├── DESCRIPTION
├── NAMESPACE
├── R
├── data.R
└── progmod.R
├── README.md
├── data
├── ADNI_disease_stage_bl.RData
├── ADNI_disease_stage_bl.txt
└── adas_mmse_data.RData
└── man
├── ADNI_disease_stage_bl.Rd
├── GLF.Rd
├── adas_mmse_data.Rd
├── exp_model.Rd
├── progmod.Rd
└── readme
└── adas_progression.gif
/DESCRIPTION:
--------------------------------------------------------------------------------
1 | Package: progmod
2 | Type: Package
3 | Title: Disease progression modeling based on nonlinear mixed effects modeling
4 | Version: 0.1.0
5 | Authors@R: person("Lars Lau", "Raket", email = "progmod@larslau.dk",
6 | role = c("aut", "cre"))
7 | Description: Estimates population-level disease progression patterns
8 | based on aligning short-term longitudinal observed patterns.
9 | The model takes the form of a nonlinear mixed effect model and estimation
10 | is done using maximum likelihood estimation.
11 | Depends:
12 | R (>= 3.5.0),
13 | covBM,
14 | nlme,
15 | License: GPL-3
16 | Encoding: UTF-8
17 | LazyData: true
18 | Suggests:
19 | ggplot2
20 | RoxygenNote: 7.1.1
21 |
--------------------------------------------------------------------------------
/NAMESPACE:
--------------------------------------------------------------------------------
1 | # Generated by roxygen2: do not edit by hand
2 |
3 | export(GLF)
4 | export(exp_model)
5 | export(progmod)
6 | import(covBM)
7 | import(nlme)
8 |
--------------------------------------------------------------------------------
/R/data.R:
--------------------------------------------------------------------------------
1 | #' Simulated longitudinal ADAS-cog and MMSE scores
2 | #'
3 | #' A dataset containing longitudinal simulated ADAS-cog and MMSE scores
4 | #' for a large number of individuals that are cognitively normal, have mild
5 | #' congnitive impairment (MCI) or dementia.
6 | #' Data is simulated based on ADNI data.
7 | #'
8 | #' @format A data frame with 9378 rows and 7 variables:
9 | #' \describe{
10 | #' \item{subject_id}{Subject ID}
11 | #' \item{Month_bl}{Months since baseline}
12 | #' \item{ADAS13}{Simulated 13-item ADAS-cog score}
13 | #' \item{MMSE}{Simulated MMSE score}
14 | #' \item{CN}{Was subject cognitively normal at baseline (0/1)?}
15 | #' \item{MCI}{Was subject mild cognitively impaired at baseline (0/1)?}
16 | #' \item{DEM}{Did subject have dementia at baseline (0/1)?}
17 | #' \item{blstatus}{Patient status at baseline (Cognitively normal/MCI/Dementia)}
18 | #' }
19 | "adas_mmse_data"
20 |
21 |
22 | #' Predicted disease stage at baseline for ADNI participants
23 | #'?AD
24 | #' A dataset containing the predicted disease stage (disease month) for
25 | #' individuals in ADNI based on their longitudinal 13-item ADAS-cog trajectories
26 | #' Data are based on a data cut of ADAS-cog scores from July 2019.
27 | #'
28 | #' @format A data frame with 2130 rows and 3 variables:
29 | #' \describe{
30 | #' \item{RID}{ADNI roster ID}
31 | #' \item{pred_AD_month}{Predicted disease time (in months relative to the average cognitive state of the cognitively normal group)}
32 | #' }
33 | "ADNI_disease_stage_bl"
34 |
35 |
--------------------------------------------------------------------------------
/R/progmod.R:
--------------------------------------------------------------------------------
1 | #' Overparametrized exponential function.
2 | #'
3 | #' @param t Time variable
4 | #' @param l Scale parameter for the exponential function
5 | #' @param s Time-shift parameter
6 | #' @param g Time-scaling parameter
7 | #' @param v Intercept parameter
8 | #' @return The function values at the supplied time values along with a
9 | #' "gradient" attribute.
10 | #' @examples
11 | #' exp_model(t = c(0, 1), l = 1, s = 0, g = 0, v = 0)
12 | #' @export
13 |
14 | exp_model <- deriv(
15 | expression(l * exp((t + s) / exp(g)) + v),
16 | namevec = c('l', 's', 'g', 'v'),
17 | function.arg = c('t', 'l', 's', 'g', 'v'))
18 |
19 | #' Overparametrized generalized logistic function.
20 | #'
21 | #' @param t Time variable
22 | #' @param A Lower asymptote parameter
23 | #' @param K Upper asymptote parameter
24 | #' @param B Time-scaling parameter
25 | #' @param s Time-shift parameter
26 | #' @param v Asymmetry parameter
27 | #' @param c Intercept parameter, should only be used for random effects
28 | #' @return The function values at the supplied time values along with a
29 | #' "gradient" attribute.
30 | #' @examples
31 | #' GLF(t = c(0, 1), A = 30, K = 0, B = 1, s = 0, v = 1, c = 0)
32 | #' @export
33 |
34 | GLF <- deriv(
35 | expression(A + (K - A) / ((1 + exp(-B * (t + s)))^(v)) + c),
36 | namevec = c('A', 'K', 'B', 'v', 's', 'c'),
37 | function.arg = c('t', 'A', 'K', 'B', 'v', 's', 'c'))
38 |
39 |
40 |
41 | #' Fit nonlinear mixed-effects disease progression models
42 | #'
43 | #' This function fits disease-progression models to longitudinal data.
44 | #' The function fits nonlinear mixed-effects models by calling
45 | #' \code{\link[nlme]{nlme}} or \code{\link[nlmeBM]{nlmeBM}} depending on the
46 | #' model specification.
47 | #' @param model A nonlinear model formula, with the response on the left of a ~
48 | #' operator and an expression involving parameters and covariates on the right,
49 | #' or an nlsList object. If data is given, all names used in the formula should
50 | #' be defined as parameters or variables in the data frame. The method function
51 | #' nlme.nlsList is documented separately. See \code{\link[nlme]{nlme}} for details.
52 | #' @param data An optional data frame containing the variables named in model,
53 | #' fixed, random, correlation, weights, subset, and naPattern.
54 | #' By default the variables are taken from the environment.
55 | #' @param fixed A two-sided linear formula of the form \code{f1+...+fn~x1+...+xm},
56 | #' or a list of two-sided formulas of the form \code{f1~x1+...+xm}, with possibly
57 | #' different models for different parameters. The \code{f1,...,fn} are the names of
58 | #' parameters included on the right hand side of model and the \code{x1+...+xm}
59 | #' expressions define linear models for these parameters (when the left hand
60 | #' side of the formula contains several parameters, they all are assumed to
61 | #' follow the same linear model, described by the right hand side expression).
62 | #' A \code{1} on the right hand side of the formula(s) indicates a single fixed effects
63 | #' for the corresponding parameter(s).
64 | #' @param random A two-sided formula of the form
65 | #' \code{r1+...+rn~x1+...+xm | g1/.../gQ}, with \code{r1,...,rn} naming parameters included on the
66 | #' right hand side of model, \code{x1+...+xm} specifying the random-effects model for these
67 | #' parameters and \code{g1/.../gQ} the grouping structure (\code{Q} may be equal to \code{1}, in which
68 | #' case no / is required). The random effects formula will be repeated for all
69 | #' levels of grouping, in the case of multiple levels of grouping. Explicit specification of the
70 | #' covariance structure between random effects (e.g. using \code{pdMat}) or different formulas for
71 | #' different random effects can be specified. See \code{\link[nlme]{nlme}} for details.
72 | #' \strong{Note:} Only simple two-sided formulas are currently supported when a covariance
73 | #' structure is given (see below).
74 | #' @param groups an optional one-sided formula of the form \code{~ g1} specifying the partitions
75 | #' of the data over which the random effects vary. This is needed when different formulas are specified for
76 | #' different random effects.
77 | #' @param start A numeric vector or list of initial estimates for the fixed effects and random effects.
78 | #' If declared as a numeric vector, it is converted internally to a list with a single component fixed, given by the vector.
79 | #' The \code{fixed} component is required, unless the model function inherits from
80 | #' class \code{selfStart}, in which case initial values will be derived
81 | #' from a call to \code{nlsList}. An optional \code{random} component is used to specify
82 | #' initial values for the random effects and should consist of a matrix,
83 | #' or a list of matrices with length equal to the number of grouping levels.
84 | #' Each matrix should have as many rows as the number of groups at the
85 | #' corresponding level and as many columns as the number of random effects in that level.
86 | #' @param covariance An optional \code{\link[nlme]{corStruct}} object describing the within-group
87 | #' covariance structure. In addition to those available in \code{nlme},
88 | #' \code{\link{covBM}} can be used to incorporate a Brownian motion component, \code{\link{covFracBM}}
89 | #' can be used to incorporate a fractional Brownian motion component and \code{\link{covIOU}}
90 | #' can be used to incorporate an integrated Ornstein-Uhlenbeck process in relation to
91 | #' a continuous variable.
92 | #' @param weights an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure.
93 | #' This argument is primarily used for multivariate modeling of several outcomes where different standard errors are to be expected.
94 | #' If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights.
95 | #' See the documentation on varClasses for a description of the available varFunc classes.
96 | #' Defaults to NULL, corresponding to homoscedastic within-group errors. \strong{Note:} weighting is not currently supported
97 | #' when a covariance structure is given.
98 | #' @param method a character string. If "\code{REML}" the model is fit by maximizing the restricted log-likelihood.
99 | #' If "\code{ML}" the log-likelihood is maximized. Defaults to "\code{ML}".
100 | #' @param control A list of control parameters for the estimation algorithm. See \code{\link[nlmeControl]{nlmeControl}}.
101 | #' @param verbose If \code{TRUE} information on the evolution of the iterative
102 | #' algorithm is printed. Default is \code{FALSE}.
103 | #' @return An object of class "nlme" representing the nonlinear mixed effects model fit.
104 | #' @examples
105 | #'
106 | #'#
107 | #'# Fit exponential disease progression model to simulated ADAS-cog scores
108 | #'#
109 | #'
110 | #'# Plot data
111 | #'if (require(ggplot2)) {
112 | #'ggplot(adas_mmse_data, aes(x = Month_bl, y = ADAS13)) +
113 | #' geom_line(aes(group = subject_id, color = blstatus)) +
114 | #' ylim(c(85, 0)) +
115 | #' xlab('Months since baseline')
116 | #'}
117 | #'
118 | #'# Fit exponential model with random shift and intercept
119 | #'fixed_start_coef <- c(0.5, 70, 150, 3.5, 10)
120 | #'ADAS_progmod <- progmod(ADAS13 ~ exp_model(Month_bl, l, s, g, v),
121 | #' data = subset(adas_mmse_data, !is.na(ADAS13)),
122 | #' fixed = list(l ~ 1,
123 | #' s ~ MCI + DEM - 1,
124 | #' g ~ 1,
125 | #' v ~ 1),
126 | #' random = s + v ~ 1 | subject_id,
127 | #' start = fixed_start_coef,
128 | #' covariance = NULL)
129 | #'
130 | #'# Predict from model and visualize results
131 | #'adas_mmse_data$fixed_shift_adas <- with(adas_mmse_data,
132 | #' MCI * fixed.effects(ADAS_progmod)[2] +
133 | #' DEM * fixed.effects(ADAS_progmod)[3])
134 | #'pred_rand <- random.effects(ADAS_progmod)
135 | #'adas_mmse_data$random_shift_adas <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)']
136 | #'
137 | #'if (require(ggplot2)) {
138 | #' ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas, y = ADAS13)) +
139 | #' geom_line(aes(group = subject_id, color = blstatus)) +
140 | #' ylim(c(85, 0)) +
141 | #' xlab('Months since baseline')
142 | #'}
143 | #'
144 | #'
145 | #'if (require(ggplot2)) {
146 | #' ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas + random_shift_adas, y = ADAS13)) +
147 | #' geom_line(aes(group = subject_id, color = blstatus)) +
148 | #' ylim(c(85, 0)) +
149 | #' xlab('Months since baseline')
150 | #'}
151 | #'
152 | #'#
153 | #'# Fit generalized logistic disease progression model to simulated MMSE scores
154 | #'#
155 | #'
156 | #' # Plot data
157 | #'
158 | #'if (require(ggplot2)) {
159 | #' ggplot(adas_mmse_data, aes(x = Month_bl, y = MMSE)) +
160 | #' geom_line(aes(group = subject_id, color = blstatus)) +
161 | #' ylim(c(0, 30)) +
162 | #' xlab('Months since baseline')
163 | #'}
164 | #'
165 | #'# Fit generalized logistic model with range [30, 0] and a random time shift
166 | #'fixed_start_coef <- c(B = 0.025,
167 | #' v = 1.4,
168 | #' `s.(Intercept)` = -100,
169 | #' s.MCI = 26,
170 | #' s.DEM = 75)
171 | #'
172 | #'MMSE_progmod_glf <- progmod(MMSE ~ GLF(Month_bl, A = 30, K = 0, B, v, s, c = 0),
173 | #' data = subset(adas_mmse_data, !is.na(MMSE)),
174 | #' fixed = list(B ~ 1,
175 | #' v ~ 1,
176 | #' s ~ MCI + DEM + 1),
177 | #' random = s ~ 1 | subject_id,
178 | #' start = fixed_start_coef,
179 | #' covariance = NULL)
180 | #'
181 | #'# Predict from model and visualize results
182 | #'adas_mmse_data$fixed_shift_mmse <- with(adas_mmse_data,
183 | #' fixed.effects(MMSE_progmod_glf)[3] +
184 | #' MCI * fixed.effects(MMSE_progmod_glf)[4] +
185 | #' DEM * fixed.effects(MMSE_progmod_glf)[5])
186 | #'pred_rand <- random.effects(MMSE_progmod_glf)
187 | #'adas_mmse_data$random_shift_mmse <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)']
188 | #'
189 | #'
190 | #'
191 | #'if (require(ggplot2)) {
192 | #' ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_mmse + random_shift_mmse, y = MMSE)) +
193 | #' geom_line(aes(group = subject_id, color = blstatus)) +
194 | #' xlab('Months since baseline')
195 | #'}
196 | #'
197 | #'#
198 | # Fit a multivariate model to simulated ADAS-cog and MMSE scores
199 | #
200 | #'
201 | #'# Stack data to long format
202 | #'tmp1 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'ADAS13')]
203 | #'names(tmp1)[6] <- 'value'
204 | #'tmp1$scale <- 'ADAS13'
205 | #'
206 | #'tmp2 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'MMSE')]
207 | #'names(tmp2)[6] <- 'value'
208 | #'tmp2$scale <- 'MMSE'
209 | #'
210 | #'# Long data
211 | #'adas_mmse_data_long <- na.omit(rbind(tmp1, tmp2))
212 | #'adas_mmse_data_long$scale <- factor(adas_mmse_data_long$scale)
213 | #'
214 | #'# Remove temporary files
215 | #'rm(tmp1, tmp2)
216 | #'
217 | #'# Fit multivariate exponential model
218 | #'fixed_start_coef <- c(l.scaleADAS13 = 0.5,
219 | #' l.scaleMMSE = -0.1,
220 | #' s.MCI = 70,
221 | #' s.DEM = 150,
222 | #' g.scaleADAS13 = 3.5,
223 | #' g.scaleMMSE = 3,
224 | #' v.scaleADAS13 = 10,
225 | #' v.scaleMMSE = 30)
226 | #'
227 | #'multi_progmod_glf <- progmod(value ~ exp_model(Month_bl, l, s, g, v),
228 | #' data = adas_mmse_data_long,
229 | #' fixed = list(l ~ scale + 0,
230 | #' s ~ MCI + DEM + 0,
231 | #' g ~ scale + 0,
232 | #' v ~ scale + 0),
233 | #' random = list(s ~ 1,
234 | #' v ~ scale),
235 | #' groups = ~ subject_id,
236 | #' start = fixed_start_coef,
237 | #' weights = varIdent(form = ~ 1 | scale))
238 | #'
239 | #'# Predict from model and compare to univariate models
240 | #'adas_mmse_data$fixed_shift_multi <- with(adas_mmse_data,
241 | #' MCI * fixed.effects(multi_progmod_glf)[3] +
242 | #' DEM * fixed.effects(multi_progmod_glf)[4])
243 | #'pred_rand <- random.effects(multi_progmod_glf)
244 | #'adas_mmse_data$random_shift_multi <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)']
245 | #'
246 | #'
247 | #'# Correlations between predicted disease months
248 | #'with(adas_mmse_data, cor(cbind(fixed_shift_adas + random_shift_adas,
249 | #' fixed_shift_mmse + random_shift_mmse,
250 | #' fixed_shift_multi + random_shift_multi), method = 'spearman'))
251 | #'
252 | #'
253 | #'
254 | #'
255 | #' @export
256 | #' @import nlme covBM
257 |
258 | progmod <- function(model, data, fixed, random, groups, start, covariance = NULL, weights = NULL,
259 | method = c("ML", "REML"), control = NULL, verbose = FALSE) {
260 |
261 | # Set control parameters if not given
262 | if (is.null(control)) {
263 | control <- nlmeControl(maxIter = 50, # Can be increased
264 | pnlsMaxIter = 7, # Should not be increased too much beyond 7
265 | msMaxIter = 500, # 50-500
266 | minScale = 0.01,
267 | tolerance = 1e-5,
268 | niterEM = 25, # 25-100
269 | pnlsTol = 0.001,
270 | msTol = 1e-6,
271 | msVerbose = FALSE,
272 | apVar = TRUE,
273 | .relStep = 1-06,
274 | minAbsParApVar = 0.05,
275 | natural = TRUE)
276 | }
277 |
278 | if (is.null(covariance)) {
279 | nlme(model = model,
280 | data = data,
281 | fixed = fixed,
282 | random = random,
283 | groups = groups,
284 | start = start,
285 | weights = weights,
286 | method = method,
287 | control = control,
288 | verbose = verbose)
289 | } else {
290 | if (!missing(groups)) {
291 | stop('\'groups\' argument is not currently supported when a stochastic process component is given.')
