├── DESCRIPTION ├── NAMESPACE ├── R ├── data.R └── progmod.R ├── README.md ├── data ├── ADNI_disease_stage_bl.RData ├── ADNI_disease_stage_bl.txt └── adas_mmse_data.RData └── man ├── ADNI_disease_stage_bl.Rd ├── GLF.Rd ├── adas_mmse_data.Rd ├── exp_model.Rd ├── progmod.Rd └── readme └── adas_progression.gif /DESCRIPTION: -------------------------------------------------------------------------------- 1 | Package: progmod 2 | Type: Package 3 | Title: Disease progression modeling based on nonlinear mixed effects modeling 4 | Version: 0.1.0 5 | Authors@R: person("Lars Lau", "Raket", email = "progmod@larslau.dk", 6 | role = c("aut", "cre")) 7 | Description: Estimates population-level disease progression patterns 8 | based on aligning short-term longitudinal observed patterns. 9 | The model takes the form of a nonlinear mixed effect model and estimation 10 | is done using maximum likelihood estimation. 11 | Depends: 12 | R (>= 3.5.0), 13 | covBM, 14 | nlme, 15 | License: GPL-3 16 | Encoding: UTF-8 17 | LazyData: true 18 | Suggests: 19 | ggplot2 20 | RoxygenNote: 7.1.1 21 | -------------------------------------------------------------------------------- /NAMESPACE: -------------------------------------------------------------------------------- 1 | # Generated by roxygen2: do not edit by hand 2 | 3 | export(GLF) 4 | export(exp_model) 5 | export(progmod) 6 | import(covBM) 7 | import(nlme) 8 | -------------------------------------------------------------------------------- /R/data.R: -------------------------------------------------------------------------------- 1 | #' Simulated longitudinal ADAS-cog and MMSE scores 2 | #' 3 | #' A dataset containing longitudinal simulated ADAS-cog and MMSE scores 4 | #' for a large number of individuals that are cognitively normal, have mild 5 | #' congnitive impairment (MCI) or dementia. 6 | #' Data is simulated based on ADNI data. 7 | #' 8 | #' @format A data frame with 9378 rows and 7 variables: 9 | #' \describe{ 10 | #' \item{subject_id}{Subject ID} 11 | #' \item{Month_bl}{Months since baseline} 12 | #' \item{ADAS13}{Simulated 13-item ADAS-cog score} 13 | #' \item{MMSE}{Simulated MMSE score} 14 | #' \item{CN}{Was subject cognitively normal at baseline (0/1)?} 15 | #' \item{MCI}{Was subject mild cognitively impaired at baseline (0/1)?} 16 | #' \item{DEM}{Did subject have dementia at baseline (0/1)?} 17 | #' \item{blstatus}{Patient status at baseline (Cognitively normal/MCI/Dementia)} 18 | #' } 19 | "adas_mmse_data" 20 | 21 | 22 | #' Predicted disease stage at baseline for ADNI participants 23 | #'?AD 24 | #' A dataset containing the predicted disease stage (disease month) for 25 | #' individuals in ADNI based on their longitudinal 13-item ADAS-cog trajectories 26 | #' Data are based on a data cut of ADAS-cog scores from July 2019. 27 | #' 28 | #' @format A data frame with 2130 rows and 3 variables: 29 | #' \describe{ 30 | #' \item{RID}{ADNI roster ID} 31 | #' \item{pred_AD_month}{Predicted disease time (in months relative to the average cognitive state of the cognitively normal group)} 32 | #' } 33 | "ADNI_disease_stage_bl" 34 | 35 | -------------------------------------------------------------------------------- /R/progmod.R: -------------------------------------------------------------------------------- 1 | #' Overparametrized exponential function. 2 | #' 3 | #' @param t Time variable 4 | #' @param l Scale parameter for the exponential function 5 | #' @param s Time-shift parameter 6 | #' @param g Time-scaling parameter 7 | #' @param v Intercept parameter 8 | #' @return The function values at the supplied time values along with a 9 | #' "gradient" attribute. 10 | #' @examples 11 | #' exp_model(t = c(0, 1), l = 1, s = 0, g = 0, v = 0) 12 | #' @export 13 | 14 | exp_model <- deriv( 15 | expression(l * exp((t + s) / exp(g)) + v), 16 | namevec = c('l', 's', 'g', 'v'), 17 | function.arg = c('t', 'l', 's', 'g', 'v')) 18 | 19 | #' Overparametrized generalized logistic function. 20 | #' 21 | #' @param t Time variable 22 | #' @param A Lower asymptote parameter 23 | #' @param K Upper asymptote parameter 24 | #' @param B Time-scaling parameter 25 | #' @param s Time-shift parameter 26 | #' @param v Asymmetry parameter 27 | #' @param c Intercept parameter, should only be used for random effects 28 | #' @return The function values at the supplied time values along with a 29 | #' "gradient" attribute. 30 | #' @examples 31 | #' GLF(t = c(0, 1), A = 30, K = 0, B = 1, s = 0, v = 1, c = 0) 32 | #' @export 33 | 34 | GLF <- deriv( 35 | expression(A + (K - A) / ((1 + exp(-B * (t + s)))^(v)) + c), 36 | namevec = c('A', 'K', 'B', 'v', 's', 'c'), 37 | function.arg = c('t', 'A', 'K', 'B', 'v', 's', 'c')) 38 | 39 | 40 | 41 | #' Fit nonlinear mixed-effects disease progression models 42 | #' 43 | #' This function fits disease-progression models to longitudinal data. 44 | #' The function fits nonlinear mixed-effects models by calling 45 | #' \code{\link[nlme]{nlme}} or \code{\link[nlmeBM]{nlmeBM}} depending on the 46 | #' model specification. 47 | #' @param model A nonlinear model formula, with the response on the left of a ~ 48 | #' operator and an expression involving parameters and covariates on the right, 49 | #' or an nlsList object. If data is given, all names used in the formula should 50 | #' be defined as parameters or variables in the data frame. The method function 51 | #' nlme.nlsList is documented separately. See \code{\link[nlme]{nlme}} for details. 52 | #' @param data An optional data frame containing the variables named in model, 53 | #' fixed, random, correlation, weights, subset, and naPattern. 54 | #' By default the variables are taken from the environment. 55 | #' @param fixed A two-sided linear formula of the form \code{f1+...+fn~x1+...+xm}, 56 | #' or a list of two-sided formulas of the form \code{f1~x1+...+xm}, with possibly 57 | #' different models for different parameters. The \code{f1,...,fn} are the names of 58 | #' parameters included on the right hand side of model and the \code{x1+...+xm} 59 | #' expressions define linear models for these parameters (when the left hand 60 | #' side of the formula contains several parameters, they all are assumed to 61 | #' follow the same linear model, described by the right hand side expression). 62 | #' A \code{1} on the right hand side of the formula(s) indicates a single fixed effects 63 | #' for the corresponding parameter(s). 64 | #' @param random A two-sided formula of the form 65 | #' \code{r1+...+rn~x1+...+xm | g1/.../gQ}, with \code{r1,...,rn} naming parameters included on the 66 | #' right hand side of model, \code{x1+...+xm} specifying the random-effects model for these 67 | #' parameters and \code{g1/.../gQ} the grouping structure (\code{Q} may be equal to \code{1}, in which 68 | #' case no / is required). The random effects formula will be repeated for all 69 | #' levels of grouping, in the case of multiple levels of grouping. Explicit specification of the 70 | #' covariance structure between random effects (e.g. using \code{pdMat}) or different formulas for 71 | #' different random effects can be specified. See \code{\link[nlme]{nlme}} for details. 72 | #' \strong{Note:} Only simple two-sided formulas are currently supported when a covariance 73 | #' structure is given (see below). 74 | #' @param groups an optional one-sided formula of the form \code{~ g1} specifying the partitions 75 | #' of the data over which the random effects vary. This is needed when different formulas are specified for 76 | #' different random effects. 77 | #' @param start A numeric vector or list of initial estimates for the fixed effects and random effects. 78 | #' If declared as a numeric vector, it is converted internally to a list with a single component fixed, given by the vector. 79 | #' The \code{fixed} component is required, unless the model function inherits from 80 | #' class \code{selfStart}, in which case initial values will be derived 81 | #' from a call to \code{nlsList}. An optional \code{random} component is used to specify 82 | #' initial values for the random effects and should consist of a matrix, 83 | #' or a list of matrices with length equal to the number of grouping levels. 84 | #' Each matrix should have as many rows as the number of groups at the 85 | #' corresponding level and as many columns as the number of random effects in that level. 86 | #' @param covariance An optional \code{\link[nlme]{corStruct}} object describing the within-group 87 | #' covariance structure. In addition to those available in \code{nlme}, 88 | #' \code{\link{covBM}} can be used to incorporate a Brownian motion component, \code{\link{covFracBM}} 89 | #' can be used to incorporate a fractional Brownian motion component and \code{\link{covIOU}} 90 | #' can be used to incorporate an integrated Ornstein-Uhlenbeck process in relation to 91 | #' a continuous variable. 92 | #' @param weights an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure. 93 | #' This argument is primarily used for multivariate modeling of several outcomes where different standard errors are to be expected. 94 | #' If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights. 95 | #' See the documentation on varClasses for a description of the available varFunc classes. 96 | #' Defaults to NULL, corresponding to homoscedastic within-group errors. \strong{Note:} weighting is not currently supported 97 | #' when a covariance structure is given. 98 | #' @param method a character string. If "\code{REML}" the model is fit by maximizing the restricted log-likelihood. 99 | #' If "\code{ML}" the log-likelihood is maximized. Defaults to "\code{ML}". 100 | #' @param control A list of control parameters for the estimation algorithm. See \code{\link[nlmeControl]{nlmeControl}}. 101 | #' @param verbose If \code{TRUE} information on the evolution of the iterative 102 | #' algorithm is printed. Default is \code{FALSE}. 103 | #' @return An object of class "nlme" representing the nonlinear mixed effects model fit. 104 | #' @examples 105 | #' 106 | #'# 107 | #'# Fit exponential disease progression model to simulated ADAS-cog scores 108 | #'# 109 | #' 110 | #'# Plot data 111 | #'if (require(ggplot2)) { 112 | #'ggplot(adas_mmse_data, aes(x = Month_bl, y = ADAS13)) + 113 | #' geom_line(aes(group = subject_id, color = blstatus)) + 114 | #' ylim(c(85, 0)) + 115 | #' xlab('Months since baseline') 116 | #'} 117 | #' 118 | #'# Fit exponential model with random shift and intercept 119 | #'fixed_start_coef <- c(0.5, 70, 150, 3.5, 10) 120 | #'ADAS_progmod <- progmod(ADAS13 ~ exp_model(Month_bl, l, s, g, v), 121 | #' data = subset(adas_mmse_data, !is.na(ADAS13)), 122 | #' fixed = list(l ~ 1, 123 | #' s ~ MCI + DEM - 1, 124 | #' g ~ 1, 125 | #' v ~ 1), 126 | #' random = s + v ~ 1 | subject_id, 127 | #' start = fixed_start_coef, 128 | #' covariance = NULL) 129 | #' 130 | #'# Predict from model and visualize results 131 | #'adas_mmse_data$fixed_shift_adas <- with(adas_mmse_data, 132 | #' MCI * fixed.effects(ADAS_progmod)[2] + 133 | #' DEM * fixed.effects(ADAS_progmod)[3]) 134 | #'pred_rand <- random.effects(ADAS_progmod) 135 | #'adas_mmse_data$random_shift_adas <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)'] 136 | #' 137 | #'if (require(ggplot2)) { 138 | #' ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas, y = ADAS13)) + 139 | #' geom_line(aes(group = subject_id, color = blstatus)) + 140 | #' ylim(c(85, 0)) + 141 | #' xlab('Months since baseline') 142 | #'} 143 | #' 144 | #' 145 | #'if (require(ggplot2)) { 146 | #' ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas + random_shift_adas, y = ADAS13)) + 147 | #' geom_line(aes(group = subject_id, color = blstatus)) + 148 | #' ylim(c(85, 0)) + 149 | #' xlab('Months since baseline') 150 | #'} 151 | #' 152 | #'# 153 | #'# Fit generalized logistic disease progression model to simulated MMSE scores 154 | #'# 155 | #' 156 | #' # Plot data 157 | #' 158 | #'if (require(ggplot2)) { 159 | #' ggplot(adas_mmse_data, aes(x = Month_bl, y = MMSE)) + 160 | #' geom_line(aes(group = subject_id, color = blstatus)) + 161 | #' ylim(c(0, 30)) + 162 | #' xlab('Months since baseline') 163 | #'} 164 | #' 165 | #'# Fit generalized logistic model with range [30, 0] and a random time shift 166 | #'fixed_start_coef <- c(B = 0.025, 167 | #' v = 1.4, 168 | #' `s.