├── langgraph_engineer
├── __init__.py
├── constants.py
├── code_utils.py
├── main.py
├── ingest.py
├── system.py
└── docs.json
├── .gitignore
├── notebooks
├── CRAG.jpg
└── ntbk_code_examples
│ ├── langgraph_crag_code_only.md
│ └── langgraph_self_rag_code_only.md
├── README.md
└── pyproject.toml
/langgraph_engineer/__init__.py:
--------------------------------------------------------------------------------
1 |
--------------------------------------------------------------------------------
/.gitignore:
--------------------------------------------------------------------------------
1 | __pycache__
2 | .ipynb_checkpoints
3 | Untitled*.ipynb
4 |
5 |
--------------------------------------------------------------------------------
/notebooks/CRAG.jpg:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/langchain-ai/langgraph-engineer/HEAD/notebooks/CRAG.jpg
--------------------------------------------------------------------------------
/langgraph_engineer/constants.py:
--------------------------------------------------------------------------------
1 | from pathlib import Path
2 |
3 | DOCS_DIR = Path(__file__).parent / "data"
4 | DOCS_PATH = DOCS_DIR / "docs.json"
5 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Langgraph-Engineer
2 |
3 |
4 | A (very alpha) CLI and corresponding notebook for langgraph app generation.
5 |
6 | To use, install:
7 |
8 | ```bash
9 | pip install -U langgraph-engineer
10 | ```
11 |
12 | You can generate from only a description, or you can pass in a diagram image.
13 |
14 | ```bash
15 | langgraph-engineer create --description "A RAG app over my local PDF" --diagram "path/to/diagram.png"
16 | ```
17 |
18 | For example:
19 |
20 | ```bash
21 | langgraph-engineer create --description "A corrective RAG app" --diagram "CRAG.jpg"
22 | ```
--------------------------------------------------------------------------------
/langgraph_engineer/code_utils.py:
--------------------------------------------------------------------------------
1 | from tempfile import NamedTemporaryFile
2 | from typing_extensions import TypedDict
3 | from ruff.__main__ import find_ruff_bin
4 | import subprocess
5 |
6 |
7 | class LintOutput(TypedDict):
8 | out: str
9 | error: str
10 |
11 | def run_ruff(code: str) -> LintOutput:
12 | with NamedTemporaryFile(mode="w", suffix=".py") as f:
13 | f.write(code)
14 | f.seek(0)
15 | ruff_binary = find_ruff_bin()
16 | res = subprocess.run([ruff_binary, f.name], capture_output=True)
17 | output, err = res.stdout, res.stderr
18 | # Replace the temp file name
19 | result = output.decode().replace(f.name, "code.py")
20 | error = err.decode().replace(f.name, "code.py")
21 | return {
22 | "out": result,
23 | "error": error,
24 | }
25 |
--------------------------------------------------------------------------------
/pyproject.toml:
--------------------------------------------------------------------------------
1 | [tool.poetry]
2 | name = "langgraph-engineer"
3 | version = "0.1.0"
4 | description = ""
5 | authors = ["William Fu-Hinthorn <13333726+hinthornw@users.noreply.github.com>"]
6 | license = "MIT"
7 | readme = "README.md"
8 |
9 | [tool.poetry.dependencies]
10 | python = ">=3.11,<3.12"
11 | typer = "^0.9.0"
12 | langgraph = "^0.0.26"
13 | langchain-community = "^0.0.24"
14 | langchain-openai = "^0.0.7"
15 | langchain-core = "^0.1.27"
16 | bs4 = "^0.0.2"
17 | ruff = "^0.2.2"
18 | jupyter = "^1.0.0"
19 | unstructured = "^0.12.6"
20 | markdown = "^3.6"
21 | langchain-anthropic = "^0.1.4"
22 |
23 | [tool.poetry.scripts]
24 | langgraph-engineer = "langgraph_engineer.main:app"
25 |
26 | [tool.poetry.group.dev.dependencies]
27 | ruff = "^0.2.2"
28 | black = "^24.2.0"
29 | mypy = "^1.8.0"
30 |
31 | [build-system]
32 | requires = ["poetry-core"]
33 | build-backend = "poetry.core.masonry.api"
34 |
--------------------------------------------------------------------------------
/langgraph_engineer/main.py:
--------------------------------------------------------------------------------
1 | import logging
2 | from pathlib import Path
3 | from typing import List, Optional
4 |
5 | import typer
6 | from langchain_core.messages import BaseMessage, HumanMessage
7 | from langchain_core.utils import image as image_utils
8 | from langgraph.graph import END
9 | from langgraph_engineer import ingest, system
10 | from typing_extensions import Annotated
11 |
12 |
13 | logging.basicConfig(level=logging.INFO)
14 |
15 | app = typer.Typer(no_args_is_help=True, add_completion=True)
16 |
17 |
18 | @app.command(name="create")
19 | def create(
20 | description: str = typer.Argument(
21 | ..., help="Description of the application to be created."
22 | ),
23 | diagram: Annotated[
24 | Optional[Path],
25 | typer.Option(
26 | help="Path to the image file to be used as the base for the graph"
27 | ),
28 | ] = None,
29 | output: Annotated[
30 | Optional[Path],
31 | typer.Option(
32 | help="Path to the file where the graph should be saved. Default is stdout.",
33 | ),
34 | ] = None,
35 | ):
36 | """
37 | Create a graph from an image file.
38 | """
39 | graph_ = system.build_graph()
40 | if diagram:
41 | image = image_utils.image_to_data_url(str(diagram))
42 | content = [{"type": "image_url", "image_url": image}]
43 | content.append({"type": "text", "text": description})
44 | last_chunk = None
45 | for chunk in graph_.stream(HumanMessage(content=content)):
46 | typer.echo(f"Running step {next(iter(chunk))}...")
47 | last_chunk = chunk
48 | code_content = ""
49 | if last_chunk:
50 | messages: List[BaseMessage] = last_chunk[END]
51 | code_content = messages[-1].content
52 | if output:
53 | with output.open("w") as f:
54 | f.write(code_content)
55 | else:
56 | typer.echo(code_content)
57 |
58 |
59 | @app.command(name="ingest")
60 | def ingest_docs(
61 | dry_run: bool = typer.Option(
62 | False, help="Print the ingested documents instead of writing them to file."
63 | )
64 | ):
65 | """
66 | Ingest a file into the graph.
67 | """
68 | ingest.ingest(dry_run=dry_run)
69 |
70 |
71 | if __name__ == "__main__":
72 | app()
73 |
--------------------------------------------------------------------------------
/langgraph_engineer/ingest.py:
--------------------------------------------------------------------------------
1 | import functools
2 | import logging
3 |
4 | from bs4 import BeautifulSoup
5 | from langchain_community.document_loaders.recursive_url_loader import \
6 | RecursiveUrlLoader
7 | from langchain_core.load import dumps, loads
8 | from langgraph_engineer.constants import DOCS_PATH
9 | import warnings
10 |
11 | logger = logging.getLogger(__name__)
12 |
13 |
14 | def html_to_markdown(tag):
15 | if tag.name in ["h1", "h2", "h3", "h4", "h5", "h6"]:
16 | level = int(tag.name[1])
17 | return f"{'#' * level} {tag.get_text()}\n\n"
18 | elif tag.name == "pre":
19 | code_content = tag.find("code")
20 | if code_content:
21 | return f"```\n{code_content.get_text()}\n```\n\n"
22 | else:
23 | return f"```\n{tag.get_text()}\n```\n\n"
24 | elif tag.name == "p":
25 | return f"{tag.get_text()}\n\n"
26 | return ""
27 |
28 |
29 | def clean_document(html_content):
30 | soup = BeautifulSoup(html_content, "html.parser")
31 | markdown_content = ""
32 | for child in soup.recursiveChildGenerator():
33 | if child.name:
34 | markdown_content += html_to_markdown(child)
35 | return markdown_content
36 |
37 |
38 | def ingest(dry_run: bool = False):
39 | logger.info("Ingesting documents...")
40 | # LangGraph docs
41 | url = "https://python.langchain.com/docs/langgraph/"
42 | loader = RecursiveUrlLoader(
43 | url=url, max_depth=20, extractor=lambda x: clean_document(x)
44 | )
45 | docs = loader.load()
46 |
47 | # Sort the list based on the URLs in 'metadata' -> 'source'
48 | d_sorted = sorted(docs, key=lambda x: x.metadata["source"])
49 | d_reversed = list(reversed(d_sorted))
50 |
51 | if dry_run:
52 | print(_format_docs(d_reversed))
53 | return
54 | # Dump the documents to 'DOCS_PATH'
55 | docs_str = dumps(d_reversed)
56 | with DOCS_PATH.open("w") as f:
57 | f.write(docs_str)
58 | logger.info("Documents ingested.")
59 |
60 |
61 | def _format_docs(docs):
62 | return "\n\n\n --- \n\n\n".join([doc.page_content for doc in docs])
63 |
64 |
65 | @functools.lru_cache
66 | def load_docs() -> str:
67 | # Load the documents from 'DOCS_PATH'
68 | if not DOCS_PATH.exists():
69 | logger.warning("No documents found. Ingesting documents...")