292 | }
293 | if (!is.null(weights)) {
294 | stop('\'weights\' argument is not currently supported when a stochastic process component is given.')
295 | }
296 | nlmeBM(model = model,
297 | data = data,
298 | fixed = fixed,
299 | random = random,
300 | start = start,
301 | covariance = covariance,
302 | method = method,
303 | control = control,
304 | verbose = verbose)
305 | }
306 | }
307 |
308 |
--------------------------------------------------------------------------------
/README.md:
--------------------------------------------------------------------------------
1 | # Disease progression modeling based on nonlinear mixed effects modeling
2 | progmod is an R package for estimating population-level disease progression patterns based on aligning short-term longitudinal observed patterns. The models are formulated as nonlinear mixed effect models and estimation in these models is done using maximum likelihood estimation.
3 |
4 | The basic idea of the model is to use patterns in data to map observed time (e.g. time since baseline) to disease time (both on a group level and individual level). The animation below shows an example in Alzheimer's disease where the observation times of ADAS-cog total scores from the [ADNI study](http://adni.loni.usc.edu/) are mapped to predicted disease time of the five baseline groups (Cognitively normal, Significant memory concern, early and late MCI, dementia) and to individual disease time.
5 |
6 |
7 | 
8 |
9 | The results shown in the animation are from the basic model presented in the paper
10 |
11 |
12 | -
13 | Raket, Lars Lau. "Statistical Disease Progression Modeling in Alzheimer Disease." Frontiers in Big Data (2020). DOI: 10.3389/fdata.2020.00024
14 |
15 |
16 |
17 | These model predictions for ADNI based on the 13-item ADAS-cog scores are available in [data/ADNI_disease_stage_bl.txt](data/ADNI_disease_stage_bl.txt). If you use this package or data, please cite the above paper.
18 |
19 | ## Multivariate disease progression models
20 | progmod supports simultaneous modeling of progression on multiple outcomes as described in the paper
21 |
22 |
23 | -
24 | Kühnel, Line, Anna-Karin Berger, Bo Markussen, and Lars Lau Raket. "Simultaneous Modelling of Alzheimer’s Disease Progression via Multiple Cognitive Scales." Statistics in Medicine (2021). DOI: 10.1002/sim.8932
25 |
26 |
27 |
28 | An example of multivariate modeling is available in the documentation.
29 |
30 | ## Installation
31 |
32 | You can install `progmod` directly from github using devtools:
33 |
34 | ``` r
35 | # install.packages('devtools')
36 | devtools::install_github('larslau/progmod')
37 | ```
38 |
39 | ## Use and examples
40 | The package contains simulated ADAS-cog and MMSE data for exploration of models. Examples of how to specify models for these data are available by running
41 | ``` r
42 | library(progmod)
43 | example(progmod)
44 | ```
45 |
46 |
--------------------------------------------------------------------------------
/data/ADNI_disease_stage_bl.RData:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/larslau/progmod/d374fb34a87d469891ab675f2c7294676e62dec9/data/ADNI_disease_stage_bl.RData
--------------------------------------------------------------------------------
/data/ADNI_disease_stage_bl.txt:
--------------------------------------------------------------------------------
1 | "RID" "pred_AD_month"
2 | "1" 2 -13.3052482930144
3 | "2" 3 126.262553943568
4 | "3" 4 79.4196676545141
5 | "4" 5 -5.58262304917352
6 | "5" 6 74.8777980600364
7 | "6" 7 133.96137753365
8 | "7" 8 -14.5188452266496
9 | "8" 10 118.696057832206
10 | "9" 14 5.34710573975268
11 | "10" 15 3.05343429041844
12 | "11" 16 -5.09609079190008
13 | "12" 19 15.4972232529689
14 | "13" 21 -18.5199702345299
15 | "14" 22 -4.71853151940967
16 | "15" 23 -1.56991358656421
17 | "16" 29 140.1714074641
18 | "17" 30 108.78793516497
19 | "18" 31 -39.9858077913628
20 | "19" 33 95.8257364121776
21 | "20" 35 7.40511699242928
22 | "21" 38 77.5653890713612
23 | "22" 40 -0.578276341354623
24 | "23" 41 98.17463839121
25 | "24" 42 41.5244189363257
26 | "25" 43 0.978370739540885
27 | "26" 44 132.186205361288
28 | "27" 45 121.397050803408
29 | "28" 47 12.6702204646642
30 | "29" 48 6.96845216613499
31 | "30" 50 155.45738104
32 | "31" 51 42.4256079594149
33 | "32" 53 121.273787899927
34 | "33" 54 110.328461159087
35 | "34" 55 -17.5122728787861
36 | "35" 56 -29.9860781049266
37 | "36" 57 141.992092064474
38 | "37" 58 -1.69269510161055
39 | "38" 59 -6.22948760462976
40 | "39" 60 78.0074110641921
41 | "40" 61 23.2573335238227
42 | "41" 66 14.4560745951936
43 | "42" 67 4.75584226589035
44 | "43" 68 13.7007474584375
45 | "44" 69 -30.4493722929495
46 | "45" 70 -4.75778980132738
47 | "46" 72 -7.08914859206448
48 | "47" 74 -26.5091439718453
49 | "48" 76 99.9325156049018
50 | "49" 77 115.127044180481
51 | "50" 78 167.130093967962
52 | "51" 80 67.4795534884906
53 | "52" 81 13.5927966432799
54 | "53" 83 126.182338153414
55 | "54" 84 73.2990295994895
56 | "55" 86 12.7726337818494
57 | "56" 87 116.912523963455
58 | "57" 88 156.97901890272
59 | "58" 89 -3.8782094397371
60 | "59" 90 7.3572816081566
61 | "60" 91 112.067780039211
62 | "61" 93 165.41824018253
63 | "62" 94 146.05082692239
64 | "63" 95 5.96688419639647
65 | "64" 96 -28.738851863319
66 | "65" 97 11.7634043927822
67 | "66" 98 103.619853890152
68 | "67" 101 55.9447879018966
69 | "68" 102 146.072730595728
70 | "69" 103 152.644206787519
71 | "70" 106 23.3331228632252
72 | "71" 107 43.7003373192955
73 | "72" 108 102.442038608602
74 | "73" 109 148.083185337254
75 | "74" 110 107.605635816577
76 | "75" 111 126.152704272447
77 | "76" 112 10.298527733519
78 | "77" 113 -5.67797848018951
79 | "78" 116 42.8444352857682
80 | "79" 118 34.2734380432947
81 | "80" 120 -10.85569807697
82 | "81" 123 11.8517649627598
83 | "82" 125 -19.6529927996548
84 | "83" 126 29.4126986979444
85 | "84" 127 -41.1366246875634
86 | "85" 128 106.2991973224
87 | "86" 129 107.581997213819
88 | "87" 130 -6.20036687147012
89 | "88" 138 26.0485863553736
90 | "89" 139 98.0151282646028
91 | "90" 141 81.8949357315143
92 | "91" 142 30.3162645196829
93 | "92" 147 140.665995686738
94 | "93" 149 116.145336432636
95 | "94" 150 6.0470630844148
96 | "95" 155 97.7258601926178
97 | "96" 156 -10.7269180939852
98 | "97" 158 59.4146059720635
99 | "98" 159 -35.132056705233
100 | "99" 160 65.4181703608834
101 | "100" 161 53.9091504134043
102 | "101" 162 105.69515002123
103 | "102" 166 55.0020895354386
104 | "103" 167 86.0451274116966
105 | "104" 168 78.792817686282
106 | "105" 169 23.6825846996005
107 | "106" 171 58.1966059702842
108 | "107" 172 0.973671828614864
109 | "108" 173 -3.16022939734259
110 | "109" 176 66.5978361911787
111 | "110" 177 10.2697190676712
112 | "111" 178 -5.5757270410388
113 | "112" 179 125.190763621309
114 | "113" 182 100.908009503752
115 | "114" 183 141.644986761755
116 | "115" 184 9.75948310581039
117 | "116" 186 -1.69675351130632
118 | "117" 187 109.163672633428
119 | "118" 188 61.5225240977418
120 | "119" 190 72.0954533429308
121 | "120" 194 127.121671387616
122 | "121" 195 128.478273459081
123 | "122" 196 11.9543278727547
124 | "123" 200 -21.2012687525158
125 | "124" 204 96.218985034512
126 | "125" 205 -12.2589290915829
127 | "126" 210 -5.64388674353305
128 | "127" 213 124.218563856826
129 | "128" 214 45.2828909993796
130 | "129" 216 115.689082923538
131 | "130" 217 68.265201694708
132 | "131" 219 118.790854694048
133 | "132" 221 141.676505148567
134 | "133" 222 80.9808653124541
135 | "134" 223 5.00278327842357
136 | "135" 225 26.8510789824024
137 | "136" 227 76.4780627019864
138 | "137" 228 145.342029298914
139 | "138" 229 -0.0726474223500265
140 | "139" 230 66.5698624576378
141 | "140" 231 87.5184867752808
142 | "141" 232 0.904829370264939
143 | "142" 240 72.6294522489716
144 | "143" 241 66.2111048683951
145 | "144" 243 130.840720381962
146 | "145" 245 -4.22090679649782
147 | "146" 249 84.727873701755
148 | "147" 256 98.4149909558537
149 | "148" 257 0.854696168922196
150 | "149" 258 106.900474685905
151 | "150" 259 33.3438455662625
152 | "151" 260 -9.88479242447095
153 | "152" 262 -0.769253846558864
154 | "153" 266 108.913824528395
155 | "154" 269 115.201625292816
156 | "155" 272 -16.9182558748871
157 | "156" 273 76.8535368866893
158 | "157" 276 5.97964419567485
159 | "158" 282 73.4011724771572
160 | "159" 283 1.45018746821995
161 | "160" 284 127.362093042714
162 | "161" 285 42.6843331738768
163 | "162" 286 141.046866318689
164 | "163" 288 91.7633668049271
165 | "164" 289 102.009127789316
166 | "165" 290 87.3988379167649
167 | "166" 291 48.086742245173
168 | "167" 292 12.4938243850857
169 | "168" 293 108.098725249947
170 | "169" 294 33.4564529505737
171 | "170" 295 12.0841094061815
172 | "171" 296 2.22799464407576
173 | "172" 298 -3.88021016255494
174 | "173" 299 118.883023415722
175 | "174" 300 101.998494315785
176 | "175" 301 -6.51413970846346
177 | "176" 303 -16.7999650794093
178 | "177" 304 -9.63445525200919
179 | "178" 307 23.6447892192568
180 | "179" 310 125.833654917967
181 | "180" 311 14.5621878333196
182 | "181" 312 -5.50568483647618
183 | "182" 314 82.0342133102401
184 | "183" 315 -11.9627274470657
185 | "184" 316 119.993465305073
186 | "185" 319 -1.14750857553239
187 | "186" 321 114.838258339528
188 | "187" 324 64.1379230284851
189 | "188" 325 96.4945172095855
190 | "189" 326 85.6649164221853
191 | "190" 327 -2.98405168422838
192 | "191" 328 137.247959453539
193 | "192" 331 63.73368769753
194 | "193" 332 143.006849670021
195 | "194" 335 108.337130708134
196 | "195" 336 88.688034659947
197 | "196" 337 -9.3757815014107
198 | "197" 339 88.8174256023373
199 | "198" 341 120.660212245189
200 | "199" 343 152.96307281562
201 | "200" 344 72.9082644492416
202 | "201" 351 69.8671579732148
203 | "202" 352 -4.62169964364835
204 | "203" 354 77.2904220031489
205 | "204" 356 143.886163400367
206 | "205" 359 -9.07386602764287
207 | "206" 360 -1.26624043137111
208 | "207" 361 48.1713893809089
209 | "208" 362 87.2088821694461
210 | "209" 363 56.0756891637722
211 | "210" 366 148.142870332009
212 | "211" 369 7.41914948537262
213 | "212" 370 100.387007944576
214 | "213" 372 140.362493282652
215 | "214" 374 120.308569081811
216 | "215" 376 64.2937855238769
217 | "216" 377 -10.5446544978744
218 | "217" 378 82.4256954304043
219 | "218" 382 -25.5046892252061
220 | "219" 384 3.67406904861396
221 | "220" 386 -2.23876942626051
222 | "221" 388 119.01117491851
223 | "222" 389 77.1457946002749
224 | "223" 390 123.235069948987
225 | "224" 392 131.279640239692
226 | "225" 393 95.8394778256045
227 | "226" 394 102.289877283086
228 | "227" 397 120.477912568665
229 | "228" 400 140.32962927438
230 | "229" 401 61.2852018829776
231 | "230" 403 -0.00571360913230474
232 | "231" 404 123.315186210655
233 | "232" 405 1.11557529642683
234 | "233" 406 112.956492439979
235 | "234" 407 82.3994092493654
236 | "235" 408 48.2896390498358
237 | "236" 409 136.329942025064
238 | "237" 410 75.610189152832
239 | "238" 413 -17.3780779389336
240 | "239" 414 114.844801276584
241 | "240" 416 -3.72788002048636
242 | "241" 417 142.546173129342
243 | "242" 419 -27.2726623766066
244 | "243" 420 -30.1890263592558
245 | "244" 422 67.0571787323451
246 | "245" 423 117.850477156581
247 | "246" 424 72.7839380468199
248 | "247" 425 -3.06089311602104
249 | "248" 426 117.303548891446
250 | "249" 429 95.5163662107112
251 | "250" 431 131.373661432909
252 | "251" 433 3.3787952803148
253 | "252" 434 116.194686178327
254 | "253" 436 -9.30513467001136
255 | "254" 438 140.544964022013
256 | "255" 441 -16.2268983914271
257 | "256" 442 89.4049098143617
258 | "257" 443 63.0111139751762
259 | "258" 445 112.995543755089
260 | "259" 446 77.4335472049876
261 | "260" 448 48.5228979748671
262 | "261" 449 92.3136324355645
263 | "262" 450 87.1635698165724
264 | "263" 454 -2.61886823306065
265 | "264" 457 130.916919746262
266 | "265" 458 124.466028466839
267 | "266" 459 -10.3944577983802
268 | "267" 461 121.36480951013
269 | "268" 464 70.0117471580302
270 | "269" 467 11.6245730262375
271 | "270" 469 93.5789282100792
272 | "271" 470 122.755868137423
273 | "272" 472 9.82649037235005
274 | "273" 473 -29.7544457451502
275 | "274" 474 119.72295075952
276 | "275" 478 53.2841176704527
277 | "276" 479 18.7479415485422
278 | "277" 481 69.1271295467122
279 | "278" 484 3.14270308132385
280 | "279" 485 111.511200542951
281 | "280" 487 133.411467418557
282 | "281" 488 -0.138349289524493
283 | "282" 489 0.56780285963082
284 | "283" 492 133.709879726871
285 | "284" 493 8.74148292740812
286 | "285" 498 -7.95898064278268
287 | "286" 500 2.15128234137608
288 | "287" 501 21.8204157170036
289 | "288" 502 -3.39714764000468
290 | "289" 505 27.070204990418
291 | "290" 506 1.61625318097941
292 | "291" 507 135.821915239091
293 | "292" 511 105.080235888538
294 | "293" 513 97.1969174132772
295 | "294" 514 45.0127468163056
296 | "295" 516 -4.56317869963618
297 | "296" 517 148.242949263013
298 | "297" 518 123.710710428843
299 | "298" 519 -9.62763721289903
300 | "299" 520 -3.58339625846438
301 | "300" 522 11.0817234022467
302 | "301" 525 8.00276210691301
303 | "302" 526 11.9490450227478