(Intercept)` = -100, 169 | #' s.MCI = 26, 170 | #' s.DEM = 75) 171 | #' 172 | #'MMSE_progmod_glf <- progmod(MMSE ~ GLF(Month_bl, A = 30, K = 0, B, v, s, c = 0), 173 | #' data = subset(adas_mmse_data, !is.na(MMSE)), 174 | #' fixed = list(B ~ 1, 175 | #' v ~ 1, 176 | #' s ~ MCI + DEM + 1), 177 | #' random = s ~ 1 | subject_id, 178 | #' start = fixed_start_coef, 179 | #' covariance = NULL) 180 | #' 181 | #'# Predict from model and visualize results 182 | #'adas_mmse_data$fixed_shift_mmse <- with(adas_mmse_data, 183 | #' fixed.effects(MMSE_progmod_glf)[3] + 184 | #' MCI * fixed.effects(MMSE_progmod_glf)[4] + 185 | #' DEM * fixed.effects(MMSE_progmod_glf)[5]) 186 | #'pred_rand <- random.effects(MMSE_progmod_glf) 187 | #'adas_mmse_data$random_shift_mmse <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)'] 188 | #' 189 | #' 190 | #' 191 | #'if (require(ggplot2)) { 192 | #' ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_mmse + random_shift_mmse, y = MMSE)) + 193 | #' geom_line(aes(group = subject_id, color = blstatus)) + 194 | #' xlab('Months since baseline') 195 | #'} 196 | #' 197 | #'# 198 | # Fit a multivariate model to simulated ADAS-cog and MMSE scores 199 | # 200 | #' 201 | #'# Stack data to long format 202 | #'tmp1 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'ADAS13')] 203 | #'names(tmp1)[6] <- 'value' 204 | #'tmp1$scale <- 'ADAS13' 205 | #' 206 | #'tmp2 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'MMSE')] 207 | #'names(tmp2)[6] <- 'value' 208 | #'tmp2$scale <- 'MMSE' 209 | #' 210 | #'# Long data 211 | #'adas_mmse_data_long <- na.omit(rbind(tmp1, tmp2)) 212 | #'adas_mmse_data_long$scale <- factor(adas_mmse_data_long$scale) 213 | #' 214 | #'# Remove temporary files 215 | #'rm(tmp1, tmp2) 216 | #' 217 | #'# Fit multivariate exponential model 218 | #'fixed_start_coef <- c(l.scaleADAS13 = 0.5, 219 | #' l.scaleMMSE = -0.1, 220 | #' s.MCI = 70, 221 | #' s.DEM = 150, 222 | #' g.scaleADAS13 = 3.5, 223 | #' g.scaleMMSE = 3, 224 | #' v.scaleADAS13 = 10, 225 | #' v.scaleMMSE = 30) 226 | #' 227 | #'multi_progmod_glf <- progmod(value ~ exp_model(Month_bl, l, s, g, v), 228 | #' data = adas_mmse_data_long, 229 | #' fixed = list(l ~ scale + 0, 230 | #' s ~ MCI + DEM + 0, 231 | #' g ~ scale + 0, 232 | #' v ~ scale + 0), 233 | #' random = list(s ~ 1, 234 | #' v ~ scale), 235 | #' groups = ~ subject_id, 236 | #' start = fixed_start_coef, 237 | #' weights = varIdent(form = ~ 1 | scale)) 238 | #' 239 | #'# Predict from model and compare to univariate models 240 | #'adas_mmse_data$fixed_shift_multi <- with(adas_mmse_data, 241 | #' MCI * fixed.effects(multi_progmod_glf)[3] + 242 | #' DEM * fixed.effects(multi_progmod_glf)[4]) 243 | #'pred_rand <- random.effects(multi_progmod_glf) 244 | #'adas_mmse_data$random_shift_multi <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)'] 245 | #' 246 | #' 247 | #'# Correlations between predicted disease months 248 | #'with(adas_mmse_data, cor(cbind(fixed_shift_adas + random_shift_adas, 249 | #' fixed_shift_mmse + random_shift_mmse, 250 | #' fixed_shift_multi + random_shift_multi), method = 'spearman')) 251 | #' 252 | #' 253 | #' 254 | #' 255 | #' @export 256 | #' @import nlme covBM 257 | 258 | progmod <- function(model, data, fixed, random, groups, start, covariance = NULL, weights = NULL, 259 | method = c("ML", "REML"), control = NULL, verbose = FALSE) { 260 | 261 | # Set control parameters if not given 262 | if (is.null(control)) { 263 | control <- nlmeControl(maxIter = 50, # Can be increased 264 | pnlsMaxIter = 7, # Should not be increased too much beyond 7 265 | msMaxIter = 500, # 50-500 266 | minScale = 0.01, 267 | tolerance = 1e-5, 268 | niterEM = 25, # 25-100 269 | pnlsTol = 0.001, 270 | msTol = 1e-6, 271 | msVerbose = FALSE, 272 | apVar = TRUE, 273 | .relStep = 1-06, 274 | minAbsParApVar = 0.05, 275 | natural = TRUE) 276 | } 277 | 278 | if (is.null(covariance)) { 279 | nlme(model = model, 280 | data = data, 281 | fixed = fixed, 282 | random = random, 283 | groups = groups, 284 | start = start, 285 | weights = weights, 286 | method = method, 287 | control = control, 288 | verbose = verbose) 289 | } else { 290 | if (!missing(groups)) { 291 | stop('\'groups\' argument is not currently supported when a stochastic process component is given.') 292 | } 293 | if (!is.null(weights)) { 294 | stop('\'weights\' argument is not currently supported when a stochastic process component is given.') 295 | } 296 | nlmeBM(model = model, 297 | data = data, 298 | fixed = fixed, 299 | random = random, 300 | start = start, 301 | covariance = covariance, 302 | method = method, 303 | control = control, 304 | verbose = verbose) 305 | } 306 | } 307 | 308 | -------------------------------------------------------------------------------- /README.md: -------------------------------------------------------------------------------- 1 | # Disease progression modeling based on nonlinear mixed effects modeling 2 | progmod is an R package for estimating population-level disease progression patterns based on aligning short-term longitudinal observed patterns. The models are formulated as nonlinear mixed effect models and estimation in these models is done using maximum likelihood estimation. 3 | 4 | The basic idea of the model is to use patterns in data to map observed time (e.g. time since baseline) to disease time (both on a group level and individual level). The animation below shows an example in Alzheimer's disease where the observation times of ADAS-cog total scores from the [ADNI study](http://adni.loni.usc.edu/) are mapped to predicted disease time of the five baseline groups (Cognitively normal, Significant memory concern, early and late MCI, dementia) and to individual disease time. 5 | 6 | 7 | ![](man/readme/adas_progression.gif) 8 | 9 | The results shown in the animation are from the basic model presented in the paper 10 | 11 |
12 |
13 | Raket, Lars Lau. "Statistical Disease Progression Modeling in Alzheimer Disease." Frontiers in Big Data (2020). DOI: 10.3389/fdata.2020.00024 14 |
15 |
16 | 17 | These model predictions for ADNI based on the 13-item ADAS-cog scores are available in [data/ADNI_disease_stage_bl.txt](data/ADNI_disease_stage_bl.txt). If you use this package or data, please cite the above paper. 18 | 19 | ## Multivariate disease progression models 20 | progmod supports simultaneous modeling of progression on multiple outcomes as described in the paper 21 | 22 |
23 |
24 | Kühnel, Line, Anna-Karin Berger, Bo Markussen, and Lars Lau Raket. "Simultaneous Modelling of Alzheimer’s Disease Progression via Multiple Cognitive Scales." Statistics in Medicine (2021). DOI: 10.1002/sim.8932 25 |
26 |
27 | 28 | An example of multivariate modeling is available in the documentation. 29 | 30 | ## Installation 31 | 32 | You can install `progmod` directly from github using devtools: 33 | 34 | ``` r 35 | # install.packages('devtools') 36 | devtools::install_github('larslau/progmod') 37 | ``` 38 | 39 | ## Use and examples 40 | The package contains simulated ADAS-cog and MMSE data for exploration of models. Examples of how to specify models for these data are available by running 41 | ``` r 42 | library(progmod) 43 | example(progmod) 44 | ``` 45 | 46 | -------------------------------------------------------------------------------- /data/ADNI_disease_stage_bl.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/larslau/progmod/d374fb34a87d469891ab675f2c7294676e62dec9/data/ADNI_disease_stage_bl.RData -------------------------------------------------------------------------------- /data/ADNI_disease_stage_bl.txt: -------------------------------------------------------------------------------- 1 | "RID" "pred_AD_month" 2 | "1" 2 -13.3052482930144 3 | "2" 3 126.262553943568 4 | "3" 4 79.4196676545141 5 | "4" 5 -5.58262304917352 6 | "5" 6 74.8777980600364 7 | "6" 7 133.96137753365 8 | "7" 8 -14.5188452266496 9 | "8" 10 118.696057832206 10 | "9" 14 5.34710573975268 11 | "10" 15 3.05343429041844 12 | "11" 16 -5.09609079190008 13 | "12" 19 15.4972232529689 14 | "13" 21 -18.5199702345299 15 | "14" 22 -4.71853151940967 16 | "15" 23 -1.56991358656421 17 | "16" 29 140.1714074641 18 | "17" 30 108.78793516497 19 | "18" 31 -39.9858077913628 20 | "19" 33 95.8257364121776 21 | "20" 35 7.40511699242928 22 | "21" 38 77.5653890713612 23 | "22" 40 -0.578276341354623 24 | "23" 41 98.17463839121 25 | "24" 42 41.5244189363257 26 | "25" 43 0.978370739540885 27 | "26" 44 132.186205361288 28 | "27" 45 121.397050803408 29 | "28" 47 12.6702204646642 30 | "29" 48 6.96845216613499 31 | "30" 50 155.45738104 32 | "31" 51 42.4256079594149 33 | "32" 53 121.273787899927 34 | "33" 54 110.328461159087 35 | "34" 55 -17.5122728787861 36 | "35" 56 -29.9860781049266 37 | "36" 57 141.992092064474 38 | "37" 58 -1.69269510161055 39 | "38" 59 -6.22948760462976 40 | "39" 60 78.0074110641921 41 | "40" 61 23.2573335238227 42 | "41" 66 14.4560745951936 43 | "42" 67 4.75584226589035 44 | "43" 68 13.7007474584375 45 | "44" 69 -30.4493722929495 46 | "45" 70 -4.75778980132738 47 | "46" 72 -7.08914859206448 48 | "47" 74 -26.5091439718453 49 | "48" 76 99.9325156049018 50 | "49" 77 115.127044180481 51 | "50" 78 167.130093967962 52 | "51" 80 67.4795534884906 53 | "52" 81 13.5927966432799 54 | "53" 83 126.182338153414 55 | "54" 84 73.2990295994895 56 | "55" 86 12.7726337818494 57 | "56" 87 116.912523963455 58 | "57" 88 156.97901890272 59 | "58" 89 -3.8782094397371 60 | "59" 90 7.3572816081566 61 | "60" 91 112.067780039211 62 | "61" 93 165.41824018253 63 | "62" 94 146.05082692239 64 | "63" 95 5.96688419639647 65 | "64" 96 -28.738851863319 66 | "65" 97 11.7634043927822 67 | "66" 98 103.619853890152 68 | "67" 101 55.9447879018966 69 | "68" 102 146.072730595728 70 | "69" 103 152.644206787519 71 | "70" 106 23.3331228632252 72 | "71" 107 43.7003373192955 73 | "72" 108 102.442038608602 74 | "73" 109 148.083185337254 75 | "74" 110 107.605635816577 76 | "75" 111 126.152704272447 77 | "76" 112 10.298527733519 78 | "77" 113 -5.67797848018951 79 | "78" 116 42.8444352857682 80 | "79" 118 34.2734380432947 81 | "80" 120 -10.85569807697 82 | "81" 123 11.8517649627598 83 | "82" 125 -19.6529927996548 84 | "83" 126 29.4126986979444 85 | "84" 127 -41.1366246875634 86 | "85" 128 106.2991973224 87 | "86" 129 107.581997213819 88 | "87" 130 -6.20036687147012 89 | "88" 138 26.0485863553736 90 | "89" 139 98.0151282646028 91 | "90" 141 81.8949357315143 92 | "91" 142 30.3162645196829 93 | "92" 147 140.665995686738 94 | "93" 149 116.145336432636 95 | "94" 150 6.0470630844148 96 | "95" 155 97.7258601926178 97 | "96" 156 -10.7269180939852 98 | "97" 158 59.4146059720635 99 | "98" 159 -35.132056705233 100 | "99" 160 65.4181703608834 101 | "100" 161 53.9091504134043 102 | "101" 162 105.69515002123 103 | "102" 166 55.0020895354386 104 | "103" 167 86.0451274116966 105 | "104" 168 78.792817686282 106 | "105" 169 23.6825846996005 107 | "106" 171 58.1966059702842 108 | "107" 172 0.973671828614864 109 | "108" 173 -3.16022939734259 110 | "109" 176 66.5978361911787 111 | "110" 177 10.2697190676712 112 | "111" 178 -5.5757270410388 113 | "112" 179 125.190763621309 114 | "113" 182 100.908009503752 115 | "114" 183 141.644986761755 116 | "115" 184 9.75948310581039 117 | "116" 186 -1.69675351130632 118 | "117" 187 109.163672633428 119 | "118" 188 61.5225240977418 120 | "119" 190 72.0954533429308 121 | "120" 194 127.121671387616 122 | "121" 195 128.478273459081 123 | "122" 196 11.9543278727547 124 | "123" 200 -21.2012687525158 125 | "124" 204 96.218985034512 126 | "125" 205 -12.2589290915829 127 | "126" 210 -5.64388674353305 128 | "127" 213 124.218563856826 129 | "128" 214 45.2828909993796 130 | "129" 216 115.689082923538 131 | "130" 217 68.265201694708 132 | "131" 219 118.790854694048 133 | "132" 221 141.676505148567 134 | "133" 222 80.9808653124541 135 | "134" 223 5.00278327842357 136 | "135" 225 26.8510789824024 137 | "136" 227 76.4780627019864 138 | "137" 228 145.342029298914 139 | "138" 229 -0.0726474223500265 140 | "139" 230 66.5698624576378 141 | "140" 231 87.5184867752808 142 | "141" 232 0.904829370264939 143 | "142" 240 72.6294522489716 144 | "143" 241 66.2111048683951 145 | "144" 243 130.840720381962 146 | "145" 245 -4.22090679649782 147 | "146" 249 84.727873701755 148 | "147" 256 98.4149909558537 149 | "148" 257 0.854696168922196 150 | "149" 258 106.900474685905 151 | "150" 259 33.3438455662625 152 | "151" 260 -9.88479242447095 153 | "152" 262 -0.769253846558864 154 | "153" 266 108.913824528395 155 | "154" 269 115.201625292816 156 | "155" 272 -16.9182558748871 157 | "156" 273 76.8535368866893 158 | "157" 276 5.97964419567485 159 | "158" 282 73.4011724771572 160 | "159" 283 1.45018746821995 161 | "160" 284 127.362093042714 162 | "161" 285 42.6843331738768 163 | "162" 286 141.046866318689 164 | "163" 288 91.7633668049271 165 | "164" 289 102.009127789316 166 | "165" 290 87.3988379167649 167 | "166" 291 48.086742245173 168 | "167" 292 12.4938243850857 169 | "168" 293 108.098725249947 170 | "169" 294 33.4564529505737 171 | "170" 295 12.0841094061815 172 | "171" 296 2.22799464407576 173 | "172" 298 -3.88021016255494 174 | "173" 299 118.883023415722 175 | "174" 300 101.998494315785 176 | "175" 301 -6.51413970846346 177 | "176" 303 -16.7999650794093 178 | "177" 304 -9.63445525200919 179 | "178" 307 23.6447892192568 180 | "179" 310 125.833654917967 181 | "180" 311 14.5621878333196 182 | "181" 312 -5.50568483647618 183 | "182" 314 82.0342133102401 184 | "183" 315 -11.9627274470657 185 | "184" 316 119.993465305073 186 | "185" 319 -1.14750857553239 187 | "186" 321 114.838258339528 188 | "187" 324 64.1379230284851 189 | "188" 325 96.4945172095855 190 | "189" 326 85.6649164221853 191 | "190" 327 -2.98405168422838 192 | "191" 328 137.247959453539 193 | "192" 331 63.73368769753 194 | "193" 332 143.006849670021 195 | "194" 335 108.337130708134 196 | "195" 336 88.688034659947 197 | "196" 337 -9.3757815014107 198 | "197" 339 88.8174256023373 199 | "198" 341 120.660212245189 200 | "199" 343 152.96307281562 201 | "200" 344 72.9082644492416 202 | "201" 351 69.8671579732148 203 | "202" 352 -4.62169964364835 204 | "203" 354 77.2904220031489 205 | "204" 356 143.886163400367 206 | "205" 359 -9.07386602764287 207 | "206" 360 -1.26624043137111 208 | "207" 361 48.1713893809089 209 | "208" 362 87.2088821694461 210 | "209" 363 56.0756891637722 211 | "210" 366 148.142870332009 212 | "211" 369 7.41914948537262 213 | "212" 370 100.387007944576 214 | "213" 372 140.362493282652 215 | "214" 374 120.308569081811 216 | "215" 376 64.2937855238769 217 | "216" 377 -10.5446544978744 218 | "217" 378 82.4256954304043 219 | "218" 382 -25.5046892252061 220 | "219" 384 3.67406904861396 221 | "220" 386 -2.23876942626051 222 | "221" 388 119.01117491851 223 | "222" 389 77.1457946002749 224 | "223" 390 123.235069948987 225 | "224" 392 131.279640239692 226 | "225" 393 95.8394778256045 227 | "226" 394 102.289877283086 228 | "227" 397 120.477912568665 229 | "228" 400 140.32962927438 230 | "229" 401 61.2852018829776 231 | "230" 403 -0.00571360913230474 232 | "231" 404 123.315186210655 233 | "232" 405 1.11557529642683 234 | "233" 406 112.956492439979 235 | "234" 407 82.3994092493654 