://link.springer.com/article/10.1007/s40808-019-00695-8) |[@GraceKoech1](http://www.twitter.com/GraceKoech1) |[Koech 2020](https://twitter.com/LadiesOfLandsat/status/1237022923862540289?s=20) | climate change, vulnerability, spatial analyses, semi-arid |
45 | 22 | Mar 16, 2020 | Dr. Eleanor Stokes | _Urban Applications of Nasa’s Black Marble Product Suite_ | [Remote Sensing of Environment](https://ieeexplore.ieee.org/abstract/document/8809074) |[@UrbanElla](http://www.twitter.com/UrbanElla) |[Stokes 2019](https://twitter.com/LadiesOfLandsat/status/1239562335158710272?s=20) | urbanization, energy infrastructure, nighttime lights, satellite, urban land use, human settlement, Suomi-NPP, NOAA-20, NASA Black Marble, VIIRS-DNB, Night Lights, NTL |
46 | 23 | Mar 23, 2020 | Africa Flores-Anderson | _Hyperspectral Satellite Remote Sensing of Water Quality in Lake Atitlán, Guatemala_ | [Frontiers in Environmental Science](https://t.co/3ujzkMnVyZ?amp=1) |[@africa_science](http://www.twitter.com/africa_science) |[Flores-Anderson 2020](https://twitter.com/LadiesOfLandsat/status/1242073655611478019?s=20) | hyperspectral remote sensing, water quality, chlorophyll a concentration, Lake Atitlán, Guatemala |
47 | 24 | Mar 30, 2020 | Amanda Weigel | _A Spatial Pattern Analysis of Land Surface Roughness Heterogeneity and its Relationship to the Initiation of Weak Tornadoes_ | [Earth Interactions](https://t.co/ad9psvbIne?amp=1) |[@amweigelWX](http://www.twitter.com/amweigelWX) |[Weigel 2019](https://twitter.com/LadiesOfLandsat/status/1244635251361660931?s=20) | atmosphere–land interaction, boundary layer, geographic information systems (GIS), land surface, tornadoes, tornadogenesis |
48 | 25 | Apr 6, 2020 | Dr. Nkeiruka Nneti Onyia | _Normalized Difference Vegetation Vigour Index: A New Remote Sensing Approach to Biodiversity Monitoring in Oil Polluted Regions_ | [Remote Sensing](https://www.mdpi.com/2072-4292/10/6/897/htm) |[@NNkeiru](http://www.twitter.com/NNkeiru) |[Onyia 2018](https://twitter.com/LadiesOfLandsat/status/1247162029699485697?s=20) | biodiversity monitoring, species diversity, hyper-spectral imaging, Hyperion, spectral metrics, vegetation vigour, oil pollution |
49 | 26 | Apr 13, 2020 | Dr. Mika Tosca | _Attributing Accelerated Summertime Warming in the Southeast United States to Recent Reductions in Aerosol Burden: Indications from Vertically-Resolved Observations_ | [Remote Sensing](https://www.mdpi.com/2072-4292/9/7/674/htm) |[@trans_icon_mika](http://www.twitter.com/trans_icon_mika) |[Tosca 2017](https://twitter.com/LadiesOfLandsat/status/1249717756691439622?s=20) | warming hole, air quality, southeast US, global warming, climate change, aerosols |
50 | 27 | Apr 20, 2020 | Dr. Gopika Suresh | _Application of the automatic seep location estimator (ASLE) with the use of contextual information for estimating offshore oil seeps_ | [Remote Sensing Applications: Society and Environment](https://www.sciencedirect.com/science/article/pii/S2352938516300817) |[@Go__pika](http://www.twitter.com/Go__pika) |[Suresh 2017](https://twitter.com/LadiesOfLandsat/status/1252239576359473153?s=20) | automatic classification, ASLE, oil slicks, oil seeps, SAR |
51 | 28 | Apr 27, 2020 | Dr. Laura Dingle Robertson | _Assessing Land Cover Change and Anthropogenic Disturbance in Wetlands Using Vegetation Fractions Derived from Landsat 5 TM Imagery (1984–2010)_ | [Wetlands](https://link.springer.com/article/10.1007/s13157-015-0696-5) |[@LDR1](http://www.twitter.com/LDR1) |[Dingle Robertson 2015](https://twitter.com/LadiesOfLandsat/status/1254750782156681216?s=20) | wetlands, spectral mixture analysis, anthropogenic disturbance, time series, Landsat |
52 | 29 | May 4, 2020 | Phoebe Oduor | _Land Cover Mapping for Green House Gas Inventories in Eastern and Southern Africa Using Landsat and High Resolution Imagery: Approach and Lessons Learnt_ | [Earth Science Satellite Applications](https://link.springer.com/chapter/10.1007/978-3-319-33438-7_4) |[@poduor24](http://www.twitter.com/poduor24) |[Oduor 2016](https://twitter.com/LadiesOfLandsat/status/1257309003589144577?s=20) | land cover, land cover change, accuracy assessment, land cover class, land cover mapping |
53 | 30 | May 11, 2020 | Jesslyn Brown | _Lessons learned implementing an operational continuous United States national land change monitoring capability: The Land Change Monitoring, Assessment, and Projection (LCMAP) approach_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S003442571930375X?casa_token=szzPAhwc1boAAAAA:umiFz362PGCliUX5VXqoKtwuRUak3kEPLJ_4FdRA1QRkgt5t7TILF_njFrDE1ffHjqSvWiFlsPZe#bb0025) |[@jesslynbrown1](http://www.twitter.com/jesslynbrown1) |[Brown 2020](https://twitter.com/LadiesOfLandsat/status/1259840024260075522?s=20) | time series, Landsat, analysis ready data, land cover, change detection, monitoring, Earth observations |
54 | 31 | May 18, 2020 | Dr. Harini Nagendra | _Classification of Indian cities using Google Earth Engine_ | [Journal of Land Use Science](https://www.tandfonline.com/eprint/GQEPFZWZHDFGRSUYI27T/full?target=10.1080/1747423X.2020.1720842) |[@HariniNagendra](http://www.twitter.com/HariniNagendra) |[Nagendra 2019](https://twitter.com/LadiesOfLandsat/status/1262370358109319168?s=20) | urbanization, land cover, Google Earth Engine, supervised classification, random forest classification tree, Landsat images |
55 | 32 | May 25, 2020 | Dr. Inga Jonkheere | _Image Analysis of Hemispherical Photographs, Algorithms and Calculations_ | [Hemispherical Photography in Forest Science: Theory, Methods, Applications](https://link.springer.com/chapter/10.1007/978-94-024-1098-3_5) |[@aingejo](http://www.twitter.com/aingejo) |[Jonkheere 2017](https://twitter.com/LadiesOfLandsat/status/1264939888731918338?s=20) | biophysical data extraction, hemispherical photography algorithms, image classification, sun maps, vegetation canopy structure |
56 | 33 | Jun 1, 2020 | Radhika Bhargava | _A cloud computing-based approach to mapping mangrove erosion and progradation: Case studies from the Sundarbans and French Guiana_ | [Estuarine, Coastal and Shelf Science](https://www.sciencedirect.com/science/article/pii/S0272771419312272) |[@radb06](http://www.twitter.com/radb06) |[Bhargava 2021](https://twitter.com/LadiesOfLandsat/status/1267425288348209153?s=20) | mangrove loss, coastal erosion, coastal accretion, Google Earth Engine, water classification |
57 | 34 | Jun 8, 2020 | Dr. Raha Hakimdavar | _Monitoring Water-Related Ecosystems with Earth Observation Data in Support of Sustainable Development Goal (SDG) 6 Reporting_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/10/1634/htm) |[@RahaHakimdavar](http://www.twitter.com/RahaHakimdavar) |[Hakimdavar 2020](https://twitter.com/LadiesOfLandsat/status/1269988629457309696?s=20) | water-related ecosystems, surface water extent, mangroves, water quality, Sustainable Development Goal 6, Indicator 6.6.1 |
58 | 35 | Jun 15, 2020 | Dr. Polyanna Da Conceição Bispo | _Mapping forest successional stages in the Brazilian Amazon using forest heights derived from TanDEM-X SAR interferometry_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425719302068) |[@Polybispo](http://www.twitter.com/Polybispo) |[Da Conceição Bispo 2019](https://twitter.com/LadiesOfLandsat/status/1272498748908875779?s=20) | tropical forests, successional stages, forest height, Synthetic Aperture Radar, interferometry, TanDEM-X |
59 | 36 | Jun 22, 2020 | Dr. Samiah Moustafa | _Evaluation of satellite remote sensing albedo retrievals over the ablation area of the southwestern Greenland ice sheet_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425717302304?casa_token=qfg_YdUDR5AAAAAA:V45udeiX2JpEX5mGoK_LvEmt9aZuFFm3aVbeIQ-BDkg-kif59QVy5bnJyWkybpeqCa6TUvqaMQdc) |[@Samiahmou](http://www.twitter.com/Samiahmou) |[Moustafa 2017](https://twitter.com/LadiesOfLandsat/status/1275067675505381384?s=20) | MODIS, WV-2, albedo, ablation zone, Greenland ice sheet, spatial representativeness |
60 | 37 | Jun 29, 2020 | Dr. Fabiola D. Yépez and Ana Lucrecia Rivera | _Assessing hydrometeorological impacts with terrestrial and aerial Lidar data in Monterrey, México_ | [International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences](https://www.researchgate.net/publication/269923809_Assessing_hydrometeorological_impacts_with_terrestrial_and_aerial_Lidar_data_in_Monterrey_Mexico) |[@fabiolayepez](http://ww.twitter.com/fabiolayepez) and [@LucreciaRivera](http://www.twitter.com/LucreciaRivera) |[Yépez 2013](https://twitter.com/LadiesOfLandsat/status/1277604174583169032?s=20) | hidrometeorological impacts, Lidar, environmental policy, risk management |
61 | 38 | Jul 6, 2020 | Dr. Michelle Stuhlmacher | _Environmental Outcomes of Urban Land System Change: Comparing Riparian Design Approaches in the Phoenix Metropolitan Area_ | [Land Use Policy](https://www.sciencedirect.com/science/article/abs/pii/S026483771931244X?dgcid=author) |[@MFStuhlmacher](http://www.twitter.com/MFStuhlmacher) |[Stuhlmacher 2020](https://twitter.com/LadiesOfLandsat/status/1280130815708585984?s=20) | land system architecture, design, urban development, remote sensing, urban land systems |
62 | 39 | Jul 13, 2020 | Richa Marwaha | _Object-oriented and pixel-based classification approach for land cover using airborne long-wave infrared hyperspectral data_ | [Journal of Applied Remote Sensing](https://www.researchgate.net/profile/Anil_Kumar15/publication/288903888_Object-oriented_and_pixel-based_classification_approach_for_land_cover_using_airborne_long-wave_infrared_hyperspectral_data/links/5747c15508aef66a78b08168/Object-oriented-and-pixel-based-classification-approach-for-land-cover-using-airborne-long-wave-infrared-hyperspectral-data.pdf) |[@richa_marwaha](http://www.twitter.com/richa_marwaha) |[Marwaha 2015](https://twitter.com/LadiesOfLandsat/status/1282673631672369153?s=20) | support vector machine, spectral angle mapper, minimum noise fraction, error matrix |