304 | "303" 528 109.351247408277
305 | "304" 531 118.441799828993
306 | "305" 533 -2.78650956694769
307 | "306" 534 8.21541141569187
308 | "307" 535 113.347848340591
309 | "308" 538 6.89737416988062
310 | "309" 539 76.1033831141361
311 | "310" 543 152.738449514298
312 | "311" 544 91.7389531978195
313 | "312" 545 -12.580432838449
314 | "313" 546 51.6584652122227
315 | "314" 547 94.833997769445
316 | "315" 548 89.058748548158
317 | "316" 549 128.614052324871
318 | "317" 551 78.0969277660551
319 | "318" 552 112.364946794016
320 | "319" 553 -18.0627878762023
321 | "320" 554 132.834340500581
322 | "321" 555 3.37559918149265
323 | "322" 557 30.9098593616955
324 | "323" 558 6.57405501744257
325 | "324" 559 3.97548479651729
326 | "325" 563 52.2697663622341
327 | "326" 565 170.046078928803
328 | "327" 566 36.7925897671202
329 | "328" 567 78.9749348796647
330 | "329" 568 112.986111164842
331 | "330" 572 51.5420733254447
332 | "331" 575 -2.98963699372094
333 | "332" 576 2.99596079538523
334 | "333" 577 134.349241354024
335 | "334" 578 -1.30558801848173
336 | "335" 579 68.5686098756247
337 | "336" 588 96.4394772709843
338 | "337" 590 105.812723965469
339 | "338" 592 150.471081586186
340 | "339" 598 71.1382382671934
341 | "340" 601 9.78971072370596
342 | "341" 602 -25.5892222089581
343 | "342" 604 58.2932625676509
344 | "343" 605 -8.79156620673455
345 | "344" 606 119.794273665073
346 | "345" 607 98.6795394230455
347 | "346" 608 135.64334002885
348 | "347" 610 -7.42061809042898
349 | "348" 611 118.55383655345
350 | "349" 613 109.411676433615
351 | "350" 618 -27.8179651889573
352 | "351" 619 126.615726064455
353 | "352" 621 82.3457694633237
354 | "353" 622 17.1706204815709
355 | "354" 625 115.633447444333
356 | "355" 626 6.37784221219813
357 | "356" 627 143.949344710901
358 | "357" 629 105.387746362851
359 | "358" 631 139.55845560564
360 | "359" 633 151.037073560351
361 | "360" 634 60.8360596510024
362 | "361" 637 -6.54303317807024
363 | "362" 638 124.102410681383
364 | "363" 640 3.50045438756324
365 | "364" 641 142.115520636321
366 | "365" 642 127.175683156757
367 | "366" 643 6.10728965377318
368 | "367" 644 43.6420459571219
369 | "368" 647 9.39200959398167
370 | "369" 648 -8.6122013582521
371 | "370" 649 94.9910777270061
372 | "371" 653 141.159170949358
373 | "372" 656 87.6548715824642
374 | "373" 657 5.87557816195663
375 | "374" 658 33.9460660131228
376 | "375" 668 0.594363738373247
377 | "376" 669 63.467157837346
378 | "377" 671 63.4914137912751
379 | "378" 672 4.74711188900754
380 | "379" 673 66.3571456864812
381 | "380" 675 102.638971670706
382 | "381" 677 -15.4127839372813
383 | "382" 679 -20.8074667192515
384 | "383" 680 -17.9056562863204
385 | "384" 681 11.4738646429379
386 | "385" 682 147.959834849405
387 | "386" 684 -12.7864062605129
388 | "387" 685 -8.94307272027657
389 | "388" 686 -7.77711848095641
390 | "389" 689 152.350835363655
391 | "390" 690 119.147668898213
392 | "391" 691 165.672442638389
393 | "392" 692 1.76124613035646
394 | "393" 695 125.30842830981
395 | "394" 696 148.990885753889
396 | "395" 697 79.1289294301174
397 | "396" 698 20.9583513028559
398 | "397" 702 71.2200498712105
399 | "398" 708 94.2692085325557
400 | "399" 709 19.9754872876677
401 | "400" 711 4.92540090550498
402 | "401" 712 131.493711364492
403 | "402" 715 55.3091708788944
404 | "403" 717 26.2790784335756
405 | "404" 718 74.5912285624254
406 | "405" 720 139.600526033797
407 | "406" 721 84.9920856073482
408 | "407" 722 21.3380229541864
409 | "408" 723 96.0649803133295
410 | "409" 724 145.682399714357
411 | "410" 725 102.048945022877
412 | "411" 726 -7.02082288861348
413 | "412" 727 94.4049294064998
414 | "413" 729 67.0459924306374
415 | "414" 730 156.15653885652
416 | "415" 731 -14.0447862167876
417 | "416" 733 140.63823761963
418 | "417" 734 -32.0209957933228
419 | "418" 739 102.159388051748
420 | "419" 740 135.541328270688
421 | "420" 741 -9.45562600802046
422 | "421" 743 170.42809980292
423 | "422" 746 20.3091810285013
424 | "423" 747 134.796021427067
425 | "424" 748 119.535515918655
426 | "425" 750 150.925354299021
427 | "426" 751 -22.9621595585337
428 | "427" 752 67.9249039757913
429 | "428" 753 122.443907411524
430 | "429" 754 134.003301871558
431 | "430" 759 125.830938710499
432 | "431" 760 131.507888613082
433 | "432" 761 -2.73699390298397
434 | "433" 767 -40.5628871029715
435 | "434" 768 -6.56011374160979
436 | "435" 769 92.1591746712963
437 | "436" 770 37.0058115532012
438 | "437" 771 57.9535393500149
439 | "438" 777 137.961914910041
440 | "439" 778 11.1389445643999
441 | "440" 779 -6.98610871749071
442 | "441" 782 64.4465670344882
443 | "442" 783 105.30431241591
444 | "443" 784 95.7689232464123
445 | "444" 786 136.682728902398
446 | "445" 790 148.504064988524
447 | "446" 792 77.3383665442466
448 | "447" 793 146.807670853543
449 | "448" 796 81.998591898199
450 | "449" 800 19.3284828655682
451 | "450" 802 -3.33652049791768
452 | "451" 803 134.160552664994
453 | "452" 810 -5.74095344631145
454 | "453" 812 144.982155626468
455 | "454" 813 2.23001353803816
456 | "455" 814 134.006391742286
457 | "456" 816 115.540392563721
458 | "457" 818 -6.64845284245494
459 | "458" 821 101.297368129927
460 | "459" 824 -4.71300621952055
461 | "460" 825 111.448324861996
462 | "461" 828 149.972689296675
463 | "462" 829 119.880958154495
464 | "463" 830 58.4394771142256
465 | "464" 832 105.589137056435
466 | "465" 834 109.403150275613
467 | "466" 835 56.6395531297193
468 | "467" 836 110.974175035883
469 | "468" 839 121.112361405405
470 | "469" 841 133.629608444391
471 | "470" 842 6.05862946411694
472 | "471" 843 20.3008619067865
473 | "472" 844 107.492403843829
474 | "473" 845 27.3607995849124
475 | "474" 850 122.698060298833
476 | "475" 851 51.1817050412871
477 | "476" 852 123.910855946933
478 | "477" 853 128.650405262738
479 | "478" 855 102.688999882652
480 | "479" 856 119.313749308902
481 | "480" 860 123.489064917803
482 | "481" 861 110.935458849782
483 | "482" 862 4.53118732080559
484 | "483" 863 6.88818410477163
485 | "484" 865 73.5819349106909
486 | "485" 866 5.55530672820318
487 | "486" 867 28.3357731288948
488 | "487" 869 75.1886957146047
489 | "488" 871 85.0706381122293
490 | "489" 872 49.3881927888807
491 | "490" 873 89.514805594496
492 | "491" 874 125.576678011897
493 | "492" 876 5.3307460779199
494 | "493" 878 114.302583044187
495 | "494" 880 93.8514534054769
496 | "495" 883 3.73362654941952
497 | "496" 884 133.133420762848
498 | "497" 886 3.34972532649855
499 | "498" 887 96.7664416123907
500 | "499" 889 114.323001326744
501 | "500" 890 91.0731642097876
502 | "501" 891 120.607727546959
503 | "502" 892 121.878537918953
504 | "503" 896 -18.1959663501357
505 | "504" 898 5.4350748733694
506 | "505" 899 -5.11378802267486
507 | "506" 904 116.289219871222
508 | "507" 906 89.3711147783908
509 | "508" 907 -0.249118558175311
510 | "509" 908 -13.2918259912157
511 | "510" 909 78.9792975139624
512 | "511" 912 60.6659387638392
513 | "512" 913 141.751075748966
514 | "513" 914 36.4153239876239
515 | "514" 915 63.5112433533584
516 | "515" 916 140.402538000845
517 | "516" 917 85.4831979437023
518 | "517" 919 9.34729951136214
519 | "518" 920 5.586046681553
520 | "519" 921 94.4515577324365
521 | "520" 922 67.0410834203029
522 | "521" 923 -15.6318583858991
523 | "522" 924 127.065978620444
524 | "523" 925 15.417708031304
525 | "524" 926 27.5511480044346
526 | "525" 928 110.914994967236
527 | "526" 929 128.655442998744
528 | "527" 930 92.4437746011772
529 | "528" 931 8.80644628576587
530 | "529" 932 99.4814608459113
531 | "530" 934 -19.5953609935954
532 | "531" 938 116.401230512253
533 | "532" 941 149.436909260849
534 | "533" 945 87.5396480897891
535 | "534" 947 112.892536343873
536 | "535" 950 122.173004220453
537 | "536" 951 -1.99190536787286
538 | "537" 952 80.212766198236
539 | "538" 954 118.244389164213
540 | "539" 955 147.003668266772
541 | "540" 956 101.363434294526
542 | "541" 957 85.3773821874569
543 | "542" 958 77.4957822562047
544 | "543" 961 114.486012948197
545 | "544" 963 6.78976073515295
546 | "545" 967 6.29091501039258
547 | "546" 969 -11.038718305172
548 | "547" 972 14.1912180144028
549 | "548" 973 82.4283994970442
550 | "549" 976 95.3940880521063
551 | "550" 978 70.2530338425739
552 | "551" 979 133.748420289242
553 | "552" 981 -8.86019414881088
554 | "553" 982 117.340385712621
555 | "554" 984 84.5879282110208
556 | "555" 985 33.3109503403485
557 | "556" 987 135.854421680142
558 | "557" 989 43.4013233993673
559 | "558" 991 150.23205051959
560 | "559" 994 71.5727629393864
561 | "560" 995 88.8942257703478
562 | "561" 996 127.283473143004
563 | "562" 997 98.7736094700465
564 | "563" 999 142.954194606566
565 | "564" 1001 145.779027897995
566 | "565" 1002 6.45971906576806
567 | "566" 1004 65.2793427685541
568 | "567" 1007 60.7404290497066
569 | "568" 1009 4.17229827562768
570 | "569" 1010 115.872412705123
571 | "570" 1013 -3.08424057869146
572 | "571" 1014 3.26098308069905
573 | "572" 1015 124.206908336463
574 | "573" 1016 -19.2838744353355
575 | "574" 1018 100.813068682636
576 | "575" 1021 -5.33452459774736
577 | "576" 1023 -17.9714290348843
578 | "577" 1024 110.011912150811
579 | "578" 1027 118.549377699676
580 | "579" 1028 113.233522530446
581 | "580" 1030 85.5297486597756
582 | "581" 1031 91.6469798270648
583 | "582" 1032 7.28161530619276
584 | "583" 1033 109.503305332183
585 | "584" 1034 58.7027316527799
586 | "585" 1035 3.10596028833529
587 | "586" 1037 126.510220755579
588 | "587" 1038 119.413898854719
589 | "588" 1040 40.9441695670553
590 | "589" 1041 149.861879269557
591 | "590" 1043 82.420533176912
592 | "591" 1044 129.107997780286
593 | "592" 1045 29.4663061927964
594 | "593" 1046 46.69017244037
595 | "594" 1051 133.473953927097
596 | "595" 1052 -7.83698203593447
597 | "596" 1054 103.813839596725
598 | "597" 1055 143.933353446026
599 | "598" 1056 140.572158172304
600 | "599" 1057 102.026309816473
601 | "600" 1059 114.00297185507
602 | "601" 1062 95.0383264570132
603 | "602" 1063 6.35313671644393
604 | "603" 1066 92.3879611584984
605 | "604" 1070 127.082716842734
606 | "605" 1072 18.947556313882
607 | "606" 1073 104.706517556415
608 | "607" 1074 23.5007039936658
609 | "608" 1075 59.9897614804218
610 | "609" 1077 48.4056797875841
611 | "610" 1078 16.630721852665
612 | "611" 1079 132.875101692497
613 | "612" 1080 90.5772949522481
614 | "613" 1081 108.858188350451
615 | "614" 1082 158.856882577055
616 | "615" 1083 126.099264142405
617 | "616" 1086 -9.58026927590922
618 | "617" 1088 100.458213489956
619 | "618" 1090 118.768252090376
620 | "619" 1092 60.3663573792581
621 | "620" 1094 -5.237863105388
622 | "621" 1095 116.75439818422
623 | "622" 1097 52.8900541291239
624 | "623" 1098 7.3505744726106
625 | "624" 1099 -12.4866496494974
626 | "625" 1101 121.396431725578
627 | "626" 1102 109.360063834761
628 | "627" 1103 76.6770372176524
629 | "628" 1104 87.3687085000377
630 | "629" 1106 58.697539507274
631 | "630" 1109 125.743954095975
632 | "631" 1113 128.203529543211
633 | "632" 1114 95.9335926632972
634 | "633" 1116 62.5983650183473
635 | "634" 1117 85.8990522221499
636 | "635" 1118 34.1089050919573
637 | "636" 1119 86.2255443575099
638 | "637" 1120 104.561818763053
639 | "638" 1121 138.92774679834
640 | "639" 1122 -14.5040400899363
641 | "640" 1123 24.0371043350782
642 | "641" 1126 101.427688960185
643 | "642" 1130 59.2279952764312
644 | "643" 1131 72.3163498830912
645 | "644" 1133 3.22807752246303
646 | "645" 1135 102.546552819617
647 | "646" 1137 158.750963627294
648 | "647" 1138 131.6024527789
649 | "648" 1140 92.9540008176606
650 | "649" 1144 122.105588393338
651 | "650" 1148 116.56822675616
652 | "651" 1149 87.0335847334043
653 | "652" 1152 112.774257635598
654 | "653" 1154 111.974131705175
655 | "654" 1155 -11.501092303556
656 | "655" 1157 132.800784738445
657 | "656" 1161 118.394920529616
658 | "657" 1164 135.940797704852
659 | "658" 1165 69.139720040754
660 | "659" 1168 62.9557605628196
661 | "660" 1169 -8.53156091857483
662 | "661" 1170 87.0044069726001
663 | "662" 1171 121.503824111433
664 | "663" 1175 67.7042174258211
665 | "664" 1182 68.5303582916787
666 | "665" 1183 61.7448087648241
667 | "666" 1184 162.288065261563
668 | "667" 1185 156.846119556034
669 | "668" 1186 45.7504012691282
670 | "669" 1187 13.6515888856046
671 | "670" 1188 55.1296704730276
672 | "671" 1190 -1.76394205207533
673 | "672" 1191 -2.55206410533266
674 | "673" 1192 133.842259831861
675 | "674" 1194 20.7851271258467
676 | "675" 1195 -12.50961326684
677 | "676" 1197 -0.836390982813968
678 | "677" 1199 94.5752198594424
679 | "678" 1200 3.52338906572862
680 | "679" 1201 129.152325182927
681 | "680" 1202 -4.77968410138455
682 | "681" 1203 0.46095354442308
683 | "682" 1204 93.8449156021021
684 | "683" 1205 123.450786257618
685 | "684" 1206 -1.53708683664721
686 | "685" 1209 92.7247454457805
687 | "686" 1210 82.3994092493654
688 | "687" 1211 53.0158884385968
689 | "688" 1212 -14.2784301569826
690 | "689" 1213 145.587577916181
691 | "690" 1215 73.0911864628351
692 | "691" 1217 119.378870852959
693 | "692" 1218 86.68269500075
694 | "693" 1221 117.474581028186
695 | "694" 1222 -5.05625496685356
696 | "695" 1224 79.8802466327001