236 | "235" 408 48.2896390498358 237 | "236" 409 136.329942025064 238 | "237" 410 75.610189152832 239 | "238" 413 -17.3780779389336 240 | "239" 414 114.844801276584 241 | "240" 416 -3.72788002048636 242 | "241" 417 142.546173129342 243 | "242" 419 -27.2726623766066 244 | "243" 420 -30.1890263592558 245 | "244" 422 67.0571787323451 246 | "245" 423 117.850477156581 247 | "246" 424 72.7839380468199 248 | "247" 425 -3.06089311602104 249 | "248" 426 117.303548891446 250 | "249" 429 95.5163662107112 251 | "250" 431 131.373661432909 252 | "251" 433 3.3787952803148 253 | "252" 434 116.194686178327 254 | "253" 436 -9.30513467001136 255 | "254" 438 140.544964022013 256 | "255" 441 -16.2268983914271 257 | "256" 442 89.4049098143617 258 | "257" 443 63.0111139751762 259 | "258" 445 112.995543755089 260 | "259" 446 77.4335472049876 261 | "260" 448 48.5228979748671 262 | "261" 449 92.3136324355645 263 | "262" 450 87.1635698165724 264 | "263" 454 -2.61886823306065 265 | "264" 457 130.916919746262 266 | "265" 458 124.466028466839 267 | "266" 459 -10.3944577983802 268 | "267" 461 121.36480951013 269 | "268" 464 70.0117471580302 270 | "269" 467 11.6245730262375 271 | "270" 469 93.5789282100792 272 | "271" 470 122.755868137423 273 | "272" 472 9.82649037235005 274 | "273" 473 -29.7544457451502 275 | "274" 474 119.72295075952 276 | "275" 478 53.2841176704527 277 | "276" 479 18.7479415485422 278 | "277" 481 69.1271295467122 279 | "278" 484 3.14270308132385 280 | "279" 485 111.511200542951 281 | "280" 487 133.411467418557 282 | "281" 488 -0.138349289524493 283 | "282" 489 0.56780285963082 284 | "283" 492 133.709879726871 285 | "284" 493 8.74148292740812 286 | "285" 498 -7.95898064278268 287 | "286" 500 2.15128234137608 288 | "287" 501 21.8204157170036 289 | "288" 502 -3.39714764000468 290 | "289" 505 27.070204990418 291 | "290" 506 1.61625318097941 292 | "291" 507 135.821915239091 293 | "292" 511 105.080235888538 294 | "293" 513 97.1969174132772 295 | "294" 514 45.0127468163056 296 | "295" 516 -4.56317869963618 297 | "296" 517 148.242949263013 298 | "297" 518 123.710710428843 299 | "298" 519 -9.62763721289903 300 | "299" 520 -3.58339625846438 301 | "300" 522 11.0817234022467 302 | "301" 525 8.00276210691301 303 | "302" 526 11.9490450227478 304 | "303" 528 109.351247408277 305 | "304" 531 118.441799828993 306 | "305" 533 -2.78650956694769 307 | "306" 534 8.21541141569187 308 | "307" 535 113.347848340591 309 | "308" 538 6.89737416988062 310 | "309" 539 76.1033831141361 311 | "310" 543 152.738449514298 312 | "311" 544 91.7389531978195 313 | "312" 545 -12.580432838449 314 | "313" 546 51.6584652122227 315 | "314" 547 94.833997769445 316 | "315" 548 89.058748548158 317 | "316" 549 128.614052324871 318 | "317" 551 78.0969277660551 319 | "318" 552 112.364946794016 320 | "319" 553 -18.0627878762023 321 | "320" 554 132.834340500581 322 | "321" 555 3.37559918149265 323 | "322" 557 30.9098593616955 324 | "323" 558 6.57405501744257 325 | "324" 559 3.97548479651729 326 | "325" 563 52.2697663622341 327 | "326" 565 170.046078928803 328 | "327" 566 36.7925897671202 329 | "328" 567 78.9749348796647 330 | "329" 568 112.986111164842 331 | "330" 572 51.5420733254447 332 | "331" 575 -2.98963699372094 333 | "332" 576 2.99596079538523 334 | "333" 577 134.349241354024 335 | "334" 578 -1.30558801848173 336 | "335" 579 68.5686098756247 337 | "336" 588 96.4394772709843 338 | "337" 590 105.812723965469 339 | "338" 592 150.471081586186 340 | "339" 598 71.1382382671934 341 | "340" 601 9.78971072370596 342 | "341" 602 -25.5892222089581 343 | "342" 604 58.2932625676509 344 | "343" 605 -8.79156620673455 345 | "344" 606 119.794273665073 346 | "345" 607 98.6795394230455 347 | "346" 608 135.64334002885 348 | "347" 610 -7.42061809042898 349 | "348" 611 118.55383655345 350 | "349" 613 109.411676433615 351 | "350" 618 -27.8179651889573 352 | "351" 619 126.615726064455 353 | "352" 621 82.3457694633237 354 | "353" 622 17.1706204815709 355 | "354" 625 115.633447444333 356 | "355" 626 6.37784221219813 357 | "356" 627 143.949344710901 358 | "357" 629 105.387746362851 359 | "358" 631 139.55845560564 360 | "359" 633 151.037073560351 361 | "360" 634 60.8360596510024 362 | "361" 637 -6.54303317807024 363 | "362" 638 124.102410681383 364 | "363" 640 3.50045438756324 365 | "364" 641 142.115520636321 366 | "365" 642 127.175683156757 367 | "366" 643 6.10728965377318 368 | "367" 644 43.6420459571219 369 | "368" 647 9.39200959398167 370 | "369" 648 -8.6122013582521 371 | "370" 649 94.9910777270061 372 | "371" 653 141.159170949358 373 | "372" 656 87.6548715824642 374 | "373" 657 5.87557816195663 375 | "374" 658 33.9460660131228 376 | "375" 668 0.594363738373247 377 | "376" 669 63.467157837346 378 | "377" 671 63.4914137912751 379 | "378" 672 4.74711188900754 380 | "379" 673 66.3571456864812 381 | "380" 675 102.638971670706 382 | "381" 677 -15.4127839372813 383 | "382" 679 -20.8074667192515 384 | "383" 680 -17.9056562863204 385 | "384" 681 11.4738646429379 386 | "385" 682 147.959834849405 387 | "386" 684 -12.7864062605129 388 | "387" 685 -8.94307272027657 389 | "388" 686 -7.77711848095641 390 | "389" 689 152.350835363655 391 | "390" 690 119.147668898213 392 | "391" 691 165.672442638389 393 | "392" 692 1.76124613035646 394 | "393" 695 125.30842830981 395 | "394" 696 148.990885753889 396 | "395" 697 79.1289294301174 397 | "396" 698 20.9583513028559 398 | "397" 702 71.2200498712105 399 | "398" 708 94.2692085325557 400 | "399" 709 19.9754872876677 401 | "400" 711 4.92540090550498 402 | "401" 712 131.493711364492 403 | "402" 715 55.3091708788944 404 | "403" 717 26.2790784335756 405 | "404" 718 74.5912285624254 406 | "405" 720 139.600526033797 407 | "406" 721 84.9920856073482 408 | "407" 722 21.3380229541864 409 | "408" 723 96.0649803133295 410 | "409" 724 145.682399714357 411 | "410" 725 102.048945022877 412 | "411" 726 -7.02082288861348 413 | "412" 727 94.4049294064998 414 | "413" 729 67.0459924306374 415 | "414" 730 156.15653885652 416 | "415" 731 -14.0447862167876 417 | "416" 733 140.63823761963 418 | "417" 734 -32.0209957933228 419 | "418" 739 102.159388051748 420 | "419" 740 135.541328270688 421 | "420" 741 -9.45562600802046 422 | "421" 743 170.42809980292 423 | "422" 746 20.3091810285013 424 | "423" 747 134.796021427067 425 | "424" 748 119.535515918655 426 | "425" 750 150.925354299021 427 | "426" 751 -22.9621595585337 428 | "427" 752 67.9249039757913 429 | "428" 753 122.443907411524 430 | "429" 754 134.003301871558 431 | "430" 759 125.830938710499 432 | "431" 760 131.507888613082 433 | "432" 761 -2.73699390298397 434 | "433" 767 -40.5628871029715 435 | "434" 768 -6.56011374160979 436 | "435" 769 92.1591746712963 437 | "436" 770 37.0058115532012 438 | "437" 771 57.9535393500149 439 | "438" 777 137.961914910041 440 | "439" 778 11.1389445643999 441 | "440" 779 -6.98610871749071 442 | "441" 782 64.4465670344882 443 | "442" 783 105.30431241591 444 | "443" 784 95.7689232464123 445 | "444" 786 136.682728902398 446 | "445" 790 148.504064988524 447 | "446" 792 77.3383665442466 448 | "447" 793 146.807670853543 449 | "448" 796 81.998591898199 450 | "449" 800 19.3284828655682 451 | "450" 802 -3.33652049791768 452 | "451" 803 134.160552664994 453 | "452" 810 -5.74095344631145 454 | "453" 812 144.982155626468 455 | "454" 813 2.23001353803816 456 | "455" 814 134.006391742286 457 | "456" 816 115.540392563721 458 | "457" 818 -6.64845284245494 459 | "458" 821 101.297368129927 460 | "459" 824 -4.71300621952055 461 | "460" 825 111.448324861996 462 | "461" 828 149.972689296675 463 | "462" 829 119.880958154495 464 | "463" 830 58.4394771142256 465 | "464" 832 105.589137056435 466 | "465" 834 109.403150275613 467 | "466" 835 56.6395531297193 468 | "467" 836 110.974175035883 469 | "468" 839 121.112361405405 470 | "469" 841 133.629608444391 471 | "470" 842 6.05862946411694 472 | "471" 843 20.3008619067865 473 | "472" 844 107.492403843829 474 | "473" 845 27.3607995849124 475 | "474" 850 122.698060298833 476 | "475" 851 51.1817050412871 477 | "476" 852 123.910855946933 478 | "477" 853 128.650405262738 479 | "478" 855 102.688999882652 480 | "479" 856 119.313749308902 481 | "480" 860 123.489064917803 482 | "481" 861 110.935458849782 483 | "482" 862 4.53118732080559 484 | "483" 863 6.88818410477163 485 | "484" 865 73.5819349106909 486 | "485" 866 5.55530672820318 487 | "486" 867 28.3357731288948 488 | "487" 869 75.1886957146047 489 | "488" 871 85.0706381122293 490 | "489" 872 49.3881927888807 491 | "490" 873 89.514805594496 492 | "491" 874 125.576678011897 493 | "492" 876 5.3307460779199 494 | "493" 878 114.302583044187 495 | "494" 880 93.8514534054769 496 | "495" 883 3.73362654941952 497 | "496" 884 133.133420762848 498 | "497" 886 3.34972532649855 499 | "498" 887 96.7664416123907 500 | "499" 889 114.323001326744 501 | "500" 890 91.0731642097876 502 | "501" 891 120.607727546959 503 | "502" 892 121.878537918953 504 | "503" 896 -18.1959663501357 505 | "504" 898 5.4350748733694 506 | "505" 899 -5.11378802267486 507 | "506" 904 116.289219871222 508 | "507" 906 89.3711147783908 509 | "508" 907 -0.249118558175311 510 | "509" 908 -13.2918259912157 511 | "510" 909 78.9792975139624 512 | "511" 912 60.6659387638392 513 | "512" 913 141.751075748966 514 | "513" 914 36.4153239876239 515 | "514" 915 63.5112433533584 516 | "515" 916 140.402538000845 517 | "516" 917 85.4831979437023 518 | "517" 919 9.34729951136214 519 | "518" 920 5.586046681553 520 | "519" 921 94.4515577324365 521 | "520" 922 67.0410834203029 522 | "521" 923 -15.6318583858991 523 | "522" 924 127.065978620444 524 | "523" 925 15.417708031304 525 | "524" 926 27.5511480044346 526 | "525" 928 110.914994967236 527 | "526" 929 128.655442998744 528 | "527" 930 92.4437746011772 529 | "528" 931 8.80644628576587 530 | "529" 932 99.4814608459113 531 | "530" 934 -19.5953609935954 532 | "531" 938 116.401230512253 533 | "532" 941 149.436909260849 534 | "533" 945 87.5396480897891 535 | "534" 947 112.892536343873 536 | "535" 950 122.173004220453 537 | "536" 951 -1.99190536787286 538 | "537" 952 80.212766198236 539 | "538" 954 118.244389164213 540 | "539" 955 147.003668266772 541 | "540" 956 101.363434294526 542 | "541" 957 85.3773821874569 543 | "542" 958 77.4957822562047 544 | "543" 961 114.486012948197 545 | "544" 963 6.78976073515295 546 | "545" 967 6.29091501039258 547 | "546" 969 -11.038718305172 548 | "547" 972 14.1912180144028 549 | "548" 973 82.4283994970442 550 | "549" 976 95.3940880521063 551 | "550" 978 70.2530338425739 552 | "551" 979 133.748420289242 553 | "552" 981 -8.86019414881088 554 | "553" 982 117.340385712621 555 | "554" 984 84.5879282110208 556 | "555" 985 33.3109503403485 557 | "556" 987 135.854421680142 558 | "557" 989 43.4013233993673 559 | "558" 991 150.23205051959 560 | "559" 994 71.5727629393864 561 | "560" 995 88.8942257703478 562 | "561" 996 127.283473143004 563 | "562" 997 98.7736094700465 564 | "563" 999 142.954194606566 565 | "564" 1001 145.779027897995 566 | "565" 1002 6.45971906576806 567 | "566" 1004 65.2793427685541 568 | "567" 1007 60.7404290497066 569 | "568" 1009 4.17229827562768 570 | "569" 1010 115.872412705123 571 | "570" 1013 -3.08424057869146 572 | "571" 1014 3.26098308069905 573 | "572" 1015 124.206908336463 574 | "573" 1016 -19.2838744353355 575 | "574" 1018 100.813068682636 576 | "575" 1021 -5.33452459774736 577 | "576" 1023 -17.9714290348843 578 | "577" 1024 110.011912150811 579 | "578" 1027 118.549377699676 580 | "579" 1028 113.233522530446 581 | "580" 1030 85.5297486597756 582 | "581" 1031 91.6469798270648 583 | "582" 1032 7.28161530619276 584 | "583" 1033 109.503305332183 585 | "584" 1034 58.7027316527799 586 | "585" 1035 3.10596028833529 587 | "586" 1037 126.510220755579 588 | "587" 1038 119.413898854719 589 | "588" 1040 40.9441695670553 590 | "589" 1041 149.861879269557 591 | "590" 1043 82.420533176912 592 | "591" 1044 129.107997780286 593 | "592" 1045 29.4663061927964 594 | "593" 1046 46.69017244037 595 | "594" 1051 133.473953927097 596 | "595" 1052 -7.83698203593447 597 | "596" 1054 103.813839596725 598 | "597" 1055 143.933353446026 599 | "598" 1056 140.572158172304 600 | "599" 1057 102.026309816473 601 | "600" 1059 114.00297185507 602 | "601" 1062 95.0383264570132 603 | "602" 1063 6.35313671644393 604 | "603" 1066 92.3879611584984 605 | "604" 1070 127.082716842734 606 | "605" 1072 18.947556313882 607 | "606" 1073 104.706517556415 608 | "607" 1074 23.5007039936658 609 | "608" 1075 59.9897614804218 610 | "609" 1077 48.4056797875841 611 | "610" 1078 16.630721852665 612 | "611" 1079 132.875101692497 613 | "612" 1080 90.5772949522481 614 | "613" 1081 108.858188350451 615 | "614" 1082 158.856882577055 616 | "615" 1083 126.099264142405 617 | "616" 1086 -9.58026927590922 618 | "617" 1088 100.458213489956 619 | "618" 1090 118.768252090376 620 | "619" 1092 60.3663573792581 621 | "620" 1094 -5.237863105388 622 | "621" 1095 116.75439818422 623 | "622" 1097 52.8900541291239 624 | "623" 1098 7.3505744726106 625 | "624" 1099 -12.4866496494974 626 | "625" 1101 121.396431725578 627 | "626" 1102 109.360063834761 628 | "627" 1103 76.6770372176524 629 | "628" 1104 87.3687085000377 630 | "629" 1106 58.697539507274 631 | "630" 1109 125.743954095975 632 | "631" 1113 128.203529543211 633 | "632" 1114 95.9335926632972 634 | "633" 1116 62.5983650183473 635 | "634" 1117 85.8990522221499 636 | "635" 1118 34.1089050919573 637 | "636" 1119 86.2255443575099 638 | "637" 1120 104.561818763053 639 | "638" 1121 138.92774679834 640 | "639" 1122 -14.5040400899363 641 | "640" 1123 24.0371043350782 642 | "641" 1126 101.427688960185 643 | "642" 1130 59.2279952764312 644 | "643" 1131 72.3163498830912 645 | "644" 1133 3.22807752246303 646 | "645" 1135 102.546552819617 647 | "646" 1137 158.750963627294 648 | "647" 1138 