63 | 40 | Jul 20, 2020 | Meyra Fuentes and Dr. Koreen Millard | _Big geospatial data analysis for Canada’s Air Pollutant Emissions Inventory (APEI): using google earth engine to estimate particulate matter from exposed mine disturbance areas_ | [GIScience & Remote Sensing](https://www.tandfonline.com/doi/abs/10.1080/15481603.2019.1695407) |[@MDelMal](http://www.twitter.com/MDelMal) and [@GeoKoreen](https://twitter.com/GeoKoreen)|[Fuentes 2020](https://twitter.com/LadiesOfLandsat/status/1285201616799399937?s=20) | Google Earth Engine, random forest classification, transfer learning, air quality, mine mapping |
64 | 41 | Jul 27, 2020 | Dr. Apoorva Shastry | _Water Surface Elevation Constraints in a Data Assimilation Scheme to Infer Floodplain Topography: A Case Study in the Logone Floodplain_ | [Geophysical Research Letters](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2020GL088759) |[@ApoorvaShastry](http://www.twitter.com/ApoorvaShastry) |[Shastry 2020](https://twitter.com/LadiesOfLandsat/status/1287734212016197633?s=20) | flood inundation prediction, topography, Landsat 7, Landsat 8, MERIT DEM, LISFLOOD-FP, Cameroon |
65 | 42 | Aug 3, 2020 | Dr. Jill Deines | _Mapping three decades of annual irrigation across the US High Plains Aquifer using Landsat and Google Earth Engine_ | [Remote Sensing of Environment](https://www.researchgate.net/publication/336963711_Mapping_three_decades_of_annual_irrigation_across_the_US_High_Plains_Aquifer_using_Landsat_and_Google_Earth_Engine) |[@JillDeines](http://www.twitter.com/JillDeines) |[Deines 2019](https://twitter.com/LadiesOfLandsat/status/1290285282709954560?s=20) | irrigation, Google Earth Engine, Landsat time series, groundwater, High Plains Aquifer, Ogallala Aquifer, agriculture |
66 | 43 | Aug 10, 2020 | Sheryl Reyes | _Enhancing Sustainability in Traditional Agriculture: Indicators for Monitoring the Conservation of Globally Important Agricultural Heritage Systems(GIAHS) in Japan_ | [Sustainability](https://collections.unu.edu/eserv/UNU:7745/sustainability-12-05656.pdf) |[@srcreyes](http://www.twitter.com/srcreyes) |[Reyes 2020](https://twitter.com/LadiesOfLandsat/status/1292818193933893634?s=20) | agricultural heritage systems, traditional knowledge, socio-ecological production, landscapes and seascapes (SEPLS) |
67 | 44 | Aug 17, 2020 | Dr. Katarzyna Ewa Lewińska | _Short-term vegetation loss versus decadal degradation of grasslands in the Caucasus based on Cumulative Endmember Fractions_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425720303394?dgcid=author) |[@kelewinska](http://www.twitter.com/kelewinska) |[Lewińska 2020](https://twitter.com/LadiesOfLandsat/status/1295360097711820802?s=20) | land degradation, rangelands, spectral mixture analysis (SMA), MODIS, Caucasus mountains, LandTrendr, Landsat, Google Earth Engine |
68 | 45 | Aug 24, 2020 | Agatha Czekajlo | _The urban greenness score: A satellite-based metric for multi-decadal characterization of urban land dynamics_ | [International Journal of Applied Earth Observation and Geoinformation](https://www.sciencedirect.com/science/article/pii/S0303243420302555?via%3Dihub) |[@AgathaCzekajlo](http://www.twitter.com/AgathaCzekajlo) |[Czekajlo 2020](https://twitter.com/LadiesOfLandsat/status/1297877669749633025?s=20) | urban, vegetation, time series, Landsat, spectral unmixing, Canada |
69 | 46 | Aug 31, 2020 | Dr. Carolina Monmany Garzia | _How are landscape complexity and vegetation structure related across an agricultural frontier in the subtropical Chaco, NW Argentina?_ | [Journal of Arid Environments](https://www.sciencedirect.com/science/article/abs/pii/S0140196315001329) |[@CMonmanyGarzia](http://www.twitter.com/CMonmanyGarzia) |[Monmany Garzia 2015](https://twitter.com/LadiesOfLandsat/status/1300440451091230720?s=20) | landscape metrics, QuickBird, 2-D complexity, 3-D complexity |
70 | 47 | Sep 7, 2020 | Nimisha Wagle | _Past and Present Practices of Topographic Base Map Database Update in Nepal_ | [ISPRS International Journal of Geo-Information](https://www.mdpi.com/2220-9964/9/6/397/htm) |[@Wagle1996](http://www.twitter.com/Wagle1996) |[Wagle 2020](https://twitter.com/LadiesOfLandsat/status/1303039646457368576?s=20) | topographic base map, national mapping agency, updates, history, ZY-3, Nepal |
71 | 48 | Sep 14, 2020 | Dr. Mirela Tulbure | _Surface water extent dynamics from three decades of seasonally continuous Landsat time series at subcontinental scale in a semi-arid region_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425716300621) |[@MirelaGTulbure](http://www.twitter.com/MirelaGTulbure) |[Tulbure 2016](https://twitter.com/LadiesOfLandsat/status/1305505272350289920?s=20) | Landsat time series, seasonally continuous, surface water dynamics, flooding dynamics, accuracy assessment, probability sampling design, Murray–Darling Basin, Australia, competing water demands, drought, random forest, long term trends, water, river basin, water management |
72 | 49 | Sep 21, 2020 | Dr. Gohar Ghazaryan | _Local-scale agricultural drought monitoring with satellite-based multi-sensor time-series_ | [GIScience & Remote Sensing](https://www.tandfonline.com/eprint/CVN9WHNHECREGFDQ8EGH/full?target=10.1080/15481603.2020.1778332) |[@ghazaryangohar](http://www.twitter.com/ghazaryangohar) |[Ghazaryan 2020](https://twitter.com/LadiesOfLandsat/status/1308029378081755136?s=20) | crop stress, Sentinel-1, Landsat-8, Sentinel 2, logistic regression, data fusion |
73 | 50 | Sep 28, 2020 | Sarah Banks and Dr. Koreen Millard | _Contributions of Actual and Simulated Satellite SAR Data for Substrate Type Differentiation and Shoreline Mapping in the Canadian Arctic_ | [Remote Sensing](https://www.mdpi.com/2072-4292/9/12/1206) |[@SAR_ahBanks](http://www.twitter.com/SAR_ahBanks) and [@GeoKoreen](https://twitter.com/GeoKoreen)|[Banks 2017](https://twitter.com/LadiesOfLandsat/status/1310565151767228419?s=20) | RADARSAT-2, RADARSAT Constellation Mission, random forests, Arctic, shorelines |
74 | 51 | Oct 5, 2020 | Karen Chen | _Mapping horizontal and vertical urban densification in Denmark with Landsat time-series from 1985 to 2018: A semantic segmentation solution_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/abs/pii/S0034425720304697?via%3Dihub) |[@THKarenChen](http://www.twitter.com/THKarenChen) |[Chen 2020](https://twitter.com/LadiesOfLandsat/status/1313116105507041282?s=20) | urban form; urban growth; urbanization; deep learning; semantic segmentation; multi-temporal classification; spatial and temporal transferability; Landsat |
75 | 52 | Oct 12, 2020 | Dr. Karen Bailey | _Land-cover change within and around protected areas in a biodiversity hotspot_ | [Journal of Land Use Science](https://www.researchgate.net/profile/Christa_Zweig/publication/282217725_Land-cover_change_within_and_around_protected_areas_in_a_biodiversity_hotspot/links/5607ff4908aeb5718ff9c10c.pdf) |[@karnebe](http://www.twitter.com/karnebe) |[Bailey 2015](https://twitter.com/LadiesOfLandsat/status/1315654817625317377?s=20) | land-cover change, land-use change, protected area, Landsat, southern Africa |
76 | 53 | Oct 19, 2020 | Dr. Laura Duncanson | _Biomass estimation from simulated GEDI, ICESat-2 and NISAR across environmental gradients in Sonoma County, California_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425720301498) |[@LauraDuncanson](http://www.twitter.com/LauraDuncanson) |[Duncanson 2020](https://twitter.com/LadiesOfLandsat/status/1318188151471509509?s=20) | GEDI, NISAR, ICESat-2, biomass estimation, biomass errors, data fusion |
77 | 54 | Oct 26, 2020 | Dr. Vanessa Brum-Bastos | _Multi-source data fusion of optical satellite imagery to characterize habitat selection from wildlife tracking data_ | [Ecological Informatics](https://www.sciencedirect.com/science/article/pii/S1574954120300996?dgcid=author) |[@VanessaBBastos](http://www.twitter.com/VanessaBBastos) |[Brum-Bastos 2020](https://twitter.com/LadiesOfLandsat/status/1320722027720941568?s=20) | movement analysis, remote sensing, NDVI, MODIS, Landsat, data fusion, multi-source |
78 | 55 | Nov 2, 2020 | Mary K. Bennett | _Automating Drone Image Processing to Map Coral Reef Substrates Using Google Earth Engine_ | [Drones](https://www.mdpi.com/2504-446X/4/3/50) |[@Katie_Ben91](http://www.twitter.com/Katie_Ben91) |[Bennett 2020](https://twitter.com/LadiesOfLandsat/status/1323252472643751937?s=20) | drone mapping, coral reefs, random forest, Google Earth Engine, remote sensing, RPAS, heron reef, drone imagery |
79 | 56 | Nov 9, 2020 | Dr. Flavia de Souza Mendes | _Optical and SAR Remote Sensing Synergism for Mapping Vegetation Types in the Endangered Cerrado/Amazon Ecotone of Nova Mutum—Mato Grosso_ | [Remote Sensing](https://www.mdpi.com/2072-4292/11/10/1161) |[@flasmendes](http://www.twitter.com/flasmendes) |[de Souza Mendes 2019](https://twitter.com/LadiesOfLandsat/status/1325779736975511552?s=20) | Cerrado, Amazon, vegetation type, optical, sar, synergism, mapping |
80 | 57 | Nov 16, 2020 | Dr. Alicia Caruso | _Airborne hyperspectral characterisation of hydrothermal alteration in a regolith-dominated terrain, southern Gawler Ranges, South Australia_ | [Australian Journal of Earth Sciences](https://www.tandfonline.com/doi/abs/10.1080/08120099.2020.1826122?journalCode=taje20) |[@aliciascaruso](http://www.twitter.com/aliciascaruso) |[Caruso 2020](https://twitter.com/LadiesOfLandsat/status/1328118618526281730?s=20) | mineral exploration, regolith-dominated terrain, hyperspectral imagery, HyMap, Spectral Feature Fitting, X-ray diffraction, hydrothermal alteration, Gawler Ranges |
81 | 58 | Nov 23, 2020 | Dr. Di Yang | _Open land-use map: a regional land-use mapping strategy for incorporating OpenStreetMap with earth observations_ | [Geo-spatial Information Science](https://www.tandfonline.com/doi/pdf/10.1080/10095020.2017.1371385) |[@yangdi1031](http://www.twitter.com/yangdi1031) |[Yang 2017](https://twitter.com/LadiesOfLandsat/status/1330879180918169602?s=20) | OpenStreetMap (OSM), Volunteered Geographic Information (VGI), crowdsourced data, random forest, Google Earth Engine (GEE) |