70 | ingest()
71 | with DOCS_PATH.open("r") as f:
72 | # Suppress warnings
73 | with warnings.catch_warnings():
74 | warnings.simplefilter("ignore")
75 | d_reversed = loads(f.read())
76 |
77 | # Concatenate the 'page_content'
78 | return _format_docs(d_reversed)
79 |
--------------------------------------------------------------------------------
/langgraph_engineer/system.py:
--------------------------------------------------------------------------------
1 | import functools
2 | import textwrap
3 | from typing import List, Union
4 |
5 | from langchain_core.messages import AIMessage, AnyMessage, BaseMessage
6 | from langchain_core.output_parsers.openai_tools import PydanticToolsParser
7 | from langchain_core.prompts import ChatPromptTemplate, MessagesPlaceholder
8 | from langchain_core.pydantic_v1 import BaseModel, Field
9 | from langchain_core.runnables import Runnable
10 | from langchain_openai import ChatOpenAI
11 | from langgraph.graph import END, MessageGraph
12 | from langgraph_engineer import code_utils, ingest
13 |
14 | Messages = Union[list[AnyMessage], AnyMessage]
15 |
16 |
17 | def wrap_state(state: List[BaseMessage]) -> dict:
18 | return {"messages": state}
19 |
20 |
21 | def create_image_interpreter() -> Runnable:
22 |
23 | template = """Here are the full LangGrah docs: \n --- --- --- \n {docs} \n --- --- --- \n
24 | You will be shown an image of a graph with nodes as circles and edges \n
25 | as squares. Each node and edge has a label. Use the provided LangGraph docs to convert \n
26 | the image into a LangGraph graph. This will have 3 things: (1) create a dummy \n
27 | state value. (2) Define a dummy function for each each node or edge. (3) finally \n
28 | create the graph workflow that connects all edges and nodes together. \n
29 | Structure your answer with a description of the code solution. \n
30 | Then list the imports. And finally list the functioning code block."""
31 |
32 | prompt = ChatPromptTemplate.from_messages(
33 | [
34 | (
35 | "system",
36 | "You are an expert in converting graph visualizations into LangGraph,"
37 | " a library for building stateful, multi-actor applications with LLMs.\n"
38 | + textwrap.dedent(template),
39 | ),
40 | MessagesPlaceholder(variable_name="messages"),
41 | ]
42 | ).partial(docs=ingest.load_docs())
43 |
44 | # Multi-modal LLM
45 | model = ChatOpenAI(temperature=0, model="gpt-4-vision-preview", max_tokens="1028")
46 |
47 | return (wrap_state | prompt | model).with_config(run_name="image_to_graph")
48 |
49 |
50 | # Data model
51 | class code(BaseModel):
52 | """Code output"""
53 |
54 | module_docstring: str = Field(description="Description of the problem and approach")
55 | imports: str = Field(description="Code block import statements")
56 | code: str = Field(description="Code block not including import statements")
57 |
58 |
59 | def format_code(tools: list[code], name: str = "Junior Developer") -> BaseMessage:
60 | invoked = tools[0]
61 | return AIMessage(
62 | content=f'"""\n{invoked.module_docstring}\n"""\n\n{invoked.imports}\n\n{invoked.code}',
63 | name=name,
64 | )
65 |
66 |
67 | def create_code_formatter() -> Runnable:
68 |
69 | # Structured output prompt
70 | template = """You are an expert a code formatting, starting with a code solution.
71 |
72 | Structure the solution in three parts:
73 | (1) a prefix that defines the problem,
74 | (2) list the imports, and
75 | (3) list the functioning code block."""
76 |
77 | prompt = ChatPromptTemplate.from_messages(
78 | [
79 | ("system", template),
80 | MessagesPlaceholder(variable_name="messages"),
81 | ("system", "Extract the code from the last message and format it."),
82 | ]
83 | )
84 |
85 | # LLM
86 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview").bind_tools(
87 | [code], tool_choice="code"
88 | )
89 | # Parser
90 | parser_tool = PydanticToolsParser(tools=[code])
91 |
92 | def get_last_message(state: List[BaseMessage]) -> dict:
93 | return {"messages": [state[-1]]}
94 |
95 | return (get_last_message | prompt | model | parser_tool | format_code).with_config(
96 | run_name="code_formatter"
97 | )
98 |
99 |
100 | def create_code_generator() -> Runnable:
101 |
102 | # Structured output prompt
103 | template = """You are an expert python developer. Develop an application for the user's problem using
104 | LangGraph. Reference the LangGraph docs below for the necessary information.
105 |
106 | {docs}
107 |
108 | """
109 |
110 | prompt = ChatPromptTemplate.from_messages(
111 | [
112 | ("system", template),
113 | MessagesPlaceholder(variable_name="messages"),
114 | ]
115 | ).partial(docs=ingest.load_docs())
116 |
117 | # LLM
118 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview").bind_tools(
119 | [code], tool_choice="code"
120 | )
121 | # Parser
122 | parser_tool = PydanticToolsParser(tools=[code])
123 |
124 | return (format_code | prompt | model | parser_tool | format_code).with_config(
125 | run_name="code_generator"
126 | )
127 |
128 |
129 | def lint_code(state: List[BaseMessage]) -> List[BaseMessage]:
130 | synthetic_code = state[-1].content
131 | res = code_utils.run_ruff(synthetic_code)
132 | if res["error"]:
133 | result = [
134 | AIMessage(
135 | content=f"{res['error']}\n\nOutput:\n{res['out']}", name="Code Reviewer"
136 | )
137 | ]
138 | else:
139 | result = []
140 | return result
141 |
142 |
143 | def should_regenerate(state: List[BaseMessage], max_tries: int = 3) -> str:
144 | num_code_reviewer_messages = sum(
145 | 1 for message in state if message.name == "Code Reviewer"
146 | )
147 | if (
148 | num_code_reviewer_messages == num_code_reviewer_messages
149 | or num_code_reviewer_messages >= max_tries
150 | ):
151 | # Either no errors or too many attempts
152 | return END
153 |
154 | return "fix_code"
155 |
156 |
157 | def create_code_fixer() -> Runnable:
158 | template = """You are an expert python developer, knowledgeable in LangGraph.
159 | Fix the junior developer's draft code to ensure it is free of errors.
160 | Consult the following docs for the necessary information.
161 |
162 | {docs}
163 |
164 | """
165 | prompt = ChatPromptTemplate.from_messages(
166 | [
167 | ("system", template),
168 | MessagesPlaceholder(variable_name="messages"),
169 | ]
170 | ).partial(docs=ingest.load_docs())
171 |
172 | llm = ChatOpenAI(temperature=0, model="gpt-4-0125-preview").bind_tools(
173 | [code], tool_choice="code"
174 | )
175 | parser = PydanticToolsParser(tools=[code])
176 |
177 | def format_messages(state: List[BaseMessage]):
178 | # Remove any images here
179 | messages = []
180 | for message in state:
181 | if isinstance(message.content, str):
182 | messages.append(message)
183 | continue
184 | if any(message["type"] == "image_url" for message in message.content):
185 | new_content = [
186 | content
187 | for content in message.content
188 | if content["type"] != "image_url"
189 | ]
190 | messages.append(
191 | message.__class__(
192 | **message.dict(exclude={"content"}), content=new_content
193 | )
194 | )
195 | continue
196 | messages.append(message)
197 | return {"messages": messages}
198 |
199 | return (
200 | format_messages
201 | | prompt
202 | | llm
203 | | parser
204 | | functools.partial(format_code, name="Senior Developer")
205 | ).with_config(run_name="code_fixer")
206 |
207 |
208 | def pick_route(state: List[BaseMessage]) -> str:
209 | message_content = state[-1].content
210 | if isinstance(message_content, list) and any(
211 | message["type"] == "image_url" for message in message_content
212 | ):
213 | return "understand_image"
214 | return "generate_code"
215 |
216 |
217 | def build_graph() -> Runnable:
218 | builder = MessageGraph()
219 | builder.add_node(
220 | "enter",
221 | lambda _: [],
222 | )
223 | builder.add_node("understand_image", create_image_interpreter())
224 | builder.add_node("format_code", create_code_formatter())
225 | builder.add_node("generate_code", create_code_generator())
226 | builder.add_node("lint_code", lint_code)
227 | builder.add_node("fix_code", create_code_fixer())
228 |
229 | builder.add_conditional_edges("enter", pick_route)
230 | builder.add_edge("understand_image", "format_code")
231 | builder.add_edge("generate_code", "lint_code")
232 | builder.add_edge("format_code", "lint_code")
233 | builder.add_edge("fix_code", "lint_code")
234 | builder.set_entry_point("enter")
235 | builder.add_conditional_edges("lint_code", should_regenerate)
236 | return builder.compile()
237 |
--------------------------------------------------------------------------------
/notebooks/ntbk_code_examples/langgraph_crag_code_only.md:
--------------------------------------------------------------------------------
1 | ```python
2 | ### Index
3 |
4 | from langchain.text_splitter import RecursiveCharacterTextSplitter
5 | from langchain_community.document_loaders import WebBaseLoader
6 | from langchain_community.vectorstores import Chroma
7 | from langchain_openai import OpenAIEmbeddings
8 |
9 | urls = [
10 | "https://lilianweng.github.io/posts/2023-06-23-agent/",
11 | "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
12 | "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
13 | ]
14 |
15 | docs = [WebBaseLoader(url).load() for url in urls]
16 | docs_list = [item for sublist in docs for item in sublist]
17 |
18 | text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
19 | chunk_size=250, chunk_overlap=0
20 | )
21 | doc_splits = text_splitter.split_documents(docs_list)
22 |
23 | # Add to vectorDB
24 | vectorstore = Chroma.from_documents(
25 | documents=doc_splits,
26 | collection_name="rag-chroma",
27 | embedding=OpenAIEmbeddings(),
28 | )
29 | retriever = vectorstore.as_retriever()
30 | ```
31 |
32 |
33 | ```python
34 | ### State
35 |
36 | from typing import Dict, TypedDict
37 |
38 | from langchain_core.messages import BaseMessage
39 |
40 |
41 | class GraphState(TypedDict):
42 | """
43 | Represents the state of our graph.