697 | "696" 1225 92.2982237654792
698 | "697" 1226 63.6178745185963
699 | "698" 1227 70.2251136858646
700 | "699" 1231 119.807158786091
701 | "700" 1232 -4.54278038952852
702 | "701" 1240 120.182102226721
703 | "702" 1241 2.06717226145538
704 | "703" 1242 7.06794390100841
705 | "704" 1243 46.0675771428537
706 | "705" 1244 134.64124990656
707 | "706" 1245 76.5329416709959
708 | "707" 1246 22.9312238577485
709 | "708" 1247 123.520081941468
710 | "709" 1248 137.303764170713
711 | "710" 1249 34.1151809901603
712 | "711" 1250 -7.8296726063415
713 | "712" 1251 2.50658092893816
714 | "713" 1253 135.667342472407
715 | "714" 1254 133.703429827366
716 | "715" 1255 90.2526452732187
717 | "716" 1256 -2.13537748351909
718 | "717" 1257 156.756403265287
719 | "718" 1260 48.298967329148
720 | "719" 1261 0.585775628068269
721 | "720" 1262 140.842801574036
722 | "721" 1263 135.323646359592
723 | "722" 1265 104.092116938379
724 | "723" 1267 8.14106212863453
725 | "724" 1268 50.8147529746798
726 | "725" 1269 58.3040344428026
727 | "726" 1271 113.82795785204
728 | "727" 1275 90.5539541034276
729 | "728" 1276 4.13961326428116
730 | "729" 1277 114.04162024209
731 | "730" 1279 95.6425676567491
732 | "731" 1280 -14.2342961702293
733 | "732" 1281 109.253710611598
734 | "733" 1282 127.070992431191
735 | "734" 1284 56.6553633580397
736 | "735" 1285 113.740018301737
737 | "736" 1286 -16.4261229520894
738 | "737" 1288 20.1084596047989
739 | "738" 1289 144.046397657991
740 | "739" 1290 127.629119201493
741 | "740" 1292 149.406416875762
742 | "741" 1293 114.556576299874
743 | "742" 1294 133.473953927097
744 | "743" 1295 102.617213874289
745 | "744" 1296 110.926816842754
746 | "745" 1299 91.0816548726124
747 | "746" 1300 38.2139789139444
748 | "747" 1301 4.93056506776698
749 | "748" 1304 122.131092255726
750 | "749" 1306 3.02610540253454
751 | "750" 1307 109.259537059113
752 | "751" 1308 125.261930459083
753 | "752" 1309 87.5546575034847
754 | "753" 1311 109.172869648533
755 | "754" 1314 64.6537383287346
756 | "755" 1315 98.5926984409486
757 | "756" 1318 101.72995905452
758 | "757" 1321 82.0927337034194
759 | "758" 1322 128.070790090948
760 | "759" 1326 80.525443555735
761 | "760" 1330 66.2871530316255
762 | "761" 1331 112.408564703606
763 | "762" 1334 125.628696625408
764 | "763" 1337 115.213378298101
765 | "764" 1338 104.113833402695
766 | "765" 1339 131.460940259295
767 | "766" 1340 87.0335847334043
768 | "767" 1341 105.065388390519
769 | "768" 1343 68.0284247538437
770 | "769" 1346 41.457750057363
771 | "770" 1350 146.383814380178
772 | "771" 1351 106.013349988919
773 | "772" 1352 4.66365435383032
774 | "773" 1354 150.121370414057
775 | "774" 1357 90.2059728791171
776 | "775" 1363 138.378942078917
777 | "776" 1366 143.134876849442
778 | "777" 1368 139.945076467496
779 | "778" 1373 164.391566396189
780 | "779" 1377 131.198298735387
781 | "780" 1378 -7.76951302160769
782 | "781" 1379 131.135814216446
783 | "782" 1380 50.4973352274493
784 | "783" 1382 140.926354258268
785 | "784" 1384 128.052737963232
786 | "785" 1385 116.826856864001
787 | "786" 1387 111.199822467008
788 | "787" 1389 126.552781308589
789 | "788" 1391 134.564282027693
790 | "789" 1393 121.282150568754
791 | "790" 1394 126.649071830541
792 | "791" 1397 160.474157430118
793 | "792" 1398 147.60991868366
794 | "793" 1400 92.0764578952564
795 | "794" 1402 151.884039678557
796 | "795" 1406 36.0059961736178
797 | "796" 1407 65.8397490869418
798 | "797" 1408 17.4414632575263
799 | "798" 1411 89.5776285094996
800 | "799" 1412 85.5934201416989
801 | "800" 1414 23.530446605541
802 | "801" 1417 45.7144335623667
803 | "802" 1418 8.52779335233244
804 | "803" 1419 71.1504586764234
805 | "804" 1420 98.1715838921235
806 | "805" 1421 88.7644693157385
807 | "806" 1423 113.759392401456
808 | "807" 1425 119.854695235198
809 | "808" 1426 83.1816060737657
810 | "809" 1427 -26.332108931642
811 | "810" 1430 131.706034029567
812 | "811" 1435 136.636948898746
813 | "812" 2002 28.1434258852411
814 | "813" 2003 43.1703614574037
815 | "814" 2007 87.7205910156064
816 | "815" 2010 39.2935241270869
817 | "816" 2011 45.9360189244437
818 | "817" 2018 22.0187064759575
819 | "818" 2022 37.45333117255
820 | "819" 2026 49.265903698702
821 | "820" 2027 44.2959159911067
822 | "821" 2031 38.5164568792955
823 | "822" 2036 34.6389255290476
824 | "823" 2037 21.7669197233795
825 | "824" 2042 29.4926887405809
826 | "825" 2043 45.3169924547685
827 | "826" 2045 70.1307012284857
828 | "827" 2047 98.9537726496765
829 | "828" 2052 54.932712422289
830 | "829" 2055 98.1526205869973
831 | "830" 2057 48.1494687380279
832 | "831" 2058 127.272558582435
833 | "832" 2060 29.3488835380558
834 | "833" 2061 16.0916491112205
835 | "834" 2063 31.7895170980245
836 | "835" 2068 17.8340761769472
837 | "836" 2070 43.9206561245476
838 | "837" 2071 29.0271709516554
839 | "838" 2072 29.3677446659692
840 | "839" 2073 15.3312459932412
841 | "840" 2074 23.9045101774359
842 | "841" 2077 17.4969421516767
843 | "842" 2079 27.7612950648437
844 | "843" 2083 26.8932486728633
845 | "844" 2087 77.1645963745793
846 | "845" 2093 34.8496960473866
847 | "846" 2099 50.1403002088432
848 | "847" 2100 28.0210519591832
849 | "848" 2106 65.1404575980593
850 | "849" 2109 59.4128975076637
851 | "850" 2116 29.4405103370379
852 | "851" 2119 32.8427122285629
853 | "852" 2121 20.6038669520385
854 | "853" 2123 30.6413354054807
855 | "854" 2124 23.6532259217271
856 | "855" 2125 40.5117331908326
857 | "856" 2130 42.2847484642568
858 | "857" 2133 65.410231199311
859 | "858" 2138 32.1894900084717
860 | "859" 2142 46.1994468046855
861 | "860" 2146 24.3367972512628
862 | "861" 2148 29.8016657126352
863 | "862" 2150 34.7711274689739
864 | "863" 2151 43.8724517147395
865 | "864" 2153 45.8584816878961
866 | "865" 2155 45.7198199518102
867 | "866" 2164 23.0986257987646
868 | "867" 2167 43.5021733150006
869 | "868" 2168 50.6109765742185
870 | "869" 2171 38.912664073299
871 | "870" 2180 26.6500024688428
872 | "871" 2182 45.3038603799555
873 | "872" 2183 27.3540128496404
874 | "873" 2184 35.4529248178034
875 | "874" 2185 50.8656261298135
876 | "875" 2187 23.4744935442532
877 | "876" 2190 43.6600207409278
878 | "877" 2191 27.6795812112388
879 | "878" 2193 46.6497270915791
880 | "879" 2194 30.3890622929443
881 | "880" 2195 117.765542240257
882 | "881" 2196 49.1400746024687
883 | "882" 2199 29.0271709516554
884 | "883" 2200 23.6137521895136
885 | "884" 2201 27.2489271058575
886 | "885" 2205 40.5574392538038
887 | "886" 2208 35.3401242043137
888 | "887" 2210 26.1023509141724
889 | "888" 2213 41.2407756671554
890 | "889" 2216 127.299033367386
891 | "890" 2219 19.91799947153
892 | "891" 2220 26.5955885630568
893 | "892" 2225 25.1671345002598
894 | "893" 2233 21.9262075860599
895 | "894" 2234 21.3190003354038
896 | "895" 2237 43.9206561245476
897 | "896" 2238 24.434984341901
898 | "897" 2239 8.74322508108026
899 | "898" 2240 39.5857961420371
900 | "899" 2245 30.1104861308568
901 | "900" 2247 31.6727786683256
902 | "901" 2248 42.5958159087891
903 | "902" 2249 31.3093519698443
904 | "903" 2263 15.7084397373936
905 | "904" 2264 38.1950835744118
906 | "905" 2274 97.1937292130157
907 | "906" 2278 43.1703614574037
908 | "907" 2284 40.755444905159
909 | "908" 2301 25.7406572418515
910 | "909" 2304 17.7970675054543
911 | "910" 2307 26.0220196065425
912 | "911" 2308 22.9492161445818
913 | "912" 2315 31.8632443800918
914 | "913" 2316 120.175519643666
915 | "914" 2324 42.4489986222293
916 | "915" 2332 16.0890435083422
917 | "916" 2333 39.212112951591
918 | "917" 2336 55.8109578058724
919 | "918" 2347 32.9656873591072
920 | "919" 2351 29.0271709516554
921 | "920" 2357 36.5921777009962
922 | "921" 2360 29.9567156438582
923 | "922" 2363 27.336874317233
924 | "923" 2367 48.0359858698956
925 | "924" 2373 57.4061504097838
926 | "925" 2374 46.8734283507615
927 | "926" 2376 46.2861597892127
928 | "927" 2378 56.5178764020759
929 | "928" 2379 30.5666176483633
930 | "929" 2380 37.0993343937721
931 | "930" 2381 62.9716781090337
932 | "931" 2389 35.2632996780148
933 | "932" 2390 71.8250675121176
934 | "933" 2391 81.8460669479703
935 | "934" 2392 18.1352948796913
936 | "935" 2394 31.2302833229004
937 | "936" 2395 19.3003843151663
938 | "937" 2396 12.2749115629566
939 | "938" 2398 116.21138696578
940 | "939" 2403 79.8917807655714
941 | "940" 2405 14.1383264319294
942 | "941" 2407 41.4986097401922
943 | "942" 4001 132.660466170384
944 | "943" 4003 4.21904951540636
945 | "944" 4004 27.2347612870302
946 | "945" 4005 54.4259387319404
947 | "946" 4007 38.9003112370271
948 | "947" 4009 113.844762927256
949 | "948" 4010 3.55956733034689
950 | "949" 4012 36.5933139754215
951 | "950" 4014 1.36403154429008
952 | "951" 4015 131.533666358189
953 | "952" 4018 1.25467020745179
954 | "953" 4020 0.0415285903459759
955 | "954" 4021 11.4305266060888
956 | "955" 4022 26.3013141549441
957 | "956" 4024 138.083666507382
958 | "957" 4026 2.61332256261079
959 | "958" 4028 9.82831600148805
960 | "959" 4029 61.5428877697852
961 | "960" 4030 92.309670362007
962 | "961" 4032 8.59751491419365
963 | "962" 4034 124.416962357029
964 | "963" 4035 118.795654571077
965 | "964" 4036 20.6280690707761
966 | "965" 4037 13.238465191518
967 | "966" 4039 154.143342078048
968 | "967" 4041 33.1947603734632
969 | "968" 4042 117.242997697813
970 | "969" 4043 10.4832349089104
971 | "970" 4050 4.50166341345262
972 | "971" 4051 29.1741189344513
973 | "972" 4053 121.519956915776
974 | "973" 4054 31.3309932590471
975 | "974" 4057 123.541074957865
976 | "975" 4058 116.630075432212
977 | "976" 4059 33.2248934503436
978 | "977" 4060 14.287511797551
979 | "978" 4061 37.5518943986777
980 | "979" 4063 29.4132222230509
981 | "980" 4066 10.5768081401625
982 | "981" 4067 41.4449516272415
983 | "982" 4071 -2.34568121367386
984 | "983" 4072 29.6163148245907
985 | "984" 4073 36.9699045471474
986 | "985" 4075 0.48916885101048
987 | "986" 4076 14.5406466015819
988 | "987" 4077 63.6362567953097
989 | "988" 4079 117.921213767666
990 | "989" 4080 -0.166208646353933
991 | "990" 4081 -0.270919644272404
992 | "991" 4082 9.61996548216713
993 | "992" 4084 12.5675081336922
994 | "993" 4085 45.3014160076807
995 | "994" 4086 22.3149219917347
996 | "995" 4089 140.528664198509
997 | "996" 4090 15.4148124181038
998 | "997" 4092 58.1726406396458
999 | "998" 4093 3.61108111695818
1000 | "999" 4094 28.0830628975608
1001 | "1000" 4095 141.159170949358
1002 | "1001" 4096 143.536565998966
1003 | "1002" 4097 0.312417831073096
1004 | "1003" 4100 35.1928315260409
1005 | "1004" 4102 141.710547643395
1006 | "1005" 4103 -1.91044454134569
1007 | "1006" 4104 7.91652702937019
1008 | "1007" 4105 41.9296243873879
1009 | "1008" 4114 26.2737147762788
1010 | "1009" 4115 26.3009311440617
1011 | "1010" 4119 3.6554139371301
1012 | "1011" 4120 -7.55142946793666
1013 | "1012" 4121 3.56279476309498
1014 | "1013" 4122 90.2422309358315
1015 | "1014" 4125 -3.2661093289892
1016 | "1015" 4127 36.0075859837878
1017 | "1016" 4128 50.0534784397689
1018 | "1017" 4131 130.573273099415
1019 | "1018" 4133 41.969510442471
1020 | "1019" 4134 43.1169976901367
1021 | "1020" 4136 149.446477070236
1022 | "1021" 4138 51.216076186972
1023 | "1022" 4139 -11.7270645372554
1024 | "1023" 4143 61.9714038151919
1025 | "1024" 4146 46.4278423256938
1026 | "1025" 4148 23.1849286711502
1027 | "1026" 4149 39.1233425563162
1028 | "1027" 4150 -10.7800632196014
1029 | "1028" 4151 3.9628436642092
1030 | "1029" 4152 166.690704054172
1031 | "1030" 4153 119.257211377022
1032 | "1031" 4155 3.18163309278863
1033 | "1032" 4157 107.596768334488
1034 | "1033" 4158 6.23445147910177
1035 | "1034" 4159 28.7879454188657
1036 | "1035" 4160 46.6242470938267
1037 | "1036" 4162 85.0516540350353
1038 | "1037" 4164 -1.49171026203826
1039 | "1038" 4167 103.367112374159
1040 | "1039" 4168 33.2603917502652
1041 | "1040" 4169 49.6462589301127
1042 | "1041" 4170 37.642263498992
1043 | "1042" 4171 128.338334545321
1044 | "1043" 4172 153.112420350556
1045 | "1044" 4173 2.72540597513617
1046 | "1045" 4174 11.5013648124246
1047 | "1046" 4175 36.566190031367
1048 | "1047" 4176 15.7440599893258
1049 | "1048" 4177 37.1778145308844
1050 | "1049" 4179 39.5647441777087
1051 | "1050" 4184 34.0308637463226
1052 | "1051" 4185 41.0461039192199
1053 | "1052" 4186 39.7234027109161
1054 | "1053" 4187 50.6847127505761
1055 | "1054" 4188 81.6512079483582
1056 | "1055" 4189 122.132902361985
1057 | "1056" 4192 122.701914894698
1058 | "1057" 4194 69.8971023424211
1059 | "1058" 4195 138.272649245154
1060 | "1059" 4196 12.1334057190061
1061 | "1060" 4197 54.68156200744
1062 | "1061" 4198 66.9880677842965
1063 | "1062" 4199 15.4610855612971
1064 | "1063" 4200 11.1643315224534
1065 | "1064" 4201 153.44760770132
1066 | "1065" 4202 36.9155667169148
1067 | "1066" 4203 92.880567823273
1068 | "1067" 4205 46.499280026919
1069 | "1068" 4206 22.9499799429454
1070 | "1069" 4208 4.95472535551472
1071 | "1070" 4209 144.702071824208
1072 | "1071" 4210 36.1991512627334
1073 | "1072" 4211 110.592764955767
1074 | "1073" 4212 34.4773720583955
1075 | "1074" 4213 12.4819596720562
1076 | "1075" 4214 48.1109971983298
1077 | "1076" 4215 93.9071479972805