82 | 59 | Nov 30, 2020 | Dr. Raechel Portelli | _Describing the problem-solving strategies of expert image interpreters using graphical knowledge elicitation methods_ | [GIScience & Remote Sensing](https://www.tandfonline.com/doi/full/10.1080/15481603.2016.1196424?casa_token=0i6zYQaJEmYAAAAA:Ux59dZjbF73yAnmbovyXfMcRa4q-gSci2Os1OFejp9UDaOgWg2Ktusy0BYSL2t82pNX_2xJ1VRfbad0) |[@CurmudgeonPhD](http://www.twitter.com/CurmudgeonPhD) |[Portelli 2015](https://twitter.com/LadiesOfLandsat/status/1333411621209858048?s=20) | image interpretation, expertise, knowledge elicitation |
83 | 60 | Dec 7, 2020 | Dr. Xiao Xiang Zhu | _A Review of Ten-Year Advances of Multi-Baseline SAR Interferometry Using TerraSAR-X Data_ | [Remote Sensing](https://www.mdpi.com/2072-4292/10/9/1374/htm) |[@xiaoxiang_zhu](http://www.twitter.com/xiaoxiang_zhu) |[Zhu 2018](https://twitter.com/LadiesOfLandsat/status/1335947850950340610?s=20) | multi-baseline, multi-pass, PS, DS, geodetic, TomoSAR, D-TomoSAR, PSI, robust estimation, covariance matrix, InSAR, SAR, review |
84 | 61 | Dec 14, 2020 | Chippie Kislik | _Application of UAV Imagery to Detect and Quantify Submerged Filamentous Algae and Rooted Macrophytes in a Non-Wadeable River_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/20/3332) |[@chippiekizzle](http://www.twitter.com/chippiekizzle) |[Kislik 2020](https://twitter.com/LadiesOfLandsat/status/1338482503804391425?s=20) | benthic mapping, drones, submerged aquatic vegetation, filamentous algae, macrophytes |
85 | 62 | Dec 21, 2020 | Dr. Priyanka deSouza | _Combining low-cost, surface-based aerosol monitors with size-resolved satellite data for air quality applications_ | [Atmospheric Measurement Techniques](https://amt.copernicus.org/articles/13/5319/2020/) |[@PDez90](http://www.twitter.com/PDez90) |[deSouza 2020](https://twitter.com/LadiesOfLandsat/status/1341004671100592129?s=20) | near-surface particulate matter, air quality, Nairobi, Kenya, ground-based monitors, aerosol optical depth, MODIS, MISR |
86 | 63 | Dec 28, 2020 | 2020 MM Moments Thread | | [2020 MM](https://twitter.com/i/events/1341125452728045577?s=20) | | |
87 | 64 | Jan 4, 2021 | Dr. Joanne White | _Evaluating the capacity of single photon lidar for terrain characterization under a range of forest conditions_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425720305423) |[@Joanne_C_White](http://www.twitter.com/Joanne_C_White) |[White 2021](https://twitter.com/LadiesOfLandsat/status/1346107589319421959?s=20) | forestry, elevation, SPL, ALS, Lidar, forest inventory |
88 | 65 | Jan 11, 2021 | Dr. Dawn Wright | _Swells, Soundings, and Sustainability, but…“Here Be Monsters”_ | [Oceanography](https://www.researchgate.net/profile/Dawn_Wright5/publication/317409531_Swells_Soundings_and_Sustainability_butHere_Be_Monsters/links/59adaedaa6fdcce55a416a2e/Swells-Soundings-and-Sustainability-butHere-Be-Monsters.pdf) |[@deepseadawn](http://www.twitter.com/deepseadawn) |[Wright 2017](https://twitter.com/LadiesOfLandsat/status/1348646354214674434?s=20) | ocean mapping, GIS, Earth observations, multidimensional approaches, sustainable development goal monitoring, SDG |
89 | 66 | Jan 18, 2021 | Dr. Meredith Brown | _Intercomparison of Machine-Learning Methods for Estimating Surface Shortwave and Photosynthetically Active Radiation_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/3/372) |[@mglbrown](http://www.twitter.com/mglbrown) |[Brown 2020](https://twitter.com/LadiesOfLandsat/status/1351184554242035713?s=20) | PAR, machine-learning, MODIS, shortwave radiation, radiative transfer, surface radiation, satellite remote sensing, radiation budget |
90 | 67 | Jan 25, 2021 | Charmaine Cruz | _Linear spectral unmixing of Sentinel-3 imagery for urban land cover - land surface temperature (LST) analysis: A case study of metro Manila, Philippines_ | [International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences](https://pdfs.semanticscholar.org/bfe5/5c8fe35ea8751be720d11c7ba9524a81fd38.pdf) |[@charmcharmcruz](http://www.twitter.com/charmcharmcruz) |[Cruz 2019](https://twitter.com/LadiesOfLandsat/status/1353715482260594689?s=20) | urbanization, urban heat island, land cover fractions, land surface temperature, remote sensing |
91 | 68 | Feb 1, 2021 | Dr. Louise Leroux | _Maize yield estimation in West Africa from crop process-induced combinations of multi-domain remote sensing indices_ | [European Journal of Agronomy](https://www.sciencedirect.com/science/article/abs/pii/S116103011830354X) |[@LerouxLouise4](http://www.twitter.com/LerouxLouise4) |[Leroux 2019](https://twitter.com/LadiesOfLandsat/status/1356245391960846341?s=20) | crop yield estimation and forecast, food security, MODIS NDVI and LST, SMOS SSM, statistical model, SARRA-O crop model, uncalibrated approach |
92 | 69 | Feb 8, 2021 | Ufuoma Ovienmhada | _Earth observation technology applied to environmental management : a case study in Benin_ | [DSpace@MIT](https://dspace.mit.edu/handle/1721.1/127489) |[@ItsUfuoma](http://www.twitter.com/ItsUfuoma) |[Ovienmhada 2020](https://twitter.com/LadiesOfLandsat/status/1358785959509323776?s=20) | Landsat, Sentinel-2, Sentinel-1, Planet, local stakeholders, invasive plant species, water quality, Benin |
93 | 70 | Feb 15, 2021 | Dr. Alyssa Whitcraft | _No pixel left behind: Toward integrating Earth Observations for agriculture into the United Nations Sustainable Development Goals framework_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425719304894) |[@AKWhitcraft](http://www.twitter.com/AKWhitcraft) |[Whitcraft 2019](https://twitter.com/LadiesOfLandsat/status/1361320899014762506?s=20) | Earth observations, agriculture, food security, Sustainable development goals, policy mandates, GEOGLAM |
94 | 71 | Feb 22, 2021 | Jacqueline Hung | _Environmental land-cover classification for integrated watershed studies: Cape Bounty, Melville Island, Nunavut_ | [Arctic Science](https://cdnsciencepub.com/doi/full/10.1139/as-2019-0029#.XvngzihKhPY) |[@jackiehung4](http://www.twitter.com/jackiehung4) |[Hung 2020](https://twitter.com/LadiesOfLandsat/status/1363852594683199490?s=20) | parametric algorithms, non-parametric algorithms, land cover, WorldView-2, Cape Bountry Arctic Watershed Observatory, Nunavut, support vector machine |
95 | 72 | Mar 1, 2021 | Carly Beneke (Mertes) | _Detecting change in urban areas at continental scales with MODIS data_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/abs/pii/S003442571400368X) |[@CarlyMertes](http://www.twitter.com/CarlyMertes) |[Mertes 2015](https://twitter.com/LadiesOfLandsat/status/1366355318305873922?s=20) | urban areas, urbanization, cities, land cover, change detection, classification, machine learning, decision trees, data fusion, decision fusion |
96 | 73 | Mar 8, 2021 | Anam Khan | _Reviews and syntheses: Ongoing and emerging opportunities to improve environmental science using observations from the Advanced Baseline Imager on the Geostationary Operational Environmental Satellites_ | [Biogeosciences - Preprint](https://bg.copernicus.org/preprints/bg-2020-454/) |[@An_Khan3](http://www.twitter.com/An_Khan3) |[Khan 2021](https://twitter.com/LadiesOfLandsat/status/1368911665056595974?s=20) | GOES, geostationary satellites, environmental monitoring, heat fluxes, droughts, wildfires |
97 | 74 | Mar 15, 2021 | Dr. Francesca Giannetti | _A New Method for Automated Clearcut Disturbance Detection in Mediterranean Coppice Forests Using Landsat Time Series_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/22/3720) |[@fgiannetti_FRS](http://www.twitter.com/fgiannetti_FRS) |[Giannetti 2020](https://twitter.com/LadiesOfLandsat/status/1371408310583316480?s=20) | Landsat, forest disturbances, time series analysis, remote sensing, Mediterranean forest, optical time series images, algorithm, change detection |
98 | 75 | Mar 22, 2021 | Dr. Yujia Zhang | _Evaluating the effect of 3D urban form on neighborhood land surface temperature using Google Street View and geographically weighted regression_ | [Landscape Ecology](https://link.springer.com/article/10.1007/s10980-019-00794-y) |[]() |[Zhang 2019](https://twitter.com/LadiesOfLandsat/status/1373988422776455172?s=20) | Google Street View, 3D urban form, Geographically weighted regression, Land surface temperature, Urban heat island |
99 | 76 | Mar 29, 2021 | Dr. Mylène Jacquemart | _What drives large-scale glacier detachments? Insights from Flat Creek glacier, St. Elias Mountains, Alaska_ | [Geology](https://www.researchgate.net/profile/Mylene-Jacquemart/publication/340962961_What_drives_large-scale_glacier_detachments_Insights_from_Flat_Creek_glacier_St_Elias_Mountains_Alaska/links/5ed14f06299bf1c67d273d9d/What-drives-large-scale-glacier-detachments-Insights-from-Flat-Creek-glacier-St-Elias-Mountains-Alaska.pdf) |[@MyleneJac](http://www.twitter.com/MyleneJac) |[Jacquemart 2020](https://twitter.com/LadiesOfLandsat/status/1376519623009570816?s=20) | Planet, Arctic, DEM, glacier detachment, Flat Creek Glacier, Alaska |
100 | 77 | April 5, 2021 | Kurnia Latifiana | _Spatial Habitat Suitability Modeling of the Roti Snake-Necked Turtle (Chelodina Mccordi) Based on Landsat-8 Imagery and GIS_ | [2018 4th International Conference on Science and Technology](https://www.researchgate.net/profile/Kurnia-Latifiana/publication/329495776_Spatial_Habitat_Suitability_Modeling_of_the_Roti_Snake-Necked_Turtle_Chelodina_Mccordi_Based_on_Landsat-8_Imagery_and_GIS/links/5c66be99299bf1e3a5aa96aa/Spatial-Habitat-Suitability-Modeling-of-the-Roti-Snake-Necked-Turtle-Chelodina-Mccordi-Based-on-Landsat-8-Imagery-and-GIS.pdf) |[@latifiana](http://www.twitter.com/latifiana) |[Latifiana 2018](https://twitter.com/LadiesOfLandsat/status/1379046504858587140?s=20) | Geographic Information System (GIS), Habitat Suitability Index (HSI), freshwater turtles, conservation |