44 |
45 | Attributes:
46 | keys: A dictionary where each key is a string.
47 | """
48 |
49 | keys: Dict[str, any]
50 | ```
51 |
52 |
53 | ```python
54 | ### Nodes and edges
55 |
56 | import json
57 | import operator
58 | from typing import Annotated, Sequence, TypedDict
59 |
60 | from langchain import hub
61 | from langchain.output_parsers.openai_tools import PydanticToolsParser
62 | from langchain.prompts import PromptTemplate
63 | from langchain.schema import Document
64 | from langchain_community.tools.tavily_search import TavilySearchResults
65 | from langchain_community.vectorstores import Chroma
66 | from langchain_core.messages import BaseMessage, FunctionMessage
67 | from langchain_core.output_parsers import StrOutputParser
68 | from langchain_core.pydantic_v1 import BaseModel, Field
69 | from langchain_core.runnables import RunnablePassthrough
70 | from langchain_core.utils.function_calling import convert_to_openai_tool
71 | from langchain_openai import ChatOpenAI, OpenAIEmbeddings
72 |
73 | ### Nodes ###
74 |
75 |
76 | def retrieve(state):
77 | """
78 | Retrieve documents
79 |
80 | Args:
81 | state (dict): The current graph state
82 |
83 | Returns:
84 | state (dict): New key added to state, documents, that contains retrieved documents
85 | """
86 | print("---RETRIEVE---")
87 | state_dict = state["keys"]
88 | question = state_dict["question"]
89 | documents = retriever.get_relevant_documents(question)
90 | return {"keys": {"documents": documents, "question": question}}
91 |
92 |
93 | def generate(state):
94 | """
95 | Generate answer
96 |
97 | Args:
98 | state (dict): The current graph state
99 |
100 | Returns:
101 | state (dict): New key added to state, generation, that contains LLM generation
102 | """
103 | print("---GENERATE---")
104 | state_dict = state["keys"]
105 | question = state_dict["question"]
106 | documents = state_dict["documents"]
107 |
108 | # Prompt
109 | prompt = hub.pull("rlm/rag-prompt")
110 |
111 | # LLM
112 | llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0, streaming=True)
113 |
114 | # Post-processing
115 | def format_docs(docs):
116 | return "\n\n".join(doc.page_content for doc in docs)
117 |
118 | # Chain
119 | rag_chain = prompt | llm | StrOutputParser()
120 |
121 | # Run
122 | generation = rag_chain.invoke({"context": documents, "question": question})
123 | return {
124 | "keys": {"documents": documents, "question": question, "generation": generation}
125 | }
126 |
127 |
128 | def grade_documents(state):
129 | """
130 | Determines whether the retrieved documents are relevant to the question.
131 |
132 | Args:
133 | state (dict): The current graph state
134 |
135 | Returns:
136 | state (dict): Updates documents key with relevant documents
137 | """
138 |
139 | print("---CHECK RELEVANCE---")
140 | state_dict = state["keys"]
141 | question = state_dict["question"]
142 | documents = state_dict["documents"]
143 |
144 | # Data model
145 | class grade(BaseModel):
146 | """Binary score for relevance check."""
147 |
148 | binary_score: str = Field(description="Relevance score 'yes' or 'no'")
149 |
150 | # LLM
151 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview", streaming=True)
152 |
153 | # Tool
154 | grade_tool_oai = convert_to_openai_tool(grade)
155 |
156 | # LLM with tool and enforce invocation
157 | llm_with_tool = model.bind(
158 | tools=[convert_to_openai_tool(grade_tool_oai)],
159 | tool_choice={"type": "function", "function": {"name": "grade"}},
160 | )
161 |
162 | # Parser
163 | parser_tool = PydanticToolsParser(tools=[grade])
164 |
165 | # Prompt
166 | prompt = PromptTemplate(
167 | template="""You are a grader assessing relevance of a retrieved document to a user question. \n
168 | Here is the retrieved document: \n\n {context} \n\n
169 | Here is the user question: {question} \n
170 | If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
171 | Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
172 | input_variables=["context", "question"],
173 | )
174 |
175 | # Chain
176 | chain = prompt | llm_with_tool | parser_tool
177 |
178 | # Score
179 | filtered_docs = []
180 | search = "No" # Default do not opt for web search to supplement retrieval
181 | for d in documents:
182 | score = chain.invoke({"question": question, "context": d.page_content})
183 | grade = score[0].binary_score
184 | if grade == "yes":
185 | print("---GRADE: DOCUMENT RELEVANT---")
186 | filtered_docs.append(d)
187 | else:
188 | print("---GRADE: DOCUMENT NOT RELEVANT---")
189 | search = "Yes" # Perform web search
190 | continue
191 |
192 | return {
193 | "keys": {
194 | "documents": filtered_docs,
195 | "question": question,
196 | "run_web_search": search,
197 | }
198 | }
199 |
200 |
201 | def transform_query(state):
202 | """
203 | Transform the query to produce a better question.
204 |
205 | Args:
206 | state (dict): The current graph state
207 |
208 | Returns:
209 | state (dict): Updates question key with a re-phrased question
210 | """
211 |
212 | print("---TRANSFORM QUERY---")
213 | state_dict = state["keys"]
214 | question = state_dict["question"]
215 | documents = state_dict["documents"]
216 |
217 | # Create a prompt template with format instructions and the query
218 | prompt = PromptTemplate(
219 | template="""You are generating questions that is well optimized for retrieval. \n
220 | Look at the input and try to reason about the underlying sematic intent / meaning. \n
221 | Here is the initial question:
222 | \n ------- \n
223 | {question}
224 | \n ------- \n
225 | Formulate an improved question: """,
226 | input_variables=["question"],
227 | )
228 |
229 | # Grader
230 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview", streaming=True)
231 |
232 | # Prompt
233 | chain = prompt | model | StrOutputParser()
234 | better_question = chain.invoke({"question": question})
235 |
236 | return {"keys": {"documents": documents, "question": better_question}}
237 |
238 |
239 | def web_search(state):
240 | """
241 | Web search based on the re-phrased question using Tavily API.
242 |
243 | Args:
244 | state (dict): The current graph state
245 |
246 | Returns:
247 | state (dict): Updates documents key with appended web results
248 | """
249 |
250 | print("---WEB SEARCH---")
251 | state_dict = state["keys"]
252 | question = state_dict["question"]
253 | documents = state_dict["documents"]
254 |
255 | tool = TavilySearchResults()
256 | docs = tool.invoke({"query": question})
257 | web_results = "\n".join([d["content"] for d in docs])
258 | web_results = Document(page_content=web_results)
259 | documents.append(web_results)
260 |
261 | return {"keys": {"documents": documents, "question": question}}
262 |
263 |
264 | ### Edges
265 |
266 |
267 | def decide_to_generate(state):
268 | """
269 | Determines whether to generate an answer or re-generate a question for web search.
270 |
271 | Args:
272 | state (dict): The current state of the agent, including all keys.