1078 | "1077" 4216 27.4835390363005
1079 | "1078" 4217 34.1266447192503
1080 | "1079" 4218 -2.26725883979878
1081 | "1080" 4219 73.6441623456926
1082 | "1081" 4220 32.7484133196559
1083 | "1082" 4222 -6.91157828134575
1084 | "1083" 4223 161.501224841214
1085 | "1084" 4224 21.1448943841318
1086 | "1085" 4225 78.024038359612
1087 | "1086" 4226 28.3250305675519
1088 | "1087" 4229 41.7987315244393
1089 | "1088" 4232 58.2427190630178
1090 | "1089" 4234 28.3375854102503
1091 | "1090" 4235 33.9685349837928
1092 | "1091" 4237 39.3723809327745
1093 | "1092" 4240 132.863620346541
1094 | "1093" 4241 38.5125991645397
1095 | "1094" 4243 118.269217614509
1096 | "1095" 4244 99.7135701747809
1097 | "1096" 4245 20.2649207858323
1098 | "1097" 4250 110.803684515367
1099 | "1098" 4251 76.4347622551797
1100 | "1099" 4252 121.587883096992
1101 | "1100" 4254 23.6639705243971
1102 | "1101" 4255 7.46030474640809
1103 | "1102" 4256 40.0150474661317
1104 | "1103" 4257 3.98821951156029
1105 | "1104" 4258 100.905346169088
1106 | "1105" 4259 40.2114790368177
1107 | "1106" 4260 40.6556908892829
1108 | "1107" 4262 83.0458579057837
1109 | "1108" 4263 89.5231198852126
1110 | "1109" 4264 8.00396786139101
1111 | "1110" 4266 14.3288015576786
1112 | "1111" 4268 41.8984930780115
1113 | "1112" 4269 7.45766628761501
1114 | "1113" 4270 32.1858474572132
1115 | "1114" 4271 59.8279561527122
1116 | "1115" 4272 33.1294135468949
1117 | "1116" 4274 44.4298691047942
1118 | "1117" 4275 7.98517409565512
1119 | "1118" 4276 13.3225500440597
1120 | "1119" 4277 17.5514865240751
1121 | "1120" 4278 45.3802451422815
1122 | "1121" 4279 -4.46476271873819
1123 | "1122" 4280 113.973362523931
1124 | "1123" 4281 31.752200526309
1125 | "1124" 4282 120.867818842137
1126 | "1125" 4285 29.2981620583133
1127 | "1126" 4287 71.3196872165651
1128 | "1127" 4288 11.6699854756684
1129 | "1128" 4290 31.1080514043388
1130 | "1129" 4291 6.4532347328529
1131 | "1130" 4292 1.0113503649982
1132 | "1131" 4293 64.4886726997398
1133 | "1132" 4294 58.8724666785552
1134 | "1133" 4297 35.588905605918
1135 | "1134" 4299 33.2437442027764
1136 | "1135" 4300 68.6428292929106
1137 | "1136" 4301 45.1698222464674
1138 | "1137" 4302 68.8067661124938
1139 | "1138" 4303 100.704773867652
1140 | "1139" 4307 139.960854502551
1141 | "1140" 4308 0.106849928236871
1142 | "1141" 4309 24.0109345552924
1143 | "1142" 4310 37.352986672471
1144 | "1143" 4311 56.7986299078136
1145 | "1144" 4312 24.0040225538998
1146 | "1145" 4313 7.94754510927025
1147 | "1146" 4320 10.0792398858746
1148 | "1147" 4324 65.3388029811327
1149 | "1148" 4327 40.7564035307491
1150 | "1149" 4328 37.0054207571988
1151 | "1150" 4331 46.7623542288106
1152 | "1151" 4332 29.074923138721
1153 | "1152" 4335 12.4624301547813
1154 | "1153" 4337 -3.09416558251512
1155 | "1154" 4338 99.5342031131759
1156 | "1155" 4339 -3.10061271818747
1157 | "1156" 4340 25.4935621312407
1158 | "1157" 4343 23.0215224542611
1159 | "1158" 4345 3.15944460612105
1160 | "1159" 4346 81.5086313704221
1161 | "1160" 4348 4.380690544342
1162 | "1161" 4349 31.7213455970412
1163 | "1162" 4350 31.4273947822431
1164 | "1163" 4351 44.3789774213074
1165 | "1164" 4352 14.3168299606696
1166 | "1165" 4353 135.256783297874
1167 | "1166" 4354 47.0263465013666
1168 | "1167" 4356 32.689136146703
1169 | "1168" 4357 5.47956337725097
1170 | "1169" 4359 50.2361433687095
1171 | "1170" 4360 29.6972017992788
1172 | "1171" 4362 1.14629529440431
1173 | "1172" 4363 88.4523542770527
1174 | "1173" 4365 67.8208440850233
1175 | "1174" 4366 141.990928371119
1176 | "1175" 4367 14.7662574364161
1177 | "1176" 4369 -0.780982499035441
1178 | "1177" 4371 1.31875671457471
1179 | "1178" 4372 2.81837675696497
1180 | "1179" 4373 174.797069178715
1181 | "1180" 4376 12.0086617962756
1182 | "1181" 4377 72.2850397617735
1183 | "1182" 4379 123.277879144383
1184 | "1183" 4380 45.1036888475551
1185 | "1184" 4381 55.5533699267934
1186 | "1185" 4382 2.93942068164832
1187 | "1186" 4383 34.1441213783595
1188 | "1187" 4384 16.3502224398202
1189 | "1188" 4385 -0.986645151467378
1190 | "1189" 4386 2.55881651384473
1191 | "1190" 4387 59.6253044779899
1192 | "1191" 4388 8.35603361843615
1193 | "1192" 4389 4.9041548547386
1194 | "1193" 4390 23.5876820028723
1195 | "1194" 4391 -2.81647168566755
1196 | "1195" 4392 31.8041610736141
1197 | "1196" 4393 1.63236003796755
1198 | "1197" 4394 59.4541893841789
1199 | "1198" 4395 64.9749763390808
1200 | "1199" 4396 14.4865104019691
1201 | "1200" 4399 10.4730503429549
1202 | "1201" 4400 12.6641531407351
1203 | "1202" 4401 4.39036188320586
1204 | "1203" 4402 87.305641164107
1205 | "1204" 4403 88.8174256023373
1206 | "1205" 4404 60.3116486143297
1207 | "1206" 4405 44.5498811315596
1208 | "1207" 4406 79.1998434232301
1209 | "1208" 4408 81.1909626129806
1210 | "1209" 4410 14.4748963555495
1211 | "1210" 4414 105.896594940402
1212 | "1211" 4415 67.9182447339606
1213 | "1212" 4417 35.769603276394
1214 | "1213" 4419 24.928545570098
1215 | "1214" 4420 36.1959997566424
1216 | "1215" 4421 11.2864750332527
1217 | "1216" 4422 70.4226800372273
1218 | "1217" 4423 110.256237105674
1219 | "1218" 4424 13.2745009292436
1220 | "1219" 4426 67.6322107144274
1221 | "1220" 4427 2.7614182716508
1222 | "1221" 4428 5.61542853211944
1223 | "1222" 4429 14.4296696317511
1224 | "1223" 4430 104.79333075731
1225 | "1224" 4431 33.7064767828888
1226 | "1225" 4432 76.7242903214336
1227 | "1226" 4433 -3.22642519691825
1228 | "1227" 4434 39.227078075127
1229 | "1228" 4438 29.083165436755
1230 | "1229" 4441 19.1502189649132
1231 | "1230" 4442 3.58532475192484
1232 | "1231" 4443 37.6562938725621
1233 | "1232" 4444 52.126620381437
1234 | "1233" 4445 43.8724657422873
1235 | "1234" 4446 6.72142165195786
1236 | "1235" 4447 43.5426005012375
1237 | "1236" 4448 10.0420320508048
1238 | "1237" 4449 -4.6947646015677
1239 | "1238" 4453 11.2944902144345
1240 | "1239" 4455 36.6345158358208
1241 | "1240" 4456 99.4869006633992
1242 | "1241" 4458 95.6299794768397
1243 | "1242" 4459 2.56325881403258
1244 | "1243" 4462 106.366487160961
1245 | "1244" 4463 42.6827149763938
1246 | "1245" 4464 9.86615512825266
1247 | "1246" 4465 33.380908225861
1248 | "1247" 4466 11.2933066620466
1249 | "1248" 4467 67.585842916048
1250 | "1249" 4468 44.6016851596221
1251 | "1250" 4469 13.2825166663045
1252 | "1251" 4473 31.9937848655004
1253 | "1252" 4474 0.308760598700351
1254 | "1253" 4475 125.676123910512
1255 | "1254" 4476 38.5702549595746
1256 | "1255" 4477 130.671566875632
1257 | "1256" 4480 42.3002388967942
1258 | "1257" 4482 44.8563065317759
1259 | "1258" 4483 19.7695961518223
1260 | "1259" 4485 23.8286687027303
1261 | "1260" 4488 22.5688384750019
1262 | "1261" 4489 51.9050430121095
1263 | "1262" 4491 4.60545365247388
1264 | "1263" 4494 122.308376088677
1265 | "1264" 4496 4.76549051353203
1266 | "1265" 4498 37.7494798839666
1267 | "1266" 4499 4.83340670679371
1268 | "1267" 4500 136.778471100139
1269 | "1268" 4501 130.061629932833
1270 | "1269" 4502 138.186867672413
1271 | "1270" 4503 5.84443425846762
1272 | "1271" 4505 8.41412812575851
1273 | "1272" 4506 29.3368705163094
1274 | "1273" 4507 40.1484405121537
1275 | "1274" 4508 -3.00283208857613
1276 | "1275" 4510 78.2302298568455
1277 | "1276" 4512 32.4091477240806
1278 | "1277" 4514 22.8667225603032
1279 | "1278" 4515 141.246332214588
1280 | "1279" 4516 -0.576494255021448
1281 | "1280" 4517 41.5397906585351
1282 | "1281" 4520 14.670422613357
1283 | "1282" 4521 118.831518426276
1284 | "1283" 4522 36.8013864775085
1285 | "1284" 4524 85.5211365984646
1286 | "1285" 4526 125.551655120121
1287 | "1286" 4530 42.9634221820606
1288 | "1287" 4531 108.954780707527
1289 | "1288" 4536 54.8615169010978
1290 | "1289" 4538 58.5622666263485
1291 | "1290" 4539 29.8094847526135
1292 | "1291" 4540 38.7414449106603
1293 | "1292" 4542 102.847021827547
1294 | "1293" 4543 37.8189593801173
1295 | "1294" 4545 5.82966176879068
1296 | "1295" 4546 142.035635918468
1297 | "1296" 4547 71.594652317469
1298 | "1297" 4548 49.907222729591
1299 | "1298" 4549 140.5437703413
1300 | "1299" 4552 -0.802003379786465
1301 | "1300" 4553 34.2690113869285
1302 | "1301" 4555 8.61535999973596
1303 | "1302" 4556 36.2228074549767
1304 | "1303" 4557 59.1880500477627
1305 | "1304" 4558 1.5442010611884
1306 | "1305" 4559 2.85149941672959
1307 | "1306" 4560 4.25048185835966
1308 | "1307" 4562 102.810179279672
1309 | "1308" 4564 83.0835083992079
1310 | "1309" 4565 35.3033205616892
1311 | "1310" 4566 7.79651330335549
1312 | "1311" 4568 108.342844261738
1313 | "1312" 4571 31.922929445196
1314 | "1313" 4576 7.97461084234554
1315 | "1314" 4577 -11.4843367875453
1316 | "1315" 4578 24.3546284301274
1317 | "1316" 4579 -6.31324718616108
1318 | "1317" 4580 39.0256711206927
1319 | "1318" 4582 83.685783967529
1320 | "1319" 4583 150.948334574641
1321 | "1320" 4584 89.0096677295293
1322 | "1321" 4585 17.0135258276299
1323 | "1322" 4586 9.14790117417461
1324 | "1323" 4587 32.3435820967305
1325 | "1324" 4589 132.378237504387
1326 | "1325" 4590 57.6587550764051
1327 | "1326" 4591 134.120767698477
1328 | "1327" 4594 32.2101333489974
1329 | "1328" 4595 150.952728153526
1330 | "1329" 4596 79.4116512099659
1331 | "1330" 4597 90.8580331334484
1332 | "1331" 4598 14.4818773733672
1333 | "1332" 4599 14.9892306085968
1334 | "1333" 4601 45.9360189244437
1335 | "1334" 4603 46.5361672055234
1336 | "1335" 4604 25.4287129264474
1337 | "1336" 4605 73.0927177156606
1338 | "1337" 4607 25.3442975124589
1339 | "1338" 4609 12.8582524554742
1340 | "1339" 4610 41.1711622765961
1341 | "1340" 4611 76.3725756935402
1342 | "1341" 4612 8.63982595804983
1343 | "1342" 4613 29.7178589490631
1344 | "1343" 4614 36.4086496071645
1345 | "1344" 4615 124.684030731113
1346 | "1345" 4616 -0.313505046669962
1347 | "1346" 4620 15.0680570502353
1348 | "1347" 4621 28.4494566983926
1349 | "1348" 4623 26.458938516357
1350 | "1349" 4624 42.9884108863443
1351 | "1350" 4625 131.080324695549
1352 | "1351" 4626 66.2519391013642
1353 | "1352" 4629 76.7960579766629
1354 | "1353" 4630 54.0507266949988
1355 | "1354" 4631 63.4532605050822
1356 | "1355" 4632 11.5248212920426
1357 | "1356" 4633 87.0335847334043
1358 | "1357" 4635 38.4121476912679
1359 | "1358" 4636 75.9825710568744
1360 | "1359" 4637 24.9929904238723
1361 | "1360" 4638 -12.4678973055963
1362 | "1361" 4641 108.64071190934
1363 | "1362" 4643 11.9878362315611
1364 | "1363" 4644 17.616208370407
1365 | "1364" 4645 17.629161508082
1366 | "1365" 4646 72.0839104232965
1367 | "1366" 4649 23.8852172855061
1368 | "1367" 4652 -15.2756979234981
1369 | "1368" 4653 66.1577140784292
1370 | "1369" 4654 52.6567181006402
1371 | "1370" 4657 151.219957512571
1372 | "1371" 4659 62.2977595903976
1373 | "1372" 4660 122.35948092209
1374 | "1373" 4661 119.968594732198
1375 | "1374" 4668 133.537603965419
1376 | "1375" 4671 85.3830586445305
1377 | "1376" 4672 111.752693907355
1378 | "1377" 4674 48.2414288737783
1379 | "1378" 4675 108.473254549795
1380 | "1379" 4676 85.5209996020041
1381 | "1380" 4678 44.7428195555186
1382 | "1381" 4679 49.0283624878828
1383 | "1382" 4680 115.333944890704
1384 | "1383" 4686 128.450753673183
1385 | "1384" 4688 3.80989650189707
1386 | "1385" 4689 131.995070763088
1387 | "1386" 4692 137.303764170713
1388 | "1387" 4694 47.1038527494195
1389 | "1388" 4696 152.418058341845
1390 | "1389" 4706 22.2430920252439
1391 | "1390" 4707 147.795892620752
1392 | "1391" 4708 35.4870066895201
1393 | "1392" 4711 85.0092928928288
1394 | "1393" 4712 76.5178254125465
1395 | "1394" 4713 49.1291457471743
1396 | "1395" 4714 75.4301837443744
1397 | "1396" 4715 100.098353606976
1398 | "1397" 4718 152.538234342631
1399 | "1398" 4719 161.945230964038
1400 | "1399" 4720 85.5711955683302
1401 | "1400" 4721 51.8536160002931
1402 | "1401" 4722 47.530472438719
1403 | "1402" 4723 46.3266923896243
1404 | "1403" 4728 149.827184046065
1405 | "1404" 4729 133.504452862882
1406 | "1405" 4730 141.333881003534
1407 | "1406" 4732 131.604239879491
1408 | "1407" 4733 126.612409173245
1409 | "1408" 4736 106.339381476058
1410 | "1409" 4737 137.7538315099
1411 | "1410" 4739 5.41508342900911
1412 | "1411" 4740 157.485818471508
1413 | "1412" 4741 81.8641823551677
1414 | "1413" 4742 25.9934926696765
1415 | "1414" 4743 136.428061566827
1416 | "1415" 4744 49.1967481903416
1417 | "1416" 4745 48.1494687380279
1418 | "1417" 4746 69.8398615172714
1419 | "1418" 4750 60.9649103218766
1420 | "1419" 4755 109.042743219171
1421 | "1420" 4756 115.970682373012
1422 | "1421" 4757 111.965498940914
1423 | "1422" 4762 8.21879477763632
1424 | "1423" 4764 46.9124865096403
1425 | "1424" 4765 93.464538104791
1426 | "1425" 4767 49.6751099248845
1427 | "1426" 4769 65.2648367919421
1428 | "1427" 4770 140.657270451243
1429 | "1428" 4772 134.033582763086
1430 | "1429" 4774 140.835021263996
1431 | "1430" 4777 89.7511787471129
1432 | "1431" 4780 34.5561908650806
1433 | "1432" 4782 67.7590201126244
1434 | "1433" 4784 110.105647663904
1435 | "1434" 4785 32.5734234093831
1436 | "1435" 4791 33.4129984634251
1437 | "1436" 4792 141.394427320018
1438 | "1437" 4793 128.313969030692
1439 | "1438" 4795 -5.20942399289267
1440 | "1439" 4796 104.000878232341
1441 | "1440" 4798 111.210500377534
1442 | "1441" 4799 45.783995206143