101 | 78 | April 12, 2021 | Dr. Kirsten J. Lees | _Assessing the reliability of peatland GPP measurements by remote sensing: From plot to landscape scale_ | [Science of The Total Environment](https://linkinghub.elsevier.com/retrieve/pii/S0048969720361428) |[@K_J_Lees](http://www.twitter.com/K_J_Lees) |[Lees 2021](https://twitter.com/LadiesOfLandsat/status/1381572054458232832?s=20) | TG model, photosynthesis, NDVI, satellite, blanket bog |
102 | 79 | April 26, 2021 | Dr. Hannah Kerner | _Rapid Response Crop Maps in Data Sparse Regions_ | [KDD ’20 Humanitarian Mapping Workshop](https://arxiv.org/pdf/2006.16866.pdf) |[@hannah_kerner](http://www.twitter.com/hannah_kerner) |[Kerner 2020](https://twitter.com/LadiesOfLandsat/status/1386668391449178117?s=20) | agriculture, food security, crop classification, neural networks, Earth observation |
103 | 80 | May 3, 2021 | Dr. Viviana Zalles | _Rapid expansion of human impact on natural land in South America since 1985_ | [Science Advances](https://advances.sciencemag.org/content/7/14/eabg1620) |[@vzalles](http://www.twitter.com/vzalles) |[Zalles 2021](https://twitter.com/LadiesOfLandsat/status/1389198182131900418?s=20) | Landsat, SWIR, NIR, NDVI, land-use conversion, land cover modification, South America |
104 | 81 | May 10, 2021 | Dr. Ninni Saarinen | _Understanding 3D structural complexity of individual Scots pine trees with different management history_ | [Ecology and Evolution](https://onlinelibrary.wiley.com/doi/10.1002/ece3.7216) |[@ninni_saarinen](http://www.twitter.com/ninni_saarinen) |[Saarinen 2021](https://twitter.com/LadiesOfLandsat/status/1391757026943016960?s=20) | box dimension, forest ecology, ground-based LiDAR, growth and yield, silviculture, terrestrial laser scanning, tree structure |
105 | 82 | May 17, 2021 | Dr. Yhasmin Mendes de Moura | _Carbon Dynamics in a Human-Modified Tropical Forest: A Case Study Using Multi-Temporal LiDAR Data_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/3/430/htm) |[@yhasmoura](http://www.twitter.com/yhasmoura) |[Mendes de Moura 2020](https://twitter.com/ladiesoflandsat/status/1394246609836380162?s=21) | airborne LiDAR, Amazon forest, aboveground carbon, canopy height, forest disturbance |
106 | 83 | May 24, 2021 | Amy Pickens | _Mapping and sampling to characterize global inland water dynamics from 1999 to 2018 with full Landsat time-series_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425720301620#!) |[]() |[Pickens 2020](https://twitter.com/LadiesOfLandsat/status/1396817792771428352?s=20) | surface water, Landsat, time-series, area estimation, change detection, Global |
107 | 84 | May 31, 2021 | Angel Chen | _Biophysical controls of increased tundra productivity in the western Canadian Arctic_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425721000766) |[@angelchen95](http://www.twitter.com/angelchen95) |[Chen 2021](https://twitter.com/LadiesOfLandsat/status/1399357245394239488?s=20) | Landsat, Random Forests, Arctic tundra, greening, EVI, vegetation indices, climate change |
108 | 85 | June 7, 2021 | Dr. Teresa Konlechner | _Mapping spatial variability in shoreline change hotspots from satellite data; a case study in southeast Australia_ | [Estuarine, Coastal and Shelf Science](https://doi.org/10.1016/j.ecss.2020.107018) |[@tkonlechner](http://www.twitter.com/tkonlechner) |[Konlechner 2020](https://twitter.com/LadiesOfLandsat/status/1401904105908494336?s=20) | coastal erosion, Google earth engine, shoreline dynamics, shoreline detection, satellite derived shorelines |
109 | 86 | June 14, 2021 | Dr. Min Xu | _Implementation Strategy and Spatiotemporal Extensibility of Multipredictor Ensemble Model for Water Quality Parameter Retrieval With Multispectral Remote Sensing Data_ | [IEEE Transactions on Geoscience and Remote Sensing](https://ieeexplore.ieee.org/document/9352979) |[@MinXu_UC](http://www.twitter.com/MinXu_UC) |[Xu 2021](https://twitter.com/LadiesOfLandsat/status/1404453697854320642?s=20) | chlorophyll-a (Chl-a), ensemble model, spatiotemporal extensibility, space and time, water quality |
110 | 87 | June 21, 2021 | Dr. Kaitlin M. Gold | _Hyperspectral Measurements Enable Pre-Symptomatic Detection and Differentiation of Contrasting Physiological Effects of Late Blight and Early Blight in Potato_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/2/286/htm) |[@KaitlinMGold](http://www.twitter.com/kaitlinmgold) |[Gold 2020](https://twitter.com/LadiesOfLandsat/status/1406984032257196033?s=20) | field spectroscopy, pathogen; plant disease, agriculture, shortwave infrared, hyperspectral |
111 | 88 | June 28, 2021 | Mary Immaculate Neh-Fru | _Remote Sensing for Geological Investigation of Mayo Kila and Environs, North West Region of Cameroon_ | [American Journal of Earth Sciences](https://www.researchgate.net/publication/342096773_REMOTE_SENSING_FOR_GEOLOGICAL_EXPLORATION_OF_MAYO_KILA_AND_ENVIRONS_NORTH_WEST_REGION_CAMEROON) |[@ImmaculateNeh](http://www.twitter.com/ImmaculateNeh) |[Neh-Fru 2020](https://twitter.com/LadiesOfLandsat/status/1409501910781120521?s=20) | Lineaments, fractal analysis, orogeny, remote sensing, Mayo Kila |
112 | 89 | July 5, 2021 | Abigail Barenblitt | _The large footprint of small-scale artisanal gold mining in Ghana_ | [Science of the Total Environment](https://www.sciencedirect.com/science/article/pii/S0048969721017125?via%3Dihub) |[@abarenblitt](http://www.twitter.com/abarenblitt) |[Barenblitt 2021](https://twitter.com/LadiesOfLandsat/status/1412050222080040968?s=20) | Galamsey, Landsat, extent mapping, NDVI, Google Earth Engine |
113 | 90 | July 12, 2021 | Dr. Bianca Molinari | _Assessing Spatial Variation in Algal Productivity in a Tropical River Floodplain Using Satellite Remote Sensing_ | [Remote Sensing](https://www.mdpi.com/2072-4292/13/9/1710/htm) |[@molinari_bia](http://www.twitter.com/molinari_bia) |[Molinari 2021](https://twitter.com/LadiesOfLandsat/status/1414558319361077251?s=20) | statistical modelling, wetlands, tropical rivers, wetland management, epiphyton, phytoplankton, primary productivity, Landsat 8, Australia |
114 | 91 | July 19, 2021 | Dr. Cheryl Doughty | _Characterizing spatial variability in coastal wetland biomass across multiple scales using UAV and satellite imagery_ | [Remote Sensing in Ecology and Conservation](https://zslpublications.onlinelibrary.wiley.com/doi/10.1002/rse2.198) |[@cherylldoughty](http://www.twitter.com/cherylldoughty) |[Doughty 2021](https://twitter.com/LadiesOfLandsat/status/1417104160357486595?s=20) | drones, Landsat, saltmarsh, semivariogram, spatial heterogeneity, unoccupied aerial systems |
115 | 92 | July 26, 2021 | Dr. Lorena A. Santos | _Quality control and class noise reduction of satellite image time series_ | [ISPRS Journal of Photogrammetry and Remote Sensing](https://www.sciencedirect.com/science/article/pii/S0924271621001155?via%3Dihub) |[@lorenaalvesgo](http://www.twitter.com/lorenaalvesgo) |[Santos 2021](https://twitter.com/LadiesOfLandsat/status/1419638084795355138?s=20) | self-organizing map, class noise reduction, Bayesian inference, satellite image time series, land use and cover classification |
116 | 93 | August 2, 2021 | Dr. Laura Chasmer | _Using Multitemporal and Multispectral Airborne Lidar to Assess Depth of Peat Loss and Correspondence With a New Active Normalized Burn Ratio for Wildfires_ | [Geophysical Research Letters](https://agupubs.onlinelibrary.wiley.com/doi/full/10.1002/2017GL075488) |[@ErsPeat](http://www.twitter.com/ErsPeat) |[Chasmer 2017](https://twitter.com/LadiesOfLandsat/status/1422182954940477442?s=20) | active normalized burn ratio, dNBR, lidar, Landsat 7, Fort McMurray, Canada, peatland, wildfire |
117 | 94 | August 9, 2021 | Gizem Şenel | _Exploring the potential of Landsat-8 OLI and Sentinel-2 MSI data for mapping and monitoring Enez Dalyan Lagoon_ | [Desalination and Water Treatment](https://www.deswater.com/DWT_articles/vol_177_papers/177_2020_330.pdf) |[@GizemSenel](http://www.twitter.com/GizemSenel) |[Senel 2019](https://twitter.com/LadiesOfLandsat/status/1424708406045253636?s=20) | coastal lagoon monitoring, Landsat 8, Sentinel-2, spectral water index algorithms, normalized difference water index |
118 | 95 | August 16, 2021 | Dr. Emma Li Johansson | _Mapping and quantifying perceptions of environmental change in Kilombero Valley, Tanzania_ | [Ambio](https://link.springer.com/article/10.1007/s13280-019-01226-6) |[@emmalijohansson](http://www.twitter.com/emmalijohansson) |[Johansson & Abdi 2020](https://twitter.com/LadiesOfLandsat/status/1427260980770361348?s=20) | deforestation, large-scale land acquisitions, mixed methods, participatory research, remote sensing, socio-environmental change |
119 | 96 | August 23, 2021 | Dr. Cibele Hummel do Amaral | _Characterization of indicator tree species in neotropical environments and implications for geological mapping_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/abs/pii/S0034425718303365) |[@CibeleHdoAmaral](http://www.twitter.com/CibeleHdoAmaral) |[do Amaral 2018](https://twitter.com/LadiesOfLandsat/status/1429778291586633738?s=20) | geobotany, Cerrado biome, sedimentary formations, multivariate analysis, spectroscopy, Spectral Mixture Analysis |
120 | 97 | August 30, 2021 | Zoe Pierrat | _Tower‐Based Remote Sensing Reveals Mechanisms Behind a Two‐phased Spring Transition in a Mixed‐Species Boreal Forest_ | [JGR Biogeosciences](https://www.researchgate.net/publication/350759662_Tower-Based_Remote_Sensing_Reveals_Mechanisms_Behind_a_Two-phased_Spring_Transition_in_a_Mixed-Species_Boreal_Forest) |[@zoeapie](http://www.twitter.com/zoeapie) |[Pierrat 2021](https://twitter.com/LadiesOfLandsat/status/1432325932468129792?s=20) | tower-based remote sensing, PhotoSpec, vegetation indices, spring transition, Boreal forests |