273 |
274 | Returns:
275 | str: Next node to call
276 | """
277 |
278 | print("---DECIDE TO GENERATE---")
279 | state_dict = state["keys"]
280 | question = state_dict["question"]
281 | filtered_documents = state_dict["documents"]
282 | search = state_dict["run_web_search"]
283 |
284 | if search == "Yes":
285 | # All documents have been filtered check_relevance
286 | # We will re-generate a new query
287 | print("---DECISION: TRANSFORM QUERY and RUN WEB SEARCH---")
288 | return "transform_query"
289 | else:
290 | # We have relevant documents, so generate answer
291 | print("---DECISION: GENERATE---")
292 | return "generate"
293 | ```
294 |
295 |
296 | ```python
297 | ### Build graph
298 |
299 | import pprint
300 |
301 | from langgraph.graph import END, StateGraph
302 |
303 | workflow = StateGraph(GraphState)
304 |
305 | # Define the nodes
306 | workflow.add_node("retrieve", retrieve) # retrieve
307 | workflow.add_node("grade_documents", grade_documents) # grade documents
308 | workflow.add_node("generate", generate) # generatae
309 | workflow.add_node("transform_query", transform_query) # transform_query
310 | workflow.add_node("web_search", web_search) # web search
311 |
312 | # Build graph
313 | workflow.set_entry_point("retrieve")
314 | workflow.add_edge("retrieve", "grade_documents")
315 | workflow.add_conditional_edges(
316 | "grade_documents",
317 | decide_to_generate,
318 | {
319 | "transform_query": "transform_query",
320 | "generate": "generate",
321 | },
322 | )
323 | workflow.add_edge("transform_query", "web_search")
324 | workflow.add_edge("web_search", "generate")
325 | workflow.add_edge("generate", END)
326 |
327 | # Compile
328 | app = workflow.compile()
329 | ```
330 |
331 |
332 | ```python
333 | ### Run
334 |
335 | inputs = {"keys": {"question": "Explain how the different types of agent memory work?"}}
336 | for output in app.stream(inputs):
337 | for key, value in output.items():
338 | # Node
339 | pprint.pprint(f"Node '{key}':")
340 | # Optional: print full state at each node
341 | # pprint.pprint(value["keys"], indent=2, width=80, depth=None)
342 | pprint.pprint("\n---\n")
343 |
344 | # Final generation
345 | pprint.pprint(value["keys"]["generation"])
346 | ```
347 |
348 | ---RETRIEVE---
349 | "Node 'retrieve':"
350 | '\n---\n'
351 | ---CHECK RELEVANCE---
352 | ---GRADE: DOCUMENT RELEVANT---
353 | ---GRADE: DOCUMENT RELEVANT---
354 | ---GRADE: DOCUMENT RELEVANT---
355 | ---GRADE: DOCUMENT RELEVANT---
356 | "Node 'grade_documents':"
357 | '\n---\n'
358 | ---DECIDE TO GENERATE---
359 | ---DECISION: GENERATE---
360 | ---GENERATE---
361 | "Node 'generate':"
362 | '\n---\n'
363 | "Node '__end__':"
364 | '\n---\n'
365 | ('There are several types of memory in human brains, including sensory memory, '
366 | 'which retains impressions of sensory information for a few seconds after the '
367 | 'original stimuli have ended. Short-term memory is utilized for in-context '
368 | 'learning, while long-term memory allows the agent to retain and recall '
369 | 'information over extended periods by leveraging an external vector store and '
370 | 'fast retrieval. Additionally, agents can use tool use to call external APIs '
371 | 'for extra information that is missing from the model weights.')
372 |
373 |
--------------------------------------------------------------------------------
/notebooks/ntbk_code_examples/langgraph_self_rag_code_only.md:
--------------------------------------------------------------------------------
1 | ```python
2 | ### Load
3 |
4 | from langchain.text_splitter import RecursiveCharacterTextSplitter
5 | from langchain_community.document_loaders import WebBaseLoader
6 | from langchain_community.vectorstores import Chroma
7 | from langchain_openai import OpenAIEmbeddings
8 |
9 | urls = [
10 | "https://lilianweng.github.io/posts/2023-06-23-agent/",
11 | "https://lilianweng.github.io/posts/2023-03-15-prompt-engineering/",
12 | "https://lilianweng.github.io/posts/2023-10-25-adv-attack-llm/",
13 | ]
14 |
15 | docs = [WebBaseLoader(url).load() for url in urls]
16 | docs_list = [item for sublist in docs for item in sublist]
17 |
18 | text_splitter = RecursiveCharacterTextSplitter.from_tiktoken_encoder(
19 | chunk_size=250, chunk_overlap=0
20 | )
21 | doc_splits = text_splitter.split_documents(docs_list)
22 |
23 | # Add to vectorDB
24 | vectorstore = Chroma.from_documents(
25 | documents=doc_splits,
26 | collection_name="rag-chroma",
27 | embedding=OpenAIEmbeddings(),
28 | )
29 | retriever = vectorstore.as_retriever()
30 | ```
31 |
32 |
33 | ```python
34 | ### State
35 |
36 | from typing import Dict, TypedDict
37 |
38 | from langchain_core.messages import BaseMessage
39 |
40 |
41 | class GraphState(TypedDict):
42 | """
43 | Represents the state of our graph.
44 |
45 | Attributes:
46 | keys: A dictionary where each key is a string.
47 | """
48 |
49 | keys: Dict[str, any]
50 | ```
51 |
52 |
53 | ```python
54 | ### Graph
55 |
56 | import json
57 | import operator
58 | from typing import Annotated, Sequence, TypedDict
59 |
60 | from langchain import hub
61 | from langchain.output_parsers.openai_tools import PydanticToolsParser
62 | from langchain.prompts import PromptTemplate
63 | from langchain_community.vectorstores import Chroma
64 | from langchain_core.messages import BaseMessage, FunctionMessage
65 | from langchain_core.output_parsers import StrOutputParser
66 | from langchain_core.pydantic_v1 import BaseModel, Field
67 | from langchain_core.runnables import RunnablePassthrough
68 | from langchain_core.utils.function_calling import convert_to_openai_tool
69 | from langchain_openai import ChatOpenAI, OpenAIEmbeddings
70 |
71 | ### Nodes ###
72 |
73 |
74 | def retrieve(state):
75 | """
76 | Retrieve documents
77 |
78 | Args:
79 | state (dict): The current graph state
80 |
81 | Returns:
82 | state (dict): New key added to state, documents, that contains retrieved documents
83 | """
84 | print("---RETRIEVE---")
85 | state_dict = state["keys"]
86 | question = state_dict["question"]
87 | documents = retriever.get_relevant_documents(question)
88 | return {"keys": {"documents": documents, "question": question}}
89 |
90 |
91 | def generate(state):a
92 | """
93 | Generate answer
94 |
95 | Args:
96 | state (dict): The current graph state
97 |
98 | Returns:
99 | state (dict): New key added to state, generation, that contains LLM generation
100 | """
101 | print("---GENERATE---")
102 | state_dict = state["keys"]
103 | question = state_dict["question"]
104 | documents = state_dict["documents"]
105 |
106 | # Prompt
107 | prompt = hub.pull("rlm/rag-prompt")
108 |
109 | # LLM
110 | llm = ChatOpenAI(model_name="gpt-3.5-turbo", temperature=0)
111 |
112 | # Post-processing
113 | def format_docs(docs):
114 | return "\n\n".join(doc.page_content for doc in docs)
115 |
116 | # Chain
117 | rag_chain = prompt | llm | StrOutputParser()
118 |
119 | # Run
120 | generation = rag_chain.invoke({"context": documents, "question": question})
121 | return {
122 | "keys": {"documents": documents, "question": question, "generation": generation}
123 | }
124 |
125 |
126 | def grade_documents(state):
127 | """
128 | Determines whether the retrieved documents are relevant to the question.
129 |
130 | Args:
131 | state (dict): The current graph state
132 |
133 | Returns:
134 | state (dict): Updates documents key with relevant documents
135 | """
136 |
137 | print("---CHECK RELEVANCE---")
138 | state_dict = state["keys"]
139 | question = state_dict["question"]
140 | documents = state_dict["documents"]
141 |
142 | # Data model
143 | class grade(BaseModel):
144 | """Binary score for relevance check."""
145 |
146 | binary_score: str = Field(description="Relevance score 'yes' or 'no'")
147 |
148 | # LLM
149 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview", streaming=True)
150 |
151 | # Tool
152 | grade_tool_oai = convert_to_openai_tool(grade)
153 |
154 | # LLM with tool and enforce invocation
155 | llm_with_tool = model.bind(
156 | tools=[convert_to_openai_tool(grade_tool_oai)],
157 | tool_choice={"type": "function", "function": {"name": "grade"}},
158 | )
159 |
160 | # Parser
161 | parser_tool = PydanticToolsParser(tools=[grade])
162 |
163 | # Prompt
164 | prompt = PromptTemplate(
165 | template="""You are a grader assessing relevance of a retrieved document to a user question. \n
166 | Here is the retrieved document: \n\n {context} \n\n
167 | Here is the user question: {question} \n
168 | If the document contains keyword(s) or semantic meaning related to the user question, grade it as relevant. \n
169 | Give a binary score 'yes' or 'no' score to indicate whether the document is relevant to the question.""",
170 | input_variables=["context", "question"],
171 | )
172 |
173 | # Chain
174 | chain = prompt | llm_with_tool | parser_tool
175 |
176 | # Score
177 | filtered_docs = []
178 | for d in documents:
179 | score = chain.invoke({"question": question, "context": d.page_content})
180 | grade = score[0].binary_score
181 | if grade == "yes":
182 | print("---GRADE: DOCUMENT RELEVANT---")
183 | filtered_docs.append(d)
184 | else:
185 | print("---GRADE: DOCUMENT NOT RELEVANT---")
186 | continue
187 |
188 | return {"keys": {"documents": filtered_docs, "question": question}}
189 |
190 |
191 | def transform_query(state):
192 | """
193 | Transform the query to produce a better question.