131.6024527789 649 | "648" 1140 92.9540008176606 650 | "649" 1144 122.105588393338 651 | "650" 1148 116.56822675616 652 | "651" 1149 87.0335847334043 653 | "652" 1152 112.774257635598 654 | "653" 1154 111.974131705175 655 | "654" 1155 -11.501092303556 656 | "655" 1157 132.800784738445 657 | "656" 1161 118.394920529616 658 | "657" 1164 135.940797704852 659 | "658" 1165 69.139720040754 660 | "659" 1168 62.9557605628196 661 | "660" 1169 -8.53156091857483 662 | "661" 1170 87.0044069726001 663 | "662" 1171 121.503824111433 664 | "663" 1175 67.7042174258211 665 | "664" 1182 68.5303582916787 666 | "665" 1183 61.7448087648241 667 | "666" 1184 162.288065261563 668 | "667" 1185 156.846119556034 669 | "668" 1186 45.7504012691282 670 | "669" 1187 13.6515888856046 671 | "670" 1188 55.1296704730276 672 | "671" 1190 -1.76394205207533 673 | "672" 1191 -2.55206410533266 674 | "673" 1192 133.842259831861 675 | "674" 1194 20.7851271258467 676 | "675" 1195 -12.50961326684 677 | "676" 1197 -0.836390982813968 678 | "677" 1199 94.5752198594424 679 | "678" 1200 3.52338906572862 680 | "679" 1201 129.152325182927 681 | "680" 1202 -4.77968410138455 682 | "681" 1203 0.46095354442308 683 | "682" 1204 93.8449156021021 684 | "683" 1205 123.450786257618 685 | "684" 1206 -1.53708683664721 686 | "685" 1209 92.7247454457805 687 | "686" 1210 82.3994092493654 688 | "687" 1211 53.0158884385968 689 | "688" 1212 -14.2784301569826 690 | "689" 1213 145.587577916181 691 | "690" 1215 73.0911864628351 692 | "691" 1217 119.378870852959 693 | "692" 1218 86.68269500075 694 | "693" 1221 117.474581028186 695 | "694" 1222 -5.05625496685356 696 | "695" 1224 79.8802466327001 697 | "696" 1225 92.2982237654792 698 | "697" 1226 63.6178745185963 699 | "698" 1227 70.2251136858646 700 | "699" 1231 119.807158786091 701 | "700" 1232 -4.54278038952852 702 | "701" 1240 120.182102226721 703 | "702" 1241 2.06717226145538 704 | "703" 1242 7.06794390100841 705 | "704" 1243 46.0675771428537 706 | "705" 1244 134.64124990656 707 | "706" 1245 76.5329416709959 708 | "707" 1246 22.9312238577485 709 | "708" 1247 123.520081941468 710 | "709" 1248 137.303764170713 711 | "710" 1249 34.1151809901603 712 | "711" 1250 -7.8296726063415 713 | "712" 1251 2.50658092893816 714 | "713" 1253 135.667342472407 715 | "714" 1254 133.703429827366 716 | "715" 1255 90.2526452732187 717 | "716" 1256 -2.13537748351909 718 | "717" 1257 156.756403265287 719 | "718" 1260 48.298967329148 720 | "719" 1261 0.585775628068269 721 | "720" 1262 140.842801574036 722 | "721" 1263 135.323646359592 723 | "722" 1265 104.092116938379 724 | "723" 1267 8.14106212863453 725 | "724" 1268 50.8147529746798 726 | "725" 1269 58.3040344428026 727 | "726" 1271 113.82795785204 728 | "727" 1275 90.5539541034276 729 | "728" 1276 4.13961326428116 730 | "729" 1277 114.04162024209 731 | "730" 1279 95.6425676567491 732 | "731" 1280 -14.2342961702293 733 | "732" 1281 109.253710611598 734 | "733" 1282 127.070992431191 735 | "734" 1284 56.6553633580397 736 | "735" 1285 113.740018301737 737 | "736" 1286 -16.4261229520894 738 | "737" 1288 20.1084596047989 739 | "738" 1289 144.046397657991 740 | "739" 1290 127.629119201493 741 | "740" 1292 149.406416875762 742 | "741" 1293 114.556576299874 743 | "742" 1294 133.473953927097 744 | "743" 1295 102.617213874289 745 | "744" 1296 110.926816842754 746 | "745" 1299 91.0816548726124 747 | "746" 1300 38.2139789139444 748 | "747" 1301 4.93056506776698 749 | "748" 1304 122.131092255726 750 | "749" 1306 3.02610540253454 751 | "750" 1307 109.259537059113 752 | "751" 1308 125.261930459083 753 | "752" 1309 87.5546575034847 754 | "753" 1311 109.172869648533 755 | "754" 1314 64.6537383287346 756 | "755" 1315 98.5926984409486 757 | "756" 1318 101.72995905452 758 | "757" 1321 82.0927337034194 759 | "758" 1322 128.070790090948 760 | "759" 1326 80.525443555735 761 | "760" 1330 66.2871530316255 762 | "761" 1331 112.408564703606 763 | "762" 1334 125.628696625408 764 | "763" 1337 115.213378298101 765 | "764" 1338 104.113833402695 766 | "765" 1339 131.460940259295 767 | "766" 1340 87.0335847334043 768 | "767" 1341 105.065388390519 769 | "768" 1343 68.0284247538437 770 | "769" 1346 41.457750057363 771 | "770" 1350 146.383814380178 772 | "771" 1351 106.013349988919 773 | "772" 1352 4.66365435383032 774 | "773" 1354 150.121370414057 775 | "774" 1357 90.2059728791171 776 | "775" 1363 138.378942078917 777 | "776" 1366 143.134876849442 778 | "777" 1368 139.945076467496 779 | "778" 1373 164.391566396189 780 | "779" 1377 131.198298735387 781 | "780" 1378 -7.76951302160769 782 | "781" 1379 131.135814216446 783 | "782" 1380 50.4973352274493 784 | "783" 1382 140.926354258268 785 | "784" 1384 128.052737963232 786 | "785" 1385 116.826856864001 787 | "786" 1387 111.199822467008 788 | "787" 1389 126.552781308589 789 | "788" 1391 134.564282027693 790 | "789" 1393 121.282150568754 791 | "790" 1394 126.649071830541 792 | "791" 1397 160.474157430118 793 | "792" 1398 147.60991868366 794 | "793" 1400 92.0764578952564 795 | "794" 1402 151.884039678557 796 | "795" 1406 36.0059961736178 797 | "796" 1407 65.8397490869418 798 | "797" 1408 17.4414632575263 799 | "798" 1411 89.5776285094996 800 | "799" 1412 85.5934201416989 801 | "800" 1414 23.530446605541 802 | "801" 1417 45.7144335623667 803 | "802" 1418 8.52779335233244 804 | "803" 1419 71.1504586764234 805 | "804" 1420 98.1715838921235 806 | "805" 1421 88.7644693157385 807 | "806" 1423 113.759392401456 808 | "807" 1425 119.854695235198 809 | "808" 1426 83.1816060737657 810 | "809" 1427 -26.332108931642 811 | "810" 1430 131.706034029567 812 | "811" 1435 136.636948898746 813 | "812" 2002 28.1434258852411 814 | "813" 2003 43.1703614574037 815 | "814" 2007 87.7205910156064 816 | "815" 2010 39.2935241270869 817 | "816" 2011 45.9360189244437 818 | "817" 2018 22.0187064759575 819 | "818" 2022 37.45333117255 820 | "819" 2026 49.265903698702 821 | "820" 2027 44.2959159911067 822 | "821" 2031 38.5164568792955 823 | "822" 2036 34.6389255290476 824 | "823" 2037 21.7669197233795 825 | "824" 2042 29.4926887405809 826 | "825" 2043 45.3169924547685 827 | "826" 2045 70.1307012284857 828 | "827" 2047 98.9537726496765 829 | "828" 2052 54.932712422289 830 | "829" 2055 98.1526205869973 831 | "830" 2057 48.1494687380279 832 | "831" 2058 127.272558582435 833 | "832" 2060 29.3488835380558 834 | "833" 2061 16.0916491112205 835 | "834" 2063 31.7895170980245 836 | "835" 2068 17.8340761769472 837 | "836" 2070 43.9206561245476 838 | "837" 2071 29.0271709516554 839 | "838" 2072 29.3677446659692 840 | "839" 2073 15.3312459932412 841 | "840" 2074 23.9045101774359 842 | "841" 2077 17.4969421516767 843 | "842" 2079 27.7612950648437 844 | "843" 2083 26.8932486728633 845 | "844" 2087 77.1645963745793 846 | "845" 2093 34.8496960473866 847 | "846" 2099 50.1403002088432 848 | "847" 2100 28.0210519591832 849 | "848" 2106 65.1404575980593 850 | "849" 2109 59.4128975076637 851 | "850" 2116 29.4405103370379 852 | "851" 2119 32.8427122285629 853 | "852" 2121 20.6038669520385 854 | "853" 2123 30.6413354054807 855 | "854" 2124 23.6532259217271 856 | "855" 2125 40.5117331908326 857 | "856" 2130 42.2847484642568 858 | "857" 2133 65.410231199311 859 | "858" 2138 32.1894900084717 860 | "859" 2142 46.1994468046855 861 | "860" 2146 24.3367972512628 862 | "861" 2148 29.8016657126352 863 | "862" 2150 34.7711274689739 864 | "863" 2151 43.8724517147395 865 | "864" 2153 45.8584816878961 866 | "865" 2155 45.7198199518102 867 | "866" 2164 23.0986257987646 868 | "867" 2167 43.5021733150006 869 | "868" 2168 50.6109765742185 870 | "869" 2171 38.912664073299 871 | "870" 2180 26.6500024688428 872 | "871" 2182 45.3038603799555 873 | "872" 2183 27.3540128496404 874 | "873" 2184 35.4529248178034 875 | "874" 2185 50.8656261298135 876 | "875" 2187 23.4744935442532 877 | "876" 2190 43.6600207409278 878 | "877" 2191 27.6795812112388 879 | "878" 2193 46.6497270915791 880 | "879" 2194 30.3890622929443 881 | "880" 2195 117.765542240257 882 | "881" 2196 49.1400746024687 883 | "882" 2199 29.0271709516554 884 | "883" 2200 23.6137521895136 885 | "884" 2201 27.2489271058575 886 | "885" 2205 40.5574392538038 887 | "886" 2208 35.3401242043137 888 | "887" 2210 26.1023509141724 889 | "888" 2213 41.2407756671554 890 | "889" 2216 127.299033367386 891 | "890" 2219 19.91799947153 892 | "891" 2220 26.5955885630568 893 | "892" 2225 25.1671345002598 894 | "893" 2233 21.9262075860599 895 | "894" 2234 21.3190003354038 896 | "895" 2237 43.9206561245476 897 | "896" 2238 24.434984341901 898 | "897" 2239 8.74322508108026 899 | "898" 2240 39.5857961420371 900 | "899" 2245 30.1104861308568 901 | "900" 2247 31.6727786683256 902 | "901" 2248 42.5958159087891 903 | "902" 2249 31.3093519698443 904 | "903" 2263 15.7084397373936 905 | "904" 2264 38.1950835744118 906 | "905" 2274 97.1937292130157 907 | "906" 2278 43.1703614574037 908 | "907" 2284 40.755444905159 909 | "908" 2301 25.7406572418515 910 | "909" 2304 17.7970675054543 911 | "910" 2307 26.0220196065425 912 | "911" 2308 22.9492161445818 913 | "912" 2315 31.8632443800918 914 | "913" 2316 120.175519643666 915 | "914" 2324 42.4489986222293 916 | "915" 2332 16.0890435083422 917 | "916" 2333 39.212112951591 918 | "917" 2336 55.8109578058724 919 | "918" 2347 32.9656873591072 920 | "919" 2351 29.0271709516554 921 | "920" 2357 36.5921777009962 922 | "921" 2360 29.9567156438582 923 | "922" 2363 27.336874317233 924 | "923" 2367 48.0359858698956 925 | "924" 2373 57.4061504097838 926 | "925" 2374 46.8734283507615 927 | "926" 2376 46.2861597892127 928 | "927" 2378 56.5178764020759 929 | "928" 2379 30.5666176483633 930 | "929" 2380 37.0993343937721 931 | "930" 2381 62.9716781090337 932 | "931" 2389 35.2632996780148 933 | "932" 2390 71.8250675121176 934 | "933" 2391 81.8460669479703 935 | "934" 2392 18.1352948796913 936 | "935" 2394 31.2302833229004 937 | "936" 2395 19.3003843151663 938 | "937" 2396 12.2749115629566 939 | "938" 2398 116.21138696578 940 | "939" 2403 79.8917807655714 941 | "940" 2405 14.1383264319294 942 | "941" 2407 41.4986097401922 943 | "942" 4001 132.660466170384 944 | "943" 4003 4.21904951540636 945 | "944" 4004 27.2347612870302 946 | "945" 4005 54.4259387319404 947 | "946" 4007 38.9003112370271 948 | "947" 4009 113.844762927256 949 | "948" 4010 3.55956733034689 950 | "949" 4012 36.5933139754215 951 | "950" 4014 1.36403154429008 952 | "951" 4015 131.533666358189 953 | "952" 4018 1.25467020745179 954 | "953" 4020 0.0415285903459759 955 | "954" 4021 11.4305266060888 956 | "955" 4022 26.3013141549441 957 | "956" 4024 138.083666507382 958 | "957" 4026 2.61332256261079 959 | "958" 4028 9.82831600148805 960 | "959" 4029 61.5428877697852 961 | "960" 4030 92.309670362007 962 | "961" 4032 8.59751491419365 963 | "962" 4034 124.416962357029 964 | "963" 4035 118.795654571077 965 | "964" 4036 20.6280690707761 966 | "965" 4037 13.238465191518 967 | "966" 4039 154.143342078048 968 | "967" 4041 33.1947603734632 969 | "968" 4042 117.242997697813 970 | "969" 4043 10.4832349089104 971 | "970" 4050 4.50166341345262 972 | "971" 4051 29.1741189344513 973 | "972" 4053 121.519956915776 974 | "973" 4054 31.3309932590471 975 | "974" 4057 123.541074957865 976 | "975" 4058 116.630075432212 977 | "976" 4059 33.2248934503436 978 | "977" 4060 14.287511797551 979 | "978" 4061 37.5518943986777 980 | "979" 4063 29.4132222230509 981 | "980" 4066 10.5768081401625 982 | "981" 4067 41.4449516272415 983 | "982" 4071 -2.34568121367386 984 | "983" 4072 29.6163148245907 985 | "984" 4073 36.9699045471474 986 | "985" 4075 0.48916885101048 987 | "986" 4076 14.5406466015819 988 | "987" 4077 63.6362567953097 989 | "988" 4079 117.921213767666 990 | "989" 4080 -0.166208646353933 991 | "990" 4081 -0.270919644272404 992 | "991" 4082 9.61996548216713 993 | "992" 4084 12.5675081336922 994 | "993" 4085 45.3014160076807 995 | "994" 4086 22.3149219917347 996 | "995" 4089 140.528664198509 997 | "996" 4090 15.4148124181038 998 | "997" 4092 58.1726406396458 999 | "998" 4093 3.61108111695818 1000 | "999" 4094 28.0830628975608 1001 | "1000" 4095 141.159170949358 1002 | "1001" 4096 143.536565998966 1003 | "1002" 4097 0.312417831073096 1004 | "1003" 4100 35.1928315260409 1005 | "1004" 4102 141.710547643395 1006 | "1005" 4103 -1.91044454134569 1007 | "1006" 4104 7.91652702937019 1008 | "1007" 4105 41.9296243873879 1009 | "1008" 4114 26.2737147762788 1010 | "1009" 4115 26.3009311440617 1011 | "1010" 4119 3.6554139371301 1012 | "1011" 4120 -7.55142946793666 1013 | "1012" 4121 3.56279476309498 1014 | "1013" 4122 90.2422309358315 1015 | "1014" 4125 -3.2661093289892 1016 | "1015" 4127 36.0075859837878 1017 | "1016" 4128 50.0534784397689 1018 | "1017" 4131 130.573273099415 1019 | "1018" 4133 41.969510442471 1020 | "1019" 4134 43.1169976901367 1021 | "1020" 4136 149.446477070236 1022 | "1021" 4138 51.216076186972 1023 | "1022" 4139 -11.7270645372554 1024 | "1023" 4143 61.9714038151919 1025 | "1024" 4146 46.4278423256938 1026 | "1025" 4148 23.1849286711502 1027 | "1026" 4149 39.1233425563162 1028 | "1027" 4150 -10.7800632196014 1029 | "1028" 4151 3.9628436642092 1030 | "1029" 4152 166.690704054172 1031 | "1030" 4153 119.257211377022 1032 | "1031" 4155 3.18163309278863 1033 | "1032" 4157 107.596768334488 1034 | "1033" 4158 6.23445147910177 1035 | "1034" 4159 28.7879454188657 1036 | "1035" 4160 46.6242470938267 1037 | "1036" 4162 85.0516540350353 1038 | "1037" 4164 -1.49171026203826 1039 | "1038" 4167 103.367112374159 1040 | "1039" 4168 33.2603917502652 1041 | "1040" 4169 49.6462589301127 1042 | "1041" 4170 37.642263498992 1043 | "1042" 4171 128.338334545321 1044 | "1043" 4172 153.112420350556 1045 | "1044" 4173 2.72540597513617 1046 | "1045" 4174 11.5013648124246 1047 | "1046" 4175 36.566190031367 1048 | "1047" 4176 15.7440599893258 1049 | "1048" 4177 37.1778145308844 