121 | 98 | September 6, 2021 | Rabia Kahn | _Water quality monitoring over Finger Lakes region using Sentinel-2 imagery on Google Earth Engine cloud computing platform_ | [XXIV ISPRS Congress](https://www.researchgate.net/publication/352497741_WATER_QUALITY_MONITORING_OVER_FINGER_LAKES_REGION_USING_SENTINEL-2_IMAGERY_ON_GOOGLE_EARTH_ENGINE_CLOUD_COMPUTING_PLATFORM) |[@MunsafRabia](http://www.twitter.com/MunsafRabia) |[Khan 2021](https://twitter.com/LadiesOfLandsat/status/1434853863408820232?s=20) | Google Earth Engine, Finger Lakes, Sentinel 2, sediment loading, water quality |
122 | 99 | September 13, 2021 | Dr. Catherine Champagne | _Impact of Soil Moisture Data Characteristics on the Sensitivity to Crop Yields Under Drought and Excess Moisture Conditions_ | [Remote Sensing](https://www.mdpi.com/2072-4292/11/4/372/htm) |[@cathchampagne](http://www.twitter.com/cathchampagne) |[Champagne 2019](https://twitter.com/LadiesOfLandsat/status/1437399222719025153?s=20) | soil moisture, drought, agriculture, SMOS, ESA-CCI |
123 | 100 | September 20, 2021 | Mahsa Khodaee | _Monitoring Forest Infestation and Fire Disturbance in the Southern Appalachian Using a Time Series Analysis of Landsat Imagery_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/15/2412) |[@mahsa_khodaee](http://www.twitter.com/mahsa_khodaee) |[Khodaee 2020](https://twitter.com/LadiesOfLandsat/status/1439941120973320193?s=20) | Hemlock Woolly Adelgid, fire, Landsat, Tasseled Cap Transformation |
124 | 101 | Sept 27, 2021 | EO Scientist Landsat 9 Trading Card Deck | | []() |[]() |[L9 Cards](https://twitter.com/LadiesOfLandsat/status/1442512777076252677?s=20)|
125 | 102 | October 4, 2021 | Dr. María Fernández-Giménez and Dr. Ginger Allington | _Using an integrated social-ecological analysis to detect effects of household herding practices on indicators of rangeland resilience in Mongolia_ | [Environmental Research Letters](https://iopscience.iop.org/article/10.1088/1748-9326/aacf6f/meta) |[@gigi_rose](http://www.twitter.com/gigi_rose) |[Fernández-Giménez 2018](https://twitter.com/LadiesOfLandsat/status/1445012723981594630?s=20) | pastoralism, grassland, mobility, statistical matching, otor, dzud, resilience |
126 | 103 | October 11, 2021 | Dr. Milto Miltiadou | _A Comparative Study about Data Structures Used for Efficient Management of Voxelised Full-Waveform Airborne LiDAR Data during 3D Polygonal Model Creation_ | [Remote Sensing](https://www.mdpi.com/2072-4292/13/4/559) |[@DrMiltiadou](http://www.twitter.com/DrMiltiadou) |[Miltiadou 2021](https://twitter.com/LadiesOfLandsat/status/1447541748054564872?s=20) | LiDAR, voxelisation, iso-surface, visualisations, data structures, efficiency, memory management, execution time, volumetric data |
127 | 104 | October 18, 2021 | Emily C. Adams | _Limitations of Remote Sensing in Assessing Vegetation Damage Due to the 2019–2021 Desert Locust Upsurge_ | [Frontiers in Climate](https://www.frontiersin.org/articles/10.3389/fclim.2021.714273/full) |[@emily4eo](http://www.twitter.com/emily4eo) |[Adams 2021](https://twitter.com/LadiesOfLandsat/status/1450079995829932038?s=20) | locust, NDVI, vegetation, damage assessment, MODIS, harmonized landsat sentinel |
128 | 105 | October 25, 2021 | Gina Maskell | _Integration of Sentinel optical and radar data for mapping smallholder coffee production systems in Vietnam_ | [Remote Sensing of Environment](https://doi.org/10.1016/j.rse.2021.112709) |[@GinaMask](http://www.twitter.com/GinaMask) |[Maskell 2021](https://twitter.com/LadiesOfLandsat/status/1452615913971359744?s=20) | agroforestry, smallholder agriculture, crop mask, Sentinel-1, Sentinel-2, data fusion, Google Earth Engine, random forest |
129 | 106 | November 1, 2021 | Dr. Angela Kross | _Using Artificial Neural Networks and Remotely Sensed Data to Evaluate the Relative Importance of Variables for Prediction of Within-Field Corn and Soybean Yields_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/14/2230/htm) |[@angela_kross](http://www.twitter.com/angela_kross) |[Kross 2020](https://twitter.com/LadiesOfLandsat/status/1455147086115184641?s=20) | corn; soybean, yield prediction, remote sensing, vegetation indices, artificial neural network, elevation, within-field scale |
130 | 107 | November 8, 2021 | Bogumila Backiel | _Mapping Sandbars in the Connecticut River Watershed through Aerial Images for Floodplain Conservation_ | [Scholarworks at UMass Amherst](https://scholarworks.umass.edu/masters_theses_2/597/) |[@bobackiel](http://www.twitter.com/bobackiel) |[Backiel 2018](https://twitter.com/LadiesOfLandsat/status/1457705492248150020?s=20) | NAIP, aerial imagery, fluuvial geomorphic feature modelling, Connecticut River, New England, sandbars |
131 | 108 | November 15, 2021 | Dr. Meghan Halabisky | _Harnessing the Temporal Dimension to Improve Object-Based Image Analysis Classification of Wetlands_ | [Remote Sensing](https://www.mdpi.com/2072-4292/10/9/1467/htm) |[@mhalabisky1](http://www.twitter.com/mhalabisky1) |[Halabisky 2018](https://twitter.com/LadiesOfLandsat/status/1460248566027403273?s=20) | time series, Landsat, wetlands, hydrology, hydroperiod, high resolution, GEOBIA, OBIA |
132 | 109 | November 22, 2021 | Dr. Swanni Alvarado | _Thresholds of fire response to moisture and fuel load differ between tropical savannas and grasslands across continents_ | [Global Ecology and Biogeography](https://onlinelibrary.wiley.com/doi/abs/10.1111/geb.13034) |[@SwanniAlvarado](http://www.twitter.com/SwanniAlvarado) |[Alvarado 2020](https://twitter.com/LadiesOfLandsat/status/1462779313930047488?s=20) | MODIS, burned area, dry season, rainfall, CHIRPS, fuel conditions, Pantropical savannas |
133 | 110 | November 29, 2021 | Dr. Camile Söthe | _Large scale mapping of soil organic carbon concentration with 3D machine learning and satellite observations_ | [Geoderma](https://www.sciencedirect.com/science/article/pii/S0016706121004821) |[@SotheCamile](http://www.twitter.com/SotheCamile) |[Söthe 2022](https://twitter.com/LadiesOfLandsat/status/1465316289908551690?s=20) | soil organic carbon, machine learning, carbon cycle, satellite data, Google Earth Engine, climate change, peatland |
134 | 111 | December 6, 2021 | Dr. Ane Alencar | _Mapping Three Decades of Changes in the Brazilian Savanna Native Vegetation Using Landsat Data Processed in the Google Earth Engine Platform_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/6/924) |[@anealencar3](http://www.twitter.com/anealencar3) |[Alencar 2020](https://twitter.com/LadiesOfLandsat/status/1467856179695079427?s=20) | Cerrado, land cover, grasslands, forests, monitoring, random forest, spectral indexes, vegetation seasonality |
135 | 112 | December 13, 2021 | Dr. Tahisa Neitzel Kuck | _Change Detection of Selective Logging in the Brazilian Amazon Using X-Band SAR Data and Pre-Trained Convolutional Neural Networks_ | [Remote Sensing](https://www.mdpi.com/2072-4292/13/23/4944/htm) |[@tatakuck](http://www.twitter.com/tatakuck) |[Kuck 2021](https://twitter.com/LadiesOfLandsat/status/1470390158218477574?s=20) | selective logging, synthetic aperture radar, SAR, convolutional neural networks |
136 | 113 | December 20, 2021 | Dr. Michelle Picoli | _Land use change: the barrier for sugarcane sustainability_ | [Biofuels, Bioproducts, & Biorefining](https://onlinelibrary.wiley.com/doi/10.1002/bbb.2270) |[@Michelle_Picoli](http://www.twitter.com/Michelle_Picoli) |[Picoli 2021](https://twitter.com/LadiesOfLandsat/status/1472923548062818305?s=20) | public policy, bioethanol production, Brazil, Landsat, MapBiomas, land-use change |
137 | 114 | December 27, 2021 | 2021 MM Moments Thread | | 2021 MM |[2021 MM](https://twitter.com/LadiesOfLandsat/status/1475473380044328960?s=20) | |
138 | 115 | January 3, 2022 | Dr. Jessica McCarty | _Reviews and syntheses: Arctic fire regimes and emissions in the 21st century_ | [Biogeosciences](https://bg.copernicus.org/articles/18/5053/2021/bg-18-5053-2021.pdf) |[@jmccarty_geo](http://www.twitter.com/jmccarty_geo) |[McCarty 2021](https://twitter.com/LadiesOfLandsat/status/1478010368807026691?s=20) | Arctic, boreal, fire regimes, fire emissions, MODIS, VIIRS, Sentinel-2, Earth observations |
139 | 116 | January 10, 2022 | Katja Kowalski | _Quantifying drought effects in Central European grasslands through regression-based unmixing of intra-annual Sentinel-2 time series_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425721005010) |[@katja_kowalski](http://www.twitter.com/katja_kowalski) |[Kowalski 2022](https://twitter.com/LadiesOfLandsat/status/1480539907152138240?s=20) | fractional cover, support vector regression, NDFI, photosynthetic vegetation, PV, non-photosynthetic vegetation, NPV, soil, Copernicus, climate change |
140 | 117 | January 17, 2022 | Dr. Kiana Zolfaghari | _Impact of Spectral Resolution on Quantifying Cyanobacteria in Lakes and Reservoirs: A Machine-Learning Assessment_ | [IEEE Transactions on Geoscience and Remote Sensing](https://ieeexplore.ieee.org/stamp/stamp.jsp?tp=&arnumber=9570275) |[@KianaZol](http://www.twitter.com/KianaZol) |[Zolfaghari 2021](https://twitter.com/LadiesOfLandsat/status/1483077092778680324?s=20) | cyanobacteria harmful algal bloom (Cyano HAB), hyperspectral, machine learning (ML), neural network, phycocyanin (PC), spectral resolution|
141 | 118 | January 24, 2022 | Alexandra Runge | _Remote sensing annual dynamics of rapid permafrost thaw disturbances with LandTrendr_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425721004727#fig0045) |[@RungeAlexandra](http://www.twitter.com/RungeAlexandra) |[Runge 2022](https://twitter.com/LadiesOfLandsat/status/1485625873021689859?s=20) | retrogressive thaw slumps, time series, multi-spectral analysis, Landsat, Sentinel-2, thermo-erosion, permafrost thaw |