1443 | "1442" 4801 144.629691038853
1444 | "1443" 4802 144.435975857491
1445 | "1444" 4803 40.8710039369874
1446 | "1445" 4804 74.2316000698252
1447 | "1446" 4805 28.9772257277495
1448 | "1447" 4806 85.4359885161544
1449 | "1448" 4807 74.2481544776175
1450 | "1449" 4809 47.8286780712301
1451 | "1450" 4813 21.9057547586284
1452 | "1451" 4814 44.2275042722591
1453 | "1452" 4815 86.1953762991009
1454 | "1453" 4816 93.2455954011474
1455 | "1454" 4817 34.6867939958583
1456 | "1455" 4823 73.5197468829868
1457 | "1456" 4825 49.5242527841322
1458 | "1457" 4827 70.3947093767757
1459 | "1458" 4832 10.8690651187735
1460 | "1459" 4835 11.4214355405423
1461 | "1460" 4838 23.4270229946932
1462 | "1461" 4842 45.3175379069807
1463 | "1462" 4843 8.26402837971648
1464 | "1463" 4844 46.5670307070701
1465 | "1464" 4845 152.994035402645
1466 | "1465" 4849 92.7577027218581
1467 | "1466" 4852 96.6469504041511
1468 | "1467" 4853 130.975555566971
1469 | "1468" 4855 2.95155291032191
1470 | "1469" 4856 12.2287767982622
1471 | "1470" 4857 106.759806526296
1472 | "1471" 4858 42.0089378867626
1473 | "1472" 4859 126.390401761597
1474 | "1473" 4862 80.9965553524981
1475 | "1474" 4863 120.730124090229
1476 | "1475" 4867 131.560726438932
1477 | "1476" 4868 76.7002753456581
1478 | "1477" 4869 63.700197281487
1479 | "1478" 4871 31.971549199984
1480 | "1479" 4872 16.8010267814794
1481 | "1480" 4873 95.5358580192194
1482 | "1481" 4874 41.7764621068104
1483 | "1482" 4876 44.5728759127395
1484 | "1483" 4877 75.5692278810664
1485 | "1484" 4878 5.72871691109762
1486 | "1485" 4879 139.352582156354
1487 | "1486" 4883 44.6897886870022
1488 | "1487" 4885 84.4336522565063
1489 | "1488" 4887 127.737026997342
1490 | "1489" 4888 70.6162965054872
1491 | "1490" 4889 52.097864901638
1492 | "1491" 4891 59.4578950596643
1493 | "1492" 4892 133.000074391321
1494 | "1493" 4893 83.1309720386693
1495 | "1494" 4894 154.346950327568
1496 | "1495" 4896 35.4217518914487
1497 | "1496" 4897 29.2259833228028
1498 | "1497" 4898 47.7519983033958
1499 | "1498" 4899 99.5943100541406
1500 | "1499" 4900 33.8706744518619
1501 | "1500" 4902 74.869683418851
1502 | "1501" 4903 97.7207709321252
1503 | "1502" 4904 85.1816128520805
1504 | "1503" 4905 121.637608966535
1505 | "1504" 4906 137.289835256617
1506 | "1505" 4907 42.3773957861534
1507 | "1506" 4909 115.599898715062
1508 | "1507" 4910 161.29064807671
1509 | "1508" 4911 106.276556869406
1510 | "1509" 4912 140.019464942407
1511 | "1510" 4914 42.3773957861534
1512 | "1511" 4917 167.983059225115
1513 | "1512" 4918 97.9008935467731
1514 | "1513" 4919 43.1651111271736
1515 | "1514" 4920 81.801055266368
1516 | "1515" 4921 11.8531415014583
1517 | "1516" 4922 108.004548017638
1518 | "1517" 4924 153.711704407426
1519 | "1518" 4925 137.396139781471
1520 | "1519" 4926 24.5385211082429
1521 | "1520" 4928 80.3447808635904
1522 | "1521" 4929 122.369039992103
1523 | "1522" 4936 122.385404538106
1524 | "1523" 4938 138.970956101384
1525 | "1524" 4940 139.173847288255
1526 | "1525" 4941 39.1956593279604
1527 | "1526" 4943 147.963235833108
1528 | "1527" 4944 48.7765846305299
1529 | "1528" 4945 127.590246730598
1530 | "1529" 4947 48.415033218265
1531 | "1530" 4949 72.8753853789521
1532 | "1531" 4951 12.319745032578
1533 | "1532" 4952 16.2362161019233
1534 | "1533" 4954 94.9046850839582
1535 | "1534" 4955 109.533224653792
1536 | "1535" 4958 36.6329142847899
1537 | "1536" 4959 115.606579619574
1538 | "1537" 4960 47.7426009395925
1539 | "1538" 4962 140.564858780948
1540 | "1539" 4963 130.940067885794
1541 | "1540" 4964 137.528775186678
1542 | "1541" 4966 45.6947402153551
1543 | "1542" 4968 157.156496781182
1544 | "1543" 4971 154.731956176461
1545 | "1544" 4974 109.869998832559
1546 | "1545" 4976 81.6427167918537
1547 | "1546" 4980 133.579203649893
1548 | "1547" 4982 162.066709435105
1549 | "1548" 4984 163.335307099969
1550 | "1549" 4985 113.217653792585
1551 | "1550" 4986 22.9066236018543
1552 | "1551" 4987 48.9691545345066
1553 | "1552" 4989 61.8702864687999
1554 | "1553" 4990 155.456028381042
1555 | "1554" 4994 165.880791853167
1556 | "1555" 4997 166.795988073109
1557 | "1556" 5000 23.5959912508553
1558 | "1557" 5004 35.5625701178115
1559 | "1558" 5005 155.822051154818
1560 | "1559" 5006 149.856622599095
1561 | "1560" 5007 41.5165113672501
1562 | "1561" 5012 122.938297913049
1563 | "1562" 5013 124.250453570482
1564 | "1563" 5014 37.1077233158911
1565 | "1564" 5015 149.240055945261
1566 | "1565" 5016 127.862638437911
1567 | "1566" 5017 142.220681755779
1568 | "1567" 5018 145.578869072008
1569 | "1568" 5019 143.239624703007
1570 | "1569" 5023 8.77445817368288
1571 | "1570" 5026 49.021825681147
1572 | "1571" 5027 132.68385889523
1573 | "1572" 5028 117.1104937053
1574 | "1573" 5029 153.080393684756
1575 | "1574" 5031 39.3392111066319
1576 | "1575" 5032 135.485101520987
1577 | "1576" 5037 126.607209637534
1578 | "1577" 5038 130.815705321321
1579 | "1578" 5040 8.84207032359439
1580 | "1579" 5047 96.40912360944
1581 | "1580" 5054 118.102128313934
1582 | "1581" 5056 172.390985023393
1583 | "1582" 5057 116.219042281657
1584 | "1583" 5058 127.515143220406
1585 | "1584" 5059 166.197536294924
1586 | "1585" 5062 148.521272276815
1587 | "1586" 5063 151.75199412913
1588 | "1587" 5066 24.9133257005895
1589 | "1588" 5067 126.558540884751
1590 | "1589" 5070 143.455266209044
1591 | "1590" 5071 126.759183579425
1592 | "1591" 5075 29.4398692344158
1593 | "1592" 5078 48.7033732031291
1594 | "1593" 5079 38.0639977661385
1595 | "1594" 5082 35.1918888925198
1596 | "1595" 5083 22.4286093141703
1597 | "1596" 5087 134.068312714151
1598 | "1597" 5090 143.635091253168
1599 | "1598" 5091 27.5729366449772
1600 | "1599" 5093 34.623621549752
1601 | "1600" 5095 141.272938939402
1602 | "1601" 5096 26.1335788656622
1603 | "1602" 5097 20.4445697060549
1604 | "1603" 5099 38.1240046374571
1605 | "1604" 5100 31.6848309753232
1606 | "1605" 5102 39.934516798518
1607 | "1606" 5106 149.625291909819
1608 | "1607" 5109 21.1829576943254
1609 | "1608" 5110 35.9476252351279
1610 | "1609" 5112 137.681832405126
1611 | "1610" 5113 45.6835159845171
1612 | "1611" 5118 32.0800292301938
1613 | "1612" 5119 143.597607339239
1614 | "1613" 5120 107.364708803294
1615 | "1614" 5121 25.9157788498602
1616 | "1615" 5123 115.63689162652
1617 | "1616" 5124 49.7442851825278
1618 | "1617" 5125 31.2765115330763
1619 | "1618" 5126 50.8075498643452
1620 | "1619" 5127 32.1715612418305
1621 | "1620" 5129 37.1035332192075
1622 | "1621" 5130 37.9155388028971
1623 | "1622" 5131 24.6921951178178
1624 | "1623" 5132 32.4560929404786
1625 | "1624" 5135 37.2171323315109
1626 | "1625" 5137 21.2611118869864
1627 | "1626" 5138 99.435869340865
1628 | "1627" 5140 34.1536221684722
1629 | "1628" 5141 47.1977668256029
1630 | "1629" 5142 24.6320334001749
1631 | "1630" 5146 126.390401761597
1632 | "1631" 5147 28.8365206159924
1633 | "1632" 5148 34.7561735758105
1634 | "1633" 5150 31.0792368263845
1635 | "1634" 5153 30.1676485815318
1636 | "1635" 5154 41.05608870321
1637 | "1636" 5157 26.5468014716417
1638 | "1637" 5158 34.0468384609245
1639 | "1638" 5159 35.0401207049471
1640 | "1639" 5160 32.057660908305
1641 | "1640" 5162 154.531346933824
1642 | "1641" 5165 141.102602260573
1643 | "1642" 5166 31.5948865055596
1644 | "1643" 5167 30.9993766689215
1645 | "1644" 5169 36.1408391935668
1646 | "1645" 5170 30.3015121423872
1647 | "1646" 5171 47.6700035747249
1648 | "1647" 5175 43.3266788249454
1649 | "1648" 5176 25.4176348749439
1650 | "1649" 5177 34.6204910931001
1651 | "1650" 5178 25.6867106674258
1652 | "1651" 5184 150.590356374089
1653 | "1652" 5185 32.2347688219889
1654 | "1653" 5187 141.864961886138
1655 | "1654" 5193 60.1675776239009
1656 | "1655" 5194 34.6613530891163
1657 | "1656" 5195 32.0173131829726
1658 | "1657" 5196 126.451559551417
1659 | "1658" 5197 75.1714912382176
1660 | "1659" 5198 44.4974506088919
1661 | "1660" 5199 39.7819500250134
1662 | "1661" 5200 28.8711624667945
1663 | "1662" 5202 30.9961705869314
1664 | "1663" 5203 37.1984508458812
1665 | "1664" 5204 32.9015283900066
1666 | "1665" 5205 157.981858027492
1667 | "1666" 5206 144.702071824208
1668 | "1667" 5207 31.5803688545396
1669 | "1668" 5208 136.725363339181
1670 | "1669" 5209 16.673309000926
1671 | "1670" 5210 144.086253498932
1672 | "1671" 5212 26.4650436422513
1673 | "1672" 5213 39.8487657785981
1674 | "1673" 5214 33.8617836024145
1675 | "1674" 5218 28.6774756701922
1676 | "1675" 5219 26.1549747864119
1677 | "1676" 5222 18.2087113790529
1678 | "1677" 5224 130.990215299941
1679 | "1678" 5227 26.9804911644303
1680 | "1679" 5228 56.2575020832437
1681 | "1680" 5230 38.0952628286569
1682 | "1681" 5231 146.989885209963
1683 | "1682" 5234 28.1438263132577
1684 | "1683" 5235 32.6253822667938
1685 | "1684" 5236 32.4446273082568
1686 | "1685" 5237 78.82727098296
1687 | "1686" 5240 135.256783297874
1688 | "1687" 5241 149.482336685564
1689 | "1688" 5242 29.1347659918916
1690 | "1689" 5243 40.7056754828444
1691 | "1690" 5244 34.1349895351525
1692 | "1691" 5248 33.9245461403808
1693 | "1692" 5250 31.9173330195976
1694 | "1693" 5251 117.697490758988
1695 | "1694" 5252 126.310762686732
1696 | "1695" 5253 31.2519791329424
1697 | "1696" 5256 33.0813018108355
1698 | "1697" 5258 49.6710412904914
1699 | "1698" 5259 41.0752718133242
1700 | "1699" 5261 27.2166218880415
1701 | "1700" 5262 35.6281759047686
1702 | "1701" 5263 44.5192335281356
1703 | "1702" 5265 51.1886733630468
1704 | "1703" 5266 38.0050189316597
1705 | "1704" 5267 37.5722436219299
1706 | "1705" 5269 26.4171523164606
1707 | "1706" 5271 39.128325270862
1708 | "1707" 5272 47.3218029998973
1709 | "1708" 5273 17.2689321249192
1710 | "1709" 5275 126.81741540382
1711 | "1710" 5277 64.1715159954401
1712 | "1711" 5278 56.9779054419152
1713 | "1712" 5279 33.8475708544639
1714 | "1713" 5280 33.2905293674097
1715 | "1714" 5282 78.6015539329683
1716 | "1715" 5283 34.5918155979251
1717 | "1716" 5285 31.922556016259
1718 | "1717" 5287 36.5763467513764
1719 | "1718" 5288 34.1088880920255
1720 | "1719" 5289 33.6949447300636
1721 | "1720" 5290 27.1755463058542
1722 | "1721" 5292 60.4819099031293
1723 | "1722" 5294 26.0575524160272
1724 | "1723" 5295 21.6164826960086
1725 | "1724" 5296 21.6490836111208
1726 | "1725" 6001 22.6393082809677
1727 | "1726" 6002 67.3940904943392
1728 | "1727" 6005 3.09497178250364
1729 | "1728" 6007 30.5091285699096
1730 | "1729" 6008 -1.74949674262372
1731 | "1730" 6009 32.5809927119929
1732 | "1731" 6013 135.359918607763
1733 | "1732" 6014 3.95837029249608
1734 | "1733" 6015 28.7309721367288
1735 | "1734" 6016 0.674057331151509
1736 | "1735" 6017 121.295818893892
1737 | "1736" 6019 28.3588611400315
1738 | "1737" 6024 30.8944163983527
1739 | "1738" 6025 29.4732669867683
1740 | "1739" 6030 30.5482823715903
1741 | "1740" 6031 33.8475708544639
1742 | "1741" 6032 26.8038762326525
1743 | "1742" 6033 37.7386687950911
1744 | "1743" 6034 28.5573583210805
1745 | "1744" 6035 18.0708269683919
1746 | "1745" 6037 29.0987914145299
1747 | "1746" 6039 135.935038102652
1748 | "1747" 6041 41.8212522372442
1749 | "1748" 6043 19.9412524083126
1750 | "1749" 6044 27.5901770206748
1751 | "1750" 6045 -1.26624043137111
1752 | "1751" 6046 29.0987914145299
1753 | "1752" 6047 41.8107264681741
1754 | "1753" 6049 -5.73269254580467
1755 | "1754" 6051 24.353112170483
1756 | "1755" 6052 104.091679217926
1757 | "1756" 6053 30.1871902762732
1758 | "1757" 6054 3.50045438756324
1759 | "1758" 6056 41.3647353175597
1760 | "1759" 6058 28.3588611400315
1761 | "1760" 6059 31.9173330195976
1762 | "1761" 6061 31.8424887475663
1763 | "1762" 6062 30.1871902762732
1764 | "1763" 6063 29.8323723439804
1765 | "1764" 6064 28.3588611400315
1766 | "1765" 6065 27.5901770206748
1767 | "1766" 6066 31.58407455033
1768 | "1767" 6067 0.185159860104919
1769 | "1768" 6068 113.287263167726
1770 | "1769" 6069 31.9197523323871
1771 | "1770" 6072 133.959384946642
1772 | "1771" 6073 140.312728371991
1773 | "1772" 6075 85.5211365984646
1774 | "1773" 6076 30.1756869524264
1775 | "1774" 6080 16.6267896850477
1776 | "1775" 6082 25.5977502666929
1777 | "1776" 6083 39.8760744824206
1778 | "1777" 6084 26.4101472108763
1779 | "1778" 6085 5.77849577501212
1780 | "1779" 6088 29.7671241691506
1781 | "1780" 6094 3.50045438756324
1782 | "1781" 6097 31.9173330195976
1783 | "1782" 6100 155.552044350468
1784 | "1783" 6103 31.58407455033
1785 | "1784" 6104 23.800898223962
1786 | "1785" 6105 26.0121835259561
1787 | "1786" 6110 38.3848140197483
1788 | "1787" 6111 28.7309721367288
1789 | "1788" 6113 31.58407455033
1790 | "1789" 6115 24.353112170483
1791 | "1790" 6116 7.32204761040467
1792 | "1791" 6117 29.0987914145299
1793 | "1792" 6118 32.5809927119929
1794 | "1793" 6119 34.1515099791305
1795 | "1794" 6120 30.1803461688114
1796 | "1795" 6125 80.5311294668557
1797 | "1796" 6131 30.8944163983527
1798 | "1797" 6133 35.829147360586
1799 | "1798" 6134 119.77909162965
1800 | "1799" 6136 4.88042828759437
1801 | "1800" 6138 29.8323723439804
1802 | "1801" 6141 86.7405887116472
1803 | "1802" 6142 146.895884207338
1804 | "1803" 6143 134.467874948488
1805 | "1804" 6144 6.23709680907976
1806 | "1805" 6145 -2.37365717834848
1807 | "1806" 6146 1.14629529440431