1050 | "1049" 4179 39.5647441777087 1051 | "1050" 4184 34.0308637463226 1052 | "1051" 4185 41.0461039192199 1053 | "1052" 4186 39.7234027109161 1054 | "1053" 4187 50.6847127505761 1055 | "1054" 4188 81.6512079483582 1056 | "1055" 4189 122.132902361985 1057 | "1056" 4192 122.701914894698 1058 | "1057" 4194 69.8971023424211 1059 | "1058" 4195 138.272649245154 1060 | "1059" 4196 12.1334057190061 1061 | "1060" 4197 54.68156200744 1062 | "1061" 4198 66.9880677842965 1063 | "1062" 4199 15.4610855612971 1064 | "1063" 4200 11.1643315224534 1065 | "1064" 4201 153.44760770132 1066 | "1065" 4202 36.9155667169148 1067 | "1066" 4203 92.880567823273 1068 | "1067" 4205 46.499280026919 1069 | "1068" 4206 22.9499799429454 1070 | "1069" 4208 4.95472535551472 1071 | "1070" 4209 144.702071824208 1072 | "1071" 4210 36.1991512627334 1073 | "1072" 4211 110.592764955767 1074 | "1073" 4212 34.4773720583955 1075 | "1074" 4213 12.4819596720562 1076 | "1075" 4214 48.1109971983298 1077 | "1076" 4215 93.9071479972805 1078 | "1077" 4216 27.4835390363005 1079 | "1078" 4217 34.1266447192503 1080 | "1079" 4218 -2.26725883979878 1081 | "1080" 4219 73.6441623456926 1082 | "1081" 4220 32.7484133196559 1083 | "1082" 4222 -6.91157828134575 1084 | "1083" 4223 161.501224841214 1085 | "1084" 4224 21.1448943841318 1086 | "1085" 4225 78.024038359612 1087 | "1086" 4226 28.3250305675519 1088 | "1087" 4229 41.7987315244393 1089 | "1088" 4232 58.2427190630178 1090 | "1089" 4234 28.3375854102503 1091 | "1090" 4235 33.9685349837928 1092 | "1091" 4237 39.3723809327745 1093 | "1092" 4240 132.863620346541 1094 | "1093" 4241 38.5125991645397 1095 | "1094" 4243 118.269217614509 1096 | "1095" 4244 99.7135701747809 1097 | "1096" 4245 20.2649207858323 1098 | "1097" 4250 110.803684515367 1099 | "1098" 4251 76.4347622551797 1100 | "1099" 4252 121.587883096992 1101 | "1100" 4254 23.6639705243971 1102 | "1101" 4255 7.46030474640809 1103 | "1102" 4256 40.0150474661317 1104 | "1103" 4257 3.98821951156029 1105 | "1104" 4258 100.905346169088 1106 | "1105" 4259 40.2114790368177 1107 | "1106" 4260 40.6556908892829 1108 | "1107" 4262 83.0458579057837 1109 | "1108" 4263 89.5231198852126 1110 | "1109" 4264 8.00396786139101 1111 | "1110" 4266 14.3288015576786 1112 | "1111" 4268 41.8984930780115 1113 | "1112" 4269 7.45766628761501 1114 | "1113" 4270 32.1858474572132 1115 | "1114" 4271 59.8279561527122 1116 | "1115" 4272 33.1294135468949 1117 | "1116" 4274 44.4298691047942 1118 | "1117" 4275 7.98517409565512 1119 | "1118" 4276 13.3225500440597 1120 | "1119" 4277 17.5514865240751 1121 | "1120" 4278 45.3802451422815 1122 | "1121" 4279 -4.46476271873819 1123 | "1122" 4280 113.973362523931 1124 | "1123" 4281 31.752200526309 1125 | "1124" 4282 120.867818842137 1126 | "1125" 4285 29.2981620583133 1127 | "1126" 4287 71.3196872165651 1128 | "1127" 4288 11.6699854756684 1129 | "1128" 4290 31.1080514043388 1130 | "1129" 4291 6.4532347328529 1131 | "1130" 4292 1.0113503649982 1132 | "1131" 4293 64.4886726997398 1133 | "1132" 4294 58.8724666785552 1134 | "1133" 4297 35.588905605918 1135 | "1134" 4299 33.2437442027764 1136 | "1135" 4300 68.6428292929106 1137 | "1136" 4301 45.1698222464674 1138 | "1137" 4302 68.8067661124938 1139 | "1138" 4303 100.704773867652 1140 | "1139" 4307 139.960854502551 1141 | "1140" 4308 0.106849928236871 1142 | "1141" 4309 24.0109345552924 1143 | "1142" 4310 37.352986672471 1144 | "1143" 4311 56.7986299078136 1145 | "1144" 4312 24.0040225538998 1146 | "1145" 4313 7.94754510927025 1147 | "1146" 4320 10.0792398858746 1148 | "1147" 4324 65.3388029811327 1149 | "1148" 4327 40.7564035307491 1150 | "1149" 4328 37.0054207571988 1151 | "1150" 4331 46.7623542288106 1152 | "1151" 4332 29.074923138721 1153 | "1152" 4335 12.4624301547813 1154 | "1153" 4337 -3.09416558251512 1155 | "1154" 4338 99.5342031131759 1156 | "1155" 4339 -3.10061271818747 1157 | "1156" 4340 25.4935621312407 1158 | "1157" 4343 23.0215224542611 1159 | "1158" 4345 3.15944460612105 1160 | "1159" 4346 81.5086313704221 1161 | "1160" 4348 4.380690544342 1162 | "1161" 4349 31.7213455970412 1163 | "1162" 4350 31.4273947822431 1164 | "1163" 4351 44.3789774213074 1165 | "1164" 4352 14.3168299606696 1166 | "1165" 4353 135.256783297874 1167 | "1166" 4354 47.0263465013666 1168 | "1167" 4356 32.689136146703 1169 | "1168" 4357 5.47956337725097 1170 | "1169" 4359 50.2361433687095 1171 | "1170" 4360 29.6972017992788 1172 | "1171" 4362 1.14629529440431 1173 | "1172" 4363 88.4523542770527 1174 | "1173" 4365 67.8208440850233 1175 | "1174" 4366 141.990928371119 1176 | "1175" 4367 14.7662574364161 1177 | "1176" 4369 -0.780982499035441 1178 | "1177" 4371 1.31875671457471 1179 | "1178" 4372 2.81837675696497 1180 | "1179" 4373 174.797069178715 1181 | "1180" 4376 12.0086617962756 1182 | "1181" 4377 72.2850397617735 1183 | "1182" 4379 123.277879144383 1184 | "1183" 4380 45.1036888475551 1185 | "1184" 4381 55.5533699267934 1186 | "1185" 4382 2.93942068164832 1187 | "1186" 4383 34.1441213783595 1188 | "1187" 4384 16.3502224398202 1189 | "1188" 4385 -0.986645151467378 1190 | "1189" 4386 2.55881651384473 1191 | "1190" 4387 59.6253044779899 1192 | "1191" 4388 8.35603361843615 1193 | "1192" 4389 4.9041548547386 1194 | "1193" 4390 23.5876820028723 1195 | "1194" 4391 -2.81647168566755 1196 | "1195" 4392 31.8041610736141 1197 | "1196" 4393 1.63236003796755 1198 | "1197" 4394 59.4541893841789 1199 | "1198" 4395 64.9749763390808 1200 | "1199" 4396 14.4865104019691 1201 | "1200" 4399 10.4730503429549 1202 | "1201" 4400 12.6641531407351 1203 | "1202" 4401 4.39036188320586 1204 | "1203" 4402 87.305641164107 1205 | "1204" 4403 88.8174256023373 1206 | "1205" 4404 60.3116486143297 1207 | "1206" 4405 44.5498811315596 1208 | "1207" 4406 79.1998434232301 1209 | "1208" 4408 81.1909626129806 1210 | "1209" 4410 14.4748963555495 1211 | "1210" 4414 105.896594940402 1212 | "1211" 4415 67.9182447339606 1213 | "1212" 4417 35.769603276394 1214 | "1213" 4419 24.928545570098 1215 | "1214" 4420 36.1959997566424 1216 | "1215" 4421 11.2864750332527 1217 | "1216" 4422 70.4226800372273 1218 | "1217" 4423 110.256237105674 1219 | "1218" 4424 13.2745009292436 1220 | "1219" 4426 67.6322107144274 1221 | "1220" 4427 2.7614182716508 1222 | "1221" 4428 5.61542853211944 1223 | "1222" 4429 14.4296696317511 1224 | "1223" 4430 104.79333075731 1225 | "1224" 4431 33.7064767828888 1226 | "1225" 4432 76.7242903214336 1227 | "1226" 4433 -3.22642519691825 1228 | "1227" 4434 39.227078075127 1229 | "1228" 4438 29.083165436755 1230 | "1229" 4441 19.1502189649132 1231 | "1230" 4442 3.58532475192484 1232 | "1231" 4443 37.6562938725621 1233 | "1232" 4444 52.126620381437 1234 | "1233" 4445 43.8724657422873 1235 | "1234" 4446 6.72142165195786 1236 | "1235" 4447 43.5426005012375 1237 | "1236" 4448 10.0420320508048 1238 | "1237" 4449 -4.6947646015677 1239 | "1238" 4453 11.2944902144345 1240 | "1239" 4455 36.6345158358208 1241 | "1240" 4456 99.4869006633992 1242 | "1241" 4458 95.6299794768397 1243 | "1242" 4459 2.56325881403258 1244 | "1243" 4462 106.366487160961 1245 | "1244" 4463 42.6827149763938 1246 | "1245" 4464 9.86615512825266 1247 | "1246" 4465 33.380908225861 1248 | "1247" 4466 11.2933066620466 1249 | "1248" 4467 67.585842916048 1250 | "1249" 4468 44.6016851596221 1251 | "1250" 4469 13.2825166663045 1252 | "1251" 4473 31.9937848655004 1253 | "1252" 4474 0.308760598700351 1254 | "1253" 4475 125.676123910512 1255 | "1254" 4476 38.5702549595746 1256 | "1255" 4477 130.671566875632 1257 | "1256" 4480 42.3002388967942 1258 | "1257" 4482 44.8563065317759 1259 | "1258" 4483 19.7695961518223 1260 | "1259" 4485 23.8286687027303 1261 | "1260" 4488 22.5688384750019 1262 | "1261" 4489 51.9050430121095 1263 | "1262" 4491 4.60545365247388 1264 | "1263" 4494 122.308376088677 1265 | "1264" 4496 4.76549051353203 1266 | "1265" 4498 37.7494798839666 1267 | "1266" 4499 4.83340670679371 1268 | "1267" 4500 136.778471100139 1269 | "1268" 4501 130.061629932833 1270 | "1269" 4502 138.186867672413 1271 | "1270" 4503 5.84443425846762 1272 | "1271" 4505 8.41412812575851 1273 | "1272" 4506 29.3368705163094 1274 | "1273" 4507 40.1484405121537 1275 | "1274" 4508 -3.00283208857613 1276 | "1275" 4510 78.2302298568455 1277 | "1276" 4512 32.4091477240806 1278 | "1277" 4514 22.8667225603032 1279 | "1278" 4515 141.246332214588 1280 | "1279" 4516 -0.576494255021448 1281 | "1280" 4517 41.5397906585351 1282 | "1281" 4520 14.670422613357 1283 | "1282" 4521 118.831518426276 1284 | "1283" 4522 36.8013864775085 1285 | "1284" 4524 85.5211365984646 1286 | "1285" 4526 125.551655120121 1287 | "1286" 4530 42.9634221820606 1288 | "1287" 4531 108.954780707527 1289 | "1288" 4536 54.8615169010978 1290 | "1289" 4538 58.5622666263485 1291 | "1290" 4539 29.8094847526135 1292 | "1291" 4540 38.7414449106603 1293 | "1292" 4542 102.847021827547 1294 | "1293" 4543 37.8189593801173 1295 | "1294" 4545 5.82966176879068 1296 | "1295" 4546 142.035635918468 1297 | "1296" 4547 71.594652317469 1298 | "1297" 4548 49.907222729591 1299 | "1298" 4549 140.5437703413 1300 | "1299" 4552 -0.802003379786465 1301 | "1300" 4553 34.2690113869285 1302 | "1301" 4555 8.61535999973596 1303 | "1302" 4556 36.2228074549767 1304 | "1303" 4557 59.1880500477627 1305 | "1304" 4558 1.5442010611884 1306 | "1305" 4559 2.85149941672959 1307 | "1306" 4560 4.25048185835966 1308 | "1307" 4562 102.810179279672 1309 | "1308" 4564 83.0835083992079 1310 | "1309" 4565 35.3033205616892 1311 | "1310" 4566 7.79651330335549 1312 | "1311" 4568 108.342844261738 1313 | "1312" 4571 31.922929445196 1314 | "1313" 4576 7.97461084234554 1315 | "1314" 4577 -11.4843367875453 1316 | "1315" 4578 24.3546284301274 1317 | "1316" 4579 -6.31324718616108 1318 | "1317" 4580 39.0256711206927 1319 | "1318" 4582 83.685783967529 1320 | "1319" 4583 150.948334574641 1321 | "1320" 4584 89.0096677295293 1322 | "1321" 4585 17.0135258276299 1323 | "1322" 4586 9.14790117417461 1324 | "1323" 4587 32.3435820967305 1325 | "1324" 4589 132.378237504387 1326 | "1325" 4590 57.6587550764051 1327 | "1326" 4591 134.120767698477 1328 | "1327" 4594 32.2101333489974 1329 | "1328" 4595 150.952728153526 1330 | "1329" 4596 79.4116512099659 1331 | "1330" 4597 90.8580331334484 1332 | "1331" 4598 14.4818773733672 1333 | "1332" 4599 14.9892306085968 1334 | "1333" 4601 45.9360189244437 1335 | "1334" 4603 46.5361672055234 1336 | "1335" 4604 25.4287129264474 1337 | "1336" 4605 73.0927177156606 1338 | "1337" 4607 25.3442975124589 1339 | "1338" 4609 12.8582524554742 1340 | "1339" 4610 41.1711622765961 1341 | "1340" 4611 76.3725756935402 1342 | "1341" 4612 8.63982595804983 1343 | "1342" 4613 29.7178589490631 1344 | "1343" 4614 36.4086496071645 1345 | "1344" 4615 124.684030731113 1346 | "1345" 4616 -0.313505046669962 1347 | "1346" 4620 15.0680570502353 1348 | "1347" 4621 28.4494566983926 1349 | "1348" 4623 26.458938516357 1350 | "1349" 4624 42.9884108863443 1351 | "1350" 4625 131.080324695549 1352 | "1351" 4626 66.2519391013642 1353 | "1352" 4629 76.7960579766629 1354 | "1353" 4630 54.0507266949988 1355 | "1354" 4631 63.4532605050822 1356 | "1355" 4632 11.5248212920426 1357 | "1356" 4633 87.0335847334043 1358 | "1357" 4635 38.4121476912679 1359 | "1358" 4636 75.9825710568744 1360 | "1359" 4637 24.9929904238723 1361 | "1360" 4638 -12.4678973055963 1362 | "1361" 4641 108.64071190934 1363 | "1362" 4643 11.9878362315611 1364 | "1363" 4644 17.616208370407 1365 | "1364" 4645 17.629161508082 1366 | "1365" 4646 72.0839104232965 1367 | "1366" 4649 23.8852172855061 1368 | "1367" 4652 -15.2756979234981 1369 | "1368" 4653 66.1577140784292 1370 | "1369" 4654 52.6567181006402 1371 | "1370" 4657 151.219957512571 1372 | "1371" 4659 62.2977595903976 1373 | "1372" 4660 122.35948092209 1374 | "1373" 4661 119.968594732198 1375 | "1374" 4668 133.537603965419 1376 | "1375" 4671 85.3830586445305 1377 | "1376" 4672 111.752693907355 1378 | "1377" 4674 48.2414288737783 1379 | "1378" 4675 108.473254549795 1380 | "1379" 4676 85.5209996020041 1381 | "1380" 4678 44.7428195555186 1382 | "1381" 4679 49.0283624878828 1383 | "1382" 4680 115.333944890704 1384 | "1383" 4686 128.450753673183 1385 | "1384" 4688 3.80989650189707 1386 | "1385" 4689 131.995070763088 1387 | "1386" 4692 137.303764170713 1388 | "1387" 4694 47.1038527494195 1389 | "1388" 4696 152.418058341845 1390 | "1389" 4706 22.2430920252439 1391 | "1390" 4707 147.795892620752 1392 | "1391" 4708 35.4870066895201 1393 | "1392" 4711 85.0092928928288 1394 | "1393" 4712 76.5178254125465 1395 | "1394" 4713 49.1291457471743 1396 | "1395" 4714 75.4301837443744 1397 | "1396" 4715 100.098353606976 1398 | "1397" 4718 152.538234342631 1399 | "1398" 4719 161.945230964038 1400 | "1399" 4720 85.5711955683302 1401 | "1400" 4721 51.8536160002931 1402 | "1401" 4722 47.530472438719 1403 | "1402" 4723 46.3266923896243 1404 | "1403" 4728 149.827184046065 1405 | "1404" 4729 133.504452862882 1406 | "1405" 4730 141.333881003534 1407 | "1406" 4732 131.604239879491 1408 | "1407" 4733 126.612409173245 1409 | "1408" 4736 106.339381476058 1410 | "1409" 4737 137.7538315099 1411 | "1410" 4739 5.41508342900911 1412 | "1411" 4740 157.485818471508 1413 | "1412" 4741 81.8641823551677 1414 | "1413" 4742 25.9934926696765 1415 | "1414" 4743 136.428061566827 1416 | "1415" 4744 49.1967481903416 1417 | "1416" 4745 48.1494687380279 1418 | "1417" 4746 69.8398615172714 1419 | "1418" 4750 60.9649103218766 1420 | "1419" 4755 109.042743219171 1421 | "1420" 4756 115.970682373012 1422 | "1421" 4757 111.965498940914 1423 | "1422" 4762 8.21879477763632 1424 | "1423" 4764 46.9124865096403 1425 | "1424" 4765 93.464538104791 1426 | "1425" 4767 49.6751099248845 1427 | "1426" 4769 65.2648367919421 1428 | "1427" 4770 140.657270451243 1429 | "1428" 4772 134.033582763086 1430 | "1429" 4774 140.835021263996 1431 | "1430" 4777 89.7511787471129 