142 | 119 | January 31, 2022| Dr. Melania Michetti, Eleanora Cogo, and Dr. Sara Venturini| _Monitoring Adaptation Using Earth Observations in View of the “Global Stocktake”_ | [Handbook of Climate Change Management](https://link.springer.com/referenceworkentry/10.1007%2F978-3-030-22759-3_153-1) |[@elecogo](http://www.twitter.com/elecogo) and [@la_Venturini](http://www.twitter.com/la_Venturini) | [Michetti 2021](https://twitter.com/LadiesOfLandsat/status/1488141377137520644?s=20&t=MFwo_iR3eMjISyER5nPP6g) | Earth observations, adaptation, resilience, global stocktake, Paris Agreement, monitoring and evaluation, climate change, climate policy, Big Data, Citizen Science |
143 | 120 | February 7, 2022| Dr. Alice Alonso and Dr. Natalie Nelson| _Estimating the Influence of Oyster Reef Chains on Freshwater Detention at the Estuary Scale Using Landsat-8 Imagery_ | [Estuaries and Coasts](https://link.springer.com/article/10.1007%2Fs12237-021-00959-6) |[@alonsoalice1](http://www.twitter.com/alonsoalice1) and [@nataliegnelson](http://www.twitter.com/nataliegnelson) | [Alonso 2021](https://twitter.com/LadiesOfLandsat/status/1490692328775946240?s=20&t=K81gaE0Vp-kU-nup2ONN5g) | Landsat 8, satellite imagery, salinity, oyster reefs, Suwannee River, Gulf of Mexico |
144 | 121 | February 14, 2022| Dr. Fang Cao and Dr. Maria Tzortziou| _Capturing dissolved organic carbon dynamics with Landsat-8 and Sentinel-2 in tidally influenced wetland–estuarine systems_ | [Science of the Total Environment](https://www.researchgate.net/publication/352315889_Capturing_dissolved_organic_carbon_dynamics_with_Landsat-8_and_Sentinel-2_in_tidally_influenced_wetland-estuarine_systems) |[@mtzortziou](http://www.twitter.com/mtzortziou) | [Cao & Tzortziou 2021](https://twitter.com/LadiesOfLandsat/status/1493243327231180806?s=20&t=F-VRKbpK4KLlCHba-fgOBA) | coastal ecosystems, carbon cycling, tidal exchanges, episodic events, remote sensing, biogeochemistry |
145 | 122 | February 21, 2022| Dr. Zahra Sadeghi| _Benchmarking and inter-comparison of Sentinel-1 InSAR velocities and time series_ | [Remote Sensing of Environment](https://doi.org/10.1016/j.rse.2021.112306) |[@ZahraSadeghi_RS](http://www.twitter.com/ZahraSadeghi_RS) | [Sadeghi 2021](https://twitter.com/LadiesOfLandsat/status/1495759656387498350?s=20&t=plm3l4ppDkw9zpfa3KsLXQ) | InSAR, comparison, Sentinel-1, ground motion |
146 | 123 | Februrary 28, 2022| Aurélie C. Shapiro | _Forest condition in the Congo Basin for the assessment of ecosystem conservation status_ | [Ecological Indicators](https://www.sciencedirect.com/science/article/pii/S1470160X20312085) |[@aurelgrooves](http://www.twitter.com/aurelgrooves) | [Shapiro 2021](https://twitter.com/LadiesOfLandsat/status/1498279614468304900?s=20&t=wQIEs1Q8x5jvtJ-__GsOwA) | monitoring, forest degradation, condition, conservation planning, REDD+, stratification, Red List, prioritization |
147 | 124 | March 7, 2022| Dr. Anjana Shah| _Mapping Critical Minerals from the Sky_ | [GSA Today](https://www.geosociety.org/GSA/Publications/GSA_Today/features/GSA/GSAToday/science/G512A/article.aspx?_zs=6mf1d1&_zl=MGO08) |[]() | [Shah 2021](https://twitter.com/LadiesOfLandsat/status/1500811487962619904?s=20&t=10z0xoAisBwrxpBBCierwQ) | critical minerals, airborne, geology, mineral deposits, magnetic, radiometric |
148 | 125 | March 14, 2022| Dr. Maycira Costa | _Historical distribution of kelp forests on the coast of British Columbia: 1858–1956_ | [Applied Geography](https://www.sciencedirect.com/science/article/pii/S0143622819312160) |[@UVicSpectral](http://www.twitter.com/UVicSpectral) | [Costa 2020](https://twitter.com/LadiesOfLandsat/status/1503367287730057219?s=20&t=pHSGmmUWXCL-1S-ll5dKjQ) | kelp spatial distribution, British Columbia, historical British admiralty charts, 1858–1956 |
149 | 126 | March 21, 2022| Alejandra Mora-Soto | _A High-Resolution Global Map of Giant Kelp (Macrocystis pyrifera) Forests and Intertidal Green Algae (Ulvophyceae) with Sentinel-2 Imagery_ | [Remote Sensing](https://www.mdpi.com/2072-4292/12/4/694) |[@alitamoras](http://www.twitter.com/alitamoras) | [Mora-Soto 2020](https://twitter.com/LadiesOfLandsat/status/1505871504797483009?s=20&t=Q6n5IJAZ6A-pl_3oUEpH6A) | giant kelp, Macrocystis pyrifera, Google Earth Engine, UAV, Sentinel-2, Ulvophyceae |
150 | 127 | March 28, 2022 | Shijuan Chen | _Monitoring temperate forest degradation on Google Earth Engine using Landsat time series analysis_ | [Remote Sensing of Environment](https://doi.org/10.1016/j.rse.2021.112648) |[@shijuan_chen](http://www.twitter.com/shijuan_chen) | [Chen 2021](https://twitter.com/LadiesOfLandsat/status/1508438397366505480?s=20&t=WegtE7JrUGEqqvCRnOHNIg) | forest degradation, deforestation, disturbance, Landsat, Google Earth Engine, CCDC-SMA, time series analysis, change detection, area estimation |
151 | 128 | April 4, 2022 | Dr. Amy Collins | _How community forest management performs when REDD+ payments fail_ | [Environmental Research Letters](https://iopscience.iop.org/article/10.1088/1748-9326/ac4b54/pdf) |[@amy_christina](http://www.twitter.com/amy_christina) | [Collins 2022](https://twitter.com/LadiesOfLandsat/status/1510973152632922125?s=20&t=bAMhGpGwY72AWBZYuw3vvA) | REDD+, community forest management, co-benefits, statistical matching, climate change mitigation, deforestation, socio-ecological systems |
152 | 129 | April 11, 2022 | Vanesa Martín-Arias and Christine Evans | _Modeled Impacts of LULC and Climate Change Predictions on the Hydrologic Regime in Belize_ | [Frontiers in Environmental Science](https://www.frontiersin.org/articles/10.3389/fenvs.2022.848085/full) |[@vanessa_martian](http://www.twitter.com/vanessa_martian) and [@ChristineAEvans](http://www.twitter.com/ChristineAEvans’)| [Martín-Arias 2022](https://twitter.com/LadiesOfLandsat/status/1513504496659447810?s=20&t=ulIcfI2LB9KQQaYCRtmd8w) | land cover change, hydrology, runoff, CMIP-6, climate change, Belize, N-SPECT, TerrSet |
153 | 130 | April 18, 2022 | Caroline S. Juang | _Rapid Growth of Large Forest Fires Drives the Exponential Response of Annual Forest-Fire Area to Aridity in the Western United States_ | [Geophysical Research Letters](https://agupubs.onlinelibrary.wiley.com/doi/10.1029/2021GL097131) |[@caro_in_space](http://www.twitter.com/caro_in_space)| [Juang 2022](https://twitter.com/LadiesOfLandsat/status/1516057729403605002?s=20&t=ZdBG7MjVyOGPeC7ZATg2Gg) | forest fires, western USA, MTBS, MODIS burned areas, aridification, fuels, climate, Climgrid |
154 | 131 | April 25, 2022 | Dr. Ellen Whitman | _Climate-induced fire regime amplification in Alberta, Canada_ | [Environmental Research Letters](https://iopscience.iop.org/article/10.1088/1748-9326/ac60d6/pdf) |[@EllWhitman](http://www.twitter.com/EllWhitman)| [Whitman 2022](https://twitter.com/LadiesOfLandsat/status/1518585699968114690?s=20&t=StmWbvcNw3XxFSTckO0FwQ) | climate change, fire, fire severity, wildfire, fire regime, Landsat |
155 | 132 | May 2, 2022 | Breylla Campos Carvalho | _Shoreline position change and the relationship to annual and interannual meteo-oceanographic conditions in Southeastern Brazil_ | [Estuarine, Coastal and Shelf Science](https://doi.org/10.1016/j.ecss.2020.106582) |[@bre_campos](http://www.twitter.com/bre_campos)| [Campos Carvalho 2020](https://twitter.com/LadiesOfLandsat/status/1521118703114403840?s=20&t=oIPXH45c7yHxcNdSMIHj9A) | Landsat imagery, WW3 model, coastal morphology, El Niño/La Niña teleconnections, Rio de Janeiro, sandy beaches |
156 | 133 | May 9, 2022 | Julia Wagemann | _A user perspective on future cloud-based services for Big Earth data_ | [International Journal of Digital Earth](https://www.tandfonline.com/doi/pdf/10.1080/17538947.2021.1982031) |[@JuliaWagemann](http://www.twitter.com/JuliaWagemann)| [Wagemann 2021](https://twitter.com/LadiesOfLandsat/status/1523661023089422337?s=20&t=Vl3RjZKw9BzPRQhpqaVUpA) | user requirements; cloud-based services; Big Earth data; open data |
157 | 134 | May 16, 2022 | Rebekke Muench | _Assessment of Open Access Global Elevation Model Errors Impact on Flood Extents in Southern Niger_ | [Frontiers in Environmental Science](https://www.frontiersin.org/articles/10.3389/fenvs.2022.880840/full) |[@beemuench](http://www.twitter.com/beemuench)| [Muench 2022](https://twitter.com/LadiesOfLandsat/status/1526201028273659905?s=20&t=OWe77ANi27x_Hyy4ZjM7cQ) | flood, DEM, RMSE, West Africa, HAND, SERVIR |
158 | 135 | May 23, 2022 | Dr. Trisalyn Nelson | _Accelerating ethics, empathy, and equity in geographic information science_ | [PNAS](https://www.pnas.org/doi/10.1073/pnas.2119967119) |[@TrisalynNelson](http://www.twitter.com/TrisalynNelson) and [@deepseadawn](http://www.twitter.com/deepseadawn)| [Nelson 2022](https://twitter.com/LadiesOfLandsat/status/1528733306203820035?s=20&t=BJ7U3408uWahIHit5cakow) | diversity, equity, inclusion, justice, GIS, conceptual, ethics, empathy |
159 | 136 | May 30, 2022 | Eleanor Wratten | _Physiographic Controls on Landfast Ice Variability from 20 Years of Maximum Extents across the Northwest Canadian Arctic_ | [Remote Sensing](https://www.mdpi.com/2072-4292/14/9/2175/htm) |[@EleanorWratten](http://www.twitter.com/EleanorWratten) | [Wratten 2022](https://twitter.com/LadiesOfLandsat/status/1531255296680677377?s=20&t=H5gRFyOWxxK24fWEiclGIw) | arctic, MODIS, landfast ice extent, scale, topographic setting, storms, environmental processes, community, coastal erosion |
160 | 137 | June 7, 2022 | Heather Kay | _Exploring the Relationship between Forest Canopy Height and Canopy Density from Spaceborne LiDAR Observations_ | [Remote Sensing](https://www.mdpi.com/2072-4292/13/24/4961) |[@HeatherKayMTB](http://www.twitter.com/HeatherKayMTB) | [Kay 2021](https://twitter.com/LadiesOfLandsat/status/1533818340401192966?s=20&t=Ha80aWEN7bKOdBWgGRyXXw) | canopy height, canopy density, ICESat GLAS, forest structure |
161 | 138 | June 13, 2022 | Dr. Ekena Rangel Pinagé | _Forest structure and solar-induced fluorescence across intact and degraded forests in the Amazon_ | [Remote Sensing of Environment](https://doi.org/10.1016/j.rse.2022.112998) |[@EkenaRP](http://www.twitter.com/EkenaRP) | [Pinagé 2022](https://twitter.com/LadiesOfLandsat/status/1536339821760749570?s=20&t=uDZg336ju4HtKLGJtYMCkg) | Amazon, forest degradation, selective logging, forest fires, forest structure, solar-induced chlorophyll fluorescence |