1808 | "1807" 6147 23.0706652328223
1809 | "1808" 6148 26.8038762326525
1810 | "1809" 6151 -14.0170852483039
1811 | "1810" 6157 3.50045438756324
1812 | "1811" 6158 28.7309721367288
1813 | "1812" 6159 23.0706652328223
1814 | "1813" 6161 31.58407455033
1815 | "1814" 6163 20.5668007983215
1816 | "1815" 6164 33.5395535207436
1817 | "1816" 6168 30.8944163983527
1818 | "1817" 6170 28.7309721367288
1819 | "1818" 6173 29.4732669867683
1820 | "1819" 6175 5.77849577501212
1821 | "1820" 6178 27.7269353910584
1822 | "1821" 6179 136.091261749029
1823 | "1822" 6180 91.5175394350963
1824 | "1823" 6183 -1.26624043137111
1825 | "1824" 6184 30.5482823715903
1826 | "1825" 6185 -2.54403907898067
1827 | "1826" 6186 23.5108875322771
1828 | "1827" 6187 0.185159860104919
1829 | "1828" 6188 4.88042828759437
1830 | "1829" 6189 28.7309721367288
1831 | "1830" 6192 2.56325881403258
1832 | "1831" 6195 6.67954335038525
1833 | "1832" 6197 19.4826668281844
1834 | "1833" 6199 -17.2039555558465
1835 | "1834" 6200 30.8944163983527
1836 | "1835" 6202 -4.22613476699858
1837 | "1836" 6203 28.7309721367288
1838 | "1837" 6204 -4.22613476699858
1839 | "1838" 6206 35.1002889592659
1840 | "1839" 6207 3.02610540253454
1841 | "1840" 6209 20.7447039615959
1842 | "1841" 6211 -3.71782403932635
1843 | "1842" 6212 26.4101472108763
1844 | "1843" 6213 23.9340443285725
1845 | "1844" 6216 152.356930839225
1846 | "1845" 6218 23.9340443285725
1847 | "1846" 6221 36.2545717804579
1848 | "1847" 6222 36.9876636163672
1849 | "1848" 6224 -9.30513467001136
1850 | "1849" 6226 31.2362880096104
1851 | "1850" 6227 33.8475708544639
1852 | "1851" 6228 29.0987914145299
1853 | "1852" 6229 130.722758057698
1854 | "1853" 6231 155.435940972846
1855 | "1854" 6232 32.2463734311385
1856 | "1855" 6233 33.2179080441168
1857 | "1856" 6234 27.970988800188
1858 | "1857" 6236 110.003020631737
1859 | "1858" 6237 30.8944163983527
1860 | "1859" 6240 2.56325881403258
1861 | "1860" 6241 90.9587756702342
1862 | "1861" 6243 42.4669672513221
1863 | "1862" 6244 -8.7941939928905
1864 | "1863" 6250 27.5901770206748
1865 | "1864" 6251 31.58407455033
1866 | "1865" 6252 119.77909162965
1867 | "1866" 6253 28.3588611400315
1868 | "1867" 6255 28.7539529141699
1869 | "1868" 6256 4.88042828759437
1870 | "1869" 6257 20.3961192418175
1871 | "1870" 6258 34.8398673214426
1872 | "1871" 6259 26.4101472108763
1873 | "1872" 6260 27.2050909293599
1874 | "1873" 6264 139.903129933953
1875 | "1874" 6266 33.5395535207436
1876 | "1875" 6268 40.9526918825007
1877 | "1876" 6269 33.5395535207436
1878 | "1877" 6271 32.2463734311385
1879 | "1878" 6273 33.8475708544639
1880 | "1879" 6274 33.2719006609967
1881 | "1880" 6275 31.2362880096104
1882 | "1881" 6277 5.3307460779199
1883 | "1882" 6278 29.8323723439804
1884 | "1883" 6279 16.1287621763211
1885 | "1884" 6281 12.625846312256
1886 | "1885" 6282 21.751307372042
1887 | "1886" 6283 -1.74949674262372
1888 | "1887" 6284 141.30543572054
1889 | "1888" 6287 -0.29160371824223
1890 | "1889" 6288 33.0626080076053
1891 | "1890" 6289 8.86404889586117
1892 | "1891" 6291 88.1940760526789
1893 | "1892" 6292 6.23709680907976
1894 | "1893" 6293 -1.74949674262372
1895 | "1894" 6294 21.3079984290616
1896 | "1895" 6297 46.6877443400556
1897 | "1896" 6298 25.7693798678728
1898 | "1897" 6300 99.4686168148618
1899 | "1898" 6303 121.898758966017
1900 | "1899" 6304 32.5809927119929
1901 | "1900" 6306 25.1912468254211
1902 | "1901" 6307 16.6267896850477
1903 | "1902" 6308 31.2362880096104
1904 | "1903" 6310 29.8323723439804
1905 | "1904" 6312 35.1904189675967
1906 | "1905" 6313 9.30328130366808
1907 | "1906" 6314 22.2039669991765
1908 | "1907" 6315 106.393849627651
1909 | "1908" 6316 30.1871902762732
1910 | "1909" 6318 1.61625318097941
1911 | "1910" 6319 26.4101472108763
1912 | "1911" 6320 5.3307460779199
1913 | "1912" 6321 22.2039669991765
1914 | "1913" 6323 29.8323723439804
1915 | "1914" 6326 40.6556908892829
1916 | "1915" 6327 28.7309721367288
1917 | "1916" 6328 4.41380995005477
1918 | "1917" 6329 84.2190761111589
1919 | "1918" 6330 15.1521447713305
1920 | "1919" 6333 23.9340443285725
1921 | "1920" 6334 87.9902142592311
1922 | "1921" 6335 34.1515099791305
1923 | "1922" 6336 96.5103774498473
1924 | "1923" 6341 138.864596578045
1925 | "1924" 6343 -8.7941939928905
1926 | "1925" 6345 141.799326295634
1927 | "1926" 6346 -6.73609105171796
1928 | "1927" 6347 150.948334574641
1929 | "1928" 6348 5.77849577501212
1930 | "1929" 6349 -4.72142095869469
1931 | "1930" 6350 20.3961192418175
1932 | "1931" 6351 5.3307460779199
1933 | "1932" 6352 -7.76173670507947
1934 | "1933" 6354 -5.73269254580467
1935 | "1934" 6356 90.9587756702342
1936 | "1935" 6357 31.2362880096104
1937 | "1936" 6358 26.4101472108763
1938 | "1937" 6359 -0.29160371824223
1939 | "1938" 6360 21.3079984290616
1940 | "1939" 6362 33.8475708544639
1941 | "1940" 6364 45.5147687185795
1942 | "1941" 6367 -9.81762535274936
1943 | "1942" 6369 37.7086008455174
1944 | "1943" 6370 91.7633668049271
1945 | "1944" 6371 21.3079984290616
1946 | "1945" 6372 28.3588611400315
1947 | "1946" 6373 89.4794214741403
1948 | "1947" 6374 33.5395535207436
1949 | "1948" 6375 30.8944163983527
1950 | "1949" 6376 40.6556908892829
1951 | "1950" 6377 127.152120773732
1952 | "1951" 6378 41.945719172265
1953 | "1952" 6381 4.88042828759437
1954 | "1953" 6384 -0.770544782465484
1955 | "1954" 6385 3.95837029249608
1956 | "1955" 6386 24.353112170483
1957 | "1956" 6389 117.206101716596
1958 | "1957" 6393 35.3444050508682
1959 | "1958" 6394 -1.74949674262372
1960 | "1959" 6396 29.8323723439804
1961 | "1960" 6399 30.1871902762732
1962 | "1961" 6400 26.0121835259561
1963 | "1962" 6401 29.0987914145299
1964 | "1963" 6402 116.50306553449
1965 | "1964" 6404 26.0121835259561
1966 | "1965" 6405 26.0121835259561
1967 | "1966" 6408 33.5395535207436
1968 | "1967" 6411 4.11801790693905
1969 | "1968" 6412 30.8944163983527
1970 | "1969" 6413 22.6393082809677
1971 | "1970" 6414 39.404913147844
1972 | "1971" 6415 23.0706652328223
1973 | "1972" 6416 4.88042828759437
1974 | "1973" 6417 -7.25569891437069
1975 | "1974" 6418 3.95837029249608
1976 | "1975" 6419 -0.770544782465484
1977 | "1976" 6421 35.8680065520653
1978 | "1977" 6422 31.58407455033
1979 | "1978" 6423 -23.1896280153149
1980 | "1979" 6424 30.1871902762732
1981 | "1980" 6426 41.8212522372442
1982 | "1981" 6427 26.1045276548154
1983 | "1982" 6428 87.0335847334043
1984 | "1983" 6429 2.56325881403258
1985 | "1984" 6432 39.0710628096063
1986 | "1985" 6433 139.27137027936
1987 | "1986" 6436 31.9173330195976
1988 | "1987" 6437 1.14629529440431
1989 | "1988" 6439 3.02610540253454
1990 | "1989" 6441 90.2059728791171
1991 | "1990" 6442 24.7805706611631
1992 | "1991" 6443 1.14629529440431
1993 | "1992" 6446 37.7086008455174
1994 | "1993" 6447 25.5977502666929
1995 | "1994" 6448 -1.74949674262372
1996 | "1995" 6449 33.2179080441168
1997 | "1996" 6450 135.399512369963
1998 | "1997" 6452 31.2362880096104
1999 | "1998" 6454 -0.29160371824223
2000 | "1999" 6455 27.970988800188
2001 | "2000" 6456 31.2362880096104
2002 | "2001" 6457 31.9173330195976
2003 | "2002" 6459 3.50045438756324
2004 | "2003" 6462 29.4732669867683
2005 | "2004" 6463 26.5988890988924
2006 | "2005" 6465 -4.72142095869469
2007 | "2006" 6467 119.77909162965
2008 | "2007" 6468 2.09803227219746
2009 | "2008" 6470 32.2463734311385
2010 | "2009" 6471 17.583389215461
2011 | "2010" 6472 -0.770544782465484
2012 | "2011" 6473 -12.9548976415311
2013 | "2012" 6474 34.2975706163627
2014 | "2013" 6476 24.7805706611631
2015 | "2014" 6479 107.568021420469
2016 | "2015" 6480 98.0860082044281
2017 | "2016" 6483 92.6521693775046
2018 | "2017" 6485 2.09803227219746
2019 | "2018" 6487 10.5768081401625
2020 | "2019" 6488 0.674057331151509
2021 | "2020" 6492 6.23709680907976
2022 | "2021" 6493 31.2362880096104
2023 | "2022" 6494 6.23709680907976
2024 | "2023" 6495 30.5482823715903
2025 | "2024" 6496 21.3079984290616
2026 | "2025" 6497 42.1060146697128
2027 | "2026" 6498 38.7414449106603
2028 | "2027" 6499 -11.3797527731004
2029 | "2028" 6500 33.8475708544639
2030 | "2029" 6502 29.4732669867683
2031 | "2030" 6503 39.404913147844
2032 | "2031" 6504 -4.22613476699858
2033 | "2032" 6509 -10.8627674695139
2034 | "2033" 6510 32.5809927119929
2035 | "2034" 6512 87.5886341734181
2036 | "2035" 6513 20.8608291843275
2037 | "2036" 6514 25.1912468254211
2038 | "2037" 6515 23.5108875322771
2039 | "2038" 6516 19.9412524083126
2040 | "2039" 6517 29.0987914145299
2041 | "2040" 6518 31.9173330195976
2042 | "2041" 6519 33.2179080441168
2043 | "2042" 6521 2.56325881403258
2044 | "2043" 6522 21.751307372042
2045 | "2044" 6524 -2.73699390298397
2046 | "2045" 6528 1.61625318097941
2047 | "2046" 6529 104.113833402695
2048 | "2047" 6533 84.2190761111589
2049 | "2048" 6534 39.7234027109161
2050 | "2049" 6535 125.508050695395
2051 | "2050" 6541 37.7086008455174
2052 | "2051" 6542 6.67954335038525
2053 | "2052" 6543 144.702071824208
2054 | "2053" 6544 40.0364811108555
2055 | "2054" 6545 165.253176833091
2056 | "2055" 6546 22.6393082809677
2057 | "2056" 6547 19.0063482631229
2058 | "2057" 6548 -3.71782403932635
2059 | "2058" 6549 149.972689296675
2060 | "2059" 6550 94.5752198594424
2061 | "2060" 6551 -8.26942690142106
2062 | "2061" 6559 -2.23482608892804
2063 | "2062" 6563 18.5403685609412
2064 | "2063" 6564 27.5901770206748
2065 | "2064" 6566 4.41380995005477
2066 | "2065" 6570 1.14629529440431
2067 | "2066" 6572 31.2362880096104
2068 | "2067" 6573 141.159170949358
2069 | "2068" 6574 -8.7941939928905
2070 | "2069" 6575 -6.23351352969349
2071 | "2070" 6577 0.185159860104919
2072 | "2071" 6578 26.8038762326525
2073 | "2072" 6580 18.0708269683919
2074 | "2073" 6581 29.4732669867683
2075 | "2074" 6582 -5.73269254580467
2076 | "2075" 6586 95.6814190967672
2077 | "2076" 6589 -4.72142095869469
2078 | "2077" 6591 41.8212522372442
2079 | "2078" 6592 141.159170949358
2080 | "2079" 6593 85.0706381122293
2081 | "2080" 6597 121.295818893892
2082 | "2081" 6600 161.598853182898
2083 | "2082" 6601 135.940939090738
2084 | "2083" 6602 160.526859826979
2085 | "2084" 6605 45.7305081142812
2086 | "2085" 6606 124.179487866936
2087 | "2086" 6610 109.411676433618
2088 | "2087" 6611 89.4794214741403
2089 | "2088" 6612 116.503065534489
2090 | "2089" 6615 133.473953927097
2091 | "2090" 6619 114.800025362236
2092 | "2091" 6621 27.5901770206748
2093 | "2092" 6622 29.965258377898
2094 | "2093" 6624 28.7309721367288
2095 | "2094" 6629 29.0987914145299
2096 | "2095" 6632 153.244635979999
2097 | "2096" 6634 141.210857188579
2098 | "2097" 6635 38.0551273275982
2099 | "2098" 6640 124.179487866936
2100 | "2099" 6641 114.800025362236
2101 | "2100" 6643 99.4686168148618
2102 | "2101" 6644 17.1067855588586
2103 | "2102" 6648 148.466145692097
2104 | "2103" 6651 37.3564317170851
2105 | "2104" 6652 38.0551273275982
2106 | "2105" 6653 21.3079984290616
2107 | "2106" 6654 109.411676433618
2108 | "2107" 6655 162.288065261563
2109 | "2108" 6657 102.44183224541
2110 | "2109" 6658 136.636948898746
2111 | "2110" 6660 146.895884207338
2112 | "2111" 6661 152.356930839225
2113 | "2112" 6668 121.295818893892
2114 | "2113" 6672 37.7086008455174
2115 | "2114" 6677 36.623968668927
2116 | "2115" 6679 20.3212658712265
2117 | "2116" 6681 82.3994092493654
2118 | "2117" 6683 155.016035457631
2119 | "2118" 6686 114.800025362236
2120 | "2119" 6687 144.138200614712
2121 | "2120" 6688 90.9587756702342
2122 | "2121" 6690 166.185607572572
2123 | "2122" 6695 129.203638123744
2124 | "2123" 6697 42.3773957861534
2125 | "2124" 6702 22.489557038663
2126 | "2125" 6703 87.5886341734181
2127 | "2126" 6704 26.0121835259561
2128 | "2127" 6705 135.940939090738
2129 | "2128" 6713 139.27137027936
2130 | "2129" 6721 140.544964022013
2131 | "2130" 6722 26.0121835259561
2132 |
--------------------------------------------------------------------------------
/data/adas_mmse_data.RData:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/larslau/progmod/d374fb34a87d469891ab675f2c7294676e62dec9/data/adas_mmse_data.RData
--------------------------------------------------------------------------------
/man/ADNI_disease_stage_bl.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/data.R
3 | \docType{data}
4 | \name{ADNI_disease_stage_bl}
5 | \alias{ADNI_disease_stage_bl}
6 | \title{Predicted disease stage at baseline for ADNI participants
7 | ?AD
8 | A dataset containing the predicted disease stage (disease month) for
9 | individuals in ADNI based on their longitudinal 13-item ADAS-cog trajectories
10 | Data are based on a data cut of ADAS-cog scores from July 2019.}
11 | \format{
12 | A data frame with 2130 rows and 3 variables:
13 | \describe{
14 | \item{RID}{ADNI roster ID}
15 | \item{pred_AD_month}{Predicted disease time (in months relative to the average cognitive state of the cognitively normal group)}
16 | }
17 | }
18 | \usage{
19 | ADNI_disease_stage_bl
20 | }
21 | \description{
22 | Predicted disease stage at baseline for ADNI participants
23 | ?AD
24 | A dataset containing the predicted disease stage (disease month) for
25 | individuals in ADNI based on their longitudinal 13-item ADAS-cog trajectories
26 | Data are based on a data cut of ADAS-cog scores from July 2019.