194 |
195 | Args:
196 | state (dict): The current graph state
197 |
198 | Returns:
199 | state (dict): Updates question key with a re-phrased question
200 | """
201 |
202 | print("---TRANSFORM QUERY---")
203 | state_dict = state["keys"]
204 | question = state_dict["question"]
205 | documents = state_dict["documents"]
206 |
207 | # Create a prompt template with format instructions and the query
208 | prompt = PromptTemplate(
209 | template="""You are generating questions that is well optimized for retrieval. \n
210 | Look at the input and try to reason about the underlying sematic intent / meaning. \n
211 | Here is the initial question:
212 | \n ------- \n
213 | {question}
214 | \n ------- \n
215 | Formulate an improved question: """,
216 | input_variables=["question"],
217 | )
218 |
219 | # Grader
220 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview", streaming=True)
221 |
222 | # Prompt
223 | chain = prompt | model | StrOutputParser()
224 | better_question = chain.invoke({"question": question})
225 |
226 | return {"keys": {"documents": documents, "question": better_question}}
227 |
228 |
229 | def prepare_for_final_grade(state):
230 | """
231 | Passthrough state for final grade.
232 |
233 | Args:
234 | state (dict): The current graph state
235 |
236 | Returns:
237 | state (dict): The current graph state
238 | """
239 |
240 | print("---FINAL GRADE---")
241 | state_dict = state["keys"]
242 | question = state_dict["question"]
243 | documents = state_dict["documents"]
244 | generation = state_dict["generation"]
245 |
246 | return {
247 | "keys": {"documents": documents, "question": question, "generation": generation}
248 | }
249 |
250 |
251 | ### Edges ###
252 |
253 |
254 | def decide_to_generate(state):
255 | """
256 | Determines whether to generate an answer, or re-generate a question.
257 |
258 | Args:
259 | state (dict): The current state of the agent, including all keys.
260 |
261 | Returns:
262 | str: Next node to call
263 | """
264 |
265 | print("---DECIDE TO GENERATE---")
266 | state_dict = state["keys"]
267 | question = state_dict["question"]
268 | filtered_documents = state_dict["documents"]
269 |
270 | if not filtered_documents:
271 | # All documents have been filtered check_relevance
272 | # We will re-generate a new query
273 | print("---DECISION: TRANSFORM QUERY---")
274 | return "transform_query"
275 | else:
276 | # We have relevant documents, so generate answer
277 | print("---DECISION: GENERATE---")
278 | return "generate"
279 |
280 |
281 | def grade_generation_v_documents(state):
282 | """
283 | Determines whether the generation is grounded in the document.
284 |
285 | Args:
286 | state (dict): The current state of the agent, including all keys.
287 |
288 | Returns:
289 | str: Binary decision
290 | """
291 |
292 | print("---GRADE GENERATION vs DOCUMENTS---")
293 | state_dict = state["keys"]
294 | question = state_dict["question"]
295 | documents = state_dict["documents"]
296 | generation = state_dict["generation"]
297 |
298 | # Data model
299 | class grade(BaseModel):
300 | """Binary score for relevance check."""
301 |
302 | binary_score: str = Field(description="Supported score 'yes' or 'no'")
303 |
304 | # LLM
305 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview", streaming=True)
306 |
307 | # Tool
308 | grade_tool_oai = convert_to_openai_tool(grade)
309 |
310 | # LLM with tool and enforce invocation
311 | llm_with_tool = model.bind(
312 | tools=[convert_to_openai_tool(grade_tool_oai)],
313 | tool_choice={"type": "function", "function": {"name": "grade"}},
314 | )
315 |
316 | # Parser
317 | parser_tool = PydanticToolsParser(tools=[grade])
318 |
319 | # Prompt
320 | prompt = PromptTemplate(
321 | template="""You are a grader assessing whether an answer is grounded in / supported by a set of facts. \n
322 | Here are the facts:
323 | \n ------- \n
324 | {documents}
325 | \n ------- \n
326 | Here is the answer: {generation}
327 | Give a binary score 'yes' or 'no' to indicate whether the answer is grounded in / supported by a set of facts.""",
328 | input_variables=["generation", "documents"],
329 | )
330 |
331 | # Chain
332 | chain = prompt | llm_with_tool | parser_tool
333 |
334 | score = chain.invoke({"generation": generation, "documents": documents})
335 | grade = score[0].binary_score
336 |
337 | if grade == "yes":
338 | print("---DECISION: SUPPORTED, MOVE TO FINAL GRADE---")
339 | return "supported"
340 | else:
341 | print("---DECISION: NOT SUPPORTED, GENERATE AGAIN---")
342 | return "not supported"
343 |
344 |
345 | def grade_generation_v_question(state):
346 | """
347 | Determines whether the generation addresses the question.
348 |
349 | Args:
350 | state (dict): The current state of the agent, including all keys.
351 |
352 | Returns:
353 | str: Binary decision
354 | """
355 |
356 | print("---GRADE GENERATION vs QUESTION---")
357 | state_dict = state["keys"]
358 | question = state_dict["question"]
359 | documents = state_dict["documents"]
360 | generation = state_dict["generation"]
361 |
362 | # Data model
363 | class grade(BaseModel):
364 | """Binary score for relevance check."""
365 |
366 | binary_score: str = Field(description="Useful score 'yes' or 'no'")
367 |
368 | # LLM
369 | model = ChatOpenAI(temperature=0, model="gpt-4-0125-preview", streaming=True)
370 |
371 | # Tool
372 | grade_tool_oai = convert_to_openai_tool(grade)
373 |
374 | # LLM with tool and enforce invocation
375 | llm_with_tool = model.bind(
376 | tools=[convert_to_openai_tool(grade_tool_oai)],
377 | tool_choice={"type": "function", "function": {"name": "grade"}},
378 | )
379 |
380 | # Parser
381 | parser_tool = PydanticToolsParser(tools=[grade])
382 |
383 | # Prompt
384 | prompt = PromptTemplate(
385 | template="""You are a grader assessing whether an answer is useful to resolve a question. \n
386 | Here is the answer:
387 | \n ------- \n
388 | {generation}
389 | \n ------- \n
390 | Here is the question: {question}
391 | Give a binary score 'yes' or 'no' to indicate whether the answer is useful to resolve a question.""",
392 | input_variables=["generation", "question"],
393 | )
394 |
395 | # Prompt
396 | chain = prompt | llm_with_tool | parser_tool
397 |
398 | score = chain.invoke({"generation": generation, "question": question})
399 | grade = score[0].binary_score
400 |
401 | if grade == "yes":
402 | print("---DECISION: USEFUL---")
403 | return "useful"
404 | else:
405 | print("---DECISION: NOT USEFUL---")
406 | return "not useful"
407 | ```
408 |
409 |
410 | ```python
411 | ### Build Graph
412 |
413 | import pprint
414 |
415 | from langgraph.graph import END, StateGraph
416 |
417 | workflow = StateGraph(GraphState)
418 |
419 | # Define the nodes
420 | workflow.add_node("retrieve", retrieve) # retrieve
421 | workflow.add_node("grade_documents", grade_documents) # grade documents
422 | workflow.add_node("generate", generate) # generatae
423 | workflow.add_node("transform_query", transform_query) # transform_query
424 | workflow.add_node("prepare_for_final_grade", prepare_for_final_grade) # passthrough
425 |
426 | # Build graph
427 | workflow.set_entry_point("retrieve")
428 | workflow.add_edge("retrieve", "grade_documents")
429 | workflow.add_conditional_edges(
430 | "grade_documents",
431 | decide_to_generate,
432 | {
433 | "transform_query": "transform_query",
434 | "generate": "generate",
435 | },
436 | )
437 | workflow.add_edge("transform_query", "retrieve")
438 | workflow.add_conditional_edges(
439 | "generate",
440 | grade_generation_v_documents,
441 | {
442 | "supported": "prepare_for_final_grade",
443 | "not supported": "generate",
444 | },
445 | )
446 | workflow.add_conditional_edges(
447 | "prepare_for_final_grade",
448 | grade_generation_v_question,
449 | {
450 | "useful": END,
451 | "not useful": "transform_query",
452 | },
453 | )
454 |
455 | # Compile
456 | app = workflow.compile()
457 | ```
458 |
459 |
460 | ```python
461 | ### Run
462 |
463 | inputs = {"keys": {"question": "Explain how the different types of agent memory work?"}}
464 | for output in app.stream(inputs):
465 | for key, value in output.items():
466 | # Node
467 | pprint.pprint(f"Node '{key}':")
468 | # Optional: print full state at each node
469 | # pprint.pprint(value["keys"], indent=2, width=80, depth=None)
470 | pprint.pprint("\n---\n")
471 |
472 | # Final generation
473 | pprint.pprint(value["keys"]["generation"])
474 | ```
475 |
476 | ---RETRIEVE---
477 | "Node 'retrieve':"
478 | '\n---\n'
479 | ---CHECK RELEVANCE---
480 | ---GRADE: DOCUMENT RELEVANT---
481 | ---GRADE: DOCUMENT RELEVANT---
482 | ---GRADE: DOCUMENT RELEVANT---
483 | ---GRADE: DOCUMENT RELEVANT---
484 | "Node 'grade_documents':"
485 | '\n---\n'
486 | ---DECIDE TO GENERATE---
487 | ---DECISION: GENERATE---
488 | ---GENERATE---
489 | "Node 'generate':"
490 | '\n---\n'
491 | ---GRADE GENERATION vs DOCUMENTS---
492 | ---DECISION: SUPPORTED, MOVE TO FINAL GRADE---
493 | ---FINAL GRADE---
494 | "Node 'prepare_for_final_grade':"
495 | '\n---\n'
496 | ---GRADE GENERATION vs QUESTION---
497 | ---DECISION: USEFUL---
498 | "Node '__end__':"
499 | '\n---\n'
500 | ('Short-term memory is the stage of memory that stores information that we are '
501 | 'currently aware of and needed to carry out complex cognitive tasks. It has a '
502 | 'limited capacity and lasts for a short duration. Long-term memory, on the '
503 | 'other hand, can store information for a long time and has unlimited storage '
504 | 'capacity. It includes explicit/declarative memory for facts and events, and '
505 | 'implicit/procedural memory for unconscious skills and routines.')