1432 | "1431" 4780 34.5561908650806 1433 | "1432" 4782 67.7590201126244 1434 | "1433" 4784 110.105647663904 1435 | "1434" 4785 32.5734234093831 1436 | "1435" 4791 33.4129984634251 1437 | "1436" 4792 141.394427320018 1438 | "1437" 4793 128.313969030692 1439 | "1438" 4795 -5.20942399289267 1440 | "1439" 4796 104.000878232341 1441 | "1440" 4798 111.210500377534 1442 | "1441" 4799 45.783995206143 1443 | "1442" 4801 144.629691038853 1444 | "1443" 4802 144.435975857491 1445 | "1444" 4803 40.8710039369874 1446 | "1445" 4804 74.2316000698252 1447 | "1446" 4805 28.9772257277495 1448 | "1447" 4806 85.4359885161544 1449 | "1448" 4807 74.2481544776175 1450 | "1449" 4809 47.8286780712301 1451 | "1450" 4813 21.9057547586284 1452 | "1451" 4814 44.2275042722591 1453 | "1452" 4815 86.1953762991009 1454 | "1453" 4816 93.2455954011474 1455 | "1454" 4817 34.6867939958583 1456 | "1455" 4823 73.5197468829868 1457 | "1456" 4825 49.5242527841322 1458 | "1457" 4827 70.3947093767757 1459 | "1458" 4832 10.8690651187735 1460 | "1459" 4835 11.4214355405423 1461 | "1460" 4838 23.4270229946932 1462 | "1461" 4842 45.3175379069807 1463 | "1462" 4843 8.26402837971648 1464 | "1463" 4844 46.5670307070701 1465 | "1464" 4845 152.994035402645 1466 | "1465" 4849 92.7577027218581 1467 | "1466" 4852 96.6469504041511 1468 | "1467" 4853 130.975555566971 1469 | "1468" 4855 2.95155291032191 1470 | "1469" 4856 12.2287767982622 1471 | "1470" 4857 106.759806526296 1472 | "1471" 4858 42.0089378867626 1473 | "1472" 4859 126.390401761597 1474 | "1473" 4862 80.9965553524981 1475 | "1474" 4863 120.730124090229 1476 | "1475" 4867 131.560726438932 1477 | "1476" 4868 76.7002753456581 1478 | "1477" 4869 63.700197281487 1479 | "1478" 4871 31.971549199984 1480 | "1479" 4872 16.8010267814794 1481 | "1480" 4873 95.5358580192194 1482 | "1481" 4874 41.7764621068104 1483 | "1482" 4876 44.5728759127395 1484 | "1483" 4877 75.5692278810664 1485 | "1484" 4878 5.72871691109762 1486 | "1485" 4879 139.352582156354 1487 | "1486" 4883 44.6897886870022 1488 | "1487" 4885 84.4336522565063 1489 | "1488" 4887 127.737026997342 1490 | "1489" 4888 70.6162965054872 1491 | "1490" 4889 52.097864901638 1492 | "1491" 4891 59.4578950596643 1493 | "1492" 4892 133.000074391321 1494 | "1493" 4893 83.1309720386693 1495 | "1494" 4894 154.346950327568 1496 | "1495" 4896 35.4217518914487 1497 | "1496" 4897 29.2259833228028 1498 | "1497" 4898 47.7519983033958 1499 | "1498" 4899 99.5943100541406 1500 | "1499" 4900 33.8706744518619 1501 | "1500" 4902 74.869683418851 1502 | "1501" 4903 97.7207709321252 1503 | "1502" 4904 85.1816128520805 1504 | "1503" 4905 121.637608966535 1505 | "1504" 4906 137.289835256617 1506 | "1505" 4907 42.3773957861534 1507 | "1506" 4909 115.599898715062 1508 | "1507" 4910 161.29064807671 1509 | "1508" 4911 106.276556869406 1510 | "1509" 4912 140.019464942407 1511 | "1510" 4914 42.3773957861534 1512 | "1511" 4917 167.983059225115 1513 | "1512" 4918 97.9008935467731 1514 | "1513" 4919 43.1651111271736 1515 | "1514" 4920 81.801055266368 1516 | "1515" 4921 11.8531415014583 1517 | "1516" 4922 108.004548017638 1518 | "1517" 4924 153.711704407426 1519 | "1518" 4925 137.396139781471 1520 | "1519" 4926 24.5385211082429 1521 | "1520" 4928 80.3447808635904 1522 | "1521" 4929 122.369039992103 1523 | "1522" 4936 122.385404538106 1524 | "1523" 4938 138.970956101384 1525 | "1524" 4940 139.173847288255 1526 | "1525" 4941 39.1956593279604 1527 | "1526" 4943 147.963235833108 1528 | "1527" 4944 48.7765846305299 1529 | "1528" 4945 127.590246730598 1530 | "1529" 4947 48.415033218265 1531 | "1530" 4949 72.8753853789521 1532 | "1531" 4951 12.319745032578 1533 | "1532" 4952 16.2362161019233 1534 | "1533" 4954 94.9046850839582 1535 | "1534" 4955 109.533224653792 1536 | "1535" 4958 36.6329142847899 1537 | "1536" 4959 115.606579619574 1538 | "1537" 4960 47.7426009395925 1539 | "1538" 4962 140.564858780948 1540 | "1539" 4963 130.940067885794 1541 | "1540" 4964 137.528775186678 1542 | "1541" 4966 45.6947402153551 1543 | "1542" 4968 157.156496781182 1544 | "1543" 4971 154.731956176461 1545 | "1544" 4974 109.869998832559 1546 | "1545" 4976 81.6427167918537 1547 | "1546" 4980 133.579203649893 1548 | "1547" 4982 162.066709435105 1549 | "1548" 4984 163.335307099969 1550 | "1549" 4985 113.217653792585 1551 | "1550" 4986 22.9066236018543 1552 | "1551" 4987 48.9691545345066 1553 | "1552" 4989 61.8702864687999 1554 | "1553" 4990 155.456028381042 1555 | "1554" 4994 165.880791853167 1556 | "1555" 4997 166.795988073109 1557 | "1556" 5000 23.5959912508553 1558 | "1557" 5004 35.5625701178115 1559 | "1558" 5005 155.822051154818 1560 | "1559" 5006 149.856622599095 1561 | "1560" 5007 41.5165113672501 1562 | "1561" 5012 122.938297913049 1563 | "1562" 5013 124.250453570482 1564 | "1563" 5014 37.1077233158911 1565 | "1564" 5015 149.240055945261 1566 | "1565" 5016 127.862638437911 1567 | "1566" 5017 142.220681755779 1568 | "1567" 5018 145.578869072008 1569 | "1568" 5019 143.239624703007 1570 | "1569" 5023 8.77445817368288 1571 | "1570" 5026 49.021825681147 1572 | "1571" 5027 132.68385889523 1573 | "1572" 5028 117.1104937053 1574 | "1573" 5029 153.080393684756 1575 | "1574" 5031 39.3392111066319 1576 | "1575" 5032 135.485101520987 1577 | "1576" 5037 126.607209637534 1578 | "1577" 5038 130.815705321321 1579 | "1578" 5040 8.84207032359439 1580 | "1579" 5047 96.40912360944 1581 | "1580" 5054 118.102128313934 1582 | "1581" 5056 172.390985023393 1583 | "1582" 5057 116.219042281657 1584 | "1583" 5058 127.515143220406 1585 | "1584" 5059 166.197536294924 1586 | "1585" 5062 148.521272276815 1587 | "1586" 5063 151.75199412913 1588 | "1587" 5066 24.9133257005895 1589 | "1588" 5067 126.558540884751 1590 | "1589" 5070 143.455266209044 1591 | "1590" 5071 126.759183579425 1592 | "1591" 5075 29.4398692344158 1593 | "1592" 5078 48.7033732031291 1594 | "1593" 5079 38.0639977661385 1595 | "1594" 5082 35.1918888925198 1596 | "1595" 5083 22.4286093141703 1597 | "1596" 5087 134.068312714151 1598 | "1597" 5090 143.635091253168 1599 | "1598" 5091 27.5729366449772 1600 | "1599" 5093 34.623621549752 1601 | "1600" 5095 141.272938939402 1602 | "1601" 5096 26.1335788656622 1603 | "1602" 5097 20.4445697060549 1604 | "1603" 5099 38.1240046374571 1605 | "1604" 5100 31.6848309753232 1606 | "1605" 5102 39.934516798518 1607 | "1606" 5106 149.625291909819 1608 | "1607" 5109 21.1829576943254 1609 | "1608" 5110 35.9476252351279 1610 | "1609" 5112 137.681832405126 1611 | "1610" 5113 45.6835159845171 1612 | "1611" 5118 32.0800292301938 1613 | "1612" 5119 143.597607339239 1614 | "1613" 5120 107.364708803294 1615 | "1614" 5121 25.9157788498602 1616 | "1615" 5123 115.63689162652 1617 | "1616" 5124 49.7442851825278 1618 | "1617" 5125 31.2765115330763 1619 | "1618" 5126 50.8075498643452 1620 | "1619" 5127 32.1715612418305 1621 | "1620" 5129 37.1035332192075 1622 | "1621" 5130 37.9155388028971 1623 | "1622" 5131 24.6921951178178 1624 | "1623" 5132 32.4560929404786 1625 | "1624" 5135 37.2171323315109 1626 | "1625" 5137 21.2611118869864 1627 | "1626" 5138 99.435869340865 1628 | "1627" 5140 34.1536221684722 1629 | "1628" 5141 47.1977668256029 1630 | "1629" 5142 24.6320334001749 1631 | "1630" 5146 126.390401761597 1632 | "1631" 5147 28.8365206159924 1633 | "1632" 5148 34.7561735758105 1634 | "1633" 5150 31.0792368263845 1635 | "1634" 5153 30.1676485815318 1636 | "1635" 5154 41.05608870321 1637 | "1636" 5157 26.5468014716417 1638 | "1637" 5158 34.0468384609245 1639 | "1638" 5159 35.0401207049471 1640 | "1639" 5160 32.057660908305 1641 | "1640" 5162 154.531346933824 1642 | "1641" 5165 141.102602260573 1643 | "1642" 5166 31.5948865055596 1644 | "1643" 5167 30.9993766689215 1645 | "1644" 5169 36.1408391935668 1646 | "1645" 5170 30.3015121423872 1647 | "1646" 5171 47.6700035747249 1648 | "1647" 5175 43.3266788249454 1649 | "1648" 5176 25.4176348749439 1650 | "1649" 5177 34.6204910931001 1651 | "1650" 5178 25.6867106674258 1652 | "1651" 5184 150.590356374089 1653 | "1652" 5185 32.2347688219889 1654 | "1653" 5187 141.864961886138 1655 | "1654" 5193 60.1675776239009 1656 | "1655" 5194 34.6613530891163 1657 | "1656" 5195 32.0173131829726 1658 | "1657" 5196 126.451559551417 1659 | "1658" 5197 75.1714912382176 1660 | "1659" 5198 44.4974506088919 1661 | "1660" 5199 39.7819500250134 1662 | "1661" 5200 28.8711624667945 1663 | "1662" 5202 30.9961705869314 1664 | "1663" 5203 37.1984508458812 1665 | "1664" 5204 32.9015283900066 1666 | "1665" 5205 157.981858027492 1667 | "1666" 5206 144.702071824208 1668 | "1667" 5207 31.5803688545396 1669 | "1668" 5208 136.725363339181 1670 | "1669" 5209 16.673309000926 1671 | "1670" 5210 144.086253498932 1672 | "1671" 5212 26.4650436422513 1673 | "1672" 5213 39.8487657785981 1674 | "1673" 5214 33.8617836024145 1675 | "1674" 5218 28.6774756701922 1676 | "1675" 5219 26.1549747864119 1677 | "1676" 5222 18.2087113790529 1678 | "1677" 5224 130.990215299941 1679 | "1678" 5227 26.9804911644303 1680 | "1679" 5228 56.2575020832437 1681 | "1680" 5230 38.0952628286569 1682 | "1681" 5231 146.989885209963 1683 | "1682" 5234 28.1438263132577 1684 | "1683" 5235 32.6253822667938 1685 | "1684" 5236 32.4446273082568 1686 | "1685" 5237 78.82727098296 1687 | "1686" 5240 135.256783297874 1688 | "1687" 5241 149.482336685564 1689 | "1688" 5242 29.1347659918916 1690 | "1689" 5243 40.7056754828444 1691 | "1690" 5244 34.1349895351525 1692 | "1691" 5248 33.9245461403808 1693 | "1692" 5250 31.9173330195976 1694 | "1693" 5251 117.697490758988 1695 | "1694" 5252 126.310762686732 1696 | "1695" 5253 31.2519791329424 1697 | "1696" 5256 33.0813018108355 1698 | "1697" 5258 49.6710412904914 1699 | "1698" 5259 41.0752718133242 1700 | "1699" 5261 27.2166218880415 1701 | "1700" 5262 35.6281759047686 1702 | "1701" 5263 44.5192335281356 1703 | "1702" 5265 51.1886733630468 1704 | "1703" 5266 38.0050189316597 1705 | "1704" 5267 37.5722436219299 1706 | "1705" 5269 26.4171523164606 1707 | "1706" 5271 39.128325270862 1708 | "1707" 5272 47.3218029998973 1709 | "1708" 5273 17.2689321249192 1710 | "1709" 5275 126.81741540382 1711 | "1710" 5277 64.1715159954401 1712 | "1711" 5278 56.9779054419152 1713 | "1712" 5279 33.8475708544639 1714 | "1713" 5280 33.2905293674097 1715 | "1714" 5282 78.6015539329683 1716 | "1715" 5283 34.5918155979251 1717 | "1716" 5285 31.922556016259 1718 | "1717" 5287 36.5763467513764 1719 | "1718" 5288 34.1088880920255 1720 | "1719" 5289 33.6949447300636 1721 | "1720" 5290 27.1755463058542 1722 | "1721" 5292 60.4819099031293 1723 | "1722" 5294 26.0575524160272 1724 | "1723" 5295 21.6164826960086 1725 | "1724" 5296 21.6490836111208 1726 | "1725" 6001 22.6393082809677 1727 | "1726" 6002 67.3940904943392 1728 | "1727" 6005 3.09497178250364 1729 | "1728" 6007 30.5091285699096 1730 | "1729" 6008 -1.74949674262372 1731 | "1730" 6009 32.5809927119929 1732 | "1731" 6013 135.359918607763 1733 | "1732" 6014 3.95837029249608 1734 | "1733" 6015 28.7309721367288 1735 | "1734" 6016 0.674057331151509 1736 | "1735" 6017 121.295818893892 1737 | "1736" 6019 28.3588611400315 1738 | "1737" 6024 30.8944163983527 1739 | "1738" 6025 29.4732669867683 1740 | "1739" 6030 30.5482823715903 1741 | "1740" 6031 33.8475708544639 1742 | "1741" 6032 26.8038762326525 1743 | "1742" 6033 37.7386687950911 1744 | "1743" 6034 28.5573583210805 1745 | "1744" 6035 18.0708269683919 1746 | "1745" 6037 29.0987914145299 1747 | "1746" 6039 135.935038102652 1748 | "1747" 6041 41.8212522372442 1749 | "1748" 6043 19.9412524083126 1750 | "1749" 6044 27.5901770206748 1751 | "1750" 6045 -1.26624043137111 1752 | "1751" 6046 29.0987914145299 1753 | "1752" 6047 41.8107264681741 1754 | "1753" 6049 -5.73269254580467 1755 | "1754" 6051 24.353112170483 1756 | "1755" 6052 104.091679217926 1757 | "1756" 6053 30.1871902762732 1758 | "1757" 6054 3.50045438756324 1759 | "1758" 6056 41.3647353175597 1760 | "1759" 6058 28.3588611400315 1761 | "1760" 6059 31.9173330195976 1762 | "1761" 6061 31.8424887475663 1763 | "1762" 6062 30.1871902762732 1764 | "1763" 6063 29.8323723439804 1765 | "1764" 6064 28.3588611400315 1766 | "1765" 6065 27.5901770206748 1767 | "1766" 6066 31.58407455033 1768 | "1767" 6067 0.185159860104919 1769 | "1768" 6068 113.287263167726 1770 | "1769" 6069 31.9197523323871 1771 | "1770" 6072 133.959384946642 1772 | "1771" 6073 140.312728371991 1773 | "1772" 6075 85.5211365984646 1774 | "1773" 6076 30.1756869524264 1775 | "1774" 6080 16.6267896850477 1776 | "1775" 6082 25.5977502666929 1777 | "1776" 6083 39.8760744824206 1778 | "1777" 6084 26.4101472108763 1779 | "1778" 6085 5.77849577501212 1780 | "1779" 6088 29.7671241691506 1781 | "1780" 6094 3.50045438756324 1782 | "1781" 6097 31.9173330195976 1783 | "1782" 6100 155.552044350468 1784 | "1783" 6103 31.58407455033 1785 | "1784" 6104 23.800898223962 1786 | "1785" 6105 26.0121835259561 1787 | "1786" 6110 38.3848140197483 1788 | "1787" 6111 28.7309721367288 1789 | "1788" 6113 31.58407455033 1790 | "1789" 6115 24.353112170483 1791 | "1790" 6116 7.32204761040467 1792 | "1791" 6117 29.0987914145299 1793 | "1792" 6118 32.5809927119929 1794 | "1793" 6119 34.1515099791305 1795 | "1794" 6120 30.1803461688114 1796 | "1795" 6125 80.5311294668557 1797 | "1796" 6131 30.8944163983527 1798 | "1797" 6133 35.829147360586 1799 | "1798" 6134 119.77909162965 1800 | "1799" 6136 4.88042828759437 1801 | "1800" 6138 29.8323723439804 1802 | "1801" 6141 86.7405887116472 1803 | "1802" 6142 146.895884207338 1804 | "1803" 6143 134.467874948488 1805 | "1804" 6144 6.23709680907976 1806 | "1805" 6145 -2.37365717834848 1807 | "1806" 6146 1.14629529440431 1808 | "1807" 6147 23.0706652328223 1809 | "1808" 6148 26.8038762326525 1810 | "1809" 6151 -14.0170852483039 1811 | "1810" 6157 3.50045438756324 1812 | "1811" 6158 28.7309721367288 1813 | "1812" 6159 23.0706652328223 1814 | "1813" 