27 | }
28 | \keyword{datasets}
29 |
--------------------------------------------------------------------------------
/man/GLF.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/progmod.R
3 | \name{GLF}
4 | \alias{GLF}
5 | \title{Overparametrized generalized logistic function.}
6 | \usage{
7 | GLF(t, A, K, B, v, s, c)
8 | }
9 | \arguments{
10 | \item{t}{Time variable}
11 |
12 | \item{A}{Lower asymptote parameter}
13 |
14 | \item{K}{Upper asymptote parameter}
15 |
16 | \item{B}{Time-scaling parameter}
17 |
18 | \item{v}{Asymmetry parameter}
19 |
20 | \item{s}{Time-shift parameter}
21 |
22 | \item{c}{Intercept parameter, should only be used for random effects}
23 | }
24 | \value{
25 | The function values at the supplied time values along with a
26 | "gradient" attribute.
27 | }
28 | \description{
29 | Overparametrized generalized logistic function.
30 | }
31 | \examples{
32 | GLF(t = c(0, 1), A = 30, K = 0, B = 1, s = 0, v = 1, c = 0)
33 | }
34 |
--------------------------------------------------------------------------------
/man/adas_mmse_data.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/data.R
3 | \docType{data}
4 | \name{adas_mmse_data}
5 | \alias{adas_mmse_data}
6 | \title{Simulated longitudinal ADAS-cog and MMSE scores}
7 | \format{
8 | A data frame with 9378 rows and 7 variables:
9 | \describe{
10 | \item{subject_id}{Subject ID}
11 | \item{Month_bl}{Months since baseline}
12 | \item{ADAS13}{Simulated 13-item ADAS-cog score}
13 | \item{MMSE}{Simulated MMSE score}
14 | \item{CN}{Was subject cognitively normal at baseline (0/1)?}
15 | \item{MCI}{Was subject mild cognitively impaired at baseline (0/1)?}
16 | \item{DEM}{Did subject have dementia at baseline (0/1)?}
17 | \item{blstatus}{Patient status at baseline (Cognitively normal/MCI/Dementia)}
18 | }
19 | }
20 | \usage{
21 | adas_mmse_data
22 | }
23 | \description{
24 | A dataset containing longitudinal simulated ADAS-cog and MMSE scores
25 | for a large number of individuals that are cognitively normal, have mild
26 | congnitive impairment (MCI) or dementia.
27 | Data is simulated based on ADNI data.
28 | }
29 | \keyword{datasets}
30 |
--------------------------------------------------------------------------------
/man/exp_model.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/progmod.R
3 | \name{exp_model}
4 | \alias{exp_model}
5 | \title{Overparametrized exponential function.}
6 | \usage{
7 | exp_model(t, l, s, g, v)
8 | }
9 | \arguments{
10 | \item{t}{Time variable}
11 |
12 | \item{l}{Scale parameter for the exponential function}
13 |
14 | \item{s}{Time-shift parameter}
15 |
16 | \item{g}{Time-scaling parameter}
17 |
18 | \item{v}{Intercept parameter}
19 | }
20 | \value{
21 | The function values at the supplied time values along with a
22 | "gradient" attribute.
23 | }
24 | \description{
25 | Overparametrized exponential function.
26 | }
27 | \examples{
28 | exp_model(t = c(0, 1), l = 1, s = 0, g = 0, v = 0)
29 | }
30 |
--------------------------------------------------------------------------------
/man/progmod.Rd:
--------------------------------------------------------------------------------
1 | % Generated by roxygen2: do not edit by hand
2 | % Please edit documentation in R/progmod.R
3 | \name{progmod}
4 | \alias{progmod}
5 | \title{Fit nonlinear mixed-effects disease progression models}
6 | \usage{
7 | progmod(
8 | model,
9 | data,
10 | fixed,
11 | random,
12 | groups,
13 | start,
14 | covariance = NULL,
15 | weights = NULL,
16 | method = c("ML", "REML"),
17 | control = NULL,
18 | verbose = FALSE
19 | )
20 | }
21 | \arguments{
22 | \item{model}{A nonlinear model formula, with the response on the left of a ~
23 | operator and an expression involving parameters and covariates on the right,
24 | or an nlsList object. If data is given, all names used in the formula should
25 | be defined as parameters or variables in the data frame. The method function
26 | nlme.nlsList is documented separately. See \code{\link[nlme]{nlme}} for details.}
27 |
28 | \item{data}{An optional data frame containing the variables named in model,
29 | fixed, random, correlation, weights, subset, and naPattern.
30 | By default the variables are taken from the environment.}
31 |
32 | \item{fixed}{A two-sided linear formula of the form \code{f1+...+fn~x1+...+xm},
33 | or a list of two-sided formulas of the form \code{f1~x1+...+xm}, with possibly
34 | different models for different parameters. The \code{f1,...,fn} are the names of
35 | parameters included on the right hand side of model and the \code{x1+...+xm}
36 | expressions define linear models for these parameters (when the left hand
37 | side of the formula contains several parameters, they all are assumed to
38 | follow the same linear model, described by the right hand side expression).
39 | A \code{1} on the right hand side of the formula(s) indicates a single fixed effects
40 | for the corresponding parameter(s).}
41 |
42 | \item{random}{A two-sided formula of the form
43 | \code{r1+...+rn~x1+...+xm | g1/.../gQ}, with \code{r1,...,rn} naming parameters included on the
44 | right hand side of model, \code{x1+...+xm} specifying the random-effects model for these
45 | parameters and \code{g1/.../gQ} the grouping structure (\code{Q} may be equal to \code{1}, in which
46 | case no / is required). The random effects formula will be repeated for all
47 | levels of grouping, in the case of multiple levels of grouping. Explicit specification of the
48 | covariance structure between random effects (e.g. using \code{pdMat}) or different formulas for
49 | different random effects can be specified. See \code{\link[nlme]{nlme}} for details.
50 | \strong{Note:} Only simple two-sided formulas are currently supported when a covariance
51 | structure is given (see below).}
52 |
53 | \item{groups}{an optional one-sided formula of the form \code{~ g1} specifying the partitions
54 | of the data over which the random effects vary. This is needed when different formulas are specified for
55 | different random effects.}
56 |
57 | \item{start}{A numeric vector or list of initial estimates for the fixed effects and random effects.
58 | If declared as a numeric vector, it is converted internally to a list with a single component fixed, given by the vector.
59 | The \code{fixed} component is required, unless the model function inherits from
60 | class \code{selfStart}, in which case initial values will be derived
61 | from a call to \code{nlsList}. An optional \code{random} component is used to specify
62 | initial values for the random effects and should consist of a matrix,
63 | or a list of matrices with length equal to the number of grouping levels.
64 | Each matrix should have as many rows as the number of groups at the
65 | corresponding level and as many columns as the number of random effects in that level.}
66 |
67 | \item{covariance}{An optional \code{\link[nlme]{corStruct}} object describing the within-group
68 | covariance structure. In addition to those available in \code{nlme},
69 | \code{\link{covBM}} can be used to incorporate a Brownian motion component, \code{\link{covFracBM}}
70 | can be used to incorporate a fractional Brownian motion component and \code{\link{covIOU}}
71 | can be used to incorporate an integrated Ornstein-Uhlenbeck process in relation to
72 | a continuous variable.}
73 |
74 | \item{weights}{an optional varFunc object or one-sided formula describing the within-group heteroscedasticity structure.
75 | This argument is primarily used for multivariate modeling of several outcomes where different standard errors are to be expected.
76 | If given as a formula, it is used as the argument to varFixed, corresponding to fixed variance weights.
77 | See the documentation on varClasses for a description of the available varFunc classes.
78 | Defaults to NULL, corresponding to homoscedastic within-group errors. \strong{Note:} weighting is not currently supported
79 | when a covariance structure is given.}
80 |
81 | \item{method}{a character string. If "\code{REML}" the model is fit by maximizing the restricted log-likelihood.
82 | If "\code{ML}" the log-likelihood is maximized. Defaults to "\code{ML}".}
83 |
84 | \item{control}{A list of control parameters for the estimation algorithm. See \code{\link[nlmeControl]{nlmeControl}}.}
85 |
86 | \item{verbose}{If \code{TRUE} information on the evolution of the iterative
87 | algorithm is printed. Default is \code{FALSE}.}
88 | }
89 | \value{
90 | An object of class "nlme" representing the nonlinear mixed effects model fit.
91 | }
92 | \description{
93 | This function fits disease-progression models to longitudinal data.
94 | The function fits nonlinear mixed-effects models by calling
95 | \code{\link[nlme]{nlme}} or \code{\link[nlmeBM]{nlmeBM}} depending on the
96 | model specification.
97 | }
98 | \examples{
99 |
100 | #
101 | # Fit exponential disease progression model to simulated ADAS-cog scores
102 | #
103 |
104 | # Plot data
105 | if (require(ggplot2)) {
106 | ggplot(adas_mmse_data, aes(x = Month_bl, y = ADAS13)) +
107 | geom_line(aes(group = subject_id, color = blstatus)) +
108 | ylim(c(85, 0)) +
109 | xlab('Months since baseline')
110 | }
111 |
112 | # Fit exponential model with random shift and intercept
113 | fixed_start_coef <- c(0.5, 70, 150, 3.5, 10)
114 | ADAS_progmod <- progmod(ADAS13 ~ exp_model(Month_bl, l, s, g, v),
115 | data = subset(adas_mmse_data, !is.na(ADAS13)),
116 | fixed = list(l ~ 1,
117 | s ~ MCI + DEM - 1,
118 | g ~ 1,
119 | v ~ 1),
120 | random = s + v ~ 1 | subject_id,
121 | start = fixed_start_coef,
122 | covariance = NULL)
123 |
124 | # Predict from model and visualize results
125 | adas_mmse_data$fixed_shift_adas <- with(adas_mmse_data,
126 | MCI * fixed.effects(ADAS_progmod)[2] +
127 | DEM * fixed.effects(ADAS_progmod)[3])
128 | pred_rand <- random.effects(ADAS_progmod)
129 | adas_mmse_data$random_shift_adas <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)']
130 |
131 | if (require(ggplot2)) {
132 | ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas, y = ADAS13)) +
133 | geom_line(aes(group = subject_id, color = blstatus)) +
134 | ylim(c(85, 0)) +
135 | xlab('Months since baseline')
136 | }
137 |
138 |
139 | if (require(ggplot2)) {
140 | ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_adas + random_shift_adas, y = ADAS13)) +
141 | geom_line(aes(group = subject_id, color = blstatus)) +
142 | ylim(c(85, 0)) +
143 | xlab('Months since baseline')
144 | }
145 |
146 | #
147 | # Fit generalized logistic disease progression model to simulated MMSE scores
148 | #
149 |
150 | # Plot data
151 |
152 | if (require(ggplot2)) {
153 | ggplot(adas_mmse_data, aes(x = Month_bl, y = MMSE)) +
154 | geom_line(aes(group = subject_id, color = blstatus)) +
155 | ylim(c(0, 30)) +
156 | xlab('Months since baseline')
157 | }
158 |
159 | # Fit generalized logistic model with range [30, 0] and a random time shift
160 | fixed_start_coef <- c(B = 0.025,
161 | v = 1.4,
162 | `s.(Intercept)` = -100,
163 | s.MCI = 26,
164 | s.DEM = 75)
165 |
166 | MMSE_progmod_glf <- progmod(MMSE ~ GLF(Month_bl, A = 30, K = 0, B, v, s, c = 0),
167 | data = subset(adas_mmse_data, !is.na(MMSE)),
168 | fixed = list(B ~ 1,
169 | v ~ 1,
170 | s ~ MCI + DEM + 1),
171 | random = s ~ 1 | subject_id,
172 | start = fixed_start_coef,
173 | covariance = NULL)
174 |
175 | # Predict from model and visualize results
176 | adas_mmse_data$fixed_shift_mmse <- with(adas_mmse_data,
177 | fixed.effects(MMSE_progmod_glf)[3] +
178 | MCI * fixed.effects(MMSE_progmod_glf)[4] +
179 | DEM * fixed.effects(MMSE_progmod_glf)[5])
180 | pred_rand <- random.effects(MMSE_progmod_glf)
181 | adas_mmse_data$random_shift_mmse <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)']
182 |
183 |
184 |
185 | if (require(ggplot2)) {
186 | ggplot(adas_mmse_data, aes(x = Month_bl + fixed_shift_mmse + random_shift_mmse, y = MMSE)) +
187 | geom_line(aes(group = subject_id, color = blstatus)) +
188 | xlab('Months since baseline')
189 | }
190 |
191 | #
192 |
193 | # Stack data to long format
194 | tmp1 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'ADAS13')]
195 | names(tmp1)[6] <- 'value'
196 | tmp1$scale <- 'ADAS13'
197 |
198 | tmp2 <- adas_mmse_data[, c('subject_id', 'Month_bl', 'CN', 'MCI', 'DEM', 'MMSE')]
199 | names(tmp2)[6] <- 'value'
200 | tmp2$scale <- 'MMSE'
201 |
202 | # Long data
203 | adas_mmse_data_long <- na.omit(rbind(tmp1, tmp2))
204 | adas_mmse_data_long$scale <- factor(adas_mmse_data_long$scale)
205 |
206 | # Remove temporary files
207 | rm(tmp1, tmp2)
208 |
209 | # Fit multivariate exponential model
210 | fixed_start_coef <- c(l.scaleADAS13 = 0.5,
211 | l.scaleMMSE = -0.1,
212 | s.MCI = 70,
213 | s.DEM = 150,
214 | g.scaleADAS13 = 3.5,
215 | g.scaleMMSE = 3,
216 | v.scaleADAS13 = 10,
217 | v.scaleMMSE = 30)
218 |
219 | multi_progmod_glf <- progmod(value ~ exp_model(Month_bl, l, s, g, v),
220 | data = adas_mmse_data_long,
221 | fixed = list(l ~ scale + 0,
222 | s ~ MCI + DEM + 0,
223 | g ~ scale + 0,
224 | v ~ scale + 0),
225 | random = list(s ~ 1,
226 | v ~ scale),
227 | groups = ~ subject_id,
228 | start = fixed_start_coef,
229 | weights = varIdent(form = ~ 1 | scale))
230 |
231 | # Predict from model and compare to univariate models
232 | adas_mmse_data$fixed_shift_multi <- with(adas_mmse_data,
233 | MCI * fixed.effects(multi_progmod_glf)[3] +
234 | DEM * fixed.effects(multi_progmod_glf)[4])
235 | pred_rand <- random.effects(multi_progmod_glf)
236 | adas_mmse_data$random_shift_multi <- pred_rand[match(adas_mmse_data$subject_id, rownames(pred_rand)), 's.(Intercept)']
237 |
238 |
239 | # Correlations between predicted disease months
240 | with(adas_mmse_data, cor(cbind(fixed_shift_adas + random_shift_adas,
241 | fixed_shift_mmse + random_shift_mmse,
242 | fixed_shift_multi + random_shift_multi), method = 'spearman'))
243 |
244 |
245 |
246 |
247 | }
248 |
--------------------------------------------------------------------------------
/man/readme/adas_progression.gif:
--------------------------------------------------------------------------------
https://raw.githubusercontent.com/larslau/progmod/d374fb34a87d469891ab675f2c7294676e62dec9/man/readme/adas_progression.gif
--------------------------------------------------------------------------------