506 |
507 |
--------------------------------------------------------------------------------
/langgraph_engineer/docs.json:
--------------------------------------------------------------------------------
1 | [{"lc": 1, "type": "constructor", "id": ["langchain", "schema", "document", "Document"], "kwargs": {"page_content": "\n\n\n\n\n\ud83e\udd9c\ud83d\udd78\ufe0fLangGraph | \ud83e\udd9c\ufe0f\ud83d\udd17 Langchain\n\n\n\n\n\n\n\nSkip to main contentDocsUse casesIntegrationsGuidesAPIMorePeopleVersioningChangelogContributingTemplatesCookbooksTutorialsYouTube\ud83e\udd9c\ufe0f\ud83d\udd17LangSmithLangSmith DocsLangServe GitHubTemplates GitHubTemplates HubLangChain HubJS/TS DocsChatSearchGet startedIntroductionInstallationQuickstartSecurityLangChain Expression LanguageGet startedWhy use LCELInterfaceStreamingHow toCookbookLangChain Expression Language (LCEL)ModulesModel I/ORetrievalAgentsChainsMoreLangServeLangSmithLangGraphLangGraphOn this page\ud83e\udd9c\ud83d\udd78\ufe0fLangGraph\u26a1 Building language agents as graphs \u26a1Overview\u200bLangGraph is a library for building stateful, multi-actor applications with LLMs, built on top of (and intended to be used with) LangChain.\nIt extends the LangChain Expression Language with the ability to coordinate multiple chains (or actors) across multiple steps of computation in a cyclic manner.\nIt is inspired by Pregel and Apache Beam.\nThe current interface exposed is one inspired by NetworkX.The main use is for adding cycles to your LLM application.\nCrucially, this is NOT a DAG framework.\nIf you want to build a DAG, you should just use LangChain Expression Language.Cycles are important for agent-like behaviors, where you call an LLM in a loop, asking it what action to take next.Installation\u200bpip install langgraphQuick Start\u200bHere we will go over an example of creating a simple agent that uses chat models and function calling.\nThis agent will represent all its state as a list of messages.We will need to install some LangChain packages, as well as Tavily to use as an example tool.pip install -U langchain langchain_openai tavily-pythonWe also need to export some environment variables for OpenAI and Tavily API access.export OPENAI_API_KEY=sk-...export TAVILY_API_KEY=tvly-...Optionally, we can set up LangSmith for best-in-class observability.export LANGCHAIN_TRACING_V2=\"true\"export LANGCHAIN_API_KEY=ls__...Set up the tools\u200bWe will first define the tools we want to use.\nFor this simple example, we will use a built-in search tool via Tavily.\nHowever, it is really easy to create your own tools - see documentation here on how to do that.from langchain_community.tools.tavily_search import TavilySearchResultstools = [TavilySearchResults(max_results=1)]We can now wrap these tools in a simple LangGraph ToolExecutor.\nThis is a simple class that receives ToolInvocation objects, calls that tool, and returns the output.\nToolInvocation is any class with tool and tool_input attributes.from langgraph.prebuilt import ToolExecutortool_executor = ToolExecutor(tools)Set up the model\u200bNow we need to load the chat model we want to use.\nImportantly, this should satisfy two criteria:It should work with lists of messages. We will represent all agent state in the form of messages, so it needs to be able to work well with them.It should work with the OpenAI function calling interface. This means it should either be an OpenAI model or a model that exposes a similar interface.Note: these model requirements are not requirements for using LangGraph - they are just requirements for this one example.from langchain_openai import ChatOpenAI# We will set streaming=True so that we can stream tokens# See the streaming section for more information on this.model = ChatOpenAI(temperature=0, streaming=True)After we've done this, we should make sure the model knows that it has these tools available to call.\nWe can do this by converting the LangChain tools into the format for OpenAI function calling, and then bind them to the model class.from langchain.tools.render import format_tool_to_openai_functionfunctions = [format_tool_to_openai_function(t) for t in tools]model = model.bind_functions(functions)Define the agent state\u200bThe main type of graph in langgraph is the StatefulGraph.\nThis graph is parameterized by a state object that it passes around to each node.\nEach node then returns operations to update that state.\nThese operations can either SET specific attributes on the state (e.g. overwrite the existing values) or ADD to the existing attribute.\nWhether to set or add is denoted by annotating the state object you construct the graph with.For this example, the state we will track will just be a list of messages.\nWe want each node to just add messages to that list.\nTherefore, we will use a TypedDict with one key (messages) and annotate it so that the messages attribute is always added to.from typing import TypedDict, Annotated, Sequenceimport operatorfrom langchain_core.messages import BaseMessageclass AgentState(TypedDict): messages: Annotated[Sequence[BaseMessage], operator.add]Define the nodes\u200bWe now need to define a few different nodes in our graph.\nIn langgraph, a node can be either a function or a runnable.\nThere are two main nodes we need for this:The agent: responsible for deciding what (if any) actions to take.A function to invoke tools: if the agent decides to take an action, this node will then execute that action.We will also need to define some edges.\nSome of these edges may be conditional.\nThe reason they are conditional is that based on the output of a node, one of several paths may be taken.\nThe path that is taken is not known until that node is run (the LLM decides).Conditional Edge: after the agent is called, we should either:a. If the agent said to take an action, then the function to invoke tools should be calledb. If the agent said that it was finished, then it should finishNormal Edge: after the tools are invoked, it should always go back to the agent to decide what to do nextLet's define the nodes, as well as a function to decide how what conditional edge to take.from langgraph.prebuilt import ToolInvocationimport jsonfrom langchain_core.messages import FunctionMessage# Define the function that determines whether to continue or notdef should_continue(state): messages = state['messages'] last_message = messages[-1] # If there is no function call, then we finish if \"function_call\" not in last_message.additional_kwargs: return \"end\" # Otherwise if there is, we continue else: return \"continue\"# Define the function that calls the modeldef call_model(state): messages = state['messages'] response = model.invoke(messages) # We return a list, because this will get added to the existing list return {\"messages\": [response]}# Define the function to execute toolsdef call_tool(state): messages = state['messages'] # Based on the continue condition # we know the last message involves a function call last_message = messages[-1] # We construct an ToolInvocation from the function_call action = ToolInvocation( tool=last_message.additional_kwargs[\"function_call\"][\"name\"], tool_input=json.loads(last_message.additional_kwargs[\"function_call\"][\"arguments\"]), ) # We call the tool_executor and get back a response response = tool_executor.invoke(action) # We use the response to create a FunctionMessage function_message = FunctionMessage(content=str(response), name=action.tool) # We return a list, because this will get added to the existing list return {\"messages\": [function_message]}Define the graph\u200bWe can now put it all together and define the graph!from langgraph.graph import StateGraph, END# Define a new graphworkflow = StateGraph(AgentState)# Define the two nodes we will cycle betweenworkflow.add_node(\"agent\", call_model)workflow.add_node(\"action\", call_tool)# Set the entrypoint as `agent`# This means that this node is the first one calledworkflow.set_entry_point(\"agent\")# We now add a conditional edgeworkflow.add_conditional_edges( # First, we define the start node. We use `agent`. # This means these are the edges taken after the `agent` node is called. \"agent\", # Next, we pass in the function that will determine which node is called next. should_continue, # Finally we pass in a mapping. # The keys are strings, and the values are other nodes. # END is a special node marking that the graph should finish. # What will happen is we will call `should_continue`, and then the output of that # will be matched against the keys in this mapping. # Based on which one it matches, that node will then be called. { # If `tools`, then we call the tool node. \"continue\": \"action\", # Otherwise we finish. \"end\": END })# We now add a normal edge from `tools` to `agent`.# This means that after `tools` is called, `agent` node is called next.workflow.add_edge('action', 'agent')# Finally, we compile it!# This compiles it into a LangChain Runnable,# meaning you can use it as you would any other runnableapp = workflow.compile()Use it!\u200bWe can now use it!\nThis now exposes the same interface as all other LangChain runnables.\nThis runnable accepts a list of messages.from langchain_core.messages import HumanMessageinputs = {\"messages\": [HumanMessage(content=\"what is the weather in sf\")]}app.invoke(inputs)This may take a little bit - it's making a few calls behind the scenes.