6161 31.58407455033 1815 | "1814" 6163 20.5668007983215 1816 | "1815" 6164 33.5395535207436 1817 | "1816" 6168 30.8944163983527 1818 | "1817" 6170 28.7309721367288 1819 | "1818" 6173 29.4732669867683 1820 | "1819" 6175 5.77849577501212 1821 | "1820" 6178 27.7269353910584 1822 | "1821" 6179 136.091261749029 1823 | "1822" 6180 91.5175394350963 1824 | "1823" 6183 -1.26624043137111 1825 | "1824" 6184 30.5482823715903 1826 | "1825" 6185 -2.54403907898067 1827 | "1826" 6186 23.5108875322771 1828 | "1827" 6187 0.185159860104919 1829 | "1828" 6188 4.88042828759437 1830 | "1829" 6189 28.7309721367288 1831 | "1830" 6192 2.56325881403258 1832 | "1831" 6195 6.67954335038525 1833 | "1832" 6197 19.4826668281844 1834 | "1833" 6199 -17.2039555558465 1835 | "1834" 6200 30.8944163983527 1836 | "1835" 6202 -4.22613476699858 1837 | "1836" 6203 28.7309721367288 1838 | "1837" 6204 -4.22613476699858 1839 | "1838" 6206 35.1002889592659 1840 | "1839" 6207 3.02610540253454 1841 | "1840" 6209 20.7447039615959 1842 | "1841" 6211 -3.71782403932635 1843 | "1842" 6212 26.4101472108763 1844 | "1843" 6213 23.9340443285725 1845 | "1844" 6216 152.356930839225 1846 | "1845" 6218 23.9340443285725 1847 | "1846" 6221 36.2545717804579 1848 | "1847" 6222 36.9876636163672 1849 | "1848" 6224 -9.30513467001136 1850 | "1849" 6226 31.2362880096104 1851 | "1850" 6227 33.8475708544639 1852 | "1851" 6228 29.0987914145299 1853 | "1852" 6229 130.722758057698 1854 | "1853" 6231 155.435940972846 1855 | "1854" 6232 32.2463734311385 1856 | "1855" 6233 33.2179080441168 1857 | "1856" 6234 27.970988800188 1858 | "1857" 6236 110.003020631737 1859 | "1858" 6237 30.8944163983527 1860 | "1859" 6240 2.56325881403258 1861 | "1860" 6241 90.9587756702342 1862 | "1861" 6243 42.4669672513221 1863 | "1862" 6244 -8.7941939928905 1864 | "1863" 6250 27.5901770206748 1865 | "1864" 6251 31.58407455033 1866 | "1865" 6252 119.77909162965 1867 | "1866" 6253 28.3588611400315 1868 | "1867" 6255 28.7539529141699 1869 | "1868" 6256 4.88042828759437 1870 | "1869" 6257 20.3961192418175 1871 | "1870" 6258 34.8398673214426 1872 | "1871" 6259 26.4101472108763 1873 | "1872" 6260 27.2050909293599 1874 | "1873" 6264 139.903129933953 1875 | "1874" 6266 33.5395535207436 1876 | "1875" 6268 40.9526918825007 1877 | "1876" 6269 33.5395535207436 1878 | "1877" 6271 32.2463734311385 1879 | "1878" 6273 33.8475708544639 1880 | "1879" 6274 33.2719006609967 1881 | "1880" 6275 31.2362880096104 1882 | "1881" 6277 5.3307460779199 1883 | "1882" 6278 29.8323723439804 1884 | "1883" 6279 16.1287621763211 1885 | "1884" 6281 12.625846312256 1886 | "1885" 6282 21.751307372042 1887 | "1886" 6283 -1.74949674262372 1888 | "1887" 6284 141.30543572054 1889 | "1888" 6287 -0.29160371824223 1890 | "1889" 6288 33.0626080076053 1891 | "1890" 6289 8.86404889586117 1892 | "1891" 6291 88.1940760526789 1893 | "1892" 6292 6.23709680907976 1894 | "1893" 6293 -1.74949674262372 1895 | "1894" 6294 21.3079984290616 1896 | "1895" 6297 46.6877443400556 1897 | "1896" 6298 25.7693798678728 1898 | "1897" 6300 99.4686168148618 1899 | "1898" 6303 121.898758966017 1900 | "1899" 6304 32.5809927119929 1901 | "1900" 6306 25.1912468254211 1902 | "1901" 6307 16.6267896850477 1903 | "1902" 6308 31.2362880096104 1904 | "1903" 6310 29.8323723439804 1905 | "1904" 6312 35.1904189675967 1906 | "1905" 6313 9.30328130366808 1907 | "1906" 6314 22.2039669991765 1908 | "1907" 6315 106.393849627651 1909 | "1908" 6316 30.1871902762732 1910 | "1909" 6318 1.61625318097941 1911 | "1910" 6319 26.4101472108763 1912 | "1911" 6320 5.3307460779199 1913 | "1912" 6321 22.2039669991765 1914 | "1913" 6323 29.8323723439804 1915 | "1914" 6326 40.6556908892829 1916 | "1915" 6327 28.7309721367288 1917 | "1916" 6328 4.41380995005477 1918 | "1917" 6329 84.2190761111589 1919 | "1918" 6330 15.1521447713305 1920 | "1919" 6333 23.9340443285725 1921 | "1920" 6334 87.9902142592311 1922 | "1921" 6335 34.1515099791305 1923 | "1922" 6336 96.5103774498473 1924 | "1923" 6341 138.864596578045 1925 | "1924" 6343 -8.7941939928905 1926 | "1925" 6345 141.799326295634 1927 | "1926" 6346 -6.73609105171796 1928 | "1927" 6347 150.948334574641 1929 | "1928" 6348 5.77849577501212 1930 | "1929" 6349 -4.72142095869469 1931 | "1930" 6350 20.3961192418175 1932 | "1931" 6351 5.3307460779199 1933 | "1932" 6352 -7.76173670507947 1934 | "1933" 6354 -5.73269254580467 1935 | "1934" 6356 90.9587756702342 1936 | "1935" 6357 31.2362880096104 1937 | "1936" 6358 26.4101472108763 1938 | "1937" 6359 -0.29160371824223 1939 | "1938" 6360 21.3079984290616 1940 | "1939" 6362 33.8475708544639 1941 | "1940" 6364 45.5147687185795 1942 | "1941" 6367 -9.81762535274936 1943 | "1942" 6369 37.7086008455174 1944 | "1943" 6370 91.7633668049271 1945 | "1944" 6371 21.3079984290616 1946 | "1945" 6372 28.3588611400315 1947 | "1946" 6373 89.4794214741403 1948 | "1947" 6374 33.5395535207436 1949 | "1948" 6375 30.8944163983527 1950 | "1949" 6376 40.6556908892829 1951 | "1950" 6377 127.152120773732 1952 | "1951" 6378 41.945719172265 1953 | "1952" 6381 4.88042828759437 1954 | "1953" 6384 -0.770544782465484 1955 | "1954" 6385 3.95837029249608 1956 | "1955" 6386 24.353112170483 1957 | "1956" 6389 117.206101716596 1958 | "1957" 6393 35.3444050508682 1959 | "1958" 6394 -1.74949674262372 1960 | "1959" 6396 29.8323723439804 1961 | "1960" 6399 30.1871902762732 1962 | "1961" 6400 26.0121835259561 1963 | "1962" 6401 29.0987914145299 1964 | "1963" 6402 116.50306553449 1965 | "1964" 6404 26.0121835259561 1966 | "1965" 6405 26.0121835259561 1967 | "1966" 6408 33.5395535207436 1968 | "1967" 6411 4.11801790693905 1969 | "1968" 6412 30.8944163983527 1970 | "1969" 6413 22.6393082809677 1971 | "1970" 6414 39.404913147844 1972 | "1971" 6415 23.0706652328223 1973 | "1972" 6416 4.88042828759437 1974 | "1973" 6417 -7.25569891437069 1975 | "1974" 6418 3.95837029249608 1976 | "1975" 6419 -0.770544782465484 1977 | "1976" 6421 35.8680065520653 1978 | "1977" 6422 31.58407455033 1979 | "1978" 6423 -23.1896280153149 1980 | "1979" 6424 30.1871902762732 1981 | "1980" 6426 41.8212522372442 1982 | "1981" 6427 26.1045276548154 1983 | "1982" 6428 87.0335847334043 1984 | "1983" 6429 2.56325881403258 1985 | "1984" 6432 39.0710628096063 1986 | "1985" 6433 139.27137027936 1987 | "1986" 6436 31.9173330195976 1988 | "1987" 6437 1.14629529440431 1989 | "1988" 6439 3.02610540253454 1990 | "1989" 6441 90.2059728791171 1991 | "1990" 6442 24.7805706611631 1992 | "1991" 6443 1.14629529440431 1993 | "1992" 6446 37.7086008455174 1994 | "1993" 6447 25.5977502666929 1995 | "1994" 6448 -1.74949674262372 1996 | "1995" 6449 33.2179080441168 1997 | "1996" 6450 135.399512369963 1998 | "1997" 6452 31.2362880096104 1999 | "1998" 6454 -0.29160371824223 2000 | "1999" 6455 27.970988800188 2001 | "2000" 6456 31.2362880096104 2002 | "2001" 6457 31.9173330195976 2003 | "2002" 6459 3.50045438756324 2004 | "2003" 6462 29.4732669867683 2005 | "2004" 6463 26.5988890988924 2006 | "2005" 6465 -4.72142095869469 2007 | "2006" 6467 119.77909162965 2008 | "2007" 6468 2.09803227219746 2009 | "2008" 6470 32.2463734311385 2010 | "2009" 6471 17.583389215461 2011 | "2010" 6472 -0.770544782465484 2012 | "2011" 6473 -12.9548976415311 2013 | "2012" 6474 34.2975706163627 2014 | "2013" 6476 24.7805706611631 2015 | "2014" 6479 107.568021420469 2016 | "2015" 6480 98.0860082044281 2017 | "2016" 6483 92.6521693775046 2018 | "2017" 6485 2.09803227219746 2019 | "2018" 6487 10.5768081401625 2020 | "2019" 6488 0.674057331151509 2021 | "2020" 6492 6.23709680907976 2022 | "2021" 6493 31.2362880096104 2023 | "2022" 6494 6.23709680907976 2024 | "2023" 6495 30.5482823715903 2025 | "2024" 6496 21.3079984290616 2026 | "2025" 6497 42.1060146697128 2027 | "2026" 6498 38.7414449106603 2028 | "2027" 6499 -11.3797527731004 2029 | "2028" 6500 33.8475708544639 2030 | "2029" 6502 29.4732669867683 2031 | "2030" 6503 39.404913147844 2032 | "2031" 6504 -4.22613476699858 2033 | "2032" 6509 -10.8627674695139 2034 | "2033" 6510 32.5809927119929 2035 | "2034" 6512 87.5886341734181 2036 | "2035" 6513 20.8608291843275 2037 | "2036" 6514 25.1912468254211 2038 | "2037" 6515 23.5108875322771 2039 | "2038" 6516 19.9412524083126 2040 | "2039" 6517 29.0987914145299 2041 | "2040" 6518 31.9173330195976 2042 | "2041" 6519 33.2179080441168 2043 | "2042" 6521 2.56325881403258 2044 | "2043" 6522 21.751307372042 2045 | "2044" 6524 -2.73699390298397 2046 | "2045" 6528 1.61625318097941 2047 | "2046" 6529 104.113833402695 2048 | "2047" 6533 84.2190761111589 2049 | "2048" 6534 39.7234027109161 2050 | "2049" 6535 125.508050695395 2051 | "2050" 6541 37.7086008455174 2052 | "2051" 6542 6.67954335038525 2053 | "2052" 6543 144.702071824208 2054 | "2053" 6544 40.0364811108555 2055 | "2054" 6545 165.253176833091 2056 | "2055" 6546 22.6393082809677 2057 | "2056" 6547 19.0063482631229 2058 | "2057" 6548 -3.71782403932635 2059 | "2058" 6549 149.972689296675 2060 | "2059" 6550 94.5752198594424 2061 | "2060" 6551 -8.26942690142106 2062 | "2061" 6559 -2.23482608892804 2063 | "2062" 6563 18.5403685609412 2064 | "2063" 6564 27.5901770206748 2065 | "2064" 6566 4.41380995005477 2066 | "2065" 6570 1.14629529440431 2067 | "2066" 6572 31.2362880096104 2068 | "2067" 6573 141.159170949358 2069 | "2068" 6574 -8.7941939928905 2070 | "2069" 6575 -6.23351352969349 2071 | "2070" 6577 0.185159860104919 2072 | "2071" 6578 26.8038762326525 2073 | "2072" 6580 18.0708269683919 2074 | "2073" 6581 29.4732669867683 2075 | "2074" 6582 -5.73269254580467 2076 | "2075" 6586 95.6814190967672 2077 | "2076" 6589 -4.72142095869469 2078 | "2077" 6591 41.8212522372442 2079 | "2078" 6592 141.159170949358 2080 | "2079" 6593 85.0706381122293 2081 | "2080" 6597 121.295818893892 2082 | "2081" 6600 161.598853182898 2083 | "2082" 6601 135.940939090738 2084 | "2083" 6602 160.526859826979 2085 | "2084" 6605 45.7305081142812 2086 | "2085" 6606 124.179487866936 2087 | "2086" 6610 109.411676433618 2088 | "2087" 6611 89.4794214741403 2089 | "2088" 6612 116.503065534489 2090 | "2089" 6615 133.473953927097 2091 | "2090" 6619 114.800025362236 2092 | "2091" 6621 27.5901770206748 2093 | "2092" 6622 29.965258377898 2094 | "2093" 6624 28.7309721367288 2095 | "2094" 6629 29.0987914145299 2096 | "2095" 6632 153.244635979999 2097 | "2096" 6634 141.210857188579 2098 | "2097" 6635 38.0551273275982 2099 | "2098" 6640 124.179487866936 2100 | "2099" 6641 114.800025362236 2101 | "2100" 6643 99.4686168148618 2102 | "2101" 6644 17.1067855588586 2103 | "2102" 6648 148.466145692097 2104 | "2103" 6651 37.3564317170851 2105 | "2104" 6652 38.0551273275982 2106 | "2105" 6653 21.3079984290616 2107 | "2106" 6654 109.411676433618 2108 | "2107" 6655 162.288065261563 2109 | "2108" 6657 102.44183224541 2110 | "2109" 6658 136.636948898746 2111 | "2110" 6660 146.895884207338 2112 | "2111" 6661 152.356930839225 2113 | "2112" 6668 121.295818893892 2114 | "2113" 6672 37.7086008455174 2115 | "2114" 6677 36.623968668927 2116 | "2115" 6679 20.3212658712265 2117 | "2116" 6681 82.3994092493654 2118 | "2117" 6683 155.016035457631 2119 | "2118" 6686 114.800025362236 2120 | "2119" 6687 144.138200614712 2121 | "2120" 6688 90.9587756702342 2122 | "2121" 6690 166.185607572572 2123 | "2122" 6695 129.203638123744 2124 | "2123" 6697 42.3773957861534 2125 | "2124" 6702 22.489557038663 2126 | "2125" 6703 87.5886341734181 2127 | "2126" 6704 26.0121835259561 2128 | "2127" 6705 135.940939090738 2129 | "2128" 6713 139.27137027936 2130 | "2129" 6721 140.544964022013 2131 | "2130" 6722 26.0121835259561 2132 | -------------------------------------------------------------------------------- /data/adas_mmse_data.RData: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/larslau/progmod/d374fb34a87d469891ab675f2c7294676e62dec9/data/adas_mmse_data.RData -------------------------------------------------------------------------------- /man/ADNI_disease_stage_bl.Rd: -------------------------------------------------------------------------------- 1 | % Generated by roxygen2: do not edit by hand 2 | % Please edit documentation in R/data.R 3 | \docType{data} 4 | \name{ADNI_disease_stage_bl} 5 | \alias{ADNI_disease_stage_bl} 6 | \title{Predicted disease stage at baseline for ADNI participants 7 | ?AD 8 | A dataset containing the predicted disease stage (disease month) for 9 | individuals in ADNI based on their longitudinal 13-item ADAS-cog trajectories 10 | Data are based on a data cut of ADAS-cog scores from July 2019.} 11 | \format{ 12 | A data frame with 2130 rows and 3 variables: 13 | \describe{ 14 | \item{RID}{ADNI roster ID} 15 | \item{pred_AD_month}{Predicted disease time (in months relative to the average cognitive state of the cognitively normal group)} 16 | } 17 | } 18 | \usage{ 19 | ADNI_disease_stage_bl 20 | } 21 | \description{ 22 | Predicted disease stage at baseline for ADNI participants 23 | ?AD 24 | A dataset containing the predicted disease stage (disease month) for 25 | individuals in ADNI based on their longitudinal 13-item ADAS-cog trajectories 26 | Data are based on a data cut of ADAS-cog scores from July 2019. 27 | } 28 | \keyword{datasets} 29 | -------------------------------------------------------------------------------- /man/GLF.Rd: -------------------------------------------------------------------------------- 1 | % Generated by roxygen2: do not edit by hand 2 | % Please edit documentation in R/progmod.R 3 | \name{GLF} 4 | \alias{GLF} 5 | \title{Overparametrized generalized logistic function.} 6 | \usage{ 7 | GLF(t, A, K, B, v, s, c) 8 | } 9 | \arguments{ 10 | \item{t}{Time variable} 11 | 12 | \item{A}{Lower asymptote parameter} 13 | 14 | \item{K}{Upper asymptote parameter} 15 | 16 | \item{B}{Time-scaling parameter} 17 | 18 | \item{v}{Asymmetry parameter} 19 | 20 | \item{s}{Time-shift parameter} 21 | 22 | \item{c}{Intercept parameter, should only be used for random effects} 23 | } 24 | \value{ 25 | The function values at the supplied time values along with a 26 | "gradient" attribute. 