162 | 139 | June 20, 2022 | Dr. Karen Joyce, Dr. Karen Anderson, and Dr. Renee Bartolo | _Of Course We Fly Unmanned—We’re Women!_ | [Remote Sensing](https://www.mdpi.com/2504-446X/5/1/21/htm) |[@KEJoyce2](http://www.twitter.com/KEJoyce2), [@KAnderson_RS](http://www.twitter.com/KAnderson_RS) and [@ReneeBartolo](http://www.twitter.com/ReneeBartolo) | [Joyce, Anderson, & Bartolo 2021](https://twitter.com/LadiesOfLandsat/status/1538869910591393796?s=20&t=T2uZsbbh3gVPH-sfUJhjGQ) | drones, UAS, UAV, SheMaps, Dames of Drones, diversity, equity, inclusion, justice, inclusive language |
163 | 140 | June 27, 2022 | Dr. Meha Jain | _Groundwater depletion will reduce cropping intensity in India_ | [Science Advances](https://www.science.org/doi/full/10.1126/sciadv.abd2849) |[@Meha__Jain](http://www.twitter.com/Meha__Jain) | [Jain 2021](https://twitter.com/LadiesOfLandsat/status/1541411272519974913?s=20&t=XgiTbiXxo1itOTJwZqTcKA) | groundwater depletion, MODIS, high-resolution dataset, India, cropping intensity, winter cropped land, irrigation |
164 | 141 | July 4, 2022 | Dr. Antara Dasgupta | _On the Impacts of Observation Location, Timing, and Frequency on Flood Extent Assimilation Performance_ | [Water Resources Research](https://doi.org/10.1029/2020WR028238) |[@ant_dasgupta](http://www.twitter.com/ant_dasgupta) | [Dasgupta 2021](https://twitter.com/LadiesOfLandsat/status/1543947137200824321?s=20&t=_y2jb6kfAeXfy3l5g2rvnw) | SAR, flood extent, Australia, flood forecasting, LISFLOOD-FP model |
165 | 142 | July 11, 2022 | Dr. Chelene Hanes | _Mapping organic layer thickness and fuel load of the boreal forest in Alberta, Canada_ | [Geoderma](https://www.sciencedirect.com/science/article/pii/S0016706122001343) |[@WildfireScience](http://www.twitter.com/WildfireScience) | [Hanes 2022](https://twitter.com/LadiesOfLandsat/status/1546486422038892547?s=20&t=ZSGHmO4MY3FTt0eUMyI06Q) | fuel load, random forests, machine learning, wildland fire, spatial visualization, forest fuels |
166 | 143 | July 18, 2022 | Yingtong Zhang | _A Global Analysis of the Spatial and Temporal Variability of Usable Landsat Observations at the Pixel Scale_ | [Frontiers in Remote Sensing ](https://www.frontiersin.org/articles/10.3389/frsen.2022.894618/full) |[@YingtongZhang](http://www.twitter.com/YingtongZhang) | [Zhang 2022](https://twitter.com/LadiesOfLandsat/status/1549031001967525888?s=20&t=mcLTdU6F_3_0f4IekvDfdQ) | Landsat, time series, data density, pixel quality, land change, land cover |
167 | 144 | July 25, 2022 | Itohan-Osa Abu | _Detecting cocoa plantations in Côte d’Ivoire and Ghana and their implications on protected areas_ | [Ecological Indicators](https://doi.org/10.1016/j.ecolind.2021.107863) |[@Itohan_Osa_](http://www.twitter.com/Itohan_Osa_) | [Abu 2021](https://twitter.com/LadiesOfLandsat/status/1551555429930508289?s=20&t=3PTbyl3RYC6tDAAARl7QuQ) | cocoa mapping, cash crops, West Africa, Sentinel-1, Sentinel-2, protected areas, encroachment |
168 | 145 | August 1, 2022 | Dr. Iryna Dronova & Dr. Sophie Taddeo | _Remote sensing of phenology: Towards the comprehensive indicators of plant community dynamics from species to regional scales_ | [Journal of Ecology](https://besjournals.onlinelibrary.wiley.com/doi/epdf/10.1111/1365-2745.13897) |[@dronova_iryna](http://www.twitter.com/dronova_iryna) and [@SophieTaddeo](http://www.twitter.com/SophieTaddeo)| [Dronova & Taddeo 2022](https://twitter.com/LadiesOfLandsat/status/1554090612160438274?s=20&t=3zutiNgMFKTOcMwUEmB4Tg) | heterogeneity, phenology, plant diversity, remote sensing, resilience, satellite, spectral vegetation indicators, stability|
169 | 146 | August 8, 2022 | Dr. Akansha Singh Bansal | _Data-Driven Control, Modeling, and Forecasting for Residential Solar Power_ | [Scholarworks @UMass Amherst](https://scholarworks.umass.edu/dissertations_2/2415/) |[@akansha_asb](http://www.twitter.com/akansha_asb)| [Singh Bansal 2022](https://twitter.com/LadiesOfLandsat/status/1556626513268711426?s=20&t=PFEWB5DMqQqkRkxQYxSBzA) | satellite-data techniques, solar power, residential solar power, physical models, machine learning models, deep learning models, GOES-R, GOES-17, GOES-16, data-driven techniques|
170 | 147 | August 15, 2022 | Dr. Ana Bastos | _Direct and seasonal legacy effects of the 2018 heat wave and drought on European ecosystem productivity_ | [Science Advances](https://www.science.org/doi/full/10.1126/sciadv.aba2724) |[@Ana__Bastos](http://www.twitter.com/Ana__Bastos)| [Bastos 2020](https://twitter.com/LadiesOfLandsat/status/1559175546109575168?s=20&t=_7SScD6l2SRlzfZEXDrilg) | ERA5, SMOS, SAR, ecosystem productivity, 2018 heat wave, drought, Europe, vegetation, carbon, water exchange |
171 | 148 | August 22, 2022 | Viola H.A. Heinrich | _Large carbon sink potential of secondary forests in the Brazilian Amazon to mitigate climate change_ | [Nature Communications](https://go.nature.com/39HhGOH) |[@vh_trees](http://www.twitter.com/vh_trees)| [Heinrich 2021](https://twitter.com/LadiesOfLandsat/status/1561689255851835398?s=20&t=8Bh6b75x_juDtYUtNYJ6wQ) | MapBiomas, Landsat, LULC, land-use land-cover, ESA-CCI ABG, Brazilian Amazon, disturbance, tropical forest, secondary forest, regrowth, drivers |
172 | 149 | August 29, 2022 | Dr. Anni Yang | _Leveraging Machine Learning and Geo-Tagged Citizen Science Data to Disentangle the Factors of Avian Mortality Events at the Species Level_ | [Remote Sensing](https://www.mdpi.com/2072-4292/14/10/2369) |[@anniyang0406](http://www.twitter.com/anniyang0406)| [Yang 2022](https://twitter.com/LadiesOfLandsat/status/1564237325865029635?s=20&t=y7o-fr4cvZETVQzwG5gfjQ) | avian conservation, citizen science, random forest, earth observations, mortality, natural hazards |
173 | 150 | September 5, 2022 | Elham Shafeian | _Mapping fractional woody cover in an extensive semi-arid woodland area at different spatial grains with Sentinel-2 and very high-resolution data_ | [International Journal of Applied Earth Observation and Geoinformation](https://www.sciencedirect.com/science/article/pii/S0303243421003287) |[@EShafeian](http://www.twitter.com/EShafeian)| [Shafeian 2021](https://twitter.com/LadiesOfLandsat/status/1566824994658832385?s=20&t=srkEj0h01Xbn7piVUNMx2Q) | semi-arid woodlands, Zagros, woody cover, Sentinel-2, VHR imagery, land cover |
174 | 151 | September 12, 2022 | Itziar Irakulis-Loitxate | _Satellites Detect a Methane Ultra-emission Event from an Offshore Platform in the Gulf of Mexico_ | [Environmental Science & Technology Letters](https://pubs.acs.org/doi/10.1021/acs.estlett.2c00225) |[@itziraloi](http://www.twitter.com/itziraloi)| [Irakulis-Loitxate 2022](https://twitter.com/LadiesOfLandsat/status/1569315736757145603?s=20&t=uhOIiPIfkD96eE2Gr0l0bg) | Methane emissions, offshore platforms, high-resolution satellite data, WorldView-3, Landsat 8, Gulf of Mexico, sun-glint, VIIRS |
175 | 152 | September 19, 2022 | Dr. Anna K. Schweigher | _Plant beta-diversity across biomes captured by imaging spectroscopy_ | [Nature Communications](https://www.nature.com/articles/s41467-022-30369-6) |[]()| [Schweiger 2022](https://twitter.com/LadiesOfLandsat/status/1571852840376668160?s=20&t=4j5YHkH9dmdIkeXpOSWzzA) | high-resolution, spectral images, spectrometers, plant diversity, NEON, National Ecological Observatory Network |
176 | 153 | September 26, 2022 | Dr. Joanne V. Hall | _Validation of GOES-16 ABI and MSG SEVIRI Active Fire Products_ | [International Journal of Applied Earth Observation and Geoinformation](https://www.sciencedirect.com/science/article/abs/pii/S0303243419306336) |[@JoanneVHall](www.twitter.com/JoanneVHall)| [Hall 2019](https://twitter.com/LadiesOfLandsat/status/1574394685732556800?s=20&t=ROqZcONigG0LbiFVPkBtGg) | Fire, biomass burning, GOES ABI, MSG SEVIRI, Landsat |
177 | 154| October 3, 2022 | Joan Sturm | _Satellite data reveal differential responses of Swiss forests to unprecedented 2018 drought_ | [Global Change Biology](https://onlinelibrary.wiley.com/doi/10.1111/gcb.16136) |[@JTSturm](www.twitter.com/JTSturm)| [Sturm 2022](https://twitter.com/LadiesOfLandsat/status/1576920929036181515?s=20&t=-Zl3T2JtZcXbx8PYTW7dYw) | environmental drivers, forest drought responses, NDWI, remote sensing, resilience, resistance, Sentinel-2 |
178 | 155| October 10, 2022 | Abena B. Asare-Ansah | _Tracking the Godzilla dust plume using Google Earth Engine platform_ | [The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences](https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-M-2-2022/33/2022/) |[@Ms_Pixels](www.twitter.com/Ms_Pixels)| [Asare-Ansah 2022](https://twitter.com/LadiesOfLandsat/status/1579477408046288901?s=20&t=SgyV7hd52P-EolrdT-F5Dw) | Godzilla, dust plume, aerosol, air quality, Sentinel-5P, Google Earth Engine, Sahara Desert, Africa |
179 | 156| October 17, 2022 | Dr. Radost Stanimirova | _Widespread changes in 21st century vegetation cover in Argentina, Paraguay, and Uruguay_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425722003832#f0005) |[@radost_stan](www.twitter.com/radost_stan)| [Stanimirova 2022](https://twitter.com/LadiesOfLandsat/status/1582008598401777666?s=20&t=1MOj8TbUL__Hv3YsjNoikA) | South America, land cover change, remote sensing, deforestation, afforestation, woody encroachment, desertification |
180 | 157| October 24, 2022 | Matilda Anokye | _Assessing land cover change around Bayou Perot- Little Lake, New Orleans using Sentinel 2 satellite imagery_ | [The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences](https://www.int-arch-photogramm-remote-sens-spatial-inf-sci.net/XLVI-M-2-2022/15/2022/) |[@KKtilda](www.twitter.com/KKtilda)| [Anokye 2022](https://twitter.com/LadiesOfLandsat/status/1584527677746126848?s=20&t=1MOj8TbUL__Hv3YsjNoikA) | Hurricane Ida, land cover change, Sentinel 2, coastal ecosystems, NDVI, Random Forest classification |