\nIn order to start seeing some intermediate results as they happen, we can use streaming - see below for more information on that.Streaming\u200bLangGraph has support for several different types of streaming.Streaming Node Output\u200bOne of the benefits of using LangGraph is that it is easy to stream output as it's produced by each node.inputs = {\"messages\": [HumanMessage(content=\"what is the weather in sf\")]}for output in app.stream(inputs): # stream() yields dictionaries with output keyed by node name for key, value in output.items(): print(f\"Output from node '{key}':\") print(\"---\") print(value) print(\"\\n---\\n\")Output from node 'agent':---{'messages': [AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\\n \"query\": \"weather in San Francisco\"\\n}', 'name': 'tavily_search_results_json'}})]}---Output from node 'action':---{'messages': [FunctionMessage(content=\"[{'url': 'https://weatherspark.com/h/m/557/2024/1/Historical-Weather-in-January-2024-in-San-Francisco-California-United-States', 'content': 'January 2024 Weather History in San Francisco California, United States Daily Precipitation in January 2024 in San Francisco Observed Weather in January 2024 in San Francisco San Francisco Temperature History January 2024 Hourly Temperature in January 2024 in San Francisco Hours of Daylight and Twilight in January 2024 in San FranciscoThis report shows the past weather for San Francisco, providing a weather history for January 2024. It features all historical weather data series we have available, including the San Francisco temperature history for January 2024. You can drill down from year to month and even day level reports by clicking on the graphs.'}]\", name='tavily_search_results_json')]}---Output from node 'agent':---{'messages': [AIMessage(content=\"I couldn't find the current weather in San Francisco. However, you can visit [WeatherSpark](https://weatherspark.com/h/m/557/2024/1/Historical-Weather-in-January-2024-in-San-Francisco-California-United-States) to check the historical weather data for January 2024 in San Francisco.\")]}---Output from node '__end__':---{'messages': [HumanMessage(content='what is the weather in sf'), AIMessage(content='', additional_kwargs={'function_call': {'arguments': '{\\n \"query\": \"weather in San Francisco\"\\n}', 'name': 'tavily_search_results_json'}}), FunctionMessage(content=\"[{'url': 'https://weatherspark.com/h/m/557/2024/1/Historical-Weather-in-January-2024-in-San-Francisco-California-United-States', 'content': 'January 2024 Weather History in San Francisco California, United States Daily Precipitation in January 2024 in San Francisco Observed Weather in January 2024 in San Francisco San Francisco Temperature History January 2024 Hourly Temperature in January 2024 in San Francisco Hours of Daylight and Twilight in January 2024 in San FranciscoThis report shows the past weather for San Francisco, providing a weather history for January 2024. It features all historical weather data series we have available, including the San Francisco temperature history for January 2024. You can drill down from year to month and even day level reports by clicking on the graphs.'}]\", name='tavily_search_results_json'), AIMessage(content=\"I couldn't find the current weather in San Francisco. However, you can visit [WeatherSpark](https://weatherspark.com/h/m/557/2024/1/Historical-Weather-in-January-2024-in-San-Francisco-California-United-States) to check the historical weather data for January 2024 in San Francisco.\")]}---Streaming LLM Tokens\u200bYou can also access the LLM tokens as they are produced by each node.\nIn this case only the \"agent\" node produces LLM tokens.\nIn order for this to work properly, you must be using an LLM that supports streaming as well as have set it when constructing the LLM (e.g. ChatOpenAI(model=\"gpt-3.5-turbo-1106\", streaming=True))inputs = {\"messages\": [HumanMessage(content=\"what is the weather in sf\")]}async for output in app.astream_log(inputs, include_types=[\"llm\"]): # astream_log() yields the requested logs (here LLMs) in JSONPatch format for op in output.ops: if op[\"path\"] == \"/streamed_output/-\": # this is the output from .stream() ... elif op[\"path\"].startswith(\"/logs/\") and op[\"path\"].endswith( \"/streamed_output/-\" ): # because we chose to only include LLMs, these are LLM tokens print(op[\"value\"])content='' additional_kwargs={'function_call': {'arguments': '', 'name': 'tavily_search_results_json'}}content='' additional_kwargs={'function_call': {'arguments': '{\\n', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': ' ', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': ' \"', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': 'query', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': '\":', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': ' \"', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': 'weather', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': ' in', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': ' San', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': ' Francisco', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': '\"\\n', 'name': ''}}content='' additional_kwargs={'function_call': {'arguments': '}', 'name': ''}}content=''content=''content='I'content=\"'m\"content=' sorry'content=','content=' but'content=' I'content=' couldn'content=\"'t\"content=' find'content=' the'content=' current'content=' weather'content=' in'content=' San'content=' Francisco'content='.'content=' However'content=','content=' you'content=' can'content=' check'content=' the'content=' historical'content=' weather'content=' data'content=' for'content=' January'content=' 'content='202'content='4'content=' in'content=' San'content=' Francisco'content=' ['content='here'content=']('content='https'content='://'content='we'content='athers'content='park'content='.com'content='/h'content='/m'content='/'content='557'content='/'content='202'content='4'content='/'content='1'content='/H'content='istorical'content='-'content='Weather'content='-in'content='-Jan'content='uary'content='-'content='202'content='4'content='-in'content='-S'content='an'content='-F'content='r'content='anc'content='isco'content='-Cal'content='ifornia'content='-'content='United'content='-'content='States'content=').'content=''When to Use\u200bWhen should you use this versus LangChain Expression Language?If you need cycles.Langchain Expression Language allows you to easily define chains (DAGs) but does not have a good mechanism for adding in cycles.\nlanggraph adds that syntax.Examples\u200bChatAgentExecutor: with function calling\u200bThis agent executor takes a list of messages as input and outputs a list of messages.\nAll agent state is represented as a list of messages.\nThis specifically uses OpenAI function calling.\nThis is recommended agent executor for newer chat based models that support function calling.Getting Started Notebook: Walks through creating this type of executor from scratchHigh Level Entrypoint: Walks through how to use the high level entrypoint for the chat agent executor.ModificationsWe also have a lot of examples highlighting how to slightly modify the base chat agent executor. These all build off the getting started notebook so it is recommended you start with that first.Human-in-the-loop: How to add a human-in-the-loop componentForce calling a tool first: How to always call a specific tool firstRespond in a specific format: How to force the agent to respond in a specific formatDynamically returning tool output directly: How to dynamically let the agent choose whether to return the result of a tool directly to the userManaging agent steps: How to more explicitly manage intermediate steps that an agent takesAgentExecutor\u200bThis agent executor uses existing LangChain agents.Getting Started Notebook: Walks through creating this type of executor from scratchHigh Level Entrypoint: Walks through how to use the high level entrypoint for the chat agent executor.ModificationsWe also have a lot of examples highlighting how to slightly modify the base chat agent executor. These all build off the getting started notebook so it is recommended you start with that first.Human-in-the-loop: How to add a human-in-the-loop componentForce calling a tool first: How to always call a specific tool firstManaging agent steps: How to more explicitly manage intermediate steps that an agent takesAsync\u200bIf you are running LangGraph in async workflows, you may want to create the nodes to be async by default.\nFor a walkthrough on how to do that, see this documentationStreaming Tokens\u200bSometimes language models take a while to respond and you may want to stream tokens to end users.\nFor a guide on how to do this, see this documentationPersistence\u200bLangGraph comes with built-in persistence, allowing you to save the state of the graph at point and resume from there.\nFor a walkthrough on how to do that, see this documentationHuman-in-the-loop\u200bLangGraph comes with built-in support for human-in-the-loop workflows. This is useful when you want to have a human review the current state before proceeding to a particular node.