27 | } 28 | \description{ 29 | Overparametrized generalized logistic function. 30 | } 31 | \examples{ 32 | GLF(t = c(0, 1), A = 30, K = 0, B = 1, s = 0, v = 1, c = 0) 33 | } 34 | -------------------------------------------------------------------------------- /man/adas_mmse_data.Rd: -------------------------------------------------------------------------------- 1 | % Generated by roxygen2: do not edit by hand 2 | % Please edit documentation in R/data.R 3 | \docType{data} 4 | \name{adas_mmse_data} 5 | \alias{adas_mmse_data} 6 | \title{Simulated longitudinal ADAS-cog and MMSE scores} 7 | \format{ 8 | A data frame with 9378 rows and 7 variables: 9 | \describe{ 10 | \item{subject_id}{Subject ID} 11 | \item{Month_bl}{Months since baseline} 12 | \item{ADAS13}{Simulated 13-item ADAS-cog score} 13 | \item{MMSE}{Simulated MMSE score} 14 | \item{CN}{Was subject cognitively normal at baseline (0/1)?} 15 | \item{MCI}{Was subject mild cognitively impaired at baseline (0/1)?} 16 | \item{DEM}{Did subject have dementia at baseline (0/1)?} 17 | \item{blstatus}{Patient status at baseline (Cognitively normal/MCI/Dementia)} 18 | } 19 | } 20 | \usage{ 21 | adas_mmse_data 22 | } 23 | \description{ 24 | A dataset containing longitudinal simulated ADAS-cog and MMSE scores 25 | for a large number of individuals that are cognitively normal, have mild 26 | congnitive impairment (MCI) or dementia. 27 | Data is simulated based on ADNI data. 28 | } 29 | \keyword{datasets} 30 | -------------------------------------------------------------------------------- /man/exp_model.Rd: -------------------------------------------------------------------------------- 1 | % Generated by roxygen2: do not edit by hand 2 | % Please edit documentation in R/progmod.R 3 | \name{exp_model} 4 | \alias{exp_model} 5 | \title{Overparametrized exponential function.} 6 | \usage{ 7 | exp_model(t, l, s, g, v) 8 | } 9 | \arguments{ 10 | \item{t}{Time variable} 11 | 12 | \item{l}{Scale parameter for the exponential function} 13 | 14 | \item{s}{Time-shift parameter} 15 | 16 | \item{g}{Time-scaling parameter} 17 | 18 | \item{v}{Intercept parameter} 19 | } 20 | \value{ 21 | The function values at the supplied time values along with a 22 | "gradient" attribute. 23 | } 24 | \description{ 25 | Overparametrized exponential function. 26 | } 27 | \examples{ 28 | exp_model(t = c(0, 1), l = 1, s = 0, g = 0, v = 0) 29 | } 30 | -------------------------------------------------------------------------------- /man/progmod.Rd: -------------------------------------------------------------------------------- 1 | % Generated by roxygen2: do not edit by hand 2 | % Please edit documentation in R/progmod.R 3 | \name{progmod} 4 | \alias{progmod} 5 | \title{Fit nonlinear mixed-effects disease progression models} 6 | \usage{ 7 | progmod( 8 | model, 9 | data, 10 | fixed, 11 | random, 12 | groups, 13 | start, 14 | covariance = NULL, 15 | weights = NULL, 16 | method = c("ML", "REML"), 17 | control = NULL, 18 | verbose = FALSE 19 | ) 20 | } 21 | \arguments{ 22 | \item{model}{A nonlinear model formula, with the response on the left of a ~ 23 | operator and an expression involving parameters and covariates on the right, 24 | or an nlsList object. If data is given, all names used in the formula should 25 | be defined as parameters or variables in the data frame. The method function 26 | nlme.nlsList is documented separately. See \code{\link[nlme]{nlme}} for details.} 27 | 28 | \item{data}{An optional data frame containing the variables named in model, 29 | fixed, random, correlation, weights, subset, and naPattern. 30 | By default the variables are taken from the environment.} 31 | 32 | \item{fixed}{A two-sided linear formula of the form \code{f1+...+fn~x1+...+xm}, 33 | or a list of two-sided formulas of the form \code{f1~x1+...+xm}, with possibly 34 | different models for different parameters. The \code{f1,...,fn} are the names of 35 | parameters included on the right hand side of model and the \code{x1+...+xm} 36 | expressions define linear models for these parameters (when the left hand 37 | side of the formula contains several parameters, they all are assumed to 38 | follow the same linear model, described by the right hand side expression). 39 | A \code{1} on the right hand side of the formula(s) indicates a single fixed effects 40 | for the corresponding parameter(s).} 41 | 42 | \item{random}{A two-sided formula of the form 43 | \code{r1+...+rn~x1+...+xm | g1/.../gQ}, with \code{r1,...,rn} naming parameters included on the 44 | right hand side of model, \code{x1+...+xm} specifying the random-effects model for these 45 | parameters and \code{g1/.../gQ} the grouping structure (\code{Q} may be equal to \code{1}, in which 46 | case no / is required). The random effects formula will be repeated for all 47 | levels of grouping, in the case of multiple levels of grouping. Explicit specification of the 48 | covariance structure between random effects (e.g. using \code{pdMat}) or different formulas for 49 | different random effects can be specified. See \code{\link[nlme]{nlme}} for details. 50 | \strong{Note:} Only simple two-sided formulas are currently supported when a covariance 51 | structure is given (see below).} 52 | 53 | \item{groups}{an optional one-sided formula of the form \code{~ g1} specifying the partitions 54 | of the data over which the random effects vary. This is needed when different formulas are specified for 55 | different random effects.} 56 | 57 | \item{start}{A numeric vector or list of initial estimates for the fixed effects and random effects. 58 | If declared as a numeric vector, it is converted internally to a list with a single component fixed, given by the vector. 59 | The \code{fixed} component is required, unless the model function inherits from 60 | class \code{selfStart}, in which case initial values will be derived 61 | from a call to \code{nlsList}. An optional \code{random} component is used to specify 62 | initial values for the random effects and should consist of a matrix, 63 | or a list of matrices with length equal to the number of grouping levels. 64 | Each matrix should have as many rows as the number of groups at the 65 | corresponding level and as many columns as the number of random effects in that level.} 66 | 67 | \item{covariance}{An optional \code{\link[nlme]{corStruct}} object describing the within-group 68 | covariance structure. In addition to those available in \code{nlme}, 69 | \code{\link{covBM}} can be used to incorporate a Brownian motion component, \code{\link{covFracBM}} 70 | can be used to incorporate a fractional Brownian motion component and \code{\link{covIOU}} 71 | can be used to incorporate an integrated Ornstein-Uhlenbeck process in relation to 72 | a continuous variable.} 73 | 74 | \item{weights}{an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure. 75 | This argument is primarily used for multivariate modeling of several outcomes where different standard errors are to be expected. 76 | If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights. 77 | See the documentation on varClasses for a description of the available varFunc classes. 78 | Defaults to NULL, corresponding to homoscedastic within-group errors. \strong{Note:} weighting is not currently supported 79 | when a covariance structure is given.} 80 | 81 | \item{method}{a character string. If "\code{REML}" the model is fit by maximizing the restricted log-likelihood. 82 | If "\code{ML}" the log-likelihood is maximized. Defaults to "\code{ML}".} 83 | 84 | \item{control}{A list of control parameters for the estimation algorithm. See \code{\link[nlmeControl]{nlmeControl}}.} 85 | 86 | \item{verbose}{If \code{TRUE} information on the evolution of the iterative 87 | algorithm is printed. Default is \code{FALSE}.} 88 | } 89 | \value{ 90 | An object of class "nlme" representing the nonlinear mixed effects model fit. 91 | } 92 | \description{ 93 | This function fits disease-progression models to longitudinal data. 94 | The function fits nonlinear mixed-effects models by calling 95 | \code{\link[nlme]{nlme}} or \code{\link[nlmeBM]{nlmeBM}} depending on the 96 | model specification. 97 | } 98 | \examples{ 99 | 100 | # 101 | # Fit exponential disease progression model to simulated ADAS-cog scores 102 | # 103 | 104 | # Plot data 105 | if (require(ggplot2)) { 106 | ggplot(adas_mmse_data, aes(x = Month_bl, y = ADAS13)) + 107 | geom_line(aes(group = subject_id, color = blstatus)) + 108 | ylim(c(85, 0)) + 109 | xlab('Months since baseline') 110 | } 111 | 112 | # Fit exponential model with random shift and intercept 113 | fixed_start_coef <- c(0.5, 70, 150, 3.5, 10) 114 | ADAS_progmod <- progmod(ADAS13 ~ exp_model(Month_bl, l, s, g, v), 115 | data = subset(adas_mmse_data, !is.na(ADAS13)), 116 | fixed = list(l ~ 1, 117 | s ~ MCI + DEM - 1, 118 | g ~ 1, 119 | v ~ 1), 120 | random = s + v ~ 1 | subject_id, 121 | start = fixed_start_coef, 122 | covariance = NULL) 123 | 124 | # Predict from model and visualize results 125 | adas_mmse_data$fixed_shift_adas <- with(adas_mmse_data, 126 | MCI * fixed.effects(ADAS_progmod)[2] + 127 | DEM * fixed.effects(ADAS_progmod)[3]) 128 | pred_rand <- random.effects(ADAS_progmod) 129 | adas_mmse_data$random_shift_adas <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)'] 130 | 131 | if (require(ggplot2)) { 132 | ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas, y = ADAS13)) + 133 | geom_line(aes(group = subject_id, color = blstatus)) + 134 | ylim(c(85, 0)) + 135 | xlab('Months since baseline') 136 | } 137 | 138 | 139 | if (require(ggplot2)) { 140 | ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas + random_shift_adas, y = ADAS13)) + 141 | geom_line(aes(group = subject_id, color = blstatus)) + 142 | ylim(c(85, 0)) + 143 | xlab('Months since baseline') 144 | } 145 | 146 | # 147 | # Fit generalized logistic disease progression model to simulated MMSE scores 148 | # 149 | 150 | # Plot data 151 | 152 | if (require(ggplot2)) { 153 | ggplot(adas_mmse_data, aes(x = Month_bl, y = MMSE)) + 154 | geom_line(aes(group = subject_id, color = blstatus)) + 155 | ylim(c(0, 30)) + 156 | xlab('Months since baseline') 157 | } 158 | 159 | # Fit generalized logistic model with range [30, 0] and a random time shift 160 | fixed_start_coef <- c(B = 0.025, 161 | v = 1.4, 162 | `s.(Intercept)` = -100, 163 | s.MCI = 26, 164 | s.DEM = 75) 165 | 166 | MMSE_progmod_glf <- progmod(MMSE ~ GLF(Month_bl, A = 30, K = 0, B, v, s, c = 0), 167 | data = subset(adas_mmse_data, !is.na(MMSE)), 168 | fixed = list(B ~ 1, 169 | v ~ 1, 170 | s ~ MCI + DEM + 1), 171 | random = s ~ 1 | subject_id, 172 | start = fixed_start_coef, 173 | covariance = NULL) 174 | 175 | # Predict from model and visualize results 176 | adas_mmse_data$fixed_shift_mmse <- with(adas_mmse_data, 177 | fixed.effects(MMSE_progmod_glf)[3] + 178 | MCI * fixed.effects(MMSE_progmod_glf)[4] + 179 | DEM * fixed.effects(MMSE_progmod_glf)[5]) 180 | pred_rand <- random.effects(MMSE_progmod_glf) 181 | adas_mmse_data$random_shift_mmse <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)'] 182 | 183 | 184 | 185 | if (require(ggplot2)) { 186 | ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_mmse + random_shift_mmse, y = MMSE)) + 187 | geom_line(aes(group = subject_id, color = blstatus)) + 188 | xlab('Months since baseline') 189 | } 190 | 191 | # 192 | 193 | # Stack data to long format 194 | tmp1 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'ADAS13')] 195 | names(tmp1)[6] <- 'value' 196 | tmp1$scale <- 'ADAS13' 197 | 198 | tmp2 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'MMSE')] 199 | names(tmp2)[6] <- 'value' 200 | tmp2$scale <- 'MMSE' 201 | 202 | # Long data 203 | adas_mmse_data_long <- na.omit(rbind(tmp1, tmp2)) 204 | adas_mmse_data_long$scale <- factor(adas_mmse_data_long$scale) 205 | 206 | # Remove temporary files 207 | rm(tmp1, tmp2) 208 | 209 | # Fit multivariate exponential model 210 | fixed_start_coef <- c(l.scaleADAS13 = 0.5, 211 | l.scaleMMSE = -0.1, 212 | s.MCI = 70, 213 | s.DEM = 150, 214 | g.scaleADAS13 = 3.5, 215 | g.scaleMMSE = 3, 216 | v.scaleADAS13 = 10, 217 | v.scaleMMSE = 30) 218 | 219 | multi_progmod_glf <- progmod(value ~ exp_model(Month_bl, l, s, g, v), 220 | data = adas_mmse_data_long, 221 | fixed = list(l ~ scale + 0, 222 | s ~ MCI + DEM + 0, 223 | g ~ scale + 0, 224 | v ~ scale + 0), 225 | random = list(s ~ 1, 226 | v ~ scale), 227 | groups = ~ subject_id, 228 | start = fixed_start_coef, 229 | weights = varIdent(form = ~ 1 | scale)) 230 | 231 | # Predict from model and compare to univariate models 232 | adas_mmse_data$fixed_shift_multi <- with(adas_mmse_data, 233 | MCI * fixed.effects(multi_progmod_glf)[3] + 234 | DEM * fixed.effects(multi_progmod_glf)[4]) 235 | pred_rand <- random.effects(multi_progmod_glf) 236 | adas_mmse_data$random_shift_multi <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)'] 237 | 238 | 239 | # Correlations between predicted disease months 240 | with(adas_mmse_data, cor(cbind(fixed_shift_adas + random_shift_adas, 241 | fixed_shift_mmse + random_shift_mmse, 242 | fixed_shift_multi + random_shift_multi), method = 'spearman')) 243 | 244 | 245 | 246 | 247 | } 248 | -------------------------------------------------------------------------------- /man/readme/adas_progression.gif: -------------------------------------------------------------------------------- https://raw.githubusercontent.com/larslau/progmod/d374fb34a87d469891ab675f2c7294676e62dec9/man/readme/adas_progression.gif --------------------------------------------------------------------------------