181 | 158 | October 31, 2022 | Dr. Natasha Stavros | _Designing an Observing System to Study the Surface Biology and Geology (SBG) of the Earth in the 2020s_ | [Journal of Geophysical Research: Biogeosciences](https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2021JG006471) |[@DrWKID](www.twitter.com/DrWKID)| [Stavros 2022](https://twitter.com/LadiesOfLandsat/status/1587073813006671872?s=20&t=p-h16G-DHTfQQARy0NGHIQ) | surface biology and geology, observing system, framework, design, satellite, spectroscopic, thermal data |
182 | 159 | November 7, 2022 | Germán Silva | _Shifts in Salt Marsh Vegetation Landcover after Debris Flow Deposition_ | [Remote Sensing](https://www.mdpi.com/2072-4292/14/12/2819) |[@envirogeography](www.twitter.com/envirogeography)| [Silva 2022](https://twitter.com/LadiesOfLandsat/status/1589621243249975296?s=20&t=E71QxLbqz7q04J2phHO2Ww) | remote sensing, wetland change, change detection, random forest classifier, Salicornia pacifica |
183 | 160 | November 14, 2022 | Diana Efia Frimpong | _Assessing the Impact of Land Use and Land Cover Change on Air Quality in East Baton Rouge—Louisiana Using Earth Observation Techniques_ | [Advances in Remote Sensing](https://www.scirp.org/journal/paperinformation.aspx?paperid=120884) |[@Diana_BF](www.twitter.com/Diana_BF)| [Frimpong 2022](https://twitter.com/LadiesOfLandsat/status/1592181239221739529?s=20&t=9ZwIuu-oZxZpsfYnh-UcaA) | Google Earth Engine, aerosol, air quality, Sentinel-5P, land use land cover change |
184 | 161 | November 21, 2022 | Dr. Rachael H. Nolan | _What Do the Australian Black Summer Fires Signify for the Global Fire Crisis?_ | [Fire](https://www.mdpi.com/2571-6255/4/4/97/htm) |[@Rachael_H_Nolan](www.twitter.com/Rachael_H_Nolan)| [Nolan 2022](https://twitter.com/LadiesOfLandsat/status/1594693340456427522?s=20&t=hH-n7_hzCVyPCr4z7MsoOg) | wildfire, smoke, demographics, fuel, climate change, adaptation, resilience, policy, human health |
185 | 162 | November 28, 2022 | Dr. Joel P. Scott & Dr. Erin Urquhart | _Leveraging Design Principles to Inform the Next Generation of NASA Earth Satellites_ | [Oceanography](https://tos.org/oceanography/article/leveraging-design-principles-to-inform-the-next-generation-of-nasa-earth-satellites) |[@jpsco](www.twitter.com/jpsco) & [@ea_urquhart](www.twitter.com/ea_urquhart)| [Scott & Urquhart 2020](https://twitter.com/LadiesOfLandsat/status/1597257332538605569?s=20&t=kC-SN35gjhhWCV0unxH3PA) | workshop report, satellite mission, user requirements, applications, NASA PACE, ocean remote sensing, plankton, aerosol, cloud, ocean ecosystem |
186 | 162 | December 5, 2022 | Highlighting new LoLManuscriptMonday website | | [Github.IO](https://ladiesoflandsat.github.io/LOLManuscriptMonday/) || [Tweet](https://twitter.com/LadiesOfLandsat/status/1599756632514187264?s=20) | |
187 | 164 | December 12, 2022 | LoL Leadership Feature of Matilda Anokye | | |[@KKTilda](https://twitter.com/KKtilda) | [Matilda Anokye Feature](https://twitter.com/LadiesOfLandsat/status/1602328178550362116?s=20) | |
188 | 165 | December 19, 2022 | LoL Leadership Feature of Sarah Schenkein | | | | [Sarah Schenkein Feature](https://twitter.com/LadiesOfLandsat/status/1604918865565286414?s=20) | |
189 | 166 | December 26, 2022 | LoL Leadership Feature of Sheryl Rose Reyes | | |[@srcreyes](https://twitter.com/srcreyes) | [Sheryl Rose Reyes Feature](https://twitter.com/LadiesOfLandsat/status/1607384369827614720?s=20) | |
190 | 167 | January 2, 2023 | Happy New Year 2023 Post |_Virginia Norwood, la "madre del Landsat" que revolucionó la observación de la Tierra desde el espacio_ | | | [BBC Mundo feature of Virginia Norwood Feature](https://twitter.com/LadiesOfLandsat/status/1610264257295171585?s=20) | |
191 | 168 | January 9, 2023 | Dr. Morgan Crowley | _Towards a whole-system framework for wildfire monitoring using Earth observations_ | [Global Change Biology](https://onlinelibrary.wiley.com/doi/10.1111/gcb.16567) | [@morganahcrowley](https://twitter.com/morganahcrowley)| [Crowley 2022](https://twitter.com/LadiesOfLandsat/status/1612453253421072384?s=20) | complex systems, Earth observations, fire monitoring, forest fires, pyrogeography, remote sensing, wildfires |
192 | 169 | January 16, 2023 | Dr. Ana Cláudia dos Santos Luciano | _Mapping 33 years of sugarcane evolution in São Paulo state, Brazil, using landsat imagery and generalized space-time classifiers_ | [Remote Sensing Applications: Society and Environment](https://www.sciencedirect.com/science/article/abs/pii/S235293852200057X) || [dos Santos Luciano 2022](https://twitter.com/LadiesOfLandsat/status/1614933224899371008?s=20) | Landsat, sugarcane, Brazil, space-time classifiers, multi-source, machine learning, random forest |
193 | 170 | January 23, 2023 | Carmen Morales | _Earth Map: A Novel Tool for Fast Performance of Advanced Land Monitoring and Climate Assessment_ | [Journal of Remote Sensing](https://spj.science.org/doi/10.34133/remotesensing.0003) || [Morales 2023](https://twitter.com/LadiesOfLandsat/status/1617454724399202304?s=20) | Earth Map, Google Earth Engine, analysis platform, datasets, software architecture|
194 | 171 | January 30, 2023 | Dr. Marta Sapena | _Empiric recommendations for population disaggregation under different data scenarios_ | [Plos One](https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0274504) | [@marta_sapena](https://twitter.com/marta_sapena)| [Sapena 2022](https://twitter.com/LadiesOfLandsat/status/1620078921487388672?s=20) | land use, population density, census, statistical methods, cities, statistical data, machine learning, urban areas |
195 | 171 | February 6, 2023 | Dr. Crista Straub | _Economic Valuation of Landsat Imagery_ | [USGS Publications Warehouse](https://pubs.er.usgs.gov/publication/ofr20191112) | [@cstraubresearch](https://twitter.com/cstraubresearch)| [Straub 2019](https://twitter.com/LadiesOfLandsat/status/1622760790238367745?s=20) | Landsat, economic value, imagery |
196 | 172 | February 13, 2023 | Edmund B. Molder & Sarah F. Schenkein | _Landsat Data Ecosystem Case Study: Actor Perceptions of the Use and Value of Landsat_ | [Frontiers in Environmental Science](https://www.frontiersin.org/articles/10.3389/fenvs.2021.805174/full) | | [Molder & Schenkein 2022](https://twitter.com/LadiesOfLandsat/status/1625120819545362439?s=20) | Landsat, data ecosystem, values, decision support, societal benefits, qualitative, remote sensing, Earth observation |
197 | 173 | February 20, 2023 | Ileana A. Callejas | _Effect of COVID-19 Anthropause on Water Clarity in the Belize Coastal Lagoon_ | [Frontiers in Marine Science](https://www.frontiersin.org/articles/10.3389/fmars.2021.648522/full) | [@IleanaCallejas](https://twitter.com/IleanaCallejas) | [Callejas 2021](https://twitter.com/LadiesOfLandsat/status/1627610987959394304?s=20) | diffuse attenuation coefficient, moderate resolution imaging spectroradiometer, remote sensing, water quality, marine traffic, Belize Barrier Reef Reserve System, water clarity |
198 | 174 | February 27, 2023 | Mary Joy Buitre | _The Mangrove Forests Change and Impacts from Tropical Cyclones in the Philippines Using Time Series Satellite Imagery_ | [MDPI Remote Sensing](https://www.mdpi.com/2072-4292/11/6/688) | [@Joyee_Twenty5](https://twitter.com/Joyee_Twenty5) | [Buitre 2019](https://twitter.com/LadiesOfLandsat/status/1630154466006818817) | comparative analysis, mangroves, Philippines, landscape metrics |
199 | 175 | March 13, 2023 | Dr. Karen Joyce | _Discovering Inclusivity in Remote Sensing: Leaving No One Behind_ | [Frontiers in Remote Sensing](https://www.frontiersin.org/articles/10.3389/frsen.2022.869291/full) | [@DrKJoyce](https://twitter.com/DrKJoyce) | [Joyce 2022](https://twitter.com/LadiesOfLandsat/status/1635318117281968131?s=20) | diversity, equity, inclusion, remote sensing, editorial boards, publications |
200 | 176 | May 1, 2023 | Dr. Ursa Kanjir | _Vessel detection and classification from spaceborne optical images: A literature survey_ | [Remote Sensing of Environment](https://www.sciencedirect.com/science/article/pii/S0034425717306193#s0020) | [@OrsoMajor](https://twitter.com/OrsoMajor) | [Kanjir 2018](https://twitter.com/LadiesOfLandsat/status/1653009558326091777) | vessel detection, vessel classification, sea target detection, object recognition, optical satellite data, maritime domain awareness |
201 | 177 | May 15, 2023 | Dr. Ana Stritih | _Alternative states in the structure of mountain forests across the Alps and the role of disturbance and recovery_ | [Landscape Ecology](https://link.springer.com/article/10.1007/s10980-023-01597-y) | [@AnaStritih](https://twitter.com/AnaStritih) | [Stritih 2023](PASTE LINK HERE) | mountain forests,GEDI, disturbance, basins of attraction, recovery |
202 | 181 | June 13, 2023 | Mari Trix Estomata | _Mapping of Forest Cover Extent and Change in the Philippines Using Decision Tree Classification on ALOS-1/2 PALSAR-1/2 Mosaic Data_ | [Proceedings of the 40th Asian Conference on Remote Sensing](https://bit.ly/Estomata_2019)) | [@Trixie_EA](https://twitter.com/Trixie_EA) | [Estomata_2019](https://twitter.com/LadiesOfLandsat/status/1668628236635639809) | L-Band SAR, REDD+, Unbiased Area Estimation, Multi-Temporal Speckle Filtering |
203 | 183 | July 31, 2023 | Sona Guliyeva | _Comparative Analysis of Machine Learning Algorithms for Crop Mapping Based on Azersky Satellite Images_ | [ICAIAME 2022: 4th International Conference on Artificial Intelligence and Applied Mathematics in Engineering](https://link.springer.com/book/10.1007/978-3-031-31956-3) | [@SonaGuliyeva_15](https://twitter.com/Trixie_EA) | [Guliyeva 2023](https://twitter.com/SonaGuliyeva_15) | Remote Sensing, Deep Learning, Azersky, Crop Map, GEE |
204 |
205 |
--------------------------------------------------------------------------------