\nFor a walkthrough on how to do that, see this documentationPlanning Agent Examples\u200bThe following notebooks implement agent architectures prototypical of the \"plan-and-execute\" style, where an LLM planner decomposes a user request into a program, an executor executes the program, and an LLM synthesizes a response (and/or dynamically replans) based on the program outputs.Plan-and-execute: a simple agent with a planner that generates a multi-step task list, an executor that invokes the tools in the plan, and a replanner that responds or generates an updated plan. Based on the Plan-and-solve paper by Wang, et. al.Reasoning without Observation: planner generates a task list whose observations are saved as variables. Variables can be used in subsequent tasks to reduce the need for further re-planning. Based on the ReWOO paper by Xu, et. al.LLMCompiler: planner generates a DAG of tasks with variable responses. Tasks are streamed and executed eagerly to minimize tool execution runtime. Based on the paper by Kim, et. al.Reflection / Self-Critique\u200bWhen output quality is a major concern, it's common to incorporate some combination of self-critique or reflection and external validation to refine your system's outputs. The following examples demonstrate research that implement this type of design.Basic Reflection: add a simple \"reflect\" step in your graph to prompt your system to revise its outputs.Reflexion: critique missing and superflous aspects of the agent's response to guide subsequent steps. Based on Reflexion, by Shinn, et. al.Language Agent Tree Search: execute multiple agents in parallel, using reflection and environmental rewards to drive a Monte Carlo Tree Search. Based on LATS, by Zhou, et. al.Multi-agent Examples\u200bMulti-agent collaboration: how to create two agents that work together to accomplish a taskMulti-agent with supervisor: how to orchestrate individual agents by using an LLM as a \"supervisor\" to distribute workHierarchical agent teams: how to orchestrate \"teams\" of agents as nested graphs that can collaborate to solve a problemChatbot Evaluation via Simulation\u200bIt can often be tough to evaluation chat bots in multi-turn situations. One way to do this is with simulations.Chat bot evaluation as multi-agent simulation: how to simulate a dialogue between a \"virtual user\" and your chat botMultimodal Examples\u200bWebVoyager: vision-enabled web browsing agent that uses Set-of-marks prompting to navigate a web browser and execute tasksDocumentation\u200bThere are only a few new APIs to use.StateGraph\u200bThe main entrypoint is StateGraph.from langgraph.graph import StateGraphThis class is responsible for constructing the graph.\nIt exposes an interface inspired by NetworkX.\nThis graph is parameterized by a state object that it passes around to each node.__init__\u200b def __init__(self, schema: Type[Any]) -> None:When constructing the graph, you need to pass in a schema for a state.\nEach node then returns operations to update that state.\nThese operations can either SET specific attributes on the state (e.g. overwrite the existing values) or ADD to the existing attribute.\nWhether to set or add is denoted by annotating the state object you construct the graph with.The recommended way to specify the schema is with a typed dictionary: from typing import TypedDictYou can then annotate the different attributes using from typing imoport Annotated.\nCurrently, the only supported annotation is import operator; operator.add.\nThis annotation will make it so that any node that returns this attribute ADDS that new result to the existing value.Let's take a look at an example:from typing import TypedDict, Annotated, Unionfrom langchain_core.agents import AgentAction, AgentFinishimport operatorclass AgentState(TypedDict): # The input string input: str # The outcome of a given call to the agent # Needs `None` as a valid type, since this is what this will start as agent_outcome: Union[AgentAction, AgentFinish, None] # List of actions and corresponding observations # Here we annotate this with `operator.add` to indicate that operations to # this state should be ADDED to the existing values (not overwrite it) intermediate_steps: Annotated[list[tuple[AgentAction, str]], operator.add]We can then use this like:# Initialize the StateGraph with this stategraph = StateGraph(AgentState)# Create nodes and edges...# Compile the graphapp = graph.compile()# The inputs should be a dictionary, because the state is a TypedDictinputs = { # Let's assume this the input \"input\": \"hi\" # Let's assume agent_outcome is set by the graph as some point # It doesn't need to be provided, and it will be None by default # Let's assume `intermediate_steps` is built up over time by the graph # It doesn't need to provided, and it will be empty list by default # The reason `intermediate_steps` is an empty list and not `None` is because # it's annotated with `operator.add`}.add_node\u200b def add_node(self, key: str, action: RunnableLike) -> None:This method adds a node to the graph.\nIt takes two arguments:key: A string representing the name of the node. This must be unique.action: The action to take when this node is called. This should either be a function or a runnable..add_edge\u200b def add_edge(self, start_key: str, end_key: str) -> None:Creates an edge from one node to the next.\nThis means that output of the first node will be passed to the next node.\nIt takes two arguments.start_key: A string representing the name of the start node. This key must have already been registered in the graph.end_key: A string representing the name of the end node. This key must have already been registered in the graph..add_conditional_edges\u200b def add_conditional_edges( self, start_key: str, condition: Callable[..., str], conditional_edge_mapping: Dict[str, str], ) -> None:This method adds conditional edges.\nWhat this means is that only one of the downstream edges will be taken, and which one that is depends on the results of the start node.\nThis takes three arguments:start_key: A string representing the name of the start node. This key must have already been registered in the graph.condition: A function to call to decide what to do next. The input will be the output of the start node. It should return a string that is present in conditional_edge_mapping and represents the edge to take.conditional_edge_mapping: A mapping of string to string. The keys should be strings that may be returned by condition. The values should be the downstream node to call if that condition is returned..set_entry_point\u200b def set_entry_point(self, key: str) -> None:The entrypoint to the graph.\nThis is the node that is first called.\nIt only takes one argument:key: The name of the node that should be called first..set_finish_point\u200b def set_finish_point(self, key: str) -> None:This is the exit point of the graph.\nWhen this node is called, the results will be the final result from the graph.\nIt only has one argument:key: The name of the node that, when called, will return the results of calling it as the final outputNote: This does not need to be called if at any point you previously created an edge (conditional or normal) to ENDGraph\u200bfrom langgraph.graph import Graphgraph = Graph()This has the same interface as StateGraph with the exception that it doesn't update a state object over time, and rather relies on passing around the full state from each step.\nThis means that whatever is returned from one node is the input to the next as is.END\u200bfrom langgraph.graph import ENDThis is a special node representing the end of the graph.\nThis means that anything passed to this node will be the final output of the graph.\nIt can be used in two places:As the end_key in add_edgeAs a value in conditional_edge_mapping as passed to add_conditional_edgesPrebuilt Examples\u200bThere are also a few methods we've added to make it easy to use common, prebuilt graphs and components.ToolExecutor\u200bfrom langgraph.prebuilt import ToolExecutorThis is a simple helper class to help with calling tools.\nIt is parameterized by a list of tools:tools = [...]tool_executor = ToolExecutor(tools)It then exposes a runnable interface.\nIt can be used to call tools: you can pass in an AgentAction and it will look up the relevant tool and call it with the appropriate input.chat_agent_executor.create_function_calling_executor\u200bfrom langgraph.prebuilt import chat_agent_executorThis is a helper function for creating a graph that works with a chat model that utilizes function calling.\nCan be created by passing in a model and a list of tools.\nThe model must be one that supports OpenAI function calling.from langchain_openai import ChatOpenAIfrom langchain_community.tools.tavily_search import TavilySearchResultsfrom langgraph.prebuilt import chat_agent_executorfrom langchain_core.messages import HumanMessagetools = [TavilySearchResults(max_results=1)]model = ChatOpenAI()app = chat_agent_executor.create_function_calling_executor(model, tools)inputs = {\"messages\": [HumanMessage(content=\"what is the weather in sf\")]}for s in app.stream(inputs): print(list(s.values())[0]) print(\"----\")create_agent_executor\u200bfrom langgraph.prebuilt import create_agent_executorThis is a helper function for creating a graph that works with LangChain Agents.\nCan be created by passing in an agent and a list of tools.from langgraph.prebuilt import create_agent_executorfrom langchain_openai import ChatOpenAIfrom langchain import hubfrom langchain.agents import create_openai_functions_agentfrom langchain_community.tools.tavily_search import TavilySearchResultstools = [TavilySearchResults(max_results=1)]# Get the prompt to use - you can modify this!prompt = hub.pull(\"hwchase17/openai-functions-agent\")# Choose the LLM that will drive the agentllm = ChatOpenAI(model=\"gpt-3.5-turbo-1106\")# Construct the OpenAI Functions agentagent_runnable = create_openai_functions_agent(llm, tools, prompt)app = create_agent_executor(agent_runnable, tools)inputs = {\"input\": \"what is the weather in sf\", \"chat_history\": []}for s in app.stream(inputs): print(list(s.values())[0]) print(\"----\")PreviousLangSmith WalkthroughOverviewInstallationQuick StartSet up the toolsSet up the modelDefine the agent stateDefine the nodesDefine the graphUse it!StreamingStreaming Node OutputStreaming LLM TokensWhen to UseExamplesChatAgentExecutor: with function callingAgentExecutorAsyncStreaming TokensPersistenceHuman-in-the-loopPlanning Agent ExamplesReflection / Self-CritiqueMulti-agent ExamplesChatbot Evaluation via SimulationMultimodal ExamplesDocumentationStateGraphGraphENDPrebuilt ExamplesToolExecutorchat_agent_executor.create_function_calling_executorcreate_agent_executorCommunityDiscordTwitterGitHubPythonJS/TSMoreHomepageBlogYouTubeCopyright \u00a9 2024 LangChain, Inc.\n\n\n\n", "metadata": {"source": "https://python.langchain.com/docs/langgraph/", "title": "\ud83e\udd9c\ud83d\udd78\ufe0fLangGraph | \ud83e\udd9c\ufe0f\ud83d\udd17 Langchain", "description": "\u26a1 Building language agents as graphs \u26a1", "language": "en"}}}]
--------------------------------------------------------------------------------